

MATHICSE

Mathematics Institute of Computational Science and Engineering

School of Basic Sciences - Section of Mathematics

 Address:
EPFL - SB - MATHICSE (Bâtiment MA)

Station 8 - CH-1015 - Lausanne - Switzerland

http://mathicse.epfl.ch

Phone: +41 21 69 37648

Fax: +41 21 69 32545

Benchmark problems on
stochastic automata networks

in tensor train format

Francisco Macedo

 MATHICSE Technical Report
Nr. 26.2015

September 2015

http://mathicse.epfl.ch/

BENCHMARK PROBLEMS ON STOCHASTIC AUTOMATA
NETWORKS IN TENSOR TRAIN FORMAT

FRANCISCO MACEDO∗†

24th September 2015, Version 1.1

Abstract. We present a description of transition rate matrices of models for Stochastic Au-
tomata Networks (SAN) in their representation as operators in Tensor Train (TT) format. The
collection contains models from real-life applications both taken from references directly or adapta-
tions that still have a realistic interpretation. A classification is given according to the properties
of interest of each model. Identifiers based on such properties are provided. A brief description of
each model is given. This document both provides an illustration of the big variety of applications
associated with Stochastic Automata Network as it also allows testing and tuning algorithms for the
solution of relevant associated problems as, for instance, the determination of their steady-state.

1. Introduction. In many areas, from which we highlight Chemical Networks
and Queueing Networks, one finds models that are associated with Stochastic Au-
tomata Networks, which are Markov Chains with a particular structure. Both devel-
oping algorithms and testing software strongly benefit from the availability of collec-
tions of such models.

Such collections can be used, among other things, for: tuning algorithms and
optimizing its performance across a wide and representative range of problems; test-
ing the correctness of code; measuring its performance and robustness; comparing
different algorithms for some measures, among which the main one is typically the
computation time.

We combine problems directly extracted from references with others that are
adjusted from them while still representing realistic situations. Problems for which
something is known about the solution are always particularly attractive. The prac-
tice of reproducible research, meaning that research is published in a way that the
experiments can be reproduced, is of growing interest and visibility [17, 38, 52]. In this
context, the availability of well documented and maintained benchmark collections is
fundamental.

Having collections of problems implemented in software have been a particular
concern in some fields. Linear algebra and optimization are the first that come to
mind. For the first, one can highlight [29], from which most matrices were later incor-
porated into the Matlab gallery function. A big collection of sparse matrices from
practical applications can be found in [13]. Concerning optimization, we highlight the
widely used Cute and Cuter testing environments [7, 26], while other more specialized
collections are also available.

The growing interest in finding the stationary distribution of Stochastic Automata
Networks (SAN), and more generally the interest for determining some measures of
interest associated with such networks, motivates us to create one such collection.
The standard problem is the determination of the solution of QTx = 0, where Q is
the transition rate matrix associated with the SAN, as this is the condition on x, for a
continuous-time Markov Chain, for the steady-state. Q is what characterizes a model
and it can be similar even for the representation of models that have fairly different
real life meanings.

∗EPF Lausanne, SB-MATHICSE-ANCHP, Station 8, CH-1015 Lausanne, Switzerland,
{francisco.macedo}@epfl.ch
†IST, Alameda Campus, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal

1

The interest extends to the study of the transient behaviour of such networks,
associated with the dynamics over time, instead of focusing only on the long-term
distribution. In the field of Chemical Networks, in particular, this is associated with
the Chemical Master Equation (CME), used to describe the time-evolution of a system
that can be modelled as being in exactly one of countable number of states at any
given time. The equations are usually a set of differential equations for the variation
over time of the probabilities that the system occupies each of the different states,
where the standard problem is finding x(t) such that d

dtx(t) = Qx(t).

This collection of models, represented by their transition rate matrices, is associ-
ated with realistic settings, in their majority taken from existing references. Some of
them have been used in numerical experiments in the context of testing algorithms
for solving the two problems mentioned above.

There are many important characteristics of the models, which may, in particular,
influence the way algorithms perform, and should thus be used to partition the set
of models. We provide a classification of each model according to such structural
properties.

The collection is implemented in Matlab, where the matrices are represented
in the associated operator for Tensor Train (TT) format as this is the format for
which algorithms for finding the stationary state seem to perform the best as recently
illustrated in [32], while this then allows much bigger problem sizes to be stored
compared to when one has a full matrix representation. It is also illustrated in [30]
that the closely related Quantized Tensor Train (QTT) format is very suitable for the
problem of the transient behaviour in the context of CME.

The code that allows obtaining the TT representation of the models is available
in http://anchp.epfl.ch/SAN_TT.

In Sec. 2 we provide the characteristics of interest that will be used to classify
the models, as well as a more detailed description of the associated concepts. In Sec.
3 we go through the models one by one and describe them. In Sec. 4 we focus on the
utilization of our available implementation of the operators representing the models.
Sec. 5 consists of the conclusions.

2. Identifiers. In Tab. 1 we provide a list with the different main characteristics
of the models. We then provide some insight on the concepts associated with transition
rate matrices of Markov Chains; we move then to the particular case of SAN; we finish
with the application to the particular tensor format, Tensor Train (TT) format, on
which the representation of the corresponding transition rate matrices is done.

Table 1: Identifiers for the properties of the models.

chemical queueing communications qualitycontrol

reducible

distinguishable

productform

funct synch functlocal

scalable

chain

2

2.1. From general Markov Chains to Stochastic Automata Networks.
The transition rate matrix of a Markov Chain is the matrix Q that contains
the rate of transition from state i to state j in the entry Q(i, j). In each row, the
diagonal entry is given by, for a Markov Chain with n states associated with a matrix
Q ∈ Rn×n,

Q(i, i) = −
n∑

j=1,j 6=i

Q(i, j), (2.1)

negative sum of the off-diagonal elements of the corresponding row. Its absolute
value represents the rate of leaving state i as the rate of leaving is the minimum of
independent random variables following exponential distributions which is known to
also follow an exponential distribution with rate that is the sum of the rates, which
can be easily proved using the uniqueness of the survival function of the different
distributions. Matrix Q is thus a matrix with sum of rows equal to 0, where all
non-diagonal entries are non-negative, while all diagonal entries are non-positive.

If there is only one eigenvalue 0 in matrix Q, at least one such eigenvalue exists
given the restriction on the sum of the rows of Q, the associated Markov Chain is
called irreducible (reducible, otherwise). This is of particular interest, for instance,
in the context of finding the stationary distribution (steady-state) of the associated
Markov Chain as irreducible implies having a unique solution for the problem.

A Stochastic Automata Network (SAN) represents a model where there are
separate systems that interact between them.

The states of the Markov Chain associated with such network are the combina-
tions of states of the different systems, which implies that there is an exponential
growth of the state space dimension with the number of systems.

The high dimensionality of this state space is usually coped with by exploiting
the rich structure of the transition rate matrix associated with such networks.

Many alternatives have been tried in the past, in the context of finding the steady-
state or studying the transient behaviour.

For the first, one possibility is to use model reduction, in particular with the
possibility for a wide range of models of determining product form solutions. The
basic idea of this reduction is to yield a system for which the stationary distribution
factorizes into a product of distributions for the individual processes. This reduced
system then allows for a much less expensive numerical treatment. General techniques
for arriving at product form solutions are described, e.g., in [34]. Extensive work has
been done on finding conditions under which such product form approach applies; see
[21, 20] for some recent results. However, its practical range of applicability is limited
to specific subclasses of models.

Concerning the transient behaviour, and in particular for the Chemical Master
Equation (CME), in most cases it cannot be solved explicitly and various Monte
Carlo simulation techniques have been used to find approximations of the probability
densities by producing either detailed or approximate realizations of each process
[24, 23, 25]. However, for many systems, biologically important events may occur
rarely, necessitating the generation of a prohibitively large set of realizations to obtain
sufficiently precise statistics.

While other techniques exist to deal with the two mentioned problems, they all
seem to have significant disadvantages. The approach on which the Tensor-Train (TT)
operators are based relates with the observation that the transition rate matrix of a
communicating Markov process can often be represented by a short sum of Kronecker

3

products [43]. This property can then be exploited, for instance, when performing
matrix-vector multiplications [35] to reduce the cost of iterative solvers significantly.
Complexity scales then linearly with the state space dimension.

In [32, 6, 30] the fact that a vector containing joint probabilities can be naturally
rearranged into a tensor is explored. The first two address the problem of the sta-
tionary distribution while the last addresses the CME problem. When considering,
for example, a network of d communicating finite state Markov processes, an associ-
ated vector, for instance for the steady-state or with the probabilities at a given time,
has length n1n2 · · ·nd, where nµ denotes the number of states in the µth process for
µ = 1, . . . , d. Quite naturally, the entries of this vector can be rearranged into an
n1 × · · · × nd array, defining a dth order tensor X ∈ Rn1×···×nd .

This then allows us to use established low-rank tensor approximation techniques
[27]. In particular the use of matrix product states (MPS) or, equivalently, TT decom-
positions, is proposed in [32], targeting the computation of the stationary distribution
for finite-dimensional communicating Markov processes with development and com-
parison of different algorithms. TT format is shown to be very well-suited for this
problem, thus motivating that we provide in this document proper representations
of the transition rate matrix for the different models of interest in this format. In
its turn, the closely related Quantized Tensor Train (QTT) format is suitable for the
problem associated with the transient behaviour, CME, as observed in [30].

Algorithms require the repeated application of QT ∈ R(n1···nd)×(n1···nd) to a vector
in TT decomposition. It is therefore important to represent Q in a form that allows
to perform this operation efficiently.

An operator TT decomposition, also called matrix product operator (MPO), takes
the form

Q(i1,...,id),(j1,...,jd)
= A1(i1, j1) ·A2(i2, j2) · · ·Ad(id, jd), (2.2)

where Aµ(iµ, jµ) ∈ Rtµ−1×tµ , and t0 = td = 1. This is the TT decomposition applied
to vec(Q), merging each index pair (iµ, jµ) in lexicographical order into a single index
ranging from 1 to n2µ. The ranks of the operator are the entries tµ, µ = 0, ..., d.

The tensor X̃ resulting from a matrix-vector product with Q then has a simple TT
decomposition as desired.

The transition rate matrix has the general representation

Q = QL + QI ,

with QL representing local transitions and QI representing interactions. The local
part takes the form

QL =

d∑
µ=1

In1 ⊗ · · · ⊗ Inµ−1 ⊗ Lµ ⊗ Inµ+1 ⊗ · · · ⊗ Ind , (2.3)

where Lµ ∈ Rnµ×nµ contains the local transitions in the µth system.

2.2. Detailed definitions and properties. We now explain the different char-
acteristics that are chosen to partition the models, in Tab. 1, which requires going
further on some of the previously introduced definitions.

The first row of the table is associated with the applications from which the
SAN are extracted. There are four main fields of reference: Chemical Networks;

4

Queueing Networks; Communications; Quality Control. We use the identifiers
chemical, queueing, communications and qualitycontrol, respectively.

Concerning the second row, the concept of reducible model was already intro-
duced, implicitly, as we defined irreducible model, while a model is reducible when
it is not irreducible. The corresponding identifier is reducible.

For the third row, we note that the different states of a system of a given model
are associated with a numerical quantity. In particular, they are generally ordered in
increasing way according to this quantity. It represents: a number of customers for
Queueing Networks; a number of particles for Chemical Networks; a number of users
for Communications; a number of deficiencies for Quality Control. However, there
are models for which there are distinguishable customers (or particles or users or
deficiencies), for which one needs a vector of numbers, instead of just a number, to
characterize the state of a particular system. This follows the idea in [11], where
such vector follows a decreasing lexicographic ordering. The size of this vector is the
number of types of customers plus one, as the first entry is the number of available
places in the system, difference between the capacity and the sum of the customers
of the different types, while the other entries are the number of customers from the
different types. The concept can naturally generalized to the other types of SAN, and
if a model has distinguishable customers or particles or users or deficiencies, it gets
the identifier distinguishable.

For the fourth row, a model is said to have product form, concept introduced
before, in case one can represent the interactions of the systems in a way that they
are seen as independent for the purpose of the computation of the steady-state. This
is possible due to the tendency, as time goes by, for the SAN to become more and
more stagnated as it approaches the stationary state. This is particularly interesting
as then the exact steady-state can be obtained with clearly less computational effort
than using the algorithms that are generally required. They are also relevant to check
the correction of the solutions that are obtained using such algorithms. The identifier
for this is productform. We add this identifier in the cases where there is at least
one reference that explicitly mentions the existence of such model reduction for a
particular model. Additionally, this is trivial in the presence of independent systems,
implying that these also get the identifier.

For the fifth row, the transitions can be functional, meaning that the rates
depend on the state of at least one system; and/or synchronized, meaning that the
transition causes a change in the state of more than one system simultaneously. If a
model includes functional transitions, it gets the identifier funct; while if it includes
synchronized transitions, it gets the identifier synch. Note that a model can have
both types of transitions. As it can be the case that a functional transition is local,
meaning that the rates that depend on the state of a system are associated with that
same system only, we should have a separate identifier as such functional transitions
have no influence on the topology of the network. For these, we use the identifier
functlocal.

For the sixth row, identifier scalable is used to denote that the dimension of the
problem (number of automata) is a parameter.

For the seventh row, identifier chain is used for the models on which the states
associated with the individual systems can only be changed to an immediate neigh-
bour, which means that the topology of each system is one dimensional. In practice,
all matrices associated with the systems that take part in the operator TT decompo-
sition will have bandwidth 1. This is particularly important in the context of knowing

5

if it makes sense, for instance, to apply geometric coarsening when using a tensorized
multigrid method as the one proposed in [6] for finding the steady-state.

3. Collection of models. This section contains a description of the models in
the collection. The identifiers for the properties of the models are listed inside curly
brackets after the name of the model. The models are summarized in Tab. 2.

From here on, ’*’ represents, in the diagonal of matrices, the negative sum of the
off-diagonals of the corresponding row. Entries of vectors are usually identified with
round brackets except in some cases where subscripts are used instead to make the
notation less heavy. This should be clear from the context.

overflow {queueing, funct, scalable, chain}.
In this model, in the numerical experiments of [12] (in the context of finding the

stationary distribution of SAN using well-known CP format for tensors instead of TT
- again based on the reshaping of the vector of the states into a tensor), customers
can arrive in any of the queues and if a queue is full, they continue searching for one
that is not full. The queues are ordered and customers can only try to find a place in
the following queues, until reaching the last one. If they are all full, they are dropped
from the network.

The local part, Lµ, consists of the local arrivals (if the queue is not full) and
departures of customers after they are served

Lµ =

∗ arr(µ) 0 · · · 0

dep(µ)
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . arr(µ)

0 · · · 0 dep(µ) ∗

,

where ’arr’ is the vector containing the arrival rates while ’dep’ contains the service
rates, for the different queues.

By direct calculation, it can be shown that Q admits an operator TT decompo-
sition (2.2) with the cores

A1(i1, j1) =
[
L1(i1, j1) arr(1)B1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

 Id(id, jd)Cd(id, jd)
Ld(id, jd)

 ,
and

Aµ(iµ, jµ) =

 Iµ(iµ, jµ) 0 0
Cµ(iµ, jµ) Bµ(iµ, jµ) 0
Lµ(iµ, jµ) arr(µ)Bµ(iµ, jµ) Iµ(iµ, jµ)

 . µ = 2, . . . , d− 1.

for matrices Bµ, Cµ ∈ Rnµ×nµ , where the first represents the customer finding a full
queue while the other one represents the first non-full queue that such customer finds

Bµ =

0 · · · · · · 0
...

. . .
. . .

...
...

. . . 0 0
0 · · · 0 1

 , Cµ =

∗ 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · · · · 0 ∗

.

6

Table 2: Models in the collection.

Name Description

overflow Overflow model.

overflowper Overflow model where a cycle is introduced.

overflowsim
Overflow model where only the next queue can be accessed

by a customer arriving at a full one.

overflowpersim
Overflow model where a cycle is introduced and only the

next queue can be accessed by a customer arriving at a full one.

backupqueue Model where if a customer arrives in a full queue, he goes to a backup queue.

kanban Kanban control model.

kanbanalt Kanban control model where customers leave if next is full.

kanbanalt2 Kanban control model where customers are only served if next is not full.

indepbirthdeath Birth-death process on independent systems.

indepMM1queue M/M/1 queueing on independent systems.

indepMMcqueue M/M/c queueing on independent systems.

indepbalking Balking on independent systems.

indeppriority Priority queues on independent systems.

kanbanalt2batcharr
Kanban control model where customers are only served if next is not full,

and first queue has batch arrivals.

kanbanalt2batchdep
Kanban control model where customers are only served if next is not full,

and there are batch departures.

kanbanalt2MMc
Kanban control model where customers are only served if next is not full,

with more than one server per queue.

kanbanalt2balking
Kanban control model where customers are only served if next is not full,

and first queue follows a balking law.

kanbanalt2priority
Kanban control model where customers are only served if next is not full,

and customers have different priorities.

cyclequeue Cyclic queueing network.

compfailure Component failure.

compfailuregen Component failure with global repair in four cases.

compfailureorig Component failure with global repair in case of maximum possible deficiencies.

multiprogramming Multiprogramming computer system.

impcustomers Impatient customers.

handoff1class1d Wireless network with handoff for one class of customers and in 1D space.

handoff1class2d Wireless network with handoff for one class of customers and in 2D space.

7

handoff2class1d Wireless network with handoff for two classes of customers and in 1D space.

handoff Wireless network with handoff for two classes of customers and in 2D space.

directedmetab Directed metabolic pathways.

reversiblemetab Reversible metabolic pathways.

dilutionintermed Dilution of intermediates.

cyclicmetab Cyclic metabolic pathways.

endproduct End-product inhibition.

divergingmetab Diverging metabolic pathways.

convergingmetab Converging metabolic pathways - combined fluxes.

convergingmetab2 Converging metabolic pathways - reaction with two fluctuating substrates.

michaelismenten Michaelis-Menten model.

enzymekineticsI Enzyme kinetics I.

enzymekineticsII Enzyme kinetics II.

multiscalechemical Multiscale chemical network.

enzymaticfutile Enzymatic futile cycle.

cascadegene Cascade gene regulatory model.

toggleswitch Toggle switch.

One can include the negative sum of the off-diagonals inside Cµ, as well as for Lµ,
because all other matrices in the corresponding Kronecker product are diagonal. The
proof of this statement can be found in Appendix A (more concretely in Th. 2). Note
that, in the case of the local part, Lµ, this will hold for all models; recall (2.3). Also
note that the theorem will never be possible to use for synchronized transitions as,
for this type of interaction, directly from the definition, at least two of the involved
matrices of the corresponding Kronecker product will not be diagonal.

The TT ranks tµ are all 3, independently of d.

Concerning the parameters, they are, in this order: vector ’arr’; vector ’dep’;
vector with the maximum capacity of each system (n− 1).

One proposed possibility for their values is found in [12] - arrival rates (’arr’):
[1.2, 1.1, 1.0, 0.9, 0.8, 0.7]; departure rates (’dep’): [1, 1, 1, 1, 1, 1]; maximum capacities:
[16, 16, 16, 16, 16, 16]. These are the default values used in our implementation. We
are thus considering a problem of size 176.

overflowper {queueing, funct, scalable, chain}.
This model results from an adaptation of the previous one. The first queue is

now considered as the queue after the last meaning that a customer that finds the
previously called last queue full can then try to join the first, and so on.

For building the TT operator, the dimensions need to be ordered but the one that
is chosen to be the first is now irrelevant.

The matrices that are needed to build the operator in TT format are the same as

8

in the previous model, for a new operator TT decomposition (2.2) with the cores

A1(i1, j1) =
[
L1(i1, j1) I1(i1, j1) arr(1)B1(i1, j1) C1(i1, j1)

]
, Ad(id, jd) =

Id(id, jd)
Ld(id, jd)
Cd(id, jd)
Bd(id, jd)

 ,

A2(i2, j2) =

 I2(i2, j2) 0 0 0 0 0
L2(i2, j2) I2(i2, j2) arr(2)B2(i2, j2) 0 0 0

arr(1)C2(i2, j2) 0 arr(1)B2(i2, j2) 0 C2(i2, j2)B2(i2, j2)
0 0 0 arr(2)B2(i2, j2) I2(i2, j2)

 ,
for Ad−1(id−1, jd−1) we have
Id−1(id−1, jd−1) 0 0 0
Ld−1(id−1, jd−1) Id−1(id−1, jd−1) arr(d− 1)Bd−1(id−1, jd−1) 0
Cd−1(id−1, jd−1) 0 Bd−1(id−1, jd−1) 0

0 0 0 Bd−1(id−1, jd−1)
0 0 0 arr(d)Id−1(id−1, jd−1) + arr(d− 1)Bd−1(id−1, jd−1)
0 0 0 arr(d)Cd−1(id−1, jd−1)

and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0 0 0
Lµ(iµ, jµ) Iµ(iµ, jµ) arr(µ)Bµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 Bµ(iµ, jµ) 0 0 0

0 0 0 Bµ(iµ, jµ) 0 0
0 0 0 arr(µ)Bµ(iµ, jµ) Iµ(iµ, jµ) 0
0 0 0 0 0 Bµ(iµ, jµ)

 ,

µ = 3, . . . , d− 2.
Concerning the parameters, they are the same as in overflow - vector ’arr’; vector

’dep’; vector with the maximum capacity of each system (n− 1).
The default parameters of our implementation are those from the mentioned

model: arrival rates (’arr’): [1.2, 1.1, 1.0, 0.9, 0.8, 0.7]; departure rates (’dep’): [1, 1, 1, 1, 1, 1];
maximum capacities: [16, 16, 16, 16, 16, 16]. We are thus considering a problem of size
176.

overflowsim {queueing, funct, scalable, chain}.
The next model is again adapted from overflow. The change is that if the customer

finds a full queue when he arrives, he can only try to join the next. If this one is also
full, he simply leaves the network.

The matrices that are needed for the construction of the operator are the same
as in overflow, for a TT decomposition (2.2) with the cores

A1(i1, j1) =
[
L1(i1, j1) arr(1)B1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

 Id(id, jd)Cd(id, jd)
Ld(id, jd)

 ,
and

Aµ(iµ, jµ) =

 Iµ(iµ, jµ) 0 0
Cµ(iµ, jµ) 0 0
Lµ(iµ, jµ) arr(µ)Bµ(iµ, jµ) Iµ(iµ, jµ)

 . µ = 2, . . . , d− 1.

Concerning the parameters, they are the same as in overflow - vector ’arr’; vector
’dep’; vector with the maximum capacity of each system (n− 1).

9

The default parameters of our implementation are those from the mentioned
model: arrival rates (’arr’): [1.2, 1.1, 1.0, 0.9, 0.8, 0.7]; departure rates (’dep’): [1, 1, 1, 1, 1, 1];
maximum capacities: [16, 16, 16, 16, 16, 16]. We are thus considering a problem of size
176.

overflowpersim {queueing, funct, scalable, chain}.
This model is a combination of the models overflowper and overflowsim. From the

first, we allow customers to go to the first queue in case they find the last one full;
while from the second we only allow a customer finding a full queue to try entering
the next one, meaning that if the next is also full, he leaves the network.

The TT operator that is obtained, associated with the same matrices as in the
previous models, is

A1(i1, j1) =
[
L1(i1, j1) arr(1)B1(i1, j1) C1(i1, j1) I1(i1, j1)

]
,

Ad(id, jd) =
[
Id(id, jd) Cd(id, jd) arr(d)Bd(id, jd) Ld(id, jd)

]T
,

and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0

0 0 Iµ(iµ, jµ) 0
Lµ(iµ, jµ) arr(µ)Bµ(iµ, jµ) 0 Iµ(iµ, jµ)

 , µ = 2, . . . , d−1.

Concerning the parameters, they are the same as in overflow - vector ’arr’; vector
’dep’; vector with the maximum capacity of each system (n− 1).

The default parameters of our implementation are those from the mentioned
model: arrival rates (’arr’): [1.2, 1.1, 1.0, 0.9, 0.8, 0.7]; departure rates (’dep’): [1, 1, 1, 1, 1, 1];
maximum capacities: [16, 16, 16, 16, 16, 16]. We are thus considering a problem of size
176.

backupqueue {queueing, funct, scalable, chain}.
The next model is again an adaptation of overflow. Customers again try to find a

queue that is not full after arriving in a particular one, but the queue they search for
if they arrive in a full one is always the same now - the ’backup’ queue. If this one is
full, they simply leave the network.

The corresponding operator is then, again for the same matrices as for the previous
models, where the ’backup’ queue is associated with the last dimension while the order
of the remaining ones it not relevant,

A1(i1, j1) =
[
L1(i1, j1) arr(1)B1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

 Id(id, jd)Cd(id, jd)
Ld(id, jd)

 ,
and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0
0 Iµ(iµ, jµ) 0

Lµ(iµ, jµ) arr(µ)Bµ(iµ, jµ) Iµ(iµ, jµ)

 , µ = 2, . . . , d− 1.

As in all models until this point, the ranks are small and independent of d.
Concerning the parameters, they are the same as in overflow - vector ’arr’; vector

’dep’; vector with the maximum capacity of each system (n− 1).
The default parameters of our implementation are those from the mentioned

model: arrival rates (’arr’): [1.2, 1.1, 1.0, 0.9, 0.8, 0.7]; departure rates (’dep’): [1, 1, 1, 1, 1, 1];

10

maximum capacities: [16, 16, 16, 16, 16, 16]. We are thus considering a problem of size
176.

kanban{queueing, distinguishable, synch, scalable}.
In this model, used in the experiments of [11, 6], customers arrive in the first

queue being then served in sequence until being served in a last one, leaving then
the network - for more details about this kind of models see [39]. This is the general
structure of the well-known subclass of Tandem Networks.

We assume an infinite source - when the first queue is not full, there is automat-
ically a new arrival. If a customer finishes the service and the next queue is full, he
waits in the queue where he was served.

Each system has, as in the previous models, a maximum capacity, and the local
transitions are associated with a customer finishing the service, as then this customer
stays in the same system but with a different ’label’. In fact, in this model there are
two types of customers in each system - already served and waiting to be served.

Bµ ∈ Rnµ×nµ now represents the departure of a customer that was served already
while Cµ ∈ Rnµ×nµ represents the arrival of that same customer in the next system.
As for the local part, Lµ ∈ Rnµ×nµ , it represents the service of a customer, thus
resulting in one less customer waiting to be served and one more waiting to move to
the next queue (for the last system, there is no next queue and the customer directly
leaves the network).

We omit the representation of the matrices as, for the middle dimensions, it is not
trivial to represent them for a general maximum capacity now that the states have a
non-trivial ordering (based on the one introduced in [11] as noted before) while, for
the same reason, their interpretation is also not straight-forward. For a representation
of these matrices for a fixed, small, maximum capacity of the systems, the reader is
referred to [11].

For the first and last dimensions, the operator is more similar to the ones for the
previous models as there is again only one type of customer. While in the first system
one has automatic arrivals when the queue is not full implying that the number of
waiting customers to be served is always the maximum possible, in the last there are
no served customers as they directly leave the network.

For the local part, associated with finished services, one gets

L1 =

∗ dep(1) 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . dep(1)
0 · · · · · · 0 ∗

, Ld =

∗ 0 · · · · · · 0

dep(d)
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 dep(d) ∗

.

Note that we get a superdiagonal matrix in the first dimension given that the states
are now associated with a decreasing order.

As for the interaction matrices, B1 represents now, as the other Bµ, µ = 2, ..., d,
the departure of a customer. As for Cd, as all other Cµ, Cµ, µ = 1, ..., d − 1, as it is
involved in a Kronecker product with matrices that are not all diagonal, in particular

11

Bd−1, one cannot now make the diagonal correction inside. We have

B1 =

0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0

, Cd =

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · · · · 0

.

The representation is, similarly to overflowsim,

A1(i1, j1) =
[
L1(i1, j1) move(1)B1(i1, j1) move(1)E1(i1, j1) I1(i1, j1)

]
,

Ad(id, jd) =
[
Id(id, jd) Cd(id, jd) Fd(id, jd) Ld(id, jd)

]T
,

and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0
Lµ(iµ, jµ) move(µ)Bµ(iµ, jµ) move(µ)Eµ(iµ, jµ) Iµ(iµ, jµ)

 ,
µ = 2, . . . , d − 1. Matrices Eµ, Fµ ∈ Rnµ×nµ are diagonal matrices containing the
negative sum of the off-diagonal entries per row of Bµ and Cµ, respectively, which
now have to be done separately, as Th. 2 does not hold, directly implying an increase
in the rank of the operator. ’dep’ contains again the service rates while ’move’ contains
the rates of moving to the next queue, for already served customers. This last has
only d−1 entries as this is not needed for the last system noting again that a customer
that finishes service directly leaves the network.

Concerning the parameters, they are, in this order: vector ’dep’; vector ’move’;
vector with the maximum capacity of each system.

One possibility is to use those from [10] - service rates (’dep’): [1, 1, 1, 1]; moving
rates (’move’): [10, 10, 10]; maximum capacities: [10, 10, 10, 10]. These are the default
parameters in our implementation. We are thus considering a problem of size 11 ×
662 × 11.

kanbanalt {queueing, synch, scalable, chain}.
This model is adapted from the previous one. We consider again a Tandem

Network but now the customers leave the network if the service in a system is finished
and the next one is full, instead of waiting. This way, if the next queue is not full,
once a service is complete, customers can simply move instantaneously. This implies,
in particular, that only one type of customer exists.

The local part, which only exists for the first and last systems, is

L1 =

∗ dep(1) 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . dep(1)
0 · · · · · · 0 ∗

, Ld =

∗ 0 · · · · · · 0

dep(d+ 1)
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 dep(d+ 1) ∗

.

12

As for the interactions, while Bµ is associated with the synchronized departure
of customers, Cµ is associated with receiving them

Bµ =

0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0

, Cµ =

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 0 1
0 · · · · · · 0 1

.

The operator is

A1(i1, j1) =
[
L1(i1, j1) dep(2)B1(i1, j1) dep(2)E1(i1, j1) I1(i1, j1)

]
,

Ad(id, jd) =
[
Id(id, jd) Cd(id, jd) Fd(id, jd) Ld(id, jd)

]T
,

and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0

0 dep(µ+ 1)Bµ(iµ, jµ) dep(µ+ 1)Eµ(iµ, jµ) Iµ(iµ, jµ)

 ,
µ = 2, . . . , d− 1.

’dep’ has d + 1 entries as the first entry is the influx rate, while the remaining
entries are, as usual, the ordered service rates for the different systems.

Concerning the parameters, they are: vector ’dep’; vector with the maximum
capacities.

The default vector ’dep’ in our implementation is [1, 1, 1, 1, 1, 1, 1]; and maximum
capacities: [16, 16, 16, 16, 16, 16]. We are thus considering a problem of size 176.

kanbanalt2 {queueing, synch, scalable, chain}.
This model is also adapted from kanban, in particular being again associated with

a Tandem Network. The difference to kanbanalt is that we avoid having two types of
customers by now not allowing a customer to be served unless the next queue is not
full, again avoiding, as in the mentioned model, to have served customers that need
to wait to move to the next queue.

The operator is the same as in the previous model, with some slight differences
in the matrices that compose it. The main difference is in Cµ.

As we change the parameters of the model, it is worth showing the new operator
and the matrices that compose it. The departure rates are again in a vector denoted
by ’dep’; while the arrival rate, included in the vector ’dep’ for the previous model, is
now a separate entry denoted by ’arr’.

We get the local part

L1 =

∗ arr 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . arr
0 · · · · · · 0 ∗

, Ld =

∗ 0 · · · · · · 0

dep(d)
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 dep(d) ∗

.

13

For the interaction matrices,

Bµ =

0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0

, Cµ =

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · · · · 0

.

The operator is

A1(i1, j1) =
[
L1(i1, j1) dep(1)B1(i1, j1) dep(1)E1(i1, j1) I1(i1, j1)

]
,

Ad(id, jd) =
[
Id(id, jd) Cd(id, jd) Fd(id, jd) Ld(id, jd)

]T
,

and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0

0 dep(µ)Bµ(iµ, jµ) dep(µ)Eµ(iµ, jµ) Iµ(iµ, jµ)

 ,
µ = 2, . . . , d− 1.

Concerning the parameters, they are: arrival rate ’arr’; vector ’dep’; vector with
the maximum capacities.

The default parameters are: ’arr’ is 1.2; vector ’dep’ is [1, 1, 1, 1, 1, 1]; maximum
capacities [16, 16, 16, 16, 16, 16]. We are thus considering a problem of size 176.

indepbirthdeath {chemical, productform, functlocal, scalable, chain}.
The next model is extracted from the numerical experiments of [30]. The idea is

to consider a well-known birth-death process on each system, which are assumed to
be independent meaning that we only have local transitions.

Birth-death processes are usually characterized by the creation of particles ac-
cording to linear rates on the number of existing particles in the system. This comes
from the assumption that particles have a common rate of reproduction and, in each
instant, each of them can reproduce, implying that the rate is the sum of the rates
as the minimum of independent random variables following exponential distribution
is again exponential with such rate, as noted before. In this model, it is however
considered that the creation rate is just a constant.

The operator is, for this context of independence, simple to obtain

A1(i1, j1) =
[
L1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

[
Id(id, jd)
Ld(id, jd)

]
,

and

Aµ(iµ, jµ) =

[
Iµ(iµ, jµ) 0
Lµ(iµ, jµ) Iµ(iµ, jµ)

]
, µ = 2, . . . , d− 1.

This is the simplest possible representation, with all ranks taking the value 2 inde-
pendently of d.

14

The involved matrices, denoting the vector with the production rates of particles
in the different systems by ’prate’ and the vector with the destruction rates by ’drate’,
are

Lµ =

∗ prate(µ) 0 · · · 0

drate(µ)
. . .

. . .
. . .

...

0 2× drate(µ)
. . .

. . . 0
...

. . .
. . .

. . . prate(µ)
0 · · · 0 (nµ − 1)× drate(µ) ∗

.

The degragation rates are of the form (3.3) as it can happen to each particle individ-
ually, in each instant, which means that we, again, have a random variable that is the
minimum of independent random variables following exponential distribution.

Concerning the parameters, they are: vector ’prate’; vector ’drate’; vector with
the maximum capacities.

One can use, for instance, those in [30] - ’prate’ is [1000, 1000, 1000, 1000, 1000];
’drate’ is [1, 1, 1, 1, 1]; maximum capacity is [4095, 4095, 4095, 4095, 4095]. In our im-
plementation we have ’prate’ as [1000, 1000, 1000, 1000, 1000, 1000]; ’drate’ as [1, 1, 1, 1, 1, 1];
maximum capacities [16, 16, 16, 16, 16, 16]. We are thus, again, considering a problem
of size 176.

indepMM1queue {queueing, productform, scalable, chain}.
We continue with models with independent systems but changing the dynamics

associated with each system. The goal is to explore some concepts from queueing the-
ory. The operator will remain the same as in the previous model while the difference
is in the matrices Lµ.

We now assume, in each queue, that we have a M/M/1 queueing system; see,
for instance, [44, Ch. 2]. There is one server and customers arrive and are served
following exponential distributions. As there is only one server, the service rate is
the same independently of the number of customers, while we also consider constant
arrival rates.

We have, denoting the vector with the arrival rates by ’arr’ and the one with the
service rates by ’dep’,

Lµ =

∗ arr(µ) 0 · · · 0

dep(µ)
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . arr(µ)

0 · · · 0 dep(µ) ∗

.

Concerning the parameters, they are: vector ’arr’; vector ’dep’; vector with the
maximum capacities.

In our implementation we have: ’arr’ as [1.2, 1.2, 1.2, 1.2, 1.2, 1.2]; ’dep’ as [1, 1, 1, 1, 1, 1];
maximum capacities [16, 16, 16, 16, 16, 16]. We are thus, again, considering a problem
of size 176.

indepMMcqueue {queueing, productform, functlocal, scalable, chain}.
We now consider, again for independent systems, a generalization of M/M/1.

We consider M/M/c queueing systems now; see [44, Ch. 2]. The difference to

15

indepMM1queue is that we have c servers instead of just one. This results in an ef-
fective rate of service of, again because of what the minimum of independent random
variables following exponential distributions is,{

m× ser,m < c
c× ser,m ≥ c ,

where ’m’ denotes the number of customers in the queue and ’ser’ denotes the service
rate, which is assumed to be common to all servers of a particular queue.

We have

Lµ =

∗ arr(µ) 0 · · · · · · · · · 0

dep(µ)
. . .

. . .
. . .

. . .
. . .

...

0 2× dep(µ)
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . C(µ)× dep(µ)

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . . arr(µ)

0 · · · · · · · · · 0 C(µ)× dep(µ) ∗

,

where ’arr’ is the vector of the arrival rates, while ’dep’ is the one with the service
rates, for the different systems. ’C’ is a vector with the number of servers by system.

Concerning the parameters, they are: vector ’arr’; vector ’dep’; vector with the
maximum capacities; vector ’C’.

In our implementation we have: ’arr’ as [1.2, 1.2, 1.2, 1.2, 1.2, 1.2]; ’dep’ as [1, 1, 1, 1, 1, 1];
maximum capacities [16, 16, 16, 16, 16, 16]; ’C’ as [3, 3, 3, 3, 3, 3]. We are thus, again,
considering a problem of size 176.

indepbalking {queueing, productform, functlocal, scalable, chain}.
We continue with the sequence of models with independent systems. We now

assume that each system suffers from the effect of ’balking’. As in general birth-death
processes (even if not in the one considered in indepbirthdeath), the rates of arrival are
not constant, varying with the number of customers in the queue. The particularity
of ’balking’ is that the rate will decrease as the number of customers increases as the
concept means that customers are less and less eager to join a queue if they find more
customers waiting to be served; see [44, Ch. 2].

Different functions for such decreasing interest can be considered, for instance
those in [44, Ch. 2]. We choose the one, from this reference, for which the rate is
given by {

in,m < s
1

m−s+2 × in,m ≥ s , (3.1)

where ’s’ is a parameter and ’m’ again represents the number of customers in the
queue. ’in’ denotes a constant associated with the arrival rate - its maximal value.
This value is multiplied with a factor that is smaller and smaller as the number of
customers increases, giving the effective arrival rate.

16

The local matrices are now

Lµ =

∗ arr(µ) 0 · · · · · · · · · 0

dep(µ)
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . . arr(µ)
. . .

. . .
...

...
. . .

. . .
. . . 1

2 × arr(µ)
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . . 1
nµ−S(µ)+1 × arr(µ)

0 · · · · · · · · · 0 dep(µ) ∗

,

where ’arr’ is the vector with the maximal arrival rates, (’in’ in 3.1); ’dep’ is the one
for service rates; ’S’ is a vector containing the different ’s’, for the different systems,
associated with (3.1).

Concerning the parameters, they are: vector ’arr’; vector ’dep’; vector with the
maximum capacities; vector ’S’.

In our implementation we have: ’arr’ as [1.2, 1.2, 1.2, 1.2, 1.2, 1.2]; ’dep’ as [1, 1, 1, 1, 1, 1];
maximum capacities [16, 16, 16, 16, 16, 16]; ’S’ as [3, 3, 3, 3, 3, 3]. We are thus, again,
considering a problem of size 176.

indeppriority {queueing, distinguishable, productform, scalable}.
Still in the context of models with independent systems, we focus on the class

of priority queues. We assume that there are different types of customers, who get
different treatments. This implies using the same procedure for the definition of the
states of each system as in kanban.

One can define models where different customers are treated differently in many
different ways. We use the setting described in the third example of [42]. We have
customers of two types, where a customer of type II is only served if there is no
customer of type I waiting, which is the way to impose that these last ones have
priority.

The operator is again the same as in the previous models while the matrices Lµ
are omitted for the same reason as for kanban.

Concerning the parameters, they are: ’arr’, vector of size two with the arrival
rates of the customers of the two types, for any system; ’dep’, vector of size two with
the service rates of the customers of the two types, for any system; vector with the
maximum capacities.

In our implementation we have: ’arr’ as [1.2, 1.2]; ’dep’ as [1, 1]; maximum capac-
ities [10, 10, 10, 10]; We are thus considering a problem of size 664.

kanbanalt2batcharr {queueing, synch, scalable}.
We now combine another important concept from queueing theory with the topol-

ogy from kanbanalt2.
The concept is the one of batch. A batch is associated with the possibility that

more than one customer arrives/departs at the same time, for a given system; see, for
instance, [45, Ch. 8].

We here assume that such groups of customers are always of the same size, for a
fixed system.

In this model, we consider the possibility of batch arrivals.
The idea of combining this concept with kanbanalt2 is simple as the first queue is

the only one with arrivals from the exterior in this model and so we simply add the

17

possibility of an arrival of a batch in that queue.

The TT operator is thus the same as in kanbanalt2, with L1 changing to

L1 =

∗ 0 · · · 0 arr 0 · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
. . . arr

...
. . .

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · · · · · · · · · · 0 ∗

,

where ’arr’ denotes the arrival rate of the batch, while the size of the batch is the
distance between ’*’ and ’arr’ (either in a row or in a column).

Concerning the parameters, they are: value ’arr’; vector with the service rates,
associated with ’dep’ in the previous models; vector with the maximum capacities;
value for the batch size.

In our implementation we have: ’arr’ as 1.2; ’dep’ as [1, 1, 1, 1, 1, 1]; maximum ca-
pacities [16, 16, 16, 16, 16, 16]; batch size 3. We are thus, again, considering a problem
of size 176.

kanbanalt2batchdep {queueing, synch, scalable}.

This model is again based on the combination between kanbanalt2 and the concept
of batch, but considering now batch departures instead of arrivals.

We incorporate them by allowing batch departures in all systems. The TT rep-
resentation is then again the one from kanbanalt2, while matrices Bµ and Cµ change
to

Bµ =

∗ 0 · · · · · · · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

. . .
...

1
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 1 0 · · · 0 ∗

, Cµ =

∗ 0 · · · 0 1 0 · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
. . . 1

...
. . .

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · · · · · · · · · · 0 ∗.

.

18

Ld also changes as it is also associated with departures, from the last system,

Ld =

∗ 0 · · · · · · · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

. . .
...

dep(d)
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 dep(d) 0 · · · 0 ∗

.

’dep’ denotes the vector of the service rates; the size of the batch is the distance
between ’*’ and dep(d) for the last dimension, while between ’*’ and 1 in Bµ and Cµ
for the remaining ones.

Concerning the parameters, they are: value for the influx rate, ’arr’ in kanbanalt2;
vector ’dep’; vector with the maximum capacities; vector with the batch sizes for the
different systems.

In our implementation we have: ’arr’ as 1.2; ’dep’ as [1, 1, 1, 1, 1, 1]; maximum
capacities [16, 16, 16, 16, 16, 16]; batch sizes [3, 3, 3, 3, 3, 3]. We are thus, again, consid-
ering a problem of size 176.

kanbanalt2MMc {queueing, funct, synch, scalable, chain}.
The next models are, as the previous one, based on combining concepts from

queueing theory with kanbanalt2. In particular we will use now the concepts of queue-
ing theory that were before considered for networks with independent systems.

We now consider M/M/c queues, as in indepMMcqueue, allowing multiple servers
in the different systems.

The TT representation is again the one from kanbanalt2, while some matrices that
compose it change. In particular, the ones related with the departures

Bµ =

∗ 0 · · · · · · · · · · · · 0

1
. . .

. . .
. . .

. . .
. . .

...

0 2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . c(µ)

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · 0 c(µ) ∗

,

where ’c’ is now used to denote the vector with the number of servers of each system,
instead of ’C’ as used for indepMMcqueue, to avoid confusion with the matrices with
the same name that compose the TT operator.

19

Ld also changes

Ld =

∗ 0 · · · · · · · · · · · · 0

dep(d)
. . .

. . .
. . .

. . .
. . .

...

0 2× dep(d)
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . c(d)× dep(d)

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · 0 c(d)× dep(d) ∗

,

being also associated with departures, even if, in this case, local ones.

Concerning the parameters, they are: value for the influx rate, ’arr’ in kanbanalt2;
vector ’dep’, associated with the departure rates as in the previous models; vector with
the maximum capacities; vector ’c’.

In our implementation we have: ’arr’ as 1.2; ’dep’ as [1, 1, 1, 1, 1, 1]; maximum
capacities [16, 16, 16, 16, 16, 16]; ’c’ as [3, 3, 3, 3, 3, 3]. We are thus, again, considering
a problem of size 176.

kanbanalt2balking {queueing, functlocal, synch, scalable, chain}.
We now combine kanbanalt2 with the concept of balking, introduced in indepbalking.

The natural way to combine them is by making the arrivals to the first queue
follow the law introduced in indepbalking, from [44, Ch. 2]. The only change to
kanbanalt2 is thus in L1

L1 =

∗ arr 0 · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . arr

. . .
. . .

...
...

. . .
. . .

. . . 1
2 × arr

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . . 1

n1−s+1 × arr

0 · · · · · · · · · · · · 0 ∗

,

where ’s’ is the parameter associated with the law for the arrival rates, from (3.1);
and ’arr’ is the maximal arrival rate, ’in’ in (3.1).

The input parameters of the model are thus: value ’arr’; vector for the service
rates, associated with ’dep’ in the previous models; vector with the maximum capac-
ities; value ’s’.

In our implementation we have: ’arr’ as 1.2; ’dep’ as [1, 1, 1, 1, 1, 1]; maximum
capacities [16, 16, 16, 16, 16, 16]; ’s’ is 3. We are thus, again, considering a problem of
size 176.

kanbanalt2priority {queueing, distinguishable, synch, scalable}.
We now combine kanbanalt2 with the concept of queues with priorities, based on

the type of priority introduced for indeppriority.

The TT operator is changed from the one for kanbanalt2 as the service of a

20

customer of type I has to be separated from the service of a customer of type II

A1(i1, j1) =

L1(i1, j1)

dep(1, 1)B11(i1, j1)
dep(1, 2)B21(i1, j1)

E1(i1, j1)
I1(i1, j1)

T

, Ad(id, jd) =

Id(id, jd)
C1d(id, jd)
C2d(id, jd)
Fd(id, jd)
Ld(id, jd)

and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0 0
C1µ(iµ, jµ) 0 0 0 0
C2µ(iµ, jµ) 0 0 0 0
Fµ(iµ, jµ) 0 0 0 0

0 dep(µ, 1)B1µ(iµ, jµ) dep(µ, 2)B2µ(iµ, jµ) Eµ(iµ, jµ) Iµ(iµ, jµ)

 ,
µ = 2, . . . , d − 1, where B1µ relates with the departure from a customer of the first
type while B2µ is associated with the departure of a customer of type II. C1µ and
C2µ are associated with the corresponding arrival of a customer of the first type and
second type, respectively.

Ld also changes, for the same reason that the global operator changes, as it is
associated with services. ’dep’ is a matrix containing the rates of departure, on which a
particular row is associated with a particular queue while a fixed column is associated
with a specific type of customer.

The arrival rates are, as in indeppriority, stored in a vector with two elements, one
for each type of customer, and they are needed to define L1.

Eµ (Fµ) is the matrix associated with the diagonal corrections for dep(µ, 1)B1µ
and dep(µ, 2)B2µ (C1µ and C2µ).

The ranks of the operator are directly affected by the fact that there are two types
of customers, even if they are again, as in all previous models, independent of d.

Concerning the parameters, they are: vector with the arrival rates; matrix ’dep’;
vector with the maximum capacities.

In our implementation we have: vector of arrival rates [1.2, 1.2]; ’dep’ as [1, 1; 1, 1; 1, 1; 1, 1];
maximum capacities [10, 10, 10, 10]. We are thus considering a problem of size 664.

cyclequeue {queueing, reducible, productform, synch, scalable, chain}.
This model is taken from [33, Ch. 7]. The interactions are similar to those in

kanbanalt2 but with the difference that now there is no last queue as a customer that
is served in the previously called last queue simply proceeds to the previously called
first. The definition of first and last gets then lost, as in overflowpersim.

This leads to a closed network in which the total number of customers will remain
constant, given that there is no interaction with the exterior.

The TT operator is

A1(i1, j1) =

I1(i1, j1)

dep(1)B1(i1, j1)
C1(i1, j1)

dep(1)E1(i1, j1)
F1(i1, j1)

T

, Ad(id, jd) =

Cd(id, jd)
Fd(id, jd)
Id(id, jd)

dep(d)Bd(id, jd)
dep(d)Ed(id, jd)

 ,

A2(i2, j2) =

I2(i2, j2) dep(2)B2(i2, j2) dep(2)E2(i2, j2) 0 0 0

0 0 0 C2(i2, j2) 0 0
0 0 0 0 I2(i2, j2) 0
0 0 0 F2(i2, j2) 0 0
0 0 0 0 0 I2(i2, j2)

 ,
21

for Ad−1(id−1, jd−1) we have
dep(d− 1)Bd−1(id−1, jd−1) dep(d− 1)Ed−1(id−1, jd−1) 0 0 0

0 0 Cd−1(id−1, jd−1) 0 0
0 0 Fd−1(id−1, jd−1) 0 0
0 0 Id−1(id−1, jd−1) 0 0
0 0 0 Id−1(id−1, jd−1) 0
0 0 0 0 Id−1(id−1, jd−1)

 ,
and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) dep(µ)Bµ(iµ, jµ) dep(µ)Eµ(iµ, jµ) 0 0 0

0 0 0 Cµ(iµ, jµ) 0 0
0 0 0 Fµ(iµ, jµ) 0 0
0 0 0 Iµ(iµ, jµ) 0 0
0 0 0 0 Iµ(iµ, jµ) 0
0 0 0 0 0 Iµ(iµ, jµ)

 ,
µ = 3, . . . , d− 2. The matrices inside the operator are as in kanbanalt2, but now with
Bµ and Cµ being defined for all dimensions as the interaction between last and first
dimensions requires the introduction of Bd and C1, while the local part disappears.
In its turn, ’dep’ is again the vector with the service (departure) rates while there are
no arrival rates in this closed network.

Concerning the parameters, they are: vector ’dep’; vector with the maximum
capacities.

In our implementation we have: ’dep’ as [1, 1, 1, 1, 1, 1]; maximum capacities
[16, 16, 16, 16, 16, 16]; We are thus, again, considering a problem of size 176.

compfailure {qualitycontrol, synch, scalable, chain}.
This model is an adapted version of the model in [14, Ch. 2], which appears

in this reference for doing experiments on different techniques that make use of the
Kronecker structure of a SAN for finding its steady-state.

Each machine (system) may either be working or not, implying that there are two
possible states per system. Each machine can stop working with a certain, as usual,
exponential rate; and can be repaired, when not working, with another exponential
rate. These are the local transitions. If all machines are not working, there is an extra
possibility, synchronized transition, that all machines are repaired at the same time,
again with an exponential rate.

As the states reflect the number of deficiencies, it makes sense to associate 0 with
a working machine and 1 with a not working machine.

The TT operator is

A1(i1, j1) =

L1(i1, j1)

repgl×B1(i1, j1)
repgl× E1(i1, j1)

I1(i1, j1)

T

, Ad(id, jd) =

Id(id, jd)
Bd(id, jd)
Ed(id, jd)
Ld(id, jd)

 ,
and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0

0 Bµ(iµ, jµ) 0 0
0 0 Eµ(iµ, jµ) 0

Lµ(iµ, jµ) 0 0 Iµ(iµ, jµ)

 ,
for µ = 2, . . . , d−1, where ’repgl’ is the rate of repairing all systems at the same time.

22

The local matrices are

Lµ =

[
−fail(µ) fail(µ)
rep(µ) −rep(µ)

]
,

while the matrices of the interaction are

Bµ =

[
0 0
1 0

]
,

where ’rep’ is a vector with the repairing rates for the different systems while ’fail’ is
a vector with the failing rates.

Eµ has the diagonal corrections associated with Bµ.

Concerning the parameters, they are: vector ’fail’; value ’repgl’; vector ’rep’.

In our implementation the default parameters are: ’fail’ as a vector of size 24 with
all entries equal to 0.5; ’repgl’ is 0.1; ’rep’ as a vector of size 24 with all entries equal
to 1. We are thus considering a problem of size 224.

compfailuregen {qualitycontrol, synch, scalable}.
This model is a generalization of compfailure. Each machine has now a general

number of deficiencies, not being just about working or not. We assume that the
global repair, which repairs all machines at the same time, occurs when the number
of deficiencies is 4, 9, 14 or 19, for all machines. It thus only makes sense to consider
a maximum possible number of deficiencies of at least 19. After being repaired, the
number of deficiencies updates to 0, 5, 10 and 15, respectively. We thus have four
synchronized transitions.

The operator is now

A1(i1, j1) =

L1(i1, j1)
repgl×B11(i1, j1)
repgl×B21(i1, j1)
repgl×B31(i1, j1)
repgl×B41(i1, j1)
repgl× E11(i1, j1)
repgl× E21(i1, j1)
repgl× E31(i1, j1)
repgl× E41(i1, j1)

I1(i1, j1)

T

, Ad(id, jd) =

Id(id, jd)
B1d(id, jd)
B2d(id, jd)
B3d(id, jd)
B4d(id, jd)
E1d(id, jd)
E2d(id, jd)
E3d(id, jd)
E4d(id, jd)
Ld(id, jd)

,

and for Aµ(iµ, jµ) we have

Iµ(iµ, jµ) 0 0 0 0 0 0 0 0 0
0 B1µ(iµ, jµ) 0 0 0 0 0 0 0 0
0 0 B2µ(iµ, jµ) 0 0 0 0 0 0 0
0 0 0 B3µ(iµ, jµ) 0 0 0 0 0 0
0 0 0 0 B4µ(iµ, jµ) 0 0 0 0 0
0 0 0 0 0 E1µ(iµ, jµ) 0 0 0 0
0 0 0 0 0 0 E2µ(iµ, jµ) 0 0 0
0 0 0 0 0 0 0 E3µ(iµ, jµ) 0 0
0 0 0 0 0 0 0 0 E4µ(iµ, jµ) 0

Lµ(iµ, jµ) 0 0 0 0 0 0 0 0 Iµ(iµ, jµ)

,

µ = 2, . . . , d− 1.

23

In the operator above, B1µ, B2µ, B3µ and B4µ represent the synchronizations
mentioned before, respectively

B1µ = B2µ = B3µ = B4µ =

0 · · · · · · · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · · · · · · · · · · 0
1 0 · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · · · · · · · · · · 0

,

where the 1 is in the row 5, 10, 15 and 20, respectively.

E1µ, E2µ, E3µ and E4µ stand for the respective diagonal corrections.

’repgl’ denotes again the repairing rate associated with the four different synchro-
nized transitions, thus assumed to be, without loss of generality, common to the four
interactions.

For the local part, we have

Lµ =

∗ fail(µ) 0 · · · 0

rep(µ)
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . fail(µ)

0 · · · 0 rep(µ) ∗

,

where again ’fail’ is a vector with the rates of failure of the parts, where one assumes
that only one specific part can fail at each point in time or the rates would be linear
on the number of working parts, as explained before; while ’rep’ is a vector with the
repairing rates.

All entries of the vector of ranks increase by one per synchronized event, showing
how strong an interaction becomes in this context. This is quite severe, and due to
the fact that all dimensions are involved in the interaction. The ranks are, however,
still independent of d.

Concerning the parameters, they are: vector ’fail’; value ’repgl’; vector ’rep’;
vector with the maximum number of deficiencies per system (n− 1).

In our implementation the default parameters are: ’fail’ as [0.5, 0.5, 0.5, 0.5, 0.5];
’repgl’ is 0.1; ’rep’ as [1, 1, 1, 1, 1]; maximum number of deficiencies [32, 32, 32, 32, 32].
We are thus, again, considering a problem of size 335.

compfailureorig {qualitycontrol, synch, scalable}.
After two models associated with the one in [14, Ch. 2], we now have the one

that is the closest to the original. It is again a generalization of compfailure.

The only synchronized event happens when all parts of all machines have failed. In
that case, the repairing occurs on all of them, with all parts working again afterwards.

The operator is the same as in compfailure but the matrices that compose it are
different.

24

For Lµ we have

Lµ =

∗ fail(µ) 0 · · · 0

rep(µ)
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . fail(µ)

0 · · · 0 rep(µ) ∗

,

where ’fail’ and ’rep’ are as in the two models above.

As for Bµ,

Bµ =

0 · · · · · · 0
...

. . .
. . .

...
0 · · · · · · 0
1 0 · · · 0

 .
Concerning the parameters, they are the same as in compfailuregen - vector ’fail’;

value ’repgl’; vector ’rep’; vector with the maximum number of deficiencies per system.

In our implementation the default parameters are, as in the previous model: ’fail’
as [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]; ’repgl’ is 0.1; ’rep’ as [1, 1, 1, 1, 1, 1]; maximum number of
deficiencies [16, 16, 16, 16, 16, 16]. We are thus, again, considering a problem of size
176.

multiprogramming {communications, reducible, prodform, funct, synch, chain}.
The next model is associated with a time-sharing multiprogramming virtual mem-

ory system [9]. It can be found in the numerical experiments of [42] also. A similar
version of the model also appears in [33, Ch. 7]. These first and third references
concern finding the steady-state in more analytical terms while the second is again
an overview of computational techniques.

The network consists of a set of terminals from which a set of users, who are
as many as the terminals, generate commands; a CPU; a secondary memory device
(SM); and a filing disk (FD). A queue of requests is associated with each device. Once
a command is generated, the user at the terminal will remain inactive until the system
responds. Symbolically, a user having generated a command enters the CPU queue.

This is a closed network in which the total number of users is denoted by N . The
degree of multiprogramming, n, is the sum of the processes in CPU, SM and FD,
meaning that the number of processes in the terminal is N −n. One can thus extract
the degree of multiprogramming from the number of users in the terminals.

Such measure is important as some of the rates are a function of it. In particular,
the rate of transition from ’CPU’ to ’SM’ is modelled in both [42] and [9] as

α(
M

η
)k,

where α, M and k are constants of the model and η is the mentioned degree of
multiprogramming.

The TT operator for this network with 4 dimensions, given the natural ordering
of the dimensions that arises from the interactions - ’Terminals’, ’CPU’, ’SM’, ’FD’ -

25

is

A1(i1, j1) =

I1(i1, j1)
λB1(i1, j1)
λE1(i1, j1)
C1(i1, j1)
F1(i1, j1)

αMkD1(i1, j1)

T

, A4(i4, j4) =

I4(i4, j4)

mu(2)B4(i4, j4)
mu(2)E4(i4, j4)

C4(i4, j4)
F4(i4, j4)

 ,

A2(i2, j2) =

0 0 0 rB2(i2, j2) rE2(i2, j2) C2(i2, j2) F2(i2, j2)

C2(i2, j2) 0 0 0 0 0 0
F2(i2, j2) 0 0 0 0 0 0
cB2(i2, j2) 0 0 0 0 0 0
cE2(i2, j2) 0 0 0 0 0 0

0 B2(i2, j2) E2(i2, j2) 0 0 0 0

 ,
and

A3(i3, j3) =

I3(i3, j3) 0 0 0 0
C3(i3, j3) 0 0 0 0
F3(i3, j3) 0 0 0 0

0 0 0 I3(i3, j3) 0
0 0 0 0 I3(i3, j3)

mu(1)B3(i3, j3) I3(i3, j3) 0 0 0
mu(1)E3(i3, j3) 0 I3(i3, j3) 0 0

.

λ , r, c and vector ’mu’ are parameters of the model associated with the rates of
transition between systems. λ is the rate of leaving ’Terminals’ to ’CPU’; r is the rate
of transition from ’CPU’ to ’FD’; c is the rate from ’CPU’ to ’Terminals’; vector ’mu’
has two entries that are associated with leaving ’SM’ and ’FD’ to ’Terminals’.

In coherence with the usual notation, matrices Bµ are associated with the loss
of a user, while then Cµ is associated with the corresponding arrival in a different
system. One adds the notation D1 for a matrix associated with an interaction that
is both functional and synchronized, but where this matrix is associated only with
the functional part as the rates depend on the state of this system but this is not
the system from which the user leaves, which is different from all previous similar
interactions as the state from which the user leaves was always the one on which the
rates depended.

In particular, we have

B1 =

0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0 2
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 (n1 − 1) 0

, Bµ

0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0

,

for µ = 2, . . . , 4, while

D1 =

(n1 − 1)−k 0 · · · 0

0 (n1 − 2)−k
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 .
26

Eµ (Fµ) are then the corresponding diagonal corrections of Bµ (Cµ).
Concerning the parameters, they are: N ; λ; c; r; M ; α; k; vector ’mu’.
In [42], some of the values are fixed throughout the experiments. We have α =

0.01, M = 128, k = 1.5, r = 500×10−3, c = 20×10−3, vector ’mu’ is [1
5×10−3 ,

1
30×10−3],

λ = 1
10 . For N , they consider 20 and 50. In [9], parameters are discussed in more

detail. They note that k is supposed to be between 1.5 and 2.5 according to [5],
while close to 1 according to [46]. Later, in the numerical experiments, they also
fix some of the parameters. In particular, they use λ = 1

10 , c = 1, r = 50 × 10−3,
α = 0.01. The remaining ones are tested with different values. They try 128 and 256
for M ; all integers between 1 and 30 for N ; for k they end up trying 1.5, 2 and 2.5;
for ’mu’, they use [1

5×10−3 ,
1

30×10−3], [1
10×10−3 ,

1
30×10−3] and [1

5×10−3 ,
1

60×10−3], after

also mentioning the pair [1
10×10−3 ,

1
50×10−3] before the experiments. We note that the

range of the parameters is similar for the two references. In this sequence, we use
in our implementation, as default values, some of the parameters above: N = 50,
λ = 1

10 , c = 20 × 10−3, r = 500 × 10−3, M = 128, α = 0.01, k = 1.5, vector ’mu’ is
[1
5×10−3 ,

1
30×10−3]. We are thus considering a problem of size 514.

impcustomers {queueing, funct, synch, chain}.
The next model concerns the effect of impatient customers on a computerized

telephone exchange [8], being included in the numerical experiments of [42].
A customer requests a service. He will wait a certain time until getting a response

and if he does not start being served in that period, either he leaves or he waits for
some time before joining the queue again. We thus have two queues. One, associated
with the second dimension of the TT operator, represents the number of customers
that are waiting for the service, associated with the special processing task that is
required by the customers. After giving up on waiting, the customer may join another
station, a queue, associated with the first dimension of the operator, where he will
stay for a certain period, going then again back to the main station to try again; or
he simply leaves without going through this ’stand-by’ queue.

The customers in the first system, ’stand-by’ queue, are said to be in their ’think-
ing time’. The ones in the second one are directly waiting for the processing task that
they are requesting.

The TT representation of the transition rate matrix is now

A1(i1, j1) =
[
I1(i1, j1) λB1(i1, j1) λE1(i1, j1) C1(i1, j1) F1(i1, j1)

]
,

A2(i2, j2) =
[
L2(i2, j2) C2(i2, j2) F2(i2, j2) τhB2(i2, j2) τhE2(i2, j2)

]T
,

where h, τ and λ are parameters of the model - h is the probability of moving to the
first system given that the customer leaves the second system as he is tired of waiting
(1 − h is thus the conditional probability that he leaves the network instead), which
happens with rate τ ; λ is the rate for each customer to finish the ’thinking time’,
going then back to the main system.

One has

B1 =

0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0 2
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 (n1 − 1) 0

, B2

0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0

,

27

for the matrices of the interactions; while for the local part

L2 =

∗ arr 0 · · · 0

τ(1− h) + mu
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . arr

0 · · · 0 τ(1− h) + mu ∗

,

where ’mu’ is the rate of service while ’arr’ is the arrival rate of customers. The total
rate of departure is τ(1 − h) + mu as customers may also leave the system, without
having been served, with rate τ(1− h).

There is only local part in the second dimension as the first system does not
interact with the exterior.

Eµ and Fµ are, as usual, the diagonal corrections for the terms associated with
Bµ and Cµ, respectively.

The parameters are: value ’arr’; value ’mu’; τ ; h; λ; vector with the maximum
capacities for the two dimensions.

The parameters that are used in [42], and argued to be realistic by the authors,
are: 0.6 for ’arr’; 1 for ’mu’; 0.05 for τ ; 0.85 for h; 5 for λ; [10, 220] for the vector
of maximum capacities. They note that the mode sizes should be chosen big enough
in order for the probability of saturation to be below 1 × 10−10 as the idea is to
simulate the case where the capacities are infinite, which is the real situation. We
use, as default values, the mentioned parameters, except for the maximum capacities,
changed to [1024, 1024]. The problem size is thus 10252.

handoff1class1d {communications, synch, scalable, chain}.
The next models, mainly based on [50, 3], while approximations are obtained

for analysing such networks in [4], consider a group of base stations covering some
geographical area where each base station, with which mobile users communicate, is
referred to as a cell. A base station is responsible for the bandwidth management
concerning mobile phones in its cell. The bandwidth that is being used is what
characterizes the state of a cell, while the dimensions of the tensor represent the
different cells. New calls are initiated in the different cells and they may be transferred
to another cell in case the phones move to the geographical area of that other cell.

The general model in the references consider distinguishable customers who can:
move to a different cell; finish the call in a particular cell with a certain rate associated
with the expected duration of the call; or simply leave the network by moving to a
geographical region that is not covered by any cell of the network. The possibility of
moving between cells introduces the concept of ’handoff’. Customers stay in the same
cell for an exponentially distributed period. The rate of having a new call is the same
for all cells, but can be different among different types of customers. Concerning the
required bandwidth per call, one assumes the simplifying hypothesis that it is one
unit for all types of customers.

We first consider a model with only one type of customer and where one assumes
a topology in one dimension for the geographical area. We assume, without loss of
generality, that the probability of moving in any direction is the same, meaning that
the probability of leaving to each neighbour is simply 1

2 .
The corresponding TT operator is

A1(i1, j1) =
[
1
2γB1(i1, j1) 1

2γE1(i1, j1) C1(i1, j1) F1(i1, j1) I1(i1, j1)
]
,

28

Ad(id, jd) =
[
Id(id, jd) Cd(id, jd) Fd(id, jd)

1
2γBd(id, jd)

1
2γEd(id, jd)

]T
,

A2(i2, j2) =

mu+0.5γ

0.5γ
I2(i2, j2) + C2(i2, j2) 0 0 0 0 0

−mu+0.5γ
0.5γ

I2(i2, j2) + F2(i2, j2) 0 0 0 0 0

mu× I2(i2, j2) +
1
2
γB2(i2, j2) 0 0 0 0 0

arr× I2(i2, j2) +
1
2
γE2(i2, j2) 0 0 0 0 0

L2(i2, j2)
1
2
γB2(i2, j2)

1
2
γE2(i2, j2) C2(i2, j2) F2(i2, j2) I2(i2, j2)

 ,
for Ad−1(id−1, jd−1) we get
Id−1(id−1, jd−1) Cd−1(id−1, jd−1) Fd−1(id−1, jd−1)

1
2γBd−1(id−1, jd−1)

1
2γEd−1(id−1, jd−1) Ld−1(id−1, jd−1)

0 0 0 0 0 arrId−1(id−1, jd−1) +
1
2γBd−1(id−1, jd−1)

0 0 0 0 0 arrId−1(id−1, jd−1) +
1
2γEd−1(id−1, jd−1)

0 0 0 0 0 mu+0.5γ
0.5γ Id−1(id−1, jd−1) + Cd−1(id−1, jd−1)

0 0 0 0 0 mu+0.5γ
0.5γ Id−1(id−1, jd−1) + Fd−1(id−1, jd−1)

T

,

and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0 0 0
Cµ(iµ, jµ) 0 0 0 0 0
Fµ(iµ, jµ) 0 0 0 0 0

1
2
γBµ(iµ, jµ) 0 0 0 0 0

1
2
γEµ(iµ, jµ) 0 0 0 0 0
Lµ(iµ, jµ)

1
2
γBµ(iµ, jµ)

1
2
γEµ(iµ, jµ) Cµ(iµ, jµ) Fµ(iµ, jµ) Iµ(iµ, jµ)

 ,
µ = 3, . . . , d− 2. γ is the rate of leaving a cell, associated with ’handoff’ effect, either
to another cell or out of the geographical area covered by the cells, in which case the
transition is local; ’mu’ is the rate associated with the end of a call and ’arr’ is the
rate of having a new call, for any cell.

The local part is

L1 = Ld =

∗ arr 0 · · · 0

dep + 1
2γ

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . arr

0 · · · 0 dep + 1
2γ ∗

, Lµ

∗ arr 0 · · · 0

dep
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . arr

0 · · · 0 dep ∗

,

µ = 2, . . . , d− 1. L1 and Ld are not part of the final operator as one can write them
as linear combinations of the remaining matrices of the corresponding cores, thus
reducing the associated ranks, which is a technique that appeared first in [31].

The matrices of the local part are different in the first and last dimensions as they
have the particularity of having the exterior of the network as immediate neighbour,
implying that, with probability 1

2 , a customer that leaves a cell goes out of the network.
As for the matrices of the interactions, they are the usual ones

Bµ =

0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0

, Cµ =

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · · · · 0

,

while Eµ and Fµ are the corresponding diagonal corrections, respectively.

29

The parameters are: value ’arr’; value ’dep’; γ; vector of maximum capacities of
the different cells.

In our implementation the default parameters are: ’arr’ is 1.5; ’dep’ is 1; γ = 0.1;
maximum capacities [8, 8, 8, 8, 8, 8, 8]. We are thus considering a problem of size 97.

handoff1class2d {communications, synch, chain}.
The next model generalizes the previous one to a two-dimensional geography. As

in [50, 3], cells with shape of hexagons are considered, meaning that each cell will
have six neighbours now instead of two.

We omit the representation of the operator as it requires too much space even for
the smallest d that makes sense to consider, d = 7, which is the value that we use in
our implementation, as the ranks of the TT operator are significantly larger than for
all previous models, which is coherent with the lack of suitability of the topology to
the format.

The matrices associated with the local part are

Lµ =

∗ arr 0 · · · 0

dep + 1
2γ

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . arr

0 · · · 0 dep + 1
2γ ∗

or Lµ =

∗ arr 0 · · · 0

dep
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . arr

0 · · · 0 dep ∗

,

depending on if the dimension is associated with a cell that has contact with the
exterior, first case; or not, second case.

Matrices associated with the interactions, Bµ and Cµ (and thus also the diagonal
corrections Eµ and Fµ), are the same as in the previous model.

The parameters are, as in the previous model: value ’arr’; value ’dep’; γ; vector
of maximum capacities of the different cells.

In our implementation the default parameters are, also as in the previous model:
’arr’ is 1.5; ’dep’ is 1; γ = 0.1; maximum capacities [8, 8, 8, 8, 8, 8, 8]. We are thus
considering a problem of size 97.

handoff2class1d {communications, distinguishable, synch, scalable}.
The next model consists of generalizing handoff1class1d to allow, instead of a

two-dimensional geography as in the last model, having two types of customers.

The operator is given by

A1(i1, j1) =

L1(i1, j1)
1
2γ(1)B11(i1, j1)
1
2γ(2)B21(i1, j1)

E1(i1, j1)
C11(i1, j1)
C21(i1, j1)
F1(i1, j1)
I1(i1, j1)

T

, Ad(id, jd) =

Id(id, jd)
C1d(id, jd)
C2d(id, jd)
Fd(id, jd)

1
2γ(1)B1d(id, jd)
1
2γ(2)B2d(id, jd)

Ed(id, jd)
Ld(id, jd)

,

30

and for Aµ(iµ, jµ), µ = 2, . . . , d− 1, we have

Iµ(iµ, jµ) 0 0 0 0 0 0 0
C1µ(iµ, jµ) 0 0 0 0 0 0 0
C2µ(iµ, jµ) 0 0 0 0 0 0 0
Fµ(iµ, jµ) 0 0 0 0 0 0 0

1
2
γ(1)B1µ(iµ, jµ) 0 0 0 0 0 0 0

1
2
γ(2)B2µ(iµ, jµ) 0 0 0 0 0 0 0
Eµ(iµ, jµ) 0 0 0 0 0 0 0
Lµ(iµ, jµ)

1
2
γ(1)B1µ(iµ, jµ)

1
2
γ(2)B2µ(iµ, jµ) Eµ(iµ, jµ) C1µ(iµ, jµ) C2µ(iµ, jµ) Fµ(iµ, jµ) Iµ(iµ, jµ)

,

where gamma is now a vector with two entries containing the rates associated with
’handoff’ for the two types of customers.

All matrices that compose the operator are defined similarly to handoff1class1d
with the difference that one needs to distinguish the calls according to the involved
type of customer, which results in the matrices B1µ and B2µ to replace Bµ; and C1µ
and C2µ to replace Cµ. They are omitted for the same reason as in kanban.

Similarly to kanbanalt2priority, Eµ (Fµ) are now associated with the diagonal
corrections for 1

2γ(1)B1µ and 1
2γ(2)B2µ (C1µ and C2µ).

The parameters are the same as in the previous two models except that ’arr’,
’dep’ and γ are now vectors with two entries. Then there is again the vector with the
maximum capacities.

We consider the default parameters: ’arr’ is [1.5, 1.5]; ’dep’ is [1, 1]; γ = [0.1, 0.1];
maximum capacities [3, 3, 3, 3, 3, 3, 3]. We are thus considering a problem of size 107.

handoff {communications, distinguishable, synch}.
We now combine the previous two models to get a more general version. We

consider both two types of customers and the two-dimensional geometry. The main
references are again [50, 3, 4].

As in handoff1class2d, the operator is omitted, for the same reason. It involves
the same matrices that compose the operator for the previous model.

The parameters are the same as in the previous model: vectors of two entries
’arr’, ’dep’ and γ; vector with the maximum capacities.

We consider the default parameters, as in the previous model: ’arr’ is [1.5, 1.5];
’dep’ is [1, 1]; γ = [0.1, 0.1]; maximum capacities [3, 3, 3, 3, 3, 3, 3]. We are thus con-
sidering a problem of size 107.

directedmetab {chemical, productform, funct, synch, scalable, chain}.
The next models are extracted from [36]. The general idea of such models is

that the different states are associated with the distribution of molecule numbers of
metabolites, for different types of topologies of the links between the nodes. Each
dimension of the operator represents a node.

The first model that we consider consists of an incoming flux of substrate molecules
being converted, through a series of enzymatic reactions, into a product flux [37, Ch.
3]. Each reaction takes as precursor the product of the preceding reaction.

The incoming flux, associated with the first node of the pathway, is constant. As
for the set of reactions that convert a substrate of a given type in one of the next
type, the rates are a function of the number of particles in the first. The rate, for
substrate i, is

vimi

mi +Ki − 1
, (3.2)

where vi and Ki are constants, while mi is the number of particles in substrate i.

31

The TT operator is very similar to the one from kanbanalt2 even if they model
totally different applications, as the topologies are very similar. The operator is

A1(i1, j1) =
[
L1(i1, j1) B1(i1, j1) E1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

Id(id, jd)
Cd(id, jd)
Fd(id, jd)
Ld(id, jd)

 ,
and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0

0 Bµ(iµ, jµ) Eµ(iµ, jµ) Iµ(iµ, jµ)

 , µ = 2, . . . , d− 1.

The local part of the operator above is

L1 =

∗ c 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . c
0 · · · · · · 0 ∗

, Ld =

∗ 0 · · · · · · 0

vd
Kd

. . .
. . .

. . .
...

0 2vd
Kd+1

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 (nd−1)vd
nd+Kd−2 ∗

,

where ’c’ denotes the influx constant rate.
For the interaction matrices,

Bµ =

0 · · · · · · · · · 0

vµ
Kµ

. . .
. . .

. . .
...

0
2vµ
Kµ+1

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0
(nµ−1)vµ
nµ+Kµ−2 0

, Cµ =

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · · · · · · · 0

.

The local part is associated with the production of particles, in the first node;
and their degeneration, in the last node. Bµ represents the loss of a particle, which is
associated with a new particle in the next node. This next node is the one associated
with Cµ.

The diagonal corrections associated with Bµ and Cµ are in Eµ and Fµ, respec-
tively.

The parameters are: vector ’v’; vector ’K’; influx rate ’c’; vector with the maxi-
mum capacity of each system.

Some restrictions are considered in [36]. They state that entries of ’K’ should take
values between 103 and 104; entries in ’v’ should be between c and 10c. They mention
that d = 10 is a realistic value. As for the experiments that are done, v1 is tested as
1.1c and 5c, for an example with d = 6. In our implementation, we use the default
parameters: ’v’ is [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]; ’K’ is [1000, 1000, 1000, 1000, 1000, 1000];
c = 0.01; maximum capacities [16, 16, 16, 16, 16, 16]. The problem size is thus 176.

reversiblemetab {chemical, funct, synch, scalable, chain}.
32

The next model is again taken from [36].
The difference to the previous model is that the particles can also be converted

in the opposite direction now - from one node to the previous.
The rates of the interactions again follow (3.2) but now each substrate has two

associated values for vi and Ki, one for the forward and one for the backward transfor-
mation. In this context, we split ’v’ into ’vfor’ and ’vback’, where the first will contain
the ’v’ associated with the forward transformations while the second will contain the
ones for the backward transformations. ’Kfor’ and ’Kback’ are similarly associated
with ’K’.

The operator is now

A1(i1, j1) =

L1(i1, j1)
B11(i1, j1)
E11(i1, j1)
C1(i1, j1)
F1(i1, j1)
I1(i1, j1)

T

, Ad(id, jd) =

Id(id, jd)
Cd(id, jd)
Fd(id, jd)
B2d(id, jd)
E2d(id, jd)
Ld(id, jd)

and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0 0 0
Cµ(iµ, jµ) 0 0 0 0 0
Fµ(iµ, jµ) 0 0 0 0 0
B2µ(iµ, jµ) 0 0 0 0 0
E2µ(iµ, jµ) 0 0 0 0 0

0 B1µ(iµ, jµ)E1µ(iµ, jµ) Cµ(iµ, jµ) Fµ(iµ, jµ) Iµ(iµ, jµ)

 ,
µ = 2, . . . , d− 1.

The local part is now represented as

L1 =

∗ c 0 · · · 0

vback1

Kback1

. . .
. . .

. . .
...

0 2vback1

Kback1+1

. . .
. . . 0

...
. . .

. . .
. . . c

0 · · · 0 (n1−1)vback1

n1+Kback−2 ∗

, Ld =

∗ 0 · · · · · · 0

vford
Kford

. . .
. . .

. . .
...

0 2vford
Kford+1

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 (nd−1)vford
Kford+nd−1 ∗

.

As for the matrices for the interactions, we need to break Bµ (and thus Eµ) from
the previous model into two

B1µ =

0 · · · · · · · · · 0

v(1)µ
K(1)µ

. . .
. . .

. . .
...

0
2v(1)µ
K(1)µ+1

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0
(nµ−1)v(1)µ
K(1)µ+nµ−2 0

, B2µ =

0 · · · · · · · · · 0

v(2)µ
K(2)µ

. . .
. . .

. . .
...

0
2v(2)µ
K(2)µ+1

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0
(nµ−1)v(2)µ
K(2)µ+nµ−2 0

,

while Cµ (and Fµ) is unchanged.
The parameters are: vector ’vback’; vector ’Kback’; vector ’vfor’; vector ’Kfor’;

influx rate ’c’; vector with the maximum capacity of each system.

33

Same restrictions are again considered in [36], with ’Kback’ and ’Kfor’ having the
restrictions from ’K’ while ’vback’ and ’vfor’ have the restrictions from ’v’, recalling
the previous model. As for their experiments, they again consider vfor1 taking the val-
ues 1.1c and 5c; vfor3 is either 8.4c or 6.9c; vback4 is either 1.6c or 3.7c; Kfor3 is either
2500 or 8000; Kback4 is either 7700 or 3700. They again use d = 6. In our implemen-
tation, we use the default parameters: ’vback’ and ’vfor’ as [0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
’Kback’ and ’Kfor’ as [1000, 1000, 1000, 1000, 1000, 1000]; c = 0.01; maximum capaci-
ties [16, 16, 16, 16, 16, 16]. The problem size is thus 176.

dilutionintermed {chemical, funct, synch, functlocal, scalable, chain}.
This model is again from [36].
One now considers possible catabolism of intermediates or dilution due to growth.

This makes the flux a conserved quantity throughout the pathway and is the basis of
the flux-balance analysis [18].

In this context, this model generalizes directedmetab considering now that flux is
not conserved, allowing particles to be degraded with a certain rate. Such degradation
has a rate that is linear on the number of particles in a node, implying that, for system
i, we have the rate

cte×mi, (3.3)

where ’cte’ is a constant while mi is the number of particles of type i.
The TT operator is now

A1(i1, j1) =
[
L1(i1, j1) B1(i1, j1) E1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

Id(id, jd)
Cd(id, jd)
Fd(id, jd)
Ld(id, jd)

 ,
and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0
βLµ(iµ, jµ) Bµ(iµ, jµ) Eµ(iµ, jµ) Iµ(iµ, jµ)

 . µ = 2, . . . , d− 1,

where β is the constant ’cte’ in (3.3), considered to be the same for all systems.
The matrices associated with the local part are now

L1 =

∗ c 0 · · · 0

β
. . .

. . .
. . .

...

0 2β
. . .

. . . 0
...

. . .
. . .

. . . c
0 · · · 0 (n1 − 1)β ∗

, Ld =

∗ 0 · · · · · · 0

β + vd
Kd

. . .
. . .

. . .
...

0 2β + 2vd
Kd+1

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 (nd − 1)β + (nd−1)vd
nd+Kd−2 ∗

and

Lµ =

∗ 0 · · · · · · 0

1
. . .

. . .
. . .

...

0 2
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 (nµ − 1) ∗

,

34

µ = 2, . . . , d− 1.
As for the interaction matrices, they are those from directedmetab as this degra-

dation is a local event, thus affecting only the local part.
The parameters are: vector ’v’; vector ’K’; parameter β; influx rate ’c’; vector

with the maximum capacity of each system.
The restrictions on the parameters, in [36], are the same as before, for directedmetab,

on ’K’ and ’v’. As for the experiments, they again consider v1 taking the values 1.1c
and 5c; they consider the ratio β

c = 1
100 ; their concretization is again defined for d = 6.

In our implementation, we use the default parameters: ’v’ is [0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
’K’ is [1000, 1000, 1000, 1000, 1000, 1000]; β = 0.0001; c = 0.01; maximum capacities
[16, 16, 16, 16, 16, 16]. The problem size is thus 176.

cyclicmetab {chemical, reducible, productform, funct, synch, scalable, chain}.
This model is again from [36].
Based on directedmetab, one adds the possibility that the last metabolite is con-

verted into the first, introducing a cycle, similar to the one in cyclequeue. As in that
model, local transitions are removed, meaning that no contact with the exterior of
the network exists - the network is closed.

The TT operator is

A1(i1, j1) =
[
I1(i1, j1) B1(i1, j1) C1(i1, j1) E1(i1, j1) F1(i1, j1)

]
,

Ad(id, jd) =
[
Cd(id, jd) Fd(id, jd) Id(id, jd) Bd(id, jd) Ed(id, jd)

]T
,

A2(i2, j2) =

I2(i2, j2) B2(i2, j2) E2(i2, j2) 0 0 0

0 0 0 C2(i2, j2) 0 0
0 0 0 0 I2(i2, j2) 0
0 0 0 F2(i2, j2) 0 0
0 0 0 0 0 I2(i2, j2)

 ,

Ad−1(id−1, jd−1) =

Bd−1(id−1, jd−1) Ed−1(id−1, jd−1) 0 0 0

0 0 Cd−1(id−1, jd−1) 0 0
0 0 Fd−1(id−1, jd−1) 0 0
0 0 Id−1(id−1, jd−1) 0 0
0 0 0 Id−1(id−1, jd−1) 0
0 0 0 0 Id−1(id−1, jd−1)

 ,
and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) Bµ(iµ, jµ) Eµ(iµ, jµ) 0 0 0

0 0 0 Cµ(iµ, jµ) 0 0
0 0 0 Fµ(iµ, jµ) 0 0
0 0 0 Iµ(iµ, jµ) 0 0
0 0 0 0 Iµ(iµ, jµ) 0
0 0 0 0 0 Iµ(iµ, jµ)

 .

µ = 3, . . . , d− 2.
As for the matrices, they are the ones from directedmetab, with the difference that

now Bµ and Cµ are defined for all dimensions, in particular there exist Bd and C1,
while there are no local matrices.

The parameters are: vector ’v’, as in directedmetab; vector ’K’, as in directedmetab;
vector with the maximum capacity of each system.

35

In our implementation, we use the default parameters: ’v’ is [0.1, 0.1, 0.1, 0.1, 0.1, 0.1];
’K’ is [1000, 1000, 1000, 1000, 1000, 1000]; maximum capacities [16, 16, 16, 16, 16, 16].
The problem size is thus 176.

endproduct {chemical, funct, synch, scalable, chain}.
This mode is again from [36].
We now take into consideration that many biosynthesis pathways couple between

supply and demand by a negative feedback [37, Ch. 3], meaning that the end-product
inhibits the first reaction in the pathway or the transport of its precursor. This implies
that the flux is reduced when the end-product builds up.

The idea is to add this effect to directedmetab.
The influx rate of the network, associated with the first system, is thus a decreas-

ing function of the number of particles in the last substrate.
Such decreasing function is

c0[1 + (
md

KI
)h]−1, (3.4)

where c0 is a constant associated with the influx (maximal influx); md is the end-
product quantity; KI is a constant associated with the dissociation between the first
enzyme and the last substrate; h is a constant - Hill coefficient describing the coop-
eration in the interaction between the first enzyme and the last substrate.

The corresponding operator is

A1(i1, j1) =
[
I1(i1, j1) B1(i1, j1) C1(i1, j1) E1(i1, j1)

]
, Ad(id, jd) =

Cd(id, jd)
Fd(id, jd)
Id(id, jd)
c0Dd(id, jd)
Ld(id, jd)

 ,

A2(i2, j2) =

I2(i2, j2) B2(i2, j2) E2(i2, j2) 0 0

0 0 0 C2(i2, j2) 0
0 0 0 0 I2(i2, j2)
0 0 0 F2(i2, j2) 0

 ,

Ad−1(id−1, jd−1) =

Bd−1(id−1, jd−1) Ed−1(id−1, jd−1) 0 0 Id−1(id−1, jd−1)

0 0 Cd−1(id−1, jd−1) 0 0
0 0 Fd−1(id−1, jd−1) 0 0
0 0 Id−1(id−1, jd−1) 0 0
0 0 0 Id−1(id−1, jd−1) 0

 ,
and

Aµ(iµ, jµ) =

Iµ(iµ, jµ) Bµ(iµ, jµ) Eµ(iµ, jµ) 0 0

0 0 0 Cµ(iµ, jµ) 0
0 0 0 Fµ(iµ, jµ) 0
0 0 0 Iµ(iµ, jµ) 0
0 0 0 0 Iµ(iµ, jµ)

 ,

µ = 3, . . . , d− 2, where c0 is the corresponding constant in (3.4).
The matrices are those from directedmetab, except for Dd, whose name is coherent

with D1 in multiprogramming, associated with the new interaction between last and

36

first systems, functional but not synchronized,

Dd =

[1 + (0

KI
)h]−1 0 · · · 0

0 [1 + (1
KI

)h]−1
. . .

...
...

. . .
. . . 0

0 · · · 0 [1 + (nd−1KI
)h]−1

 ,

where again the constants are the ones from (3.4).

The parameters are: vector ’v’; vector ’K’; entry KI ; value c0; value h; vector
with the maximum capacity of each system.

The restrictions on ’v’ and ’K’ are again those from directedmetab. In the exper-
iments, they consider KI = 1000, for a concretization again defined for d = 6. Our de-
fault parameters are: ’v’ is [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]; ’K’ is [1000, 1000, 1000, 1000, 1000, 1000];
KI = 1000; c0 = 0.01; h = 1; maximum capacities [16, 16, 16, 16, 16, 16]. The problem
size is thus 176.

divergingmetab {chemical, funct, synch, scalable, chain}.
This model is again from [36].

Many metabolites serve as substrates for several pathways. In such cases, different
enzymes can bind to the substrate and each catabolizes a first reaction in a different
pathway.

Within our scheme, this can be modelled by allowing one of the metabolites to be
converted into one of two metabolites. The rates will depend on vi and Ki through
(3.2) again but, for the particular metabolite that can be converted in two different
ones, there are two values for each of these variables, one for each possible reaction.

We add such effect to the basic configuration from directedmetab, in the sense
that the main pathway and the two ones in which it splits all follow this model.

Finding an optimal ordering of the dimensions is not totally intuitive. We follow
the natural ordering until reaching the metabolite that can be converted in two dif-
ferent ones, after which, when the splitting into two linear pathways happens, we go
through all the systems in the first of the two pathways, doing then the same with
the second.

For the described ordering of the systems, the operator is

A1(i1, j1) =
[
L1(i1, j1) B1(i1, j1) E1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

Id(id, jd)
Cd(id, jd)
Fd(id, jd)
Ld(id, jd)

 ,

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0

0 Bµ(iµ, jµ) Eµ(iµ, jµ) Iµ(iµ, jµ)

 , µ = 2, . . . , sp− 1,

Asp(isp, jsp) =

 Isp(isp, jsp) 0 0 0 0 0
Csp(isp, jsp) 0 0 0 0 0
Fsp(isp, jsp) 0 0 0 0 0

0 B1sp(isp, jsp) E1sp(isp, jsp) B2sp(isp, jsp) E2sp(isp, jsp) Iµ(isp, jsp)

 ,
37

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0 0 0
Cµ(iµ, jµ) 0 0 0 0 0
Fµ(iµ, jµ) 0 0 0 0 0

0 0 0 Iµ(iµ, jµ) 0 0
0 0 0 0 Iµ(iµ, jµ) 0
0 Bµ(iµ, jµ) Eµ(iµ, jµ) 0 0 Iµ(iµ, jµ)

 ,

µ = sp + 1, . . . , sp + br− 2. For Asp+br−1(isp+br−1, jsp+br−1) we have
Isp+br−1(isp+br−1, jsp+br−1) 0 0 0
Csp+br−1(isp+br−1, jsp+br−1) 0 0 0
Fsp+br−1(isp+br−1, jsp+br−1) 0 0 0

0 Isp+br−1(isp+br−1, jsp+br−1) 0 0
0 0 Isp+br−1(isp+br−1, jsp+br−1) 0

Lsp+br−1(isp+br−1, jsp+br−1) 0 0 Isp+br−1(isp+br−1, jsp+br−1)

 ;

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0

0 Bµ(iµ, jµ) Eµ(iµ, jµ) Iµ(iµ, jµ)

 , µ = sp+br, . . . , d−1,

where ’sp’ is used to denote the last system before the splitting, while ’br’ is used to
indicate the one where the first of the two linear pathways of the splitting ends. The
second pathway thus starts in system sp + br.

While most of the matrices in the operator are again as in directedmetab, we need
to separate the usual Bsp into B1sp and B2sp

B1sp =

0 · · · · · · · · · 0

vsp
Ksp

. . .
. . .

. . .
...

0
2vsp
Ksp+1

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0
(nsp−1)vsp
nsp+Ksp−2 0

, B2sp =

0 · · · · · · · · · 0

vd+1

Kd+1

. . .
. . .

. . .
...

0 2vd+1

Kd+1+1

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0
(nsp−1)vd+1

nsp+Kd+1−2 0

.

’v’ and ’K’ have now length d + 1 as there are two entries for ’sp’ dimension for
each. As we cannot have two entries for vsp and Ksp, we add the rate associated with
the first pathway in vsp and Ksp while adding the rates for the second pathway in the
end of each vector, in vd+1 and Kd+1.

The corresponding diagonal corrections are in E1sp and E2sp, respectively.
Note that there are now two dimensions associated with ends of pathways, sp +

br− 1 and d, implying that we get an extra local transition, represented in Lsp+br−1,
which is just the same as Ld but with adjusted subscripts.

The ranks are greater than in directedmetab because of the interaction that exists
between dimensions sp and sp + br, which suggests that it is optimal to make the
first pathway the smallest of the two in order to minimize the distance between the
mentioned dimensions, as the increased ranks are those between them.

The parameters are: vector ’v’; vector ’K’; influx rate ’c’; vector with the maxi-
mum capacity of each system; value of ’sp’; value of ’br’.

The restrictions on ’K’ and ’v’ are again the same as in directedmetab, in [36].
In the experiments, v1 takes again the values 1.1c and 5c; they consider Ksp =

38

810 and Kd+1 = 370; ’sp’ is mentioned in the caption of the figure of the exper-
iments to be 4 but in the actual image it seems to be 3; depending on this, ’br’
is 3 or 4, respectively; their concretization is now defined for d = 9. In our im-
plementation, we use the default values: ’v’ is [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]; ’K’ is
[1000, 1000, 1000, 1000, 1000, 1000, 1000]; c = 0.01; ’sp’ and ’br’ are 2; maximum ca-
pacities [16, 16, 16, 16, 16, 16]. The problem size is thus 176.

convergingmetab {chemical, productform, funct, synch, scalable, chain}.
This model is again from [36].
Two pathways result in the synthesis of the same product, with two linear path-

ways merging into one. It is assumed that the different metabolites in the combined
pathway, namely the two pathways producing the product and a pathway catabolizing
the final product, remain decoupled.

This is combined with directedmetab in the sense that the two linear pathways
that converge, as well as the one after these two converge, follow this model.

The ordering of the dimensions is again not trivial to define. We decide to first
go through the first linear pathway; then we go through the second; then we follow
the natural linear pathway starting from the dimension where those two merge.

The representation of the operator is

A1(i1, j1) =
[
L1(i1, j1) B1(i1, j1) E1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

Id(id, jd)
Cd(id, jd)
Fd(id, jd)
Ld(id, jd)

 ,

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0

0 Bµ(iµ, jµ) Eµ(iµ, jµ) Iµ(iµ, jµ)

 , µ = 2, . . . ,br− 1,

Abr(ibr, jbr) =

Ibr(ibr, jbr) 0 0 0 0 0
0 0 0 0 Ibr(ibr, jbr) 0
0 0 0 0 0 Ibr(ibr, jbr)

Lbr(ibr, jbr) Bbr(ibr, jbr) Ebr(ibr, jbr) Iµ(ibr, jbr) 0 0

 ,

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0 0 0
Cµ(iµ, jµ) 0 0 0 0 0
Fµ(iµ, jµ) 0 0 0 0 0

0 Bµ(iµ, jµ) Eµ(iµ, jµ) Iµ(iµ, jµ) 0 0
0 0 0 0 Iµ(iµ, jµ) 0
0 0 0 0 0 Iµ(iµ, jµ)

 ,

µ = br + 1, . . . , sp− 2,

Asp−1(isp−1, jsp−1) =

Isp−1(isp−1, jsp−1) 0 0 0
Csp−1(isp−1, jsp−1) 0 0 0
Fsp−1(isp−1, jsp−1) 0 0 0

0 Bsp−1(isp−1, jsp−1)Esp−1(isp−1, jsp−1) Isp−1(isp−1, jsp−1)
0 Isp−1(isp−1, jsp−1) 0 0
0 0 Isp−1(isp−1, jsp−1) 0

 ,

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0

0 Bµ(iµ, jµ) Eµ(iµ, jµ) Iµ(iµ, jµ)

 , µ = sp . . . , d− 1,

39

where ’br’ corresponds to the dimension where the second pathway starts while ’sp’
is the dimension where the two pathways merge.

The matrices are the same as in directedmetab, except that there are now two
dimensions associated with influxes as there are two linear pathways

L1 =

∗ c(1) 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . c(1)
0 · · · · · · 0 ∗

, Lbr =

∗ c(2) 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . c(2)
0 · · · · · · 0 ∗

,

where now ’c’, associated again with the constant influx, is a vector with two entries,
with one influx rate for each pathway.

The ranks are increased, as in the previous model, from directedmetab, now due
to the interaction between the first dimension and dimension ’sp’.

The parameters are: vector ’v’; vector ’K’; vector with the two influx rates ’c’;
vector with the maximum capacity of each system; value of ’br’; value of ’sp’.

The same restrictions, in [36], as for directedmetab are considered on ’K’ and ’v’.

Experiments are done for v1 being 1.1 · c(1) or 5 · c(1), again; then c(2) = c(1)
2 ; ’br’

is 4 while ’sp’ is 7; they consider d = 9. We consider the default parameters: ’v’
is [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]; ’K’ is [1000, 1000, 1000, 1000, 1000, 1000]; c = [0.01, 0.01];
’br’ is 2; ’sp’ is 4; maximum capacities [16, 16, 16, 16, 16, 16]. The problem size is thus
176.

convergingmetab2 {chemical, funct, synch, scalable, chain}.
The next model is a variant of the previous one, again taken from [36].
We have again two pathways resulting in the synthesis of one product. The

difference is motivated by the fact that some reactions in a biosynthesis pathway
involve side-reactants.

One thus considers that two products of two linear pathways serve as precursors
for one reaction, meaning that one needs both products to generate the one associated
with the dimension where the pathways converge.

The representation of the operator is, for the same ordering of the dimensions as
in the previous model,

A1(i1, j1) =
[
L1(i1, j1) k(1)B1(i1, j1) k(1)E1(i1, j1) I1(i1, j1)

]
,

Ad(id, jd) =
[
Id(id, jd) Cd(id, jd) Fd(id, jd) k(d)Ld(id, jd)

]T
,

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0

0 k(µ)Bµ(iµ, jµ) k(µ)Eµ(iµ, jµ) Iµ(iµ, jµ)

 , µ = 2, . . . ,br−1,

Abr(ibr, jbr) =

Ibr(ibr, jbr) 0 0 0 0 0
0 0 0 0 Ibr(ibr, jbr) 0
0 0 0 0 0 Ibr(ibr, jbr)

Lbr(ibr, jbr) k(br)Bbr(ibr, jbr) k(br)Ebr(ibr, jbr) Iµ(ibr, jbr) 0 0

 ,

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0 0 0
Cµ(iµ, jµ) 0 0 0 0 0
Fµ(iµ, jµ) 0 0 0 0 0

0 k(µ)Bµ(iµ, jµ) k(µ)Eµ(iµ, jµ) Iµ(iµ, jµ) 0 0
0 0 0 0 Iµ(iµ, jµ) 0
0 0 0 0 0 Iµ(iµ, jµ)

 ,
40

µ = br + 1, . . . , sp− 2,

Asp−1(isp−1, jsp−1) =

Isp−1(isp−1, jsp−1) 0 0 0
Csp−1(isp−1, jsp−1) 0 0 0
Fsp−1(isp−1, jsp−1) 0 0 0

0 0 0 Isp−1(isp−1, jsp−1)
0 k(sp− 1)Bsp−1(isp−1, jsp−1) 0 0
0 0 k(sp− 1)Esp−1(isp−1, jsp−1) 0

 ,

Aµ(iµ, jµ) =

Iµ(iµ, jµ) 0 0 0
Cµ(iµ, jµ) 0 0 0
Fµ(iµ, jµ) 0 0 0

0 k(µ)Bµ(iµ, jµ) k(µ)Eµ(iµ, jµ) Iµ(iµ, jµ)

 , µ = sp . . . , d−1,

where the meaning of ’br’ and ’sp’ is the same as in the previous model.
One important difference, emphasized in [36], to the previous model is that the

rate for the laws has to be linear on the quantity of particles, of the form (3.3), instead
of following (3.2). This is justified by the fact that unless we consider such form of
the rates, because of the particular transition that converts two products into one,
there is no steady-state.

We will thus need a vector of constants ’k’, which replaces the vectors ’v’ and ’K’
from directedmetab as input, which will contain in position i, the constant, for system
i, ’cte’, from (3.3).

The matrices that get changed from the ones in the previous model are

Ld =

∗ 0 · · · · · · 0

1
. . .

. . .
. . .

...

0 2
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 (nd − 1) ∗

, Bµ =

∗ 0 · · · · · · 0

1
. . .

. . .
. . .

...

0 2
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 (nµ − 1) ∗

.

The parameters are: vector ’k’; vector with two influx rates, as in the previous
model, ’c’; vector with the maximum capacity of each system; value of ’br’; value of
’sp’.

We consider the default parameters: ’k’ is [0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001];
c = [0.01, 0.01]; ’br’ is 2; ’sp’ is 4; maximum capacities [16, 16, 16, 16, 16, 16]. The
problem size is thus 176.

michaelismenten {chemical, reducible, productform, funct, synch, functlocal, chain}.
This model is taken from [36] again. It can be also found in [37, Ch. 1] or [19].
It is a well established model in the community of Chemical Networks.
It is possible nowadays to track the enzymatic turnover of substrate to product

at the single-molecule level [53], and to study instantaneous metabolite concentration
in the living cell. To describe this fluctuation mathematically, one models the cell as
a reaction vessel characterized by the number of substrate molecules (S) and enzymes
(E). A single molecule of S can bind to a single enzyme E with a certain rate that is
a function of the number of molecules of each of the products that react, and form a
complex, SE. This complex, in its turn, can unbind; or convert S into a product, P.

In a metabolic pathway, the number of substrate molecules is not kept fixed;
rather, these molecules are synthesized or imported from the environment.

41

The set of reactions is summarized in a very clear scheme in [36]. The ordering
of the dimensions follows naturally from such scheme - S, E, SE, P.

The corresponding operator is

A1(i1, j1) =
[
k(1)B1(i1, j1) C1(i1, j1) I1(i1, j1) k(1)E1(i1, j1) F1(i1, j1)

]
,

A4(i4, j4) =
[
I4(i4, j4) C4(i4, j4) F4(i4, j4)

]T
,

A2(i2, j2) =

B2(i2, j2) 0 0 0 0 0 k(4)

k(1)
I2(i2, j2)

0 C2(i2, j2) 0 0 0 0 cI2(i2, j2)
0 0 C2(i2, j2) F2(i2, j2) 0 0 0

0 0 0 0 E2(i2, j2) 0 k(4)
k(1)

I2(i2, j2)

0 0 0 0 0 F2(i2, j2) cI2(i2, j2)

 ,

A3(i3, j3) =

C3(i3, j3) 0 0
k(2)B3(i3, j3) 0 0

0 k(3)B3(i3, j3) 0
0 0 k(3)E3(i3, j3)

F3(i3, j3) 0 0
k(2)E3(i3, j3) 0 0
I3(i3, j3) 0 0

.

Matrix L1, representing the connections between the first system and the exterior,
is

L1 =

∗ c 0 · · · 0

k(4)
. . .

. . .
. . .

...

0 2k(4)
. . .

. . . 0
...

. . .
. . .

. . . c
0 · · · 0 (n1 − 1)k(4) ∗

,

where ’c’ is the importing rate of particles S. This matrix does not appear in the
final representation of the operator as we can write it as a linear combination of other
matrices, which allows having a compressed representation, again using a previously
mentioned technique from [31].

While Cµ, and thus Fµ, its diagonal correction, are the same as in directedmetab,
we now have, for Bµ,

Bµ =

0 · · · · · · · · · 0

1
. . .

. . .
. . .

...

0 2
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 (nµ − 1) 0

.

A new vector ’k’ appears inside the operator and it is associated with the rates
of most reactions, except the local one associated with the importation of particles,
which now stop following (3.2). Instead, one has this vector of constants, ’k’, where
each entry is associated with one reaction. The rates are given by

kj ×i∈N mi, (3.5)

42

where kj is the constant associated with reaction j while the values in the set N are
the number of the dimensions, in the chosen ordering, associated with systems that
lose one particle in that reaction. mi is the number of particles of type i.

The order in which the reactions are considered, in the context of vector ’k’ in
(3.5), is the following

S + E → SE;

SE → S + E;

SE → P + E;

S → ∅.

Such scheme with the existing reactions also helps understanding the chosen ordering
for the dimensions.

We additionally need the constant rate, denoted by ’c’, associated with the influx
transition

∅ → S.

The associated Markov Chain is reducible as there are quantities that will remain
constant.

The parameters are: vector ’k’; influx rate ’c’; vector with maximum capacities
of the systems.

We consider the default parameters: ’k’ as [0.001, 0.001, 0.001, 0.001] and c = 0.01.
Maximum capacities are [64, 64, 64, 64], for a problem size 654.

enzymekineticsI {chemical, productform, funct, synch, functlocal, chain}.
This model is taken from [2], which focused on illustrating conditions under which

product-form exists. It can also be found in [37, Ch. 2].

This model is very similar to michaelismenten. The dimensions are the same and
the existing reactions are only very slightly changed.

Three reactions are added, including the connection between E and the exterior
that allows the resulting Markov Chain to now be irreducible.

The reactions are ordered, in the context of vector ’k’ in (3.5), as follows

S + E → SE;

SE → S + E;

SE → P + E;

P + E → SE;

S → ∅;
E → ∅.

’c’ is now a vector with two entries as it has the constant rates for two influx
transitions, in the following order

∅ → S;

∅ → E.

43

The operator is now

A1(i1, j1) =

k(1)B1(i1, j1)
C1(i1, j1)
I1(i1, j1)

k(1)E1(i1, j1)
F1(i1, j1)

T

, A4(i4, j4) =

I4(i4, j4)
C4(i4, j4)
F4(i4, j4)

k(4)B4(i4, j4)
k(4)E4(i4, j4)

 ,

A2(i2, j2) =

B2(i2, j2) 0 0 0 0 0 0 0 k(5)

k(1)
I2(i2, j2)

0 C2(i2, j2) 0 0 0 0 0 0 c(1)I2(i2, j2)
0 0 C2(i2, j2) F2(i2, j2) B2(i2, j2) E2(i2, j2) 0 0 L2(i2, j2)

0 0 0 0 0 0 E2(i2, j2) 0 k(5)
k(1)

I2(i2, j2)

0 0 0 0 0 0 0 F2(i2, j2) c(1)I2(i2, j2)

 ,

A3(i3, j3) =

C3(i3, j3) 0 0 0 0
k(2)B3(i3, j3) 0 0 0 0

0 k(3)B3(i3, j3) 0 0 0
0 0 k(3)E3(i3, j3) 0 0
0 0 0 C3(i3, j3) 0
0 0 0 0 F3(i3, j3)

F3(i3, j3) 0 0 0 0
k(2)E3(i3, j3) 0 0 0 0
I3(i3, j3) 0 0 0 0

.

While the matrices for the interactions are the same, the local part is now

L1 =

∗ c(1) 0 · · · 0

k(5)
. . .

. . .
. . .

...

0 2k(5)
. . .

. . . 0
...

. . .
. . .

. . . c(1)
0 · · · 0 (n1 − 1)k(5) ∗

, L2 =

∗ c(2) 0 · · · 0

k(6)
. . .

. . .
. . .

...

0 2k(6)
. . .

. . . 0
...

. . .
. . .

. . . c(2)
0 · · · 0 (n2 − 1)k(6) ∗

.

The first is again not present in the final representation of the operator just as L1 in
the previous model.

The parameters are: vector ’k’; vector ’c’; vector with maximum capacities of the
systems.

We consider the default parameters: ’k’ as [0.001, 0.001, 0.001, 0.001, 0.001, 0.001]
and c = [0.01, 0.01]. Maximum capacities are [64, 64, 64, 64], for a problem size, again,
654.

enzymekineticsII {chemical, reducible, productform, funct, synch, functlocal, chain}.
This model is again taken from [2], while it can be also again found in [37, Ch.

2].
This model is similar to michaelismenten and enzymekineticsI.
In particular, the difference to enzymekineticsI is only that S is now not connected

with the exterior.
The operator is now

A1(i1, j1) =

k(1)B1(i1, j1)
C1(i1, j1)
I1(i1, j1)

k(1)E1(i1, j1)
F1(i1, j1)

T

, A4(i4, j4) =

I4(i4, j4)
C4(i4, j4)
F4(i4, j4)

k(4)B4(i4, j4)
k(4)E4(i4, j4)

 ,
44

A2(i2, j2) =

B2(i2, j2) 0 0 0 0 0 0 0

0 C2(i2, j2) 0 0 0 0 0 0
0 0 C2(i2, j2) F2(i2, j2) B2(i2, j2) E2(i2, j2) 0 0
0 0 0 0 0 0 E2(i2, j2) 0
0 0 0 0 0 0 0 F2(i2, j2)

 ,

A3(i3, j3) =

C3(i3, j3) 0 0 0 0
k(2)B3(i3, j3) 0 0 0 0
cI3(i3, j3) k(3)B3(i3, j3) 0 0 0
cI3(i3, j3) 0 k(3)E3(i3, j3) 0 0

k(5)I3(i3, j3) 0 0 C3(i3, j3) 0
k(5)I3(i3, j3) 0 0 0 F3(i3, j3)
F3(i3, j3) 0 0 0 0

k(2)E3(i3, j3) 0 0 0 0

,

where ’c’ denotes the importing rate of E - local transition. As for vector ’k’, it is
associated with the same ordering of the reactions as in enzymekineticsI after removing
the one involving the one associated with the now removed connection of S with the
exterior (previous fifth entry).

The operator changes quite significantly compared with enzymekineticsI given that
L1 stops existing while the corresponding L2, represented as

L2 =

∗ c 0 · · · 0

k(5)
. . .

. . .
. . .

...

0 2k(5)
. . .

. . . 0
...

. . .
. . .

. . . c
0 · · · 0 (n2 − 1)k(5) ∗

,

can be, using again the technique from [31] to reduce the ranks, now for a middle
dimension but which works the same way, omitted from the final representation of
the operator.

The matrices inside the operator above are the same as for michaelismenten.

The parameters are: vector ’k’; influx rate ’c’; vector with maximum capacities
of the systems.

We consider the default parameters: ’k’ as [0.001, 0.001, 0.001, 0.001, 0.001] and
c = 0.01. Maximum capacities are [64, 64, 64, 64], for a problem size, again, 654.

multiscalechemical {chemical, reducible, productform, funct, synch, functlocal, chain}.
This model is again from [2].

It is associated with six chemical species, with interactions that have again rates
following (3.5).

The dimensions are associated with: enzymes E1 and E2; substrates A and S;
resulting product P; and a final type C.

We make the same type of representation of the interactions as for the three

45

models above, ordered again according to vector ’k’ associated with (3.5),

E2 +A→ E1;

E1→ E2 +A;

E1 + S → C;

C → E1 + S;

C → P + E1;

E2→ ∅.

In the sequence of the interactions above, the ordering of the dimensions is chosen as:
E2, A, E1, S, C, P.

There is then the additional transition, associated with the local part, concerning
the importation, with constant rate ’c’, of E2

∅ → E2.

The operator is

A1(i1, j1) = [k(1)B1(i1, j1) C1(i1, j1) I1(i1, j1) k(1)E1(i1, j1) F1(i1, j1)] ,

A6(i6, j6) =
[
I6(i6, j6) C6(i6, j6) F6(i6, j6)

]T
,

A2(i2, j2) =

B2(i2, j2) 0 0 0 0 k(6)

k(1)I2(i2, j2)

0 C2(i2, j2) 0 0 0 cI2(i2, j2)
0 0 I2(i2, j2) 0 0 0

0 0 0 E2(i2, j2) 0 k(6)
k(1)I2(i2, j2)

0 0 0 0 F2(i2, j2) cI2(i2, j2)

 ,

A3(i3, j3) =

C3(i3, j3) 0 0 0 0

k(2)B3(i3, j3) 0 0 0 0
0 k(3)B3(i3, j3) C3(i3, j3) k(3)E3(i3, j3) F3(i3, j3)

F3(i3, j3) 0 0 0 0
k(2)E3(i3, j3) 0 0 0 0
I3(i3, j3) 0 0 0 0

 ,

A4(i4, j4) =

I4(i4, j4) 0 0 0 0 0 0

0 B4(i4, j4) 0 0 0 0 0
0 0 C4(i4, j4) 0 0 I4(i4, j4) 0
0 0 0 E4(i4, j4) 0 0 0
0 0 0 0 F4(i4, j4) 0 I4(i4, j4)

 ,

A5(i5, j5) =

I5(i5, j5) 0 0
C5(i5, j5) 0 0

k(4)B5(i5, j5) 0 0
F5(i5, j5) 0 0

k(4)E5(i5, j5) 0 0
0 k(5)B5(i5, j5) 0
0 0 k(5)E5(i5, j5)

.

46

We note that, once again, the matrix for the local part, L1, can be omitted from
the final representation.

All matrices inside the operator are as in michaelismenten.
The parameters are: vector ’k’; influx rate ’c’; vector with maximum capacities

of the systems.
We consider the default parameters: ’k’ as [0.001, 0.001, 0.001, 0.001, 0.001, 0.001]

and c = 0.01. Maximum capacities are [16, 16, 16, 16, 16, 16], for a problem size 176.

enzymaticfutile {chemical, reducible, synch, chain}.
This model was first introduced in [47], where the steady-state problem is high-

lighted; it was later used in the numerical experiments of [30].
Futile cycles are composed of two metabolic pathways that work in opposite

directions, meaning that the products of one pathway are the precursors for the other
and vice versa. This biochemical network structure results in no net production of
molecules and often results only in the dissipation of energy as heat [49]. Nevertheless,
there is an abundance of known pathways that use this motif.

The stochastic model consists of six chemical species (six systems) and six reac-
tions. The species are: X and X∗, representing forward substrate and product; E+

and E−, for the forward and reverse enzymes, respectively.
We again use the same type of representation of the interactions, ordered accord-

ing to vector ’k’ from (3.5)

X + Ef+ → Eb+;

Eb+ → X + Ef+

X∗ + Ef− → Eb−;

Eb− → X∗ + Ef−;

Eb+ → X∗ + Ef+;

Eb− → X + Eb+.

The network is closed.
The way to optimally order the dimensions is again not trivial. In the end, based

again on the set of existing interactions above, we choose the ordering: Ef+, Eb+, X,

X∗, Ef−, Eb−.
For the choice above, one gets the operator

A1(i1, j1) =
[
I1(i1, j1) k(1)B1(i1, j1) k(1)E1(i1, j1) C1(i1, j1) F1(i1, j1)

]
,

A6(i6, j6) =
[
C6(i6, j6) F6(i6, j6) B6(i6, j6) E6(i6, j6) I6(i6, j6)

]T
,

A2(i2, j2) =

I2(i2, j2) 0 0 0 0

0 C2(i2, j2) 0 0 0
0 0 F2(i2, j2) 0 0
0 0 0 B2(i2, j2) 0
0 0 0 0 E2(i2, j2)

 ,

A3(i3, j3) =

I3(i3, j3) k(6)C3(i3, j3) k(6)F3(i3, j3) 0 0 0

0 0 0 B3(i3, j3) 0 0
0 0 0 E3(i3, j3) 0 0
0 0 0 k(2)C3(i3, j3) I3(i3, j3) 0
0 0 0 k(2)F3(i3, j3) 0 I3(i3, j3)

 ,
47

A4(i4, j4) =

k(3)B4(i4, j4) k(3)E4(i4, j4) k(4)C4(i4, j4) k(4)F4(i4, j4) 0

0 0 I4(i4, j4) 0 0
0 0 0 I4(i4, j4) 0
0 0 0 0 I4(i4, j4)
0 0 0 0 k(5)C4(i4, j4)
0 0 0 0 k(5)F4(i4, j4)

 ,

A5(i5, j5) =

B5(i5, j5) 0 0 0 0

0 E5(i5, j5) 0 0 0
0 0 C5(i5, j5) 0 0
0 0 0 F5(i5, j5) 0
0 0 0 0 I5(i5, j5)

 .
All matrices inside the operator are again as in michaelismenten.
The parameters are: vector ’k’; vector with maximum capacities of the systems.
One has the reference parameters from the experiments in [30], based on [48],

where the vector ’k’ is [40, 104, 200, 100, 104, 5000] while maximum capacities are
[3, 3, 127, 127, 3, 3]. We consider the default parameters ’k’ as in the mentioned refer-
ence while maximum capacities are [16, 16, 16, 16, 16, 16], in order to have a problem
size 176 again.

cascadegene {chemical, funct, scalable, chain}.
This model can be found in the numerical experiments of [28, 1, 16]. All refer-

ences concern the solution of the CME. All references test algorithms that make use
of the Kronecker structure of the problem, in particular with the last using TT for-
mat through the well-established algorithm for solving linear systems that was later
adapted in [32] to a least squares formulation with the goal of finding the steady-state.

It is similar to directedmetab in topology and mainly differs in the fact that the
interactions do not include losing a particle of one type while forming one from the
next type, but the rate still depends on the quantity of particles of the first. This
basically means that the interactions are still functional but not synchronized.

The function that determines the rate of creation for system µ = 2, . . . , d is

βmµ−1

βmµ−1 + γ
, (3.6)

where β and γ are constants of the model and mµ−1 is the number of particles of type
µ− 1.

Note that the law above is very similar to (3.2).
The possibility of local degradation, as in dilutionintermed, is also considered, with

constant δ taking again the role of ’cte’ in 3.3.
For the influx, the rate is the constant α0.
The operator is

A1(i1, j1) =
[
L1(i1, j1) cB1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

 Id(id, jd)Cd(id, jd)
Ld(id, jd)

 ,
and

Aµ(iµ, jµ) =

 Iµ(iµ, jµ) 0 0
Cµ(iµ, jµ) 0 0
Lµ(iµ, jµ) arr(µ)Bµ(iµ, jµ) Iµ(iµ, jµ)

 . µ = 2, . . . , d− 1.

48

The local part is

L1 =

∗ α0 0 · · · 0

δ
. . .

. . .
. . .

...

0 2δ
. . .

. . . 0
...

. . .
. . .

. . . α0

0 · · · 0 (n1 − 1)δ ∗

, Ld =

∗ 0 · · · · · · 0

δ + β
β+γ

. . .
. . .

. . .
...

0 2δ + 2β
2β+γ

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 (nd − 1)δ + (nd−1)β
(nd−1)β+γ ∗

and

Lµ =

∗ 0 · · · · · · 0

1
. . .

. . .
. . .

...

0 2
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 (nµ − 1) ∗

,

µ = 2, . . . , d− 1.
For the interaction matrices,

Bµ =

β

β+γ 0 · · · 0

0 2β
2β+γ

. . .
...

...
. . .

. . . 0

0 · · · 0
(nµ−1)β

(nµ−1)β+γ

 , Cµ =

∗ 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · · · · 0 ∗

,

where Bµ are now diagonal matrices and one can thus include the diagonal corrections
inside Cµ in the sequence of Th. 2, in Appendix A. This is more generally because the
interactions are not associated with synchronized transitions as noted in the context
of overflow.

The operator is

A1(i1, j1) =
[
L1(i1, j1) B1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

 Id(id, jd)Cd(id, jd)
Ld(id, jd)

 ,
and

Aµ(iµ, jµ) =

 Iµ(iµ, jµ) 0 0
Cµ(iµ, jµ) 0 0
βLµ(iµ, jµ) Bµ(iµ, jµ) Iµ(iµ, jµ)

 . µ = 2, . . . , d− 1.

The parameters are: δ; β; γ; α0; vector with maximum capacities.
In the experiments of all references, the parameters are the same as [28] is followed

by the other two: δ = 0.07; β = 1; γ = 5; α0 = 0.7; and maximum capacities 212. The
difference is only in the number of dimensions as [28] considers d = 3 while the other
two references consider d = 20. We use the parameters in the mentioned references,
but for maximum capacities [16, 16, 16, 16, 16, 16], giving the usual problem size 176.

49

toggleswitch {chemical, funct, chain}.
This model is taken from [22, 40].
It can also be found in the numerical experiments of [30], and also of [28, 1, 51, 15]

but with slightly different laws for the functional transitions for these last ones. All
experiments are again associated with the solution of the CME.

It models a synthetic gene-regulatory circuit designed to produce bi-stability over
a wide range of parameter values. The network is composed of two repressors and
two constitutive promoters arranged in a feedback loop meaning that each promoter is
inhibited by the repressor transcribed by the opposing promoter. If the concentration
of one repressor is high, this lowers the production rate of the other repressor, keeping
its concentration low. This allows a high rate of production of the original repressor,
thereby stabilizing its high concentration.

The stochastic model consists of two species (two systems) and four reactions.
The rate of creation of a species of the first type is

α1

1 +mβ
2

,

where α1 and β are constants of the model and m2 is the quantity of particles of the
second type.

The rate of creation of a particle of the second type is

α2

1 +mγ
1

,

where α2 and γ are constants of the model and m1 denotes the quantity of particles
of the first type.

As for the rates of local degeneration, they follow the usual linear law (3.3), from
which ’cte’ is here δi, for particles of type i.

The operator is

A1(i1, j1) =
[
δ1L1(i1, j1) I1(i1, j1) B1(i1, j1) C1(i1, j1)

]
, A2(i2, j2) =

I2(i2, j2)
δ2L2(i2, j2)
C2(i2, j2)
B2(i2, j2)

 .
The local part concerns the degeneration of particles

Lµ =

∗ 0 · · · · · · 0

1
. . .

. . .
. . .

...

0 2
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 (nµ − 1) ∗

.

The remaining matrices are given by

B1 =

α2

1+0γ 0 · · · 0

0 α2

1+1γ
. . .

...
...

. . .
. . . 0

0 · · · 0 α2

1+(n1−1)γ

 , B2 =

α1

1+0γ 0 · · · 0

0 α1

1+1β
. . .

...
...

. . .
. . . 0

0 · · · 0 α1

1+(n2−1)β

 ,
50

where, as in the previous model, Bµ is a diagonal matrix as it is associated with
a functional but not synchronized transition, allowing Cµ to be the same as in the
mentioned model, in particular including the needed diagonal corrections, again in
the sequence of Th. 2, in Appendix A.

The parameters are: β; γ; α; δ; vector with maximum capacities of the systems.
The parameters used in [40] are: β = 1; γ = 1; α = [25, 30]; δ = [1, 1]; maximum

capacities of [64, 88]. They then try two more sets of combinations (we only present the
changed parameters): α = [80, 100], maximum capacities of [120, 200]; and β = 2.5,
α = [100, 25], maximum capacities of [176, 96]. In [30] they consider: β = 2.5; γ = 1.5;
α = [5000, 1600]; δ = [1, 1]; maximum capacities of [8191, 4095]. The parameters,
thus, do not seem too strict in general. We choose to use as default values in our
implementation the first combination - β = 1; γ = 1; α = [25, 30]; δ = [1, 1] -
combined with maximum capacities [1024, 1024], for a problem size 10252.

4. Utilization of our implementation. Our implementation of the operators
for the models in this collection is done in Matlab. It is available in http://anchp.

epfl.ch/SAN_TT.
The function for a particular model is saved in a script with the name that is

specified in Tab. 2.
The input parameters for the different models are as detailed in the end of the

more detailed description of the corresponding model, where we also add an indication
of what parameters to use, in Matlab notation, based on the references of the models,
in case they exist. Default parameters are also specified as the user has two options -
using the default parameters (by calling the desired model without input parameters);
or choosing them, by giving them as input. As for the output, it is a cell d×1 with row
i consisting of a representation of the core i of the TT operator. We now exemplify
for model overflow:

>> a = overflow([1.2,1.1,1.0,0.9,0.8,0.7],[1,1,1,1,1,1],[16,16,16,16,16,16]);
>> b = overflow;
>> a
a =

[17x17x3 double]
[4−D double]
[4−D double]
[4−D double]
[4−D double]
[17x17x3 double]

>> b
b =

[17x17x3 double]
[4−D double]
[4−D double]
[4−D double]
[4−D double]
[17x17x3 double]

For the use of functionality from the TT-Toolbox [41], one needs to apply the
function tt matrix to this resulting cell, while in previous versions of this toolbox this
cell would be immediately read as a TT operator:

>> tena = tt matrix(a);
>> tenb = tt matrix(b);
>> tena

51

tena is a 6−dimensional TT−matrix, ranks and mode sizes:
r(1)=1 n(1)=17 m(1) = 17
r(2)=3 n(2)=17 m(2) = 17
r(3)=3 n(3)=17 m(3) = 17
r(4)=3 n(4)=17 m(4) = 17
r(5)=3 n(5)=17 m(5) = 17
r(6)=3 n(6)=17 m(6) = 17
r(7)=1
>> tenb
tenb is a 6−dimensional TT−matrix, ranks and mode sizes:
r(1)=1 n(1)=17 m(1) = 17
r(2)=3 n(2)=17 m(2) = 17
r(3)=3 n(3)=17 m(3) = 17
r(4)=3 n(4)=17 m(4) = 17
r(5)=3 n(5)=17 m(5) = 17
r(6)=3 n(6)=17 m(6) = 17
r(7)=1

One can now check that the obtained operators are the same, using the default
parameters (’tena’) or explicitly giving them as input (’tenb’):

>> norm(tena−tenb)/norm(tena)
ans =

1.610351863521918e−15

Note that it is then possible to apply function full to obtain the full transition
rate matrix, which must however be done carefully as, in particular when the mode
sizes and the number of dimensions are relevant for testing algorithms, this will easily
lead to memory problems:

>> full(tena);
Error using *
Out of memory. Type HELP MEMORY for your options.
Error in tt tensor/full (line 25)

a=a*cr;
Error in tt matrix/full (line 18)
a=full(tt1);

Even for the models with the identifier scalable, the number of dimensions is not
an input of the models. It is chosen implicitly through other input parameters, in
particular through the size of some vectors. In the example above, for overflow, the
size of the vector with the maximum capacities, for instance, defines the number of
dimensions.

5. Conclusions. This collection of models shows the big variety of applications
associated with SAN and we provide such representative problems for testing, with
implementations of all operators, in TT format, for the transition rate matrix of the
introduced models, in Matlab. We hope that it can be smoothly used for developing,
testing and comparing algorithms for the associated relevant problems as, for instance,
finding the steady-state of the models, which is a very important problem in the
context of SAN, in particular because many measures of interest about the models
are extracted from their steady-state. The introduction of identifiers for characterizing
the different models, based on relevant characteristics, makes it easier for the user to
extract specialized subsets of the collection for use in numerical experiments.

Acknowledgements. I thank Daniel Kressner (EPF Lausanne) for helpful discus-
sions. I thank Christian Mazza (University of Fribourg) for contributing to the collec-

52

tion by providing the references for most of the included models related with Chemical
Networks. I also thank Vladimir Kazeev (ETH Zürich) for helping to understand the
dynamics of the models taken from [30].

53

Appendix A.
Proof concerning the diagonal correction of matrices associated with the
TT operators for some particular models.

We here prove that it is possible to include, in the context of a Kronecker product,
the diagonal correction (2.1) inside that same Kronecker product, in case the involved
matrices verify a particular property. This property is that all except for one are
diagonal matrices (in the context, as it is the case for such SAN models, of square
matrices).

First of all, it is clear from the definition of Kronecker product that the term asso-
ciated with the diagonal correction that is needed, negative sum of the off-diagonals of
the corresponding row - (2.1), can be represented, starting with a Kronecker product
between only two matrices, let us call them A1 and A2, by

−diag[(A1⊗A2)(eA1 ⊗ eA2)], (A.1)

where eA1 and eA2 denote the vectors of all ones with the number of rows of A1 and
A2, respectively. In its turn, ’diag’ represents the Matlab operation of defining a
diagonal square matrix from a vector, by defining the diagonal with this vector.

A well-known property for Kronecker products is the following: for any matrices
A1, A2, A3 and A4, where the dimensions of A1 and A3 match, as well as those of
A2 and A4,

(A1⊗A2)(A3⊗A4) = (A1×A3)⊗ (A2×A4). (A.2)

We also need the following property, which can be easily derived directly from
the definition of Kronecker product, for matrices A1, A2 and A3, where the first two
need to have the same sizes:

A⊗ C −B ⊗ C = (A−B)⊗ C (A.3)

We can now prove the desired property, for the case of two matrices.
Lemma 1. Given two square matrices A and D, where D is diagonal,

A⊗D − diag[(A⊗D)(eA ⊗ eD)] = (A− diag(A× eA))⊗D.

Proof.

A⊗D − diag[(A⊗D)(eA ⊗ eD)] (A.4)

= A⊗D − diag(A× eA)⊗ diag(D × eD) (A.5)

= A⊗D − diag(A× eA)⊗D (A.6)

= (A− diag(A× eA))⊗D. (A.7)

From (A.4) to (A.5), we use (A.2). From (A.5) to (A.6), we use the fact that D×eD is
a vector with the entries in the diagonal of D, implying that ’diag’, as defined before,
applied to that, gives D again. From (A.6) to (A.7), we use (A.3).

The result we want to prove is the generalization of the above, for not necessarily
only two matrices involved in the Kronecker products.

Again from the definition of Kronecker product, the term associated with the
diagonal correction that is needed, now for a general Kronecker product between
diagonal matrices A1, A2, ..., AN , is given by

−diag[(A1 ⊗ ...⊗AN)(eA1
⊗ ...⊗ eAN)]. (A.8)

54

We now prove the desired result.
Theorem 2. Given N square matrices A1, ..., AN , where at most one of them

is not diagonal, Ai, one can write

A1⊗...⊗AN−diag[(A1⊗...⊗AN)(eA1
⊗...⊗eAN)] = A1⊗...⊗(Ai−diag(Ai×eAi))⊗...⊗AN .

Proof.
From the definition of Kronecker product, it follows immediately that A1 ⊗ ...⊗

Ai−1 is a diagonal matrix. The same holds for Ai+1 ⊗ ...⊗AN .
The Kronecker product of the matrices is thus something of the form

D∗ ⊗Ai ⊗D∗∗,

where D∗ and D∗∗ are diagonal matrices.
We thus need to prove that

D∗⊗Ai⊗D∗∗−diag[(D∗⊗Ai⊗D∗∗)(eD∗⊗eAi⊗eD∗∗)] = D∗⊗(Ai−diag(Ai×eAi))⊗D∗∗.

One just needs to apply Lemma 1 twice. Applying it to the term in the left side,
in particular to the non-diagonal matrix (D∗⊗Ai) and diagonal matrix D∗∗, one gets

{(D∗ ⊗Ai)− diag[(D∗ ⊗Ai)(eD∗ ⊗ eAi)]} ⊗D∗∗.

The lemma is then applied to D∗, diagonal, and Ai, non-diagonal, and the result
immediately follows.

Note that the last application of Lemma 1 is not direct as we have the diagonal
matrix in the first position but the result is clearly also true for this case as the
adaptation of the proof is straight-forward.

The proof above assumes that the dimension associated with the non-diagonal
matrix is not the first or the last, as it is assumed to have matrices to its left and
right, but the proof is similar and even abbreviated for such two cases as one then
only needs to apply the lemma once.

55

REFERENCES

[1] A. Ammar, E. Cueto, and F. Chinesta, Reduction of the chemical master equation for gene
regulatory networks using proper generalized decompositions, Int. J. Numer. Meth. Biomed.
Engng., 28 (2012), pp. 960–973.

[2] David F. Anderson, Gheorghe Craciun, and Thomas G. Kurtz, Product-form station-
ary distributions for deficiency zero chemical reaction networks, Bulletin of Mathematical
Biology, 72 (2010), pp. 1947–1970.

[3] Nelson Antunes, Christine Fricker, Philippe Robert, and Danielle Tibi, Analysis of
loss networks with routing, Annals of Applied Probability, 16 (2006), pp. 2007–2026.

[4] N. Antunes, A. Pacheco, and R. M. Rocha, A Markov renewal based model for wireless
networks, Queueing Systems, 40 (2002), pp. 247 – 281.

[5] L. A. Belady and C. J. Kuehner, Dynamic space-sharing in computer systems, Commun.
ACM, 12 (1969), pp. 282–288.

[6] M. Bolten, K. Kahl, and S. Sokolović, Multigrid methods for tensor structured Markov
chains with low rank approximation, ArXiv e-prints, (2014).

[7] I. Bongartz, A. R. Conn, Nick Gould, and Ph. L. Toint, Cute: Constrained and uncon-
strained testing environment, ACM Trans. Math. Softw., 21 (1995), pp. 123–160.

[8] P. Boyer, A. Dupuis, and A. Khelladi, A simple model for repeated calls due to time-outs,
1988.

[9] A. Brandwajn, A model of a time sharing virtual memory system solved using equivalence
and decomposition methods, Acta Informat., 4 (1974/75), pp. 11–47.

[10] Peter Buchholz, Structured analysis approaches for large Markov chains, Appl. Numer.
Math., 31 (1999), pp. 375–404.

[11] , An adaptive decomposition approach for the analysis of stochastic petri nets, in Pro-
ceedings of the 2002 International Conference on Dependable Systems and Networks, DSN
’02, Washington, DC, USA, 2002, IEEE Computer Society, pp. 647–656.

[12] , Product form approximations for communicating markov processes, Perform. Eval., 67
(2010), pp. 797–815.

[13] Timothy A. Davis and Yifan Hu, The university of florida sparse matrix collection, ACM
Trans. Math. Softw., 38 (2011), pp. 1:1–1:25.

[14] Tugrul Dayar, Analyzing Markov chains using Kronecker products: theory and applications,
Springer Science & Business Media, 2012.

[15] Peter Deuflhard, Wilhelm Huisinga, Tobias Jahnke, and Michael Wulkow, Adaptive
discrete galerkin methods applied to the chemical master equation, SIAM Journal on Sci-
entific Computing, 30 (2008), pp. 2990–3011.

[16] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy methods for linear systems
in higher dimensions. Part II: Faster algorithm and application to nonsymmetric systems,
arXiv preprint 1304.1222, 2013.

[17] David L. Donoho, Arian Maleki, Inam Ur Rahman, Morteza Shahram, and Victoria
Stodden, Reproducible research in computational harmonic analysis, Computing in Sci-
ence and Engineering, 11 (2009), pp. 8–18.

[18] Jeremy S. Edwards, Markus Covert, and Bernhard Palsson, Metabolic modelling of mi-
crobes: the flux-balance approach, Environmental microbiology, 4 (2002), pp. 133–140.

[19] Brian P English, Wei Min, Antoine M Van Oijen, Kang Taek Lee, Guobin Luo, Hongye
Sun, Binny J Cherayil, SC Kou, and X Sunney Xie, Ever-fluctuating single en-
zyme molecules: Michaelis-menten equation revisited, Nature Chemical Biology, 2 (2005),
pp. 87–94.

[20] Jean-Michel Fourneau, Product form steady-state distribution for stochastic automata net-
works with domino synchronizations., in EPEW, Nigel Thomas and Carlos Juiz, eds.,
vol. 5261 of Lecture Notes in Computer Science, Springer, 2008, pp. 110–124.

[21] J. M. Fourneau, B. Plateau, and W. J. Stewart, An algebraic condition for product form in
stochastic automata networks without synchronizations, Perform. Eval., 65 (2008), pp. 854–
868.

[22] Timothy S Gardner, Charles R Cantor, and James J Collins, Construction of a genetic
toggle switch in escherichia coli, Nature, 403 (2000), pp. 339–342.

[23] Michael A Gibson and Jehoshua Bruck, Efficient exact stochastic simulation of chemical
systems with many species and many channels, The journal of physical chemistry A, 104
(2000), pp. 1876–1889.

[24] Daniel T Gillespie, A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions, Journal of computational physics, 22 (1976), pp. 403–434.

[25] , Approximate accelerated stochastic simulation of chemically reacting systems, The Jour-

56

nal of Chemical Physics, 115 (2001), pp. 1716–1733.
[26] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint, Cuter and sifdec: A

constrained and unconstrained testing environment, revisited, ACM Trans. Math. Softw.,
29 (2003), pp. 373–394.

[27] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approx-
imation techniques, GAMM-Mitt., 36 (2013), pp. 53–78.

[28] Markus Hegland, Conrad Burden, Lucia Santoso, Shev MacNamara, and Hilary
Booth, A solver for the stochastic master equation applied to gene regulatory networks,
J. Comput. Appl. Math., 205 (2007), pp. 708–724.

[29] Nicholas J. Higham, Algorithm 694: A collection of test matrices in matlab, ACM Trans.
Math. Softw., 17 (1991), pp. 289–305.

[30] Vladimir Kazeev, Mustafa Khammash, Michael Nip, and Christoph Schwab, Direct solu-
tion of the chemical master equation using quantized tensor trains, PLOS Computational
Biology, (2014).

[31] Vladimir A. Kazeev and Boris N. Khoromskij, Low-rank explicit QTT representation of
the Laplace operator and its inverse, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 742–758.

[32] Daniel Kressner and Francisco Macedo, Low-rank tensor methods for communicating
markov processes, in Quantitative Evaluation of Systems, Gethin Norman and William
Sanders, eds., vol. 8657 of Lecture Notes in Computer Science, Springer International Pub-
lishing, 2014, pp. 25–40.

[33] V.G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman & Hall/CRC Texts
in Statistical Science, Taylor & Francis, 1996.

[34] V. G. Kulkarni, Introduction to modeling and analysis of stochastic systems, Springer Texts
in Statistics, Springer, New York, second ed., 2011.

[35] Amy N. Langville and William J. Stewart, The kronecker product and stochastic automata
networks, Journal of Computational and Applied Mathematics, 167 (2004), pp. 429 – 447.

[36] Erel Levine and Terence Hwa, Stochastic fluctuations in metabolic pathways, Proceedings
of the National Academy of Sciences, 104 (2007), pp. 9224–9229.

[37] Gerhard Michal, Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology,
Wiley-Spektrum, 1 ed., Dec. 1998.

[38] Ian M. Mitchell, Randall J. LeVeque, and Victoria Stodden, Reproducible research for
scientific computing: Tools and strategies for changing the culture, Computing in Science
and Engineering, 14 (2012), pp. 13–17.

[39] Debasis Mitra and Isi Mitrani, Analysis of a kanban discipline for cell coordination in
production lines: Ii. stochastic demands, Oper. Res., 39 (1991), pp. 807–823.

[40] Brian Munsky and Mustafa Khammash, The finite state projection approach for the analysis
of stochastic noise in gene networks, Automatic Control, IEEE Transactions on, 53 (2008),
pp. 201–214.

[41] I. V. Oseledets, TT-Toolbox Version 2.2, 2012. Available at https://github.com/oseledets/
TT-Toolbox.

[42] Bernard Philippe, Youcef Saad, and William J. Stewart, Numerical methods in markov
chain modelling, Operations Research, 40 (1996), pp. 1156–1179.

[43] Brigitte Plateau, Jean-Michel Fourneau, and Kuei-Hsiang Lee, Peps: A package for
solving complex markov models of parallel systems, in Modeling Techniques and Tools for
Computer Performance Evaluation, Ramon Puigjaner and Dominique Potier, eds., Springer
US, 1989, pp. 291–305.

[44] N.U. Prabhu, Foundations of Queueing Theory, International Series in Operations Research
& Management Science, Springer US, 1997.

[45] Sheldon M. Ross, Introduction to probability models, Harcourt/Academic Press, Burlington,
MA, seventh ed., 2000.

[46] Jerome H. Saltzer, A simple linear model of demand paging performance, Commun. ACM,
17 (1974), pp. 181–186.

[47] M. Samoilov, S. Plyasunov, and A. P. Arkin, Stochastic amplification and signaling in
enzymatic futile cycles through noise-induced bistability with oscillations, Proc. Natl. Acad.
Sci. U.SA., 102 (2005), pp. 2310–2315.

[48] Michael Samoilov, Sergey Plyasunov, and Adam P. Arkin, Stochastic amplification and
signaling in enzymatic futile cycles through noise-induced bistability with oscillations, Pro-
ceedings of the National Academy of Sciences of the United States of America, 102 (2005),
pp. 2310–2315.

[49] Jörg Schwender, John Ohlrogge, and Yair Shachar-Hill, Understanding flux in plant
metabolic networks, Current Opinion in Plant Biology, 7 (2004), pp. 309–317.

[50] Moshe Sidi and David Starobinski, New call blocking versus handoff blocking in cellular

57

networks, Wirel. Netw., 3 (1997), pp. 15–27.
[51] Paul Sjöberg, Per Lötstedt, and Johan Elf, Fokker–planck approximation of the master

equation in molecular biology, Computing and Visualization in Science, 12 (2009), pp. 37–
50.

[52] Victoria Stodden, Friedrich Leisch, and Roger D. Peng, eds., Implementing Reproducible
Research, The R Series, Chapman and Hall/CRC, Apr. 2014.

[53] X Sunney Xie and H Peter Lu, Single-molecule enzymology, Journal of Biological Chemistry,
274 (1999), pp. 15967–15970.

58

Recent publications:

MATHEMATICS INSTITUTE OF COMPUTATIONAL SCIENCE AND ENGINEERING
Section of Mathematics

Ecole Polytechnique Fédérale
CH-1015 Lausanne

14.2015 ASSYR ABDULLE, TIMOTHÉE POUCHON:
 A priori error analysis of the finite element heterogenenous multiscale method for the

wave equation in heterogenenous media over long time

15.2015 ANDREA MANZONI, STEFANO PAGANI:
 A certified reduced basis method for PDE-constrained parametric optimization

problems by an adjoint-based approach

16.2015 SIMONE DEPARIS, DAVIDE FORTI, ALFIO QUARTERONI:
 A fluid-structure interaction algorithm using radial basis function interpolation

between non-conforming interfaces

17.2015 ASSYR ABDULLE, ONDREJ BUDAC:
 A reduced basis finite element heterogeneous multiscale method for Stokes flow in

porous media

18.2015 DANIEL KRESSNER, MICHAEL STEINLECHNER, BART VANDEREYCKEN:
 Preconditioned low-rank Riemannian optimization for linear systems with tensor

product structure

19.2015 ALESSANDRO S. PATELLI, LUCA DEDÈ, TONI LASSILA, ANDREA BARTEZZAGHI,

ALFIO QUARTERONI:
 Isogeometric approximation of cardiac electrophysiology models on surfaces: an

accuracy study with application to the human left atrium

20.2015 MATTHIEU WILHELM, LUCA DEDÈ, LAURA M. SANGALLI, PIERRE WILHELM:
 IGS: an IsoGeometric approach for Smoothing on surfaces

21.2015 SIMONE DEPARIS, DAVIDE FORTI, PAOLA GERVASIO, ALFIO QUARTERONI:
 INTERNODES: an accurate interpolation-based method for coupling the Galerkin

solutions of PDEs on subdomains featuring non-conforming interfaces

22.2015 ABDUL-LATEEF HAJI-ALI, FABIO NOBILE, LORENZO TAMELLINI, RAÙL TEMPONE:
 Multi-index stochastic collocation for random PDEs

23.2015 SIMONE BRUGIAPAGLIA, FABIO NOBILE, STEFANO MICHELETTI, SIMONA PEROTTO:
 A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems

24.2015 ANA ŠUŠNJARA, NATHANAËL PERRAUDIN, DANIEL KRESSNER, PIERRE VANDERGHEYNST:
 Accelerate filtering on graphs using Lanczos mehtod

25.2015 FRANCESCO BALLARIN, ELENA FAGGIANO, SONIA IPPOLITO, ANDREA MANZONI, ALFIO

QUARTERONI, GIANLUIGI ROZZA, ROBERTO SCROFANI:
 Fast simulation of patient-specific haemodynamics of coronary artery bypass grafts

based on a Pod-Galerkin method and a vascular shape parametrization

26.2015 FRANCISCO MACEDO:
 Benchmark problems on stochastic automata networks in tensor train format

	26.2015 couverture
	http://mathicse.epfl.ch
	Address:
	EPFL - SB - MATHICSE (Bâtiment MA)
	Station 8 - CH-1015 - Lausanne - Switzerland
	Fax: +41 21 69 32545
	Phone: +41 21 69 37648
	Francisco Macedo
	School of Basic Sciences - Section of Mathematics
	Mathematics Institute of Computational Science and Engineering
	MATHICSE
	MATHICSE Technical Report
	Nr. 26.2015
	September 2015

	Page blanche
	SAN_TT26.2015
	26.2015 Liste

