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Abstract

For a few decades, adult dentate gyrus neurogenesis has been widely recognized by the

neuroscience community as an intriguing phenomenon. Two observations are particularly

puzzling. At the cellular level, the switch from excitation to inhibition of the GABAergic input

onto newborn cells has been shown to be crucial for their proper integration into the existing

network of dentate gyrus cells. At the behavioral level, adult-born dentate granule cells have

been shown to promote pattern separation of similar stimuli in various tasks, while not playing

a role in discrimination of distinct stimuli. It is still unclear, however, how these functionalities

arise in the network of dentate gyrus cells. Several models of adult dentate gyrus neurogenesis

have been designed with various levels of abstraction, and have suggested different roles of

newborn cells. Yet, none of these models could explain how newborn cells promote pattern

separation of similar stimuli, and not distinct stimuli. Moreover, none of the previous studies

modeled the actual integration of adult-born dentate granule cells in the preexisting circuit,

but rather initialized their inward connections to random, but fully grown, weights.

In my thesis work, I bridge the gap between biological and theoretical knowledge on adult

dentate gyrus neurogenesis. I address the puzzling experimental observations and explain for

the first time with a model: (i) how newborn cells integrate into the preexisting dentate gyrus

network, and (ii) how they promote pattern separation of similar stimuli.

More specifically, I propose that the early phase of maturation of newborn cells, when GABAer-

gic input has an excitatory effect, drives the synaptic weights towards the subspace of configu-

rations of familiar stimuli through a cooperative effect. In the late phase of maturation, when

GABAergic input switches to inhibitory, the synaptic weights move towards novel features

of the presented stimuli through a competitive effect. This theory of newborn cells integra-

tion also explains why adult-born dentate granule cells promote better pattern separation

of similar stimuli, but not distinct stimuli. Indeed, in the late phase of maturation, newborn

cells can only learn novel features that are similar enough to familiar features, because the

configuration of their synaptic weights makes them sensitive to familiar features at the end of

the early phase of maturation.

Keywords: Adult dentate gyrus neurogenesis, Competitive network, Unsupervised learning,

Synaptic plasticity, Pattern separation
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Résumé

Depuis les années 1990, la neurogenèse adulte dans le gyrus denté est largement reconnue

dans la communauté des neurosciences comme un phénomène intrigant. Deux observations

sont particulièrement troublantes. Au niveau cellulaire, il a été démontré que le passage

d’excitateur à inhibiteur des contributions GABAergiques reçues par les nouvelles cellules

granulaires est crucial pour qu’elles s’intègrent correctement dans le réseau existant de cellules

du gyrus denté. Sur le plan comportemental, il a été démontré que les cellules granulaires

du gyrus denté nées chez l’adulte favorisent la séparation de motifs similaires dans diverses

expériences, mais n’ont pas d’effet sur la discrimination de motifs distincts. Toutefois, on

ne sait toujours pas comment ces fonctionnalités apparaissent dans le réseau de cellules du

gyrus denté. Plusieurs modèles de neurogenèse adulte dans le gyrus denté ont été conçus

avec différents niveaux d’abstraction et ont suggéré différents rôles pour les nouvelles cellules

granulaires. Pourtant, aucun de ces modèles n’élucide comment les nouvelles cellules granu-

laires favorisent la séparation de motifs similaires, mais pas celle de motifs distincts. En outre,

aucune des études précédentes n’a modélisé l’intégration des nouvelles cellules granulaires

dans le circuit adulte préexistant. A la place, elles ont initialisé les connexions des nouvelles

cellules granulaires à des valeurs certes aléatoires, mais aussi élevées que celles des cellules

matures préexistantes.

Dans mon travail de thèse, je relie les connaissances biologiques et théoriques sur la neuroge-

nèse adulte du gyrus denté. Je me base sur les observations expérimentales déconcertantes et

explique pour la première fois avec un modèle : (i) comment les nouvelles cellules granulaires

s’intègrent dans le réseau préexistant du gyrus denté adulte, et (ii) comment elles favorisent la

séparation de motifs similaires.

Plus spécifiquement, je propose que la phase précoce de la maturation des nouvelles cel-

lules, lorsque les contributions GABAergiques ont un effet excitateur, entraîne les poids des

connexions synaptiques vers le sous-espace des configurations de motifs familiers grâce à

un effet coopératif. Durant la phase de maturation tardive, lorsque les contributions GABAer-

giques deviennent inhibitrices, les poids synaptiques évoluent vers de nouvelles caractéris-

tiques des motifs présentés, par le biais d’un effet compétitif. Cette théorie d’intégration des

cellules granulaires du gyrus denté nées chez l’adulte explique également pourquoi les nou-

velles cellules favorisent une meilleure séparation des motifs similaires, mais pas des motifs

distincts. En effet, pendant la phase de maturation tardive, les cellules nées chez l’adulte ne
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peuvent apprendre que des nouvelles caractéristiques qui sont assez similaires de caracté-

ristiques familières, car la configuration de leurs poids synaptiques les rend sensibles aux

caractéristiques familières à la fin de la première phase de maturation.

Mots-clefs : Neurogenèse adulte du gyrus denté, Réseau compétitif, Apprentissage non super-

visé, Plasticité synaptique, Séparation de motifs

vi



Contents
Acknowledgements i

Abstract (English/Français) iii

List of figures xi

List of tables xiii

I Introduction 1

1 Classical views of the hippocampus 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Hippocampus architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Classical models of the hippocampus . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Adult dentate gyrus neurogenesis 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Adult-born dentate granule cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Experience-dependent survival and integration . . . . . . . . . . . . . . . 9

2.2.2 Time course of connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Enhanced plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Enhanced excitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 GABA switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.6 GABAergic input importance for integration . . . . . . . . . . . . . . . . . 15

2.3 Functional role of adult dentate gyrus neurogenesis . . . . . . . . . . . . . . . . 17

2.3.1 Involvement in hippocampus-dependent memories . . . . . . . . . . . . 17

2.3.2 Incorporation in memory networks . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Importance for pattern separation . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Links to cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Modeling of adult dentate gyrus neurogenesis . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Clearance of old memories . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Encoding distinct memories of highly similar inputs . . . . . . . . . . . . 26

2.4.3 Avoidance of catastrophic interference . . . . . . . . . . . . . . . . . . . . 27

2.4.4 Input discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



Contents

2.4.5 Temporal separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Classification using competitive networks 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Importance of normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Example: Runaway dynamics of the weights with the BCM learning rule 36

3.3 Unsupervised competitive learning . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Standard competitive learning rule . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Oja’s learning rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Temporally unstable learning . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Initialization of the weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Algorithmic solutions to the problem of dead units . . . . . . . . . . . . . 45

3.5 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Results 47

4 Integration of adult-born dentate granule cells 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Network architecture and rate neurons dynamics . . . . . . . . . . . . . . 50

4.2.2 Plasticity rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.3 Input patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.4 Classification performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.5 Control cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.6 Pretraining with two digits . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Different prototypes are learned during the pretraining period . . . . . . 61

4.3.2 Newborn neurons can learn novel patterns . . . . . . . . . . . . . . . . . . 63

4.3.3 The switch from excitation to inhibition is necessary for learning of novel

representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Adult-born dentate granule cells promote discrimination of similar stimuli 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Simplified rate network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Input patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Newborn dentate granule cells become selective for a similar novel cluster 73

5.3.2 Similar clusters drive the receptive fields of newborn DGCs closer to the

novel cluster in the early phase of maturation . . . . . . . . . . . . . . . . 75

5.3.3 Analytical computation of the L2-norm and angle . . . . . . . . . . . . . 76

viii



Contents

III Discussion and appendices 81

6 Discussion 83

7 My contributions 87

A Determination of the plasticity parameters 89

B Single Winner-Take-All network 91

B.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.1.1 The network of mature DGCs as a WTA network . . . . . . . . . . . . . . . 91

B.1.2 Neurogenesis and integration of newborn neurons . . . . . . . . . . . . . 94

B.1.3 Control case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.1.4 Classification performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.2.1 Maturation of a newborn DGC in a WTA network of mature DGCs is better

for learning a novel cluster than a population of same size of plastic neurons 97

B.2.2 Neurogenesis is a biological solution to the problem of dead units . . . . 99

B.2.3 Similar clusters can be learned, while distinct clusters cannot . . . . . . 99

Bibliography 101

Curriculum Vitae 113

ix





List of Figures
1.1 Architecture of the rodent hippocampus . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Different forms of plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Maturation timeline of the newborn DGCs . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Network for Chambers et al. (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Network for Deisseroth et al. (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Network for Weisz and Argibay (2009) and Weisz and Argibay (2012) . . . . . . . 25

2.6 Network for Becker (2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Network for Wiskott et al. (2006) and Appleby and Wiskott (2009) . . . . . . . . . 28

3.1 Simple competitive network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Importance of weight vector normalization . . . . . . . . . . . . . . . . . . . . . 35

3.3 BCM learning rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Standard competitive learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Oja’s learning rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Outcome for different initializations . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Architecture of the biologically plausible network . . . . . . . . . . . . . . . . . . 51

4.2 Firing rate distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Weight update as a function of postsynaptic activity . . . . . . . . . . . . . . . . 53

4.4 Center of mass for three ensembles of patterns from the MNIST data set . . . . 58

4.5 Newborn DGCs learn novel patterns. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 The representation of novel patterns occupies a previously empty subspace . . 62

4.7 Two novel digits can be learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Control cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Handmade dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 A newborn DGC becomes selective for similar but not distinct novel stimuli . . 74

5.3 Evolution of the norm and angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Schematic for computation of the norm and angle . . . . . . . . . . . . . . . . . 77

6.1 Explanatory schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.1 High stable fixed point and maximum LTP update . . . . . . . . . . . . . . . . . 90

A.2 Maximum LTD update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



List of Figures

B.1 Activity dynamics in a single WTA network . . . . . . . . . . . . . . . . . . . . . . 94

B.2 Architecture of the single WTA network . . . . . . . . . . . . . . . . . . . . . . . . 95

B.3 Classification error with the single WTA network . . . . . . . . . . . . . . . . . . 97

B.4 Evolution of the angle and norm in the single WTA network. . . . . . . . . . . . 98

B.5 Pretrained subclusters of digit one . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.6 Receptive field of the newborn DGC at the end of maturation . . . . . . . . . . . 100

xii



List of Tables
2.1 Summary of experimental results addressing the functional role of adult dentate

gyrus neurogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Parameters for the simulations of the biologically plausible network . . . . . . . 54

5.1 Parameters for the simulations of the simplified network . . . . . . . . . . . . . 69

xiii





Part IIntroduction

1





1 Classical views of the hippocampus

1.1 Introduction

Animals, including humans, are characterized by their ability to adapt to a wide range of

environments and situations. They can learn new tasks, and keep memories of previous

experiences in order to avoid unpleasant events and maximize reward.

In 1953, Henry Molaison, known as “patient H.M.” and probably the most famous patient in

neuroscience, had a bilateral surgical resection of his medial temporal lobe to try to avoid

epileptic seizures. It lead to severe anterograde amnesia (Scoville and Milner (1957)). Since

then, it is believed that the hippocampus is the substrate of learning and memory (Jarrard

(1993)). Subsequently, many experiments, both in vitro and in vivo have supported this view.

Hippocampal synapses have been shown to have high plasticity, and different hippocampal

areas and synapses have been shown to be necessary for behavioral learning and recall of

various tasks (reviewed in Neves et al. (2008)).

It is mostly believed that hippocampus acts as a temporary memory store until memories are

consolidated in cortex by a process called “systems consolidation”, whose exact timescale is

still unclear (reviewed in Preston and Eichenbaum (2013)).

1.2 Hippocampus architecture

The hippocampus is a deep brain area. It is organized in a loop structure, whose main relays are

the dentate gyrus (DG), Cornu Ammonis 3 (CA3), and Cornu Ammonis 1 (CA1), see Figure 1.1.

The dentate gyrus, the entry area of the hippocampus, receives most of its input from layer II of

the entorhinal cortex (EC) through the perforant path (Amaral et al. (2007)). The perforant path

also directly projects to CA3, and connections from EC layer III (temporoammonic pathway)

also directly connect to CA1. In addition, backprojections from CA3 to DG have been observed

(Scharfman (2007)).

The entorhinal cortex provides two independent inputs to the dentate gyrus: one from its
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Chapter 1. Classical views of the hippocampus

medial part (MEC) and one from its lateral part (LEC) (McNaughton (1980)). Spatial informa-

tion mainly comes from MEC, because many MEC neurons exhibit finely tuned place fields

(grid-like representation of space), while non spatial components mostly come from LEC

(Hargreaves et al. (2005)).

The principal cells of the dentate gyrus are called dentate granule cells (DGCs). In the rat, the

dentate gyrus contains approximately 106 DGCs. As the number of EC input cells is estimated

to be about 2 ·105, it makes an approximately 5 folds expansion from EC to DG (Andersen et al.

(2007)). The dentate gyrus has sparse activity (Chawla et al. (2005)). This is probably due to

the fact that within the dentate gyrus, there are several different classes of inhibitory neurons

that are recurrently connected to the DGCs (Amaral et al. (2007)). In addition, the dentate

gyrus also contains excitatory Mossy cells, which mostly innervate local inhibitory neurons

and DGCs (Amaral et al. (2007)).

DGCs project to CA3 pyramidal cells and interneurons through Mossy fibers (Amaral et al.

(2007)). The number of synapses per cell is very low: each CA3 pyramidal cell receives only

about 72 Mossy fiber inputs (Andersen et al. (2007)). However, these are highly efficient

synapses: input from a single DGC firing at high rate is sufficient to discharge CA3 pyramidal

cells and interneurons, hence they are called “detonator synapses” (Henze et al. (2002)).

After the expansion in neuron numbers from EC to DG, there is again a compression from DG

to CA3, as there are only about 3 ·105 pyramidal cells in the rat CA3 (Andersen et al. (2007)).

Area CA3 contains a lot of plastic excitatory recurrent connections (Debanne et al. (1998)).

CA3 pyramidal cells project to CA1 pyramidal cells through long parallel fibers called the

Schaffer collaterals. This handy configuration is the reason why synaptic plasticity has been

extensively studied at those synapses (Bear and Malenka (1994)). Using brain slices, the fibers

can indeed be extracellularly stimulated far away enough from the synaptic contacts such that

there is minimal recording artifacts in CA1.

1.3 Classical models of the hippocampus

David Marr proposed in 1971 a theory of the hippocampus (Marr (1971)). Since then, many

papers have been published on the subject, with slightly varying views on the exact com-

putational function of the hippocampus. The classical view, which is presented here, has

nevertheless remained very close to the one proposed in the original, groundbreaking, paper.

The hippocampus, called “archicortex” in Marr’s paper, is believed to be responsible for

memory storage (Marr (1971)). Its particular architecture influenced the putative functionality

of its different areas. In addition, the similarity between the cerebellar cortex and the dentate

gyrus, in particular the expansion of neuron numbers, contributed to the view that dentate

gyrus has a pattern separation function, as was suggested for the cerebellum (Marr (1969)).

Inspired by Marr’s original work, Treves and Rolls (1994) proposed an influent and compre-

4



1.3. Classical models of the hippocampus

hensive theory of the computational function of the hippocampus. According to their view,

hippocampus is a temporary storage buffer for episodic memories, before their consolidation

in the cortex. This stands in agreement with the observation that bilateral hippocampal le-

sions induce loss of recent memories, but do not affect remote memories (Scoville and Milner

(1957)). It is not clear, however, for how long memories are stored in the hippocampus, or in

other words for how long hippocampus is required for memory retrieval. Treves and Rolls

(1994) suggested that it is not a matter of absolute time per se, but rather dependent on how

many new memories have to be stored. Accordingly, a lively environment with lots of relevant

events to remember would lead to faster memory consolidation into the cortex. Another

competing view is that instead of being the storage location of the memories themselves,

hippocampus would only store pointers to those memories (Káli and Dayan (2004)). As hip-

pocampus would also be required for memory retrieval in this case, it is difficult to discard one

of these views. Another influent theory of hippocampus suggests that it is not simply a blind

memory store, but also performs spatial computation (O’Keefe and Nadel (1978); McNaughton

et al. (1991)).

As mentioned above, due to the high expansion in neuron numbers between EC and DG, as

well as the sparse activity in DG, it is mainly believed that DG acts as a pattern separator by

decorrelating input activity (Treves and Rolls (1994)). In this way, similar (overlapping) inputs

can be represented by distinct neuronal ensembles in DG, therefore promoting more accurate

memory storage in the hippocampus.

Because CA3 contains numerous excitatory recurrent connections which follow a Hebbian

plasticity rule (Debanne et al. (1998)), it is believed to be the center of associative memories

(Treves and Rolls (1994)). According to this view, each memory is stored as an ensemble

of neurons with strong excitatory recurrent connections between them, as in a Hopfield

network (Hopfield (1982)). Therefore, CA3 is believed to perform pattern completion: if

a degraded input is presented to the network, CA3 will recover the memory through the

recurrent excitatory connections, in agreement with what has been observed experimentally

(Neunuebel and Knierim (2014)).

5



Chapter 1. Classical views of the hippocampus

Figure 1.1 – Architecture of the rodent hippocampus. (a) The hippocampus consists of the
dentate gyrus (DG), CA3 and CA1. Dentate gyrus receives most of its input from EC layer II
through the perforant pathway (PP), which also directly project to CA3. The temporoammonic
pathway (TA) connects EC layer III to CA1. (b) The dentate gyrus shows lots of recurrent
connections between its principal cells, the dentate granule cells, and excitatory Mossy cells as
well as inhibitory interneurons. The dentate granule cells provide detonator synapses to CA3
through the Mossy fibre pathway. CA3 connects to CA1 through the Schaffer collaterals. CA1
connects back to EC, projecting to layers V/VI. (Reproduced with permission from Figure 1
of Deng et al. (2010).)
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2 Adult dentate gyrus neurogenesis

2.1 Introduction

For a long time, it was believed that all neurons were produced during development, and no

new neurons were generated at the adult stage.

The first account of neurogenesis in adult brains dates from 1962, when Joseph Altman

lesioned rat brains and injected tritiated thymidine (thymidine-H3) in the lesioned area.

Thymidine-H3 is an analog of the DNA building block thymidine, hence it can be incorporated

into the DNA of dividing cells. The animals were sacrificed between 1 day and 2 months

after the lesion. Using radiography, labeled cells were detected indicating that cells were

proliferating (Altman (1962)). A few years later, Altman and Das did autoradiography of brains

from healthy rats after injection of tritiated thymidine. They discovered a high number of

labeled granule cells in the dentate gyrus, which decreased with age (Altman and Das (1965)).

This indicated that adult neurogenesis is a natural brain process which does not need injury

to be triggered. Dentate granule cells have been subsequently observed to be generated at the

adult stage in other species, such as guinea-pigs (Altman and Das (1967)), mice (Caviness Jr

(1973)), and rabbits (Gueneau et al. (1982)). However, these findings were mostly ignored.

Thanks to the development of novel labeling and imaging techniques, the presence of adult

neurogenesis was confirmed by Gage and colleagues in the nineties (Kuhn et al. (1996)). Bro-

modeoxyuridine (BrdU), another analog of the DNA building block thymidine, was injected

intraperitoneally in adult rats of different ages, which were then sacrificed at different time

points after injection. Immunohistochemistry was performed to label proliferating and mi-

grating dentate granule cells precursors. A significant number of BrdU-labeled cells was

observed at all ages studied, up to 27 month old (Kuhn et al. (1996)). Using the same technique,

newborn cells were observed in the dentate gyrus of adult humans (Eriksson et al. (1998)),

further corroborating the presence of adult neurogenesis.

These results finally got accepted by the neuroscience community, and adult neurogenesis

became extensively examined in different brain areas of various species. Most studies were

7
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a b

Synaptic plasticity:
network connectivity

Neuronal plasticity:
network elements

Figure 2.1 – Different forms of plasticity. (a) Synaptic plasticity is the modification of the
connections between neurons. New connections, or spines, are created through spinogenesis.
Inversely, connections can be eliminated by spine pruning. The strength of existing connec-
tions can vary as well: it either increases through potentiation, or decreases as a consequence
of depression. (b) Neuronal plasticity provides a more profound change of the network struc-
ture. It involves the generation of new neurons through neurogenesis or the elimination of
neurons by apoptosis. It also includes shifts of firing threshold and excitability (not considered
here).

performed in mammals, more specifically rodents, but adult neurogenesis was also observed

in non-mammalian vertebrates (see Chapouton et al. (2007) for a review). Mammalian adult

neurogenesis seems to be restricted to two brain areas under normal conditions: the olfactory

bulb and the dentate gyrus (thoroughly reviewed in Ming and Song (2011)). In the first case,

newborn cells are produced in the subventricular zone of the lateral ventricles and migrate

through the rostral migratory stream to become interneurons in the olfactory bulb. In the

second case, newborn cells are created on the spot, in the subgranular zone of the dentate

gyrus, and migrate only slightly radially.

The acceptance of adult neurogenesis has lead to a paradigm shift, as it challenges the previ-

ously supposed stability of the “neuronal content” of the brain. Indeed, the number of neurons

is not simply reduced through aging and disease, but can be replenished. This adds a second

dimensionality and a longer timescale to brain plasticity, see Figure 2.1. Indeed, before the

work of Gage and colleagues the only established form of plasticity was the modification of the

connection strength between neurons, namely synaptic plasticity, spanning timescales from

milliseconds to days. On one side of the spectrum, it involves the strengthening (potentiation),

or weakening (depression) of the synaptic contacts between neurons, which is induced on

a timescale of tens of milliseconds (Levy and Stewart (1983)) and can persist from several

hundreds of milliseconds in the case of short-term plasticity (Varela et al. (1997)), to minutes

or even hours in the case of long-term plasticity (Sajikumar and Frey (2004)). Long-term

potentiation (LTP) denotes an increase in the synaptic strength of a connection, whereas

long-term depression (LTD) implies a decrease in the strength of the connection. On the other

side of the spectrum, new dendritic spines can be created and existing ones can disappear

through pruning, on a timescale of days (Trachtenberg et al. (2002); De Paola et al. (2006)).

Adult neurogenesis broadens the timescale of plastic changes to an order of weeks, as newborn

cells integrate in the preexisting circuit in about 8 weeks (Ming and Song (2005)). This process
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2.2. Adult-born dentate granule cells

is counteracted by the death, or apoptosis, of neurons.

Even though rodent adult dentate gyrus neurogenesis is nowadays well established, it is still

controversial if it is important in humans. Recently, a paper claiming that hippocampal neuro-

genesis is negligible in adult humans (Sorrells et al. (2018)) triggered lively discussions about

its significance. One month later, another paper on the contrary asserted the persistence of

neurogenesis in the hippocampus of adult humans (Boldrini et al. (2018)), adding fuel to the

debate. Several arguments have been put forward for the discrepancy of these results, in par-

ticular the postmortem interval before analysis, the tissue handling and labeling techniques,

as well as the clinical status of the patients (Tartt et al. (2018)). It has also been suggested that

seemingly contradictory results could be reconciled by taking the neurodevelopmental timing

into account (Snyder (2019)). Overall, these studies emphasize that adult neurogenesis is still

a hot topic in the field of neuroscience, and that it contains many mysterious aspects which

deserve to be investigated.

2.2 Adult-born dentate granule cells

We focus here on adult hippocampal neurogenesis, where most findings come from rodent

studies. Newborn neurons mostly develop into dentate granule cells (DGCs), the main ex-

citatory cell type of the dentate gyrus, while the remaining 15 to 25% become astrocytes or

present another phenotype (Van Praag et al. (1999)). It has been estimated that the amount of

newly generated DGCs per month represents about 6% of the total granule cell population in

the rat (Cameron and McKay (2001)). Despite this relatively small percentage, it corresponds

to several thousands of cells due to the high number of cells in the dentate gyrus: about 106 in

one dentate gyrus of the rat (West et al. (1991); Rapp and Gallagher (1996)).

The number of proliferating cells in the dentate gyrus, as well as the percentage of surviving

newborn DGCs after one month, can be modulated by experimental conditions (Van Praag et al.

(1999)). Yet, interestingly, the dentate gyrus volume remained similar among all experimental

groups (Van Praag et al. (1999)). This is in agreement with the observation that in rats the

number of DGCs is about constant as a function of age (Boss et al. (1985); Rapp and Gallagher

(1996)) and the number of apoptotic cells seems to counterbalance newly generated cells

(Biebl et al. (2000)), favoring the view of adult dentate gyrus neurogenesis as a replacement

process over an addition process. We now review these and related results in more details.

2.2.1 Experience-dependent survival and integration

Proliferation of adult-born DGCs can be increased by an enriched environment (Kempermann

et al. (1997); Tashiro et al. (2007)), voluntary running (Zhao et al. (2006)), and hippocampus-

dependent learning (Gould et al. (1999)). Many of the newborn DGCs die in the early stages of

their maturation, both in rats (Biebl et al. (2000); Dayer et al. (2003)) and in mice (Kempermann

et al. (2003); Sierra et al. (2010)). The first few weeks after birth are critical for their long-term
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Chapter 2. Adult dentate gyrus neurogenesis

survival (Dayer et al. (2003); Kempermann et al. (2003)). Importantly, survival has been shown

to be experience-dependent: it depends on the input on newborn DGCs in a restricted time

window early in their maturation. It is promoted by high-frequency stimulation of perforant

path fibers targeting the dentate gyrus (Kitamura et al. (2010)), and by the learning of tasks

that require the hippocampus (Gould et al. (1999); Kee et al. (2007)). Furthermore, voluntary

running has been shown to slightly advance their spine growth (Zhao et al. (2006)), and

accelerate their neuronal maturation (Piatti et al. (2011)).

Van Praag et al. (1999) compared several groups of mice: (1) standard housing (control), (2)

enriched housing, (3) cage with a wheel (voluntary runners), (4) mice which were placed in

a water-maze devoid of any platform for a given amount of time (forced swimmers), and (5)

mice which were put in a water-maze with a platform (learners). Voluntary runners were

the only mice with a significantly higher proliferation of cells in the dentate gyrus than all

other conditions. Similarly, voluntary runners and mice housed in an enriched cage were the

only groups whose numbers of surviving adult-born DGCs after one month was higher than

control. This suggests that voluntary exercise is beneficial for neuronal turnover in the adult

dentate gyrus, and that arousal by running or rich environments promotes the survival of

newborn DGCs.

Rats which were trained on a trace eyeblink conditioning task or a spatial water-maze task,

both hippocampus-dependent associative tasks, had a higher number of newborn DGCs than

animals trained on hippocampus-independent tasks, such as delay-eyeblink conditioning or

cue-maze training (Gould et al. (1999)). Using the water-maze task, analogous increases of

newborn DGCs (Van Praag et al. (1999)), and integration of adult-born DGCs in the spatial

memory network (Kee et al. (2007)) have been observed in mice.

NMDA receptor activation has been shown to be crucial for proper integration, and hence

survival, of adult-born DGCs. Pharmacological inhibition of NMDA receptors prevents en-

hanced survival of newborn DGCs upon high-frequency stimulation in rats (Kitamura et al.

(2010)). Similarly, a local knockout of the NMDA receptor NR1 subunit, which is necessary

for its function, significantly reduces the survival rate of newborn DGCs which are in their

third week after birth (Tashiro et al. (2006)). Moreover adult-born neurons are preferentially

reactivated by stimuli similar to the ones they experienced during their second to third week

after birth (Tashiro et al. (2007)).

Spatial learning has been shown to increase the complexity of the dendritic arborescence, as

well as the number of spines of adult-born DGCs (Tronel et al. (2010)). These morphological

changes are long-lasting: they are still present at least 3 months after learning. They correlate

with the cognitive load of the learning task, and depend on activation of NMDA receptors

(Tronel et al. (2010)). However, these structural changes are restricted to adult-born DGCs,

suggesting that mature DGCs have lost their plasticity.

Taken together, these findings suggest that newborn DGCs encode features of stimuli that

they experienced in a restricted and early phase of their maturation. Because LTP induction is
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Figure 2.2 – Maturation timeline of the newborn DGCs. Integration of an adult-born DGC
(blue) into the preexisting network as a function of time. Around 1 week after birth, the cell
receives GABAergic synaptic input (red) (Espósito et al. (2005); Ge et al. (2006); Deshpande et al.
(2013)), and a few days later also glutamatergic synaptic input (black) (Ge et al. (2006); Vivar
et al. (2012)). At about 3 weeks, the GABAergic input switches from excitatory to inhibitory (Ge
et al. (2006)). At 7 weeks, the newborn DGC connects to local interneurons (red) (Temprana
et al. (2015)).

necessary, this encoding relies upon an associative-type of learning, which has morphological

correlates in the form of dendritic branching and spinogenesis.

2.2.2 Time course of connectivity

The cellular and connectivity properties of adult-born DGCs change as a function of their

maturation stage, until they become indistinguishable from any other mature DGCs at ap-

proximately 8 weeks (Deng et al. (2010); Johnston et al. (2016)). At birth, newborn DGCs are

completely disconnected from the preexisting dentate gyrus circuit. If they mature successfully,

they connect to pre- and postsynaptic partners in a sequence of steps, see Figure 2.2. Many

experiments using retroviral labeling of adult-born DGCs of specific ages have been performed

to determine the precise time course of their connectivity. On one hand, morphological as-

pects of connectivity have been investigated using retrograde tracing and microscopy. On the

other hand, electrophysiology and optogenetics have been used to assess the functionality of

the detected connections. All these studies were mostly performed in mice.

Initially, newborn DGCs do not receive synaptic contacts and they do not project to postsy-

naptic partners. Indeed, between 1 and 7 days after birth, no synaptic partners have been

detected (Espósito et al. (2005)). Ambient GABA is thus their first source of tonic activation,

detected as early as 3 days after birth (Ge et al. (2006)). Even though newborn DGCs lack

synaptic connections, they can already sense dentate gyrus activation, because stimulation

of local interneurons induces an increase in the tonic activation of newborn DGCs (Ge et al.

(2006)). This result is further supported by the observation that focal application of GABA

under voltage or current clamp induces a strong response in newborn DGCs, indicating that

neurotransmitter receptors are already present in their plasma membrane before the arrival of

presynaptic terminals (Espósito et al. (2005)).
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Chapter 2. Adult dentate gyrus neurogenesis

Newborn DGCs are first synaptically innervated by local GABAergic interneurons. GABAergic

afferents were identified in 8 days old, but not 6 days old, newborn DGCs (Espósito et al. (2005)).

They induce GABAergic synaptic inputs with slow rise and decay phases (Espósito et al. (2005);

Overstreet-Wadiche et al. (2005)). Similarly, GABAergic postsynaptic currents (PSCs) were

observed in some newborn DGCs that were 7 days old. These GABAergic PSCs were sensitive

to bicuculline, an antagonist of GABAA receptors, highlighting the synaptic nature of the

connections (Ge et al. (2006)). Innervation from both local and distant interneurons increases

with maturation (Vivar et al. (2012)). Back projections from CA3 interneurons were also

observed in 21 days old newborn DGCs (earliest time point investigated) and they remained

stable thereafter (Vivar et al. (2012)).

After about one to two weeks, newborn DGCs start receiving glutamatergic synapses. They

come from different sources, such as local Mossy cells, entorhinal cortex and back projections

from CA3 pyramidal cells. Glutamatergic afferents have been detected in newborn DGCs that

were 18 days old (Espósito et al. (2005)), and even as young as 14 days old (Ge et al. (2006)).

The glutamatergic PSCs were sensitive to CNQX, an antagonist of AMPA receptors (Ge et al.

(2006)). Innervation from Mossy cells was observed in 10 days old newborn DGCs (Deshpande

et al. (2013)), and it increases over time (Vivar et al. (2012)). Innervation from entorhinal

cortex was still sparse in newborn DGCs that were 21 days old (Vivar et al. (2012); Deshpande

et al. (2013)), but the number of presynaptic partners increased fivefold in the following 2

weeks (Deshpande et al. (2013)). Patch-clamp recordings support innervation by the lateral

entorhinal cortex (LEC), cortical layers II/III, rather than from the medial entorhinal cortex

(MEC) (Vivar et al. (2012)). A sparse (10% of the presynaptic partners) but stable innervation

from CA3 pyramidal cells in newborn DGCs from 21 to 90 days of age (earliest and last time

point investigated respectively) has also been observed (Vivar et al. (2012)).

One study has suggested a major transient synaptic input from mature DGCs to newborn

DGCs that are between 21 and 30 days of age (Vivar et al. (2012)). However, subsequent

morphological and functional studies failed to support this result, and it is mostly believed that

the observed excitatory feedback loop was an artifact due to pseudo-transduction (Deshpande

et al. (2013); Temprana et al. (2015); Alvarez et al. (2016)).

Adult-born DGCs initiate Mossy fiber projections to CA3 relatively early in their maturation,

but several weeks are needed for information to be stably transmitted to CA3. At 10 days of

age newborn DGCs already establish axonal projections to the CA3 area (Zhao et al. (2006);

Faulkner et al. (2008)), and at 17 days of age synapses with postsynaptic targets have been ob-

served (Toni et al. (2008)). Optical stimulation of 2 weeks old adult-born DGCs produces weak

glutamatergic excitatory postsynaptic currents (EPSCs) in CA3 pyramidal neurons, indicating

that functional synapses were already established (Gu et al. (2012)). However, maturation is

needed for newborn DGCs to reliably recruit CA3 pyramidal cells. Mossy fibers boutons grow

in size between 2 and 4 weeks of age (Faulkner et al. (2008)), and induction of stable maximal

EPSCs has been observed from newborn DGCs that were at least 4 weeks of age (Gu et al.

(2012); Temprana et al. (2015)). Ultrastructural analysis has revealed that mossy fiber boutons
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reach morphologic maturity by 8 weeks and remain stable thereafter (Faulkner et al. (2008)).

It is interesting to note that newborn DGCs do not only project to CA3 pyramidal neurons,

but also to CA3 interneurons, thus inducing indirect inhibition in addition to direct excitation

to CA3 principal cells (Toni et al. (2008)). Furthermore, it has been observed that newborn

DGCs initially make synaptic contacts with spines that are already receiving connections from

mature DGCs, suggesting that newborn DGCs may compete for postsynaptic targets (Toni

et al. (2008)).

Even though four-week old newborn DGCs efficiently drive distal CA3 pyramidal cells and

interneurons, they only weakly activate local dentate gyrus interneurons, as revealed by small

inhibitory postsynaptic currents (IPSCs) recorded in mature DGCs upon newborn DGCs

stimulation (Temprana et al. (2015)). Newborn DGCs thus recruit local interneurons relatively

late in their maturation, at around 7 weeks of age (no time point investigated between 4 and 7

weeks) (Temprana et al. (2015)).

To conclude, all these experiments suggest that maturation and integration of adult-born

DGCs is analogous to what is observed during development, though at a slower pace. Tonic

ambient GABA excitation is the first source of activation, followed by GABAergic synaptic

inputs, and finally glutamatergic synaptic inputs. Dendritic growth is only slightly delayed

in adult-born DGCs (Zhao et al. (2006)). The simultaneous maturation of dendritic spines

and Mossy fiber axons suggests that the functional input and output of newborn DGCs are

synchronized and emerge at a well-controlled time point during maturation.

2.2.3 Enhanced plasticity

During their maturation, adult-born DGCs have been shown to have enhanced plasticity

relative to mature DGCs.

Using rat hippocampal slices, Wang et al. (2000) have shown that tetanic stimulation (4 trains

of 100 Hz) of the medial perforant pathway induces LTP in newborn DGCs, but not in mature

DGCs. The absence is due to compensatory inhibitory mechanisms: if an antagonist of GABAA

receptors was present, mature DGCs also underwent LTP. Furthermore, pairing weak afferent

stimulation (2 Hz) with postsynaptic depolarization under voltage clamp was sufficient to

induce LTP in newborn DGCs, but had no effect on mature DGCs.

Schmidt-Hieber et al. (2004) have observed in slice that young (1 to 3 weeks) newborn DGCs

have a lower threshold for spike-timing dependent plasticity induction than mature DGCs.

Brief presynaptic bursts (ten stimuli at 100 Hz) paired with a single postsynaptic action

potential are highly efficient for LTP induction in young adult-born DGCs, while a burst of

postsynaptic action potentials is required in mature DGCs.

More precisely, the enhanced plasticity of newborn DGCs has been shown to occur in a

restricted time window, when they are about 1 to 1.5 month old. During this period, they have

a lower threshold for LTP induction and higher LTP amplitude (Ge et al. (2007)). Noteworthy,
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LTP induction at any DGC age is dependent on the NMDA receptor subunit NR2B (Ge et al.

(2007)).

Likewise, efferent connections from newborn DGCs to CA3 also show temporarily enhanced

plasticity (Gu et al. (2012)). Upon theta-burst optical stimulation of newborn DGCs, LTP of

the field excitatory postsynaptic potentials was reliably observed when the DGCs were 3-

and 4-week old, but was more sporadic with 8-week old newborn DGCs. Furthermore, LTP

amplitude was highest at 4 weeks, indicating that newborn DGCs have enhanced plasticity

which peaks at around 4 weeks of age.

2.2.4 Enhanced excitability

During their maturation, adult-born DGCs were also shown to have enhanced excitability

relative to mature DGCs. Schmidt-Hieber et al. (2004) observed that young newborn DGCs

have a longer membrane time constant. However, they fire very few action potentials upon

stimulation, whereas mature DGCs fire trains of action potentials.

Importantly, however, the enhanced excitability of newborn DGCs does not imply that they

are hyperactive (Dieni et al. (2013); and thoroughly reviewed in Lodge and Bischofberger

(2019)). Indeed, the enhanced excitability of newborn DGCs is counterbalanced by reduced

excitatory innervation and functional shunting inhibition upon high GABAergic input. In

addition, adult-born DGCs exhibit a slower membrane time constant, a reduced slope of

action potential and lower firing rate than mature DGCs. All these compensating mechanisms

are believed to preserve the sparse and orthogonal population activity of DGCs observed in

vivo.

2.2.5 GABA switch

During maturation, at about 3 weeks of age, the γ-aminobutyric acid (GABAergic) input

from interneurons to adult-born DGCs switches from excitatory to inhibitory, see Figure 2.2.

This switch stems from the fact that in the early phase of maturation, newborn DGCs have

a high intracellular chloride concentration due to a high expression of the Na+-K+-2Cl−

cotransporter NKCC1 (a Cl− importer). The GABA reversal potential is thus higher than

the membrane resting potential (Overstreet-Wadiche et al. (2005); Ge et al. (2006); Heigele

et al. (2016)). Hence, upon GABAergic input stimulation, GABAA ionic receptors let Cl− flow

out of the newborn DGCs, which results in depolarization. In the late phase of maturation,

expression of the K+-Cl− -coupled cotransporter KCC2 (a Cl− exporter) kicks in, which causes

a reduction of the intracellular chloride concentration of newborn DGCs to a level similar to

the one of mature DGCs. Hence GABAergic inputs drive Cl− to flow in through GABAA ionic

receptors, which generates neuronal hyperpolarization (reviewed in Ben-Ari (2002); Owens

and Kriegstein (2002)).

This transition of GABAergic input effect is analogous to the so-called “GABA switch” observed
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during embryonic and early postnatal stages. The early excitatory phase is thought to con-

tribute to the proper development of the brain by supporting activity-dependent growth of

dendrites and axons. The timing of the switch is crucial for healthy development of the brain. If

it occurs too early, sensorimotor gating deficits are induced due to a short GABA-mediated de-

polarization (Wang and Kriegstein (2010)). If it happens too late, seizures are facilitated (Wang

and Kriegstein (2010)) and lasting cognitive and physical deficits are promoted (Furukawa

et al. (2017)) due to excessive excitation.

The switch is sharp: it occurs in about a day, both during adult dentate gyrus neurogenesis

(Heigele et al. (2016)) and during development (Khazipov et al. (2004); Tyzio et al. (2007);

Leonzino et al. (2016)). An early study had suggested a rather continuous switch, because the

recorded GABA reversal potential decreased gradually during maturation of adult-born DGCs

(Ge et al. (2006)). However, only few time points were investigated, possibly smoothing the

apparent GABA reversal potential curve as a function of maturation. Indeed, a subsequent

study has revealed a rather step-like change of GABA reversal potential (Heigele et al. (2016)).

The timing of the switch can be bidirectionally modulated. In cell cultures of hippocampal

neurons harvested during rat early postnatal development, an increase of GABAergic activity

upregulates KCC2 expression, hence advancing the timing of the switch (Ganguly et al. (2001)).

On the contrary, a reduction of GABAergic input through blockade of GABAA receptors down-

regulates expression of KCC2, leading to a delayed switch. GABAergic activity itself seems to

be crucial, and not simply the overall activity of the neurons, because neuronal spiking and

glutamatergic activity alone do not alter the timing of the switch (Ganguly et al. (2001)).

2.2.6 GABAergic input importance for integration

The GABAergic input onto adult-born DGCs has been shown to be crucial for their integration

into the preexisting dentate gyrus circuit.

In newborn DGCs that are between 1.5 and 3 weeks of age (when the GABA reversal potential

is higher than the membrane resting potential), moderate activation of GABAergic synaptic

inputs onto newborn DGCs has been shown to be sufficient to induce action potential firing,

in particular when they were paired with glutamatergic synaptic inputs which would have

stayed subtreshold otherwise (Heigele et al. (2016)). However, if GABAergic activation is too

strong, it induced shunting at the reversal potential of the GABA channels, hence newborn

DGCs are effectively inhibited (Heigele et al. (2016)).

As specified above, newborn DGCs are first activated by ambient GABA, then receive GABAergic

synaptic inputs, and only later glutamatergic synaptic inputs (Figure 2.2). Therefore, their first

inputs are GABAergic, which have an excitatory effect due to their depolarized GABA reversal

potential. In addition, it has been shown that mature DGCs indirectly activate newborn

DGCs that are early in their maturation through activation of local interneurons (Alvarez et al.

(2016)). As mature DGCs are responding to environmental stimulation, the indirect activation
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of newborn DGCs might provide a way for them to sense the dentate gyrus network activity. In

hippocampal slices from mice, mature DGCs have been optically stimulated while 10-days

old DGCs were intracellularly recorded (Alvarez et al. (2016)). A high depolarizing GABAergic

current (but no glutamatergic current) has been reported in the newborn DGCs, suggesting

that mature DGCs indirectly activate newborn DGCs through interneuron activation (Alvarez

et al. (2016)). In addition, at the morphological level, newborn DGCs which were indirectly

activated by stimulation of mature DGCs showed much more dendritic processes than control

newborn DGCs, suggesting that they were better integrated into the preexisting circuit through

synaptic contacts (Alvarez et al. (2016)).

This interpretation has been confirmed by the observation that early GABA-mediated depo-

larization is required for functional glutamatergic synaptic innervation. Early in maturation,

even before the appearance of presynaptic terminals, newborn DGCs already have GABAergic

and glutamatergic receptors in their membrane (Espósito et al. (2005)). More specifically,

adult-born DGC glutamatergic synapses initially only contain NMDA receptors, but no AMPA

receptors. They are “silent” synapses, because of the voltage-dependent magnesium block of

NMDA receptors. Therefore, to establish functional glutamatergic synapses, the magnesium

block has to be alleviated. GABA receptor mediated depolarization has been shown to be

necessary to “unsilence” the synapses and trigger the incorporation of AMPA receptors, both

in vitro and in vivo (Chancey et al. (2013)). Furthermore, unsilencing of synapses through

GABA depolarization has been shown to be experience-dependent, as only 2 hours in an

enriched environment is sufficient to promote this process (Chancey et al. (2013)).

The importance of the switch from early excitation to late inhibition of the GABAergic input

onto newborn DGCs has been highlighted by studies that have either abolished or prolonged

the early excitatory phase.

On one hand, GABA-mediated depolarization is necessary for proper development of func-

tional GABAergic and glutamatergic synapses onto adult-born DGCs. Early excitation can be

suppressed by knocking down the expression of NKCC1 using short hairpin RNA (shRNA).

Hence shRNA-NKCC1+ DGCs have lower intracellular chloride concentration and a lower

GABA reversal potential (Ge et al. (2006)). At the morphological level, shRNA-NKCC1+ new-

born DGCs show an impaired dendritic development. Their dendritic arborisation, in terms of

dendritic length and branch number, is significantly reduced (Ge et al. (2006)). This effect can

be counteracted by the injection of an agonist of GABAA receptors, which promotes dendritic

growth of shRNA-NKCC1+ newborn DGCs in vivo (Ge et al. (2006)). At the functional level,

shRNA-NKCC1+ DGCs that are 7 days old do not receive postsynaptic currents (PSCs) through

their GABAergic synapses, and when they are 14 and 28 days old, recorded PSPs has lower

amplitude than control (Ge et al. (2006)). Furthermore, shRNA-NKCC1+ DGCs that are 14 days

old did not get PSCs through their glutamatergic synapses, and when they are 28 days old a

lower percentage of cells receive PSCs than control, with a smaller amplitude (Ge et al. (2006)).

On the other hand, if GABA-mediated depolarization of adult-born DGCs is too long-lasting,
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aberrant behavior is induced. For example, following an epileptogenic injury, expression of

KCC2 is decreased in the DGCs for several weeks, leading to a higher GABA reversal potential

(Pathak et al. (2007)). The resulting enhanced excitability of DGCs drives alteration of synap-

tic integration, as well as facilitate seizure initiation and propagation (Pathak et al. (2007)).

Similarly, high GABA reversal potential due to a decreased KCC2-to-NKCC1 ratio has been

observed in hippocampal slices from status epilepticus rats. It promotes hyperexcitability of

the hippocampus following status epilepticus (Barmashenko et al. (2011)).

Taken together, these results suggest that early excitation, late inhibition, and proper timing of

the switch of the GABAergic input onto adult-born DGCs is crucial for their proper integration

into the preexisting dentate gyrus network.

2.3 Functional role of adult dentate gyrus neurogenesis

Even though the number of cells which are generated at the adult stage is rather low with re-

spect to the whole DGC population, adult dentate gyrus neurogenesis is involved in hippocampus-

dependent memory, and its modulation has a high impact on behavior, as summarized in

Table 2.1.

2.3.1 Involvement in hippocampus-dependent memories

Adult-born DGCs have been shown to be implicated in hippocampus-dependent memory

traces. Shors et al. (2001) used a systemic approach to reduce neurogenesis, through sub-

cutaneous injection of a toxin for proliferating cells, the DNA methylating agent methyla-

zoxymethanol acetate (MAM). Rats with decreased neurogenesis were compared to control

in their acquisition of two eyeblink conditioning tasks, where the conditioned stimulus (CS)

was white noise, and the unconditioned stimulus (US) a periorbital eyelid stimulation. The

first task was trace conditioning, a hippocampus-dependent task where there is a temporal

gap between the CS and the US. The second task was delay conditioning, a hippocampus-

independent task where CS and US overlap. A reduction of neurogenesis was shown to impair

acquisition of trace conditioning, but not of delay conditioning. More specifically, it was

observed that newborn DGCs that were about 2 weeks old during training were involved in the

trace memory, but not 1 week old newborn DGCs. Furthermore, a recovery period to replenish

the number of newborn DGCs was sufficient for normal acquisition of trace conditioning

memory.

In a follow-up study, Shors et al. (2002) observed that dentate gyrus neurogenesis is not

involved in all hippocampus-dependent memories. Indeed, reduction of neurogenesis using

the same systemic approach also impaired acquisition of a cued fear conditioning task, where

rats were cued with a tone and received a foot shock after some temporal interval. However,

contextual fear conditioning, exploratory behavior in an elevated plus maze, and spatial

navigation learning in a Morris water maze, all hippocampus-dependent tasks, were not
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impaired by a reduction in neurogenesis.

Analogously, decreased neurogenesis does not impair acquisition of the Morris water maze task

when whole brain irradiation is used to reduce neurogenesis (Snyder et al. (2005)). However,

newborn DGCs that are 4 to 28 days old at the time of training are necessary for long term

memory retrieval at 2 and 4 weeks, but not 1 week (Snyder et al. (2005)).

2.3.2 Incorporation in memory networks

Newborn DGCs are incorporated into memory circuits and activated upon memory recall. Kee

et al. (2007) labeled dividing cells, and trained mice in a Morris water maze task at different

time points after the labeling procedure (1, 2, 4, 6 and 8 weeks). Ten weeks after labeling,

they tested the mice in the same Morris water maze without the platform before sacrificing

them. By investigating the overlap between newborn cells labeling and an activity-dependent

marker, they observed that 1 to 2 weeks old newborn DGCs are not functionally integrated into

spatial memory networks. On the other hand, newborn DGCs that are 4 weeks or older are

incorporated. More specifically, 4-week to 8-week old cells have a 2 to 3 higher probability than

mature DGCs to be recruited during memory recall, suggesting that they play an important

role in dentate gyrus memory through their encoding abilities.

In addition, newborn DGCs which are recruited into memory circuits are necessary for recall.

Similarly to Kee et al. (2007), Gu et al. (2012) have labeled newborn DGCs and trained mice

in a Morris water maze task at different time points after labeling (2, 4 and 8 weeks). They

observed that if newborn DGCs that were 4 weeks old during training were optogenetically

silenced during testing, mice were spending less time in the quadrant where the hidden plat-

form was located during training. This effect was not present upon silencing 2 or 8 weeks

old newborn DGCs. Silencing of 4 weeks old newborn DGCs during training did not affect

memory acquisition though, suggesting that other DGCs became responsible for the encoding

of the spatial memory. Analogous results were found using contextual fear conditioning,

another hippocampus-dependent learning task. During testing in the same context, optoge-

netic silencing of newborn DGCs that were 4 weeks old during training significantly reduced

freezing.

The two above studies suggest that newborn DGCs have a critical period when they are

preferentially incorporated into memory ensembles, and that they are required for memory

retrieval due to their encoding of a novel experience. In agreement with these results, using

a lentiviral approach to reduce adult dentate gyrus neurogenesis in rats by inhibiting Wnt

signaling (which is involved in newborn DGCs generation), Jessberger et al. (2009) have

observed that animals with a reduced number of newborn DGCs were impaired in the novel

object recognition task, an hippocampus-dependent task. Indeed, retention at 3h and 4 weeks

(but not 1min) was lower in the group with a large decrease of newborn DGCs than the control

group. The group with a smaller reduction of neurogenesis was only impaired in retention

at 3h with respect to control, and significantly less than the group with a high reduction of
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newborn DGCs. In the Morris water maze task, in agreement with the observations of Gu et al.

(2012), Jessberger et al. (2009) did not monitor any impairment in acquisition, but found an

affected retention (from 2 to 8 weeks) in the group with high reduction of newborn DGCs.

2.3.3 Importance for pattern separation

Clelland et al. (2009) were the first to show the requirement of adult dentate gyrus neuroge-

nesis for discrimination of inputs with low spatial separation, but not for discrimination of

inputs with high spatial separation. The performance of mice with focal X-ray irradiation to

ablate dentate gyrus neurogenesis were compared with the one of control mice on different

hippocampus-dependent tasks. First, mice were trained in a delayed non-matching to place

radial 8-arm maze task. Each trial consisted of a sample phase and a choice phase. In the

sample phase, a mouse would be placed at the end of one arm (the “start arm”), and a single

other arm (the “sample arm”) was open, with a food reward at its end. In the choice phase, the

mouse would be placed again in the same start arm, and this time two other arms were open:

the sample arm, as well as a previously closed “choice arm”. Mice would get a food reward only

at the end of the choice arm, denoted as a correct trial. Different spatial separations were used

between the sample and choice arms. When the spatial separation was high (two or three

arms between the choice and sample arms), mice with ablated neurogenesis performed as

well as controls. However, for trials with low spatial separation (only one arm between the

choice and sample arms) mice with ablated neurogenesis were significantly impaired. Similar

results were obtained when dentate gyrus neurogenesis was reduced using a lentiviral vector

to knock-down Wnt signaling. Second, the authors confirmed the importance of adult dentate

gyrus neurogenesis for spatial pattern separation using a spatial discrimination paradigm:

mice were required to choose the correct spatial location between two illuminated boxes in

two out of five possible locations on a touch screen. The two illuminated locations had either

a high spatial separation (3 dark locations in between) or a low spatial separation (a single

dark location in between). Again, mice with ablated adult dentate gyrus neurogenesis were

impaired in trials with low spatial separation, but not in trials with high spatial separation. Yet,

these same mice were not impaired in another spatial touch screen task which tests the ability

to associate objects with spatial locations, further supporting the role of adult dentate gyrus

neurogenesis in tasks with a pattern separation component. Furthermore, using a similar

touch screen task to test spatial pattern separation abilities, Vivar et al. (2012) revealed the

importance of a functional LEC input. Indeed, if an agonist of NMDA receptors was bilaterally

injected in the LEC, mice were impaired in low spatial separation trials, but not in high spatial

separation trials.

Using a contextual fear conditioning task, Sahay et al. (2011a) have confirmed the implication

of adult dentate gyrus neurogenesis in behavioral pattern separation. First, they have shown

that adult dentate gyrus neurogenesis is necessary for discrimination of two similar contexts.

On day 0, mice were placed in a context A where they got a foot shock (Context A: “stainless

steel grids were exposed; house fan and lights were switched on; and a mild lemon scent
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was used as an olfactory cue”). Then, to test fear generalization, over several days mice

were subsequently placed in context A where they got a foot shock, and in a safe similar

context B (“exposed stainless steel grid floor and roof (a salient feature of the context); house

fan and lights were turned off; two plastic inserts were used to cover the walls; chamber door

was left ajar during testing; and a mild mint scent was used as an olfactory cue”). Control

mice did freeze when placed in the safe context B the first few days of training, highlighting

the similarity between the two contexts, but over time they learned to discriminate the two

contexts, as emphasized by decreased freezing. On the other hand, mice with ablation of

neurogenesis through X-ray irradiation in dentate gyrus kept freezing in the safe context B over

all 5 training days, indicating that they were not able to discriminate the two contexts (Sahay

et al. (2011a)). (Similarly, Tronel et al. (2012) observed that mice with reduced dentate gyrus

neurogenesis through overexpression of Bax, a proapoptotic protein that induces programmed

cell death, were impaired in the discrimination of two contexts with overlapping features

using a contextual fear conditioning task.) Second, adopting the opposite procedure, Sahay

et al. (2011a) have enhanced adult dentate gyrus neurogenesis by increasing the survival

of newborn DGCs through conditional knockout of Bax in dentate gyrus neural stem cells.

As in the previous experiment, mice were placed on day 0 in context A where they received

a foot shock. Then, for several days mice were consecutively placed in context A where

they always got a foot shock, and in a safe similar context B (in random order every day) to

assess fear generalization. On day 1, control mice and mice with enhanced dentate gyrus

neurogenesis froze equally in both contexts. However, on days 2 to 9, mice with enhanced

dentate gyrus neurogenesis showed higher discrimination abilities between the two similar

contexts, reflected by lower levels of freezing in the safe context B than in context A. Finally,

Sahay et al. (2011a) have emphasized the fact that adult dentate gyrus neurogenesis promotes

pattern separation when contexts are similar, but not if contexts are distinct. On day 0, mice

were placed in context A where they got a foot shock. To measure freezing, on day 1 they

were placed again in context A without getting a foot shock, and on day 2 they were placed

in a safe distinct context C (“stainless steel grid floor was covered with a plastic panel and

cage bedding; house fan and lights were turned off; chamber walls were covered using plastic

inserts; chamber door was left ajar during testing; and a mild anise scent was used as an

olfactory cue”). During testing, both control mice and mice with enhanced dentate gyrus

neurogenesis showed equivalent freezing in context A, and lack of freezing in distinct context C.

2.3.4 Links to cognition

The link between adult dentate gyrus neurogenesis and cognition has been thoroughly re-

viewed (Ming and Song (2005); Anacker and Hen (2017)). Briefly, brain injuries and pathologi-

cal conditions, such as epileptic seizures and degenerative neurological diseases, frequently

lead to increased proliferation in neurogenic regions, and sometimes even in regions where

neurogenesis is negligible in normal conditions. Furthermore, adult neurogenesis has been

extensively linked to chronic stress with various origins. Rodents and nun-human primates,

but also patients with depression, exhibit reduced levels of neurogenesis. Accordingly, an-
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Chapter 2. Adult dentate gyrus neurogenesis

tidepressant drugs as well as non-pharmacological antidepressants such as running increase

neurogenesis. It has been proposed that enhanced neurogenesis might decrease depressive

symptoms by promoting a better separation between an experienced stressful event and other

similar innocuous events, thus decreasing fear generalization.

2.4 Modeling of adult dentate gyrus neurogenesis

Long before adult neurogenesis was accepted by the neuroscience community, investigations

in artificial neural networks (ANN) had hinted to a beneficial effect of the introduction of new

nodes for encoding of novel information. For example, similar to earlier work of Carpenter and

Grossberg (1988) (also reviewed in Hertz et al. (1991)), Platt (1991) had proposed a network

that incorporates a new node when an input pattern is badly represented by the network

because it is too distinct from already stored input patterns. The new node is allocated directly

with a selectivity for the novel input pattern. It is conceptually similar to a model of additive

neurogenesis. A few years later, Yingwei et al. (1997) proposed a similar approach, where the

incorporation of new nodes is counterbalanced by the pruning of nodes that do not contribute

much to network computation, hence conceptually similar to replacement neurogenesis.

Simultaneously, building on the neural gas theory (Martinetz and Schulten (1991)), Fritzke

(1995) implemented an incremental network (“growing” neural gas) which learns topological

relations between input patterns.

Since adult dentate gyrus neurogenesis is now well established, its putative role has been

investigated by models. In particular, ANN representing the hippocampal network with various

levels of abstraction have been used. I summarize here some modeling papers, which present

the main views on the functional role of adult-born dentate granule cells.

2.4.1 Clearance of old memories

Chambers et al. (2004) presented one of the first modeling studies, suggesting that adult-born

dentate granule cells solve the stability-plasticity dilemma by promoting learning of new

representations while still mostly preserving old memories. They used a 3-layer feedforward

network with 35 input units (representing EC), 10 hidden units (representing dentate gyrus)

and 26 output units, see Figure 2.3. The input units have binary activity corresponding to

the 2-dimensional visualizations of letters. The hidden and output units have a nonlinear

gain function with a bias. All feedforward weights are initialized to small random (positive

and negative) values. First, the 26 letters of the Roman alphabet are presented to the network,

and the feedforward weights and biases are learned through gradient descent using the

backpropagation algorithm. It is a supervised learning algorithm: the activity of the output

units is compared to the one-hot representation of the presented letter (for ex. if letter ’B’ is

presented, the second unit of the teaching signal has value 1 while all others have value 0, see

Figure 2.3), and the error is backpropagated. Hence the feedforward weights are updated in

such a way that the difference between output and teaching signal is minimized. To model
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2.4. Modeling of adult dentate gyrus neurogenesis

Figure 2.3 – Network for Chambers et al. (2004). Letters are presented to the network by
setting the binary activity of the 35 input layer units accordingly. The activity is propagated
to 10 middle layer (hidden) units, which in turn propagate the activity to 26 output layer
units. Turnover neurogenesis is modeled by replacing some middle layer units, as well as
their incoming and outgoing connections, by as many naive units with random connections.
(Adapted from Figure 1 of Chambers et al. (2004) with permission.)

turnover neurogenesis, at the end of the learning of the Roman alphabet, between 0 and 10

randomly selected hidden units are replaced by naive hidden units (initialized to small random

values). As expected, the authors found that the more hidden units are replaced by naive

units, the larger the degradation of the memory for the previously learned Roman alphabet.

Then the 24 letters of the Greek alphabet were presented to the network, and all weights

(including the ones from units that were not replaced) were learned in the same way as before.

Consistent with the previous result, the more hidden units were replaced by naive units, the

better the novel Greek alphabet was learned. However, surprisingly, the authors found that

recall for the Roman alphabet remained at a good performance level for the networks with

high turnover (between 5 and 10 hidden units), but was significantly worse for the networks

with low turnover (0 and 2 hidden units). They hypothesized that it was due to a predominant

effect of catastrophic interference at low turnover rate due to the high similarity between the

two data sets. In addition, it was shown that if the hidden units with larger input and output

weight change (during Roman alphabet learning) were selected to be replaced by naive units,

learning of the novel Greek alphabet was improved.

Simultaneously, Deisseroth et al. (2004) reached similar conclusions. Their 3-layer network

contained 500 units in each layer, and excitatory all-to-all connections, see Figure 2.4a. Units

23



Chapter 2. Adult dentate gyrus neurogenesis

a b c

Figure 2.4 – Network for Deisseroth et al. (2004). (a) The 3-layer network contains 500 units
in each layer, which are fully feedforwardly connected. Turnover neurogenesis is modeled by
replacing some hidden layer units with as many new naive units with random connections.
(b) During learning, the activity of all units of the network are clamped to binary values, and all
connections are learned through a batch Hebbian plasticity rule. (c) During testing, only the
activity of the input layer units is set, and it is propagated through the feedforward connections
to the hidden and output units. Recall performance is assessed by computing the Hamming
distance between the output layer activity and its corresponding activity during learning.
(Adapted from Figure 8 of Deisseroth et al. (2004) with permission.)

had binary activity, and their activity threshold was set up in such a way that a desired sparsity

per layer was achieved, effectively corresponding to k-WTA. During learning, the activity of

all units of the network were clamped, see Figure 2.4b. Connections were learned according

to a batch Hebbian plasticity rule (taking into account all input patterns). Then, the units of

the first layer only were set to the activity of a given pattern, and activity was propagated to

the output layer through the hidden layer, see Figure 2.4c. Recall performance was assessed

by computing the Hamming distance between the obtained output pattern and the correct

activity in the output layer (the one that was used during learning, compare output activity

in panels b and c of Figure 2.4). Turnover neurogenesis was implemented in the hidden

layer by deleting some units and replacing them with new naive units that had to learn their

connections from scratch. As expected, turnover neurogenesis induces more rapid clearance

of old memories than a control network without neurogenesis, as connections that were

learned during previous memory storage are lost along their corresponding hidden units. On

the other hand, turnover neurogenesis improves recall of newer memories, and this beneficial

effect correlates with the amount of new memories that have to be stored in the network.

Interestingly, the authors found an equivalent increase in neurogenesis as a function of activity

in a hippocampal cell culture (inferred from extracellular Ca2+ concentration).

The paper of Chambers et al. (2004) triggered several follow-up studies with increased bio-

logical plausibility. Crick and Miranker (2006) implicitly modeled interneurons through full

lateral inhibitory connections within the hidden and the output layers. They also used a more

biologically plausible learning rule than backpropagation: unsupervised Hebbian learning.

Feedforward (resp. lateral) weights were forced to be positive (resp. negative), and bounded to

avoid runaway dynamics of the weights. Chambers and Conroy (2007) used the same network

with gradient descent backpropagation for learning of the connections and investigated the
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2.4. Modeling of adult dentate gyrus neurogenesis

Figure 2.5 – Network for Weisz and Argibay (2009) and Weisz and Argibay (2012). The net-
work models the full hippocampal loop: EC, DG, CA3 and CA1. For each population, the
number of neurons, the enforced sparsity, and the number of incoming synapses per neuron
is written on the figure. Additive neurogenesis is modeled by adding new neurons to the DG
population. (Reproduced with permission from Figure 1 of Weisz and Argibay (2012).)

beneficial effect of turnover neurogenesis to learn a second alphabet after having learned

the Roman alphabet. The new alphabet had varying levels of similarity with the previously

learned alphabet: “Romalt” (Roman alphabet with slightly different writing style) > Russian >

Hebrew. The higher the degree of the novelty of the new alphabet, the more beneficial was a

large extent of turnover neurogenesis for the network to accurately learn it.

Using a more complex network representing the whole hippocampal loop and additive neuro-

genesis in dentate gyrus (DG), Weisz and Argibay (Weisz and Argibay (2009, 2012)) reached

the same conclusion that adult-born DGCs promote learning of novel input while mostly

preserving recall of old memories. The network consists of four populations of binary neurons:

EC, DG, CA3 and CA1, see Figure 2.5. EC projects to DG and CA3, DG projects to CA3, CA3

projects to CA1 and to itself through recurrent connections, and CA1 projects back to EC. The

number of synapses at each stage is fixed, and k-WTA is implemented in each population

by enforcing a fixed number of neurons to be active. All connections weights are randomly

initialized. The connections between EC and DG, and between CA1 and EC, follow a Hebbian

learning rule with an heterosynaptic term to ensure weight normalization. It is different from

Oja’s rule because the heterosynaptic term depends on the postsynaptic activity, and not the

postsynaptic activity squared. The recurrent connections within CA3, and the connections

between EC and CA3, follow a covariance rule. All other synapses are fixed to a given value.

Interestingly, activity of CA3 units depends only on input from DG during learning of inputs,
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and only on direct input from EC and recurrent input from CA3 during retrieval (the recur-

rent collateral loop is repeated a fixed number of times). After learning of a few inputs, the

(control) network was compared with the same network undergoing additive neurogenesis

in DG in their ability to learn new inputs and recall old inputs. The neurogenesis network

kept the same level of sparsity in DG, and the connections to and from adult-born DGCs were

randomly initialized. The learning rules were kept identical to those of the control network,

except that the synapses from newborn DGCs to CA3 have a larger learning rate than the

ones from mature DGCs. As expected due to the larger number of DGCs, the network with

neurogenesis had a bigger storage capacity than the control network. It also had a better recall

accuracy for recent inputs, due to the fact that additional newborn DGCs preferentially learn

new patterns. This is emphasized by their higher activity for recent patterns than for remotely

stored patterns. On the other hand, the network with neurogenesis had a slightly higher ten-

dency to forget old memories than the control network, probably because plasticity of mature

DGCs was not completely abolished. These results, obtained with a full hippocampal model,

are in agreement with previous studies adopting simpler models (Chambers et al. (2004);

Deisseroth et al. (2004)). However, remarkably, the authors observed that adult-born DGCs

did not promote pattern separation of EC input patterns. They rather increase the overlap

between representations of recent memories, and provide temporal separation of remote and

recent memories. It stems from the fact that newborn DGCs mainly encode recent memories

(the ones that were presented to the network during their enhanced plasticity phase). Hence,

they rather combine all representations of new inputs. This last observation has been further

studied in Aimone et al. (2006, 2009), see Section 2.4.5.

2.4.2 Encoding distinct memories of highly similar inputs

Becker (2005) proposed that adult-born DGCs encode distinct memories for highly similar

inputs. The network models the full hippocampal loop, set up as an autoencoder: the EC

input layer connects to DG, which connects to CA3 (modeled with recurrent connections),

which connects to CA1, which connects to the EC output layer, see Figure 2.6. The EC input

layer provides a direct teaching signal to the EC output layer, as well as a direct projection to

CA3 and CA1. The main assumption of the model is that all hippocampal areas are optimizing

a common objective function, namely the faithful linear reconstruction of the input. The

biological constraint of sparse activity in DG is enforced by an artificial k-WTA network.

Interneurons are not modeled, so the k DG units with largest input are active while the activity

of the others was set to zero. Encoding and retrieval rely differently on the hippocampal areas.

Most notably, DG units are active only during encoding, and do not engage significantly in

retrieval: they do not drive CA3 activation, rather it is the direct connection from EC which

does. With all these assumptions and constraints on the circuit, Becker obtains Hebbian-style

learning rules. However, to avoid runaway dynamics of the weights, normalization of all

weight vectors is imposed by weight clipping. Neurogenesis is modeled in the DG layer, and

recall of random binary input patterns is assessed. Two data sets are used: one where all

patterns are independent (hence distinct), and another where patterns are highly overlapping
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2.4. Modeling of adult dentate gyrus neurogenesis

Figure 2.6 – Network for Becker (2005). The network models the full hippocampal loop: EC,
DG, CA3 and CA1. It is set up as an autoencoder: the EC population is separated into an input
and an output population of same size. Neurogenesis is modeled by either adding new units
to the DG population, or replacing some of the existing units. (Reproduced with permission
from Figure 1 of Becker (2005).)

(hence highly similar). Additive neurogenesis is shown to promote recall of both sets of input

patterns, with better recall for more units added in the DG. On the other hand, replacement,

or turnover, neurogenesis only promotes recall for the data set with highly similar patterns.

2.4.3 Avoidance of catastrophic interference

Wiskott et al. (2006) have proposed that adult neurogenesis could be a solution to avoid catas-

trophic interference in the dentate gyrus. They used an abstract model consisting of an input

layer (representing layer II of EC), which is connected to an hidden layer (corresponding to

DG/CA3), which is in turn connected to an output layer (layer V/VI of EC), see Figure 2.7. It is

thus a reduced and simplified version of the circuit in Becker (2005). The network is fully feed-

forward with linear units, hence it has no particular dynamics and can be solved analytically

(as described in Wiskott et al. (2004)). The network is set as an autoencoder: the output layer

contains as many neurons N as the input layer and aims to reconstruct the input as best as

possible. The hidden layer contains M units with M < N , so the input has to be compressed in

an optimal way to keep most of the information. The weight matrices for encoding (from input

to hidden) and decoding (from hidden to output) can be analytically computed such that

they minimize the reconstruction error of the input. The authors considered inputs coming

from two distributions, A and B . Distribution B is a rotated version of distribution A (only

the orientation in space is different, the eigenvalues of the covariance matrix are identical).

No synaptic plasticity rule is involved: the decoding weights are always set to the analytically

computed optimal values which correspond to the environment to which the network is
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Figure 2.7 – Network for Wiskott et al. (2006) and Appleby and Wiskott (2009). The network
is an autoencoder with an input layer (representing EC layer II) fully feedforwardly connected
to a hidden layer (corresponding to DG/CA3), which is fully feedforwardly connected to the
output layer (representing EC layer V/VI). Neurogenesis is modeled by adding units to the
hidden layer or replacing some existing units by new units. (Reproduced with permission
from Figure 1 of Wiskott et al. (2006).)

“adapted” (meaning from which the current input patterns are drawn). The encoding weights

are either set to the analytically computed optimal values from the same, or the other environ-

ment. The authors first show that an input from distribution A is not well reconstructed when

B-decoding weights are used, no matter if encoding weights are set to A- or B-weights. They

then show that if an additive model of neurogenesis is used, the reconstruction error is lower.

In that case, they start with a network containing M −L hidden units, and whose encoding

weights are fixed to A-weights. Then L units are introduced in the hidden layer, and their

encoding weights are set to B-weights (which are in addition set orthogonal to the encoding

weights of the first M −L hidden units). The network with neurogenesis reconstructs better

patterns drawn from any of the two distributions than the control network. Hence, this model

suggests that adult neurogenesis provides a way to represent novel features of the input space,

which are orthogonal to already stored features.

To make the model more biologically plausible, an extended model was presented in a follow-

up paper (Appleby and Wiskott (2009)). The main differences with the initial model are that:

(1) there is an expansion from EC to DG, meaning that M > N , in agreement with experimental

findings (Andersen et al. (2007)), (2) DG units are nonlinear, the DG layer is modeled as an

artificial single WTA network analogous to Becker (2005), and (3) besides additive neurogenesis,

turnover neurogenesis is modeled as well. In both cases, the total number of DG units at

the end of learning is bounded to M . In the turnover case, the DG units that are replaced

are randomly chosen. Similarly to the earlier paper, all weights are analytically computed

such that they minimize input reconstruction error. Additive neurogenesis appears to be

superior to turnover neurogenesis, as it permits learning of the input statistics of the second,

novel, environment while preserving accurate retrieval of inputs stemming from the first

environment. These results were confirmed in another study with realistic inputs, spatially

organized like grid cells (Appleby et al. (2011)).
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The view of Wiskott et al. (2006) is similar to the one of Becker (2005), as both suggest that adult-

born DGCs encode memory traces of novel inputs, thus promoting recall. However, Becker

(2005) hypothesizes that DG does not play any role during recall, which conflicts experimental

findings demonstrating that adult-born DGCs are required for recall (Kee et al. (2007); Gu et al.

(2012)). In addition, both Becker (2005) and Wiskott et al. (2006) propose a beneficial effect

of adult-born DGCs in recall no matter the similarity between inputs. This stands against

behavioral studies that have manipulated DG neurogenesis and shown a beneficial effect of

newborn DGCs for discriminating similar patterns, but not distinct patterns (Clelland et al.

(2009); Sahay et al. (2011a)).

2.4.4 Input discrimination

Consistent with the idea that adult-born DGCs are involved in encoding of novel inputs,

Temprana et al. (2015) further proposed that inhibition from local interneurons is crucial

for shaping small non-overlapping receptive fields spanning the (novel) input space. They

supported their idea with a simple model. EC input units are connected to DG units through

feedforward weights that are randomly initialized to nonzero values. Inputs are presented

to the network by setting the activity of the EC units accordingly. Activity is propagated to

the DG units, whose nonlinear activity depends on a value of inhibition which is set based

on the overall DG activity. Hence a soft WTA is implemented even though interneurons are

not explicitly modeled. For each input presentation, the feedforward weights are learned

according to a Hebbian rule, and the weight vectors are normalized at each time step to avoid

runaway dynamics of the weights. The authors showed that the level of inhibition during

learning lead to different outcomes concerning the receptive fields of the DG units. With

low inhibition, DG units develop wide receptive fields which are overlapping between units.

With high inhibition, most DG units are always silent (nonexistent receptive fields) and the

whole input space is represented by a few units with large, but non-overlapping, fields. The

best outcome occurs when inhibition is gradually enhanced from a low to a high value, thus

giving rise to DG units with small non-overlapping fields. Hence different inputs can be

discriminated.

2.4.5 Temporal separation

Building on the observation that adult-born DGCs have enhanced excitability early in their

maturation, Aimone et al. (2006) postulated that they rather deteriorate the pattern separation

function of the dentate gyrus, because they are active for all temporally proximal events,

irrespective of the extent of their contextual similarity. Hence, they suggested that mature

DGCs are responsible for pattern separation, while newborn DGCs promote temporal pattern

integration by associating temporally proximal events (in a timescale of hours/days). They

implemented a complex model to support this idea (Aimone et al. (2009)). It consists in

a spiking network made of 6 neuronal populations of conductance-based model neurons.

Lateral EC and medial EC populations represent the contextual and spatial input, respectively.
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They are feedforwardly connected to DGCs and inhibitory Basket cells, which are recurrently

connected with excitatory Mossy cells and inhibitory Hilar cells. The only plastic connections

are the excitatory connections to DGCs, namely from lateral EC, medial EC and Mossy cells.

The rate of weight change is determined by the age of the synapses. Synapses are formed in an

age- and experience-dependent manner, and initialized at random strengths. They are learned

according to a plasticity rule which has a Hebbian component, but which also depends on

a preset rate of synapse maturation. In addition, connection weights are hard bounded to

minimal and maximal values, which depend on the maturation stage of the corresponding

synapses. A network with additive neurogenesis in the DGC population was compared to a

control network without neurogenesis. For any similarity between EC input patterns (=events),

when events where temporally proximal, the DGC population of the control network had

better pattern separation abilities than the DGC population of the network with neurogenesis.

Conversely, when events were temporally distant, the higher the rate of neurogenesis, the

better the pattern separation in the DGC population. Furthermore, for temporally proximal

events, the extent of temporal pattern integration negatively correlates with the similarity

between EC firing patterns, indicating that adult-born DGCs particularly promote pattern

integration for very distinct input patterns.

2.5 Open questions

In this work, I address some of the above puzzling observations and investigate the following

two questions: First, what is the functional role of the switch from lateral excitation to lateral

inhibition in adult DG neurogenesis? And second, why are newborn DGCs only relevant for

novel stimuli having a high degree of similarity with old ones?

While experimental results suggest that the switch from excitation to inhibition of the GABAer-

gic input onto adult-born DGCs is crucial for their integration into the preexisting circuit

(Ge et al. (2006)), and for proper behavior (Furukawa et al. (2017)), it remains unclear why

such a link between channel properties and behavior arises. To my knowledge, none of the

previous modeling studies ever took this mechanism into account to examine if it could have

an effect on integration of newborn DGCs into a preexisting network. Temprana et al. (2015)

did show with a model that a gradual change of inhibition from low to high levels enhances the

fine-grain discrimination of novel inputs, but they used a simplified model where newborn

DGCs were born already connected with random weights to the preexisting circuit. The model

in Temprana et al. (2015), as all the other models I reviewed, did not address the question of

how newborn DGCs grow connections to neighboring neurons. They bypassed this aspect by

simply setting random weights to those connections.

Besides, experimental observations reveal that adult dentate gyrus neurogenesis improves

behavioral pattern separation performance only if the stimuli that have to be discriminated are

similar, but not if they are distinct (Clelland et al. (2009); Sahay et al. (2011a)). However, it is still

unclear how adult-born DGCs impact pattern separation, if it is through a cell-autonomous
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function as individual encoding units, or through a modulatory role (Sahay et al. (2011b);

Aimone et al. (2011)). Becker (2005) already showed with a model that newborn DGCs could

encode distinct memory traces for highly similar inputs, hence promoting pattern discrimi-

nation of similar inputs. However, the same model promoted a comparable improvement of

pattern separation of distinct inputs with more newborn DGCs. Therefore, it cannot explain

the differential behavioral outcomes for similar versus distinct stimuli. To my knowledge, all

previous models showed a beneficial effect of dentate gyrus neurogenesis, be it through an

additive or a turnover process, by promoting input discrimination and avoidance of catas-

trophic interference. Yet, none of them elucidates the different outcomes that are observed

behaviorally when inputs that have to be discriminated are similar or distinct, and none of

them connects the GABAergic switch from excitation to inhibition with the network function

of adult-born DGCs.
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3 Classification using competitive net-
works

3.1 Introduction

Unsupervised competitive learning is widely used in artificial intelligence to perform clus-

tering of input patterns into a few categories, thus providing generalization or compression

of the input (reviewed in Grossberg (1987b); Hertz et al. (1991); Du (2010)). In these types of

networks, an input layer is fully feedforwardly connected to an output layer through plastic

excitatory connections (Figure 3.1). The “competitive” aspect stems from the recurrent in-

hibitory connections between output units. They ensure that when an output unit is highly

activated, it silences activity of other output units. In some instances of competitive networks,

output units self-excite themselves.

The basic idea is that upon presentation of several patterns, the competitive network unsu-

pervisedly learn to cluster input into different categories. After learning of the feedforward

connections, input patterns that are similar to each others activate the same output unit,

whereas input patterns that are different from each other activate different output units.

Therefore each output unit is said to be selective for a category, or cluster, of input patterns,

and the input patterns can ultimately be classified into several categories.

The simplest form of a competitive network is the single winner-take-all (WTA) network.

As its name suggests, for any input pattern presentation, a single output unit is active, and

it silences all the other output units through the recurrent inhibitory connections. Other

forms of competitive networks exist, where ensembles of output units get activated for a

given input pattern. Hence classification is distributed over the output units, as different

ensemble of output units are selective for different categories. If the output units have a step

gain function (e.g. activity is either 0 or 1) and the number of active output units is set to k for

any input pattern, the network is called k-WTA. On the other hand, if the output gain function

is continuous (e.g. hyperbolic tangent, which is nonlinear and bounded but differentiable),

the number of output units in each ensemble cannot be easily determined, so it is called a soft

WTA network.
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Figure 3.1 – Simple competitive network. An input layer, with firing rate vector ~x of input
units (black, firing rate of single unit is x j ) has all-to-all feedforward connections with an
output layer, with firing rate vector ~y of output units (blue, firing rate of single unit is yi )
which have all-to-all recurrent inhibitory connections (red). Connections with a triangular
end (black) are excitatory, connections with a round end (red) are inhibitory. wi j denotes the
connection weight from unit j to unit i .

In single WTA settings, the maximum number of categories that can be classified is given by

the number of output units in the network. Therefore it is good to know beforehand how many

categories are present in the input data to build the network architecture accordingly. In some

instances, due to random initialization of the feedforward weight vectors onto the output

units, some of the output units might never win the competition (remain dead units), so the

network clusters the input patterns in fewer categories. Instead, in soft WTA settings, there is

no need to know how many categories are present in the input data to design the network,

because an ensemble of units wins for each input pattern. It is thus more modular.

3.2 Importance of normalization

During presentation of a patternµ, the activity of the input layer is given by:~xµ = (
xµ1 , xµ2 , ..., xµN

)
,

with xµj Ê 0 ∀ j , where N is the number of input units. For the patterns to be comparable, they

should be normalized to the same L2-norm:

||~xµ|| =
√√√√ N∑

j=1

(
xµj

)2 =
p

L ∀µ (3.1)

with L > 0.

We note here that in the particular case where the input patterns are binary (elements are 0 or

1), L1-normalization ensures L2-normalization. Indeed, the L1-norm is given by:

||~xµ||1 =
N∑

j=1
|xµj | = L ∀µ (3.2)
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a b

Figure 3.2 – Importance of weight vector normalization. The input pattern (~x, black), the
feedforward weight vector onto a first output unit (~w1, blue), and the feedforward weight
vector onto a second output unit (~w2, red) are represented, as well as the angle α (resp. β)
between~x and ~w1 (resp. ~w2). Vectors with arrow end on the dotted circle have the same norm.
(a) Case where the weight vectors are normalized. (b) Case where the weight vectors are not
normalized: the red arrow is much longer than the blue arrow. Note that the input pattern
does not have to have the same norm as the weight vectors for the argument.

with L an integer positive value which denotes the number of active input units, then the

L2-norm of the input patterns is also identical (||~xµ|| =p
L ∀µ).

The activity of any output unit i upon presentation of pattern~x is defined as:

yi = f

(
N∑

j=1
wi j x j

)
= f (~wi ·~x) (3.3)

with f a gain function which is monotonously increasing, wi j the connection weight between

input unit j and output unit i , and ~wi the feedforward weight vector onto output unit i (the

i th row of the connectivity matrix between input and output layers).

In a single WTA setting the output unit which wins the competition is, according to equa-

tion (3.3), the one which has the largest dot product between its feedforward weight vector ~wi

and the input pattern~x. Therefore, it is crucial that all feedforward weight vectors are bounded

to the same norm to ensure fair competition between output units. Indeed, if an input pattern

is presented to the network, we would like that the output unit whose feedforward weight

vector aligns best with the input pattern wins the competition. The norm of the feedforward

weight vectors does not need to be equal to the one of the input patterns, though.

Figure 3.2 provides an illustrative example. We have α<β, hence the output unit receiving the

blue ~w1 feedforward weight vector should intuitively win the competition because it is closer

to~x than the red ~w2 feedforward weight vector. However, according to equation (3.3) the unit
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Figure 3.3 – BCM learning rule. The weight update ∆wi j as a function of the postsynaptic
activity yi is plotted for a given value of the presynaptic activity x j and two different neuronal
activity thresholds θi and θ∗i . When the postsynaptic activity is smaller than the activity thresh-
old (yi < θi ) the weights undergo LTD, otherwise (yi > θi ) they undergo LTP. The maximum
LTD value is −θi

4 , hence the blue curve shows smaller LTD updates than the red dotted curve
because θi < θ∗i .

with ~w1 wins only if ~w1 ·~x > ~w2 ·~x. Using the definition of the dot product, we have:

~w1 ·~x = ||~w1|| ||~x|| cos(α) (3.4)

~w2 ·~x = ||~w2|| ||~x|| cos
(
β
)

(3.5)

Without loss of generality, let’s assume that ||~x|| = ||~w1|| = 1. Therefore, we obtain:

~w1 ·~x = cos(α) (3.6)

~w2 ·~x = ||~w2||cos
(
β
)

(3.7)

Here, it is clear that if ||~w2|| = ||~w1|| (normalized case) the first output unit wins the competi-

tion, as it aligns best with the input pattern (cos(α) > cos
(
β
)

because α<β), see Figure 3.2a.

However, if ||~w2|| > ||~w1|| (non-normalized case), it is possible that the second output unit

wins the competition, even though its feedforward weight vector is farther away from the input

pattern than the one from the first output unit, see Figure 3.2b. For example if β= 2α= π
3 , it is

sufficient that ||~w2|| >
p

3 for the second output unit to win the competition (because then

~w1 ·~x = cos(α) =
p

3
2 < ~w2 ·~x = ||~w2||cos

(
β
)= 1

2 ||~w2||).

3.2.1 Example: Runaway dynamics of the weights with the BCM learning rule

Here we illustrate the importance of proper normalization of the feedforward weight vectors

with a learning rule which is frequently used for biologically plausible networks: the BCM

learning rule (Bienenstock et al. (1982)), see Figure 3.3:

∆wi j = yi
(
yi −θi

)
x j −εwi j (3.8)
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with yi the activity of the output unit i , x j the activity of the input unit j , ε a scalar that

determines the amplitude of weight decay, and θi a neuronal activity threshold. The BCM rule

is biologically plausible, because it is local (e.g. it uses information available at the synapse:

the presynaptic and postsynaptic activity) and can be implemented online. In addition, it

contains a “triplet” term (y2
i x j ) which has been shown to be needed to fit experimental data

(Pfister and Gerstner (2006)).

Let us focus on a neuron i with a single input j , and a monotonically increasing function f

in equation (3.3). The derivative of equation (3.8) with respect to the postsynaptic activity is

given by:

d
(
∆wi j (yi )

)
dyi

= x j
(
2yi −θi

)
(3.9)

If ε is small enough, the last term in equation (3.8) is negligible, hence the fixed points and

their stabilities are (keeping in mind that x j Ê 0 ∀ j , and θi Ê 0 ∀i ):

• yi = 0: Stable fixed point because

d
(
∆wi j (yi )

)
dyi

∣∣∣∣∣
yi=0

=−x jθi < 0 (3.10)

• yi = θi : Unstable fixed point because

d
(
∆wi j (yi )

)
dyi

∣∣∣∣∣
yi=θi

= x jθi > 0 (3.11)

so that wi j increases and yi increases as well because of equation (3.3). The limitations of

these qualitative arguments have been discussed in Zenke et al. (2015) (Turrigiano and Nelson

(2000); Vitureira et al. (2012)).

The neuronal activity threshold θi is frequently defined as a sliding threshold, which depends

on the average postsynaptic firing activity 〈yi 〉. Because θi depends on the activity history of

the postsynaptic neuron, it provides a solution to the stability-plasticity dilemma in neuronal

networks. Indeed, if a postsynaptic neuron remains silent for some time, its activity threshold

decays to 0. As the activity threshold gets lower, the postsynaptic neuron has higher chance

to have an activity yi > θi , hence increase its weights (∆wi j > 0 for yi > θi ). Conversely, if a

postsynaptic neuron is highly active (yi > θi ) for some time, its sliding threshold increases,

making it harder for it to be active in the future (see Figure 3.3).

Despite its nice properties, the standard BCM learning rule is not appropriate in unsupervised

competitive settings. Indeed, if all output units start with an identical L2-norm of their

feedforward weight vectors, they initially compete fairly for activation. However, as long as

one output unit wins the competition, its feedforward weight vector grows (∆wi j > 0) to a

larger L2-norm. Hence the same output unit has higher chance to win again the competition
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a b

Figure 3.4 – Standard competitive learning. When a standard competitive learning rule is
used, the feedforward weight vector ~w (blue) onto the winning output unit is updated in the
direction of the input pattern (~x, black). (a) Let’s assume that at time t , ||~w (t )|| = ||~x|| = p

L.
The weight update ∆~w (t ) moves the feedforward weight vector onto the winning output unit
in the direction of the input pattern~x. (b) At time t +1, the feedforward weight vector, ~w (t+1)

of the winning output unit has a smaller norm, and aligns better with the input pattern. The
new weight update, ∆~w (t+1), is thus smaller.

for the next input pattern, therefore increasing even more its feedforward weight vector. This

positive feedback loop yields to an unbounded increase of the feedforward weight vector onto

one output unit. Therefore that output unit always wins the competition (Figure 3.2b), so the

input patterns cannot be categorized.

3.3 Unsupervised competitive learning

At each input pattern presentation, the feedforward weight connections are learned. The

output units whose feedforward weight vectors align best with the input pattern win the

competition and silence all other output units through the inhibitory recurrent connections.

Therefore if a Hebbian learning rule such as the BCM rule (Bienenstock et al. (1982)) is used,

the winning output units are the only ones which update their weights. Here, using a single

WTA setting for simplicity, we show that the feedforward weight vector onto the winning

output unit moves in the direction of the presented input pattern.

3.3.1 Standard competitive learning rule

The standard competitive learning rule reads (Hertz et al. (1991)):

∆wi j = ηyi
(
x j −wi j

)
(3.12)

The weight update of the connection between input unit j and output unit i depends on a

learning rate η, the presynaptic activity x j , the postsynaptic activity yi , and the current weight
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of the connection wi j . Only the winning output unit i∗ updates its weights, as yi = 0 ∀i 6= i∗.

This rule contains a heterosynaptic term, −ηyi wi j , which depends on the postsynaptic activity

only and prevents runaway dynamics of the weights. This rule can also be written in a vector

form:

∆~wi = ηyi (~x − ~wi ) (3.13)

where ~wi is the feedforward weight vector onto output neuron i .

It can be seen mathematically that this learning rule updates the feedforward weight vector

onto each output unit in the direction of the input patterns for which it is the winner. Indeed, at

convergence, the expectation of the weight change over all input patterns is zero: 〈∆~wi 〉 = 0 ∀i .

Hence, each output unit becomes selective for the center of mass of all input patterns for

which it is the winner: ~wi k =~xk
CM for the winning output unit i k in response to patterns from

cluster k,~xk .

Figure 3.4 illustrates how the feedforward weight vector onto the winning output unit con-

verges to the presented input pattern. The feedforward weight vector onto each output unit

converges similarly to the input pattern it is closest to. If η is set to 1
yi∗

(if output units have

binary activity, yi∗ = c > 0 ∀i∗, so η= 1
c ), the weight vector ~w aligns with the input pattern~x

in one learning step. Therefore the weight vector would jump for each pattern presentation

for which it wins the competition, so the network learning would be temporally unstable (it

would never reach convergence). Hence to have stable learning, η should be set small enough.

Convergence of the feedforward weight vector onto a particular input pattern thus requires a

long input presentation.

Noteworthy, as observable in Figure 3.4, even if all feedforward weight vectors are initialized

to the same norm, during the course of learning, their norm is varying. If the environment is

not well-behaved, it is possible that it poses some problem, as competition between output

units is not fair anymore (Section 3.2). Other learning rules ensure that the feedforward weight

vectors are always normalized to the same norm.

3.3.2 Oja’s learning rule

Oja’s learning rule (Oja (1982)) is a variant of unsupervised learning rules that ensures that

all output units get a feedforward weight vector whose L2-norm is equal to 1 under some

conditions, as will be explained below. It reads (Figure 3.5):

∆wi j = ηyi
(
x j − yi wi j

)
(3.14)

The only difference with the standard competitive rule is that the heterosynaptic term,

−ηy2
i wi j , depends on the square of the postsynaptic activity. Oja’s learning rule is equiv-

alent to the standard competitive learning rule when the activity of the output units is binary

(0 or 1, step gain function).
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Figure 3.5 – Oja’s learning rule. The weight update ∆wi j as a function of the postsynaptic
activity yi is plotted for a given value of the presynaptic activity x j and two different weight
values wi j and w∗

i j . When the weight is smaller than the presynaptic activity (wi j < x j , blue
curve) we have an LTP-dominated regime. On the contrary, when the weight is bigger than
the presynaptic activity (w∗

i j > x j , red dotted curve) we have an LTD-dominated regime. The

maximum LTP value is
x2

j

4wi j
, hence the blue curve shows bigger LTP updates than the red

dotted curve because wi j < w∗
i j .

If the output units have a linear gain function, it can be shown that Oja’s learning rule enforces

all feedforward weight vectors to have an L2-norm of 1. Indeed, at convergence, each weight

has reached a stable value, hence the expectation of the weight update over the presentations

of input patterns is 〈∆wi j 〉 = 0 ∀i , j . Let’s consider a single output unit for simplicity, and thus

denote by wi the weight from input unit i to that single output unit. Then, at equilibrium:

0 = 〈∆wi 〉 = 〈y
(
xi − y wi

)〉 = 〈y xi − y2wi 〉

= 〈
(

N∑
j=1

w j x j

)
xi −

(
N∑

j=1
w j x j

)(
N∑

k=1
wk xk

)
wi 〉

=
N∑

j=1
〈xi x j 〉w j −

(
N∑

j=1,k=1
w j 〈x j xk〉wk

)
wi

=
N∑

j=1
Ci j w j −

(
N∑

j=1,k=1
w j C j k wk

)
wi (3.15)

where we have defined the matrix C = 〈~x~xT 〉. Its elements are given as an expectation over the

input patterns: Ci j = 〈xi x j 〉. Therefore it is a symmetric matrix (Ci j =C j i ). We now look at the

expectation of the whole feedforward weight vector update by stacking the expected weight

update of each of its elements (〈∆wi 〉):

~0 = 〈∆~w〉 =C ~w − (
~wT C ~w

)
~w (3.16)
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It implies that:

C ~w = (
~wT C ~w

)
~w

C ~w =λ~w (3.17)

with λ= ~wT C ~w a scalar. Therefore, ~w is an eigenvector of C , with eigenvalue λ. So we have:

λ= ~wT (C ~w) = ~wT (λ~w) =λ(
~wT ~w

)=λ (||~w ||)2 (3.18)

where the second equality comes from equation (3.17), and the third equality from the fact

that λ is a scalar. According to equation (3.18), we have (||~w ||)2 = 1. Therefore Oja’s learning

rule yields feedforward weight vectors whose L2-norm is equal to 1 when the gain function of

the output units is linear.

For arbitrary gain functions of the output units, we can still show that Oja’s learning rule

provides feedforward weight vectors whose L2-norm is bounded under some constraints.

Analogously to Section 3.2.1, let us focus on a neuron i with a single input j , whose activity is

x j Ê 0. In this particular case, the fixed points of the learning rule (∆wi j = 0) and their stability

are determined. The derivative of equation (3.14) with respect to the postsynaptic activity is

given by:

d
(
∆wi j (yi )

)
dyi

= η(
x j −2wi j yi

)
(3.19)

The stability of the fixed points can thus be determined:

• yi = 0: Unstable fixed point because:

d
(
∆wi j (yi )

)
dyi

∣∣∣∣∣
yi=0

= ηx j > 0

• yi = x j

wi j
: Stable fixed point, because:

d
(
∆wi j (yi )

)
dyi

∣∣∣∣∣ x j
wi j

=−ηx j < 0

Therefore, during presentation of a single input pattern, the weight wi j moves towards its

stable fixed point wi j = x j

yi
over the course of learning.

We will now compute the expectation of the L2-norm of the feedforward weight vectors at

convergence of learning, based on a generalized version of Oja’s equation (3.14) with power p

and amplitude α of the heterosynaptic term:

∆wi j = η
(
yi x j −αy p

i wi j
)

(3.20)
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Oja’s learning rule is a special case with p = 2 and α= 1. The expectation of the weight update

over all input pattern presentations reads:

〈∆wi j 〉 = η
(〈yi x j 〉−α〈y p

i wi j 〉
)

(3.21)

At convergence of learning, the expectation of the weight update is zero: 〈∆wi j 〉 = 0, hence:

0 = η(〈yi x j 〉−α〈y p
i 〉wi j

)
⇒ wi j =

〈yi x j 〉
α〈y p

i 〉
(3.22)

We keep in mind that the activity yi of output unit i is a function of its input ai (equation (3.3)):

yi = f (ai ) = f
(∑N

j=1 wi j x j

)
. Therefore, if the gain function f is invertible:

ai = f −1 (
yi

)
N∑

j=1
wi j x j = f −1 (

yi
)

(3.23)

The gain function f is invertible everywhere except at its zero values. For example, if a

piecewise linear gain function is chosen, it is invertible at all its linear sections, but not at the

breakpoints between linear sections.

The expected L2-norm of the feedforward weight vector is then given by:√√√√ N∑
j=1

w2
i j =

√√√√ N∑
j=1

wi j
〈yi x j 〉
α〈y p

i 〉

=
√√√√ 1

α〈y p
i 〉

〈yi

(
N∑

j=1
wi j x j

)
〉

=
√

1

α〈y p
i 〉

〈yi f −1(yi )〉 (3.24)

For a special case with Oja’s learning rule (p = 2, α = 1) and a linear gain function f : yi =∑N
j=1 wi j x j and f −1(yi ) = yi , we recover (as above):

√√√√ N∑
j=1

w2
i j =

√
1

1〈y2
i 〉

〈yi yi 〉 = 1 (3.25)

For an arbitrary gain function and an arbitrary value of the power p, however, convergence of

the L2-norm should be investigated case by case. For example, in a single WTA settings with

step gain function for the output units (hence yi = 1 when output unit i is a winner, yi = 0

otherwise), Oja’s learning rule ensures that the L2-norm of all feedforward weight vectors is
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identical. However, in more complicated settings, such as soft WTA, a classical Oja’s learning

rule cannot be used because different winners for the same input pattern can have different

activity values yi , hence the feedforward weight vectors are not all normalized to the same

norm.

3.3.3 Temporally unstable learning

During unsupervised competitive learning with step gain function, the vector of feedforward

weights onto a given output unit converges to the direction of the center of mass of the

cluster of input patterns for which it is a winner. Therefore, with constant learning rate, the

feedforward weight vector will always move around the center of mass of the patterns it is

selective for, as presentation of each pattern of the cluster will pull the weight vector towards

it. Furthermore, if some clusters are overlapping or very close to each others, it is possible

that some output units switch their selectivity from one cluster to the other over the course of

learning. Hence, for arbitrary input patterns, unsupervised competitive learning is temporally

unstable. Grossberg has demonstrated that stability and convergence of incremental updating

can only be proven if the input space is very sparse, meaning that the minimal overlap between

two patterns of the same cluster is bigger than the maximal overlap between patterns of

different clusters (Grossberg (1987b)).

To overcome the issue of temporally unstable learning, the learning rate can be decreased over

time. It reduces the update of the feedforward weight vectors upon each input pattern presen-

tation, consequently also avoiding a change of the winning output unit upon presentation of

the same input pattern at different time points during learning.

3.4 Initialization of the weights

In standard unsupervised competitive learning, the feedforward weight vectors onto each

output unit are randomly initialized. They cannot start with zero elements, otherwise none

of the output units would ever be activated, because their sole source of activation comes

from the input layer. In addition, they should be initialized to the same L2-norm to ensure fair

competition between output units (see Section 3.2).

Depending on the random initialization, different cases arise during learning, see Figure 3.6.

Ideally, the feedforward weight vectors are each initialized relatively close to different clusters

of inputs, therefore upon learning they each become selective for a different cluster (Fig-

ure 3.6a). However, some instances of random initialization might not be optimal for perfect

clustering of the input patterns, hence subclustering or dead units issues may happen.

Subclustering occurs if two (or more) feedforward weight vectors are initialized close to the

same input cluster (Figure 3.6b). In this case, they will each become selective for a subset of

that cluster, and represent different prototypes of the same category. As it provides a more
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Figure 3.6 – Outcome for different initializations of the feedforward weight vectors. Nor-
malized input patterns are represented by blue dots on the surface of a hypersphere. The
dimension of the hypersphere corresponds to the dimension of the input layer. We restrict
ourselves to positive input activities, hence the input patterns are all located on the positive
quadrant of the hypersphere. Arrows represent the feedforward weight vectors onto three
output units. For simplicity, they all have a norm equal to the one of the input patterns (hence
the arrow ends are on the surface of the hypersphere as well). Upon learning, they move
towards the center of mass of the input patterns for which they are the winner. A case where
one output unit has to win the competition for each input pattern is considered. (a) Ideal
initialization: Each weight vector becomes selective for a different cluster, more specifically the
one they were initialized the closest to (and hence for which they always won the competition).
(b) Subclustering: Two weight vectors (yellow and red) were initialized close to the top cluster,
therefore they alternatively won the competition for some patterns of the top cluster, and
became selective for two different subsets of the same cluster. The orange weight vector is
initialized further away, hence it becomes selective for the center of mass of the two remaining
clusters. (c) Dead unit: One weight vector (yellow) is initialized very far from the subspace
where the input patterns lie, hence it is never updated because the corresponding output unit
never wins the competition. Instead, the output unit with the orange weight vector wins the
competition for all input patterns of the two bottom clusters, therefore the orange weight
vector becomes selective for the center of mass of the two bottom clusters.
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fine-grained representation of that cluster, it is not a problem in itself. However, if the network

had been designed as a single WTA network with as many output units as the number of input

categories to classify, it implies that at least one category cannot be properly represented by

the network. More specifically, if the network was set up in a way that enforces a winning

output unit for each pattern presentation, at least one output unit becomes selective for a

mixture of several clusters (case in Figure 3.6b). On the other hand, if a winner is not enforced,

some clusters of input patterns may never succeed in activating any output unit, so they are

not represented by the network.

Dead units are output units that never get activated by presentation of any input pattern. As

they never win the competition, their weights are never updated in the direction of the input

patterns, hence they always stay silent. Dead units arise if some feedforward weight vectors

are initialized in a direction that is too far from the subspace of input patterns (Figure 3.6c).

Dead units do not help network computation, therefore they should be avoided.

3.4.1 Algorithmic solutions to the problem of dead units

Dead units are a common issue in unsupervised competitive learning, and several algorithmic

strategies have been developed to avoid this problem (reviewed in Hertz et al. (1991)).

The first and most straightforward solution is to use smart initialization of the feedforward

weight vectors. By smart, it is meant that each weight vector is initialized close to a cluster of

input patterns (ideal case in Figure 3.6a). They can be each set to one input pattern of each

cluster, or even directly to the center of mass of the clusters. However, this strategy is only

applicable if there is knowledge about the input patterns, which is not the case in unsupervised

settings.

Second, in the leaky learning strategy every output unit updates its feedforward weights

(Rumelhart and Zipser (1985); Grossberg (1987b)). The winner of the competition uses a large

(fast) learning rate, while the losers use a smaller (slower) learning rate. In this way, all output

units move towards the presented input pattern, to different extents. It is not a Hebbian rule

anymore, as silent postsynaptic output units still update their feedforward weights.

Third, in the “conscience” strategy, every output unit is assigned an activity threshold. It is

increased for the winning output unit, to make it harder for that same output unit to win again

the competition in the future. The activity thresholds of the losing output units are decreased,

therefore making them more likely to win the competition for subsequent input patterns, even

if they were initialized very far from the subspace of input patterns. This algorithm can even

be set up in such a way that every output unit wins for the same proportion of input patterns

on average (Grossberg (1976); Bienenstock et al. (1982); Rumelhart and Zipser (1985); DeSieno

(1988)).
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3.5 Open questions

In this work, I investigate whether adult dentate gyrus neurogenesis might provide a biological

solution to the problem of dead units in unsupervised competitive learning.

The dentate gyrus is frequently modeled as a WTA network because of its numerous inhibitory

recurrent connections (Acsády et al. (1998); Amaral et al. (2007)) and its sparse activity (Chawla

et al. (2005)). In addition, it has been shown to be necessary for discrimination of similar (but

not distinct) stimuli (Gilbert et al. (2001); Hunsaker and Kesner (2008)), and it receives most of

its input from entorhinal cortex (Amaral et al. (2007)) through perforant pathway connections

which exhibit Hebbian plasticity (Schmidt-Hieber et al. (2004); Ge et al. (2007); McHugh et al.

(2007)). Therefore, it is natural to model the whole circuit from entorhinal cortex to dentate

gyrus using unsupervised competitive learning.

Several algorithmic approaches have been developed to avoid that some units of the WTA

network never win the competition and remain dead units in unsupervised learning settings

(Hertz et al. (1991)). However, most of these strategies lack a biological interpretation. The

adult-born dentate granule cells have been shown, however, to promote discrimination of

similar (but not distinct) stimuli (Clelland et al. (2009); Sahay et al. (2011a)), even though they

represent only a small proportion of the whole dentate granule cells population (Van Praag

et al. (1999); Cameron and McKay (2001)). Therefore, they must be integrated in the preexisting

circuit in a way that ensure that they become functional units, and help computation of the

network. To my knowledge, none of the previous modeling studies has taken into account

the particular scheme of integration of adult-born dentate granule cells to investigate if it

facilitates that newborn cells do not remain dead units when behavioral demands are present.

Besides, normalization of the feedforward weight vectors onto the output units is critical in un-

supervised competitive learning to ensure fair competition between output units (Section 3.2).

Some biologically plausible learning rules already make sure that all weight vector keep the

same norm (Oja (1982)). However, they fulfill this requirement only in particular conditions

of the network and gain function of its units. In addition, most of the learning rules that are

used for modeling neurogenesis bypass this issue by simply artificially normalizing the weight

vectors at every learning step (Section 2.4).

Here, to stay closer to biology, we would like to model the entorhinal cortex to dentate gyrus cir-

cuit as a soft WTA network with assemblies of units active for each input pattern presentation.

Therefore, we need to implement an unsupervised learning rule for the feedforward con-

nections which is biologically plausible and ensures normalization of all feedforward weight

vectors to the same norm despite the different activity levels of output units for different input

pattern presentations.
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4 Integration of adult-born dentate
granule cells

4.1 Introduction

In the adult mammalian brain, neurogenesis, the creation of new neurons, is restricted to a

few brain areas, such as the olfactory bulb and the dentate gyrus (Deng et al. (2010)). The

dentate gyrus is the entry point of input from cortex, primarily entorhinal cortex (EC), to

the hippocampus (Amaral et al. (2007)), which is believed to be a substrate of learning and

memory (Jarrard (1993)). Adult-born cells in dentate gyrus mostly develop into dentate granule

cells (DGCs), the main excitatory cell type (Deng et al. (2010)).

The properties of rodent adult-born DGCs change as a function of their maturation stage,

until they become indistinguishable from other mature DGCs at approximately 8 weeks

(Deng et al. (2010); Johnston et al. (2016)) (Figure 2.2). Many of them die before they fully

mature (Dayer et al. (2003)). Their survival is experience-dependent, and depends on NMDA

receptor activation (Tashiro et al. (2006)). Initially, newborn DGCs have enhanced excitability

(Schmidt-Hieber et al. (2004); Li et al. (2017)) and stronger synaptic plasticity than mature

DGCs, reflected by a larger LTP amplitude and a lower threshold for induction of LTP (Wang

et al. (2000); Schmidt-Hieber et al. (2004); Ge et al. (2007)). Furthermore, after 4 weeks of

maturation adult-born DGCs have only weak connections to interneurons, while at 7 weeks of

age their activity causes strong feedback inhibition of mature DGCs (Temprana et al. (2015)).

Newborn DGCs receive no direct connections from mature DGCs (Deshpande et al. (2013);

Alvarez et al. (2016)), (yet see Vivar et al. (2012)), but are indirectly activated via interneurons

(Alvarez et al. (2016); Heigele et al. (2016)). During maturation, the γ-aminobutyric acid

(GABAergic) input from interneurons to adult-born DGCs switches from excitatory in the

early phase to inhibitory in the late phase of maturation (Deng et al. (2010)) (Figure 2.2).

Analogous to a similar transition during embryonic and early postnatal stages (Wang and

Kriegstein (2010)), this transition is caused by a change in the expression profile of chloride

cotransporters, from NKCC1 in the early phase to KCC2 in the late phase (Ben-Ari (2002);

Owens and Kriegstein (2002); Ge et al. (2006)). Importantly, it has been shown that GABAergic

inputs are crucial for the integration of newborn DGCs into the preexisting circuit (Ge et al.
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(2006); Chancey et al. (2013); Alvarez et al. (2016); Heigele et al. (2016)).

Adult-born DGCs are preferentially reactivated by stimuli similar to the ones they experienced

during their early phase of maturation, up to 3 weeks after cell birth (Tashiro et al. (2007)).

Even though the amount of newly generated cells per month is rather low, 3 to 6% of the

total DGCs population (Van Praag et al. (1999); Cameron and McKay (2001)), adult-born

DGCs are critical for behavioral pattern separation (Clelland et al. (2009); Sahay et al. (2011a);

Jessberger et al. (2009)), in particular in tasks where similar stimuli or contexts have to be

discriminated (Clelland et al. (2009); Sahay et al. (2011a)). However, the functional role of

adult-born DGCs is controversial (Sahay et al. (2011b); Aimone et al. (2011)). One view is

that newborn DGCs contribute to pattern separation through a modulatory role (Sahay et al.

(2011b)), via a combination of enhanced excitability (Schmidt-Hieber et al. (2004); Li et al.

(2017)), and absence of inhibition (Alvarez et al. (2016); Heigele et al. (2016)). Another view

suggests that newborn DGCs act as encoding units. This view is supported by the fact that

newborn DGCs have a critical window of maturation when they encode features of their

environment (Kee et al. (2007); Tashiro et al. (2007)). Yet, the mechanism by which they

promote pattern separation is still unknown. Some authors have even challenged the role

of newborn DGCs in pattern separation in the classical sense and have proposed a pattern

integration effect instead (Aimone et al. (2011)).

To address this controversy, we present a model of how newborn DGCs integrate into the pre-

existing circuit. Our results suggest that the switch from lateral excitation to lateral inhibition

during the maturation of newborn DGCs may play a crucial role for their proper integration

into the existing network of DGCs. Our model shows how the particular integration scheme of

newborn DGCs makes them particularly suitable to encode novel stimuli.

4.2 Methods

4.2.1 Network architecture and rate neurons dynamics

DGCs are the principal cells of the dentate gyrus. They mainly receive excitatory projections

from the entorhinal cortex through the perforant path and GABAergic inputs from local

interneurons, as well as excitatory input from Mossy cells. They project to CA3 pyramidal cells,

inhibitory neurons, and Mossy cells (Acsády et al. (1998); Henze et al. (2002); Amaral et al.

(2007); Temprana et al. (2015)). In our model, we omit Mossy cells and describe the dentate

gyrus as a competitive circuit consisting of NDGC dentate granule cells and NI GABAergic

interneurons (Figure 4.1). The activity of NEC neurons in EC represents an input pattern

~x = (x1, x2, ..., xNEC ), with xi Ê 0∀i because firing rates are positive quantities. As the perforant

path also induces strong feedforward inhibition in the dentate gyrus (Li et al. (2013)), we

assume that the effective EC activity is normalized, such that ||~x|| = 1 for any input pattern~x.

We use P different input patterns~xµ, 1 ÉµÉ P in the simulations of the model.

The EC neurons have excitatory all-to-all connections to the DGCs. In rodent hippocampus,

50



4.2. Methods

Figure 4.1 – Architecture of the biologically plausible network. EC neurons (black, rate x j )
are fully connected with weights wi j to DGCs (blue, rate νi ). DGCs and interneurons (red,
rate νI

k ) are mutually connected with probability p I E and pE I and weights w I E
ki and wE I

i k ,
respectively. Connections with a triangular end (black and blue) are glutamatergic, the others
(red) are GABAergic.

spiking of mature DGCs activate interneurons in DG, which in turn inhibit other mature DGCs

(Leutgeb et al. (2007); Temprana et al. (2015); Alvarez et al. (2016)). In our model, the DGCs are

thus recurrently connected with inhibitory neurons (Figure 4.1). Connections from DGCs to

interneurons exist with probability p I E and have a weight w I E . Similarly, connections from

interneurons to DGCs occur with probability pE I and have a weight wE I . All parameters are

reported in Table 4.1.

Before an input pattern is presented, all rates of model DGCs are initialized to zero. Upon

stimulation with input pattern~x, the firing rate νi of DGCs i evolves according to (Miller and

Fumarola (2012)):

τm
dνi

dt
=−νi + tanh

(
[Ii −bi ]+

L

)
(4.1)

where [.]+ denotes rectification: [a] = a for a > 0 and zero otherwise. L indicates steepness of

the tanh, bi is a firing threshold and Ii the total input to cell i :

Ii =
NEC∑
j=1

wi j x j +
NI∑

k=1
wE I

i k ν
I
k (4.2)

with x j the activity of EC input neuron j , wi j Ê 0 the feedforward weight from EC input neuron

j to DGC i , and wE I
i k the weight from inhibitory neuron k to DGC i . The sum runs over all

inhibitory neurons, but the weights are set to wE I
i k = 0 if the connection is absent. The firing

rate νi is unit-free and normalized to a maximum of 1, which we interpret as a firing rate of 10

Hz. We take the synaptic weights as unit-less parameters such that Ii is also unit-free.

51



Chapter 4. Integration of adult-born dentate granule cells

Mature DGCs

Newborn DGCs

0-1 1-2 2-3 3-4 5-6 6-7 7-8 8-9 9-104-5
Firing rate [Hz]

0
10
20
30
40
50
60
70
80

Pe
rc

e
n
ta

g
e
 [

%
]

90
100

Early phase

0-1 1-2 2-3 3-4 5-6 6-7 7-8 8-9 9-104-5
Firing rate [Hz]

0
10
20
30
40
50
60
70
80

Pe
rc

e
n
ta

g
e
 [

%
]

90
100

Late phasea b

Figure 4.2 – Firing rate distribution. Distribution of the percentage of DGCs (mean with 10th
and 90th percentiles) in each bin of firing rate upon presentation of MNIST patterns: (a) at
the end of the early phase of maturation, and (b) at the end of the late phase of maturation.
Percentages are obtained by normalizing by the number of neurons in each subpopulation
(79 mature neurons in dark grey, 21 newborn neurons in light grey).

The firing rate νI
k of inhibitory neuron k, is defined as:

τinh
dνI

k

dt
=−νI

k + [I I
k −p∗NDGC ]+ (4.3)

with p∗ a parameter which relates to the desired ensemble sparsity, and I I
k the total input

towards interneuron k, given as:

I I
k =

NDGC∑
i=1

w I E
ki νi (4.4)

with w I E
ki the weight from DGC i to inhibitory neuron k. (We set w I E

ki = 0 if the connection is

absent.) The feedback from inhibitory neurons ensures a sparse activity of model DGCs for

each pattern. With p∗ = 0.1 we find that more than 70 % of model DGCs are silent (firing rate

< 1 Hz (Senzai and Buzsáki (2017))) for each pattern presentation, and less than 10% are highly

active (firing rate > 9 Hz) (Figure 4.2), consistent with the experimentally observed activity

sparsity in dentate gyrus (Chawla et al. (2005)).

4.2.2 Plasticity rule

Projections from EC onto newborn DGCs exhibit Hebbian plasticity (Schmidt-Hieber et al.

(2004); Ge et al. (2007); McHugh et al. (2007)), and NMDA receptors in DGCs are necessary

for discrimination of similar contexts in a fear conditioning task in mice (McHugh et al.

(2007)). Therefore, in our model the connections from EC neurons to DGCs are plastic,

following a Hebbian learning rule which exhibits long-term depression (LTD) or long-term

potentiation (LTP) depending on the firing rate νi of the postsynaptic cell (Bienenstock et al.
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Figure 4.3 – Weight update as a function of postsynaptic activity. Weight update ∆wi j as a
function of the firing rate νi of the postsynaptic DGC showing LTD for νi < θ and LTP for
θ < νi < ν̂i .

(1982); Artola et al. (1990); Pfister and Gerstner (2006)) (Figure 4.3). Input patterns~xµ, 1 ÉµÉ P ,

are presented in random order. Once the firing rate of the DGCs in response to pattern

~xµ have converged, the weight between any EC input neuron j and a DGC i is updated

(w (µ)
i j = w (µ−1)

i j +η∆wi j ), according to the following plasticity rule:

∆wi j =−αx jνi [θ−νi ]++γx jνi [νi −θ]+−βwi j [νi −θ]+ν3
i (4.5)

with α= α0

θ3 , γ= γ0 −θ, x j the firing rate of presynaptic EC input neuron j , and νi the firing

rate of postsynaptic DGC i . The values of the parameters α0, γ0, β, and θ are given in Table 4.1.

The weights are hard-bounded from below at 0, i.e. if equation (4.5) leads to a new weight

smaller than zero, wi j is set to zero. The first two terms of expression (4.5) are a variation of

the BCM rule (Bienenstock et al. (1982)). The third term implements heterosynaptic plasticity

(Chistiakova et al. (2014); Zenke and Gerstner (2017)). Because the first two terms of the

plasticity rule are Hebbian and proportional to the presynaptic activity x j , the active DGCs

(νi > θ) update their feedforward weights in direction of the input pattern~x. Moreover, all

weights onto neuron i are downregulated heterosynaptically by an amount that increases

supra-linearly with the postsynaptic rate νi . Similar to learning in a competitive network, the

vector of feedforward weights onto active DGCs will move towards the center of mass of the

cluster of patterns they are selective for (Kohonen (1989); Hertz et al. (1991)).

As visible on Figure 4.3, for a given input pattern ~xµ, there are three fixed points for the

postsynaptic firing rate (values for which ∆wi j (νi ) = 0): νi = 0, νi = θ, and νi =
√

γxµj
βwi j

=: ν̂i

(the negative root is omitted, because νi Ê 0 by construction). For νi < θ, there is LTD, so the

weights move toward zero: wi j → 0, while for νi > θ, there is LTP, so the weights move toward:

wi j →
γxµj
βν2

i
. If a pattern~xµ is presented only for a short time these fixed points are not reached

during a single pattern presentation.
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Table 4.1 – Parameters for the simulations of the biologically plausible network

Network
NEC = 144 NDGC = 100

NI = 25

Connectivity
w I E = 1 wE I =− 1

pE I∗NI

p I E = 0.9 pE I = 0.9

Dynamics
τm = 20 ms τinh = 2 ms

L = 0.5 p∗ = 0.1

Plasticity
α0 = 0.05 β= 1
γ0 = 10 θ = 0.15
ν0 = 0.2

Numerical simulations
∆t = 0.1 ms η= 0.01
ηb = 0.01

Fixed points and their stabilities for a single input pattern

The fixed points of the dynamics for a single input pattern are given by the zero crossings of

the ∆wi j (νi ) curve. If a slight increase of the activity results in an increase of the weight, this

would further increase the activity and make the fixed point unstable. Therefore, the stability

of the fixed points is assessed by computing the derivative of ∆wi j (νi ) with respect to νi and

determining its sign when evaluated on each fixed point. The derivative is given by:

d
(
∆wi j (νi )

)
dνi

=
αx j (2νi −θ), if νi < θ
−4βwi jν

3
i +3βθwi jν

2
i +2γx jνi −γθx j , if νi > θ

(4.6)

Hence the stability of the fixed points is as follows:

• νi = 0: stable fixed point, because:

d
(
∆wi j (νi )

)
dνi

∣∣∣∣∣
νi=0

=−αθx j < 0

• νi = θ: unstable fixed point, because:

– starting from below (ν∗i < θ):

lim
ν∗i →θ

d
(
∆wi j (νi )

)
dνi

∣∣∣∣∣
νi=ν∗i

=αθx j > 0
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– starting from above (ν∗i > θ):

lim
ν∗i →θ

d
(
∆wi j (νi )

)
dνi

∣∣∣∣∣
νi=ν∗i

=−4βwi jθ
3 +3βθwi jθ

2 +2γx jθ−γθx j

= θ (
γx j −βwi jθ

2)> 0

The last equality holds, because θ <
√

γx j

βwi j
, so it implies that γx j >βwi jθ

2.

We note here that the derivative is not smooth at the point νi = θ.

• νi =
√

γx j

βwi j
> θ: stable fixed point, because:

d
(
∆wi j (νi )

)
dνi

∣∣∣∣∣
νi=

√
γx j
βwi j

=−4βwi j
γx j

βwi j

√
γx j

βwi j
+3βθwi j

γx j

βwi j
+2γx j

√
γx j

βwi j
−γθx j

=−2γx j

√
γx j

βwi j
+2γθx j

= 2γx j

(
θ−

√
γx j

βwi j

)
< 0

Winners, losers, and quasi-orthogonal inputs

We define the winners as the DGCs which become strongly active (νi > θ) during presentation

of an input pattern. Since the input patterns are normalized to have an L2-norm of 1 (||~xµ|| = 1

by construction), and the L2-norm of the feedforward weight vectors is bounded (see Sec-

tion Direction and length of the weight vector), the winning units are the ones whose weight

vectors ~wi (row of the feedforward connectivity matrix) align best with the current input

pattern~xµ. Furthermore, we say that an input pattern~xµ is “quasi-orthogonal” to a weight

vector ~wi if Ii =∑NEC

j=1 wi j x j +∑NI

k=1 wE I
i k ν

I
k < bi . If an input pattern~xµ is quasi-orthogonal to a

weight vector ~wi , then neuron i does not fire in response to~xµ. Note that for a case without

inhibitory neurons and with bi → 0, we recover the standard orthogonality condition.

Direction and length of the weight vector

Let us denote the ensemble of patterns for which neuron i is a winner by Ci and call this the

set of winning patterns (Ci = {µ|νi > θ}). Suppose that neuron i is quasi-orthogonal to all

other patterns, so that for all µ ∉ Ci we have νi = 0. Then the feedforward weight vector of

neuron i converges in expectation to:

~wi = γ

β

〈G1(νi )~x〉µ∈Ci

〈G2(νi )〉µ∈Ci

(4.7)

where G1(νi ) = (νi −θ)νi and G2(νi ) = (νi −θ)ν3
i . Hence ~wi is a weighted average over all

winning patterns. (To obtain expression (4.7), set equation (4.5) to zero and solve for wi .)
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The squared length of the feedforward weight vector can be computed by multiplying equa-

tion (4.7) with ~wi :

||~wi ||2 = ~wi · ~wi = γ

β

〈G1(νi ) (~wi ·~x)〉µ∈Ci

〈G2(νi )〉µ∈Ci

(4.8)

Since input patterns have length one, the scalar product on the right-hand side can be rewrit-

ten as ~wi ·~x = || ~wi ||cos(α) where α is the angle between the weight vector and pattern ~x.

Division by || ~wi || yields the L2-norm of the feedforward weight vector:

|| ~wi || = γ

β

〈G1(νi )cos(α)〉µ∈Ci

〈G2(νi )〉µ∈Ci

(4.9)

where the averages run, as before, over all winning patterns.

Let us now derive bounds for || ~wi ||. First, since cos(α) É 1 we have 〈G1(νi )cos(α)〉µ∈Ci É
〈G1(νi )〉µ∈Ci . Second, since for all winning patterns νi > θ, where θ is the LTP threshold, we

have 〈G2(νi )〉µ∈Ci Ê 〈(νi −θ)νi 〉θ2. Thus the length of the weight vector is finite and bounded

by:

|| ~wi || É γ

β

〈G1(νi )〉µ∈Ci

〈G2(νi )〉µ∈Ci

É γ

β

1

θ2 (4.10)

It is possible to make the second bound tighter if we find the winning pattern with the smallest

firing rate νmin such that νi Ê νmin ∀i ∈Ci :

|| ~wi || É γ

β

1

(νmin)2 (4.11)

The bound is reached if neuron i is winner for a single input pattern.

We can also derive a lower bound. For a pattern µ ∈ Ci , let us write the firing rate of neu-

ron i as νi (µ) = ν̄i +∆νi (µ) where ν̄i is the mean firing rate of neuron i averaged across all

winning patterns and 〈∆νi 〉µ∈Ci = 0. We assume that the absolute size of ∆νi is small, i.e.,

〈(∆νi )2〉µ∈Ci ¿ (ν̄i )2. Linearization of equation (4.9) around ν̄i yields:

||~wi || = γ

β

G1(ν̄i )

G2(ν̄i )
〈cos(α)〉µ∈Ci (4.12)

+ γ

β

G ′
1(ν̄i )〈cos(α)∆νi 〉µ∈Ci G2(ν̄i )−G1(ν̄i )〈cos(α)〉µ∈Ci G

′
2(ν̄i )〈∆νi 〉µ∈Ci

(G2(ν̄i ))2

= γ

β

G1(ν̄i )

G2(ν̄i )
〈cos(α)〉µ∈Ci +

γ

β

G ′
1(ν̄i )

G2(ν̄i )
〈cos(α)∆νi 〉µ∈Ci (4.13)

Elementary geometric arguments for a neuron model with monotonically increasing frequency-

current curve yield that the value of 〈cos(α)∆νi 〉µ∈Ci is positive (or zero), because an increase
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in the angle α lowers both the cosine and the firing rate, giving rise to a positive correlation.

Since we are interested in a lower bound, we can therefore drop the term proportional to G ′
1

and evaluate the ratio G1/G2 to find:

|| ~wi || Ê γ

β

1

(ν̄i )2 〈cos(α)〉µ∈Ci Ê
γ

β

1

(νmax)2 cos(α̂) (4.14)

where νmax is the maximal firing rate of a DGC and α̂= maxµ∈Ci {α} is the angle of the winning

pattern that has the largest angle with the weight vector. The first bound is tight and is reached

if neuron i is winner for only two patterns.

To summarize we find that the length of the weight vector remains bounded in a narrow

range. Hence, for a reasonable distribution of input patterns and weight vectors, the value of

|| ~wi || is similar for different neurons i , so that the weight vector will have, after convergence,

similar lengths for all DGCs that are winners for at least one pattern. In our simulations with

the MNIST data set, we find that the length of feedforward weight vectors lies in the range

between 9.3 and 11.1 across all responsive neurons.

Early maturation phase

During the early phase of maturation, the GABAergic input onto a newborn DGC with index l

has an excitatory effect. In the model, it is implemented as follows: wE I
lk = −wE I > 0 with

probability pE I for any interneuron k and wE I
lk = 0 otherwise (no connection). Since newborn

cells do not project yet onto inhibitory neurons (Temprana et al. (2015)), we have w I E
kl = 0 ∀l .

Newborn DGCs are known to have enhanced excitability (Schmidt-Hieber et al. (2004); Li et al.

(2017)), so their threshold is kept at bl = 0 ∀l . Presentation of all patterns of the data set once

(1 epoch) is sufficient to reach convergence of the feedforward weights onto newborn DGCs.

Because the newborn DGCs receive lateral excitation via interneurons and their thresholds are

zero during the early phase of maturation, the lateral excitatory GABAergic input is always suf-

ficient to activate them. Hence, if the firing rate of a newborn DGC exceeds the LTP threshold θ,

the feedforward weights grow towards the presented input pattern, cf. equation (4.5).

Late maturation phase

During the late phase of maturation (starting at about 3 weeks (Ge et al. (2006))), the GABAergic

input onto newborn DGCs switches from excitatory to inhibitory. In terms of our model, it

means that all existing wE I
lk connections switch their sign to wE I < 0. Furthermore, since

newborn DGCs develop lateral connections to inhibitory neurons in the late maturation

phase (Temprana et al. (2015)), we set w I E
kl = w I E with probability p I E , and w I E

kl = 0 otherwise.

The thresholds of newborn DGCs are updated after presentation of pattern µ at time n ·T

(b(n)
l = b(n−1)

l +ηb∆bl ) according to ∆bl = νl −ν0, where ν0 is a reference rate, to mimic the

decrease of excitability as newborn DGCs mature. Therefore the distribution of firing rates of
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Figure 4.4 – Center of mass for three ensembles of patterns from the MNIST data set, visu-
alized as 12x12 pixel patterns.

newborn DGCs is shifted to the left (towards lower firing rates) at the end of the late phase

of maturation compared to the early phase of maturation (Figure 4.2). A sufficient condition

for a newborn DGC to win the competition upon presentation of patterns of the novel cluster

is that the scalar product between a pattern of the novel cluster and the feedforward weight

vector onto the newborn DGC is larger than the scalar product between the pattern of the

novel cluster and the feedforward weight vector onto any of the mature DGCs. Analogous to

the early phase of maturation, presentation of all patterns of the data set once (1 epoch) is

sufficient to reach convergence of the feedforward weights onto newborn DGCs.

4.2.3 Input patterns

We use the MNIST 12x12 patterns (LeCun et al. (1998)) (NEC = 144), normalized such that

the L2-norm of each pattern is equal to 1. The training set contains approximately 6000

patterns per digit (K = 10 clusters), while the testing set contains about 1000 patterns per digit

(Figure 4.4).

4.2.4 Classification performance

To evaluate whether the newborn DGCs contribute to the dentate gyrus network function, we

study classification performance and compare it to control cases (see next section). First, the

feedforward weights are learned upon presentation of many input patterns from the training

set, as described in Section 4.2.2. After convergence, we keep them fixed and determine

classification on the test set using artificial readout units (RO).

To do so, the readout weights wRO
ki from model DGC i to readout unit k are initialized to

random values drawn from a uniform distribution: wRO
ki ∼σU (0,1), with σ= 0.1. The number

of readout units, NRO , corresponds to the number of learned classes. To adjust the readout

weights, all patterns of the training data set that belong to the learned classes are presented

one after the other. For each pattern~xµ, we let the firing rate of the DGCs converge (values at

58



4.2. Methods

convergence: νµi ). The activity of a readout unit k is given by:

ν
RO,µ
k = g

(
I RO,µ

k

)
= g

(
NDGC∑
i=1

wRO
ki ν

µ

i

)
(4.15)

As we aim to assess the performance of the network of DGCs, the readout weights are adjusted

by an artificial supervised learning rule. The loss function, which corresponds to the difference

between the activity of the readout units and a one-hot representation of the corresponding

pattern label (Hertz et al. (1991)):

L(W RO) = 1

2

NRO∑
k=1

(Lµk −ν
RO,µ
k )2

= 1

2

NRO∑
k=1

(
Lµk − g

(
NDGC∑
i=1

wRO
ki ν

µ

i

))2

(4.16)

with Lµk the element k of a one-hot representation of the real label of pattern~xµ,~Lµ, is mini-

mized by stochastic gradient descent:

∆wRO,µ
ki =−ηdL(W RO)

dwRO
ki

= η
(

Lµk − g

(
NDGC∑
i=1

wRO
ki ν

µ

i

))
g ′

(
NDGC∑
i=1

wRO
ki ν

µ

i

)
ν
µ

i

= η(Lµk −ν
RO,µ
k )g ′

(
I RO,µ

k

)
ν
µ

i (4.17)

The readout units have a rectified tangent hyperbolic gain function: g (x) = tanh(2[x]+), whose

derivative is: g ′(x) = 2
(
1− (tanh(2[x]+))2). We learn the weights of the readout units over 100

epochs of presentations of all training patterns with η = 0.01, which is sufficient to reach

convergence.

Thereafter, the readout weights are fixed. Each test set pattern belonging to one of the learned

classes is presented once, and the firing rates of the DGCs are let to converge. Finally, the

activity of the readout units νRO,µ
k is computed and compared to the correct label Lµk of

the presented pattern. If the readout unit with the highest activity value is the one that

represents the class of the presented input pattern, the pattern is said to be correctly classified.

Classification error is given by the number of misclassified patterns divided by the total

number of test patterns of the learned classes.

4.2.5 Control cases

In our standard setting, patterns from a third digit are presented to a network that has previ-

ously only seen patterns from two digits. The question is whether neurogenesis helps when

adding the third digit. We use several control cases to compare with the neurogenesis case.
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In two control cases, we either keep all feedforward connections towards the DGCs plastic

(Figure 4.8c), or fix the feedforward connections for all selective DGCs but keep unselective

neurons plastic (as in the neurogenesis case) (Figure 4.8b). However, in both instances, the

DGCs do not mature in the two-step process of our model of neurogenesis. Finally, in the third

control case, all three digits are learned in parallel (Figure 4.8a).

4.2.6 Pretraining with two digits

As we are interested by neurogenesis at the adult stage, we pretrain the network with patterns

from two digits, such that it already stores some memories before neurogenesis takes place. To

do so, we randomly initialize the EC neurons to DGCs connection weights: they are drawn from

a uniform distribution (wi j ∼U [0,1]). The L2-norm of the feedforward weight vector onto

each DGC is then normalized to 1, to ensure fair competition between DGCs during learning.

Then, we present all patterns from digits 3 and 4 in random order, as many times as needed

for convergence of the weights. During each pattern presentation, the firing rates of the DGCs

are computed (Section 4.2.1) and their feedforward weights are updated according to our

plasticity rule (Section 4.2.2). We find that we need approximately 40 epochs for convergence

of the weights, and use 80 epochs to make sure that all weights are stable. Such a large number

of epochs is needed (versus only 2 epochs in total for newborn DGCs), because weights are

randomly initialized (while for newborn DGCs, the early phase acts as a “smart initialization”

procedure). At the end of the pretraining, our network is considered to correspond to an adult

stage, because some DGCs are selective for prototypes of the pretrained digits (Figure 4.5a).

4.3 Results

We hypothesize that the two-step maturation process caused by the switch of GABA from

excitation to inhibition is crucial for functional integration of newborn cells: since excitatory

GABAergic input potentially increases cooperativity within the dentate gyrus network, we

predicted that newborn DGCs would respond to familiar representations during the early

phase of maturation, but not during the late phase, when inhibitory GABAergic input leads to

competition.

To test this prediction, we pretrained a model network of 100 mature DGCs with input from

144 EC cells to respond to patterns representing two different digits from MNIST, a standard

data set in artificial intelligence (LeCun et al. (1998)). Even though we do not expect EC

neurons to show a 2-dimensional arrangement, the use of 2-dimensional patterns provides a

simple way to visualize the activity of all 144 EC neurons in our model in the form of digits

(Figure 4.4). Pretraining was based on a synaptic plasticity rule which combines LTP and LTD

(Section 4.2.2, Figure 4.3) (Bienenstock et al. (1982); Artola et al. (1990); Pfister and Gerstner

(2006)).
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Pretraining End of the early phase
of maturation

End of the late phase
of maturationa b c

Figure 4.5 – Newborn DGCs learn novel patterns. Receptive fields, defined as the set of
feedforward weights, are visually represented in a 2-dimensional organization. (a) During
pretraining, patterns from MNIST digits 3 and 4 are presented to the network. At the end of
the pretraining, some DGCs have receptive fields corresponding to the two learned digits,
while others remain non-selective (highlighted by red frames). (b) Unselective neurons are
replaced by newborn DGCs, which adapt their feedforward weights while patterns from digits
3, 4, and 5 are presented. At the end of the early phase of maturation, the receptive fields
of all newborn DGCs (red frames) show mixed selectivity. (c) At the end of the late phase of
maturation, newborn DGCs are selective for patterns from the novel digit 5, with different
writing styles.

4.3.1 Different prototypes are learned during the pretraining period

After pretraining with patterns from digits 3 and 4, we examined the receptive fields of the

DGCs, defined as the set of feedforward weights of connections from all 144 EC neurons

onto one DGC. We observed that out of the 100 DGCs, some developed a receptive field that

corresponds to digit 3, others a receptive field that corresponds to digit 4, and the remaining

ones stayed unselective (Figure 4.5a). We classified the DGCs with non-selective receptive

fields as unresponsive units. Because they are barely activated by any of the input patterns,

their incoming synaptic weights show LTD whenever they are slightly active, causing a further

reduction of the cells responsiveness. In our model, reduction of the cell responsiveness

below a critical value eventually causes cell death. The number of unresponsive units depends

on the value of the θ parameter in equation (4.5): the higher it is, the larger the number of

unresponsive units. The selective DGCs represent different prototypes of the two digits, visible

here as different writing styles and inclinations (Figure 4.5a). At the end of pretraining, the

classification error (Section 4.2.4) was low: 0.75% (classification error on digit 3: 1.29%; digit 4:

0.20%), indicating that nearly all input patterns in the two digits are well represented by the

network of mature DGCs.
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Figure 4.6 – The representation of novel patterns occupies a previously empty subspace.
(a) Projections of the final firing rates of all 100 DGCs on PC 1 and PC 3 (first row), and on
PC 2 and PC 5 (second row), at the end of the early (a1) or late (a2) phase of maturation of
the newborn DGCs. Each pattern of the MNIST test set corresponds to one point. Color
indicates digit 3 (blue), 4 (green) or 5 (red). The PCs were determined at the end of the late
phase of maturation. (b) Trajectories of firing rates in the PC-space for a few example patterns
at the end of the early (b1) and late (b2) phase of maturation of newborn DGCs. It takes about
170 to 200 ms for the trajectories to converge to their final points, where symbols mark the
corresponding patterns. Insets: zoom on trajectories during the first 10 ms. (c) Example
patterns from the test set, with the symbols used in (a) and (b).
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4.3.2 Newborn neurons can learn novel patterns

After convergence of synaptic weights during pretraining, unresponsive model neurons died

and were replaced by newborn DGCs. Model newborn DGCs go through two maturation

phases (Section 4.2.2). The early phase of maturation is cooperative because, for each pattern

presentation, the activated mature DGCs laterally excite the newborn DGCs via GABAergic

interneurons. This indirect activation of newborn DGCs drives the growth of their receptive

fields in a direction similar to those of the currently active DGCs. As a result, at the end of the

early phase of maturation, newborn DGCs show a receptive field corresponding to a mixture

of several patterns (Figure 4.5b).

In the late phase of maturation, model newborn DGCs receive inhibitory GABAergic input

from interneurons, similar to the input received by mature DGCs. Given that at the end

of the early phase, newborn DGCs have receptive fields similar to those of mature DGCs,

lateral inhibition induces competition with mature DGCs for activation during presentation

of patterns from the novel digit. Model newborn DGCs start the late phase of maturation

with a low threshold (high excitability), while mature DGCs are less excitable. Since the

distribution of firing rates of newborn DGCs is shifted to lower firing rates in the late phase

of maturation compared to the early phase (Figure 4.2), the activation of newborn DGCs is

facilitated for those input patterns for which no mature DGC has selectivity. Therefore, in the

late phase of maturation, competition drives the synaptic weights of newborn DGCs towards a

receptive field corresponding to patterns from the ensemble of novel input patterns, i.e. digit

5 (Figure 4.5c).

To better characterize how DGCs represent various input patterns, we performed Principal

Component Analysis (PCA) on the vector of final firing rates of all DGCs in response to MNIST

test patterns representing digits 3, 4, and 5. We then projected the firing rates on Principal

Components (PCs) that were selected based on their visualization power (Figure 4.6a2). The

firing rates of all DGCs were also projected on the same PCs at the end of the early phase

of maturation (Figure 4.6a1). First, we observe that ensembles of firing rate responses are

scattered, rather than concentrated, even for a single digit, indicating good pattern separation

abilities of our network within and between digits (Figure 4.6a2). Second, the representations

of a few extremal patterns seem to span a low-dimensional manifold (Figure 4.6c). Third, we

observe that the representation of novel patterns lies close to the representation of pretrained

patterns at the end of the early phase of maturation of newborn DGCs (Figure 4.6a1), while

during the late phase of maturation the representation expands into a previously empty

subspace (Figure 4.6a2), consistent with the experimentally observed promotion of pattern

separation of newborn DGCs. Finally, by examining the trajectories of the firing rates of the

DGCs for a few example patterns, we further notice that two novel patterns (orange swiss cross

and orange triangle) are located far from each other (and close to the familiar patterns) at the

end of the early phase (Figure 4.6b1), but close to each other (and far from familiar patterns)

at the end of the late phase of maturation of newborn DGCs (Figure 4.6b2). The zoom in insets

further show the influence of lateral inhibition on firing rate dynamics of the DGCs.

63



Chapter 4. Integration of adult-born dentate granule cells

Simultaneous learning of
two novel digitsa Learning of two novel digits sequentially b

Figure 4.7 – Two novel digits can be learned. (a) Several novel digits can be learned simulta-
neously. After pretraining with patterns from digits 3 and 4 as in Figure 4.5a, unresponsive
neurons are replaced by newborn DGCs. When patterns from digits 3, 4, 5, and 6 are presented
in random order, newborn DGCs exhibit after maturation receptive fields with selectivity for
the novel digits 5 and 6. (b) Several novel digits can be learned sequentially. After pretraining
with digits 3 and 4, ten randomly selected unresponsive neurons are replaced by newborn
DGCs. Patterns from digits 3, 4, and 5 are presented in random order, while newborn DGCs
mature and develop selectivity for the novel digit 5, with different writing styles. Later, the
eleven remaining unresponsive neurons of the network are replaced by newborn DGCs. When
patterns from the novel digit 6 are presented intermingled with patterns from digits 3, 4, and 5,
the newborn DGCs develop selectivity for digit 6.

To test the quality of the learned representations, we compute classification performance

by a linear classifier for the three ensembles of digits (Section 4.2.4). We obtain an overall

classification error of 5.44% (classification error for digit 3: 9.50%; digit 4: 1.83%; digit 5:

4.82%). We compare this performance with that of a network where all three digit ensembles

are simultaneously pretrained (Figure 4.8a). In this case, the overall classification error is

7.91% (classification error for digit 3: 13.17%; digit 4: 1.22%; digit 5: 9.30%). Classification

performance is therefore slightly better when a novel ensemble of patterns is learned sequen-

tially by newborn DGCs, than if all patterns are learned simultaneously. This is due to the fact

that there are similar numbers of unresponsive neurons at the end of pretraining, regardless

of how many patterns are learned (compare Figure 4.5a and Figure 4.8a). The number of

unresponsive units is similar because the θ parameter value in equation (4.5) is identical in all

simulations, and the MNIST patterns all lie in a comparable subspace.

Furthermore, if two novel ensembles of digits (instead of a single one) are introduced during

maturation of newborn DGCs, we observe that some newborn DGCs become selective for one

of the novel digits, while others become selective for the other novel digit (Figure 4.7a). There-

fore, newborn DGCs can ultimately promote separation of several novel ensembles of patterns,

no matter if they are learned simultaneously (Figure 4.7a) or sequentially (Figure 4.7b).
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Pretraining of three digitsa Only unresponsive DGCs 
stay plasticb All DGCs stay plasticc

Figure 4.8 – Control cases. (a) Training on digits 3, 4 and 5 simultaneously without neurogen-
esis. Patterns from digits 3, 4 and 5 are presented to the network while all DGCs learn their
feedforward weights. After pretraining, some DGCs have receptive fields corresponding to the
three learned digits, while some remain non-selective (as in Figure 4.5a). (b) Control without
maturation. After pretraining with patterns from digits 3 and 4 as in Figure 4.5a, only the
unresponsive neurons stay plastic, but they fail to become selective for digit 5 when patterns
from digits 3, 4, and 5 are presented in random order. (c) If all DGCs stay plastic when patterns
from digit 5 are introduced, some of the DGCs previously responding to patterns from digits 3
or 4 become selective for digit 5 because they have strong weights and their receptive fields
are close enough from some of the patterns from digit 5 for the cells to be activated.

4.3.3 The switch from excitation to inhibition is necessary for learning of novel
representations

To assess whether maturation of newborn DGCs promotes learning of a novel ensemble of

digit patterns, we compare with a case without neurogenesis. Similar to the neurogenesis

case, patterns from the novel digit 5 are introduced after pretraining with patterns from

digits 3 and 4. In the control case, the thresholds and weights of all unresponsive neurons

remained plastic after pretraining, similar to the neurogenesis case, while the feedforward

weights and thresholds of DGCs that developed selectivity during pretraining were fixed. The

only differences with the neurogenesis case are that unresponsive neurons (i) keep their

feedforward weights (i.e., no reinitialization), and (ii) keep the same connections from and to

inhibitory neurons.

We find that without neurogenesis, the previously unresponsive DGCs do not become selective

for the novel digit 5, no matter during how many epochs patterns are presented (we went

up to 100 epochs here) (Figure 4.8b). Therefore, if patterns from digit 5 are presented to the

network, it fails to discriminate them from the previously learned digits 3 and 4: the overall

classification error is 18.31% (classification error for digit 3: 14.06%; digit 4: 2.44%; digit 5:

40.58%). This result suggests that inclusion of newborn DGCs is beneficial for sequential

learning of novel patterns.

As a further control, we compare with a case where all DGCs keep plastic feedforward weights.
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We observe that in the case where all neurons are plastic, learning of the novel digit occurs

at the cost of loss of selectivity of mature neurons. Several DGCs switch their selectivity to

become sensitive to the novel ensemble of patterns (Figure 4.8c), while none of the previously

unresponsive units becomes selective for the novel digit (compare with Figure 4.5a). This

induces a drop of classification performance to 9.08% error (classification error for digit 3:

14.55%; digit 4: 1.63%; digit 5: 11.10%). We observe that the classification error for digit 3 is

the one which increases the most. This is due to the fact that many DGCs previously selective

for digit 3 are now selective for digit 5.
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5 Adult-born dentate granule cells
promote discrimination of similar
stimuli

5.1 Introduction

Adult dentate gyrus neurogenesis has been shown to affect behavioral pattern separation in a

variety of tasks (Clelland et al. (2009); Sahay et al. (2011a); Jessberger et al. (2009)). Clelland

and colleagues have shown that ablation of adult dentate gyrus neurogenesis in mice impairs

performance in a spatial, navigable, radial arm maze task and a spatial, but non-navigable,

touch screen task for spatially close stimuli, but not for stimuli having large spatial separation

(Clelland et al. (2009)). Furthermore, Sahay and colleagues have observed that adult dentate

gyrus neurogenesis is necessary for discrimination of similar but not distinct contexts in a fear

conditioning in mice, and that enhanced neurogenesis promotes better context discrimina-

tion (Sahay et al. (2011a)). However, it is still unclear how adult-born DGCs impact pattern

separation, if it is through a cell-autonomous function as individual encoding units, or through

a modulatory role (Sahay et al. (2011b); Aimone et al. (2011)).

We suggest that adult-born DGCs are properly integrated into the existing network only

if the stimuli that are encountered during their maturation are similar enough to already

experienced stimuli. Indeed, in the early cooperative phase of maturation, newborn DGCs can

only be indirectly activated by interneurons if the latter are sufficiently activated by mature

DGCs. And for mature DGCs to be activated, the stimuli that are presented should be similar

enough from their receptive field. If instead the presented stimuli are very distinct from

the selectivity of mature DGCs, none will be sufficiently activated to indirectly activate the

maturing newborn DGCs. Therefore, adult-born DGCs become selective for novel stimuli

similar to familiar (already stored) stimuli, but not for distinct stimuli. Consequently, our

model reveals why newborn DGCs promote pattern separation of similar stimuli, but do not

impact pattern separation of distinct stimuli. We propose that the direct connection from EC

to CA3, and then the backprojection from CA3 to dentate gyrus could be used as an alternate
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pathway to represent distinct stimuli with high valence in the dentate gyrus.

5.2 Methods

5.2.1 Simplified rate network

We use a toy network and an artificial data set to determine if our theory for the integration of

newborn DGCs can explain why adult dentate gyrus neurogenesis helps for the discrimination

of similar, but not for distinct patterns.

The rate network described above is simplified as follows. We use K dentate granule cells for

K clusters. Their firing rate νi is given by:

τm
dνi

dt
=−νi +H (Ii −bi ) (5.1)

where H is the Heaviside step function. As before, bi is the threshold, and Ii the total input

towards neuron i :

Ii =
NEC∑
j=1

wi j x j +
NDGC∑
k 6= j

wr ecνk (5.2)

with x j the input of presynaptic EC neuron j , wi j the feedforward weight between EC neuron

j and DGC i , and νk the firing rate of DGC k. Inhibitory neurons are modeled implicitly:

each DGC directly connects to all other DGCs via inhibitory recurrent connections of value

wr ec < 0. During presentation of pattern~xµ, the firing rates of the DGCs evolve according to

equation (5.1). After convergence, the feedforward weights are updated: w (µ)
i j = w (µ−1)

i j +η∆wi j .

The synaptic plasticity rule is the same as before, see equation (4.5), but with the parameters

reported in Table 5.1. They are different from those for the biologically-plausible network

because we now aim for a single winning neuron for each cluster. Note that for an LTP

threshold θ < 1 all active DGCs update their feedforward weights, because of the Heaviside

function for the firing rate (equation (5.1)).

Asssuming a single winner i∗ for each pattern presentation, the input (equation (5.2)) to the

winner is:

Ii∗ = ~wi∗ ·~x, (5.3)

while the input to the losers is:

Ii = ~wi ·~x +wrec. (5.4)

Therefore, two conditions need to be satisfied for a solution with a single winner:

~wi∗ ·~x > bi (5.5)
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Table 5.1 – Parameters for the simulations of the simplified network

Network NEC = 128 NDGC = 3

Connectivity wr ec =−1.2

Dynamics τm = 20 ms

Plasticity
α0 = 0.03 β= 1
γ0 = 1.65 θ = 0.15

Numerical simulations ∆t = 1 ms η= 0.01

for the winner to actually be active, and:

~wi ·~x +wrec < bi (5.6)

to prevent non-winners to become active. The value of bi is lower in the early maturation

phase than in the late maturation phase to mimic enhanced excitability (Schmidt-Hieber et al.

(2004); Li et al. (2017)).

5.2.2 Input patterns

We use hand-made artificial patterns designed such that the distance between the centers

of any two clusters is the same. All K clusters lie on the positive quadrant of the surface of a

hypersphere of dimension NEC −1 (Figure 5.1a). The cluster centers are Walsh patterns shifted

along the diagonal (Figure 5.1b):

~P 1 = 1

c0
(1+ξ,1−ξ,1+ξ,1−ξ, ...,1+ξ,1−ξ,1+ξ,1−ξ)

~P 2 = 1

c0
(1+ξ,1+ξ,1−ξ,1−ξ, ...,1+ξ,1+ξ,1−ξ,1−ξ)

...

~P K = 1

c0
(1+ξ,1+ξ,1+ξ,1+ξ, ...,1−ξ,1−ξ,1−ξ,1−ξ)

(5.7)

with |ξ| < 1 a parameter that determines the spacing between clusters. c0 is a normalization

factor to ensure that the center of mass of all clusters has an L2-norm of 1:

c0 =
√

NEC
(
1+ξ2

)
. (5.8)

The number of input neurons NEC is NEC = 2K . The scalar product, and hence the angleΩ,

between the center of mass of any pair of clusters k and l (k 6= l ) is a function of ξ (Figure 5.1c):

~P k ·~P l = 1

1+ξ2 = cos(Ω) (5.9)
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k=1 k=2 k=3

...

c

a b

Figure 5.1 – Handmade dataset. (a) Center of mass of clusters k and l of the artificial data
set (~Pk and ~Pl respectively, separated by angleΩ) are represented by arrows that point to the
surface of the positive quadrant of a hypersphere. Blue and green dots represent individual
patterns. (b) Center of mass of the first three clusters of an artificial data set visualized as 16x8
pixel patterns. The 2-dimensional arrangement is chosen for visualization only. (c) Separation
between the center of mass of the clusters of the artificial dataset. Left: The scalar product
between the center of mass of any two clusters is a function of ξ. Right: The angle α as a
function of ξ.

To make the artificial data set comparable to the MNIST 12x12 data set, we choose K = 7, so

NEC = 128, and we generate 6000 patterns per cluster for the training set and 1000 patterns

per cluster for the testing set. The patterns~xµ(k) of a given cluster k with center of mass ~P k are

sampled from a Von Mises-Fisher distribution (Mardia and Jupp (2009)):

~xµ(k) ∼
(√

1−a2
)
~ζ+a~P k (5.10)

with~ζ an L2-normalized vector taken in the space orthogonal to ~P k . The vector~ζ is obtained

by performing the singular-value decomposition of ~P k (UΣV ∗ = ~P k ), and multiplying the

matrix U (after removing its first column), which corresponds to the left-singular vectors in

the orthogonal space to ~P k , with a vector whose elements are drawn from the standard normal

distribution. Then the L2-norm of the obtained pattern is set to 1, so that it lies on the surface

of the hypersphere. A rejection sampling scheme is used to obtain a (Mardia and Jupp (2009)).

The sample a is kept if κa + (NEC −1)ln(1−ψa)−c Ê ln(u), with κ a concentration parameter,
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ψ= 1−b
1+b , c = κψ+ (NEC −1)ln(1−ψ2), u drawn from a uniform distribution u ∼U [0,1], a =

1−(1+b)z
1−(1−b)z , b = NEC−1p

4κ2+(NEC−1)2+2κ
, and z drawn from a beta distribution z ∼Be( NEC−1

2 , NEC−1
2 ).

The concentration parameter κ characterizes the spread of the distribution around the center
~P k . In the limit where κ→ 0, sampling from the Von Mises-Fisher distribution becomes

equivalent to sampling uniformly on the surface of the hypersphere, so the clusters become

highly overlapping. In dimension NEC = 128, if κ > 103 the probability of overlap between

clusters is negligible. We use a value κ= 104.

Similar versus distinct patterns with the artificial data set

Using the artificial data set with |ξ| < 1 (equation (5.7)), the scalar product between the

center of mass of two different clusters, given by equation (5.9), satisfies: 0.5 É 1
1+ξ2 É 1. This

corresponds to 0◦ ÉΩÉΩmax = 60◦ (Figure 5.1c).

After stimulation with a pattern ~x, it takes some time before the firing rates of the DGCs

converge. We call two patterns “similar” if they activate, at least initially, the same output unit,

while we consider two patterns as “distinct” if they do not activate the same output unit, not

even initially. We now show that, with a large concentration parameter κ, patterns of different

clusters are similar if ξ<
√

||~wi ||
bi

−1 and distinct if ξ>
√

||~wi ||
bi

−1.

We first consider a DGC i whose feedforward weight vector has converged towards the center

of mass of cluster k. If an input pattern~xµ(k) from cluster k is presented, it will receive the

following initial input:

Ii = ~wi ·~xµ(k) = ||~wi || · ||~xµ(k)|| ·cos(ϑkk) = ||~wi || ·cos(ϑkk) (5.11)

where ϑkk is the angle between the pattern~xµ(k) and the center of mass ~P k of the cluster to

which it belongs. The larger the concentration parameter κ for the generation of the artificial

data set, the smaller the dispersion of the clusters, and thus the larger cos(ϑkk). If instead, an

input pattern from cluster l is presented, that same DGC will receive a lower initial input:

Ii = ~wi ·~xµ(l ) = ||~wi || · ||~xµ(l )|| ·cos(ϑkl) ≈
||~wi ||
1+ξ2 (5.12)

The approximation holds for small dispersion of the clusters (large concentration parameter

κ). We note that there is no subtraction of the recurrent input yet, because output units are

initialized with zero firing rate before each pattern presentation. By definition, similar patterns

stimulate (initially) the same DGCs. A DGC can be active for two clusters only if its threshold

is:

bi < ||~wi ||
1+ξ2 (5.13)

Therefore, with a high concentration parameter κ, patterns of different clusters are similar if

71



Chapter 5. Adult-born dentate granule cells promote discrimination of similar stimuli

ξ<
√

||~wi ||
bi

−1, while patterns of different clusters are distinct if ξ>
√

||~wi ||
bi

−1.

Parameter choice

The upper bound of the expected L2-norm of the feedforward weight vector towards the DGCs

at convergence can be computed, see equation (4.11). With the parameters in Table 5.1, the

value is 〈||~wi ||〉 É 1.5. Moreover, the input patterns for each clusters are highly concentrated,

hence their angle with the center of mass of the cluster they belong to is close to 0, so we have

〈||~wi ||〉 ≈ 1.5. Therefore, at convergence, a DGC selective for a given cluster k receives an input

Ii∗ = ~wi∗ · ~xµ(k) ≈ 1.5 upon presentation of input patterns ~xµ(k) belonging to cluster k. We

thus set bi = 1.2 to satisfy condition (5.5). The threshold value ξthresh for which two clusters

are similar (and above which two clusters are distinct) can be determined by equation (5.13) :

ξthresh = 0.5. We created a handmade data set with ξ= 0.2 for the case of similar clusters, and a

handmade data set with ξ= 0.8 for the distinct case.

Let us suppose that the weights of DGC i have converged and made this cell respond to

patterns from cluster i . If another DGC k of the network is selective for cluster k, it ultimately

gets the input Ik = ~wk ·~xµ(k) +wrec ≈ 1.5
1+ξ2 +wrec upon presentation of input patterns ~xµ(k)

belonging to cluster k (k 6= i ). Hence, to satisfy condition (5.6), we need wrec < bi −maxξ
(

1.5
1+ξ2

)
.

Furthermore, a newborn DGC is born with a null feedforward weight vector, hence at birth, its

input consists only of the indirect excitatory input from mature DGCs: Ii =−wrec > 0. For the

feedforward weight vector to grow, the condition −wrec > bbirth is also necessary (with bbirth

the neuronal threshold of a newborn DGC at birth). We set wrec =−1.2 and bbirth = 0.9, which

satisfy the two above conditions.

Neurogenesis with the handmade data set

To save computation time, we initialize the feedforward weight vectors of two mature DGCs at

two randomly chosen training patterns of the first two clusters, normalized such that they have

an L2-norm of 1.5. We then present patterns from clusters 1 and 2, and let the feedforward

weights evolve according to equation (4.5) until they reach convergence.

We thereafter introduce a novel pattern cluster as well as a newborn DGC in the network. The

sequence of presentation of patterns from the three clusters (a novel one and two pretrained

ones) is random. The newborn DGC maturation follows the same rules as before: it is born

with a null feedforward weight vector. In the early phase, GABAergic input has an excitatory

effect (Ge et al. (2006)) and the newborn DGC does not inhibit the mature DGCs (Temprana

et al. (2015)). This is modeled by setting w N M
rec = −wrec for the connections from mature

to newborn DGC, and w M N
rec = 0 for the connections from newborn to mature DGCs. The

threshold of the newborn DGC starts at 0.9 at birth, mimicking enhanced excitability (Schmidt-

Hieber et al. (2004); Li et al. (2017)), and increases linearly up to 1.2 (same threshold as the

mature DGCs) over 12000 pattern presentations, reflecting loss of excitability with maturation.
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The exact time window is not critical. In the late phase of maturation of the newborn DGC,

GABAergic input switches to inhibitory (Ge et al. (2006)), and the newborn DGC recruits

feedback inhibition onto mature DGCs (Temprana et al. (2015)). It is modeled by switching

the sign of the connection from mature to newborn DGC: w N M
rec = wrec, and establishing

connections from newborn to mature DGCs: w M N
rec = wrec. All patterns are presented once for

the early phase.

The above paradigm is run separately for each of the two handmade data sets: the one where

pattern clusters are similar (ξ= 0.2), and the one where pattern clusters are distinct (ξ= 0.8).

5.3 Results

5.3.1 Newborn dentate granule cells become selective for a similar novel cluster

To investigate whether our theory for integration of newborn DGCs can explain why adult

dentate gyrus neurogenesis promotes discrimination of similar stimuli, but does not affect

discrimination of distinct patterns (Clelland et al. (2009); Sahay et al. (2011a)), we used a

simplified competitive winner-take-all network (Section 5.2.1) and constructed an artificial

data set (Section 5.2.2) (Figure 5.1). The MNIST data set is not appropriate to tackle this

question, because all digit clusters are similar and highly overlapping, reflected by a high

within cluster dispersion compared to the separation between clusters.

After pretraining such that a first mature DGC responds to patterns of cluster 1 and a second

mature DGC to those of cluster 2 (Figure 5.2b1,b2), we introduce a newborn DGC in the

network, and present patterns from three clusters (the two pretrained ones, as well as a novel

one). We observe that the newborn DGC ultimately becomes selective for the novel cluster

if it is similar (ξ = 0.2) to the two pretrained clusters (Figure 5.2d1), but not if it is distinct

(ξ= 0.8, Figure 5.2d2). Indeed, if the novel cluster is similar to one or several of the pretrained

clusters, a pattern from the novel cluster activates the mature DGC that has a receptive field

closest to the novel pattern. This activated mature DGC induces the activation of the newborn

DGC via lateral excitatory GABAergic connections, to a level where LTP is triggered at active

synapses. Similarly, excitatory GABAergic connections will also cause LTP of a newborn DGC,

whenever one of the patterns of the pretrained clusters is presented. Thus, in the early phase

of maturation, the feedforward weight vector onto the newborn DGC grows in the direction of

the center of mass of all three clusters (the two pretrained ones and the novel one, because for

each pattern presentation, one of the mature DGCs becomes active (compare Figure 5.2c1

and Figure 5.2e1). On the other hand, if the novel cluster is distinct (i.e. has a low similarity to

pretrained clusters), patterns from the novel cluster do not activate any of the existing mature

DGCs, whereas patterns from the pretrained clusters indirectly activate the newborn DGC.

Hence plasticity makes the feedforward weight vector onto the newborn DGC move to the

center of mass of the pretrained clusters (compare Figure 5.2c2 and Figure 5.2e2).

As a result of the different orientation of the feedforward weight vector onto the newborn DGC
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Figure 5.2 – A newborn DGC becomes selective for similar but not distinct novel stimuli.
(a) Example patterns from clusters 1 and 2 if clusters are similar (a1, ξ = 0.2), and distinct
(a2, ξ= 0.8). The receptive fields of the mature DGCs are initialized at example patterns. The
schematics below the receptive fields represent the surface of the hypersphere, with dots
corresponding to patterns. (b) After pretraining with patterns from two clusters, the receptive
fields exhibit the noise-free prototypes (blue and green crosses) of each cluster. (c) If the
clusters are similar, the receptive field of the newborn DGC (red cross) moves towards the
center of mass of the three clusters during its early phase of maturation (c1), and if the clusters
are distinct towards the center of mass of the two pretrained clusters (c2). (d) Receptive field
after the late phase of maturation for the case of similar (d1) or distinct (d2) clusters. (e) Center
of mass of all patterns of the blue and green clusters (left column) and of the blue, green
and red clusters (right column) for the case of similar (e1) or distinct (e2) clusters. For better
visualization, the receptive fields are normalized such that they have an L2-norm of 1. Hence
the color scale is valid for the example patterns, the receptive fields, and the center of mass of
the first two and the first three clusters.
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at the end of the early phase of maturation, two different situations arise in the late phase of

maturation, when lateral GABAergic connections are inhibitory. If the novel cluster is similar to

the pretrained clusters, the weight vector onto the newborn DGC at the end of the early phase

of maturation lies at the center of mass of the three clusters, and thus is closer to the novel

cluster than the mature DGCs (Figure 5.2c1). So if a novel pattern is presented, the newborn

DGC wins the competition between the three DGCs, and its feedforward weight vector moves

towards the center of mass of the novel cluster (Figure 5.2d1). To the contrary, if the novel

cluster is distinct, the weight vector onto the newborn DGC at the end of the early phase of

maturation is located at the center of mass of the two pretrained clusters (Figure 5.2c2). If a

novel pattern is presented, no output unit is activated since their receptive fields do not match

the input. So the newborn DGC always stays silent and never updates its feedforward weights

(Figure 5.2d2). These results are consistent with studies that have suggested that dentate gyrus

is only involved in the discrimination of similar stimuli, but not distinct stimuli (Gilbert et al.

(2001); Hunsaker and Kesner (2008)). For discrimination of distinct stimuli, another pathway

might be used, such as the direct EC to CA3 connection (Fyhn et al. (2007); Vazdarjanova and

Guzowski (2004)).

In conclusion, our model suggests that adult dentate gyrus neurogenesis promotes discrimi-

nation of similar patterns because newborn DGCs can ultimately become selective for a novel

stimulus which is similar to already learned stimuli. On the other hand, newborn DGCs fail

to represent a novel distinct stimulus, precisely because it is too distinct from other stimuli

already represented by the network. Presentation of the novel distinct stimulus therefore does

not induce synaptic plasticity of the newborn DGCs feedforward weight vector toward the

novel cluster. In the simplified network, the transition between similar and distinct can be

determined analytically (Section 5.2.2).

5.3.2 Similar clusters drive the receptive fields of newborn DGCs closer to the
novel cluster in the early phase of maturation

To better characterize the evolution of the receptive field of the newborn DGC, we examine

the growth of the norm of the feedforward weight vector onto it, as well as its angle with the

center of mass of the novel cluster, as a function of maturation time (Figure 5.3).

In the early phase of maturation, the feedforward weight vector onto the newborn DGC grows,

while its angle with the center of mass of the novel cluster stays constant. The norm stabilizes

at a higher value in the case of similar patterns (ξ= 0.2, Figure 5.2c1 and Figure 5.3a1) than in

the case of distinct patterns (ξ= 0.8, Figure 5.2c2 and Figure 5.3b1). It is due to the fact that

the center of mass of three similar clusters lies closer to the surface of the sphere than the

center of mass of two distinct clusters (Section 5.3.3).

In the late phase of maturation, the angle between the center of mass of the novel cluster

and the feedforward weight vector onto the newborn DGC decreases in the case of similar

patterns (Figure 5.3a2), but not in the case of distinct patterns (Figure 5.3b2), indicating that
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Figure 5.3 – Evolution of the norm and angle. Evolution of the total synaptic strength ||~wi || =√∑
j
(
wi j

)2 of the newborn DGC (top row), and of its angular separation φ with the center of
mass of the novel cluster (bottom row), as a function of the number of pattern presentations
for the early phase of maturation (a1,b1) and the late phase of maturation (a2,b2). (a) The
three clusters are similar (ξ= 0.2). (b) The three clusters are distinct (ξ= 0.8). Red line shows
the mean value of the synaptic strength of the mature DGCs.

the newborn DGC becomes selective for the novel cluster for similar but not for distinct

patterns. In addition, we observe a slight increase of the L2-norm of the feedforward weight

vector onto the newborn DGC concomitantly with the decrease of angle with the center of

mass of the novel cluster (Figure 5.3a2), because the center of mass of the novel cluster lies

closer to the surface of the sphere than the center of mass of the three clusters.

5.3.3 Analytical computation of the L2-norm and angle

We consider the case where two mature DGCs have learned their synaptic connections, such

that the first mature DGC with feedforward weight vector ~w1 is selective for cluster 1, and

the second mature DGC with feedforward weight vector ~w2 is selective for cluster 2. By

construction, we have ~w1 = 〈||~w1||〉~P1 and ~w2 = 〈||~w2||〉~P2, where 〈||~wk ||〉 is the expected L2-

norm of the feedforward weight vector onto mature DGC k that is selective for pretrained

cluster k. We remind here that the L2-norm of the center of mass of the clusters are normalized

to one by construction, hence ||~Pk || = 1 ∀k. In addition, the upper bound for the L2-norm of

the weight vectors of the mature DGCs is 〈||~w1||〉 = 〈||~w2||〉 = 1.5 (Section 5.2.2). In our case, we

obtain 〈||~w1||〉 = 〈||~w2||〉 ≈ 1.49 because of the dispersion of the patterns around their center

of mass, hence we will use this value for the numerical computations below.

We represent the feedforward weight vector ~wi onto a newborn DGC as an arrow which points

below the surface of a sphere with radius 〈||~w1||〉 (Figure 5.4). We compute analytically its

L2-norm at the end of the early phase of maturation of the newborn DGC, as well as its angle
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5.3. Results

a b

Figure 5.4 – Schematic for computation of the norm and angle. Schematic drawing for the
analytical computation of the L2-norm of the weight vector ~wi onto the newborn DGC at
the end of the early phase of maturation, and its angle φ with the center of mass of the novel
cluster, for (a) similar clusters (ξ= 0.2), and (b) distinct clusters (ξ= 0.8). The sphere has a
radius 〈||~w1||〉. The projection of the center of mass of the first two clusters (represented by
the two mature DGCs) are represented by the blue and green dots. The red dot represents the
projection of the center of mass of the novel cluster, ~Pi , on the sphere.

φ with the center of mass of the novel cluster ~Pi , to confirm the results obtained in Figure 5.3.

Similar clusters

The angle between the center of mass of any pair of similar clusters (ξ = 0.2) is given by

equation (5.9):

ΩS = arccos

(
1

1+0.22

)
(5.14)

Half the distance between the projections of the center of mass of any pair of two similar

clusters on a concentric sphere with radius 〈||~w1||〉 is given by (Figure 5.4a):

z = 〈||~w1||〉 · sin

(
ΩS

2

)
(5.15)

The triangle which connects the projections on the sphere of the center of masses of the three

clusters is equilateral, and y separates one of its angle in two equal parts (π/6 [rad] each). So

the length y can be calculated:

y = z

cos
(
π
6

) (5.16)
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Chapter 5. Adult-born dentate granule cells promote discrimination of similar stimuli

Using Pythagoras formula, we can thus determine the expected L2-norm 〈||~wi ||〉 of the feed-

forward weight vector onto the newborn DGC at the end of the early phase of maturation:

〈||~wi ||〉 =
√
〈||~w1||〉2 − y2, (5.17)

and finally its angle with the center of mass of the novel cluster:

φ= arccos

( 〈||~wi ||〉
〈||~w1||〉

)
(5.18)

The numerical values are: 〈||~wi ||〉 ≈ 1.47 and φ≈ 9.21[◦], which correspond to the values on

Figure 5.3a1.

Distinct clusters

In the case of distinct patterns (ξ= 0.8), the angle between the center of mass of any pair of

clusters is given by equation (5.9):

ΩD = arccos

(
1

1+0.82

)
>ΩS (5.19)

We can directly compute the expected L2-norm of the feedforward weight vector onto the

newborn DGC at the end of the early phase of maturation (Figure 5.4b):

〈||~wi ||〉 = 〈||~w1||〉 ·cos

(
ΩD

2

)
(5.20)

Using Pythagoras formula, we can then calculate the length z between the projection of the

center of mass of one of the two pretrained clusters on a concentric sphere with radius 〈||~w1||〉
and the feedforward weight vector onto the newborn DGC:

z =
√
〈||~w1||〉2 −〈||~wi ||〉2 (5.21)

Analogous to the similar case, we observe that y separates one angle of the equilateral triangle

connecting the projections of the center of mass of the clusters on the sphere in two equal

parts, consequently:

y = z

tan
(
π
6

) (5.22)

Finally, the angle between the center of mass of the novel cluster and the feedforward weight

vector onto the newborn DGC at the end of the early phase of maturation is:

φ= arccos

( 〈||~wi ||〉2 +〈||~w1||〉2 − y2

2〈||~wi ||〉〈||~w1||〉
)

(5.23)
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5.3. Results

We obtain the following approximate values: 〈||~wi ||〉 ≈ 1.34 and φ≈ 47.2[◦], which correspond

to the values on Figure 5.3b1. The angle φ is smaller in the similar case than in the distinct

case, hence the norm is larger in the similar case, as observed in Figure 5.3a1,b1.
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6 Discussion

While experimental results stemming from the manipulation of the ratio of NKCC1 to KCC2

suggest that the switch from excitation to inhibition of the GABAergic input onto adult-born

DGCs is crucial for their integration into the preexisting circuit (Ge et al. (2006, 2007); Alvarez

et al. (2016)) and that adult dentate gyrus neurogenesis promotes better pattern separation

(Clelland et al. (2009); Sahay et al. (2011a); Jessberger et al. (2009)), the link between channel

properties and behavior has remained puzzling (Sahay et al. (2011b); Aimone et al. (2011)).

In this work, we have shown with a model that the switch enables newborn DGCs to become

selective for novel features of presented stimuli which are similar to familiar, already stored,

representations, consistent with the experimentally-observed function of pattern separation

(Clelland et al. (2009); Sahay et al. (2011a); Jessberger et al. (2009)). Previous modeling stud-

ies already suggested that newborn DGCs integrate novel inputs into the representation in

dentate gyrus (Chambers et al. (2004); Becker (2005); Crick and Miranker (2006); Wiskott

et al. (2006); Chambers and Conroy (2007); Appleby and Wiskott (2009); Aimone et al. (2009);

Weisz and Argibay (2009); Temprana et al. (2015)). However, they either (i) used an abstract

framework of additive or turnover neurogenesis in autoencoders; or (ii) used classical algo-

rithmic competitive Hebbian learning with weight vector normalization, thus bypassing the

two-phase integration issue. To our knowledge, we present the first synaptic plasticity model

that can explain both how adult-born DGCs integrate into the preexisting network and why

they promote pattern separation of similar stimuli.

Our work emphasizes why a two-phase maturation of newborn DGCs is beneficial for proper

integration in the preexisting network. From a computational perspective, the early phase

of maturation, when GABAergic inputs onto newborn DGCs are excitatory, corresponds to

cooperative unsupervised learning. Therefore, the synapses grow in the direction of patterns

that indirectly activate the newborn DGCs (via GABAergic interneurons), see Figure 6.1a. At

the end of the early phase of maturation, the receptive field of a newborn DGC represents

the center of mass of all input patterns that led to its (indirect) activation. In the late phase

of maturation, GABAergic inputs onto newborn DGCs become inhibitory, so that lateral

interactions change from cooperation to competition, causing a shift of the receptive fields of
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a b c

Figure 6.1 – Explanatory schematics. Schematics of the hypersphere surface that contains
three clusters of patterns (colored dots) and the feedforward weight vectors towards the output
units (colored arrows, ending slightly below the surface). The blue and green clusters are
stored before patterns from the novel red cluster are presented to the network. (a) During
the early phase of maturation, the newborn DGC grows its vector of feedforward weights (red
arrow) in the direction of the subspace of active previously stored patterns. (b) During the
late phase of maturation, the red vector moves away from previously stored patterns and
towards the novel cluster. (c) Control scenario with an unresponsive neuron (with magenta
feedforward weight vector), unable to learn the novel cluster.

the newborn DGCs towards novel features, see Figure 6.1b. At the end of maturation, newborn

DGCs are thus selective for novel inputs. This integration mechanism is in agreement with

the experimental observation that newborn DGCs are broadly tuned early in maturation,

and get high input selectivity at the end of maturation (Marín-Burgin et al. (2012)). Loosely

speaking, the cooperative phase of excitatory GABAergic input promotes the growth of the

synaptic weights coarsely in the relevant direction, whereas the competitive phase of inhibitory

GABAergic input helps to specialize on detailed, but potentially important differences between

patterns.

In the context of theories of unsupervised learning, the switch of lateral GABAergic inputs to

newborn DGCs from excitatory to inhibitory provides a biological solution to the “problem of

unresponsive units” (Hertz et al. (1991)). Unsupervised competitive learning has been used

to perform clustering of input patterns into a few categories (Rumelhart and Zipser (1985);

Grossberg (1987a); Kohonen (1989); Hertz et al. (1991); Du (2010)). Ideally, after learning of the

feedforward weights between an input layer and a competitive network, input patterns that are

distinct from each other activate different neuron assemblies of the competitive network. After

convergence of competitive Hebbian learning, the vector of feedforward weights of a given

neuron points to the center of mass of the cluster of input patterns for which it is selective

(Kohonen (1989); Hertz et al. (1991)). Yet, if the synaptic weights are randomly initialized, it is

possible that the set of feedforward weights onto some neurons of the competitive network

point in a direction “quasi-orthogonal” (Section 4.2.2) to the subspace of the presented input

patterns, see Figure 6.1c. Therefore, those neurons called “unresponsive units” will never

get active during pattern presentation. Different learning strategies have been developed in

the field of artificial neural networks to avoid this problem (Grossberg (1976); Bienenstock
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et al. (1982); Rumelhart and Zipser (1985); Grossberg (1987a); DeSieno (1988); Kohonen (1989);

Hertz et al. (1991); Du (2010)). However, most of these algorithmic approaches lack a biological

interpretation. In our model, the synapses onto newborn DGCs form spontaneously after

neuronal birth. The excitatory GABAergic input in the early phase of maturation drives the

growth of the synaptic weights in the direction of the subspace of presented patterns that

succeeded in activating some of the mature DGCs. Hence the early cooperative phase of

maturation can be seen as a smart initialization of the synaptic weights onto newborn DGCs,

such that they end up close enough to the novel patterns to be able to become selective for

them in the late competitive phase of maturation.

Our results are in line with the classic view that dentate gyrus is responsible for decorrelation

of inputs (Marr (1969); Albus (1971); Marr (1971); Rolls and Treves (1998)), a necessary step

for storage of similar memories in CA3, and with the observation that dentate gyrus lesions

impair discrimination of similar but not distinct stimuli (Gilbert et al. (2001); Hunsaker and

Kesner (2008)). To discriminate distinct stimuli, another pathway might be involved, such

as the direct EC to CA3 connection (Fyhn et al. (2007); Vazdarjanova and Guzowski (2004)).

Our theory for integration of newborn DGCs readily explains why enhanced adult dentate

gyrus neurogenesis promotes better discrimination of similar stimuli, but not distinct stimuli,

as observed experimentally (Clelland et al. (2009); Sahay et al. (2011a)). In our model, the

early cooperative phase of maturation can only drive the growth of synaptic weights onto

newborn cells if mature DGCs are activated by presented stimuli. Hence the stimuli should be

similar enough to familiar stimuli that are already represented by the network. If only distinct

stimuli are presented, none of the mature DGCs becomes active, so the newborn DGCs are not

indirectly activated and their synaptic weights do not grow. Consequently, in an experimental

paradigm with distinct patterns, newborn cells are, according to our model, silent. As they

are poorly integrated into the preexisting circuit, they will probably not survive (Tashiro et al.

(2006)).

Experimental observations support the importance of the switch from early excitation to late

inhibition of the GABAergic input onto newborn DGCs. An absence of early excitation using

NKCC1-knockout mice has been shown to strongly affect synapse formation and dendritic

development in vivo (Ge et al. (2006)). Conversely, a reduction in inhibition in the dentate

gyrus through decrease in KCC2 expression has been associated with epileptic activity (Pathak

et al. (2007); Barmashenko et al. (2011)). An analogous switch of the GABAergic input has

been observed during development, and its proper timing has been shown to be crucial

for sensorimotor gating and cognition (Wang and Kriegstein (2010); Furukawa et al. (2017)).

In addition to early excitation and late inhibition, our theory also critically depends on the

duration of the switch. Indeed, it supposes that a sufficient number of newborn DGCs are just

about -within a few hours- to switch the effect of their GABAergic input when novel inputs are

presented, in order for them to become selective for new features of the environment. Several

experimental results have suggested that the switch is indeed sharp and occurs within a single

day, both during development (Khazipov et al. (2004); Tyzio et al. (2007); Leonzino et al. (2016))

and adult dentate gyrus neurogenesis (Heigele et al. (2016)). Furthermore, in hippocampal
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cell cultures, expression of KCC2 is upregulated by GABAergic activity but not affected by

glutamatergic activity (Ganguly et al. (2001)). A similar process during adult dentate gyrus

neurogenesis would increase the number of newborn DGCs available for representing novel

features by advancing the timing of their switch. In this way, instead of a few thousands of

newborn DGCs ready to switch (3 to 6% of the whole population (Van Praag et al. (1999);

Cameron and McKay (2001)), divided by 30 days), a larger fraction of newborn DGCs would be

made available for coding, if appropriate stimulation occurs.

To conclude, our theory for integration of adult-born DGCs suggests that newborn cells have a

coding – rather than a modulatory – role during dentate gyrus pattern separation function.

Our theory highlights the importance of GABAergic input in adult dentate gyrus neurogenesis,

and links the switch from excitation to inhibition to the integration of newborn DGCs into

the preexisting circuit. Finally, it readily illustrates how Hebbian plasticity of the synapses

from EC to DGCs makes newborn cells suitable to promote pattern separation of similar but

not distinct stimuli, a long-standing question in the field of adult dentate gyrus neurogenesis

(Sahay et al. (2011b); Aimone et al. (2011)).
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7 My contributions

In adult dentate gyrus neurogenesis, the link between maturation of newborn neurons and

their function, such as behavioral pattern separation, has remained puzzling. Besides, unsu-

pervised competitive learning in ANN brought up the beneficial aspect of incorporation of

new nodes in the network. But no consensus has been reached about the functional role of

adult-born dentate granule cells. Moreover, the question of how new nodes integrate into the

network has been avoided by all sorts of initializations of their weights.

In my work, I bridge the gap between biology and theory. I base my model on the accumu-

lated experimental knowledge about the integration of adult dentate granule cells, and show

that a solution to the problem of dead units in unsupervised competitive learning directly

derives from it. By analyzing a theoretical model, I show that the switch from excitation to

inhibition of the GABAergic input onto maturing newborn cells is crucial for their proper

functional integration. In the early excitatory phase of GABAergic inputs, cooperativity makes

the feedforward connections onto adult-born dentate granule cells grow in the direction of

the subspace of previously presented inputs, thus preventing the newborn cells to become

unresponding dead units. In the late inhibitory phase, competition kicks in, and drives the

feedforward weights away from previously stored clusters. This enables adult-born dentate

granule cells in my model to code for concepts that are novel, yet similar to familiar ones. To

my knowledge, this theory of maturation of newborn cells is the first that can explain: (i) how

adult-born dentate granule cells integrate into the preexisting dentate gyrus network, and

(ii) why they promote pattern separation of similar stimuli.
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A Determination of the plasticity pa-
rameters

To make sure that for a smaller θ, and hence a LTP-dominated regime, the L2-norm of the

weight vectors at convergence is slightly bigger than for a higher θ, we choose β= 1, and set

γ= γ0 −θ with γ0 = 10. To investigate the dynamics of the system around the high fixed point

(LTP regime, where νi > θ), we compute the phase portrait for a simple case without inhibition,

bias equal to zero, and τm = η= 1, see Figure A.1a,b. The trajectories of the dynamical system

for a single postsynaptic neuron with a single postsynaptic partner (hence y corresponds to νi

and x to x j for convenience) are given by:

dy

dt
=−y + tanh

(
[w x]+

L

)
dw

dt
= y(y −θ)

(
γx −βw y2)

The cases for θ = 0 (Figure A.1a) and θ = 0.15 (Figure A.1b) are represented, with the y-nullcline

in red and the w-nullcline in blue. By construction, the y-nullcline corresponds to the neuronal

gain function. The w-nullcline has a vertical component at νi = θ, and another component on

which the high stable fixed point of the firing rate lies (at the intersection with the red nullcline).

We observe on Figure A.1c,d that the bigger the θ, the smaller the w at convergence to the high

stable fixed point, hence the smaller the L2-norm of the weight vector. Furthermore, we note

that for this choice of parameters, θ has to be smaller than about 0.8, otherwise the high fixed

point is lost, and thus all weights ultimately converge to zero.

In addition, the maximum extent of LTP and LTD can be computed. To do so, we determine y∗

such that dg (νi )
dνi

|νi=y∗ = 0, and then compute g (y∗). In the LTP regime (νi > θ), the maximum

amount of LTP is reached at νi = y∗. The expression of y∗ is complicated because it depends

on several parameters: y∗ = f (θ,δ,γ, x j , wi j ). Hence, we set δ and γ as above and fix the

other parameters at different values, see Figure A.1e,f. Similarly, in the LTD regime (νi < θ),

the maximum amount of LTD is reached at y∗ = θ
2 , which corresponds to an LTD update of

∆wi j =−αx j
θ2

4 . To get amount of LTP and LTD of similar order of magnitude, we set α= α0

θ3 ,

see Figure A.2.
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Figure A.1 – High stable fixed point and maximum LTP update. Dynamical trajectories with
the y-nullcline in red and the w-nullcline in blue, for (a) θ = 0 and (b) θ = 0.15. (c) w-Nullclines
for different values of θ, and (d) zoom in around the high stable fixed point. Maximum LTP
update ∆wi j

∣∣
νi=y∗ and corresponding postsynaptic firing rate value y∗ as a function of θ and

(e) the presynaptic rate x, or (f) the weight w .
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Figure A.2 – Maximum LTD update. Location (y∗) and value of the maximal LTD update
(∆w |y∗) for different values of the presynaptic firing rate x, and threshold values θ (keep in

mind that y∗ = θ
2 ).

90



B Single Winner-Take-All network

Initially, the theory for newborn DGCs integration was implemented in a simple network

to thoroughly investigate the conceptual aspects of the model before moving to a more

biologically plausible network, which is presented in the main text. The original network was

a single WTA network with Oja’s learning rule for the feedforward connections.

B.1 Methods

B.1.1 The network of mature DGCs as a WTA network

In our model, we describe the network of mature DGCs as a WTA circuit consisting of NDGC

laterally coupled neurons. The WTA network has the task to represent K clusters of input

patterns. For each input pattern ~x, only one of the NDGC neurons is activated. An input

pattern consists of the activity of NEC neurons in EC. We assume that inhibition controls EC

activity such that ||~x|| = 1.

The input layer (EC neurons) is fully connected to the layer of DGCs neurons. The feedforward

connections from EC to DGCs are excitatory (weights w f f
i j Ê 0). They are initialized randomly

w f f
i j ∈ [0,1], and normalized such that

∑
j

(
w f f

i j

)2 = 1. In rodent hippocampus, the spiking

of mature DGCs activates interneurons in dentate gyrus, which in turn inhibit other mature

DGCs (Leutgeb et al. (2007); Alvarez et al. (2016)). In our model, we replace the indirect

DGC-to-interneuron-to-DGC connection by a direct inhibitory DGC-to-DGC connection: the

output neurons are laterally connected all-to-all with identical inhibitory weights w r ec . No

neuron in the network has self-connections.

The total input to output neuron i is given by:

Ii =
NEC∑
j=1

w f f
i j x j +

NDGC∑
k=1

mi k w r ec
i k νk (B.1)
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Appendix B. Single Winner-Take-All network

with ~x = (
x1, x2, ..., xNEC

)
the input pattern, and νk the firing rate of the output neuron k.

In a mature network, the elements mi k are −1 (inhibitory lateral connections). W f f is the

feedforward connectivity matrix. W r ec is the recurrent connectivity matrix with diagonal

elements w r ec
i i = 0 and off-diagonal elements w r ec

i k = w r ec > 0.

Before a stimulus is presented, all rates are initialized at zero. Upon stimulation, the lowpass-

filtered firing rate of output neuron i evolves according to (Miller and Fumarola (2012)):

τ
dνi

dt
=−νi + f (Ii ) (B.2)

with τ a time constant, and f a Heaviside function

f (z) =H (z −b) (B.3)

with some bias b.

Once the firing rates in the output layer have converged, the feedforward weights from each

EC neuron j to each DGC i are updated in our model according to Oja’s rule (Oja (1982)):

∆w f f
i j = ηνi

(
x j −w f f

i j νi

)
(B.4)

with η a learning rate. Since in a WTA circuit all neurons except one have a rate νi = 0, only the

winning unit (νi = 1) updates its inwards feedforward weights in direction of the input pattern

~x. Note that the weight update rule (B.4) is applied once for each pattern presentation, after

convergence of equation (B.2) to a stationary state. After the weight updates, all firing rates

are reset to zero. Therefore, the WTA network is ultimately performing clustering: each output

unit feedforward weight vector will move towards the center of mass of the cluster of patterns

it is selective for (Hertz et al. (1991)).

Winners, losers, and quasi-orthogonal inputs

We define the winner as the neuron for which the scalar product of feedforward weights with

the input pattern is the largest:

max
i

Ii = max
i

[
NEC∑
j=1

w f f
i j x j

]
(B.5)

Since both the input patterns and the feedforward weight vectors are normalized to have an

L2-norm of 1, the winning unit is the one whose weight vector ~W f f
i (row of the feedforward

connectivity matrix) aligns best with the input pattern~x. Furthermore, we say that an input

pattern~x is “quasi-orthogonal” to a weight vector ~W f f
i if

∑NEC

j=1 w f f
i j x j < b. Note that for b → 0,
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B.1. Methods

we recover the standard orthogonality condition. Under the condition

w r ec +b > 1, (B.6)

we get at most one active neuron in the output layer. In addition, if the condition
∑NEC

j=1 w f f
i j x j >

b is satisfied for at least one neuron, then the winner will become active and thus will inhibit

the other output neurons through the inhibitory recurrent connections w r ec of equation (B.1).

To prove the above claims we assume that we have inhibitory lateral connections (mi k =−1).

At steady state we obtain νi = f (Ii ) ∀i , cf. equation (B.2). Assuming n active neurons i∗, we

get

νi∗ =H

(
NEC∑
j=1

w f f
i∗ j x j − (n −1)w r ec −b

)
(B.7)

for the active neurons, and

νi =H

(
NEC∑
j=1

w f f
i j x j −nw r ec −b

)
(B.8)

for the inactive neurons. Hence
∑NEC

j=1 w f f
i∗ j x j > b is a necessary condition for the winner.

Furthermore, knowing that ||~x|| = 1 (by construction), and that ||~W f f
i || É 1 ∀i (the feedfor-

ward weights are initialized such that ||~W f f
i || = 1, and Oja’s rule enforces that ||~W f f

i || will

stay smaller or equal to 1 during learning), the condition w r ec +b > 1 is sufficient to ensure

that there is only one active neuron. As we initialize all output firing rates to 0 before pat-

tern presentation, equation (B.1) is initially Ii =∑NEC

j=1 w f f
i j x j , and therefore the winner of the

competition is the output unit i∗ with the largest input Ii∗ .

Figure B.1b shows the evolution of the firing rate of four output neurons during presentation

of an input pattern. In this example, three units initially show an increasing firing rate, because

the total input Ii they receive is bigger than the bias b, see Figure B.1a, whereas the fourth

(orange) unit is quasi-orthogonal to the input pattern, and thus stays silent the whole time.

With time, as activity of the output neurons increases, lateral inhibition increases as well. It

has the effect of lowering the total input to all neurons, and consequently the firing rate. The

blue unit, which is the one whose feedforward weight vector matches best the input pattern,

ultimately wins the competition, while input to the purple and the yellow units falls below the

firing threshold.

Two exceptional cases can arise: (1) all inward weight vectors towards the output units are

quasi-orthogonal to the input pattern
(∑NEC

j=1 w f f
i j x j < b ∀i

)
. In this first case, all output units

will stay silent (νi = 0 ∀i ). However, the more output units we have, the lower the probability

that this situation arises since the feedforward weight vectors are initially randomly chosen

from a uniform distribution on the positive quadrant of the surface of the hypersphere. (2) The

scalar product between the weight vector and the input pattern is identical for several output
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a b

Figure B.1 – Activity dynamics in a single WTA network. Activity dynamics of four DGCs
(i ∈ {1,2,3,4}) during presentation of an input pattern. The four output units have different
feedforward weight vectors. (a) Total input Ii towards each output neuron (the green dotted
line represents the bias b), and (b) resulting firing rate νi as a function of time.

units. If the output units that share the same identical scalar product with the input patterns

are also the ones with largest scalar product, it will follow that all of them will become winners

of the competition. Yet, this case becomes more and more unlikely as the dimension of the

input patterns is increased. Moreover, such a symmetric solution of equations (B.1) (B.2) (B.3)

is dynamically unstable in the presence of noise.

B.1.2 Neurogenesis and integration of newborn neurons

Before neurogenesis occurs, we store K prototype patterns in the existing network of DGCs

(NDGC = K ). To do so, the feedforward weights are initialized randomly w f f
i j ∈ [0,1], and

normalized such that
∑

j

(
w f f

i j

)2 = 1. Patterns of the K different clusters are then presented to

the network, and the feedforward weights are updated as explained in section B.1.1. At the end

of pretraining, each output unit has a feedforward weight vector that aligns with the center of

mass of one of the clusters Hertz et al. (1991), see Figure B.2a.

The feedforward weights towards the mature DGCs are then frozen, and a newborn DGC

is added to the output layer. This corresponds to the neurogenesis step. The feedforward

connections to this newborn DGC are plastic and initialized to small positive values: w f f
i j ∼

|N (0, 10−4)|. The lateral connections onto a newborn cell are set to the same value w r ec as

for the other DGCs, while the outward connections from a newborn cell to mature cells are

set to 0. Once the newborn DGC has been added to the network, a cluster of novel patterns is

presented, intermingled with the K previously stored clusters. Thus we present K +1 clusters

of patterns onto K mature DGCs and one newborn DGC. Learning of the feedforward weights

onto the newborn DGC occurs in two phases.
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a b c

Figure B.2 – Architecture of the single WTA network. The entorhinal cortex input layer
(black) is fully feedforwardly connected to the output layer, consisting of mature DGCs (red)
and a newborn DGC (blue). (a) Pretraining: input patterns are presented to a network of DGCs,
and all feedforward connections are learned. (b) Early phase of maturation of the newborn
DGC: lateral input from mature DGCs (red) has an excitatory effect onto the newborn DGC
(blue). (c) Late phase of maturation: all lateral connections are inhibitory. Full lines depict
fixed connections, dashed lines represent plastic connections; round endings mean excitation,
while T endings represent inhibition.

Early maturation phase: cooperative

During the early phase of maturation, the GABAergic input onto a newborn cell has an excita-

tory effect, see Figure B.2b. In the model, using the subscript notation m for mature DGCs

and n for the newborn DGC, it is implemented as follows: mnm =+1 (and mmm =−1 for two

different mature DGCs, as before). Furthermore, since newborn cells do not recruit feedback

inhibition onto the mature DGCs, we have mmn = 0.

After each pattern presentation, the dynamics of the firing rate of the output units evolve until

convergence as before. However, the newborn DGC receives indirect lateral excitation, instead

of inhibition, from the mature DGCs. Based on equation (B.1) and the elements mnm = 1, the

total input towards the newborn DGC is given by:

In =∑
j

w f f
n j x j +

∑
k 6=n

w r ec
nk νk (B.9)

where w f f
n j (resp. w r ec

n j ) stands for the feedforward (resp. recurrent) connectivity weight from

neuron j to the newborn DGC with index n. If we assume that the conditions to have a single

active neuron among the mature DGCs are satisfied, the newborn neuron is indirectly excited

by the winner of the competition. The necessary condition for the lateral excitatory GABAergic

input to be sufficient to activate the newborn neuron is: w r ec > b. If this requirement is met,

the activation of the newborn DGC drives the growth of its feedforward weights. Therefore,

together with condition (B.6), we require w r ec > 1
2 and w r ec > b.

From the perspective of the newborn DGC, the early phase is cooperative because, for each
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pattern presentation, the winning mature DGC laterally excites the newborn DGC. Since in our

model mature DGCs have non-plastic connections, the winning mature DGC will not update

its feedforward weights, but the newborn DGC will. Under these conditions, the feedforward

weights onto the newborn DGC will grow in the direction of the subspace of the feedforward

weights of those output units that win the competition for some input patterns. In other words,

they will move towards the subspace of the weight vectors of DGCs that are winners for the

presented patterns, hence the learning is cooperative.

Late maturation phase: competitive

During the second phase of maturation, the GABAergic input onto the newborn DGC switches

from excitatory to inhibitory. In terms of our model, it means that mnm switches from +1 to

−1. Equation (B.9) becomes:

In =∑
j

w f f
n j x j −

∑
k 6=n

w r ec
nk νk (B.10)

which is equivalent to the input onto the mature DGCs, hence competitive. Furthermore, in

this second phase, inhibitory lateral connections from the newborn DGC to the mature DGCs

are added (mmn =−1), see Figure B.2c.

B.1.3 Control case

In the control case, we start directly with a number of output neurons equal to the final

number of clusters of patterns, that is NEC = K + 1. The feedforward connections to all

DGCs are plastic. As for the mature DGCs of the neurogenesis model, they are initialized

randomly w f f
i j ∈ [0,1], and normalized such that

∑
j

(
w f f

i j

)2 = 1. The DGCs are all-to-all

identically inhibitory recurrently connected with value w r ec . There are no self-connections.

The pretraining, where only K pattern clusters are shown to the network, is identical to the

one for the neurogenesis case, except there are K +1 output DGCs with plastic feedforward

connections instead of K . Once we add the novel cluster of patterns, we keep all feedforward

connections towards the DGCs plastic. So the network is equivalent to the one in Figure B.2a,

except that there are always K +1 output neurons.

B.1.4 Classification performance

After convergence of the feedforward weights, they are fixed, and classification performance of

the DGC layer is assessed by computing classification error on the corresponding test set (Diehl

and Cook (2015)). First, every DGC neuron of the output layer is assigned its corresponding

label (the cluster it represents best). This is done by presenting each pattern of the training set

to the network. The index of the output neuron which wins the competition is kept in memory

together with the known label of the pattern. Once all training patterns have been presented,
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Figure B.3 – Classification error with the single WTA network Boxplots representing the
classification error on the test set after learning using the training set (MNIST 12x12 dataset).
Levene’s test confirmed that the data came from distributions with similar variances, so a
two-sample t-test was used to test if the data from two different distributions had similar
means or not: the p-values are displayed.

each output neuron is assigned the label of the digit to which it responded most often. Second,

all patterns of the testing set whose clusters have been presented during learning are classified

by observing which output neuron wins the competition, and comparing its assigned label to

the real label of the pattern. The classification error is computed by dividing the number of

incorrectly classified patterns over the total number of presented patterns.

B.2 Results

B.2.1 Maturation of a newborn DGC in a WTA network of mature DGCs is better
for learning a novel cluster than a population of same size of plastic neu-
rons

We wondered whether a network that was previously trained on three clusters of input patterns

was able to learn a novel cluster. In the control network, we used four DGCs with input from

144 EC cells. In the scenario with neurogenesis, we started with three DGCs to which we added

a fourth one when patterns from the novel cluster were included. The four clusters of EC

inputs correspond to training patterns belonging to four digits of the MNIST 12x12 dataset.

First, the classification error at the end of the learning phase with three clusters is similar
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a b

Figure B.4 – Evolution of the angle and norm in the single WTA network. Evolution of the
angle between the center of mass of the novel cluster and the feedforward weight vector onto
the output neuron of interest (top row), and of the norm of that feedforward weight vector
(bottom row). (a) Neurogenesis case: evolution of the feedforward weight vector onto the
newborn DGC. The red vertical line represents the switch from excitation to inhibition of
the GABAergic input onto the newborn DGC. (b) Control case: evolution of the feedforward
weight vector onto the output unit that ultimately represents the novel cluster, if there is one.
One epoch corresponds to the presentation of all the training patterns of the selected clusters
once.

for the neurogenesis model and the control, see Figure B.3. Since in the control there are

four output units to store only three clusters, the classification error is slightly lower, but

the difference is not significant. Second, after presentation of a novel cluster, the network

performs significantly better in the neurogenesis model than in the control. This is reflected

by a significant increase of the classification error upon inclusion of a novel cluster in the

control, but not in the neurogenesis model. We conclude that concurrently including a novel

cluster and adding a plastic output unit is beneficial for learning a novel cluster. Even though

in the control case all output units always keep plastic feedforward weights, a novel cluster

included at a later learning stage is not properly learned.

Next, we asked why there is such a difference in classification performance between the

neurogenesis model and the control. We focused on the evolution of the feedforward weight

vector onto the newborn DGC as a function of maturation. Similarly, in the control, we

looked at the evolution of the feedforward weight vector onto the output unit that ultimately

represents the novel cluster (if there is one). First, as expected by design, we observe that the

norm of the weight vector is relatively stable in the control, while it increases as a function

of maturation in the neurogenesis model, see bottom row of Figure B.4. Second, and more

importantly, the angle between the weight vector and the center of mass of the novel cluster

decreases more and faster in the neurogenesis model than in the control, see top row of

Figure B.4. Consequently, when the weight vector has converged, it is more selective for the

novel cluster in the neurogenesis model than in the control.
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a b c

Figure B.5 – Pretrained subclusters of digit one of the MNIST 12x12 training set. (a) repre-
sents 48% of the training set. (b) represents 1% of the training set. (c) represents 51% of the
training set.

B.2.2 Neurogenesis is a biological solution to the problem of dead units

In the control case, all output units have plastic feedforward weight vectors with a norm close

to one. At the end of the learning of the first three clusters, they are each represented by at

least one output unit. The fourth output unit is thus either unselective to any of the pretrained

clusters (dead unit), or is also selective for one of the three clusters (subclustering of one

cluster). Thus, there are two situations where the novel cluster cannot be learned. (1) The

dead unit is quasi-orthogonal to the novel cluster, see Figure 6.1c. Most probably, the magenta

unit was not updated during pretraining, because the blue and green vectors always won the

competition. Then, at the end of learning of the blue and green clusters, the magenta unit

still points where it got initialized. When the novel red cluster is added, ideally the magenta

unit should become selective for it. However, if the magenta weight vector is quasi-orthogonal

to the novel cluster, it will never be activated, and thus stay a dead unit. (2) All units are

already assigned to the initial clusters (subclustering). The blue cluster got divided into two

subclusters during pretraining: two weight vectors are pointing in its direction. Therefore,

when the novel red cluster of patterns is added, it may be quasi-orthogonal to all weight

vectors, and thus the novel cluster is never learned. Another possibility is that the novel cluster

might actually activate one of the output units. So the feedforward weight vector will move in

its direction. However, presentation of any pattern from the corresponding pretrained cluster

will bring back the weight vector towards it. In all these cases, classification performance over

all presented clusters is impaired, because no output unit represents the novel cluster.

B.2.3 Similar clusters can be learned, while distinct clusters cannot

Depending on how the network parameters are chosen, the newborn DGC is either able to

become selective for the novel cluster, or not. For example, we can start by pretraining three

subclusters of digit one in three mature DGCs, see Figure B.5. After convergence of the weights,

we fix them. Then, we include a novel digit cluster in the presentation, and add a newborn

DGC to the network whose feedforward weights are learned. At the end of maturation, we look
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a b

c d

Figure B.6 – Receptive field of the newborn DGC at the end of maturation. The feedforward
weight vector onto the newborn DGC is visualized as a 2-dimensional arrangement of its
elements. (a) The novel cluster is similar (digit seven). (b) The novel cluster is distinct (digit
zero). (c) Center of mass of all patterns of the training set that are labeled as digit seven.
(d) Center of mass of all patterns of the training set that are labeled as digit zero.

at the feedforward weight vector to the newborn DGC, see Figure B.6. We observe that when

the novel cluster is similar (digit seven) to the pretrained clusters, the newborn DGC becomes

selective for it, see Figure B.6a. On the other hand, if the novel cluster (digit zero) is distinct,

the newborn DGC does not become selective for it, see Figure B.6b. It is reflected by a lower

classification error on the test set in the similar case (8.51%) with respect to the distinct case

(24.30%).

100



Bibliography

Acsády, L., Kamondi, A., Sík, A., Freund, T., and Buzsáki, G. (1998). GABAergic cells are the

major postsynaptic targets of mossy fibers in the rat hippocampus. Journal of neuroscience,

18(9):3386–3403.

Aimone, J. B., Deng, W., and Gage, F. H. (2011). Resolving new memories: a critical look at the

dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4):589–596.

Aimone, J. B., Wiles, J., and Gage, F. H. (2006). Potential role for adult neurogenesis in the

encoding of time in new memories. Nature neuroscience, 9(6):723–727.

Aimone, J. B., Wiles, J., and Gage, F. H. (2009). Computational influence of adult neurogenesis

on memory encoding. Neuron, 61(2):187–202.

Albus, J. (1971). A theory of cerebellar function. J. Mathematical Biosciences, 10:25–61.

Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science,

135(3509):1127–1128.

Altman, J. and Das, G. D. (1965). Autoradiographic and histological evidence of postnatal

hippocampal neurogenesis in rats. Journal of Comparative Neurology, 124(3):319–335.

Altman, J. and Das, G. D. (1967). Postnatal neurogenesis in the guinea-pig. Nature,

214(5093):1098–1101.

Alvarez, D. D., Giacomini, D., Yang, S. M., Trinchero, M. F., Temprana, S. G., Büttner, K. A.,

Beltramone, N., and Schinder, A. F. (2016). A disynaptic feedback network activated by

experience promotes the integration of new granule cells. Science, 354(6311):459–465.

Amaral, D. G., Scharfman, H. E., and Lavenex, P. (2007). The dentate gyrus: fundamental

neuroanatomical organization (dentate gyrus for dummies). Progress in brain research,

163:3–22.

Anacker, C. and Hen, R. (2017). Adult hippocampal neurogenesis and cognitive flexibil-

ity—linking memory and mood. Nature Reviews Neuroscience, 18(6):335–346.

Andersen, P., Morris, R., Amaral, D., Bliss, T., and O’Keefe, J., editors (2007). The hippocampus

book. Oxford university press.

101



Bibliography

Appleby, P. A., Kempermann, G., and Wiskott, L. (2011). The role of additive neurogenesis

and synaptic plasticity in a hippocampal memory model with grid-cell like input. PLoS

computational biology, 7(1):1–15.

Appleby, P. A. and Wiskott, L. (2009). Additive neurogenesis as a strategy for avoiding in-

terference in a sparsely-coding dentate gyrus. Network: Computation in Neural Systems,

20(3):137–161.

Artola, A., Bröcher, S., and Singer, W. (1990). Different voltage dependent thresholds for

inducing long-term depression and long-term potentiation in slices of rat visual cortex.

Nature, 347:69–72.

Barmashenko, G., Hefft, S., Aertsen, A., Kirschstein, T., and Köhling, R. (2011). Positive shifts of

the GABAA receptor reversal potential due to altered chloride homeostasis is widespread

after status epilepticus. Epilepsia, 52(9):1570–1578.

Bear, M. and Malenka, R. C. (1994). Synaptic plasticity: LTP and LTD. Current Opinion in

Neurobiology, 4:389–399.

Becker, S. (2005). A computational principle for hippocampal learning and neurogenesis.

Hippocampus, 15:722–738.

Ben-Ari, Y. (2002). Excitatory actions of GABA during development: the nature of the nurture.

Nature Reviews Neuroscience, 3(9):728–739.

Biebl, M., Cooper, C. M., Winkler, J., and Kuhn, H. G. (2000). Analysis of neurogenesis and

programmed cell death reveals a self-renewing capacity in the adult rat brain. Neuroscience

letters, 291(1):17–20.

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for the development of

neuron selectivity: Orientation specificity and binocular interaction in visual cortex. Journal

of Neuroscience, 2(1):32–48.

Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosoklija, G. B.,

Stankov, A., Arango, V., Dwork, A. J., Hen, R., and Mann, J. J. (2018). Human hippocampal

neurogenesis persists throughout aging. Cell stem cell, 22(4):589–599.

Boss, B. D., Peterson, G. M., and Cowan, W. M. (1985). On the number of neurons in the dentate

gyrus of the rat. Brain research, 338(1):144–150.

Cameron, H. A. and McKay, R. D. (2001). Adult neurogenesis produces a large pool of new

granule cells in the dentate gyrus. Journal of Comparative Neurology, 435(4):406–417.

Carpenter, G. and Grossberg, S. (1988). The art of adaptive pattern recognition by a self-

organizing neural network. Computer, 21:77–88.

102



Bibliography

Caviness Jr, V. (1973). Time of neuron origin in the hippocampus and dentate gyrus of normal

and reeler mutant mice: an autoradiographic analysis. Journal of Comparative Neurology,

151(2):113–119.

Chambers, R. A. and Conroy, S. K. (2007). Network modeling of adult neurogenesis: shifting

rates of neuronal turnover optimally gears network learning according to novelty gradient.

Journal of cognitive neuroscience, 19(1):1–12.

Chambers, R. A., Potenza, M. N., Hoffman, R. E., and Miranker, W. (2004). Simulated apopto-

sis/neurogenesis regulates learning and memory capabilities of adaptive neural networks.

Neuropsychopharmacology, 29(4):747–758.

Chancey, J. H., Adlaf, E. W., Sapp, M. C., Pugh, P. C., Wadiche, J. I., and Overstreet-Wadiche, L. S.

(2013). GABA depolarization is required for experience-dependent synapse unsilencing in

adult-born neurons. Journal of Neuroscience, 33(15):6614–6622.

Chapouton, P., Jagasia, R., and Bally-Cuif, L. (2007). Adult neurogenesis in non-mammalian

vertebrates. Bioessays, 29(8):745–757.

Chawla, M., Guzowski, J., Ramirez-Amaya, V., Lipa, P., Hoffman, K., Marriott, L., Worley, P.,

McNaughton, B., and Barnes, C. A. (2005). Sparse, environmentally selective expression

of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience.

Hippocampus, 15(5):579–586.

Chistiakova, M., Bannon, N., Bazhenov, M., and Volgushev, M. (2014). Heterosynaptic plasticity:

Multiple mechanisms and multiple roles. The Neuroscientist, 20(5):483–498.

Clelland, C., Choi, M., Romberg, C., Clemenson, G., Fragniere, A., Tyers, P., Jessberger, S.,

Saksida, L., Barker, R., Gage, F., and Bussey, T. (2009). A functional role for adult hippocampal

neurogenesis in spatial pattern separation. Science, 325(5937):210–213.

Crick, C. and Miranker, W. (2006). Apoptosis, neurogenesis, and information content in

hebbian networks. Biological cybernetics, 94(1):9–19.

Dayer, A. G., Ford, A. A., Cleaver, K. M., Yassaee, M., and Cameron, H. A. (2003). Short-term

and long-term survival of new neurons in the rat dentate gyrus. Journal of Comparative

Neurology, 460(4):563–572.

De Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., and Svoboda, K. (2006).

Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex.

Neuron, 49(6):861–875.

Debanne, D., Gähwiler, B., and Thompson, S. (1998). Long-term synaptic plasticity between

pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal of Physiol-

ogy, 507:237–247.

103



Bibliography

Deisseroth, K., Singla, S., Toda, H., Monje, M., Palmer, T. D., and Malenka, R. C. (2004).

Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron, 42(4):535–

552.

Deng, W., Aimone, J. B., and Gage, F. H. (2010). New neurons and new memories: how does

adult hippocampal neurogenesis affect learning and memory? Nature reviews neuroscience,

11(5):339–350.

Deshpande, A., Bergami, M., Ghanem, A., Conzelmann, K.-K., Lepier, A., Götz, M., and

Berninger, B. (2013). Retrograde monosynaptic tracing reveals the temporal evolution

of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proceedings of

the National Academy of Sciences, 110(12):1152–1161.

DeSieno, D. (1988). Adding a conscience to competitive learning. In IEEE international confer-

ence on neural networks, volume 1, pages 117–124. Institute of Electrical and Electronics

Engineers New York.

Diehl, P. U. and Cook, M. (2015). Unsupervised learning of digit recognition using spike-

timing-dependent plasticity. Frontiers in Computational Neuroscience, 9.

Dieni, C. V., Nietz, A. K., Panichi, R., Wadiche, J. I., and Overstreet-Wadiche, L. (2013). Distinct

determinants of sparse activation during granule cell maturation. Journal of Neuroscience,

33(49):19131–19142.

Du, K.-L. (2010). Clustering: A neural network approach. Neural networks, 23(1):89–107.

Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A.,

and Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature medicine,

4(11):1313–1317.

Espósito, M. S., Piatti, V. C., Laplagne, D. A., Morgenstern, N. A., Ferrari, C. C., Pitossi, F. J.,

and Schinder, A. F. (2005). Neuronal differentiation in the adult hippocampus recapitulates

embryonic development. Journal of Neuroscience, 25(44):10074–10086.

Faulkner, R. L., Jang, M.-H., Liu, X.-B., Duan, X., Sailor, K. A., Kim, J. Y., Ge, S., Jones, E. G., Ming,

G.-l., Song, H., and Cheng, H.-J. (2008). Development of hippocampal mossy fiber synaptic

outputs by new neurons in the adult brain. Proceedings of the National Academy of Sciences,

105(37):14157–14162.

Fritzke, B. (1995). A growing neural gas network learns topologies. Advances in neural infor-

mation processing systems, 7:625–632.

Furukawa, M., Tsukahara, T., Tomita, K., Iwai, H., Sonomura, T., Miyawaki, S., and Sato, T.

(2017). Neonatal maternal separation delays the GABA excitatory-to-inhibitory functional

switch by inhibiting KCC2 expression. Biochemical and biophysical research communica-

tions, 493(3):1243–1249.

104



Bibliography

Fyhn, M., Hafting, T., Treves, A., Moser, M.-B., and Moser, E. I. (2007). Hippocampal remapping

and grid realignment in entorhinal cortex. Nature, 446(7132):190–194.

Ganguly, K., Schinder, A. F., Wong, S. T., and Poo, M.-m. (2001). GABA itself promotes the

developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell,

105(4):521–532.

Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G.-l., and Song, H. (2006). GABA regulates

synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076):589–

593.

Ge, S., Yang, C.-h., Hsu, K.-s., Ming, G.-l., and Song, H. (2007). A critical period for enhanced

synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54(4):559–566.

Gilbert, P. E., Kesner, R. P., and Lee, I. (2001). Dissociating hippocampal subregions: A double

dissociation between dentate gyrus and CA1. Hippocampus, 11(6):626–636.

Gould, E., Beylin, A., Tanapat, P., Reeves, A., and Shors, T. J. (1999). Learning enhances adult

neurogenesis in the hippocampal formation. Nature neuroscience, 2(3):260–265.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding II: Feedback,

expectation, olfaction, illusions. Biological Cybernetics, 23:187–202.

Grossberg, S. (1987a). The Adaptive Brain I. Elsevier.

Grossberg, S. (1987b). Competitive learning: From interactive activation to adaptive resonance.

Cognitive science, 11(1):23–63.

Gu, Y., Arruda-Carvalho, M., Wang, J., Janoschka, S. R., Josselyn, S. A., Frankland, P. W., and Ge,

S. (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule

cells. Nature neuroscience, 15(12):1700–1706.

Gueneau, G., Privat, A., Drouet, J., and Court, L. (1982). Subgranular zone of the dentate gyrus

of young rabbits as a secondary matrix. Developmental neuroscience, 5(4):345–358.

Hargreaves, E., Rao, G., Lee, I., and Knierim, J. (2005). Major dissociation between medial and

lateral entorhinal input to dorsal hippocampus. Science, 308:1792–1794.

Heigele, S., Sultan, S., Toni, N., and Bischofberger, J. (2016). Bidirectional GABAergic control

of action potential firing in newborn hippocampal granule cells. Nature neuroscience,

19(2):263–270.

Henze, D. A., Wittner, L., and Buzsáki, G. (2002). Single granule cells reliably discharge targets

in the hippocampal CA3 network in vivo. Nature neuroscience, 5(8):790–795.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of Neural Computation.

Addison-Wesley.

105



Bibliography

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective compu-

tational abilities. Proceedings of the National Academy of Sciences, 79:2554–2558.

Hunsaker, M. R. and Kesner, R. P. (2008). Evaluating the differential roles of the dorsal dentate

gyrus, dorsal CA3, and dorsal CA1 during a temporal ordering for spatial locations task.

Hippocampus, 18(9):955–964.

Jarrard, L. E. (1993). On the role of the hippocampus in learning and memory in the rat.

Behavioral and neural biology, 60(1):9–26.

Jessberger, S., Clark, R. E., Broadbent, N. J., Clemenson, G. D., Consiglio, A., Lie, D. C., Squire,

L. R., and Gage, F. H. (2009). Dentate gyrus-specific knockdown of adult neurogenesis

impairs spatial and object recognition memory in adult rats. Learning & memory, 16(2):147–

154.

Johnston, S. T., Shtrahman, M., Parylak, S., Gonçalves, J. T., and Gage, F. H. (2016). Paradox of

pattern separation and adult neurogenesis: A dual role for new neurons balancing memory

resolution and robustness. Neurobiology of learning and memory, 129:60–68.

Káli, S. and Dayan, P. (2004). Off-line replay maintains declarative memories in a model of

hippocampal-neocortical interactions. Nature neuroscience, 7(3):286–294.

Kee, N., Teixeira, C. M., Wang, A. H., and Frankland, P. W. (2007). Preferential incorporation of

adult-generated granule cells into spatial memory networks in the dentate gyrus. Nature

neuroscience, 10(3):355–362.

Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M., and Gage, F. H. (2003). Early deter-

mination and long-term persistence of adult-generated new neurons in the hippocampus

of mice. Development, 130(2):391–399.

Kempermann, G., Kuhn, H. G., and Gage, F. H. (1997). More hippocampal neurons in adult

mice living in an enriched environment. Nature, 386(6624):493–495.

Khazipov, R., Khalilov, I., Tyzio, R., Morozova, E., Ben-Ari, Y., and Holmes, G. L. (2004). Devel-

opmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus.

European Journal of Neuroscience, 19(3):590–600.

Kitamura, T., Saitoh, Y., Murayama, A., Sugiyama, H., and Inokuchi, K. (2010). LTP induction

within a narrow critical period of immature stages enhances the survival of newly generated

neurons in the adult rat dentate gyrus. Molecular brain, 3(13):1–8.

Kohonen, T. (1989). Self-organization and associative memory. Springer-Verlag, 3rd edition.

Kuhn, H. G., Dickinson-Anson, H., and Gage, F. H. (1996). Neurogenesis in the dentate gyrus

of the adult rat: age-related decrease of neuronal progenitor proliferation. Journal of

Neuroscience, 16(6):2027–2033.

106



Bibliography

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Leonzino, M., Busnelli, M., Antonucci, F., Verderio, C., Mazzanti, M., and Chini, B. (2016). The

timing of the excitatory-to-inhibitory GABA switch is regulated by the oxytocin receptor via

KCC2. Cell reports, 15(1):96–103.

Leutgeb, J. K., Leutgeb, S., Moser, M.-B., and Moser, E. I. (2007). Pattern separation in the

dentate gyrus and CA3 of the hippocampus. Science, 315(5814):961–966.

Levy, W. B. and Stewart, D. (1983). Temporal contiguity requirements for long-term associative

potentiation/depression in hippocampus. Neuroscience, 8:791–797.

Li, L., Sultan, S., Heigele, S., Schmidt-Salzmann, C., Toni, N., and Bischofberger, J. (2017). Silent

synapses generate sparse and orthogonal action potential firing in adult-born hippocampal

granule cells. Elife, 6:e23612.

Li, Y., Stam, F. J., Aimone, J. B., Goulding, M., Callaway, E. M., and Gage, F. H. (2013). Molecular

layer perforant path-associated cells contribute to feed-forward inhibition in the adult

dentate gyrus. Proceedings of the National Academy of Sciences, 110(22):9106–9111.

Lodge, M. and Bischofberger, J. (2019). Synaptic properties of newly generated granule cells

support sparse coding in the adult hippocampus. Behavioural brain research, 372:112036.

Mardia, K. V. and Jupp, P. E. (2009). Directional statistics, volume 494. John Wiley & Sons.

Marín-Burgin, A., Mongiat, L. A., Pardi, M. B., and Schinder, A. F. (2012). Unique processing

during a period of high excitation/inhibition balance in adult-born neurons. Science,

335(6073):1238–1242.

Marr, D. (1969). A theory of cerebellar cortex. J. Physiology, 202:437–470.

Marr, D. (1971). Simple memory: a theory for archicortex. Philosophical Transactions of the

Royal Society of London, 262:23–81.

Martinetz, T. and Schulten, K. (1991). A "neural-gas" network learns topologies. Artificial

Neural Networks, pages 397–402.

McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist, J. K., Lowell, B. B.,

Fanselow, M. S., Wilson, M. A., and Tonegawa, S. (2007). Dentate gyrus NMDA receptors

mediate rapid pattern separation in the hippocampal network. Science, 317(5834):94–99.

McNaughton, B. (1980). Evidence for two physiologically distinct perforant pathways to the

fascia dentata. Brain research, 199(1):1–19.

McNaughton, B., Chen, L., and Markus, E. (1991). "Dead reckoning," landmark learning, and

the sense of direction: A neurophysiological and computational hypothesis. Journal of

Cognitive Neuroscience, 3:190–202.

107



Bibliography

Miller, K. D. and Fumarola, F. (2012). Mathematical equivalence of two common forms of

firing rate models of neural networks. Neural computation, 24(1):25–31.

Ming, G.-l. and Song, H. (2005). Adult neurogenesis in the mammalian central nervous system.

Annual Review of Neuroscience, 28:223–250.

Ming, G.-l. and Song, H. (2011). Adult neurogenesis in the mammalian brain: significant

answers and significant questions. Neuron, 70(4):687–702.

Neunuebel, J. P. and Knierim, J. J. (2014). CA3 retrieves coherent representations from degraded

input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation.

Neuron, 81(2):416–427.

Neves, G., Cooke, S. F., and Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocam-

pus: a neural network approach to causality. Nature Reviews Neuroscience, 9(1):65–75.

Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of

Mathematical Biology, 15:267–273.

O’Keefe, J. and Nadel, L. (1978). The Hippocampus as a cognitive map. Clarendon Press.

Overstreet-Wadiche, L., Bromberg, D. A., Bensen, A. L., and Westbrook, G. L. (2005). GABAergic

signaling to newborn neurons in dentate gyrus. Journal of neurophysiology, 94(6):4528–4532.

Owens, D. F. and Kriegstein, A. R. (2002). Is there more to GABA than synaptic inhibition?

Nature Reviews Neuroscience, 3(9):715–727.

Pathak, H. R., Weissinger, F., Terunuma, M., Carlson, G. C., Hsu, F.-C., Moss, S. J., and Coulter,

D. A. (2007). Disrupted dentate granule cell chloride regulation enhances synaptic excitabil-

ity during development of temporal lobe epilepsy. Journal of Neuroscience, 27(51):14012–

14022.

Pfister, J.-P. and Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent

plasticity. Journal of Neuroscience, 26:9673–9682.

Piatti, V. C., Davies-Sala, M. G., Espósito, M. S., Mongiat, L. A., Trinchero, M. F., and Schinder,

A. F. (2011). The timing for neuronal maturation in the adult hippocampus is modulated by

local network activity. Journal of Neuroscience, 31(21):7715–7728.

Platt, J. (1991). A resource-allocating network for function interpolation. Neural computation,

3(2):213–225.

Preston, A. R. and Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in

memory. Current Biology, 23(17):764–773.

Rapp, P. R. and Gallagher, M. (1996). Preserved neuron number in the hippocampus of

aged rats with spatial learning deficits. Proceedings of the National Academy of Sciences,

93(18):9926–9930.

108



Bibliography

Rolls, E. T. and Treves, A. (1998). Neural networks and brain function, volume 572. Oxford

university press Oxford.

Rumelhart, D. E. and Zipser, D. (1985). Feature discovery by competitive learning. Cognitive

science, 9(1):75–112.

Sahay, A., Scobie, K. N., Hill, A. S., O’Carroll, C. M., Kheirbek, M. A., Burghardt, N. S., Fenton,

A. A., Dranovsky, A., and Hen, R. (2011a). Increasing adult hippocampal neurogenesis is

sufficient to improve pattern separation. Nature, 472(7344):466–470.

Sahay, A., Wilson, D. A., and Hen, R. (2011b). Pattern separation: a common function for new

neurons in hippocampus and olfactory bulb. Neuron, 70(4):582–588.

Sajikumar, S. and Frey, J. (2004). Late-associativity, synaptic tagging, and the role of dopamine

during LTP and LTD. Neurobiology of Learning and Memory, 82:12–25.

Scharfman, H. E. (2007). The CA3 “backprojection” to the dentate gyrus. Progress in brain

research, 163:627–637.

Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2004). Enhanced synaptic plasticity in

newly generated granule cells of the adult hippocampus. Nature, 429(6988):184–187.

Scoville, W. B. and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions.

Journal of neurology, neurosurgery, and psychiatry, 20(11):11–21.

Senzai, Y. and Buzsáki, G. (2017). Physiological properties and behavioral correlates of hip-

pocampal granule cells and mossy cells. Neuron, 93(3):691–704.

Shors, T. J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., and Gould, E. (2001). Neurogenesis in

the adult is involved in the formation of trace memories. Nature, 410(6826):372–376.

Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y., and Gould, E. (2002). Neurogenesis

may relate to some but not all types of hippocampal-dependent learning. Hippocampus,

12(5):578–584.

Sierra, A., Encinas, J. M., Deudero, J. J., Chancey, J. H., Enikolopov, G., Overstreet-Wadiche,

L. S., Tsirka, S. E., and Maletic-Savatic, M. (2010). Microglia shape adult hippocampal

neurogenesis through apoptosis-coupled phagocytosis. Cell stem cell, 7(4):483–495.

Snyder, J., Hong, N., McDonald, R., and Wojtowicz, J. (2005). A role for adult neurogenesis in

spatial long-term memory. Neuroscience, 130(4):843–852.

Snyder, J. S. (2019). Recalibrating the relevance of adult neurogenesis. Trends in neurosciences,

42(3).

Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D.,

Mayer, S., Chang, J., Auguste, K. I., Chang, E. F., Gutierrez, A. J., Kriegstein, A. R., Mathern,

G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang, Z., and Alvarez-Buylla, A.

109



Bibliography

(2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels

in adults. Nature, 555(7696):377–381.

Tartt, A. N., Fulmore, C. A., Liu, Y., Rosoklija, G. B., Dwork, A. J., Arango, V., Hen, R., Mann,

J. J., and Boldrini, M. (2018). Considerations for assessing the extent of hippocampal

neurogenesis in the adult and aging human brain. Cell stem cell, 23(6):782–783.

Tashiro, A., Makino, H., and Gage, F. H. (2007). Experience-specific functional modification of

the dentate gyrus through adult neurogenesis: a critical period during an immature stage.

Journal of Neuroscience, 27(12):3252–3259.

Tashiro, A., Sandler, V. M., Toni, N., Zhao, C., and Gage, F. H. (2006). NMDA-receptor-mediated,

cell-specific integration of new neurons in adult dentate gyrus. Nature, 442(7105):929–933.

Temprana, S. G., Mongiat, L. A., Yang, S. M., Trinchero, M. F., Alvarez, D. D., Kropff, E., Giaco-

mini, D., Beltramone, N., Lanuza, G. M., and Schinder, A. F. (2015). Delayed coupling to

feedback inhibition during a critical period for the integration of adult-born granule cells.

Neuron, 85(1):116–130.

Toni, N., Laplagne, D. A., Zhao, C., Lombardi, G., Ribak, C. E., Gage, F. H., and Schinder, A. F.

(2008). Neurons born in the adult dentate gyrus form functional synapses with target cells.

Nature neuroscience, 11(8):901–907.

Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., and Svoboda,

K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult

cortex. Nature, 420(6917):788–794.

Treves, A. and Rolls, E. T. (1994). Computational analysis of the role of the hippocampus in

memory. Hippocampus, 4(3):374–391.

Tronel, S., Belnoue, L., Grosjean, N., Revest, J.-M., Piazza, P.-V., Koehl, M., and Abrous, D. N.

(2012). Adult-born neurons are necessary for extended contextual discrimination. Hip-

pocampus, 22(2):292–298.

Tronel, S., Fabre, A., Charrier, V., Oliet, S. H., Gage, F. H., and Abrous, D. N. (2010). Spatial

learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proceedings of the

National Academy of Sciences, 107(17):7963–7968.

Turrigiano, G. G. and Nelson, S. B. (2000). Hebb and homeostasis in neuronal plasticity. Current

Opinion in Neurobiology, 10:358–364.

Tyzio, R., Holmes, G. L., Ben-Ari, Y., and Khazipov, R. (2007). Timing of the developmental

switch in GABAA mediated signaling from excitation to inhibition in CA3 rat hippocampus

using gramicidin perforated patch and extracellular recordings. Epilepsia, 48:96–105.

Van Praag, H., Kempermann, G., and Gage, F. H. (1999). Running increases cell proliferation

and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience, 2(3):266–270.

110



Bibliography

Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L. F., and Nelson, S. B. (1997). A quantitative

description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual

cortex. Journal of Neuroscience, 17:7926.

Vazdarjanova, A. and Guzowski, J. F. (2004). Differences in hippocampal neuronal population

responses to modifications of an environmental context: evidence for distinct, yet comple-

mentary, functions of CA3 and CA1 ensembles. Journal of Neuroscience, 24(29):6489–6496.

Vitureira, N., Letellier, M., and Goda, Y. (2012). Homeostatic synaptic plasticity: from single

synapses to neural circuits. Current opinion in neurobiology, 22(3):516–521.

Vivar, C., Potter, M. C., Choi, J., Lee, J.-y., Stringer, T. P., Callaway, E. M., Gage, F. H., Suh, H., and

Van Praag, H. (2012). Monosynaptic inputs to new neurons in the dentate gyrus. Nature

Communications, 3:1107.

Wang, D. D. and Kriegstein, A. R. (2010). Blocking early GABA depolarization with bumetanide

results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cere-

bral cortex, 21(3):574–587.

Wang, S., Scott, B. W., and Wojtowicz, J. M. (2000). Heterogenous properties of dentate granule

neurons in the adult rat. Journal of neurobiology, 42(2):248–257.

Weisz, V. I. and Argibay, P. F. (2009). A putative role for neurogenesis in neurocomputational

terms: Inferences from a hippocampal model. Cognition, 112(2):229–240.

Weisz, V. I. and Argibay, P. F. (2012). Neurogenesis interferes with the retrieval of remote

memories: Forgetting in neurocomputational terms. Cognition, 125(1):13–25.

West, M., Slomianka, L., and Gundersen, H. J. G. (1991). Unbiased stereological estimation of

the total number of neurons in the subdivisions of the rat hippocampus using the optical

fractionator. The Anatomical Record, 231(4):482–497.

Wiskott, L., Rasch, M. J., and Kempermann, G. (2004). What is the functional role of adult

neurogenesis in the hippocampus? Cognit Sci EPrint Archive (CogPrints)4012.

Wiskott, L., Rasch, M. J., and Kempermann, G. (2006). A functional hypothesis for adult

hippocampal neurogenesis: avoidance of catastrophic interference in the dentate gyrus.

Hippocampus, 16(3):329–343.

Yingwei, L., Sundararajan, N., and Saratchandran, P. (1997). A sequential learning scheme

for function approximation using minimal radial basis function neural networks. Neural

computation, 9(2):461–478.

Zenke, F., Agnes, E., and Gerstner, W. (2015). Diverse synaptic plasticity mechanisms orches-

trated to form and retrieve memories in spiking neural networks. Nature Communications,

6:6922.

111



Bibliography

Zenke, F. and Gerstner, W. (2017). Hebbian plasticity requires compensatory processes on

multiple timescales. Philosophical Transactions of the Royal Society B: Biological Sciences,

372(1715):1–17.

Zhao, C., Teng, E. M., Summers, R. G., Ming, G.-l., and Gage, F. H. (2006). Distinct morphologi-

cal stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal

of Neuroscience, 26(1):3–11.

112



Olivia Gozel

EPFL IC IINFCOM LCN1 E-mail: olivia.gozel@epfl.ch
AAB 1 33 (Bâtiment AAB) Phone: +41 21 693 18 07
Station 15
CH – 1015 Lausanne
Switzerland

 

Education
2014 – 2019 Ecole Polytechnique Fédérale de Lausanne (EPFL)

Research and Teaching assistant
PhD position supervised by Prof. Wulfram Gerstner, Laboratory
of Computational Neuroscience

2016 Summer school
Methods in Computational Neuroscience
Marine Biological Laboratory, Woods Hole, MA

2013 – 2014 EPFL
Research and Teaching assistant
Lab rotation co-supervised by Prof. Olaf Blanke, Laboratory of
Cognitive Neuroscience,  and Prof.  José Millán,  Laboratory  of
Non-Invasive Brain-Machine Interface

2012 - 2013 Harvard Medical School
Master  thesis:  “Local  Field  Correlates  of  Visual  Attention”,
supervised by Prof. John Maunsell, Neurobiology department

2011 - 2013 EPFL
Master in Life Sciences and Technology, Neuroscience track

2008 - 2011 EPFL
Bachelor in Life Sciences and Technology

Fellowships and awards
2016 Scholarship  for  Methods  in  Computational  Neuroscience  

course, Marine Biological Laboratory, Woods Hole, MA

2013 Award of Excellence for the quality of my Master studies

2012 - 2013 Fellowship  from  the  Bertarelli  program  in  Translational  
Neuroscience and Neuroengineering for my master thesis at  
Harvard Medical School

Publications
Gozel  O,  Gerstner  W.  Adult  dentate  gyrus  neurogenesis:  A  functional  model.  BioRxiv  704791
(preprint), 2019.

Schurger  A*,  Gale  S*,  Gozel O,  Blanke  O.  Performance  monitoring for  brain-computer-interface
actions. Brain and Cognition, 111, p. 44-50, 2017.

113



Selected presentations
Gozel  O,  and  Gerstner  W.  From adult  dentate  gyrus  neurogenesis  to  unsupervised  clustering.
Computational and Systems Neuroscience (CoSyNe) conference, Lisbon, Portugal, 2019 (poster)

Gozel O. Tutorial on adult dentate gyrus neurogenesis for machine learners. European Institute for
Theoretical  Neuroscience  (EITN)  Workshop  « From  Neuroscience  to  Machine  Learning »,  Paris,
France, 2018 (talk)

Gozel  O,  and  Gerstner  W.  A  functional  role  for  the  switch  from  excitation  to  inhibition  in
neurogenesis. International Conference on Mathematical Neuroscience, Boulder, CO, 2017 (poster)

Gozel O. A model of synaptic consolidation. HBP CDP5 Plasticity Workshop, Fürberg, Austria, 2016
(talk)

Mayo  JP,  Gozel  O,  and  Maunsell  JHR.  Predictive  power  of  area  V4  local  field  potentials  in
determining the state of attention.  Society for Neuroscience conference, 261.08, San Diego, CA,
2013 (poster)

Teaching activities
2018-2019 Supervisor for internship students

2015 Teaching assistant for General Physics II, EPFL

2014 Teaching assistant for General Physics I, EPFL

2014 Teaching assistant for Neuroscience for Engineers, EPFL

2009-2010 Student assistant for Linear Algebra, EPFL

Technical skills
Programming Matlab, Python, BRIAN2, C/C++, Mathematica

Languages
English (fluent), French (mother tongue), German (intermediate), Italian (basic)

114


	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	I Introduction
	Classical views of the hippocampus
	Introduction
	Hippocampus architecture
	Classical models of the hippocampus

	Adult dentate gyrus neurogenesis
	Introduction
	Adult-born dentate granule cells
	Experience-dependent survival and integration
	Time course of connectivity
	Enhanced plasticity
	Enhanced excitability
	GABA switch
	GABAergic input importance for integration

	Functional role of adult dentate gyrus neurogenesis
	Involvement in hippocampus-dependent memories
	Incorporation in memory networks
	Importance for pattern separation
	Links to cognition

	Modeling of adult dentate gyrus neurogenesis
	Clearance of old memories
	Encoding distinct memories of highly similar inputs
	Avoidance of catastrophic interference
	Input discrimination
	Temporal separation

	Open questions

	Classification using competitive networks
	Introduction
	Importance of normalization
	Example: Runaway dynamics of the weights with the BCM learning rule

	Unsupervised competitive learning
	Standard competitive learning rule
	Oja's learning rule
	Temporally unstable learning

	Initialization of the weights
	Algorithmic solutions to the problem of dead units

	Open questions


	II Results
	Integration of adult-born dentate granule cells
	Introduction
	Methods
	Network architecture and rate neurons dynamics
	Plasticity rule
	Input patterns
	Classification performance
	Control cases
	Pretraining with two digits

	Results
	Different prototypes are learned during the pretraining period
	Newborn neurons can learn novel patterns
	The switch from excitation to inhibition is necessary for learning of novel representations


	Adult-born dentate granule cells promote discrimination of similar stimuli
	Introduction
	Methods
	Simplified rate network
	Input patterns

	Results
	Newborn dentate granule cells become selective for a similar novel cluster
	Similar clusters drive the receptive fields of newborn DGCs closer to the novel cluster in the early phase of maturation
	Analytical computation of the L2-norm and angle



	III Discussion and appendices
	Discussion
	My contributions
	Determination of the plasticity parameters
	Single Winner-Take-All network
	Methods
	The network of mature DGCs as a WTA network
	Neurogenesis and integration of newborn neurons
	Control case
	Classification performance

	Results
	Maturation of a newborn DGC in a WTA network of mature DGCs is better for learning a novel cluster than a population of same size of plastic neurons
	Neurogenesis is a biological solution to the problem of dead units
	Similar clusters can be learned, while distinct clusters cannot


	Bibliography
	Curriculum Vitae




