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Abstract

This thesis is devoted to information-theoretic aspects of community detection.
The importance of community detection is due to the massive amounts of
scientific data today that describes relationships between items from a network,
e.g., a social network. Items from such a network can be inherently partitioned
into a known number of communities, but the partition can only be inferred
from the data. To estimate the underlying partition, data scientists can apply
any type of advanced statistical techniques; but the data could be very noisy,
or the number of data is inadequate. A fundamental question here is about
the possibility of weak recovery: does the data contain a su�cient amount of
information that enables us to produce a non-trivial estimate of the partition?

For the purpose of mathematical analysis, the above problem can be for-
mulated as Bayesian inference on generative models. These models, including
the stochastic block model (SBM) and censored block model (CBM), consider
a random graph generated based on a hidden partition that divides the nodes
in the graph into labelled groups. In the SBM, nodes are connected with a
probability depending on the labels of the endpoints. Whereas, in the CBM,
hidden variables are measured through a noisy channel, and the measurement
outcomes form a weighted graph. In both models, inference is the task of re-
covering the hidden partition from the observed graph. The criteria for weak
recovery can be studied via an information-theoretic quantity called mutual
information. Once the asymptotic mutual information is computed, phase
transitions for the weak recovery can be located.

This thesis pertains to rigorous derivations of single-letter variational ex-
pressions for the asymptotic mutual information for models in community
detection. These variational expressions, known as the replica predictions,
come from heuristic methods of statistical physics. We present our develop-
ment of new rigorous methods for confirming the replica predictions. These
two methods are based on extending the recently introduced adaptive interpo-
lation method.

We prove the replica prediction for the SBM in the dense-graph regime
with two groups of asymmetric size. The existing proofs in the literature are
indirect, as they involve mapping the model to an external problem whose
mutual information is determined by a combination of methods. Here, on the
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ii Abstract

contrary, we provide a self-contained and direct proof.
Next, we extend this method to sparse models. Before this thesis, adap-

tive interpolation was known for providing a conceptually simple proof for
replica predictions for dense graphs. Whereas, for a sparse graph, the replica
prediction involves a more complicated variational expression, and rigorous
confirmations are often lacking or obtained by rather complicated methods.
Therefore, we focus on a simple version of CBM on sparse graphs, where hid-
den variables are measured through a binary erasure channel, for which we
fully prove the replica prediction by the adaptive interpolation.

The key for extending the adaptive interpolation to a broader class of
sparse models is a concentration result for the so-called “multi-overlaps”. This
concentration forms the basis of the replica “symmetric” prediction. We prove
this concentration result for a related sparse model in the context of physics.
This provides inspiration for further development of the adaptive interpolation.

Keywords: Bayesian inference, community detection, stochastic block
models, censored block models, graphical models, mutual information, statis-
tical physics, spin glass, replica method, cavity method.



Résumé

Cette thèse est dédiée à l’étude de la détection des communautés du point de
vue de la théorie de l’information. L’importance de la détéction des commu-
nautés peut être justifiée par l’accès, aujourd’hui, à une quantité considérable
de données scientifiques qui décrivent les relations entre les composantes d’un
certain réseau, tel les réseaux sociaux. Pour un réseau donné, les composantes
peuvent être partitionnées en un nombre connu de communantés (le nombre
étant une charactéristique du réseau), mais les partitions, en tant que telles, ne
peuvent être déduites que des données. Aussi, les chercheurs sont-ils capables
d’appliquer n’importe quelle technique avancée en statistique afin d’estimer les
partitions sous-jacentes. Toutefois, les données peuvent être soit, corrompues
par un bruit important, soit en nombre insu�sant. À partir de là, une question
fondamentale se pose concernant la possibilité d’une “récupération faible”: les
données contiennent-elles des informations su�santes qui nous permettent de
produire une estimation, qui ne serait pas banale, de la partition?

Du point de vue de l’analyse mathématique, le problème cité ci-dessus peut
être formulé en tant qu’une inférence Bayesienne sur des modèles générateurs.
Ces modèles, dont le modèle aléatoire en bloc et le modèle censuré en bloc, con-
sidèrent un graph aléatoire généré à partir d’une partition cachée qui divise
les noeuds du graphe en groupes étiquetés. Pour le modèle aléatoire en bloc,
deux noeuds quelconques sont connectés avec une probabilité qui dépend de la
classe de ces noeuds. Cependant, pour le modèle censuré en bloc, des variables
cachées sont mesurées à travers un canal à bruit et les mesures réalisées forment
un graph pondéré. Dans ces deux cas, l’inférence revient à déduire la parti-
tion sous-jacente et implicite du graphe observé. Le critère d’une déduction
faible peut être étudié via l’information mutuelle, une quantité fondamentale
en théorie de l’information. Intuitivement, l’information mutuelle quantifie
l’information contenue dans le graphe observé à propos de la partition. Une
fois l’information mutuelle asymptotique calculée, nous pouvons localiser les
transitions de phases pour la “récupération faible”.

Cette thèse vise à dériver, de façon rigoureuse, une charactérisation (à lettre
unique) des expressions variationnelles pour l’information mutuelle asympto-
tique relative aux modèles utilisés pour la détection des communautés. Des
méthodes heuristiques en physique statistique sont à la base de ces expres-
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iv Résumé

sions variationnelles, connues sous le nom de prédictions des répliques. Nous
présentons de nouvelles méthodes pour confirmer rigoureusement les prédictions
de répliques. Ces méthodes généralisent la méthode d’interpolation adaptive
récem-ment développée dans la littérature.

En un premier lieu, nous calculons la prédiction des répliques pour le
modèle aléatoire en bloc lorsque nous considérons un régime de graphe dense
avec deux groupes de tailles asymétriques. Les preuves présentes dans la
littérature sont indirectes vu qu’elles réduisent le modèle à un problème externe
dont l’information mutuelle est déterminée par une combinaison de méthodes.
En revanche, nous proposons une preuve directe et autonome.

En un second lieu, nous généralisons la méthode d’interpolation adaptive
pour les modèles creux. L’interpolation adaptive donne une preuve simple et
unifiée pour les prédictions des répliques, mais elle est restreinte aux graphes
denses. Quant aux graphes creux, la prédiction des répliques implique une
expression variationnelle plus compliquée, et les démons-trations rigoureuses
sont souvent soit absentes soit obtenues à travers des méthodes compliquées.
Pour cela, nous nous concentrons sur une version simplifiée du modèle cen-
suré en bloc pour les graphes creux, où les variables cachées sont mesurées à
travers un canal binaire à e↵acement. Pour cette version, nous démontrons la
prédiction des répliques entièrement par l’interpolation adaptive.

La clé pour la généralisation de l’interpolation adaptive à des classes plus
larges de modèles creux est un résultat de concentration pour des quantités ap-
pelées “multi-overlaps” et qui constitue la base de la prédiction des répliques.
Nous démontrons ce résultat de concentration pour des modèles creux simi-
laires à ceux de la physique. Ceci fournit une source d’inspiration pour de
futurs développements sur l’interpolation adaptive.

Mots-clés: Inférence Bayésienne, détection de communautés, modèles
aléatoires en bloc, modèles censurés en bloc, modèles graphiques, information
mutuelle, physiques statistiques, verre de spin, méthode des répliques, méthode
des cavités.
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Introduction 1
What are the signs that indicate we live in the age of social networks? At the
time of this writing, Hong Kong has been hit by large-scale demonstrations
for months. Millions of people have taken part in this movement, but no
leadership behind it has been reported. It is the massive power of online social
networks (Facebook, Telegram, etc.) that connects the people. Yet the overall
social network has a two-community structure — the democrats and the pro-
government parties share opinions in their own communities, but there are
no (or very few) constructive interactions between the two communities. In
general, community structures are formed in many real-world networks [1, 2].
And the task of di↵erentiating, based on the topology of the network, the
members of the communities has become an important statistical inference
problem known as community detection.

In this thesis, we will focus on stochastic block models and censored block
models, the two canonical random-graph models that are often used in the
theoretical study of community detection. A fundamental question here is
about when weak recovery of the communities is possible. The terminology of
this problem resembles a classic communication problem, hence we are curious
to use mutual information from information and coding theory in order to
study the correlation between the underlying communities and the random
graph. Indeed, weak recovery can be derived from the asymptotic mutual
information. Therefore, we want to know how to compute the asymptotic
mutual information. Hence, it would be interesting to look into statistical
physics, as it studies macroscopic properties of complex interacting systems. In
particular, the mutual information can be linked to the free energy in statistical
physics. The cavity method and replica method are two heuristic statistical-
physics techniques that have been used for the last four decades to provide a
mean-field solution for the free energy, called the replica symmetric formula.
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2 Introduction

This formula can be used to predict phase transitions for weak recovery in
community detection. A rigorous derivation of the replica symmetric formula
is still needed to prove the prediction.

In this chapter, we introduce more background on the intersection of the
three subjects: community detection, information and coding theory, and spin-
glass systems. We will end this chapter by stating the main contributions of
this thesis — in short, the development of new methods that prove the exact-
ness of the replica symmetric formula to the asymptotic mutual information.

1.1 Community detection

As early as the 1930s, sociology began analyzing social network and developed
the topic of “block-modeling”, an empirical procedure that e↵ectively cluster
similar objects into groups. The discussion spread to other fields of study
during the last century, due to the emergence of a plethora of social networks,
biological networks and computer networks. The early history of network
science is well summarized in [3, 4].

Traditional algorithms for clustering are those with a min-cut approach,
based on graph partitioning in computer science, where the total communi-
cation cost between computers performing parallel computing is minimized.
The seminal advance in the algorithmic development was subsequently given
by [1, 5]. They focused on networks with underlying community structure
and proposed properties of the inter-communities edges such that removing
those edges uncovered community structures. Such algorithms work well on
real benchmarks. Moreover, research on community detection flourished, sub-
sequently we have a rich literature devoted to algorithmic solutions.

Understanding the fundamental limits for community detection requires
mathematical abstraction of the models. A generative model would enable
us to formulate the problem as Bayesian inference, thus enable us to build
theoretical understanding by using the tools of probability, hence the recent
interest in generative models of community detection. Starting from [6], many
more researchers studied both the fundamental limits and algorithmic solu-
tions for the generative models. Building these models naturally appeals to
the Erdős-Rényi graphs, the primitive random-graph models in graph theory in
which every pair of nodes is connected with the same probability. The canon-
ical models for community detection can be largely considered as variants of
the Erdős-Rényi graphs.

Here, we introduce two canonical models called stochastic block model and
censored block model. We assume that parameters in the description of the
models are known. In this context, the Bayesian approach is sometimes called
“Bayesian optimal”. Our interest in these models is the task of weak recovery;
it will be defined at the end of this section.



1.1. Community detection 3

Stochastic block model

The most popular generative model is the stochastic block model (SBM). SBM
has a long history and has attracted the attention of many disciplines. It
was first introduced as a model of community detection in the network and
statistics literature [7], as a problem of finding graph bisections in theoretical
computer science [8], and was proposed as a model for inhomogeneous random
graphs [9, 10]. A partition of nodes into labeled groups is hidden to the observer
who is given only a random graph generated on the basis of the partition. The
task of the observer is to recover the hidden partition from the observed graph.
A simple setting that lends itself to mathematical analysis is the following.
The labels of nodes are drawn i.i.d. from a prior distribution and, for the
graph, the edges between pairs of nodes are placed independently according
to a probability that depends only on the group labels. If the probability is
slightly higher (resp. lower) when the pair of nodes have the same label, the
model is called assortative (resp. disassortative). Furthermore, we assume that
the parameters of the prior- and edge-probability distributions are all known.
Note that the recovery task is non-trivial only when parameters are such that
no information about the group label is revealed from the degrees of nodes.
Much progress has been made in recent years within this simple mathematical
setting, and we refer to [11] for a recent comprehensive review and references.
We provide Examples 1.1 and 1.2 for readers to have a concrete example of
SBM in mind.

Example 1.1 (Symmetric two-group SBM on sparse graphs). Let �0 2 {�1,+1}n

denote the hidden partition of the two communities. Labels �0
i
are i.i.d. Bernoulli

random variables with P(�0
i
= 1) = 1/2. The observation is a graph G (repre-

sented by the adjacency matrix) constructed by connecting any pair of nodes i
and j with an edge with probability

P(Gij = 1|�0
i
, �

0
j
) =

a

n
+

b

n
�
0
i
�
0
j

where a, b are constants. The expected degree of a node is a(n � 1)/n = ⇥(1),
hence we say the graph is sparse.

Example 1.1 is the most canonical SBM considered in the literature. In
Chapter 3 of this thesis, we consider a di↵erent regime as follows:

Example 1.2 (Asymmetric two-group SBM on dense graphs). Let �
0 2

{�1,+1}n denote the hidden partition of the two communities. Labels �0
i
are

i.i.d. Bernoulli random variables with P(�0
i
= 1) = r. For convenience we de-

fine Xi ⌘ �r(�0
i
) with �r(1) =

p
(1 � r)/r and �r(�1) = �

p
r/(1 � r). The

observation is a graph G with the transition probability

P(Gij = 1|�0
i
, �

0
j
) = p̄n +�nXiXj.
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where

np̄n(1 � p̄n)
3 n!1�! 1,

n�2
n

p̄n(1 � p̄n)
n!1�! �. (1.1)

An example of parameters that fulfills (1.1) is p̄n = 1/2 and �n ⇠ n
�1/2. The

two constraints (1.1) will be further discussed in Section 3.2. Here we note
that this SBM pertains to a dense graph regime, as the expected degree of a
node is (n � 1)p̄n

n!1�! 1 (the growth rate can be arbitrarily slow).

Censored block model

Another way to embed community structures into an Erdős-Rényi graph is
the censored block model (CBM), studied in the context of community detec-
tion more recently in [12, 13, 14, 15]. In this model, the nodes also have a
hidden partition in labeled groups. The label of each node is i.i.d. drawn
from a prior distribution. Any pair of nodes is equally likely to be taken for a
noisy measurement. The set of measurement outcomes can be viewed as the
weighted version of an Erdős-Rényi graph. An observation is provided by a
weighted edge that represents a noisy version of the product of the labels of
the connected nodes. The next example is the standard CBM in the literature.

Example 1.3 (Symmetric two-group CBM). Let �0 2 {�1,+1}n denote the
partition of the two communities. Labels �0

i
are i.i.d. Bernoulli random vari-

ables with P(�0
i
= 1) = 1/2. An instance of Erdős-Rényi graph is drawn and

the weighted version G (represented by the adjacency matrix of a weighted
graph) is observed. Each edge has a weight Gij 2 {�1,+1} that represents the
outcome of the transition probability

P(Gij|�0
i
, �

0
j
) = (1 � q)�Gij ,�

0
i �

0
j
+ q�Gij ,��

0
i �

0
j
.

Gij reveals yes/no to the question of whether node i and node j are from the
same group. It tells the truth with probability 1 � q.

We can generalize an Erdős-Rényi graph in the above CBM to a hypergraph
and also modify the transition probability. The CBM we consider in Chapter
4 is the following.

Example 1.4 (Symmetric two-group CBM on hypergraphs with erasures).
Let �

0 follow the same generation as in Example 1.3. Each K-tuple A ⌘
{a1, . . . , aK} ⇢ {1, · · ·n} is drawn uniformly at random. We set

�
0
A

⌘ �
0
a1
�
0
a2
. . . �

0
aK

.

The observation GA is that with probability q we observe the true product �0
A
,

or an erasure otherwise. The transition probability is written as

P(GA|�0
A
) = (1 � q)�GA,�

0
A
+ q�GA,0.
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Weak recovery

For the symmetric two-group setting, a measure of quality of the estimate �

is given by the absolute value of the overlap function [16, 17, 15]:

|Q| = 1

n

���
nX

i=1

�
0
i
�i

���. (1.2)

Exact recovery of the communities corresponds to |Q| = 1. Whereas, as any
random guess yields |Q| ! 0 for large n, another interest would be to obtain
an estimate better than a random guess. We say weak recovery is possible if
there is an estimator G ! �̂ such that

lim
n!1

E�0,G,�̂[|Q|] > 0. (1.3)

(Expectation in (1.3) also carries on �̂ because the output of the estimator can
be non-deterministic.) A fundamental question is about how to characterize
when (1.3) is fulfilled as a formula of the model parameters. When the size of
two communities is asymmetric, the overlap function can be generalized. More
details are formed in Chapter 3.

1.2 Information and coding theory

Mutual information and channels are concepts from information and coding
theory. They were originally used to study the fundamental limits in commu-
nication. In this section, we propose that these concepts are also useful for
the study of community detection. As the derivative of mutual information is
intimately related to the overlap, mutual information can be used to study the
phase transition for weak recovery. Whereas, channels can be used to describe
the generation process of the random graphs in the block models. The descrip-
tion in terms of channels enables us to recognize identities known in coding
theory, and also gives an intuition for comparing the di�culties in deriving the
mutual information of di↵erent models.

Mutual Information

In inference, we often want to quantify the information stored in the observa-
tions Y about the ground truth X. A fundamental quantity is bounded by
Shannon’s mutual information [18]

I(X;Y ) ⌘ EX,Y ln
⇣ P(X,Y )

P(X)P(Y )

⌘
� 0, (1.4)

which captures the “correlation” between the two vectors of random variables.
The mutual information is zero if and only if X is independent of Y whereby
P(X,Y ) = P(X)P(Y ). For the problem of community detection it is useful to
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study the mutual information 1
n
I(�0;G). When the observations are pairwise

(i.e., elements in G are {Gij}), di↵erentiating 1
n
I(�0;G) with respect to some

model parameters would give E�0,GhQ2i up to a constant and rescaling, where
the Gibbs bracket

hA(�)i ⌘
X

�

P(�|G)A(�)

is the expectation of A(�) with respect to the posterior P(�|G). The relation
of E�0,GhQ2i to the criteria of weak recovery (1.3) is that (see [17] for details):

• limn!1 E�0,GhQ2i = 0 if and only if limn!1 E�0,Gh|Q|i = 0;

• as Q is bounded, if limn!1 E�0,GhQ2i > 0, then limn!1 E�0,Gh|Q|i > 0;

• if there is another estimator G ! �̃ such that

lim
n!1

1

n
E| 1

n

nX

i=1

�
0
i
�̃i| > 0

but limn!1 E�0,Gh|Q|i = 0, a contradiction would occur.

In summary, the possibility of weak recovery (1.3) is determined by whether

lim
n!1

E�0,GhQ2i > 0, (1.5)

and (1.5) can be checked if we can compute the asymptotic mutual information

lim
n!1

1

n
I(�0;G). (1.6)

Whereas, when observations G are interactions of K variables, the derivatives
of 1

n
I(�0;G) would give E�0,GhQKi (again up to a constant and rescaling).

The argument about the relation to weak recovery follows similarly to the
above argument. Therefore, the asymptotic mutual information (1.6) is the
central object for us to study. In Sections 1.3 and 1.4 we will review statistical
physics methods to compute (1.6).

Channel models

Another notion of coding, which can be borrowed for community detection,
is the notion of “channel models”. A codeword X is transmitted through a
noisy channel described by a transition probability Q(Y |X). The codeword
is often expressed as a sequence of binary digits (bits). Without loss of gen-
erality, we convert 0 ! +1 and 1 ! �1 and describe the typical channel for
X 2 {�1,+1}. Typical channels are considered to be memoryless so that the
transition probability can be decomposed into an elementwise product:

Q(Y |X) =
nY

i=1

Q(Yi|Xi)
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Example 1.5 (Binary erasure channel – BEC(✏)). The channel maps input
X 2 {�1,+1} to output Y 2 {�1, 0,+1} where 0 denotes an erasure. The
transition probability is

Q(Y |X) = (1 � ✏)�Y,X + ✏�Y,0.

Example 1.6 (Binary symmetric channel – BSC(✏)). The channel maps input
X 2 {�1,+1} to output Y 2 {�1,+1} with transition probability

Q(Y |X) = (1 � ✏)�Y,X + ✏�Y,�X .

The transition probabilities of the above channels satisfy

P(Y |X) = P(�Y | � X), (1.7)

a property known as channel symmetry. We can use the concept of channels to
describe the randomness in the observations in Examples 1.1 to 1.4, as shown
in Fig. 1.1. The CBM in Example 1.3 has a binary erasure channel. The
CBM in Example 1.4 has a binary symmetric channel. A dense SBM with
appropriate choices of parameters can be a symmetric channel. Whereas, a
sparse SBM always has a very asymmetric channel. The benefit of the channel
descriptions is that we can recognize some mathematical identities that are
available for symmetric channels (see Section 4.2) and that we can apply them
when we rigorously derive the mutual information. This also suggests that
deriving the mutual information for the sparse SBM is potentially a harder
problem than the others.

1.3 Spin glass

Statistical physics aims to understand the macroscopic properties of systems
constituted of many microscopic degrees of freedom. An interesting class of
systems are the disordered systems where, on top of the microscopic degrees of
freedom, there exists also “random disorders” (e.g., random magnetic fields).
Spin glasses are theoretical models invented to capture the statistical physics
of “disordered systems”. One common phenomenon that occurs is phase tran-
sitions in the thermodynamic limit. To study the phase transition, we study
the fundamental quantity called free energy.

Numerous problems in engineering and computer science can also be for-
mulated as spin-glass models, such as LDPC codes [19], CDMA systems [20],
combinatorial optimization [21], and neural networks [22]. Using statistical-
physics methods, we can predict phase transitions in these problems.

In the remainder of this section, we first introduce spin-glass models, var-
ious basic definitions, and the correlation inequalities related to the models.
We will then review a simple example of a spin-glass model where a phase
transition can be studied from the mean-field solution of the free energy. Fi-
nally, we revisit our problems on community detection and show how the block
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Figure 1.1 – Channels for the block model

models can be formulated as spin-glass models, as well as, show the relation
between the mutual information and free energy. It is tempting to also have
mean-field solutions for the free energy of the block models. We will discuss
heuristic methods for deriving such solutions in Section 1.4.

Models

A generic spin-model is a disordered system consisting of a collection of n
binary spins �i 2 {�1,+1}, i = 1, . . . , n. For any subset A ⇢ {1, . . . , n}, we
denote �A =

Q
i2A

�i. The model is defined by Hamiltonian

H(�) = �
X

A⇢{1,...,n}

JA�A (1.8)

where the sum runs over all possible 2n subsets of {1, . . . , n}. The interac-
tion JA can be drawn from a probability distribution. Once we are given an
instance of the Hamiltonian, JA is fixed or frozen. Therefore, it is called a
quenched random variable. The only subsets of spins that truly participate in
the interactions are of course those for which JA 6= 0. Another randomness in
this model is the annealed random variables �. Any configuration � follows
the Gibbs distribution

P(�|J) = 1

Zn

e
��H(�)

,
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where � is the inverse temperature and

Zn =
X

�2{�1,+1}n

e
��H(�)

is the normalization factor known as the partition function. Without loss
of generality, we fix � = 1 as this amounts to a simple global rescaling of
the Hamiltonian. Macroscopic quantities of the spin model, which are often
considered, include the Gibbs average of some observable A(�), conventionally
denoted by

hA(�)i =
X

�2{�1,+1}n

P(�|J)A(�).

Another fundamental object is the free energy

Fn ⌘ � 1

n
lnZn, fn ⌘ E[Fn].

An interaction Jij between a pair of spins is attractive when Jij > 0, or
repulsive when Jij < 0. Extending this property, a spin model is called ferro-
magnetic when all JA in (1.8) are non-negative. In such models, Gri�ths-Kelly-
Sherman (GKS) inequalities [23, 24, 25] are well-known correlation inequalities
that state that for any subsets of variable indices S, T ⇢ {1 . . . n}

h�Si � 0, (1.9)

h�S�T i � h�Sih�T i � 0. (1.10)

These inequalities will be used in Chapter 4 and Chapter 5.

Phase transition in the Curie-Weiss model

The Curie-Weiss model is a model based on a complete graph where interac-
tions are between all pairs of spins, with Hamiltonian

HCW(�) ⌘ �J

n

X

i<j

�i�j � h

nX

i=1

�i.

This Hamiltonian can also be represented as a function of the magnetization
(similar to the overlap function Q in (1.2))

m ⌘ 1

n

nX

i=1

�i.

Following the textbook calculation such as [26], it is straightforward to see
that the free energy admits a single-letter variational expression:

lim
n!1

Fn = min
m2[�1,+1]

fCW(m), (1.11)
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where

fCW(m) ⌘ J

2
(1 � m

2) � hm+
1 +m

2
ln
�1 +m

2

�
+

1 � m

2
ln
�1 � m

2

�
.

The equality (1.11) is particularly useful for observing a phase transition for the
magnetization. We can check that m⇤ ⌘ argminm2[�1,+1] fCW(m) is attained
at a stationary point satisfying

m = tanh(Jm+ h). (1.12)

To evaluate the Gibbs average of the magnetization hmi, we note that hmi =
�dFn/dh. Di↵erentiating both sides of (1.11) gives us

hmi = m
⇤
.

Let us consider the simple case h = 0. From (1.12), we can observe a phase
transition for hmi. We can deduce hmi = 0 when J < 1, and hmi 6= 0 when
J > 1. This could be analogous to community detection by imagining m as the
overlap and J as the signal-to-noise ratio (SNR) of observations. A non-trivial
overlap could be suddenly developed when the SNR passes a threshold.

The Curie-Weiss model is simplistic in physics, but it o↵ers a great les-
son. Eq. (1.11) implies that the macroscopic behavior of a complex model
with many spins and interactions can be studied through a simpler variational
expression that can be explicitly computed. Intuitively, this implies that the
complex model can be approximated by a decoupled model so that the dif-
ficulty in evaluating all the interactions is bypassed. Variational expressions
such as (1.11) are known as mean-field solutions. Unsurprisingly, a mean-field
solution is not limited to the Curie-Weiss model. Models that admit “varia-
tional solutions” are called mean-field models. In Section 1.4, we introduce the
two powerful techniques in statistical physics to derive the mean-field solution.

From mutual information to free energy

In the block model, with the assumption that �0
i
are i.i.d. variables drawn

from the same prior P0, the posterior distribution can be factorized as

P(�|G) =
P(G|�)P0(�)

P(G)
=

1

Zn

Y

A2{1,··· ,n}

P(GA|{�i : i 2 A})
nY

i=1

P0(�i) (1.13)

with

Zn =
X

�

Y

A2{1,·,n}

P(GA|{�i : i 2 A})
nY

i=1

P0(�i).

We can again define the free energy here as

fn ⌘ � 1

n
E lnZn.
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The mutual information is linked to the free energy by the formula,

1

n
I(�0;G) =

1

n
E ln

✓
P(�|G)

P(�)

◆
= fn +

1

n
E

2

4
X

A2{1,·,n}

lnP(GA|{�i : i 2 A})

3

5 .

The second term can be reduced to a simple expression once an explicit model
is chosen. Therefore, computing the mutual information is essentially reduced
to the problem of computing the free energy.

1.4 The cavity and replica methods

The replica method and the cavity method are two heuristic methods for com-
puting the free energy [27, 28]. The two methods involve mathematically un-
justified steps or need to assume some structure on the model, and eventually
enable us to derive a variational expression called replica symmetric formula.
It is predicted that this formula is exactly equal to the limit of free energy.

The replica method

The replica method is based on the formula

lim
n!1

1

n
E[lnZn] = lim

n!1

lim
N!0

1

n

E[ZN

n
] � 1

N
(1.14)

or the equivalent formula

lim
n!1

1

n
E[lnZn] = lim

n!1

lim
N!0

1

n

d

dN
E[ZN

n
].

To yield the replica symmetric formula from the L.H.S. of these formulae, we
assume the validity of swapping the two limits. Then the moments E[ZN

n
] are

computed as if N would be an integer, despite that the limit N ! 0 is taken
in the final step.

Factor graphs

The replica method is compact but elusive in meaning. The cavity method
is another method, in principle equivalent to the replica method, but it has a
clearer interpretation. It is best described in the language of factor graph.

A factor graph G = (V ,F , E) for n variables x = (x1, . . . , xn) is a bipartite
graph containing a set of variable nodes V , a set of factor nodes F , and a set of
edges E connecting variable nodes to factor nodes. We associate each variable
node i 2 V with a variable xi 2 Xi, and associate each factor node a 2 F with
a function  a. We denote @i ⌘ {i 2 V : (i, a) 2 E} the neighbors of node i and
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(a) A graph G (b) The factor graph (c) The replica formula

Figure 1.2 – A graphical illustration from a graph G to the replica formula

@a ⌘ {a 2 F : (i, a) 2 E} the neighbors of node a. The argument of function
 a is x@a ⌘ {xi, i 2 @a}. The factor graph represents the probability

p(x) =
1

Zn

Y

a2F

 a(x@a), (1.15)

where Zn ⌘
P

x

Q
a2F

 a(x@a).
An example is in Fig. 1.2a and Fig. 1.2b. Let’s assume we want to infer �

from the graph G in (a). Each edge represents some weight Gij. The posterior
P(�|G) follows the expression in (1.13) where A = (i, j). The associated factor
graph is constructed in Fig. 1.2b with factor nodes represented in boxes. Each
factor node represents a factor P(Gij|�i, �j).

The cavity method

The cavity method starts with a variational approach for approximating Fn ⌘
n
�1 lnZn. For the probability p(x) in (1.15) that admits a factor graph G, and

for any trial probability b(x) on X1 ⇥ · · ·⇥Xn, we define the Gibbs free energy
FGibbs(b) to be

FGibbs(b) = � 1

n

X

x

b(x) ln
�Y

a2F

 a(x@a)
�
+

1

n

X

x

b(x) ln b(x). (1.16)

This Gibbs free energy satisfies

FGibbs(b) = FGibbs(p) +D(b||p),

where D(b||p) ⌘
P

x
b(x) ln

�
b(x)/p(x)

�
is the Kullback-Leibler divergence.

We can think b as an estimate of p. Since D(b||p) � 0 and the equality is
attained if and only if p(x) = b(x) for all x 2 X , computing the free energy
Fn ⌘ FGibbs(p) can be formulated as the Gibbs variational problem:

inf
b

FGibbs(b) (1.17)

st. 0  b(x)  1, x 2 X1 ⇥ · · · ⇥ Xn, (1.18)
X

x

b(x) = 1. (1.19)
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Finding the optimal distribution for (1.17) is not easier than directly com-
puting FGibbs(p). We can attempt the special case where the underlying factor
graph does not have a cycle. In this case, p(x) can be factorized as (see [26])

p(x) =
Y

a2F

pa(x@a)
Y

i2V

pi(xi)
1�|@i|

, (1.20)

where pi(xi) (resp. pa(x@a)) is the marginal probability at the variable node i

(resp. at the factor node a). Eq. (1.20) implies that in the Gibbs variational
problem it su�ces to assume

b(x) =
Y

a2F

ba(x@a)
Y

i2V

bi(xi)
1�|@i|

, (1.21)

where {bi, ba : i 2 V , a 2 F} are estimates of {pi, pa : i 2 V , a 2 F}. The
resulting formula after substituting (1.21) into (1.16) is called the Bethe free
energy, given by

FBethe({bi, ba}) = � 1

n

X

a2F

X

xa

ba(x@a) ln
�
 a(x@a)

�
+

1

n

X

a2F

X

x@a

ba(x@a) ln ba(x@a)

+
1

n

X

i2V

(1 � |@i|)
X

xi

bi(xi) ln bi(xi).

Also, the Gibbs variational problem (1.17)–(1.19) leads to

inf
{bi,ba}

FBethe({bi, ba}) (1.22)

st.
X

xi

bi(xi) = 1, 8i 2 V , (1.23)

X

x@a

ba(x@a) = 1, 8a 2 F , (1.24)

X

x@a\xi

ba(x@a) = bi(xi), 8(i, a) 2 E , xi 2 Xi, (1.25)

0  bi(xi)  1, 8i 2 V , xi 2 Xi, (1.26)

0  ba(x@a)  1, 8a 2 F ,x@a 2
Y

i2@a

Xi. (1.27)

For general factor graphs, possibly with cycles, the infimum obtained from
(1.22)–(1.27) can be used as an approximation of Fn. This is known as the
Bethe approximation.

Another way to approximate Fn is belief propagation. It is an itera-
tive message-passing algorithm that involves two kinds of messages: message
mi!a(xa) from variable node i to factor node a, and message m̃a!i(xi) from
factor node a to variable node i. All messages are initialized to 1 and are
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updated according to the update rules:

mi!a(x@a) /
Y

c2@i\a

m̃c!i(xi)

m̃a!i(xi) /
X

x@a\xi

 a(x@a)
Y

j2@a\i

mj!a(xj). (1.28)

The updated messages are always normalized. When the messages converge,
Fn can be approximated by

FBP({m, m̃}) ⌘ � 1

n

X

i2V

Zi({m̃a!i}a2@i) � 1

n

X

a2F

lnZa({mi!a}i2@a)

+
1

n

X

i2V

X

a2@i

lnZi,a(m̃a!i,mi!a),

where

Zi({m̃a!i}a2@i) ⌘
X

xi

Y

a2@i

m̃a!i(xi),

Za({mi!a}i2@a) ⌘
X

xa

 a(x@a)
Y

i2@a

mi!a(xi),

Zi,a(m̃a!i,mi!a) ⌘
X

xi

m̃a!i(xi)mi!a(xi).

The authors of [29] show that any stationary point {bi, ba} of the Bethe free
energy FBethe({bi, ba}) has a one-to-one mapping with a fixed point {m, m̃} of
belief propagation. This implies that for the pair of stationary point and fixed
point

FBethe({bi, ba}) = FBP({m, m̃}).

One of the fixed-point equations is setting (1.28) to be an equality. From
this fixed-point equation, we can express m̃ as a function of m and simplify
FBP({m, m̃}) to FBP({m}).

The cavity method then assumes that for every (i, a) 2 E , {mi!a(x@a) :
x@a 2

Q
i2@a

Xi} is an i.i.d. random vector that is normalized to 1, and the
vector is drawn from a trial distribution m. The replica symmetric formula is
defined to be

fRS(m) ⌘ EG,m[FBP({m})].

The conjecture is that 1

lim
n!1

EG[Fn] = inf
m2M

fRS(m). (1.29)

1This is conjectured at least for inference problems. In general, the choice of the ex-
tremum over {m, m̃} of FBP({m, m̃}) might be di↵erent.
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Sparse	Graph	–		
Symmetric	Channel	

Sparse	Graph	–		
Asymmetric	channel	

Dense	Graph	

Sparse	Graph	-	BEC	

Figure 1.3 – Intuitive di�culty level to prove (1.29): the outermost circle is
the most di�cult

The support of the infimum is a certain set of distribution M; this set can
be tightened depending on the known properties of a given model. Fig. 1.2c
pictures the associated graph with the replica symmetric formula. The factor
nodes are replaced by i.i.d. messages fed into the variable nodes. This cor-
responds to a new decoupled problem where the variables from the messages
are inferred. The di�culty of proving (1.29) has a hierarchy (as depicted in
Fig. 1.3) based on the channels and the graph regime. Statements on chan-
nel universality [30] or applications of Lindeberg’s Theorem [31] can often be
used to show that the dense graph model can be mapped to another model
with Gaussian channels. Hence, we do not di↵erentiate the channel models for
dense graphs. For models on dense factor graphs or models with binary erasure
channels, m can be transformed to a trial scalar parameter m in a bounded
interval, and this also simplifies the replica symmetric formula. Therefore, we
have the two innermost circles in Fig. 1.3. Also, if we recall channels in Sec. 1.2,
we understand that symmetric channels are more structured and more tools
are available to analyze symmetric channels. Therefore, we obtain the order
of the two other circles in Fig. 1.3. This view implies that the di�culty in
analyzing community detection problem is in the order: Example 1.1 (Sparse
SBM) � Example 1.3 (Sparse CBM with BSC) � Example 1.4 (Sparse CBM
with BEC) � Example 1.2 (Dense SBM).

1.5 Implication of the replica symmetric formula

Given a community detection problem, we can identify the free energy associ-
ated with the mutual information. We can then derive the replica symmetric
formula fRS in order to predict the asymptotic free energy or the asymptotic
mutual information. In Fig. 1.4, we illustrate fRS as a function of the trial
parameter m and the signal-to-noise ratio (SNR) in the community detection
problem. The trial parameter m can be interpreted as the SNR of some de-
coupled observations. We always have the trivial stationary point m = 0; it
implies that the decoupled observations are uninformative.
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Impossible phase hard phase easy phase 

SNR 

m 

fRS 

m 

fRS 

m 

fRS 

m 

fRS 

Figure 1.4 – The replica symmetric formula fRS as a function of the trial
parameter m and the SNR of the model. A black point denotes a global
minima, and a white circle denotes a local minimum.

As the derivation of the replica symmetric formula fRS is intimately related
to message-passing algorithms (which is belief propagation when the graph is
sparse or, is the approximated version of belief propagation when the graph is
dense), only the replica symmetric formula provides details about the perfor-
mance of the message-passing algorithm. It is known that the stationary point
of the replica symmetric formula corresponds to the fixed-point solution of the
density-evolution equation [32] or the state-evolution equation [33] that tracks
the performance of the message-passing algorithm. As the message-passing
algorithm iterates, we can understand its performance as a kind of “gradient
descent” starting from the uninformative point m = 0 and eventually converg-
ing to a local minimum. Message-passing algorithms therefore achieve weak
recovery if the “gradient descent” can reach a local minimum not equal to zero.

If we recall the discussion in Section 1.2, we understand that the derivative
of the mutual information with respect to the SNR is linked to the overlap
function. Now, assuming the asymptotic mutual information is given by eval-
uating the replica symmetric formula at the global minimum, we can inspect
the overlap function from the derivative of minm fRS(m). The replica sym-
metric formula predicts that a phase transition (say, as a function of SNR)
for weak recovery would occur at the non-analytical point of minm fRS(m), at
which the global minima of the replica symmetric formula jumps (say, as a
function of SNR).

Therefore, the replica symmetric formula enables us to identify three phases,
as illustrated in Fig. 1.4. At the “easy phase” (the blue curve), any negligi-
ble amount of side information would initiate the “gradient descent”, and the
performance of message-passing algorithms is given by the global minimum,
which is strictly positive. Message-passing algorithms can be used to achieve
weak recovery. As the SNR decreases, we will enter the “hard phase” (the green
curve). The “gradient descent” cannot overcome the barrier and is stuck at the
uninformative point m = 0. Message-passing algorithms cannot achieve weak
recovery. However, weak recovery is possible because the global minimum is
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attained at m > 0. As the SNR further decreases, we can expect the “impos-
sible phase” (the yellow and red curves). The SNR is low and weak recovery
is impossible. This is illustrated by the curves where the global minimum is
attained at m = 0.

1.6 Related works on proving the replica
prediction

The most notable replica symmetric formula in statistical physics is the one
for the Sherrington-Kirkpatrick model. Although it was proposed by Parisi
[34] in 1980, it was rigorously proved relatively recently by Talagrand in [35].
The underlying techniques of the proof — the Guerra-Toninelli interpolation
method [36] and the Aizenman-Sims-Starr scheme [37] — remains beneficial
for analyzing many other problems. During the last two decades, the utility
of replica symmetric formula has attracted the attention in high-dimensional
Bayesian inference, and much progress has been achieved. Examples where
full proofs have been achieved are random linear estimation and compressed
sensing [38, 39], learning for single-layer networks [40], generalized estimation
in multi-layer settings [41, 42], and low-rank matrix and tensor estimation
[43, 17, 44, 45]. The Guerra-Toninelli interpolation method is used to obtain a
one-sided bound in most of the existing proofs. The converse bound is arguably
more di�cult. The Aizenman-Sims-Starr scheme [17, 44, 46], or other state-
of-the-art techniques such as spatial coupling [43, 38], are used to address
this converse bound. More recently, the authors in [47, 48] have discovered a
unified proof via an elaborated version of the Guerra-Toninelli interpolation
method, called adaptive interpolation. The method is generic to problems with
a dense underlying factor graph. The new method is quite generic, once the
correct decoupled problem has been identified and is directly applicable when
the concentration of the overlap can be proved. The successes of the adaptive
interpolation method have so far been limited to inference models with a dense
underlying factor graph, and it has not been applied to any block models before
this thesis. It is desirable to see to what extent the method can be developed
for these open cases.

Let us very briefly summarize the interpolation methods. Given the free
energy fn and the replica symmetric formula fRS, we can identify the Hamil-
tonian Hbase associated with fn and another Hamiltonian Hdecoupled associated
with a decoupled model. The Guerra-Toninelli interpolation method defines
an interpolated Hamiltonian Ht with time t 2 [0, 1] such that H0 = Hbase and
H1 = Hdecoupled. Let ft be the interpolated free energy associated with Ht.
Interpolation is based on using a formula due to the fundamental theorem of
calculus:

ft=0 = ft=1 �
Z 1

0

dt
dft

dt
.
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It turns out that ft=1 is closely related to fRS (although not equal) and thus
lead us to the sum rule

fn = fRS + remainder.

The remainder often is either positive or negative. Thus, a one-sided bound
can be obtained immediately.

The Guerra-Toninelli method is based on a fixed interpolation path. The
idea of adaptive interpolation is to adopt a larger class of paths for the interpo-
lated Hamiltonian so that we have more flexibility to control the remainder in
the sum rule. In particular, the remainder can often be expressed as a function
of overlap. The other bound is obtained by suitably controlling the overlap and
“adapting” the interpolation path according to a di↵erential equation. More
details for a simple example are found in Chapter 2.

1.7 Contributions and organization of this thesis

In this thesis, we develop new methods to rigorously derive the replica symmet-
ric formula for community detection on both dense graphs and sparse graphs.
The methods are based on extending the adaptive interpolation method in
[47, 48].

In Chapter 2, we review the adaptive interpolation for proving the replica
symmetric formula. The material is extracted from [47, 48]. We expose to the
readers what was known about the adaptive interpolation before this thesis,
in order to make a good link to the contribution of this thesis. To this end, we
outline the essential steps in the method without going into all the calculations.

Chapters 3 through 5 constitute the original contributions of this thesis.
Let us give a brief summary here.

In Chapter 3, we develop the adaptive interpolation for community detec-
tion on dense graphs. We rigorously derive the replica symmetric formula for
the mutual information of the asymmetric two-group SBM in the dense-graph
regime (see Theorems 3.1 and 3.2). A brief description of this model is
in Example 1.2 in Section 1.1. The replica symmetric formula for this model
is not new. The formula was derived in [49] by using heuristic methods in
statistical physics. Rigorous proofs are given in [16, 17] but with two weak-
nesses: (1) the proofs are indirect, as they involve first mapping the problem
to spiked Wigner models, and (2) the proofs have not fully covered a certain
regime of “fully dense” graphs. Our contribution is a direct proof that include
all regimes of dense graphs.

For analyzing for the symmetric case, where the two groups are of equal
size, we can rely on the fact that the information-theoretic phase transition
is continuous and of the second-order type. This enables a proof [16] using a
message-passing argument. The asymmetric case is more challenging, as it can
involve a first-order (discontinuous) phase transition. In this case, the authors
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of [17] tackle the problem by combining two methods (Guerra-Toninelli inter-
polation and the Aizenman-Sims-Starr scheme). Whereas, our proof addresses
the asymmetric case by using only a single method, namely, the adaptive in-
terpolation. Thus, our proof is also conceptually simpler.

In Chapter 4, we develop the adaptive interpolation for community detec-
tion on sparse graphs. We rigorously derive the replica symmetric formula for
the mutual information of a symmetric two-group CBM on the binary erasure
channel in the sparse-graph regime (Theorem 4.1). A brief description of
this model is in Example 1.4 in Section 1.1. Our proof demonstrates the first
example of using the adaptive interpolation for a model on a sparse graph.

The replica symmetric formula for the mutual information in a sparse model
is known to be more complicated. We need to take both the randomness
in the observations and in the sparse graph into account; in addition, the
replica symmetric formula is a functional over a set of probability distributions
(instead of scalars as in the dense-graph case). Existing rigorous derivations of
the formulas for sparse models require a combination of methods. To this end,
the adaptive interpolation we have developed in Chapter 4 serves as a first
step towards an analysis of more complicated models via a unified approach.

When we apply the adaptive interpolation to the sparse CBM, the sum
rule contains a set of “multi-overlaps” {Qp : p � 1}, where

Qp ⌘ 1

n

nX

i=1

�
(1)
i

· · · �(p)
i

is the overlap of p independent replicas �(1)
, . . . ,�

(p). (This is in contrast to
the dense-graph case where only the first or second overlaps matter.) The
adaptive interpolation requires controlling the total fluctuation of all multi-
overlaps in the form

Eh(Qp � EhQpi)2i. (1.30)

In the simple situation where the measurement channel is the binary erasure
channel, we can prove the concentration of all multi-overlaps, and therefore
fully develop the adaptive interpolation method. If we take for granted the
concentration of multi-overlaps, the adaptive interpolation method developed
in Chapter 4 can be directly extended to a larger class of channels. Even
though we were unable to resolve the proof of concentration in general cases,
in Chapter 5 we did find a solution for similar models in the context of physics.

In Chapter 5, we depart from community detection and study ferromag-
netic “mean-field” spin models on sparse random graphs. We prove the con-
centration of the total fluctuation of all multi-overlaps (Theorem 5.3). To
the best of our knowledge, this concentration result is unprecedented for multi-
overlaps in any spin model. This concentration result is also significant in the
context of community detection, or Bayesian inference in general, because it
sheds light on the potential of extending the adaptive interpolation for sparse
graphs (developed in Chapter 4).
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The concentration result involves recognizing the total fluctuation in (1.30)
as the addition of two types:

Eh(Qp � hQpi)2i and E[(hQpi � EhQpi)2].

The main novelties are involved in showing the concentration of the latter type.
The approach in our proof suggests that, for general “mean-field” models, the
concentration of multi-overlaps could be obtained from the concentration of
the first overlap.

In Chapter 6, we provide our closing remarks and discuss some open chal-
lenges in extending the adaptive interpolation method to other models.

1.7.1 Bibliographic notes

A summary of Chapter 3 was presented in [50] and the extended version is
found in [51]. A summary of Chapter 4 was presented in [52] and the extended
version is found in [53]. The research yielding Chapter 5 is found in [54].



Preliminary: Adaptive
Interpolation for Spiked
Wigner Models 2
This chapter gives a quick review of adaptive interpolation for the spiked
Wigner model. The reader can refer to [55, 56] for the detailed calculation or
follow the subsequent chapters in this thesis for a complete proof on related
models.

The spiked Wigner model is the first model that has a full proof by the
adaptive interpolation. This model consists of i.i.d. random variable Xi, i =
1, . . . , n. Each Xi is drawn from a prior distribution P0 with support on a
bounded interval [�S, S]. We observe the matrix Y = (Yij)ni,j=1 where each
matrix element is generated by the process:

Yij =

r
�

n
XiXj + Zij, 1  i  j  n, (2.1)

where � > 0, Zij ⇠ N (0, 1) are i.i.d. Gaussian random variables for i  j

and symmetric Zij = Zji. We can always rescale � so that we can assume
E[X2

1 ] = 1. The total signal-to-noise ratio per parameter is #observations ·
SNRobs / #parameters to infer, where SNRobs is the SNR per observation. The
SNRobs for the diagonal element Yii is �E[X4

1 ]/n = O(1/n), and the SNRobs

for the o↵-diagonal element Yij is (�/n)E[X2
1 ]

2 = �/n. Therefore, the total
signal-to-noise ratio per parameter

(n(n � 1)/2) · (�/n) + n(�E[X4
1 ]/n)]

n
=
�

2
+ O

� 1
n

�
= ⇥(1)

defines a non-trivial inference problem.
The transition probability in this model is

P(Y |X) =
1

(2⇡)n(n+1)/2
exp

⇣
� 1

2

X

ij

�
Yij �

r
�

n
XiXj

�2⌘
.

21
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Using Bayes’ rule, we obtain the posterior distribution

P(x|Y ) =
P(Y |x)P(x)

P(Y )
/ exp{�

X

ij

� �
2n

x
2
i
x
2
j
� 2

r
�

n
Yij

�
}

nY

i=1

P0(xi).

For the convenience of using the tools from statistical physics, we write the
posterior distribution following the conventions of Gibbs distributions:

P(x|Y ) =
1

Z(Y )
e
�HSW(x,Y (X,Z))

nY

i=1

P0(xi),

where the Hamiltonian HSW and the partition function Z(Y ) are defined to
be

HSW(x,Y (X,Z)) ⌘ �
X

ij

⇣
�xixjXiXj

n
+

p
�

n
xixjZij �

x
2
i
x
2
j

2n

⌘
,

Z(Y ) ⌘
Z

dxe
�HSW(x,Y (X,Z))

nY

i=1

P0(xi).

Furthermore, we define the free energy of this model fSW to be

fSW ⌘ � 1

n
EXEY |X lnZ(Y ).

A straightforward calculation shows that

1

n
I(X;Y ) =

1

n
E ln

�P(X|Y )

P(X)

�
= fSW +

�

4
+ O(1/n).

When we ask if limn!1
1
n
I(X;Y ) exists, and what the value is if it exists,

the non-trivial part to answer these questions is about how to evaluate fSW.
The heuristic from the replica or cavity method predicts that

lim
n!1

fSW = min
q2[0,�]

fRS(q), (2.2)

where the so-called replica-symmetric formula fRS is a single-letter variational
expression given by

fRS(q) ⌘ q
2

4�
� E ln

Z
dxP0(x)e

�( q2x
2
�qxX�

p
qxZ)

. (2.3)

Recalling the derivation of the cavity method in Sec. 1.4, the replica-symmetric
formula is always associated with an inference problem with a decoupled factor
graph. Here, fRS(q) is associated with inferring X ⇠ P0 from the observation

Y =
p
qX + Z, (2.4)

where Z ⇠ N (0, 1) is a Gaussian random variable.
Eq. (2.2) follows from the combination of the two matching bounds:

lim sup
n!1

fSW  min
q2[0,�]

fRS(q), (2.5)

lim inf
n!1

fSW � min
q2[0,�]

fRS(q). (2.6)

Adaptive interpolation is a method to prove these two bounds in a unified way.
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Figure 2.1 – Interpolation for dense graphs

2.1 Main steps

Step 1: Set up an interpolating inference model

Since each of the two expressions, fSW and fRS, is associated with a respective
inference problem defined in (2.1) and (2.4), the idea of interpolation method
is based on constructing an interpolating inference model parameterized by
time t 2 [0, 1] such that the associated free energies at t = 0 and t = 1 recover
fSW and fRS. A simple interpolating model at time t joins the two kinds of
observations, and rescales the SNR of each kind by (1�t) and t. The particular
feature of adaptive interpolation is replacing this linear rescaling by a function

R(t, ✏) ⌘ ✏+

Z
t

0

dsq(s, ✏), (2.7)

where ✏ 2 [sn, 2sn] with sn = n
�✓ for some ✓ 2 (0, 1) such that sn tends to 0+.

The adaptive interpolating model thus involves these two kinds of observations:

Yij(t) =
(1 � t)�

n
XiXj + Zij, 1  i  j  n,

Ỹi(t) =
p

R(t, ✏)Xi + Z̃i, 1  i  n,

with Z̃i ⇠ N (0, 1) i.i.d. Gaussian random variables. The perturbation ✏ can
be viewed as a negligible amount of hints for one to start to infer. Fig. 2.1
illustrates the factor graph of the interpolating model evolved with time t. The
change of color and the intensity of the dash indicates the change of SNR of
the observations.

We then set up the notations to link to the free energy. The posterior
distribution of this interpolating model expressed in the convention of Gibbs
distribution is

Pt(x|Y , Ỹ ) =
e
�Ht,✏(x;Y ,Ỹ )

Q
n

i=1 P0(xi)

Zt,✏
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with the Hamiltonian

Ht,✏(x;Y (X,Z), Ỹ (X, Z̃))

⌘ �
X

ij

⇣(1 � t)�xixjXiXj

n
+

p
(1 � t)�

n
xixjZij �

x
2
i
x
2
j

2n

⌘

�
nX

i=1

⇣
R(t, ✏)Xixi +R(t, ✏)Zixi � R(t, ✏)

x
2
i

2

⌘

and the partition function Zt,✏ ⌘
R
dxe

�Ht,✏(x;Y ,Ỹ )
Q

n

i=1 P0(xi). We also de-
fine the Gibbs-bracket and the free energy for the interpolating model in the
standard manner:

hA(x)it,✏ ⌘
Z

dxA(x)Pt(x|Y , Ỹ ),

ft,✏ ⌘ � 1

n
E lnZt,s.

We check that f0,0 = fSW and f1,0 = fRS(R(1, 0))� R(1,0)2

4� . Using the mean
value theorem, it is also true that

(
f0,✏ = fSW + O(sn),

f1,✏ = fRS(
R 1

0 q(s, ✏)ds) � (
R 1
0 q(s,✏)ds)2

4� + O(sn).
(2.8)

Step 2: Write down the sum rule

The di↵erence of the free energies can then be derived by the formula

f0,✏ = f1,✏ �
Z 1

0

dt
dft,✏

dt
. (2.9)

The derivative dft,✏

dt
can be obtained by the Nishimori identity 1 and Gaus-

sian integration-by-parts formula (see Sec. 2.2.1 and 2.2.2) with the expression

dft,✏

dt
=
�

4
EhQ2it,✏ � 1

2
q(t, ✏)EhQit,✏ + O(

1

n
), (2.10)

where Q ⌘ n
�1
P

n

i=1 Xixi is called the overlap.
Substituting (2.8) and (2.10) into (2.9), we obtain

fSW = fRS

⇣Z 1

0

q(s, ✏)ds
⌘

�
(
R 1

0 q(s, ✏)ds)2

4�
� 1

4�

Z 1

0

dtEh(�Q)2 � 2q(t, ✏)Qit,✏

+ O(
1

n
) + O(sn)

= fRS

⇣Z 1

0

q(s, ✏)ds
⌘
+ R1 � 1

4�n

Z 1

0

dtR2(t) + O(
1

n
) + O(sn) (2.11)

1The original Nishimori identity [57, 58] is obtained by “gauge invariance” of the pos-
teriror and the properties derived from channel symmetry (1.7). In Sec. 2.2.1 we show that
a generalized result can be obtained from Bayes’ rule and transforms of dummy variables.
Nevertheless, we call the generalized result Nishimori identities.
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where

R1 =
1

4�

⇣Z 1

0

q(t, ✏)2dt �
⇣Z 1

0

q(t, ✏)dt
⌘2⌘

� 0,

R2 = Eh(�Q � q(t, ✏))2it,✏ � 0.

Eq. (2.11) is the fundamental sum rule. We group the remainders R1 and
R2 in such a way so that proving (2.5) or (2.6) amounts to choosing suitable
R(t, ✏) to remove either of the remainders in (2.11).

Step 3: Upper Bound (2.5)

The approach to obtaining (2.5) is to recover the simple version of the inter-
polation method. We set ✏ = 0 and q(t, ✏) = q a non-negative constant so that
R1 = 0. With R2 � 0, (2.11) implies

fSW  fRS(q) + O
� 1
n

�
.

Optimizing over q 2 [0,�] and passing to the limit lim sup
n!1

yields (2.5).

Step 4: Lower Bound (2.6)

For the other bound, it is tempting to cancel R2(t). However, exact cancel-
lation of R2(t) is impossible because Q is a random variable and q(t, ✏) is a
parameter to be fixed. We can decompose R2(t) in the way analogous to the
bias-variance decomposition:

R2(t) = (�EhQit,✏ � q(t, ✏))2 + �
2Eh(Q � EhQi)2it,✏, (2.12)

Now EhQit,✏ is no longer a random variable and one expects that at fixed ✏

there is a choice

q(t, ✏) = �EhQit,✏, 0  t  1 (2.13)

to remove the first term in (2.12). A crucial observation is recognizing q(t, ✏) =
dR

dt
(t, ✏) (recalling R(t, ✏) = ✏ +

R 1

0 q(s, ✏)ds) and that �EhQit,✏ is a bounded
function G(t, R(t, ✏)) in [0,�]. Eq. (2.13) can thus be recast as a first-order
di↵erential equation

dR

dt
(t, ✏) = G(t, R(t, ✏)) with R(0, ✏) = ✏. (2.14)

The Cauchy-Lipschitz theorem (see for example [59, Chapter 5]) implies
that (2.14) admits a unique global solution R

⇤(t, ✏) over t 2 [0, 1]. Moreover,
we can use (2.18) and (2.20) to see that dG

dR
(t, R(t, ✏)) � 0. Through Liouville’s

formula (see Sec. 2.2.3)

dR
⇤

d✏
(t, ✏) = exp

Z
t

0

dt
0
dG

dR
(t0, R⇤(t,0 , ✏)), (2.15)
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the non-negativity of dG/dR implies dR
⇤
/d✏ � 1. When the second term in

(2.12) is also evaluated at R = R
⇤, the property dR

⇤
/d✏ � 1 implies

1

sn

Z 2sn

sn

d✏

Z 1

0

dtEh(Q � EhQit,✏)2it,✏  C(S)

(s4
n
n)1/3

(2.16)

for a positive constant C(S) depending on the support S of the prior P0.
Now we revisit (2.11) at R = R

⇤ and average the equation over ✏ 2 [sn, 2sn].
Using R1 � 0 and the above discussion on R2, we obtain

fSW � 1

sn

Z 2sn

sn

d✏fRS(R
⇤(1, ✏)) +

C(S)

(s4
n
n)1/3

+ O
� 1
n

�
+ O(sn)

� min
q2[0,�]

fRS(q) +
C(S)

(s4
n
n)1/3

+ O
� 1
n

�
+ O(sn). (2.17)

Setting sn = n
�✓ with ✓ 2 (0, 1/4) ensures the extra terms on the r.h.s. of

(2.17). Furthermore, taking lim infn! on both sides of (2.17) yields (2.5).
Before the end of this section, we remark that the main calculations we

have hidden are (2.10) and (2.16). This is the question when one applies the
method to other problems.

2.2 Tools

The tools presented in this section are generic and will be used again in the
subsequent chapters.

2.2.1 The Nishimori identities

Let (X,Y , Ỹ ) be a couple of random variables with joint distribution

P(X,Y , Ỹ ) = P(X)P(Y |X)P(Ỹ |X)

and conditional distribution P (·|Y , Ỹ ). Let k � 1 and let x(1)
, . . . , x

(k) be i.i.d.
copies from the conditional distribution. Let us denote h�i the expectation
w.r.t. the product distribution P (·|Y , Ỹ )⌦1 over copies and E the expectation
w.r.t. the joint distribution. Then, for all continuous bounded functions g we
have

Ehg(Y , Ỹ ,x
(1)
, . . . ,x

(k))i = Ehg(Y , Ỹ ,X,x
(2)
, . . . ,x

(k))i . (2.18)

The expectation E is over (X,Y , Ỹ ).

Proof. This is a simple consequence of Bayes formula. We have

Ehg(Y , Ỹ ,x
(1)
, . . . ,x

(k))i
= EXE

Y ,Ỹ |X
E

x(1),...,x(k)|Y ,Ỹ
[g(Y , Ỹ ,x

(1)
, . . . ,x

(k))]

= E
X,x(1),...,x(k),Y ,Ỹ

[g(Y , Ỹ ,x
(1)
, . . . ,x

(k))]

= Ex(1)E
Y ,Ỹ |x(1)EX,x(2),...,x(k)|Y ,Ỹ

[g(Y , Ỹ ,x
(1)
, . . . ,x

(k))]. (2.19)
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Since X and x
(1) are dummy, we can do the transform (X,x

(1)) ! (x(1)
,X).

We can continue (2.19) with

Ehg(Y , Ỹ ,x
(1)
, . . . ,x

(k))i
= EXE

Y ,Ỹ |X
E

x(1),...,x(k)|Y ,Ỹ
[g(Y , Ỹ ,X,x

(2)
, . . . ,x

(k))]

= Ehg(Y , Ỹ ,X,x
(2)
, . . . ,x

(k))i .

2.2.2 Gaussian integration by parts

Integration by parts implies that for any bounded and di↵erentiable function
g of Z ⇠ N (0, 1), we have

E[Zg(Z)] = E [g0(Z)] . (2.20)

2.2.3 Liouville formula

Consider the di↵erential equation (2.14) with G(t, R(t, ✏)) = �EhQit,✏. Di↵er-
entiating w.r.t ✏ and using the chain rule gives

d

dt

dR

d✏
(t, ✏) =

dR

d✏
(t, ✏)

dGn

dR
(t, R(t, ✏)) .

Therefore we have

d

dt
ln

⇢
dR

d✏
(t, ✏)

�
=

dG

dR
(t, R(t, ✏)) . (2.21)

Integrating (2.21) over t 2 [0, t0], we have

ln

⇢
dR

d✏
(t0, ✏)

�
� ln

⇢
dR

d✏
(0, ✏)

�
=

Z
t
0

0

dt
dG

dR
(t, R(t, ✏)) . (2.22)

Using R(0, ✏) = ✏, (2.22) implies

dR

d✏
(t0, ✏) = exp

⇢Z
t
0

0

dt
dG

dR
(t, R(t, ✏))

�
. (2.23)

This is known as Liouville’s formula for one-dimensional ordinary di↵erential
equations.





Dense Stochastic Block
Model 3
3.1 Introduction

In this chapter, we focus on the mutual information of the two-group SBM with
possibly asymmetric group sizes, in dense regimes where the expected degree
of the nodes diverges with the total number of nodes (and is independent of
the group label). We rigorously determine a single-letter variational expression
for the asymptotic mutual information by means of the adaptive interpolation
method.

Single-letter variational expressions for the mutual information of the SBM
are not new. They were first analytically derived in heuristic ways by methods
of statistical physics and in this context are often called replica or cavity for-
mulas [49]. Rigorous proofs then appeared in [16, 17]. These approaches are
indirect in the sense that the SBM is first mapped on a spiked Wigner model,
and then the spiked Wigner model is solved. In [16], the particular case of two
equal-size communities is considered and the analysis relies on the fact that
in this case the information-theoretic phase transition is of the second-order
type (i.e., continuous), which allows to use message-passing arguments. The
asymmetric case is more challenging because first-order (discontinuous) phase
transitions appears for large enough asymmetry. In [17], this case is tackled
through a Guerra-Toninelli interpolation combined with a rigorous version of
the cavity method or Aizenman-Sims-Starr scheme [60]. Strictly speaking, the
analysis [17] does not cover the widest possible regime of dense graphs (see
section 3.2 for details). We note that the mutual information of the spiked
Wigner model had also been determined earlier in [61] for the symmetric case
and more recently for the general case in [43] using a spatial coupling method.

The proof presented here covers the asymmetric two-group SBM and has
the virtue of being completely unified. It uses a single method, namely, the

29
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adaptive interpolation, which is conceptually simpler and is direct, as it does
not make any detour through another model. The method is a powerful evolu-
tion of the classic Guerra-Toninelli interpolation [36] and allows to derive tight
upper and lower bounds for the mutual information, whereas the classic inter-
polation only yields a one-sided inequality. It has been successfully applied to
a range of Bayesian inference problems, e.g., [45, 62]. Here, besides various
new technical aspects, the main novelty is that we do not use Gaussian inte-
gration by parts, as is generally the case in interpolation methods. Instead, we
develop a general approximate integration-by-parts formula and apply it to the
Bernoulli random elements of the adjacency matrix of the graph. We note that
related approximate integration-by-parts formulas have already been used by
[63, 64] in the context of the Hopfield and Sherrington-Kirkpatrick models.

This chapter is organized as follows. In Section 3.2, we give a precise
formulation of the model and state the main result of this chapter (Theorem
3.4). In Section 3.3, we formulate the adaptive interpolation method for the
dense SBM. The derivation of the sum rule is provided in Section 3.4. Overlap
concentration is proved in Section 3.5. A technical lemma important for the
sum rule is proved in Section 3.6.1. The rest of the technical results are found
in the appendices.

3.2 Setting and results: asymmetric two-group
SBM

We first formulate the SBM for two communities that may be of di↵erent sizes.
Suppose we have n nodes belonging to two communities where the partition
is denoted by a vector �0 2 {�1, 1}n. Labels X0

i
are i.i.d. Bernoulli random

variables with P(�0
i
= 1) = r 2 (0, 1/2]. The size of each community is nr and

n(1�r) up to fluctuations of O(
p
n). The labels �0 are hidden and instead one

is given a random undirected graph G constructed as follows (equivalently one
is given an adjacency marix). An edge between node i and j is present with
probability P(Gij = 1|�0

i
, �

0
j
) and absent with the complementary probability.

To specificy P(Gij = 1|�0
i
, �

0
j
), first we define dn such that

E[deg(i)|�0
i
= 1] ⌘ (n � 1)dn

n
⇡ dn , (3.1)

E[deg(i)|�0
i
= �1] ⌘ (n � 1)dn

n
⇡ dn . (3.2)

We require these two constraints for the inference problem to be non-trivial, in
the sense that no information about the labels stems from the nodes’ degrees.
The two constraints imply

E[deg(i)] = r E[deg(i)|�0
i
= 1] + (1 � r)E[deg(i)|�0

i
= �1] =

(n � 1)dn
n

⇡ dn



3.2. Setting and results: asymmetric two-group SBM 31

so that we can interpret dn as the average degree of a node. Then we define
P(Gij = 1|�0

i
, �

0
j
) = M�

0
i ,�

0
j
where M�

0
i ,�

0
j
are the four possible matrix elements

of

M =
dn

n


an bn

bn cn

�
.

Because of (3.1) and (3.2), we have the equations

E[deg(i)|�0
i
= 1] =

(n � 1)dn
n

(ran + (1 � r)bn) =
(n � 1)dn

n
,

E[deg(i)|�0
i
= �1] =

(n � 1)dn
n

(rbn + (1 � r)cn) =
(n � 1)dn

n
.

Solving this system imposes an = 1 � (1 � 1/r)(1 � bn) and cn = 1 � (1 �
bn)/(1 � 1/r). Therefore there are three independent parameters, namely dn,
bn and r. A more convenient re-parametrization is often used [16] instead of
bn, dn:

p̄n ⌘ dn

n
, and �n ⌘ dn(1 � bn)

n
.

Here p̄n 2 (0, 1) is the average probability for the presence of an edge. We
will look at the dense asymmetric SBM (the symmetric model corresponding
to r = 1/2) regimes where dn = np̄n ! +1. In our analysis the growth of
dn spans the whole spectrum from arbitrarily slow, at the verge of a sparse
graph, to linear dn = vn, v 2 (0, 1), for fully dense graphs.

In this chapter we rigorously determine the asymptotic mutual information
for this problem limn!1

1
n
I(�0;G) in the dense graph regime wherein p̄n and

�n satisfy:

(h1) (Dense SBM) np̄n(1 � p̄n)3
n!1���! 1.

(h2) (Appropriate scaling of signal-to-noise ratio) �n ⌘ n�2
n
/
�
p̄n(1 � p̄n)

�
=

dn(1 � bn)2/(1 � dn/n)
n!1���! � finite.

The first condition ensures that the graph is dense in the sense that dn !
+1, still maintaining p̄n 2 (0, 1). The second ensures the mutual information
has a well defined non-trivial limit when n ! +1. Note that the second condi-
tion requires�n ⌧ p̄n(1�p̄n)2 as�n/

�
p̄n(1�p̄n)2

�
=
p
�n/(np̄n(1 � p̄n)3) ! 0

as n ! 1, hence �n ⌧ p̄n and �n ⌧ (1� p̄n)2. The reader may wish to keep
in mind two simple typical examples. The first example is a dense graph with
dn = vn, v 2 [0, 1] so p̄n = v and �n ⇡

p
�v(1 � v)/n. The second example

is dn = vn
1�✓ with ✓ 2 (0, 1), so pn = vn

�✓ and �n ⇡
p
�vn�1�✓. These are

easily translated back to the matrix M .
We note that in the sparse graph version of the model one would have a

finite limit for dn but the second condition would be the same. The analysis of
the sparse case is however more di�cult and is not addressed in this chapter.

Instead of working with the spin ±1 variables it is convenient to change
the alphabet. We define Xi ⌘ �r(�0

i
) with �r(1) =

p
(1 � r)/r and �r(�1) =

�
p

r/(1 � r). The hidden labels of the nodes now belong to the alphabet
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X ⌘ {X1 =
p

(1 � r)/r,X2 = �
p
r/(1 � r)} and X 2 X n. An edge is then

present with conditional probability

P(Gij = 1|XiXj) = p̄n +�nXiXj . (3.3)

This can be viewed as an asymmetric binary-input binary-output channelX !
G and the inference problem is to recover the inputX (or �0) from the channel
output G. Henceforth we adopt the notation

Pr ⌘ r�X1 + (1 � r)�X2

for the probability distribution of the hidden labels X 2 X . Note that E[X2] =
1.

We now formulate our results which provide a single-letter variational for-
mula for the asymptotic mutual information. Let Z ⇠ N (0, 1) and X ⇠ Pr

independently, and set for q > 0:

iRS(q,�, r) ⌘ �

4
+

q
2

4�
� E ln

X

x2X

Pr(x)e
p
q Zx+qXx�

q
2x

2
.

The so-called replica formula conjectures the identity

lim
n!1

1

n
I(�0;G) = min

q2[0,�]
iRS(q,�, r) . (3.4)

We prove that (3.4) is correct, namely:

Theorem 3.1 (Upper bound). For the SBM under concern in the regime (h1),
(h2),

lim sup
n!1

1
n
I(�0;G)  minq2[0,�] iRS(q,�, r) .

Theorem 3.2 (Lower bound). For the SBM under concern in the regime (h1),
(h2),

lim infn!1
1
n
I(�0;G) � minq2[0,�] iRS(q,�, r) .

Remark 1: Of course we have I(�0;G) = I(X;G) and in the following we
will work with I(X;G) where

X 2 X = {X1 =

r
1 � r

r
,X2 = �

r
r

1 � r
}

.
Remark 2: Elementary analysis shows that the minimum over q � 0 of

iRS(q,�, r) is attained for q 2 [0,�].
Remark 3: From (3.4) one can derive the information theoretic phase tran-

sition thresholds. Let r⇤ ⌘ (1 � 1/
p
3)/2. For ”small” asymmetry between

group sizes r 2 [r⇤, 1/2] there is a continuous phase transition at �c = 1 while
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for “large” asymmetry r 2 (0, r⇤) the phase transition becomes discontinuous.
An information theoretic-to-algorithmic gap occurs in the second situation as
discussed in detail in [17].

Let us explain the relation of these theorems with previous works. In [16]
they were obtained for the symmetric case r = 1/2 by a mapping of the model
on a rank-one matrix estimation problem via an application of Lindeberg’s
theorem. The regime treated is essentially the same than ours except that in
place of (h1) [16] has np̄n(1�p̄n) ! +1. Note that the di↵erence only matters
if pn ! 1 which is the complete graph limit. Still using the same mapping to
matrix factorization, [17] treats the asymmetric case, however in a limit where
n ! +1 first and dn ! +1 after (in fact, this anlaysis can accomodate any
growth slower than dn ⇡ n

1/2). It is unclear whether this is possible for denser
regimes. Our analysis covers this gap and the whole spectum of growth for dn
up to linear growth is allowed. Besides, we propose a self-contained and direct
method using the adaptive interpolation method [55]. A technical limitation of
interpolation methods has often been the need to use Gaussian integration by
parts. We by-pass this limitation using an (approximate) integration-by-parts
formula for the edge binary variables Gij 2 {0, 1}.

Before we formulate the adaptive interpolation, let us set up more explic-
itly the quantities that we compute. The distribution of G given the hidden
partition X is the inhomogeneous Erdős-Rényi graph measure:

P(G|X) =
Y

i<j

(p̄n +�nXiXj)
Gij(1 � p̄n � �nXiXj)

1�Gij .

Using this measure and Bayes rule, we find the posterior distribution of the
SBM

P(X = x|G) = P(x|G) =
P(G|x)P(x)

P(G)
/ P(G|x)P(x)

= exp
nX

i<j

⇣
Gij ln(p̄n +�nxixj) + (1 � Gij) ln(1 � p̄n � �nxixj)

⌘o nY

i=1

Pr(xi)

= exp
nX

i<j

⇣
Gij ln(1 +

�n

p̄n
xixj) + (1 � Gij) ln(1 � �n

1 � p̄n
xixj)

⌘

+Dn(p̄n,G)
o nY

i=1

Pr(xi)

whereDn(p̄n,G) ⌘
P

i<j
Gij ln p̄n+(1�Gij) ln(1�p̄n). Therefore, the posterior

distribution becomes

P(x|G) =
1

Z(G)
e
�HSBM(x;G)

nY

i=1

Pr(xi) ,

HSBM(x;G) ⌘ �
X

i<j

n
Gij ln(1 + xixj

�n

p̄n
) + (1 � Gij) ln(1 � xixj

�n

1 � p̄n
)
o
.
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We use the statistical mechanics terminology and therefore call this posterior
distribution the Gibbs distribution. The normalizing factor

Z(G) ⌘
X

x2Xn

e
�HSBM(x;G)

nY

i=1

Pr(xi)

is the partition function, and HSBM is the Hamiltonian. A straightforward
computation, using the scaling regime (h1) and (h2), gives the following for-
mula (see the proof in Appendix 3.6.2):

Proposition 3.1 (Linking the mutal information and log-partition function).
For the SBM under concern we have

1

n
I(X;G) = � 1

n
EXEG|X lnZ(G) +

�n

4
+ on(1) (3.5)

where limn!1 on(1) = 0.

The problem thus boils down to compute minus the expected log-partition
function, or the expected free energy, in the limit n ! +1. This will be
achieved via an interpolation towards the log-partition function of n indepen-
dent scalar Gaussian channels where the observations about the hidden labels
are of the form

Yi =
p
q Xi + Zi , 1  i  n , (3.6)

with Zi ⇠ N (0, 1) i.i.d. Gaussian random variables and q > 0 the signal-to-
noise ratio (SNR). An important feature of our technique is the freedom to
adapt a suitable interpolation path to the problem at hand. This is explained
in the next section.

3.3 Adaptive path interpolation

We design an interpolating model parametrized by t 2 [0, 1] and ✏ � 0 s.t. at
t = ✏ = 0 we recover the original SBM, while at t = 1 we have a decoupled
channel similar to (3.6). For t 2 (0, 1) the model is a mixture of the SBM
with parameters (p̄n,

p
1 � t�n) and the extra decoupledGaussian observations

(3.6) with SNR replaced by

q ! R(t, ✏) ⌘ ✏+

Z
t

0

ds q(s, ✏)
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with q(s, ✏) � 0. The transition kernels for the channels X ! G and X ! Y

at time t 2 [0, 1] are

Pt(G|X) =
Y

i<j

(p̄n +
p
1 � t�nXiXj)

Gij(1 � p̄ �
p
1 � t�nXiXj)

1�Gij

= exp
X

i<j

⇣
Gij ln(p̄+

p
1 � t�nXiXj)

+ (1 � Gij) ln(1 � p̄n �
p
1 � t�nXiXj)

⌘
, (3.7)

Pt(Y |X) =
1

(2⇡)n/2
exp

⇣
� 1

2

nX

i=1

(Yi �
p

R(t, ✏)Xi)
2
⌘
. (3.8)

We constrain ✏ 2 [sn, 2sn] where sn ! 0+ as n ! +1 at an appropriate rate
to be fixed later on. The interpolating Hamiltonian is then defined to be

Ht,✏(x;G,Y ) ⌘ HSBM;t(x;G) + Hdec;t,✏(x;Y )

where

HSBM;t(x;G) ⌘ �
X

i<j

⇣
Gij ln(1 + xixj

p
1 � t

�n

p̄n
)

+ (1 � Gij) ln(1 � xixj

p
1 � t

�n

1 � p̄n
)
⌘
, (3.9)

Hdec;t,✏(x;Y (X,Z)) ⌘ �
nX

i=1

⇣p
R(t, ✏)Yixi � R(t, ✏)

x
2
i

2

⌘

= �
nX

i=1

⇣
R(t, ✏)Xixi +

p
R(t, ✏)Zixi � R(t, ✏)

x
2
i

2

⌘
.

(3.10)

The posterior distribution expressed with the Hamiltonian Ht,✏(x;G,Y ) then
reads

Pt(x|G,Y ) =

Q
n

i=1 Pr(xi) exp(�Ht,✏(x;G,Y ))P
x2Xn

Q
n

i=1 Pr(xi) exp(�Ht,✏(x;G,Y ))
.

Therefore, the Gibbs-bracket (i.e., the expectation operator w.r.t. the posterior
distribution) for the interpolating model is

hAit,✏ ⌘
X

x2Xn

A(x)Pt(x|G,Y ) =
1

Zt,✏(G,Y )

X

x2Xn

A(x)e�Ht,✏(x;G,Y )
nY

i=1

Pr(xi)

with the partition function Zt,✏(G,Y ) ⌘
P

x2Xn e
�Ht,✏(x;G,Y )

Q
n

i=1 Pr(xi). The
reader should keep in mind that Gibbs-brackets are therefore functions of the
quenched random variables (Y (X,Z),G(X)). The free energy for a given
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graph G = G(X) (that depends on the ground truth partition) and decoupled
observation Y (X,Z) is

Ft,✏(G,Y ) = Ft,✏ ⌘ � 1

n
lnZt,✏(G,Y ) , (3.11)

and its expectation

ft,✏ ⌘ EXEG|XEY |XFt,✏ = EXEG|XEZFt,✏ . (3.12)

By construction,

ft=0,✏ = � 1

n
EXEG|XEZ ln

⇣ X

x2Xn

exp
nX

i<j

⇣
Gij ln(1 +

�n

p̄n
xixj)

+ (1 � Gij) ln(1 � �n

1 � p̄n
xixj)

⌘

+
nX

i=1

(
p
✏Zixi + ✏Xixi � ✏

2
x
2
i
)
o nY

i=1

Pr(xi)
⌘
,

ft=1,✏ = � 1

n
EZ ln

⇣ X

x2Xn

exp
n nX

i=1

(
p
R(1, ✏)Zixi

+R(1, ✏)Xixi � R(1, ✏)

2
x
2
i
)
o nY

i=1

Pr(xi)
⌘

= iRS(R(1, ✏),�n, r) � �n

4
� R(1, ✏)2

4�n
.

In particular, when t = ✏ = 0 we have

f0,0 =
1

n
I(X;G) � �n

4
+ on(1) .

Therefore

1

n
I(X;G) = f0,0 +

�n

4
+ on(1)

= iRS(R(1, ✏),�n, r) � R(1, ✏)2

4�n
� f1,✏ + f0,0 + on(1) (3.13)

= iRS(R(1, ✏),�n, r) � R(1, ✏)2

4�n
�
Z 1

0

dt
dft,✏

dt
+ (f0,0 � f0,✏) + on(1)

(3.14)

where on(1) collects all contributions that tend to zero uniformly in ✏ when n !
1. Eventually, we reach the following fundamental sum rule (see section 3.4
for the derivation):

1

n
I(X;G) = iRS(R(1, ✏),�n, r) + R1 � 1

4�n

Z 1

0

dtR2(t) � R3 (3.15)
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where

R1 ⌘ 1

4�n

⇣Z 1

0

q(t, ✏)2dt �
⇣Z 1

0

q(t, ✏)dt
⌘2⌘

� 0 ,

R2(t) ⌘ Eh(�nQ � q(t, ✏))2it,✏ � 0 ,

R3 ⌘ ✏

4�n

⇣
✏+ 2

Z 1

0

q(t, ✏)dt
⌘

� 1

2

Z
✏

0

d✏
0 EhQi0,✏0 + on(1) ,

and the overlap is

Q(X,x) = Q ⌘ 1

n

nX

i=1

Xixi .

Two generic tools that we will widely use in our proof are (2.18) and (2.20).
To adapt (2.18) to the present case, we map (X,Y , Ỹ ) ! (X,G,Y ) with
joint law

Pt(X|G,Y )
nY

i=1

Pr(Xi).

Let us take k i.i.d. copies x(1)
, . . . ,x

(k) drawn from the posterior distribution
Pt(·|G,Y ). Then for any continuous bounded function g

Ehg(G,Y ,x
(1)
, . . . ,x

(k�1)
,X)it,✏ = Ehg(G,Y ,x

(1)
, . . . ,x

(k�1)
,x

k)it,✏ .
(3.16)

where E is over (G,Y ). More precisely, E = EQn
i=1 Pr(Xi)EPt(G|X)EPt(Y |X).

Note that, by a slight abuse of notation, we continue to use the Gibbs-bracket
notation for expressions depending on multiple i.i.d. copies from the poste-
rior, so that h�it,✏ corresponds to the expectation w.r.t. the product measure
Pt(·|G,Y )⌦1.

We are now ready to provide the proofs of the bounds on the mutual
information.

3.3.1 The upper bound: proof of Theorem 3.1

Set ✏ = 0 and q(t, ✏) = q a non-negative constant. Then we have R1 = 0,
R3 = on(1). Since R2 � 0, (3.15) implies

1

n
I(X;G)  iRS(q,�n, r) + on(1) .

Since iRS is continuous w.r.t its second argument lim sup
n!+1

1
n
I(X;G) 

iRS(q,�, r). Optimizing over q 2 [0,�] yields the bound (optimization over
q 2 [0,+1) does not yield a sharper bound, see remark 2).
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3.3.2 The lower bound: proof of Theorem 3.2

The basic idea is to “remove” R2 from (3.15) by adapting q(t, ✏). Then taking
the limit n ! 1 and ✏ ! 0+ will provide the desired bound since R1 � 0 and
R3 ! 0 will disappear. To implement this idea we first decompose R2 into

R2 = (�nEhQit,✏ � q(t, ✏))2 + �
2
n
Eh(Q � EhQit,✏)2it,✏ (3.17)

and address each part with the following two lemmas. The proof of Lemma 3.2
can be found in section 3.5.

Lemma 3.1. For every ✏ 2 [0, 1] and t 2 [0, 1] there exists a (unique) bounded
solution R

⇤

n
(t, ✏) = ✏+

R
t

0 ds q
⇤

n
(s, ✏) to the first order di↵erential equation

dR

dt
(t, ✏) = �nEhQit,✏ with R(0, ✏) = ✏ . (3.18)

Furthermore

q
⇤

n
(t, ✏) = �nEhQit,✏ 2 [0,�n] , and

dR
⇤

n

d✏
(t, ✏) � 1 .

Proof. Let Gn(t, R(t, ✏)) ⌘ �nEhQit,✏. Equation (3.18) is thus a first-order
di↵erential equation. Also note that, letting dGn/dR be the derivative w.r.t.
the second argument,

dGn

dR
(t, R(t, ✏))

=
�n

n

nX

i=1

E
h
Xi

X

x2Xn

xiPr(x)
d

dR

e
�Ht,✏(x;G,Y )

Zt,✏(G,Y )

i
(3.19)

=
�n

n

nX

i=1

E
h
Xi

X

x2Xn

xiPr(x)

⇥
⇣

� e
�Ht,✏(x;G,Y )

Zt,✏(G,Y )

dHt,✏(x;G,Y )

dR
� e

�Ht,✏(x;G,Y )

Zt,✏(G,Y )

d

dR
Zt,✏(G,Y )

Zt,✏(G,Y )

⌘i

=
�n

n

nX

i,j=1

E
h
Xi

D
xi(xjXj +

xjZj

2
p

R(t, ✏)
�

x
2
j

2
)
E

t,✏

� Xihxiit,✏
D
xjXj +

xjZj

2
p
R(t, ✏)

�
x
2
j

2

E

t,✏

i

=
�n

2n

nX

i,j=1

E
h
2XiXjhxixjit,✏ � Xihxixjit,✏hxjit,✏

� 2XiXjhxiit,✏hxjit,✏ + 2Xihxiit,✏hxji2t,✏ � Xihxixjit,✏hxjit,✏
i

(3.20)
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To get the last identity, we used Gaussian integration by parts, which reads
when applied to Gibbs brackets,

E[Zjhfit,✏] =
p

R(t, ✏)E[hfxjit,✏ � hfit,✏hxjit,✏] .

Indeed, one must be careful that in the definition of the Gibbs bracket both the
Hamiltonian and partition function are functions of the quenched variable Z,
thus the appearance of two terms when we di↵erentiate w.r.t Z. Now, using the
Nishimori identity to replace the hidden partition X by a new independent
sample from the posterior in (3.20) (which yields, e.g., E[XiXjhxixjit,✏] =
E[hxixji2t,✏] or E[Xihxixjit,✏hxjit,✏] = E[hxiit,✏hxixjit,✏hxjit,✏]) we reach

dGn

dR
(t, R(t, ✏)) =

�n

n

nX

i,j=1

E[(hxixjit,✏ � hxiit,✏hxjit,✏)2] . (3.21)

The function Gn is bounded and takes values in [0,�n]. Indeed, EhQit,✏ =
E[X1hx1it,✏] = E[hx1i2t,✏] by the Nishimori identity, thus EhQit,✏  Ehx2

1it,✏ =
E[X2

1 ] again by the Nishimori identity, and finally E[X2
1 ] = 1. In addition of

being bounded, Gn is di↵erentiable w.r.t. its second argument, with bounded
derivative as seen from (3.21). The Cauchy-Lipschitz theorem then implies
that (3.18) admits a unique global solution over t 2 [0, 1]. Finally, Liouville’s
formula (see section 2.2.3) gives

dR
⇤

n

d✏
(t, ✏) = exp

Z
t

0

dt
0
dGn

dR
(t0, R⇤

n
(t0, ✏)) . (3.22)

The non-negativity of dGn/dR then implies dR⇤

n
/d✏ � 1.

We now state a crucial concentration result for the overlap. Its validity is a
consequence of the fact that the problem is analyzed in the so-called Bayesian
optimal setting. This means that all hyper-parameters in the problem, namely
(Pr, r, p̄n,�n), are assumed to be known, so that the posterior of the model
can be written exactly. It implies the validity of the Nishimori identity which
in turn allows to prove the following result (see section 3.5):

Lemma 3.2 (Overlap concentration). Let R be the solution R
⇤

n
in Lemma 3.1.

Then for any bounded positive sequence sn there exists a sequence Cn(r,�n) > 0
converging to a constant and such that

1

sn

Z 2sn

sn

d✏Eh(Q � EhQit,✏)2it,✏  Cn(r,�n)

(s4
n
n)1/3

.

Now we average (3.15) over a small interval ✏ 2 [sn, 2sn] (note that I(X;G)
is independent of ✏) and set R to the solution R

⇤

n
of (3.18) in Lemma 3.1;

therefore, q⇤
n
(t, ✏) = �nEhQit,✏. This choice cancels the first term of R2 in the
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decomposition (3.17). The second term in (3.17) is then upper bounded using
Lemma 3.2. Finally R1 � 0. Combining all these observations we obtain

1

n
I(X;G) � 1

sn

Z 2sn

sn

d✏[iRS(R
⇤

n
(1, ✏),�n, r) � R3] �

Cn(r,�n)�n
4(s4

n
n)1/3

(3.23)

where we used Fubini’s theorem to switch the t and ✏ integrals when using
Lemma 3.2. Using q

⇤

n
2 [0,�n] and ✏ 2 [sn, 2sn], we see that R3 is bounded

uniformly in ✏:

|R3|  2sn
4�n

(2sn + 2�n) + on(1) =
s
2
n

�n
+ sn + on(1) .

Therefore, the average of R3 over ✏ has the same upper bound. Now, since

d

d�
iRS(R

⇤

n
(1, ✏),�, r) =

1

4
� R

⇤

n
(1, ✏)2

4�

and R
⇤

n
(1, ✏) 2 [sn, 2sn + �n] we have �1

4  d

d�
iRS(R⇤

n
(1, ✏),�)  1

4 (we use n

large enough for the l.h.s inequality). Therefore, by remark 2 and the mean
value theorem

1

sn

Z 2sn

sn

d✏ iRS(R
⇤

n
(1, ✏),�n, r) =

1

sn

Z 2sn

sn

d✏ iRS(R
⇤

n
(1, ✏),�, r)

+
1

sn

Z 2sn

sn

d✏ (iRS(R
⇤

n
(1, ✏),�n, r) � iRS(R

⇤

n
(1, ✏),�, r))

� min
q2[0,�]

iRS(q,�, r) � 1

4
|�n � �|

These remarks imply a relaxation of (3.23):

1

n
I(X,G) � min

q2[0,�]
iRS(q,�n, r) � 1

4
|�n � �| � Cn(r,�n)�n

4(s4
n
n)1/3

� s
2
n

�n
� sn � on(1) .

(3.24)

Finally, setting sn = n
�✓ with ✓ 2 (0, 1/4) ensures the extra terms on the r.h.s.

of (3.23) vanish as n ! +1. Then taking the lim infn!+1 and using �n ! �

we finally reach the desired bound.

3.4 The fundamental sum rule: proof of (3.15)

In this section we use the notation Ft,✏ for (3.11) without explicitly indicating
the dependence in its arguments. WhenGij is set to zero for a specific pair (i, j)
all other Gk,l, (k, l) 6= (i, j) being fixed we write Ft,✏(Gij = 0). Expectation
with respect to the set of all Gk,l, (k, l) 6= (i, j) is denoted by E⇠Gij .
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The derivative of the averaged free energy can be decomposed into three
terms:

dft,✏

dt
= D1 +D2 +D3 (3.25)

where

D1 ⌘ EXEY |X

X

G

Ft,✏

d

dt
Pt(G|X) ,

D2 ⌘ EXEG|X

Z
dY Ft,✏

d

dt
Pt(Y |X) ,

D3 ⌘ 1

n
E
D
d

dt
Hdec;t,✏

E

t,✏

+
1

n
E
D
d

dt
HSBM;t

E

t,✏

.

3.4.1 Term D1.

Lemma 3.3. We have

D1 =
�n

4
EhQ2it,✏ + O(

1

n
) + O

� �
3/2
np

np̄n(1 � p̄n)3

�
.

Proof. Note that by (3.7) we have

d

dt
Pt(G|X) = Pt(G|X)

X

i<j

1

2

�np
1 � t

XiXj

⇣
� Gij

p̄n +
p
1 � t�nXiXj

+
1 � Gij

1 � p̄n �
p
1 � t�nXiXj

⌘
.

This gives

D1 =
�n

2
p
1 � t

X

i<j

EXEY |XEG|X

h
XiXj

✓
(1 � Gij)Ft,✏

1 � p̄n �
p
1 � t�nXiXj

� GijFt,✏

p̄n +
p
1 � t�nXiXj

◆i

=
�n

2
p
1 � t

(D(a)
1 +D

(b)
1 ) (3.26)

with the definitions

D
(a)
1 ⌘

X

i<j

E⇠Gij


XiXj

EGij |XFt,✏ � EGij |X [GijFt,✏]

1 � EGij |Xi,XjGij

�
,

D
(b)
1 ⌘ �

X

i<j

E⇠Gij


XiXj

EGij |X [GijFt,✏]

EGij |Xi,XjGij

�
,
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where E⇠Gij ⌘ EXEY |XEG\Gij |X , and recalling

EGij |Xi,XjGij = p̄n +
p
1 � t�nXiXj .

Both D
(a)
1 and D

(b)
1 involve the term EGij |X [GijFt,✏]. In Section 3.6.1 we

derive an approximate integration-by-parts formula that, when applied in the
present case, yields

Lemma 3.4. Fix i, j 2 {1, · · · , n}2 and recall that Gij 2 {0, 1} with condi-

tional mean EGij |Xi,Xj [Gij] = p̄n +
p
1 � t�nXiXj. Let F (1)

t,✏ (Gij) be the first
partial derivative of Ft,✏ with respect to Gij. We have the approximate integra-
tion by parts formula

EGij |Xi,Xj [GijFt,✏(Gij)] = EGij |Xi,Xj [F
(1)
t,✏ (Gij)]EGij |Xi,Xj [Gij]

+ Ft,✏(Gij = 0)EGij |Xi,Xj [Gij]

+ O
⇣ p

1 � t�n

n2(1 � p̄n)

⌘
. (3.27)

where

F
(1)
t,✏ (Gij) = � 1

n

�n

p̄n(1 � p̄n)

p
1 � thxixjit,✏ + O

⇣ 1
n

⇣ �n

p̄n(1 � p̄n)

⌘2
(1 � t)

⌘

and Ft,✏(Gij = 0) is the evaluation of Ft,✏ at Gij = 0 all other variables Gkl,
(k, l) 6= (i, j) being fixed.

The approximate integration by part formula (3.27) implies that the term

D
(b)
1 of (3.26) can be written as (recall p̄n(1 � p̄n) � �n)

�n

2
p
1 � t

D
(b)
1

= � �n

2
p
1 � t

X

i<j

E⇠Gij

h
XiXj

�
Ft,✏(Gij = 0) �

p
1 � t�n

np̄n(1 � p̄n)
EGij |Xi,Xjhxixjit,✏

�i

+ O
⇣

�n�n

p̄n(1 � p̄n)

⌘

=
�2

n

2np̄n(1 � p̄n)

X

i<j

E[XiXjhxixjit,✏] �
�n

2
p
1 � t

X

i<j

E⇠Gij [XiXjFt,✏(Gij = 0)]

+ O
⇣

�n�n

p̄n(1 � p̄n)

⌘
. (3.28)
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Applying again the approximate integration by parts formula (3.27) the term

D
(a)
1 of (3.26) can be written as (recall (1 � p̄n)2 � �n)

�n

2
p
1 � t

D
(a)
1

= � �n

2
p
1 � t

X

i<j

E⇠Gij

h
XiXj

EGij |Xi,XjGij

1 � EGij |Xi,XjGij

�
Ft,✏(Gij = 0)

�
p
1 � t�n

np̄n(1 � p̄n)
EGij |Xi,Xjhxixjit,✏

�i

+
�n

2
p
1 � t

X

i<j

E⇠Gij

h
XiXj

EGij |XFt,✏

1 � EGij |Xi,XjGij

i
+ O

⇣
�n�n

(1 � p̄n)2

⌘

= E1 + E2 +
�n

2
p
1 � t

X

i<j

E⇠Gij [XiXjFt,✏(Gij = 0)] + O
⇣

�n�n

(1 � p̄n)2

⌘
(3.29)

where we define

E1 ⌘ �n

2
p
1 � t

X

i<j

E⇠Gij

h
XiXj

EGij |XiXjFt,✏ � Ft,✏(Gij = 0)

1 � EGij |Xi,XjGij

i
,

E2 ⌘ �2
n

2np̄n(1 � p̄n)

X

i<j

E
h EGij |Xi,XjGij

1 � EGij |Xi,XjGij

XiXjhxixjit,✏
i
.

We show in Appendix 3.6.3 that in (3.29) the terms E1 and E2 approximately
cancel so that

�n

2
p
1 � t

D
(a)
1 =

�n

2
p
1 � t

X

i<j

E⇠Gij [XiXjFt,✏(Gij = 0)] + O
⇣

�n�n

(1 � p̄n)2

⌘
.

(3.30)

Finally, substituting (3.28) and (3.30) into (3.26) gives

EXEY |X

X

G

Ft,✏

d

dt
Pt(G|X)

=
�2

n

2np̄n(1 � p̄n)

X

i<j

E[XiXjhxixjit,✏] + O
⇣

�n�n

p̄n(1 � p̄n)

⌘
+ O

⇣
�n�n

(1 � p̄n)2

⌘

=
�n

4
EhQ2it,✏ + O

⇣ 1
n

⌘
+ O

⇣
�n�n

p̄n(1 � p̄n)

⌘
+ O

⇣
�n�n

(1 � p̄n)2

⌘

=
�n

4
EhQ2it,✏ + O

⇣ 1
n

⌘
+ O

⇣
�
3/2
np

np̄n(1 � p̄n)3

⌘
,

where, in the last two equalities, we used �n = n�2
n
/(p̄n(1 � p̄n)) and Q =

1
n

P
n

i=1 Xixi. With (h1) and (h2), all the error terms represented by the big-O
notations tend to zero.
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3.4.2 Term D2.

Lemma 3.5. We have

D2 = �1

2
q(t, ✏)EhQit,✏.

Proof. Recall (3.8). Using Gaussian integration by parts (2.20) we obtain

D2 ⌘ EXEG|X

Z
dY Ft,✏

d

dt
Pt(Y |X)

=
nX

i=1

EXEG|XEY |X

h
(Yi �

p
R(t, ✏)Xi)

q(t, ✏)Xi

2
p

R(t, ✏)
Ft,✏

i

=
q(t, ✏)

2
p

R(t, ✏)

nX

i=1

EXEG|XEZ

⇥
ZiXiFt,✏

⇤

= � q(t, ✏)

2n
p
R(t, ✏)

nX

i=1

EXEG|XEZ

⇥
Xih
p

R(t, ✏)xiit,✏
⇤

= �1

2
q(t, ✏)EhQit,✏ ,

where we used that dFt,✏

dZ
= � 1

n
h
p
R(t, ✏)xiit,✏, and then the definition of the

overlap.

3.4.3 Term D3.

Lemma 3.6. We have D3 = 0.

Proof. Using the Nishimori identity (3.16) we obtain

E
D
d

dt
Hdec;t,✏

E

t,✏

= �q(t, ✏)
nX

i=1

EXEG|XEY |X

D
Yixi

2
p
R(t, ✏)

� x
2
i

2

E

t,✏

= �q(t, ✏)
nX

i=1

EXEG|XEY |X

h
YiXi

2
p
R(t, ✏)

� X
2
i

2

i

= �q(t, ✏)
nX

i=1

EXiEZi

ZiXi

2
p

R(t, ✏)

= 0

by independence of the centered noise Z and the hidden partition X.
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Again the Nishimori identity (3.16) is used to obtain

E
D
d

dt
HSBM,t

E

t,✏

=
1

2
p
1 � t

X

i<j

E
D
�nxixj

⇣
Gij

p̄n +
p
1 � t�nxixj

� 1 � Gij

1 � p̄n �
p
1 � t�nxixj

⌘E

t,✏

=
1

2
p
1 � t

X

i<j

E
h
�nXiXj

⇣
Gij

p̄n +
p
1 � t�nXiXj

� 1 � Gij

1 � p̄n �
p
1 � t�nXiXj

⌘i

=
1

2
p
1 � t

X

i<j

EXi,Xj

h
�nXiXj

⇣ EGij |Xi,XjGij

p̄n +
p
1 � t�nXiXj

�
1 � EGij |Xi,XjGij

1 � p̄n �
p
1 � t�nXiXj

⌘i

= 0 ,

where the last line follows from EGij |Xi,XjGij = p̄n +
p
1 � t�nXiXj.

3.4.4 Final derivations of the sum rule.

The last missing term in order to simplify the sum rule (3.14) is:

Lemma 3.7. We have

f0,0 � f0,✏ =
1

2

Z
✏

0

d✏
0 EhQi0,✏0 .

Proof. Using Gaussian integration by parts (2.20) and from (3.16) the specific
Nishimori identity E[hxii20,✏0 ] = E[Xihxii0,✏0 ] we have (recall also that R(0, ✏0) =
✏
0)

f0,0 � f0,✏ = �
Z

✏

0

d✏
0
df0,✏0

d✏0
= �

Z
✏

0

d✏
0

D
d

d✏0
Hdec;t,✏0

E

0,✏0

=

Z
✏

0

d✏
0
1

n

nX

i=1

E
D
Xixi � x

2
i

2
+

1

2
p
✏0
Zixi

E

0,✏0

=

Z
✏

0

d✏
0
1

n

nX

i=1

⇣
EhXixii0,✏0 � 1

2
E[hxii20,✏0 ]

⌘

=
1

2

Z
✏

0

d✏
0 EhQi0,✏0 .
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Recall R(1, ✏) = ✏ +
R 1

0 q(t, ✏)dt. Substituting (3.25), and Lemmas 3.3, 3.5
and 3.6 as well as 3.7 into (3.14) yields

1

n
I(X;G) = iRS(R(1, ✏),�n, r) �

(✏+
R 1

0 q(t, ✏)dt)2

4�n
+

1

2

Z
✏

0

d✏
0 EhQi0,✏0

�
Z 1

0

dt

⇣
�n

4
EhQ2it,✏ � 1

2
q(t, ✏)EhQit,✏

⌘
+ on(1)

= iRS(R(1, ✏),�n, r) +
1

4�n

⇣Z 1

0

q(t, ✏)2dt �
⇣Z 1

0

q(t, ✏)dt
⌘2⌘

� 1

4�n

Z 1

0

dtEh(�nQ � q(t, ✏))2it,✏

� ✏

4�n

⇣
✏+ 2

Z 1

0

q(t, ✏)dt
⌘
+

1

2

Z
✏

0

d✏
0 EhQi0,✏0 + on(1)

which is the sum rule (3.15).

3.5 Concentration of overlap: proof of Lemma
3.2

Concentration of overlap has been shown for various Bayesian inference prob-
lems, see, e.g., [62, 55, 56]. These proofs can be adapted to the present case.
The idea is to bound the fluctuations of the overlap by those of another, easier
to control, object L defined below. This object is more natural to work with
as it is directly related to derivatives of the free energy. Let us present the
main steps of the proof, and then provide the proof details afterwards.

Let

L ⌘ 1

n

nX

i=1

⇣
x
2
i

2
� xiXi � xiZi

2
p
R(t, ✏)

⌘
. (3.31)

As said previously, we can relate the fluctuations of the overlap to those of
L:

Lemma 3.8 (A fluctuation identity). We have

Eh(Q � EhQit,✏)2it,✏  4Eh(L � EhLit,✏)2it,✏.

Therefore, it remains to show the concentration of L. We divide the task
into two parts:

Eh(L � EhLit,✏)2it,✏ = Eh(L � hLit,✏)2it,✏ + E[(hLit,✏ � EhLit,✏)2] . (3.32)

These two terms are controlled by the following lemmas:
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Lemma 3.9 (Thermal fluctuations). Let R(t, ✏) = ✏+
R

t

0 ds q(s, ✏) � ✏ be such
that dR/d✏ � 1. We then have

Z 2sn

sn

d✏Eh(L � hLit,✏)2it,✏  1

n
.

Lemma 3.10 (Quenched fluctuations). Let R(t, ✏) = ✏ +
R

t

0 ds q(s, ✏), with
✏ 2 [sn, 2sn] and q taking values in [0,�n], be such that dR/d✏ � 1. There
exists a sequence Cn(r,�n) > 0 converging to a constant such that

Z 2sn

sn

d✏E[(hLit,✏ � EhLit,✏)2]  Cn(r,�n)

(snn)1/3
. (3.33)

The proof of Lemma 3.9 and Lemma 3.10 employ some useful identities for
the derivatives of the free energy (recall Ft,✏ ⌘ � 1

n
lnZt,✏(G,Y )):

dFt,✏

dR
= hLit,✏ , (3.34)

1

n

d
2
Ft,✏

dR2
= �(hL2it,✏ � hLi2

t,✏
) +

1

4n2R3/2

nX

i=1

hxiit,✏Zi , (3.35)

where we simply denote, when no confusion can arise, R = R(t, ✏). Taking
expectation on both sides of (3.34) and (3.35) we have

dft,✏

dR
= EhLit,✏ = � 1

2n

nX

i=1

E[hxii2t,✏] , (3.36)

1

n

d
2
ft,✏

dR2
= �E[hL2it,✏ � hLi2

t,✏
] +

1

4n2R

nX

i=1

E[hx2
i
it,✏ � hxii2t,✏] (3.37)

= � 1

2n2

nX

i,j=1

E[(hxixjit,✏ � hxiit,✏hxjit,✏)2] . (3.38)

The proof of Lemma 3.2 is ended by applying Lemmas 3.8, 3.9 and 3.10 in
conjunction with (3.32):

1

sn

Z 2sn

sn

d✏Eh(Q � EhQit,✏)2it,✏  4

snn
+

4Cn(r,�n)

(s4
n
n)1/3

.

We now provide the proofs of Lemmas 3.8 to 3.11. For the sake of readi-
bility, we simply denote h�i ⌘ h�it,✏ for the rest of this section.
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3.5.1 Proof of the fluctuation identity: Lemma 3.8

We start by proving

�2E
⌦
Q(L � EhLi)

↵
= E

⌦
(Q � EhQi)2

↵
+ E

⌦
(Q � hQi)2

↵
. (3.39)

Using the definitions Q ⌘ 1
n

P
n

i=1 xiXi and (3.31) gives

2E
⌦
Q(L � EhLi)

↵
=

1

n2

nX

i,j=1

n
E
h
Xihxix

2
j
i � 2XiXjhxixji � Zjp

R
Xihxixji

i

� E[Xihxii]E
h
hx2

j
i � 2Xjhxji � Zjp

R
hxji

io
.

(3.40)

Gaussian integration by parts then yields

E
h
Zjp
R
Xihxixji

i
= E[Xihxix

2
j
i � Xihxixjihxji] , and

E
h
Zjp
R

hxji
i
= E[hx2

j
i � hxji2] .

These two formulas simplify (3.40) to

2E
⌦
Q(L � EhLi)

↵
=

1

n2

nX

i,j=1

�
E[Xihxjihxixji � 2XiXjhxixji]

� E[Xihxii]E[hxji2 � 2Xjhxji]
 
. (3.41)

The Nishimori identity implies

E[hxji2] = E[Xjhxji] , and

E[Xihxjihxixji] = E[hxiihxjihxixji] = E[hxiihxjiXiXj] .

These formulas further simplify (3.41) to

2E
⌦
Q(L � EhLi)

↵

=
1

n2

nX

i,j=1

�
E[hxiihxjiXiXj � 2XiXjhxixji] + E[Xihxii]E[Xjhxji]

 

= E[hQi2] � 2EhQ2i + E[hQi]2

= �
�
EhQ2i � E[hQi]2

�
�
�
EhQ2i � E[hQi2]

�

which is (3.39).
Identity (3.39) implies

2
��E
⌦
Q(L � EhLi)

↵�� = 2
��E
⌦
(Q � EhQi)(L � EhLi)

↵�� � E
⌦
(Q � EhQi)2

↵

and application of the Cauchy-Schwarz inequality then gives

2
�
E
⌦
(Q � EhQi)2

↵
E
⌦
(L � EhLi)2

↵ 1/2 � E
⌦
(Q � EhQi)2

↵
.

This ends the proof of Lemma 3.8.
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3.5.2 Bound on thermal fluctuations: proof of Lemma 3.9

First note that d
2
ft,✏

dR2  0. Then, using (3.37), dR/d✏ � 1, R(t, ✏) � ✏, and the
Nishimori identity Ehx2

i
i = E[X2

i
] = 1,

Eh(L � hLi)2i = � 1

n

d
2
ft,✏

dR2
+

1

4n2R

nX

i=1

E[hx2
i
i � hxii2]

 � 1

n

dR

d✏

d
2
ft,✏

dR2
+

1

4n✏
= � 1

n

d

d✏

⇣
dft,✏

dR

⌘
+

1

4n✏
,

From (3.36) dft,✏/dR 2 [�1/2, 0], therefore [dft,✏/dR]✏=2sn
✏=sn

� �1/2. Integrating
over ✏ then gives

Z 2sn

sn

d✏Eh(L � hLi)2i 
Z 2sn

sn

d✏

n
� 1

n

d

d✏

⇣
dft,✏

dR

⌘
+

1

4n✏

o

= � 1

n

h
dft,✏

dR

i✏=2sn

✏=sn

+
ln 2

4n

 2 + (ln 2)

4n
 1

n
.

3.5.3 Bound on quenched fluctuations: proof of
Lemma 3.10

Lemma 3.10 is based on the concentration of the free energy, a very general
fact in “well-behaved” statistical mechanics models. The proof of the following
lemma uses more or less standard methods and can be found in Appendix 3.6.4.

Lemma 3.11 (Free energy fluctuations). There exists a sequence Cn(r,�n) > 0
converging to a constant when n ! +1, such that

Var(Ft,✏) = E[(Ft,✏ � ft,✏)
2]  Cn(r,�n)

n
. (3.42)

Recall R = R(t, ✏). Let

F̃t,✏(R) ⌘ Ft,✏ +

r
R
1 � r

r

1

n

nX

i=1

|Zi|, f̃t,✏(R) ⌘ ft,✏ +

r
R
1 � r

r

1

n

nX

i=1

E|Zi| .

(3.43)

From (3.38) we see that f̃t,✏(R) is concave in R. Furthermore, from (3.35) and

|xi| 
q

1�r

r
for 0  r  1/2, we see that F̃t,✏(R) is also concave in R. Hence,

we can employ the following lemma (see the end of this section for a proof):
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Lemma 3.12 (A bound on the di↵erence of derivatives due to concavity).
Let G(x) and g(x) be concave functions. Let � > 0 and define C

+
�
(x) ⌘

g
0(x) � g

0(x+ �) � 0 and C
�

�
(x) ⌘ g

0(x � �) � g
0(x) � 0. Then

|G0(x) � g
0(x)|  �

�1
X

u2{x��,x,x+�}

|G(u) � g(u)| + C
+
�
(x) + C

�

�
(x) .

From (3.43) we have

F̃t,✏ � f̃t,✏ = Ft,✏ � ft,✏ +

r
R
1 � r

r
An , An ⌘ 1

n

nX

i=1

(|Zi| � E|Zi|) ,

and from (3.34) and (3.36) we have

dF̃t,✏

dR
� df̃t,✏

dR
= hLi � EhLi + 1

2

r
1 � r

Rr
An .

Using Lemma 3.12, we then get

��hLi � EhLi
��  �

�1
X

u2{R��,R,R+�}

�
|Ft,✏(R = u) � ft,✏(R = u)| +

r
u
1 � r

r
|An|

�

+ C
+
�
(R) + C

�

�
(R) +

1

2

r
1 � r

Rr
An,

where C
+
�
(R) ⌘ f̃

0

t,✏
(R) � f̃

0

t,✏
(R+ �) � 0 and C

�

�
(R) ⌘ f̃

0

t,✏
(R � �) � f̃

0

t,✏
(R) �

0. Then squaring this inequality, using (
P

p

i=1 vi)
2  p

P
p

i=1 v
2
i
, taking the

expectation, and recalling that R = R(t, ✏) � ✏ we reach

1

9
E
⇥
(hLi � EhLi)2

⇤
 �

�2
X

u2{R��,R,R+�}

n
E[(Ft,✏(u) � ft,✏(u))

2] + u
1 � r

r
E[A2

n
]
o

+ C
+
�
(R)2 + C

�

�
(R)2 +

1 � r

4✏r
E[A2

n
] . (3.44)

Note that E[A2
n
] = a/n with a = 1 � 2/⇡. Recall q

⇤(t, ✏) 2 [0,�n] from
Lemma 3.1. We can upper bound u by �n + 2sn + �. These remarks with
Lemma 3.11 simplify (3.44) to

1

9
E
⇥
(hLi � EhLi)2

⇤
 3

n�2

✓
Cn(r,�n) + a(�n + 2sn + �)

1 � r

r

◆

+ C
+
�
(R)2 + C

�

�
(R)2 +

1

4✏

1 � r

r

a

n
. (3.45)

Recall (3.36) and that E[hxii2]  Ehx2
i
i = E[X2

i
] = 1. We have

|f̃ 0

t,✏
(R)|  1

2

⇣
1 +

r
1 � r

rR

⌘
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and therefore 0  C
±

�
(R)  1 +

q
1�r

r(R��) . Using dR/d✏ � 1 and R � sn, we

then have
Z 2sn

sn

d✏
�
C

+
�
(R)2 + C

�

�
(R)2

 

 2
⇣
1 +

s
1 � r

r(sn � �)

⌘Z 2sn

sn

d✏
�
C

+
�
(R) + C

�

�
(R)
 

= 2
⇣
1 +

s
1 � r

r(sn � �)

⌘Z 2sn

sn

d✏

⇣
df̃t,✏(R � �)

dR
� df̃t,✏(R + �)

dR

⌘

 2
⇣
1 +

s
1 � r

r(sn � �)

⌘Z 2sn

sn

d✏
dR

d✏

⇣
df̃t,✏(R � �)

dR
� df̃t,✏(R + �)

dR

⌘

= 2
⇣
1 +

s
1 � r

r(sn � �)

⌘Z 2sn

sn

d✏

⇣
df̃t,✏(R(t, ✏) � �)

d✏
� df̃t,✏(R(t, ✏) + �)

d✏

⌘

= 2
⇣
1 +

s
1 � r

r(sn � �)

⌘��
f̃t,2sn(R(t, 2sn) � �) � f̃t,2sn(R(t, 2sn) + �)

�

+
�
f̃t,sn(R(t, sn) + �) � f̃t,sn(R(t, sn) � �)

� 

 4�
⇣
1 +

s
1 � r

r(sn � �)

⌘2

using the mean value theorem for the last step. Therefore, upon integrating
(3.45) over ✏ 2 (sn, 2sn) we have

1

9

Z 2sn

sn

d✏E
⇥
(hLi � EhLi)2

⇤
 3sn

n�2

�
Cn(r,�n) + a(�n + 2sn + �)

1 � r

r

�

+ 4�
⇣
1 +

s
1 � r

r(sn � �)

⌘2
+

a(1 � r) ln 2

4rn
. (3.46)

The bound is optimized by choosing � = (s2
n
/n)1/3. This ends the proof.

Proof of Lemma 3.12. Concavity implies that for any � > 0 we have

G
0(x) � g

0(x) � G(x+ �) � G(x)

�
� g

0(x)

� G(x+ �) � G(x)

�
� g

0(x) + g
0(x+ �) � g(x+ �) � g(x)

�

=
G(x+ �) � g(x+ �)

�
� G(x) � g(x)

�
� C

+
�
(x) ,

G
0(x) � g

0(x)  G(x) � G(x � �)

�
� g

0(x) + g
0(x � �) � g(x) � g(x � �)

�

=
G(x) � g(x)

�
� G(x � �) � g(x � �)

�
+ C

�

�
(x) .

Combining these two inequalities ends the proof.
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3.6 Appendix

3.6.1 Approximate integration by parts: proof of lemma
3.4

The following general formula follows from Taylor expansion with Lagrange
remainder. When the r.h.s is small in specific applications, the formula can be
seen as an approximate integration-by-parts formula that generalizes Gaussian
integration by parts.

Lemma 3.13. Let g(U) be a C4 function of a random variable U such that
for k = 1, 2, 3, 4 we have sup

U

��g(k)(U)
��  Ck for some constants Ck � 0 and

g
(k)(U) ⌘ d

k
g(U)/dUk. Suppose that the first four moments of U are finite.

Then
���E[Ug(U)] � E[g0(U)]E[U2] � g(0)EU

���

 C2

✓��E[U3]
��

2
+ E[U2]EU

◆
+ C3

✓
E[U4]

24
+

E[U2]2

2

◆
+

C4

6

��E[U3]
��E[U2] .

(3.47)

Proof. By Taylor’s theorem, any C4 function h(U) can be written as

h(U) = h(0) + h
(1)(0)U +

1

2
h
(2)(0)U2 +

1

2

Z
U

0

h
(3)(s)(U � s)2ds .

Taking the expectation on both sides:

Eh(U) = h(0) + h
(1)(0)EU +

1

2
h
(2)(0)E[U2] +

1

2
E
Z

U

0

h
(3)(s)(U � s)2ds .

(3.48)

When (3.48) is applied to h(U) = g
(1)(U), we have

Eg(1)(U) = g
(1)(0) + g

(2)(0)EU +
1

2
g
(3)(0)E[U2] +

1

2
E
Z

U

0

g
(4)(s)(U � s)2ds .

(3.49)

Whereas, when (3.48) is applied to h(U) = Ug(U), using (Ug(U))(k) = Ug
(k)(U)+

kg
(k�1)(U) we have

E[Ug(U)] � g(0)EU = g
(1)(0)E[U2] +

1

2
E
Z

U

0

(sg(3)(s) + 3g(2)(s))(U � s)2ds .

(3.50)
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Subtracting (3.49) and (3.50), we have the bound

���E[Ug(U)] � Eg(1)(U)E[U2] � g(0)EU
���

=
���
1

2
E
Z

U

0

(sg(3)(s) + 3g(2)(s))(U � s)2ds � g
(2)(0)E[U2]EU � 1

2
g
(3)(0)E[U2]2

� 1

2
E[U2]E

Z
U

0

g
(4)(s)(U � s)2ds

���

 C3

2

���E
Z

U

0

s(U � s)2ds
���+

3C2

2

���E
Z

U

0

(U � s)2ds
���+ C2E[U2]EU

+
C3

2
E[U2]2 +

C4

2
E[U2]

���E
Z

U

0

(U � s)2ds
���

=
C3

24
E[U4] +

C2

2

��E[U3]
��+ C2EUE[U2] +

C3

2
E[U2]2 +

C4

6

��E[U3]
��E[U2] ,

(3.51)

which is the right hand side of (3.47) after factorization.

We now apply Lemma 3.13 to our specific problem in order to derive the
approximate integration-by-parts formula (3.27).

Proof of lemma 3.4. In order to apply lemma 3.13 to the SBM, consider
U = Gij and g(U) = Ft,✏(Gij) the free energy (3.11) seen as a function of Gij

(all other variables being fixed). For the expectation we take E = EGij |Xi,Xj .
At time t and for any integer k

EGij |Xi,Xj [G
k

ij
] = EGij |Xi,XjGij = p̄n +

p
1 � t�nXiXj = O(p̄n),

because Gij 2 {0, 1}. For the derivatives we note that using the Taylor expan-
sion of the logarithm, one obtains for any vn 2 R and vn ! 0, ln(1+vn)�vn =
O(|vn|2), which also implies ln(1+vn) = O(|vn|). (The reader should keep this
fact in mind, as it is used again in the appendices whenever we need to expand
the logarithm.) Now, this fact implies

�F
(1)
t,✏ (Gij) =

1

n

D
ln(1 +

�n

p̄n

p
1 � txixj) � ln(1 � �n

1 � p̄n

p
1 � txixj)

E

t,✏

=
1

n

✓
�n

p̄n
+

�n

1 � p̄n

◆p
1 � thxixjit,✏ + O

⇣ 1
n

⇣ �n

1 � p̄n

⌘2
(1 � t)

⌘

+ O
⇣ 1
n

⇣ �n

(1 � p̄n)

⌘2
(1 � t)

⌘

=
1

n

�n

p̄n(1 � p̄n)

p
1 � thxixjit,✏ + O

⇣ 1
n

⇣ �n

p̄n(1 � p̄n)

⌘2
(1 � t)

⌘
,
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�F
(2)
t,✏ (Gij) =

1

n

D⇣
ln(1 +

�n

p̄n

p
1 � txixj) � ln(1 � �n

1 � p̄n

p
1 � txixj)

⌘2E

t,✏

� 1

n

D
ln(1 +

�n

p̄n

p
1 � txixj) � ln(1 � �n

1 � p̄n

p
1 � txixj)

E2
t,✏

= O
⇣ 1
n

⇣ �n

p̄n(1 � p̄n)

⌘2
(1 � t)

⌘
.

To obtain these identities the reader has again to be careful in performing
the derivatives: both the exponential of the Hamiltonian and the partition
function appearing in the definition of the Gibbs-bracket depend on (Gij) (see
the derivation of (3.20) for similar computations). In general,

|F (k)
t,✏ (Gij)| = O

⇣ 1
n

⇣ �n

p̄n(1 � p̄n)

⌘k
(1 � t)k/2

⌘
.

Using Lemma 3.13, we have

An ⌘
���EGij |Xi,Xj [GijFt,✏] + EGij |Xi,Xj [Gij]

⇥
n 1
n

�n

p̄n(1 � p̄n)

p
1 � tEGij |Xi,Xj [hxixjit,✏]

+ O
⇣1 � t

n

⇣ �n

p̄n(1 � p̄n)

⌘2⌘
� Ft,✏(Gij = 0)

o���

= O
⇣p

1 � t

n

⇣
(

�n

p̄n(1 � p̄n)
)2(p̄n + p̄

2
n
)

+ (
�n

p̄n(1 � p̄n)
)3(p̄n + p̄

2
n
) + (

�n

p̄n(1 � p̄n)
)4p̄2

n

⌘⌘

= O
⇣p

1 � t

n

�2
n

p̄n(1 � p̄n)2

⌘
.

Then, by the triangle inequality we extract

���EGij |Xi,Xj [GijFt,✏]

+ EGij |Xi,Xj [Gij]
n 1
n

�n

p̄n

p
1 � tEGij |Xi,Xj [hxixjit,✏] � Ft,✏(Gij = 0)

o���

 An + (p̄n +
p
1 � t�nXiXj)O

⇣1 � t

n

⇣ �n

p̄n(1 � p̄n)

⌘2⌘

= O
⇣p

1 � t

n

�2
n

p̄n(1 � p̄n)2

⌘

= O
⇣ p

1 � t�n

n2(1 � p̄n)

⌘
.

and recognize formula (3.27).



3.6. Appendix 55

3.6.2 Mutual information and free energy: proof of
Proposition 3.1

Using (3.3), we have the expression

I(X;G) ⌘ EXEG|X ln

⇢
P(G|X)

P(G)

�
= EXEG|X ln

⇢
P(G|X)P

x2Xn Pr(x)P(G|x)

�

= EXEG|X ln

⇢ Q
i<j

(p̄n +�nXiXj)Gij(1 � p̄n � �nXiXj)1�Gij

P
x2Xn Pr(x)

Q
i<j

(p̄n +�nxixj)Gij(1 � p̄n � �nxixj)1�Gij

�
.

We divide both the numerator and denominator by the same factor, and then
rewrite the denominator in exponential form:

I(X;G) = EXEG|X ln

⇢ Q
i<j

(1 + �n
p̄n
XiXj)Gij(1 � �n

1�p̄n
XiXj)1�Gij

P
x2Xn Pr(x)

Q
i<j

(1 + �n
p̄n

xixj)Gij(1 � �n
1�p̄n

xixj)1�Gij

�

= EXEG|X ln

⇢Y

i<j

(1 +
�n

p̄n
XiXj)

Gij(1 � �n

1 � p̄n
XiXj)

1�Gij

�

� EXEG|X lnZ(G). (3.52)

Recall EGij |Xi,XjGij = p̄n +�nXiXj. The first term in (3.52) equals

X

i<j

EXEG|X

⇢
Gij ln(1 +

�n

p̄n
XiXj) + (1 � Gij) ln(1 � �n

1 � p̄n
XiXj)

�

=
X

i<j

EX

⇢
(p̄n +�nXiXj) ln(1 +

�n

p̄n
XiXj)

+ (1 � p̄n � �nXiXj) ln(1 � �n

1 � p̄n
XiXj)

�
. (3.53)

Let X ⇠ Pr. We can further write explicitly the expectation in (3.53) that
leads us to conclude

1

n
I(X;G) =

n � 1

2

⇢
r
2(p̄n +�n

1 � r

r
) ln(1 +

�n

p̄n

1 � r

r
)

+ r
2(1 � p̄n � �n

1 � r

r
) ln(1 � �n

1 � p̄n

1 � r

r
)

+ (1 � r)2(p̄n +�n

r

1 � r
) ln(1 +

�n

p̄n

r

1 � r
)

+ (1 � r)2(1 � p̄n � �n

r

1 � r
) ln(1 � �n

1 � p̄n

r

1 � r
)

+ 2r(1 � r)(p̄n � �n) ln(1 � �n

p̄n
) + 2r(1 � r)(1 � p̄n +�n) ln(1 +

�n

1 � p̄n
)

�

� 1

n
EXEG|X lnZ(G). (3.54)
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Using the Taylor expansion of the logarithm, (3.54) becomes

1

n
I(X;G) =

�n(n � 1)

4n
� 1

n
EXEG|X lnZ(G)

+
n � 1

2

1X

k=3

�k

n

k(k � 1)

� 1

p̄k�1
n

+
(�1)k

(1 � p̄n)k�1

�
E[Xk]2,

where E[Xk]2 = r
2(1�r

r
)k + (1� r)2( r

1�r
)k + (�1)k2r(1� r). This becomes the

expression in (3.5) by noting that the last term is O
⇣
n�3

n
/
�
p̄n(1 � p̄n)

�2⌘
=

O(�3/2n /

p
np̄n(1 � p̄n)).

3.6.3 Small error terms in the sum rule: proof of (3.30)

Recalling the definitions (3.9) and (3.10), let

Ht,✏(x;G \ Gij,Y ) ⌘ HSBM;t(x;G \ Gij) + Hdec;t,✏(x;Y ) , (3.55)

HSBM;t(x;G \ Gij) ⌘ �
X

k<l:(k,l)/2{(i,j),(j,i)}

n
Gkl ln(1 +

�n

p̄n

p
1 � txkxl)

+ (1 � Gkl) ln(1 � �n

1 � p̄n

p
1 � txkxl)

o
.

Also let Ft,✏;⇠Gij ⌘ n
�1 ln

P
x2Xn e

�Ht,✏(x;G\Gij ,Y )Pr(x), and h�it,✏;⇠Gij be the
Gibbs-bracket associated to the measure proportional to Ht,✏(x;G \ Gij,Y ).
The di↵erence of the free energies when changing one Gij can be written in
terms of this Gibbs-bracket:

EGij |Xi,XjFt,✏ � Ft,✏(Gij = 0)

= Pt(Gij = 1|Xi, Xj)(Ft,✏(Gij = 1) � Ft,✏(Gij = 0)) (3.56)

= Pt(Gij = 1|Xi, Xj){(Ft,✏(Gij = 1) � Ft,✏;⇠Gij) � (Ft,✏(Gij = 0) � Ft,✏;⇠Gij)}

= �(p̄n +
p
1 � t�nXiXj)

1

n⇢
ln

P
x2Xn e

�Ht,✏(x;G\Gij ,Y )+(Ht,✏(x;G\Gij ,Y )�Ht,✏(x;G,Gij=1,Y ))Pr(x)P
x2Xn e

�Ht,✏(x;G\Gij ,Y )Pr(x)

� ln

P
x2Xn e

�Ht,✏(x;G\Gij ,Y )+(Ht,✏(x;G\Gij ,Y )�Ht,✏(x;G,Gij=0,Y ))Pr(x)P
x2Xn e

�Ht,✏(x;G\Gij ,Y )Pr(x)

�

= �(p̄n +
p
1 � t�nXiXj)

1
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⇢
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D
e
HSBM;t(x;G\Gij)�HSBM;t(x;G,Gij=1)

E

t,✏;⇠Gij
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D
e
HSBM;t(x;G\Gij)�HSBM;t(x;G,Gij=0)

E

t,✏;⇠Gij

�

= �(p̄n +
p
1 � t�nXiXj)

1

n

⇢
lnh1 + �n

p̄n

p
1 � txixjit,✏;⇠Gij

� lnh1 � �n

1 � p̄n

p
1 � txixjit,✏;⇠Gij

�
. (3.57)
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Using the Taylor expansion of the logarithms in (3.57), we have

EGij |Xi,XjFt,✏ � Ft,✏(Gij = 0)

= �(p̄n +
p
1 � t�nXiXj)

1

n

⇢
�n

p
1 � t

p̄n(1 � p̄n)
hxixjit,✏;⇠Gij

+
1X

k=2

�k

n

k

✓
(�1)k

p̄k
n

� 1

(1 � p̄n)k

◆
(1 � t)k/2hxixjikt,✏;⇠Gij

�

= �(p̄n +
p
1 � t�nXiXj)

�n

p
1 � t

np̄n(1 � p̄n)
hxixjit,✏;⇠Gij + O

⇣ �2
n
(1 � t)

np̄n(1 � p̄n)2

⌘
.

Therefore, replacing in the expression of E1, we find

E1 = E
(a)
1 + E

(b)
1

where

E
(a)
1 =

�2
n

2np̄n(1 � p̄n)

X

i<j

E⇠Gij

h
p̄n +

p
1 � t�nXiXj

1 � p̄n �
p
1 � t�nXiXj

XiXjhxixjit,✏;⇠Gij

i
,

E
(b)
1 = O

⇣ �nn
2

p
1 � t(1 � p̄n)

· �2
n
(1 � t)

np̄n(1 � p̄n)2

⌘

= O
⇣

n�3
n

p̄n(1 � p̄n)3

⌘
= O

⇣
�n�n

(1 � p̄n)2

⌘
. (3.58)

We then observe that

E
(a)
1 + E2 =

�2
n

2np̄n(1 � p̄n)

X

i<j

E⇠Gij

h
p̄n +

p
1 � t�nXiXj

1 � p̄n �
p
1 � t�nXiXj

XiXj

�
EGij |Xi,Xj [hxixjit,✏] � hxixjit,✏;⇠Gij

�i
. (3.59)

The di↵erence between the Gibbs-brackets in (3.59) can be expanded as

EGij |Xi,Xj [hxixjit,✏] � hxixjit,✏;⇠Gij

= Pt(Gij = 1|Xi, Xj)(hxixjit,✏;Gij=1 � hxixjit,✏;⇠Gij)

+ Pt(Gij = 0|Xi, Xj)(hxixjit,✏;Gij=0 � hxixjit,✏;⇠Gij), (3.60)
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and we can evaluate hxixjit,✏;Gij=1 � hxixjit,✏;⇠Gij by an interpolation:

hxixjit,✏;Gij=1 � hxixjit,✏;⇠Gij

=

Z 1

0

ds
d

ds

⇢✓ X

x2Xn

xixj exp
�

� Ht,✏(x;G \ Gij,Y )

+ s ln(1 + xixj

p
1 � t

�n

p̄n
)
 
Pr(x)

◆

�✓ X

x2Xn

exp
�

� Ht,✏(x;G \ Gij,Y )

+ s ln(1 + xixj

p
1 � t

�n

p̄n
)
 
Pr(x)

◆�

=

Z 1

0

ds

⇢
hxixj ln(1 + xixj

p
1 � t

�n

p̄n
)it,✏;s

� hxixjit,✏;shln(1 + xixj

p
1 � t

�n

p̄n
)it,✏;s

�
, (3.61)

where h�it,✏;s is the Gibbs-bracket associated to the measure proportional to

exp
�

� Ht,✏(x;G \ Gij,Y ) + s ln(1 + xixj

p
1 � t

�n

p̄n
)
 
Pr(x)

with Ht,✏(x;G \ Gij,Y ) defined in (3.55). By the Taylor expansion of the
logarithms in (3.61) and using Pt(Gij = 1|Xi, Xj) = O(p̄n), we see that the
first term of (3.60) is O(�n). The same kind of calculation is used to see that
the second term of (3.60) is also O(�n). This implies for (3.59)

E
(a)
1 + E2 = O

⇣
n�3

n

(1 � p̄n)2

⌘
= O

⇣
�n�np̄n

(1 � p̄n)2

⌘
, (3.62)

which tends to zero. Now we conclude by noting that E1+E2 = E
(a)
1 +E

(b)
1 +E2

and using (3.58) and (3.62) to obtain (3.30).

3.6.4 Concentration of free energy: proof of Lemma 3.11

The generation of quenched variables can be divided into two stages: firstlyX,
thenG givenX, and independently the Gaussian noiseZ. We expand the vari-
ance of free energy according to the two stages (recall ft,✏ = EXEG|XEZFt,✏):

E[(Ft,✏ � ft,✏)
2] = E[(Ft,✏ � EG|XEZFt,✏)

2] + E[(EG|XEZFt,✏ � ft,✏)
2] . (3.63)

In each stage the variables are all independently generated. This enables us
to use Efron-Stein inequality to show the concentration of free energy.

Let Z
(i) be a vector such that Z

(i) di↵ers from Z only at the i-th which
becomes Z

0

i
drawn independently from the same distribution as the one of
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Zi ⇠ N (0, 1). We define G
(ij) and X

(i) in the similar manner with respect to
G and X. Efron-Stein’s inequality tells us that

E[(Ft,✏ � EG|XEZFt,✏)
2]

 1

2

nX

i=1

EXEG|XEZEZ
0
i
[(Ft,✏(Z) � Ft,✏(Z

(i)))2]

+
1

2

X

i<j

EXEG|XEG
0
ij |X

EZ [(Ft,✏(G) � Ft,✏(G
(ij)))2] , (3.64)

as well as

E[(EG|XEZFt,✏ � ft,✏)
2]

 1

2

nX

i=1

EXEX
0
i
[(EG|XEZFt,✏(X) � EG|X(i)EZFt,✏(X

(i)))2] . (3.65)

By (3.63) it su�ces to show that both (3.64) and (3.65) are upper bounded
by Cn(r,�n)/n for some large enough sequence Cn(r,�n) that converges to a
constant.

Bound on (3.64)

The bound obtained from Efron-Stein’s inequality is a sum of local variances
of the free energy. The bound on the di↵erence due to a local change can be
estimated by interpolation. For the first one we have

|Ft,✏(Z) � Ft,✏(Z
(i))|

=
1

n

���
Z 1

0

ds
d
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���
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���
Z 1

0
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|Z 0

i
� Zi|

where the Gibbs-bracket h�is is associated to the measure proportional to
exp{�sHt,✏(x;G,X,Z) � (1 � s)Ht,✏(x;G,X,Z

(i))}. This implies an upper
bound on the first sum in (3.64):

1
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nX
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EG|XEZEZ
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[(Ft,✏(Z) � Ft,✏(Z

(i)))2]
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2n2
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1 � r

r
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E[(Z 0

i
� Zi)

2]  Cn(r,�n)

n
.
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Another interpolation gives

|Ft,✏(G) � Ft,✏(G
(ij))|

=
1
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���
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d
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p
1 � txixj) � ln(1 � �n

1 � p̄n

p
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 C(r)�n
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for some constant C(r), and where h�is is associated to the measure propor-
tional to exp{�sHt,✏(x;G,X,Z)� (1� s)Ht,✏(x;G(ij)

,X,Z)}. This bounds
the second sum in (3.64) as

C(r)�2
n

2n2p̄2
n
(1 � p̄n)2
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i<j

EGij |Xi,XjEG
0
ij |Xi,Xj [(G
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n2p̄2
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X
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VarGij |Xi,Xj(Gij)  Cn(r,�n)

n
,

using that (Gij) are 0, 1 Bernoulli variables, and the variance

VarGij |Xi,Xj(Gij) = (p̄n +�n

p
1 � tXiXj)(1 � p̄n +�n

p
1 � tXiXj)

as well as
�
�n/

�
pn(1 � p̄n)

��2
= �n/(np̄n(1 � p̄n)) in the last inequality.

Bound on (3.65)

We relax (3.65) with inequality ((a � c) + (c � b))2  2(a � c)2 + 2(c � b)2 so
that

E[(EG|XEZFt,✏ � ft,✏)
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(i)))2] . (3.66)

The di↵erence in the first sum is given by

|Ft,✏(X) � Ft,✏(X
(i))|

=
1

n

���
Z 1

0

ds
d

ds
ln
X

x2Xn

exp
�

� sHt,✏(G,X,Z,x)

� (1 � s)Ht,✏(G,X
(i)
,Z,x)

 
Pr(x)

=
1

n

���
Z 1

0

dsR(t, ✏)hxiis(X 0

i
� Xi)

���



3.6. Appendix 61

where h�is is associated to the measure proportional to

exp{�sHt,✏(G,X,Z,x) � (1 � s)Ht,✏(G,X
(i)
,Z,x)}.

Therefore the sum of square is bounded by Cn(r,�n)/n using R(t, ✏) 2 [0,�n].
For the second sum we use another interpolation:

EG|XEZFt,✏(X
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=

Z 1

0
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) ⌘
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As Gij 2 {0, 1}, we have various ways to write Pt,s(G|X, X
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i
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A compact formula for dPij/ds can then be derived:
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the marginal of this sub-graph. Using (3.68) we obtain
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) . (3.69)
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Substituting (3.69) into (3.67) gives
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)EZFt,✏(X

(i))

=

Z 1

0

ds

nX

j:j 6=i

p
1 � t�n(X

0

i
� Xi)Xj

X

Gij2{0,1}

(�1)1+GijEG⇠(i,j)|X,X
0
i
EZFt,✏(X

(i))

=

Z 1

0

ds

nX

j:j 6=i

p
1 � t�n(X

0

i
� Xi)Xj

EG⇠(i,j)|X,X
0
i
EZ [Ft,✏(X

(i)
, Gij = 1) � Ft,✏(X

(i)
, Gij = 0)] , (3.70)

where EG⇠(i,j)|X,X
0
i
corresponds to the expectation with respect to the distri-

bution Pt,s(G⇠(i,j)|X, X
0

i
). To evaluate the di↵erence of free energy in (3.70),

first we define Y
(i) =

p
R(t, ✏)X(i) + Z, and h�it,✏;X(i),⇠Gij

is associated to

exp{�Ht,✏(x;G \ Gij,Y
(i))} defined in (3.55). The same calculation as in

(3.56) – (3.57) gives

Ft,✏(X
(i)
, Gij = 1) � Ft,✏(X

(i)
, Gij = 0)

= � 1

n

n
lnh1 + �n

p̄n

p
1 � txixjit,✏;X(i),⇠Gij

� lnh1 � �n

1 � p̄n

p
1 � txixj

o
.

(3.71)

Expanding the logarithms we can see (3.71) is O
�
�n/(np̄n(1 � p̄n))

�
. Using

this fact and that all other terms inside the sum of (3.70) are upper bounded
by constants, we see that (3.70) is O

�
�2

n
/(p̄n(1 � p̄n)

�
= O(�n/n). We can

then upper bound the second term of (3.66):

nX

i=1

EXEX
0
i

⇥
(EG|XEZFt,✏(X

(i)) � EG|X(i)EZFt,✏(X
(i)))2

⇤
 Cn(r,�n)

n
.



Sparse Censored Block
Model 4
4.1 Introduction

In this chapter, we move to the community detection models on sparse graphs.
Other than community detection, sparse models can also be found in commu-
nication such as the low-density parity-check codes and low-density generator-
matrix codes. It is fair to say that the replica symmetric formulas for the
mutual information is much more complicated in such models. Indeed, besides
the measurements (or channel outputs): (i) the sparse graph is also random;
(ii) the single-letter variational problem involves a functional over a set of
probability distributions (instead of scalars as in the dense-graph case). Ex-
isting rigorous derivations of the replica symmetric formulas for sparse models
have so far been achieved in [46] by using a combination of the interpolation
method (first developed by [65] for sparse models) and the rigorous version of
the cavity method [66], and achieved in [67] by using spatial coupling.

In this work, we consider a simple version of the censored block model
[12, 13, 14, 15], for which we fully develop the adaptive interpolation method.
We believe that this constitutes the first step towards an analysis of more
complicated models via this method.

In the censored block model, we have a set of n hidden binary variables.
We observe ↵n products of random K-tuples, where ↵ > 0 is called the frac-
tion of measurements, through a noisy channel. The goal is to reconstruct
an estimate of the hidden variables from the noisy observations. There are
other interpretations of this model. For example, it can be interpreted as a
low-density generator-matrix code ensemble, with design communication rate
1/↵, on a factor graph with degree-K factor nodes and variable nodes with
degrees following the Poisson distribution (when n ! +1). Another possi-
ble interpretation is, as a model of statistical mechanics, an Ising model on a

63
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sparse random graph with K-spin interactions. The censored block model has
been discussed when the measurement channel is a binary symmetric channel
in [68], and the replica formula is proved in this case [46]. Here, we consider a
simpler situation where the measurement channel is the binary erasure channel
(BEC), for which the adaptive interpolation method can be completely devel-
oped. As we will see, this method requires concentration results for a whole
set of suitable “overlaps” in the case of sparse graphs. Here, we solve this issue
for the BEC, and it is currently the only aspect of the method that is missing
for extending our analysis to other channels.

This chapter is organized as follows. In Section 4.2, we give a precise for-
mulation of the model and state the main result of this chapter (Theorem 4.1).
In Section 4.3, we review two important tools used throughout our analysis,
namely, the Nishimori identities and the Gri�ths-Kelly-Sherman inequalities.
The adaptive interpolation method for the sparse graph models is formulated
in Section 4.4 and the core of the proof of Theorem 4.1 is also developed. This
section contains the main new technical ideas of this chapter. Overlap concen-
tration is proved in Section 4.6 and 4.7. A series of more technical results are
found in Section 4.8.4 and in the appendices.

4.2 Setting and result

4.2.1 Censored block model

We shall denote binary variables by �i 2 {�1,+1}, i = 1, . . . , n and vectors of
such variables by � = (�1, . . . , �n) 2 {�1,+1}n. Subsets S ⇢ {1, . . . , n} with
at least two elements are always denoted by capital letters. For the product
of binary variables in a subset S we use the shorthand notation �S ⌘

Q
i2S

�i.
If there is a possible confusion between small and capital letter subscripts we
occasionally use more specific notations. Below, the integer K � 2 and the
fraction ↵ 2 R+ are fixed independent of n.

In the censored block model considered in this chapter, n hidden binary
variables �0 = (�0

1, . . . , �
0
n
) are i.i.d. uniform, i.e. drawn independently accord-

ing to a Ber(1/2) prior P0(�0
i
) = 1

2��
0
i ,+1 +

1
2��

0
i ,�1. A noiseless measurement

consists in a product �0
a1
�
0
a2
. . . �

0
aK

of a K-tuple of variables drawn uniformly
at random. The K-tuple is identified with a subset A ⌘ {a1, . . . , aK} ⇢
{1, . . . , n} and we set �0

A
⌘ �

0
a1
�
0
a2
. . . �

0
aK

. Of course �0
A

= ±1. The true
observations GA 2 R are noisy versions of these products obtained through
a binary input memoryless channel described by some transition probability
Q(GA|�0

A
). For large n the total number of observations m asymptotically

follows a Poisson distribution with mean ↵n, i.e., m ⇠ Poi(↵n). We shall also
index the observations as A = 1, . . . ,m.

Let us now describe the Bayesian setting used here to determine the in-
formation theoretic limits for reconstructing the hidden variables. From the
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Bayes rule we have that the posterior given the observations is

P(�|G) =

Q
n

i=1 P0(�i)
Q

m

A=1 Q(GA|�A)P
�2{�1,+1}n

Q
n

i=1 P0(�i)
Q

m

A=1 Q(GA|�A)
.

Dividing both the numerator and denominator by
Q

m

A=1 Q(GA|�A = +1), the
posterior P(�|G) can be rewritten as

P(�|J) = 1

Z exp

 
mX

A=1

JA(�A � 1)

!
, (4.1)

where

JA ⌘ 1

2
ln

Q(GA| + 1)

Q(GA| � 1)
,

Z ⌘
X

�2{�1,+1}n

exp

 
mX

A=1

JA(�A � 1)

!
.

We will use the language and notations of statistical mechanics. The normal-
ization Z shall be called the partition function. The bipartite factor graph G
underlying (4.1) contains variable nodes i = 1, . . . , n and constraint (or fac-
tor) nodes A = 1, . . . ,m. Each variable node i “carries” the binary variable
�i and each constraint node A “carries” the half-log-likelihood ratio JA and
uniformly connects to K variable nodes a1, . . . , aK . As said before, we identify
A ⌘ {a1, . . . , aK}. Distribution (4.1) can be interpreted as the Gibbs distri-
bution of a random spin system (or spin glass). The expectation of a quantity
A(�) with respect to the posterior (4.1) will be denoted by a Gibbs bracket

hA(�)i ⌘
X

�2{�1,+1}n

A(�)P(�|J) .

The posterior distribution as well as the expectations hA(�)i are random be-
cause of the randomness in: (i) the factor graph G ensemble; (ii) the observa-
tions G given the hidden vector �0; and (iii) the hidden vector �0.

It is equivalent to work in terms of observations G or associated half-log-
likelihood ratios J . The latter are (formally) distributed according to

nY

i=1

P0(�
0
i
)

mY

A=1

c(JA|�0
A
)dJA ⌘

nY

i=1

P0(�
0
i
)

mY

A=1

Q(GA|�0
A
)dGA. (4.2)

Most of the time it will be more convenient for us to refer directly to half-log-
likelihood ratios. The graph, the observations and the hidden vector are called
quenched random variables (r.v.) because given instance of the problem their
realization is fixed. In contrast, the r.v. � is sampled from the posterior 4.1,
and hence is often called an annealed variable. Expectations with respect to
the quenched variables are denoted EG and E�0E

J̃ |�0 . To alleviate notations
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we shall often simply use E when the expectation is taken with respoect to
all quenched r.v in the ensuing expression. The bracket h�i is reserved for
expectations with respect to the posterior (4.1).

Let H(�|J) ⌘ �
P

�2{�1,+1}n P(�|J) lnP(�|J) be the conditional entropy
of the hidden variables given fixed observations. It is easy to see that the
average conditional entropy (per variable) is given by the average free entropy
(the r.h.s of the formula)

1

n
EGE�0EJ |�0H(�|J) = 1

n
EGE�0EJ |�0 lnZ. (4.3)

We refer readers to [69] for details. One can easily convert between the average
mutual information and the average conditional entropy by the relation

1

n
I(�;J) = ln 2 � 1

n
EGE�0EJ |�0 lnZ.

The singularities, as a function of the measurement fraction ↵, of this limiting
quantity when n ! +1 give us the information-theoretic thresholds, or the
location of static phase transitions in physics language.

4.2.2 The replica symmetric formula for the average
conditional entropy

The cavity method [27] predicts that the asymptotic average conditional en-
tropy per variable is accessible from the following “replica symmetric” func-
tional. This functional is an “average form” of the Bethe free entropy expres-
sion.

Definition 4.1 (The replica symmetric free entropy functional). Let V be a
r.v. with distribution x, and Vi, i = 1, . . . , K i.i.d. copies of V . Let

U = tanh�1
⇣
tanh J

K�1Y

i=1

tanhVi

⌘
, (4.4)

and UB, B = 1, . . . , l i.i.d. copies of U where l ⇠ Poi(↵K) is a Poisson
distributed integer. Let �0 ⇠ P0 and

Q
K

a=1 �a be the product of K independent
copies. Let J ⇠ c(J |

Q
K

a=1 �a) (see equation (4.2)). The replica symmetric free
entropy functional is defined to be

hRS(x) ⌘ ElE�1,··· ,�KEJ |
QK

a=1 �a
EUEV

h
ln
⇣ lY

B=1

(1 + tanhUB) +
lY

B=1

(1 � tanhUB)
⌘

� ↵(K � 1) ln
⇣
1 + tanh J

KY

i=1

tanhVi

⌘
� ↵ ln(1 + tanh J)

i
. (4.5)

Remark 4.1. For uniform P0 we can replace the product
Q

K

a=1 �a by a single
binary variable �0 ⇠ P0.
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While a substantial part of our analysis holds for general (symmetric) mem-
oryless channels, our main result is fully proved for the BEC. This channel has
transition probability

Q(GA|�0
A
) = (1 � q)�GA,�

0
A
+ q�GA,0 ,

and from (4.2) we get in this case

c(JA|�0
A
) = (1 � q)��0

AJA,+1 + q�JA,0 .

The set of distributions with point masses at {0,+1} plays a special role
and will be called B. We adopt the notation (from coding theory) �0 and �1

for the two point masses at 0 and +1. Any distribution x 2 B is of the from
x = x�0 + (1 � x)�1, with x 2 [0, 1]. In this case the replica symmetric free
entropy functional becomes (4.5) becomes a function of x 2 [0, 1]. A numerical
illustration is found in Appendix 4.8.8.

Our main result is the proof, through the use of the adaptive interpolation
method for sparse graphs, of the following theorem:

Theorem 4.1 (The replica symmetric formula is exact for the BEC channel).
For a censored block model with observations obtained through a binary erasure
channel as described above, we have

lim
n!1

1

n
EGE�0EJ |�0H(�|J) = sup

x2B
hRS(x). (4.6)

This theorem is a direct consequence of two main Propositions 4.1 and 4.2
proved in Sec. 4.4.

4.3 Two preliminary tools

In this section we review standard material which is needed in our analysis.
For more details the reader can consult [24, 25, 70].

4.3.1 Nishimori identities

Nishimori identities for symmetric channels

Consider the quantity
Q

S2C
�
0
S

Q
S2C

h�Si for a given graph and any collection
C of subsets S ⇢ {1, . . . , n}. The same subset can occur many times in a
collection. Using the map (X,Y , Ỹ ) ! (�0

,J , ;) on (2.18), we obtain

E�0EJ |�0

hY

S2C

�
0
S

Y

S2C

h�Si
i
= E�0EJ |�0

h
h
Y

S2C

�Si
Y

S2C

h�Si
i
. (4.7)
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For symmetric channels, this identity can be further specialized. This is
specially important for us since the BEC is a symmetric channel. By defini-
tion, symmetric channels are those satisfying Q(GA|�0

A
) = Q(�GA| � �

0
A
) or

equivalently c(JA|�0
A
) = c(�JA| � �

0
A
).

Given �
0 the Gibbs distribution (4.1) is invariant under the gauge transfor-

mation �i ! �
0
i
�i, JA ! �

0
A
JA. Let us denote by �

0
?J the “component-wise”

product (�0
A
JA)mA=1. Now, we perform a gauge transformation on both sides

of (4.7). For the left hand side we have

EJ |�0

hY

S2C

�
0
S

Y

S2C

h�Si
i
= E�0?J |�0

hY

S2C

h�Si
i
. (4.8)

Moreover, from c(JA|�0
A
) = c(�JA| � �

0
A
) one can see that for a symmetric

channel c(�0
A
JA|�0

A
) = c(JA|1), and therefore in (4.8) we can replace E�0?J |�0

by EJ |1. We get

EJ |�0

hY

S2C

�
0
S

Y

S2C

h�Si
i
= EJ |1

hY

S2C

h�Si
i
. (4.9)

The same steps show that the right hand side of (4.7) also satisfies

EJ |�0

h
h
Y

S2C

�S

↵Y

S2C

h�Si
i
= EJ |1

h⌦Y

S2C

�S

↵Y

S2C

h�Si
i
. (4.10)

From (4.9), (4.10), (4.7) we get the final Nishimori identity

EJ |1

hY

S2C

h�Si
i
= EJ |1

h⌦Y

S2C

�S

↵Y

S2C

h�Si
i
. (4.11)

A special Nishimori identity for symmetric distributions

An important role is played by the space X of symmetric distributions which
we define as follows. Take a transition probability (a “channel”) satisfying
q(G|�0) = q(�G| � �

0), �0 2 {�1,+1}, G 2 R. The associated half-log-
likelihood variable is h = 1

2 ln
q(G|+1)
q(G|�1) . The space X is the space of symmetric

distributions over the half-log-likelihood variable is formally defined by x(dh) =
q(G|+1)dJ . It is easy to deduce from q(G|�0) = q(�G|��0) that a symmetric
distribution x 2 X satisfies x(�dh) = e

�2hx(dh). We note that B ⇢ X (recall
B is the set of convex combinations of point masses at 0 and +1).

There is an important special case of the Nishimori identity (4.11). Namely
the one satisfied by the system constituted by a single uniform hidden variable
�
0 ⇠ P0, observed through a noisy “channel” q(G|�0). The Gibbs distribution

is simply in this case e
h�
/(2 coshh) where h is the half-log-likelihood of the

“channel”. Since h�i = tanhh, an application of (4.11) (where the singleton
set is taken k times) yields

Z
(tanhh)2k�1 x(dh) =

Z
(tanhh)2k x(dh), k 2 N⇤

. (4.12)

In Appendix 4.8.1 we show an independent and direct way that any x 2 X
satisfies (4.12).
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Conditional entropy for symmetric channels

Since the Gibbs distribution is invariant under a gauge transformation, the
partition function Z also is, and therefore, for a given graph G and hidden
vector �0, we have

EJ |�0 lnZ = E�0?J |�0 lnZ. (4.13)

For symmetric channels the r.h.s. equals E
J̃ |1 lnZ and thus the average con-

ditional entropy 4.3 becomes

1

n
EGE�0EJ |�0H(�|J) = 1

n
EGEJ |1 lnZ. (4.14)

Summary

When one is dealing with symmetric measurement channels, in order to com-
pute the average conditional entropy, or certain averages, one may assume
that �0

i
= 1, i = 1, . . . , n and that the quenched variables J have distribu-

tion c(JA|1), A = 1, . . . ,m. From now on this is understood unless explicitly
specified otherwise.

4.3.2 Gri�ths-Kelly-Sherman inequalities for the BEC

The BEC is a symmetric channel so as shown before, without loss of generality
for analysis purposes, we assume �0

i
= 1, i = 1, . . . , n and that J have distribu-

tion c(JA|1), A = 1, . . . ,m. Since c(JA|1) = (1� q)�1+ q�0 the Gibbs distri-
bution (4.1) has non-negative coupling constants JA, A = 1, . . . ,m. Therefore
the Gibbs distribution satisfies the GKS inequalities in (1.9) and (1.10). These
two inequalities play an important role in the proof of Theorem 4.1.

4.4 The adaptive path interpolation method

For t = 1, . . . , T let V
(t)
i

be i.i.d. r.v. distributed according to x(t) 2 X.
Consider the r.v.

U
(t) = tanh�1

⇣
tanh J

K�1Y

i=1

V
(t)
i

⌘
(4.15)

and independent copies denoted U
(t)
B

where B is a subscript which runs over
l
(t) ⇠ Poi( K

RT
) of these copies. Later on, we call x̃(t) the distribution of U (t)

(induced by x(t) and c).
Let also define two extra random variables, H with distribution ✏�1 +

(1 � ✏)�0 2 B, and H̃ with distribution �n�✓�1 + (1 � �n
�✓)�0 2 B, where

✏, � 2 (0, 1) and ✓ 2 (0, 1) (eventually we will have to take ✓ 2 (0, 1/5] in the
final estimates).
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Figure 4.1 – Interpolation for sparse graphs

Let us set x = (x(1), . . . , x(T )). We define the generalized free entropy func-
tional:

h̃✏,�(x) ⌘ E
h
ln
⇣ TY

t=1

l
(t)Y

B=1

(1 + tanhU (t)
B
) + e

�2(H+H̃)
TY

t=1

l
(t)Y

B=1

(1 � tanhU (t)
B
)
⌘

� ↵(K � 1)

T

TX

t=1

ln
⇣
1 + tanh J

KY

i=1

tanhV (t)
i

⌘
� ↵ ln(1 + tanh J)

i
.

(4.16)

One can easily check that if x(t) = x for all t, then h̃✏=0,�=0(x) = hRS(x). More
is true as the following lemma shows:

Lemma 4.1. Let X T = X ⇥ X ⇥ . . . ⇥ X. We have for x 2 XT

sup
x2XT

h̃✏=0,�=0(x) = sup
x2X

hRS(x). (4.17)

Remark 4.2. We prove this lemma in Sec. 4.8.3. For distributions in x 2 BT

the supremum carries over (x(1)
, · · · , x(T )) 2 [0, 1]T and the proof only requires

real analysis.

4.4.1 The (t, s)–interpolating model

Consider the construction of an interpolating factor graph ensemble Gt,s in-
volving discrete and a continuous interpolation parameters, t 2 {1, 2, . . . , T}
and s 2 [0, 1]. This is the sparse graph counterpart of the interpolating en-
semble initialy developed for dense graphs in [47] (and the simplified in [48]).

Fig. 4.1 illustrates the interpolating factor graph Gt,s. As time t proceeds
by a unit, a set of check nodes of random size is removed, and a new set of
messages also of random size is added with its t-dependence labeled by color.
The interpolating graph is designed such that Gt,1 is statistically equivalent
to Gt+1,0; in addition, Gt,s maintains the degree distribution of variable nodes
invariant: For any (t, s) the degree of each variable node is an independent
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Algorithm 1 Construction of Gt,s

for i = 1, . . . , n do
for t

0 = 1, . . . , t � 1 do
draw a random number e(t

0)
i

⇠ Poi
�
↵K

T

�

for B = 1, . . . , e(t
0)

i
do

connect variable node i with a half edge and assign a weight
U

(t0)
B!i

⇠ x̃(t
0) to this half-edge

draw a random number e(t)
i,s

⇠ Poi
�
↵Ks

T

�

for C = 1, . . . , e(t)
i,s

do

connect variable node i with a half edge and assign a weight U (t)
C!i

⇠
x̃(t) to this half-edge

draw a random number m(t)
s ⇠ Poi

�
↵n(T�t+1�s)

T

�

for A = 1, . . . ,m(t)
s do

assign to factor node A a r.v JA ⇠ c
uniformly and randomly connect factor node A toK variable nodes (this

subset of variable nodes is also denoted A by a slight abuse of notation)

Poi(K/R) random variable. The Hamiltonian associated with Gt,s is

Ht,s(�,J ,U ,m, e) = �
nX

i=1

n t�1X

t0=1

e
(t0)
iX

B=1

U
(t0)
B!i

+

e
(t)
i,sX

C=1

U
(t)
C!i

o
(�i � 1)

�
m

(t)
sX

A=1

JA(�A � 1). (4.18)

We further consider a generalized version of (4.18) by adding two kinds of per-
turbations that can be interpreted as small additional observations from side-
channels for each node i = 1, · · · , n. These perturbations are then removed at
the end of the analysis. let Hi and H̃i be half-log-likelihood variables, where
Hi and H̃i have the same distribution as H and H̃ defined at the beginning of
this section. Our final interpolating Hamiltonian is

Ht,s;✏,�(�,J ,U ,m, e,H , H̃) ⌘ Ht,s(�,J ,U ,m, e) �
nX

i=1

(Hi + H̃i)(�i � 1).

(4.19)

The associated interpolating partition function, Gibbs expectation and free



72 Sparse Censored Block Model

entropy are:

Zt,s;✏,� ⌘
X

�2{�1,+1}n

e
�Ht,s;✏,�(�,J ,U ,m,e,H,H̃)

, (4.20)

hA(�)it,s;✏,� ⌘ 1

Zt,s;✏,�

X

�2{�1,+1}n

A(�) e�Ht,s;✏,�(�,J ,U ,m,e,H,H̃)
, (4.21)

ht,s;✏,� ⌘ 1

n
E lnZt,s;✏,�, (4.22)

Ht,s;✏,� ⌘ 1

n
E

H̃
lnZt,s;✏,� . (4.23)

Recall our notation: The expectation E here carries over all quenched variables
entering in the interpolating system, thus J ,U ,m, e, H and H̃ . Note that
Nishimori’s identity (4.11) and GKS inequalities (1.9), (1.10) still apply to the
Gibbs expectation h�it,s;✏,�.

One may check that, at the initial point of the interpolating path (t = 1,
s = 0) the free entropy h1,0;✏=0,�=0 is equal to the averaged conditional entropy
of the original model (see formula (4.27) below), and at the end-point (t = T ,
s = 1) the free entropy hT,1;✏,� is given by a part of the generalized entropy
functional (4.16) (see formula (4.45)).

The connection between the unperturbed and perturbed free entropies is
given by (see Sec. 4.8.4)

Lemma 4.2. Let c 2 B and x 2 BT . We have

|ht,s;✏,� � ht,s;✏=0,�=0|  (✏+
�

n✓
) ln 2 , (4.24)

|h̃✏,�(x) � h̃✏=0,�=0(x)|  (✏+
�

n✓
) ln 2 . (4.25)

4.4.2 Evaluating the free entropy change along the
interpolation

By interpolating ht,s;✏,� from the initial state (t = 1, s = 0) to the final one
(t = T, s = 1), we have

h1,0;✏,� = hT,1;✏,� +
TX

t=1

(ht,0;✏,� � ht,1;✏,�) = hT,1;✏,� �
TX

t=1

Z 1

0

ds
dht,s;✏,�

ds
. (4.26)

We have m
(t=1)
s=0 = m ⇠ Poi(↵n) and thus

H1,0;✏,� = �
mX

A=1

JA(�A � 1) �
nX

i=1

(Hi + H̃i)(�i � 1).

Therefore, the initial interpolating free entropy without perturbation equals
the average conditional entropy per variable:

h1,0;✏=0,�=0 =
1

n
EH(�|J). (4.27)
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On the other hand hT,1;✏,� corresponds to a part of the generalized free entropy
functional (4.16). A subsequent computation (see Sec. 4.5) on (4.26) leads to
the fundamental sum rule

h1,0;✏,� = h̃✏,�(x) +
↵

T

TX

t=1

Z 1

0

dsRt,s;✏,� (4.28)

where

Rt,s;✏,� =
1X

p=1

E[(tanh J)2p]
2p(2p � 1)

E
⌦
Q

K

2p � K(q(t)2p )
K�1(Q2p � q

(t)
2p ) � (q(t)2p )

K
↵
t,s;✏,�

(4.29)

with

Qp ⌘ 1

n

nX

i=1

�
(1)
i

· · · �(p)
i

the overlap of p independent replicas �(1)
, . . . ,�

(p) and

q
(t)
p

⌘ E[(tanhV (t))p].

In (4.29) the Gibbs average h�it,s;✏,� over a polynomial of Qp must be under-
stood as an average over the product measure

pY

↵=1

1

Zt,s;✏,�
e
�Ht,s;✏,�(�(↵)

,J ,U ,m,e,H,H̃)

where the quenched variables have the same realization for all replicas. We
still denote this Gibbs average by h�it,s;✏,� for simplicity.

4.4.3 The lower bound

In order to show the lower bound we need the following important concentra-
tion lemma (proven in Sec. 4.6), which is at the core of the “replica symmetric”
behavior of the model:

Lemma 4.3 (Concentration of QK

p
on hQpiKt,s;✏;✓). For any c 2 B, x 2 BT we

have
Z

"1

"0

d✏ E
⌦��QK

p
� hQpiKt,s;✏,�

��↵
t,s;✏,�

 K

⇣3p("1 � "0)

n

⌘1/2
. (4.30)

Proposition 4.1 (Lower bound). For c 2 B we have

lim inf
n!1

1

n
EH(�|J) � sup

x2B
hRS(x). (4.31)
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Remark 4.3. The methods of this chapter can be extended to show this propo-
sition for c, x 2 X.

Proof. Eq. (4.28) implies

h1,0;✏=0,�=0 = h̃✏=0,�=0(x) +
↵

T

TX

t=1

Z 1

0

dsRt,s;✏,�(x)

+
�
h̃✏,�(x) � h̃✏=0,�=0(x)

�
�
�
h1,0;✏,� � h1,0;✏=0,�=0

�
. (4.32)

We fix � = 0. From (4.29) we have Rt,s;✏,�=0 equal to

1X

p=1

E[(tanh J)2p]
2p(2p � 1)

⇣
E
h
hQ2piKt,s;✏,0 � K(q(t)2p )

K�1(hQ2pit,s;✏,0 � q
(t)
2p ) � (q(t)2p )

K

i

� Eh(QK

p
� hQpiKt,s;✏,0)it,s;✏,0

⌘
.

Note that the convexity x 7! x
K for x 2 R+ implies xK�y

K � Ky
K�1(x�y) �

0 for any x, y 2 R+. As hQ2pit,s;✏,0 = 1
n

P
n

i=1h�ii
2p
t,s;✏,0 � 0 and q

(t)
2p � 0,

hQ2piKt,s;✏,0 � K(q(t)2p )
K�1(hQ2pit,s;✏,0 � q

(t)
2p ) � (q(t)2p )

K � 0.

Thus with Lemma 4.3 we obtain

1

✏n

Z 2✏n

✏n

d✏Rt,s;✏,0 � �(ln 2)K
⇣ 3p

✏nn

⌘1/2
. (4.33)

Now we average both side of (4.32) over ✏ 2 [✏n, 2✏n] for some sequence ✏n
specified at the end. Using (4.33) and Lemma 4.2

h1,0;✏=0,�=0 � h̃✏=0,�=0(x) + O
� 1
p
✏nn

�
+ O(✏n).

Choosing ✏n = n
�� with 0 < � < 1, we conclude

lim inf
n!1

h1,0;✏=0,�=0 � h̃✏=0,�=0(x).

Finally one can take the supremum of the right hand side and use (4.17) as
well as (4.27) to obtain (4.31).

4.4.4 The upper bound

In this paragraph we crucially use the specialties of the BEC. We take inter-
polating paths x = (x(1), · · · , x(T )) 2 BT , where x(t) = x

(t)�0 + (1 � x
(t))�1.

In particular we use the following lemma (proven in Sec. 4.8.4):

Lemma 4.4. For any c 2 B, and any interpolation path x(✏) 2 BT depending
on ✏, and any A ✓ {1, . . . , n} we have h�Ait,s;✏,� 2 {0, 1}.
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Notice that hQk

p
it,s;✏,� = 1

nk

P
n

i1,...,ik=1h�i1 · · · �iki
p

t,s;✏,� for any k 2 N. Lemma 4.4
then implies

hQk

p
it,s;✏,� = hQk

1it,s;✏,�
for all p 2 N⇤. We also have tanhV (t) 2 {0, 1} because x(t) 2 B and thus

q
(t)
p

= q
(t)
1 8 p 2 N⇤

.

Finally recall that c(J |1) = (1� q)�1 + q�0, therefore E[(tanh J)2p] = 1� q.
These facts reduce (4.29) to

Rt,s;✏,� = (1 � q)(ln 2)E
h
hQK

1 it,s;✏,� � K(q(t)1 )K�1(hQ1it,s;✏,� � q
(t)
1 ) � (q(t)1 )K

i
.

(4.34)

We then split the remainder as follows:

Rt,s;✏,� = (Rt,s;✏,� � Rt,0;✏,�) + Rt,0;✏,�

= (Rt,s;✏,� � Rt,0;✏,�) + (1 � q)(ln 2)
⇣
E[hQ1it,0;✏,0]K

� K(q(t)1 )K�1(EhQ1it,0;✏,0 � q
(t)
1 ) � (q(t)1 )K

⌘

+ (1 � q)(ln 2)
�
EhQK

1 it,0;✏,� � E[hQ1it,0;✏,�]K
�

+ (1 � q)(ln 2)
�
E[hQ1it,0;✏,�]K � E[hQ1it,0;✏,0]K

� K(q(t)1 )K�1(E[hQ1it,0;✏,�] � E[hQ1it,0;✏,0])
�
, (4.35)

and treat each part thanks to the three following lemmas. Lemma 4.5 is proven
in Sec. 4.8.4, Lemma 4.6 in Sec. 4.6, and Lemma 4.7 in Sec. 4.8.4).

Lemma 4.5 (Weak s-dependence at fixed t). For any k 2 N and s 2 [0, 1] we
have

��EhQk

1it,s;✏,� � EhQk

1it,0;✏,�
��  2↵(K + 1)n

T
. (4.36)

Lemma 4.6 (Concentration of hQ1iKt,s;✏,� on E[hQ1it,s;✏,�]K ). For any c 2 B

and x(✏) 2 BT such that every component satisfies dx
(t)
/d✏ � 0 we have for

✓ 2 (0, 1/5]
Z

�1

�0

d�

Z
"1

"0

d✏E
⇥��hQ1iKt,s;✏,� � E[hQ1it,s;✏,�]K

��⇤

= O
✓✓

(�1 � �0)("1 � "0)
�1 � �0 + "1 � "0

n✓

◆1/2◆
. (4.37)

Lemma 4.7. For any c 2 B and x(✏) 2 BT such that every component
satisfies dx(t)

/d✏ � 0 we have
����
Z

�1

�0

d�

Z
"1

"0

d✏

n
E[hQ1it,0;✏,�]K � E[hQ1it,0;✏,0]K

� K(q(t)1 )K�1(E[hQ1it,0;✏,�] � E[hQ1it,0;✏,0])
o���� 

3K(�21 � �
2
0)

n✓(1 � �1/n
✓)

. (4.38)

where ✓ 2 (0, 1/5].
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Now we look into each term of (4.35). Lemma 4.5 and (4.34) imply

|Rt,s;✏,� � Rt,0;✏,�|  2(ln 2)↵(K + 1)2n

T
= O(

n

T
).

Since T is a free parameter (controlling the mean of e(t)
i,s

and m
(t)
s ) we can set it

significantly larger than n. The first term of (4.35) thus can be neglected and it
is su�cient to work with Rt,0;✏,�. This separation is important because we use
that EhQ1it,0;✏,0 (in the second term of (4.35)) is independent of {x(t0)}t0�t. Also

recall q(t)1 ⌘ E tanhV (t). This allows us to sequentially choose a distribution

x̂(t)n for V
(t) along our interpolation from t = 1 to T such that the following

equation is satisfied:

q
(t)
1 = EhQ1it,0;✏,0. (4.39)

In other words, the interpolation path is adapted so that (4.39) holds, which
then cancels the second term in (4.35). This path is also independent of �
because we have set � = 0 in the Gibbs expectation (4.39) as well as in the
second term of (4.35). We must still check that equation (4.39) possesses a
(unique) solution, see Sec. 4.8.5 for the proof:

Lemma 4.8 (Existence of the optimal interpolation path). Eq. (4.39) has a

unique solution x̂n(✏) = {x̂(t)n }T

t=1 2 BT . The solution x̂n ⌘ x̂
(t)
n �1+(1�x̂

(t)
n )�0

satisfies dx̂
(t)
n /d✏ � 0.

Fixing x = x̂n(✏), lemmas 4.6 and 4.7 are used to upper bound the last
two terms of (4.35) upon integrating over �, ✏. The solution of (4.39), that
eliminates Rt,s;✏,�, therefore can be considered as the “optimal interpolation
path”. In summary, using lemmas 4.5 to 4.8 on (4.35) we have

����
Z 1

0

d�

Z 2✏n

✏n

d✏Rt,s;✏,�

�
x̂n(✏)

����� = O
�n✏n
T

�
+ O

�p✏n
n✓/2

�
+ O

� 1
n✓

�
(4.40)

for any sequence ✏n. We are now ready to prove the upper bound.

Proposition 4.2 (Upper bound). For any c 2 B we have

lim sup
n!1

1

n
EH(�|J)  sup

x2B
hRS(x). (4.41)

Proof. We evaluate (4.32) at x = x̂n(✏) and average the equation over � 2 [0, 1],
✏ 2 [✏n, 2✏n]. Using (4.40) and Lemma 4.2

h1,0;✏=0,�=0 = h̃✏=0,�=0(x̂n(✏)) + O
�n
T

�
+ O

� 1p
✏nn

✓

�
+ O

� 1

✏nn
✓

�
+ O(✏n +

1

n✓
).

(4.42)
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A trivial upper bound together with Lemma 4.17 gives

h̃✏=0,�=0(x̂n(✏))  sup
x2BT

h̃✏=0,�=0(x) = sup
x2B

hRS(x), (4.43)

where the r.h.s. is independent of n and T . We substitute (4.43) into (4.42).
Then we choose ✏n = n

�� with 0 < � < 1 and pass both sides of (4.42) to
the limsup lim sup

n!1
lim sup

T!1
. Note that h1,0;✏=0,�=0 is independent of T .

This implies that the left hand side of (4.42) at the limit becomes

lim sup
n!1

lim sup
T!1

h̃✏=0,�=0(x̂n(✏)) = lim sup
n!1

h1,0;✏=0,�=0. (4.44)

The proof is ended by also using (4.27) on (4.44).

4.5 Proof of the fundamental sum
rule (4.28)–(4.29)

Similar computations go back to [65] and were applied in Nishimori symmetric
situations in [71, 72, 69], so we will be relatively brief. We compute hT,1;✏,� and
dht,s;✏,�

ds
in (4.26). From the definitions (4.19), (4.20), (4.22), and the identity

e
�x = (1 + � tanh x) cosh x for � 2 {�1,+1}, we can expand hT,1;✏,� as

hT,1;✏,� = E
h
ln
⇣ TY

t0=1

e
(t0)
iY

B=1

(1 + tanhU (t0)
B

) + e
�2(H+H̃)

TY

t0=1

e
(t0)
iY

B=1

(1 � tanhU (t0)
B

)
⌘

� ↵K

T

TX

t0=1

ln(1 + tanhU (t0))
i
. (4.45)

Note that the first term is part of (4.16). For dht,s;✏,�

ds
we use the following

property of the Poisson distribution: any function g : N ! R of a random
variable X ⇠ Poi(⌫) with Poisson distribution and mean ⌫, and such that
both E g(X) and E g(X + 1) exist, satisfies

dE g(X)

d⌫
=

1X

k=0

d

d⌫

⇢
⌫
k
e
�⌫

k!

�
g(k) =

1X

k=1

⌫
k�1

e
�⌫

(k � 1)!
g(k) �

1X

k=0

⌫
k
e
�⌫

k!
g(k)

=
1X

k=0

⌫
k
e
�⌫

k!
g(k + 1) �

1X

k=0

⌫
k
e
�⌫

k!
g(k)

= E g(X + 1) � E g(X) . (4.46)

This allows us to write

dht,s;✏,�

ds
= �↵

T
Et,s;✏,�EB,J̃B

lnheJB(�B�1)it,s;✏,�

+
↵K

nT

nX

i=1

Et,s;✏,�E
U

(t)
i

lnheU
(t)
i (�i�1)it,s;✏,� (4.47)
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where we distinguish the expectation Et,s;✏,� with respect to the original inter-
polating model with Hamiltonian (4.19) and the expectation with respect to
an “extra measurement” and its neighborood EB,JB and an “extra field” E

U
(t)
i
.

Standard algebra, using again the identity e
±x = (1 ± tanh x) cosh x, leads to

E lnheJB(�B�1)it,s;✏,�
= Et,s;✏,�EB,JB ln

�
1 + h�Bit,s;✏,� tanh JB

�
� EJB ln(1 + tanh JB)

=
1X

p=1

(�1)p+1

p

1

nK

X

i1,...,iK

E[h�i1 · · · �iK ip
t,s;✏,�]E[(tanh J)p] � E ln(1 + tanh J)

and similarly, using (4.15),

1

n

nX

i=1

E lnheU
(t)
i (�i�1)it,s;✏,�

=
1

n

nX

i=1

Et,s;✏,�E
U

(t)
i

ln
�
1 + h�iit,s;✏,� tanhU (t)

i

�
� 1

n

nX

i=1

E ln(1 + tanhU (t)
i
)

=
1

n

nX

i=1

Et,s;✏,�EJ,V (t) ln
�
1 + h�iit,s;✏,� tanh J

K�1Y

j=1

tanhV (t)
j

�
� E ln(1 + tanhU (t))

=
1X

p=1

(�1)p+1

p
E[(tanh J)p]E[(tanhV (t))p]K�1 1

n

nX

i=1

E[h�iipt,s;✏,�]

� E ln(1 + tanhU (t)).

Recall Qp ⌘ 1
n

P
i
�
(1)
i

· · · �(p)
i

and thus

hQpit,s;✏,� =
1

n

X

i

h�iipt,s;✏,�, hQK

p
it,s;✏,� =

1

nK

X

i1,...,iK

h�i1 . . . �iK ip
t,s;✏,� .

Recall also q
(t)
p ⌘ E[(tanhV (t))p]. Then (4.47) becomes

dht,s;✏,�

ds

= � ↵

T

1X

p=1

(�1)p+1

p
E[(tanh J)p]E[hQK

p
it,s;✏,� � K(q(t)

p
)K�1hQpit,s;✏,�]

+
↵

T
E ln(1 + tanh J) � ↵K

T
E ln(1 + tanhU (t))

= � ↵

T

1X

p=1

(�1)p+1

p
E[(tanh J)p]E

⌦
Q

K

p
� K(q(t)

p
)K�1(Qp � q

(t)
p
) � (q(t)

p
)K
↵
t,s;✏,�

+
↵(K � 1)

T
E ln

�
1 + tanh J

KY

j=1

tanhV (t)
j

�

+
↵

T
E ln(1 + tanh J) � ↵K

T
E ln(1 + tanhU (t)). (4.48)
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Substituting (4.45) and (4.48) into (4.26) gives (4.28), where

Rt,s;✏,� =
1X

p=1

(�1)p+1

p
E[(tanh J)p]E

⌦
Q

K

p
� K(q(t)

p
)K�1(Qp � q

(t)
p
) � (q(t)

p
)K
↵
t,s;✏,�

.

(4.49)

An application of (4.11) yields

EhQm

2p�1it,s;✏,� = EhQm

2pit,s;✏,�

for all m 2 N and p � 1. Similarly an application of (4.12) yields

q
(t)
2p�1 = q

(t)
2p as well as E[(tanh J)2p�1] = E[(tanh J)2p]

for p � 1. Therefore combining the odd and even terms of (4.49) we obtain
the form in (4.29).

4.6 Concentration of overlaps I: proof of
lemmas 4.3 and 4.6

In this section we prove lemmas 4.3 and 4.6. We need the following lemmas
proved in the next section 4.7. For lemma 4.3 it su�ces to take an interpolation
path x 2 BT independent of ✏ and �. However, for 4.6, we need to take
x(✏) 2 BT dependent on ✏ (and independent of �). We therefore formulate the
lemmas below for an ✏-dependent interpolation path.

Lemma 4.9 (Concentration of Qp on hQpit,s;✏,�). For any c 2 B and any
choice of interpolating path x(✏) 2 BT such that every component satisfies
dx

(t)
/d✏ � 0, we have

Z
"1

"0

d✏E
⌦
(Qp � hQpit,s;✏,�)2

↵
t,s;✏,�

 3p

n
(4.50)

uniformly in t, s, �.

Lemma 4.10 (Concentration of hQ1i on E
H̃

hQ1it,s;✏,�). For any c 2 B and
x(✏) 2 BT and any choice of interpolating path such that every component
satisfies dx

(t)
/d✏ � 0, we have

Z
"1

"0

d✏E
⇥
(hQ1it,s;✏,� � E

H̃
hQ1it,s;✏,�)2

⇤
 3�

n✓
(4.51)

for any ✓ 2 (0, 1], uniformly in t, s, �.
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Lemma 4.11 (Concentration of hQ1it,s;✏,� on EhQ1it,s;✏,�). For c 2 B and any
choice of interpolating path x(✏) 2 BT , we have

Z
�1

�0

d� E
⇥
(E

H̃
hQ1it,s;✏,� � EhQ1it,s;✏,�)2

⇤

✓
15C(�1 � �0)

(ln 2)2
+ 4

◆
n
�(1�2✓)/3

(4.52)

for any ✓ 2 (0, 1/2), uniformly in t, s, ✏, with C > 0 a constant (this constant
is obtained from Lemma 4.12).

Remark 4.4. We have already seen that Lemma 4.4 implies for the BEC
hQ1it,s;✏,� = hQpit,s;✏,�, and therefore the last two concentration lemmas are
valid for all overlaps.

4.6.1 Proof of lemma 4.3

In lemma 4.3 we take x independent of ✏, thus dx(t)
/d✏ = 0. We have

E
⌦��QK

p
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= E
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 K E
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��↵
t,s;✏,�

. (4.53)

We can apply the Cauchy-Schwarz inequality to get
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. (4.54)

Thanks to (4.50) we obtain
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This proves Lemma 4.3.

4.6.2 Proof of lemma 4.6

Similar to (4.53) and (4.54), it is easy to show
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. (4.55)
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We decompose E
⇥
(hQ1it,s;✏,� � EhQ1it,s;✏,�)2

⇤
in three parts:

E
⌦
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+ E
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+ E
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hQ1it,s;✏,� � EhQ1it,s;✏,�)2

⇤
.

With Fubini’s theorem we are free to switch the � and ✏ integrals. Lemmas 4.9,
4.10 and 4.11 then imply
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+
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(ln 2)2
+ 4
� "1 � "0

n(1�2✓)/3
. (4.56)

The bound (4.56) is optimal for ✓ = (1 � 2✓)/3, i.e., ✓ = 1/5. But any
✓ 2 (0, 1/2) will do. Lemma 4.6 is then obtained by substituting (4.56) into
(4.55):
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4.7 Concentration of overlaps II: proof of
lemmas 4.9, 4.10, 4.11

We start with useful preliminary results on the derivatives of the free entropy
of the interpolated system, and then prove the three concentration lemmas.

4.7.1 Useful derivative formulas

We first remark that, according to (4.15), the distribution x̃(t) is a function of
x(t) and c. Therefore x̃(t) 2 B when x(t), c 2 B. Let x(t) = x

(t)�1+(1�x
(t))�0

and x̃(t) = x̃
(t)�1 + (1 � x̃

(t))�0
1. From (4.15) we have the relation

x̃
(t) = (1 � q)x(t)K�1

. (4.57)

1We prefer to write 1 � x
(t) and 1 � x̃

(t) as the erasure probability in this interpolation
to align with the way we define the distribution of H and H̃.
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We now provide another view of the interpolating Hamiltonian (4.18). Con-
sider an “e↵ective half-edge” fed into node i with random half-log-likelihood
variable

H̄
(t,s)
i

⌘
t�1X

t0=1

e
(t0)
iX

B=1

U
(t0)
B!i

+

e
(t)
i,sX
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U
(t)
C!i

+Hi + H̃i,

equal to 1 with probability
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⌘ 1 � (1 � ✏)(1 � �

n✓
)(1 � x̃

(t))e
(t,s)
i

t�1Y

t0=1

(1 � x̃
(t0))e

(t0)
i .

and equal to 0 complementary probability. Set Ē = (✏̄(t,s)1 , · · · , ✏̄(t,s)n ). The
Hamiltonian (4.18) is equal in distribution to

H̄t,s;Ē(�,J , H̄) ⌘ �
nX

i=1

H̄
(t,s)
i

(�i � 1) �
m

(t)
sX

A=1

JA(�A � 1). (4.58)

Let n�1E ln Z̄t,s;Ē the associated averaged free entropy. Clearly this is a func-

tion of (E[✏̄(t,s)1 ], · · · ,E[✏̄(t,s)n ]) where for all i = 1, · · · , n

E[✏̄(t,s)
i

] ⌘ E
e
(1)
i ,...,e

(t�1)
i ,e

(t,s)
i

[✏̄(t,s)
i

]

= 1 � (1 � ✏)(1 � �

n✓
)e�

K
RT (sx̃(t)+

Pt�1
t0=1

x̃
(t0))

. (4.59)

Moreover, it is clear that ht,s;✏,� = n
�1E ln Z̄t,s;Ē . Therefore we see that the

dependence in ✏ and � e↵ectively comes through the combination (4.59). Since
this is independent of i we denote it by E[✏̄(t,s)]. The reader should keep in mind
that in this combination there is always an explicit (✏, �), and that there may
also be an implicit one through the choice of the interpolating path (x(t)

, x̃
(t)).

We are now ready to state derivative formulas playing an important role.
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Their detailed derivation is provided in Appendix 4.8.6:
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(4.63)

where h�ii
t,s;✏,✏;⇠H̄

(t,s)
i

is the Gibbs expectation with fixed H̄
(t,s)
i

= 0 and h�ii⇠H̃i,H̃j
⌘

h�iit,s;✏,�;⇠H̃i,H̃j
is the Gibbs expecetaion with fixed H̃i = H̃j = 0. If we choose

x = x(✏) independent of � we have furthermore
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The first equalities of (4.60), (4.62), (4.64), together with (1.9), tell us that
���

d

dE[✏̄(t,s)]ht,s;✏

���  ln 2,
���
d
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��� 
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��� 
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n✓
. (4.67)

Moreover from (4.63), (4.65) and the second GKS inequality (1.10), we see
that ht,s;✏,� and Ht,s;✏,� are convex in �.
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4.7.2 Proof of Lemma 4.9

From the definition of Qp we have
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By (1.10), we have 0  h�i�jit,s;✏,� � h�iit,s;✏,�h�jit,s;✏,�. This permits us to
upper bound (4.68) as
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Hence, integrating (4.69) over ✏ 2 ["0, "1] and recalling the formula (4.61), we
obtain
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Recall (4.59) for the expression of E[✏̄(t,s)]. Under the hypothesis dx(t)
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for all t 2 {1, . . . , T} and using (4.57), we have dx̃
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/d✏ � 0. This gives
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and allows us to relax the second term of (4.70):
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using the first bound in (4.67) for the last inequality.

4.7.3 Proof of Lemma 4.10

Let H̃ 0

j
be an i.i.d. copy of H̃j. Let also H̃

j be a vector same as H̃ except the

j-th component is replaced by H̃
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j
. By the Efron-Stein inequality we have
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To see the last equality we can exchange H̃j and H̃
0

j
in the r.h.s of the second

equality to see that that the two terms are equal. This symmetry allows us
to simplify the expression to (4.72). The GKS inequalities (1.9), (1.10) imply
0  hQ1iH̃j � hQ1iH̃  1. This allows us to relax (4.72) to
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When H̃
0
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= 1 and H̃j = 0, we have
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where the first equality of (4.74) follows from the identity e
H̃

0
j�j ⌘ cosh H̃ 0
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), and the last bound in (4.75) uses the first GKS inequality (1.9).

Substituting (4.75) into (4.73), we get
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using Lemma 4.9 to yield the last inequality.

4.7.4 Proof of Lemma 4.11

We write Ht,s;✏(�) ⌘ Ht,s;✏,� and ht,s;✏(�) ⌘ ht,s;✏,� to emphasize � in this proof.
For both quantities we have taken the expectation over H̃ and therefore their
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derivatives w.r.t. � are well-defined. 2 From (4.62) and (4.64) we have
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Recall that Ht,s;✏(�) and ht,s;✏(�) are convex in �. Lemma 3.12 then implies
that for any ⇠ > 0 we have
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We substitute (4.78) into (4.77), then square both sides and apply (
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. The resulting inequality upon full expectation is written as
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We now make use of a concentration result for the interpolated free entropy.
In Appendix 4.8.7 we prove:

Lemma 4.12 (Free entropy concentration). For any s in [0, 1] and t = 1, . . . , T
there is a constant C > 0 such that
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Using Lemma 4.12, the first term on the r.h.s is found to be smaller than
15C/((ln 2)2n1�2✓

⇠
2). Next, using ln 2

n✓  dht,s;✏(�)
d�

 0 allows us to assert from

2The proof here di↵ers from the standard strategy in [40, 47] in the way that an extra
parameter � is required and x(✏) has to be independent of �. This is because we need a
well-defined derivative of free entropy such that we can obtain a controllable upper bound
like in (4.77).
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(4.79) that |C±

⇠
(�)|  ln 2

n✓ . Then using C
±

⇠
(�) � 0

Z
�1

�0

d�
�
C

+
⇠
(�)2 + C

�

⇠
(�)2

�
 ln 2

n✓

Z
�1

�0

d�
�
C

+
⇠
(�) + C

�

⇠
(�)
�

(4.82)

=
ln 2

n✓

⇥�
ht,s;✏(�1 + ⇠) � ht,s;✏(�1 � ⇠)

�

+
�
ht,s;✏(�0 � ⇠) � ht,s;✏(�0 + ⇠)

�⇤
(4.83)

 4(ln 2)2⇠

n2✓
(4.84)

where the mean value theorem has been used to get the last inequality. Thus
when (4.80) is integrated over � we obtain

Z
�1

�0

d� E
⇥
(E

H̃
hQ1it,s;✏,� � EhQ1it,s;✏,�)2

⇤
 15C(�1 � �0)

(ln 2)2n1�2✓⇠2
+ 4⇠. (4.85)

The proof is ended by choosing ⇠ such that 1/(n1�2✓
⇠
2) = ⇠, i.e., ⇠ = n

�(1�2✓)/3

and ✓ 2 (0, 1/2).

4.8 Appendix

4.8.1 Direct proof of identity (4.12) for symmetric
distributions

If x(�dh) = e
�2hx(dh) holds, then we have

Z
1

�1

(tanhh)2k�1 x(dh) =

Z
1

0

(tanhh)2k�1 x(dh) �
Z

1

0

(tanhh)2k�1 x(�dh)

=

Z
1

0

(tanhh)2k�1(1 � e
�2h) x(dh) =

Z
1

0

(tanhh)2k(1 + e
�2h) x(dh)

=

Z
1

0

(tanhh)2k x(dh) +

Z
1

0

(tanhh)2k x(�dh) =

Z
1

�1

(tanhh)2k x(dh).

4.8.2 Rewriting the replica formula: proof of (4.89)

We copy again

h̃✏,�

�
x
�
=E

h
ln
⇣ TY

t=1

lY

b=1

(1 + tanhU (t)
b
) + e

�2(H+H̃)
TY

t=1

lY

b=1

(1 � tanhU (t)
b
)
⌘

� ↵(K � 1)

T

TX

t=1

ln
⇣
1 + tanh J̃

KY

i=1

tanhV (t)
i

⌘
� ↵ ln(1 + tanh J̃)

i
.
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The first term can be rewritten as

E ln
⇣ TY

t=1

lY

b=1

(1 + tanhU (t)
b
) + e

�2(H+H̃)
TY

t=1

lY

b=1

(1 � tanhU (t)
b
)
⌘

=E ln
⇣ TY

t=1

lY

b=1

(1 + tanhU (t)
b
)
⌘
+ E ln

⇣
1 + e

�2(H+H̃)
TY

t=1

lY

b=1

1 � tanhU (t)
b

1 + tanhU (t)
b

⌘

=E ln
⇣ TY

t=1

lY

b=1

(1 + tanhU (t)
b
)
⌘
+ E ln

⇣
1 + e

�2(
PT

t=1

Pl
b=1 U

(t)
b +H+H̃)

⌘

= � ↵KH

⇣ 1
T

TX

t=1

c ⇠ (x(t))⇠(K�1)
⌘
+ ↵K ln 2

+H

⇣
h~ ⇤~

⇣ 1
T

TX

t=1

c ⇠ (x(t))⇠(K�1)
⌘⌘

.

The second term can be easily seen to be equal to

� ↵(K � 1)

T

TX

t=1

ln(1 + tanh J
KY

i=1

tanhV (t)
i

)

=
↵(K � 1)

T

TX

t=1

H
�
c ⇠ (x(t))⇠K

�
� ↵(K � 1) ln 2.

The remaining term is

�↵E ln(1 + tanh J) = ↵(H(c) � ln 2).

4.8.3 Same supremum of two free entropy functionals:
proof of Lemma 4.1

We first note that the generalized entropy functionals can easily be shown to be
upper bounded and are defined on a closed convex set of probability measures.
Hence we can replace the supremum in the lemma by a maximum. For the
BEC x 2 BT and h̃✏=0,�=0(x) becomes a function of x 2 [0, 1]T , therefore the
proof of the lemma can be carried out directly by elementary real analysis
calculations.

Here we give an analysis that applies more generally to functionals over
x 2 XT in the general case of symmetric channels. Let us outline the strategy
of the proof: (i) We first show that the stationarity condition for h̃✏=0,�=0(x)
implies that all x(t) are equal for t = 1, . . . , T ; (ii) We then show that there
exists a sequence of distributions that converges to a stationary point; (iii)
Finally, we show that a maximum of h̃✏=0,�=0(x) is necessarily a stationary
point.
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Before carrying out point (i) it is convenient to express h̃✏=0,�=0(x) more
explicitly in terms of the distribution x thanks to a formalism from coding
theory (see e.g. [32, 73]). We define an entropy functional3 H : X ! R as

H(x) ⌘
Z

ln(1 + e
�2a)x(da) = ln 2 �

Z
ln(1 + tanh a)x(da). (4.86)

The argument a is to be interpreted as a half-log-likelihood ratio. Two con-
volution operators ~,⇠ : X ⇥ X ! X are defined for a1 ⇠ x1, a2 ⇠ x2 such
that x1 ~ x2 is the distribution of a1 + a2 and x1 ⇠ x2 is the distribution of
tanh�1(tanh a1 tanh a2). Therefore, the entropies of convolutions are

H(~k

i=1xi) =

Z
ln(1 + e

�2
Pk

i=1 ai)
kY

i=1

xi(dai), (4.87)

H(⇠k

i=1xi) = ln 2 �
Z

ln
⇣
1 +

kY

i=1

tanh ai
⌘ kY

i=1

xi(dai). (4.88)

We define x~0 ⌘ �0, where �0 is the identity of ~ and it is a distribution
with solely a point mass at 0. We also define ⇤~(x) ⌘

P
1

l=0 ⇤lx~l, where

⇤l =
(↵K)l

l! e
�↵K denotes the probability that a variable node has degree l, and

�
~(x) ⌘

P
l=1 �lx

~(l�1), where �l =
l⇤l

⇤0(1) =
(↵K)l�1

(l�1)! e
�↵K denotes the probability

that an edge is connected to a variable node of degree l � 1. One can check
that (see Appendix 4.8.2)

h̃✏=0,�=0

�
x
�
= ↵H(c) +

↵(K � 1)

T

TX

t=1

H
�
c ⇠ (x(t))⇠K

�

� ↵KH

⇣ 1
T

TX

t=1

c ⇠ (x(t))⇠(K�1)
⌘
+H

⇣
⇤~
⇣ 1
T

TX

t=1

c ⇠ (x(t))⇠(K�1)
⌘⌘

. (4.89)

We will need di↵erentiation rules for functionals. The directional (or Gateaux)
derivative of a functional4 F : x 2 X ! R at point x 2 X in the direction
⌘ = x2 � x1 where x1, x2 2 X is by definition the following linear functional of
⌘:

dF (x)[⌘] ⌘ lim
�!0

F (x+ �⌘) � F (x)

�
.

We employ the following computational rules that are easily proved for linear
functionals F :

3The notation H for the entropy should not be confused with the notation H for the
perturbation field in the model.

4To have well defined directional derivatives it is understood that we extend the space
X to the Banach space of signed probability measures over R̄.



4.8. Appendix 91

Lemma 4.13 ([32, Propositions 14 and 15]). Let F : X ! R be a linear
functional, and ⇤ be either ~ or ⇠. Then for k � 1 integer, x, x1, x2 2 X, and
setting ⌘ = x2 � x1, we have

dF (x⇤k)[⌘] = kF (x⇤(k�1) ⇤ ⌘).

For any polynomials p, q, we have

dF
�
p
~(q⇠(x))

�
[⌘] = F

�
p
0~(q⇠(x)~ (q0⇠(x) ⇠ ⌘)

�
.

where p
0 and q

0 are the derivatives of the polynomials.

Lemma 4.14 ([73, Theorem 4.41]). For any x1, x2, x3 2 X, we have

H((x1 � x2)~ x3) +H((x1 � x2) ⇠ x3) = H(x1 � x2).

We can now proceed to prove (i). Fix t 2 {1, · · · , T}. Consider the
functional h̃✏=0,�=0(x) as functional w.r.t its t-th component only. We denote
dth̃✏=0,�=0(x)[⌘(t)], the directional derivative of this functional at the point x
with respect to its t-th component (only) in the direction ⌘

(t). This a lin-
ear functional of ⌘(t) and corresponds to a “partial” Gateaux derivative as
indicated by the notation dt. Let

T(c, x) ⌘ �
~� 1

T

TX

t=1

c ⇠ x(t)⇠(K�1)
�
.

Using Lemma 4.13, dth̃✏=0,�=0(x)[⌘(t)] is the sum of the following three terms:

↵(K � 1)

T

TX

t=1

dtH

⇣
c ⇠ (x(t)⇠K

⌘
[⌘(t)] =

↵K(K � 1)

T
H
�
c ⇠ x(t)⇠(K�1) ⇠ ⌘

(t)
�
.

(4.90)

� ↵KdtH

⇣ 1
T

TX

t=1

c ⇠ x(t)⇠(K�1)
⌘
[⌘(t)] = �↵K(K � 1)

T
H
�
c ⇠ x(t)⇠(K�2) ⇠ ⌘

(t)
�
,

(4.91)

dtH

⇣
⇤~
⇣ 1
T

TX

t=1

c ⇠ x(t)⇠(K�1)
⌘⌘

[⌘(t)] =
↵K(K � 1)

T
H
�
T(c, x)

~
�
c ⇠ x(t)⇠(K�2) ⇠ ⌘

(t)
��
, (4.92)

In addition, we use Lemma 4.14 to rewrite (4.92) as

↵K(K � 1)

T

�
H
�
c ⇠ x(t)⇠(K�2) ⇠ ⌘

(t)
�

� H
�
T(c, x) ⇠

�
c ⇠ x(t)⇠(K�2) ⇠ ⌘

(t)
�� 

.

(4.93)
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Putting (4.91), (4.90) and (4.93) together, we have

dth̃✏=0,�=0(x)[⌘
(t)] =

↵K(K � 1)

T
H
��
x(t) � T(c, x)

�
⇠
�
c ⇠ (x(t)⇠(K�2) ⇠ ⌘

(t)
��

,

(4.94)

which implies that x is a stationary point of h̃✏=0,�=0(x)[⌘(t)] if and only if it
satisfies the equation

x(t) = T(c, x), t = 1, . . . , T. (4.95)

In particular, we have x(1) = · · · = x(T ) as claimed.
Now, we prove (ii). We use an iterative method that outputs a sequence

of distributions ordered by “degradation” defined as follows. For x 2 X and
f : [0, 1] ! R, let

If (x) ⌘
Z

f (| tanh(a)|) x(da).

For x1, x2 2 X, x2 is said to be degraded with respect to x1 (denoted x1 � x2) if

If (x1)  If (x2) for all concave non-increasing f . For x1 = (x(1)1 , . . . , x(T )
1 ), x2 =

(x(1)2 , . . . , x(T )
2 ) 2 XT , we use x1 � x2 to denote x(t)1 � x(t)2 for all t = 1, . . . , T . In

the iteration method, we consider the update equation T(c, x). Let T(l)(c, x)
be the distributions obtained by l iterations of T(c, x) on x while keeping c
fixed. This iteration has the properties:

Lemma 4.15 ([73, Section 4.6], [32, Lemma 34]). The operator T(c, x) : X ⇥
XT ! XT satisfies the following for all 1  l < 1: If T(c, x) � x, then

T(l+1)(c, x) � T(l)(c, x).

Also, the limit T(1)(c, x) exists and satisfies

T(1)(c, x) � T(l)(c, x), T(c,T(1)(c, x)) = T(1)(c, x).

Using Lemma 4.15, we see that T(1)(c, x) with x = (�0, . . . ,�0) is a vector
of distributions in X that satisfies (4.95). Hence, this fixed point converges to
a stationary point of h̃✏=0,�=0(x)[⌘(t)].

Finally, we prove (iii). We proceed by contradiction and show that: if
x is not a stationary point then it cannot be a maximum. From the Taylor
expansion of the logarithm and (4.12) we find for any x 2 X

H(x) = ln 2 �
1X

p=1

(�1)p+1

p

Z
x(da)(tanh a)p

= ln 2 �
1X

p=1

1

2p(2p � 1)

Z
x(da)(tanh a)2p . (4.96)
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Let x1, x2, x3, x4 2 X. From (4.88) and (4.96)

H((x1 � x2) ⇠ (x3 � x4))

= �
1X

p=1

1

2p(2p � 1)

⇢Z
(x1 � x2)(da)(tanh a)

2p

�⇢Z
(x3 � x4)(da)(tanh a)

2p

�

(4.97)

which implies that (4.94) can be written as

dth̃✏=0,�=0(x)[⌘
(t)]

= �↵K(K � 1)

T

1X

p=1

1

2p(2p � 1)

⇢Z
(x(t) � T(c, x))(da)(tanh a)2p

�

⇢Z
(c ⇠ x(t)⇠(K�2))(da)(tanh a)2p

�⇢Z
⌘
(t)(da)(tanh a)2p

�
. (4.98)

Now, take an x that is not a stationary point. Then there must exist an t
⇤

such that x(t
⇤) 6= T(c, x). Hence we can look at the directional derivative in

the non-trivial direction ⌘(t
⇤) = x(t

⇤) � T(c, x). From (4.98) we see that

dt⇤h̃✏=0,�=0(x)[⌘
(t⇤)]

=
↵K(K � 1)

T

1X

p=1

1

2p(2p � 1)

⇢Z
(c ⇠ x(t)⇠(K�2))(da)(tanh a)2p

�

⇥
⇢Z

(x(t
⇤) � T(h, c, x))(da)(tanh a)2p

�2

so the directional derivative is strictly positive. Hence x cannot be a maximum
since there exists one direction in which the functional increases.

4.8.4 Proofs of technical lemmas

Proof of Lemma 4.2

Here we consider the e↵ect of removing the perturbation, so we shall assume
dx

(t)

d✏
= 0. From formula (4.60) proved in section 4.7.1 we have

d

d✏
ht,s;✏,� =

dE[✏̄(t,s)]
d✏

d

dE[✏̄(t,s)]ht,s;✏,� = � ln 2

n(1 � ✏)

nX

i=1

(1 � Eh�iit,s;✏,�)

= � ln 2

n

nX

i=1

(1 � Eh�iit,s;✏,�;⇠Hi). (4.99)

where h�iit,s;✏,�;⇠Hi is the Gibbs expectation with fixedHi = 0. Thus | d

d✏
ht,s;✏,�| 

ln 2. We also remarked below equation (4.64) that | d

d�
ht,s;✏,�|  ln(2)/n✓. Thus
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by the mean value theorem

|ht,s;✏,� � ht,s;✏=0,�|  ✏ ln 2 , (4.100)

|ht,s;✏,� � ht,s;✏,�=0|  ln 2

n✓
. (4.101)

By triangle inequality we get (4.24). Note that h̃✏,�(x) is in the form hT,1;✏,�(x)+
g(x), therefore

h̃✏,�(x) � h̃✏=0,�=0(x) = hT,1;✏,�(x) � hT,1;✏=0,�=0(x) .

Consquently (4.25) follows immediately from (4.24).

Proof of Lemma 4.4

The first GKS inequality (1.9) implies

h�Ait,s;✏,�(1 � h�Ait,s;✏;�) � 0. (4.102)

Moreover, Nishimori’s identity (4.11) implies

Eh�Ait,s;✏,� = E[h�Ai2
t,s;✏,�] (4.103)

which can be written as

E[h�Ait,s;✏,�(1 � h�Ait,s;✏,�)] = 0. (4.104)

As a result of (4.102) and (4.104), we have h�Ait,s;✏,� equal to either 0 or 1.

Proof of Lemma 4.5

Using the fundamental theorem of calculus, the desired di↵erence has an inte-
gral form

EhQk

1it,s0;✏,� � EhQk

1it,0;✏,� =
1

nk

Z
s
0

0

ds

nX

i1,...,ik=1

d

ds
Eh�i1 · · · �ikit,s;✏n

=
1

nk

Z
s
0

0

ds

nX

i1,...,ik=1

n
↵K

T

nX

j=1

�
Eh�i1 · · · �ikie(t)j,s+1

� Eh�i1 · · · �ikie(t)j,s

�

� ↵n

T

�
Eh�i1 · · · �ikim(t)

s +1
� Eh�i1 · · · �ikim(t)

s

�o
(4.105)

where (4.105) follows from the Poisson property (4.46). Since |h�i1 · · · �iki|  1
we see that the absolute value of (4.105) is bounded by 2↵(K + 1)n/T .
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Proof of Lemma 4.7

As indices t, s, ✏ are fixed in this proof, we omit them for concision. Recall
that (4.66) and (1.10) imply EhQ1i� is increasing in � and therefore E[hQ1i�] �
E[hQ1i0]. Using also |hQ1i|  1 we obtain the inequality

E[hQ1i�]K � E[hQ1i0]K = (E[hQ1i�] � E[hQ1i0])
K�1X

k=0

E[hQ1i�]K�kE[hQ1i�]k

 K(E[hQ1i�] � E[hQ1i0]).

This inequality, together with q
(t)
1 ⌘ E tanhV (t) 2 [0, 1] and E[hQ1i�] �

E[hQ1i0], gives

Z
�1

�0

d�

Z
"1

"0

d✏

���E[hQ1i�]K � E[hQ1i0]K � K(q(t)1 )K�1(E[hQ1i�] � E[hQ1i0])
���

 2K

Z
�1

�0

d�

Z
"1

"0

d✏(E[hQ1i�] � E[hQ1i0])

= 2K

Z
�1

�0

d�
� Z "1

"0

d✏E[hQ1i�] �
Z

"1

"0

d✏E[hQ1i0]
�
. (4.106)

We use the mean value theorem to upper bound (4.106) as

2K

Z
�1

�0

d� � max
�02[0,�]

� d
d�

Z
"1

"0

d✏E[hQ1i�]
����

�=�0

= 2K

Z
�1

�0

d� � max
�02[0,�]

� Z "1

"0

d✏
d

d�
E[hQ1i�]

����
�=�0

where the equality follows from the fact that x(✏) is independent of � and
therefore we can exchange the order of derivative and integral. Using (4.66)
the last equation equals

2K

Z
�1

�0

d� � max
�02[0,�]

� Z "1

"0

d✏
1

n1+✓(1 � �/n✓)

nX

i,j=1

E[h�i�ji� � h�ii�h�ji�]
����

�=�0

= 2Kn
1�✓

Z
�1

�0

d�
�

1 � �/n✓
max
�02[0,�]

� Z "1

"0

d✏E[h(Q1 � hQ1i�)2i�]
����

�=�0

 6K

n✓

Z
�1

�0

d�
�

1 � �/n✓
(4.107)

 3K(�21 � �
2
0)

n✓(1 � �1/n
✓)

where (4.107) follows from Lemma 4.9.



96 Sparse Censored Block Model

4.8.5 Existence of the optimal interpolation path: proof of
Lemma 4.8

For each n, we seek distributions x(t) 2 B for V
(t), t = 1, . . . , T which solve

equation (4.39). By symmetry between vertices EhQ1it,0;✏,0 = Eh�1it,0;✏,0 so the
equation becomes

E tanhV (t) = Eh�1it,0;✏,0. (4.108)

Recall that in our interpolation scheme the right hand side depends only on
{x(t0)}t0<t and is thus independent of x(t). Thus it su�ces to choose V

(t) for
t = 1, . . . , T as follows: V

(t) = +1 with probability Eh�1it,0;✏,0 and V
(t) = 0

with probability 1 � Eh�1it,0;✏,0. These are the distributions x̂(t)n 2 B of the

Lemma. It is clear that this solution is unique and x̂
(t)
n = E tanhV (t).

Finally, we verify dx̂
(t)
n /d✏ � 0. To simplify the notation we use h�i ⌘

h�it,0;✏,0 and h�i
⇠H̄

(t,0)
j

denotes h�it,0;✏,0 with H̄
(t,0)
j

set to 0. Recall the defini-

tion of E[✏̄(t,s)] in section 4.7.1. By the chain rule we have

dx̂
(t)

d✏
=

dE[✏̄(t,0)]
d✏

dEh�1it,0;✏,0
dE[✏̄(t,0)] . (4.109)

To compute the last derivative, first we use the identity e±x = (1±tanh x) cosh x
to write

Eh�1it,0;✏,0 = E
"heH̄

(t,0)
j (�j�1)

�1i
⇠H̄

(t,0)
j

heH̄
(t,0)
j (�j�1)i

⇠H̄
(t,0)
j

#
= E

"h�1i
⇠H̄

(t,0)
j

+ h�1�ji
⇠H̄

(t,0)
j

tanh H̄(t,0)
j

1 + h�ji
⇠H̄

(t,0)
j

tanh H̄(t,0)
j

#

= E[✏̄(t,0)
j

] · E
"h�1i

⇠H̄
(t,0)
j

+ h�1�ji
⇠H̄

(t,0)
j

1 + h�ji
⇠H̄

(t,0)
j

#
+ (1 � E[✏̄(t,0)

j
])Eh�1i

⇠H̄
(t,0)
j

.

Then it is straightforward to compute

dEh�1it,0;✏,0
dE[✏̄(t,0)] =

nX

j=1

dEh�1it,0;✏,0
dE[✏̄(t,0)

j
]

=
nX

j=1

E
"h�1�ji

⇠H̄
(t,0)
j

� h�1i
⇠H̄

(t,0)
j

h�ji
⇠H̄

(t,0)
j

1 + h�ji
⇠H̄

(t,0)
j

#
.

(4.110)

The second GKS inequality (1.10) ensures (4.110) non-negative, leaving the
sign of dx(t)

/d✏ determined by dE[✏̄(t,0)]/d✏. Using (4.57) and (4.59),

E[✏̄(1,0)]
d✏

= 1,

E[✏̄(t,0)]
d✏

=
1 � E[✏̄(t,0)]

1 � ✏
+ (1 � E[✏̄(t,0)])↵K(K � 1)(1 � q)

T

t�1X

t0=1

x̂
(t0)K�2dx̂

(t0)

d✏
.

This equation implies that the claim dx̂
(t)
/d✏ � 0 is true for t = 1 by direct

calculation. Then we also get the claim for t � 2 by induction.
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4.8.6 Derivatives of the conditional entropy: proof of
(4.60)–(4.65)

A large part of this appendix is an adaptation of [25, 69]. We recall that
ht,s;✏,� = n

�1E ln Z̄t,s;Ē where Z̄t,s;Ē is the partition function associated to the
hamiltonian (4.58). Therefore, as explained in section (4.7), the free entropy
only depends on (✏, �) through the combination (4.59), with an explicit de-
pendence as well as (possibly) an implicit one through the choice of x. To
alleviate the notations in this appendix we drop the subscripts t, s; Ē in the
Gibbs brackets.

Proof of (4.60)

Let H⇠i

t,s;Ē(�,J , H̄) be the Hamiltonian Ht,s;Ē(�,J , H̄) with H̄
(t,s)
i

= 0. Let

Z⇠i

t,s;Ē and h�i⇠i be the partition function and the Gibbs expectation associated

with H⇠i

t,s;Ē(�,J , H̄). The identities

ln

⇢Zt,s;Ē

Z⇠i

t,s;Ē

�
= lnheH̄

(t,s)
i (�i�1)i⇠i,

e
H̄

(t,s)
i (�i�1) =

1 + �i tanh H̄
(t,s)
i

1 + tanh H̄(t,s)
i

, (4.111)

imply

ht,s;✏,� =
1

n
E lnZ⇠i

t,s;Ē +
1

n
E ln

⇢
1 + h�ii⇠i tanh H̄

(t,s)
i

1 + tanh H̄(t,s)
i

�
. (4.112)

As tanh H̄(t,s)
i

and h�ii⇠i equal either 0 or 1, (4.112) simplifies to

ht,s;✏,� =
1

n
E lnZ⇠i

t,s;Ē � 1

n
E[✏̄(t,s)

i
] ln 2 (1 � Eh�ii⇠i) . (4.113)

Therefore, we have

d

dE[✏̄(t,s)]ht,s;✏,� =
nX

i=1

d

dE[✏̄(t,s)
i

]
ht,s;Ē

����
E[✏̄(t,s)1 ]=···=E[✏̄(t,s)n ]=E[✏̄(t,s)]

= � ln 2

n

nX

i=1

(1 � Eh�ii⇠i) , (4.114)

which is the first equality in (4.60).
To obtain the second equality, simply notice that as 1 � h�iit,s;✏,� = 0

when H̄
(t,s)
i

= +1 (which happens with probability ✏̄
(t,s)
i

). Performing the

expectation over H̄(t,s)
i

in the following expression we get

1 � Eh�iit,s;✏,� = E[1 � h�iit,s;✏,�]
= E[(1 � ✏̄

(t,s)
i

)(1 � Eh�ii⇠i) + ✏̄
(t,s)
i

(1 � Eh�ii
H̄

(t,s)
i =1

)]

= (1 � E[✏̄(t,s)])(1 � Eh�ii⇠i). (4.115)
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Replacing in (4.114) yields the second equality in (4.60).

Proof of (4.61)

Let H⇠i,j

t,s;Ē
(�,J , H̄) be the Hamiltonian Ht,s;Ē(�,J , H̄) with H̄

(t,s)
i

= H̄
(t,s)
j

=

0. Let Z⇠i,j

t,s;Ē
and h�i⇠i,j be the partition function and the Gibbs expectation

associated with H⇠i,j

t,s;Ē
(�,J , H̄). Also let t

(t,s)
i

⌘ tanh H̄(t,s)
i

. Using again

(4.111) on the identity

ln

⇢
Zt,s;✏,�

Z⇠i,j

t,s;Ē

�
= lnheH̄

(t,s)
i (�i�1)+H̄

(t,s)
j (�j�1)i⇠i,j,

we have

ht,s;Ē =
1

n
E lnZ⇠i,j

t,s;Ē
+

1

n
E ln

⇢
1 + h�ii⇠i,jt

(t,s)
i

+ h�ji⇠i,jt
(t,s)
j

+ h�i�ji⇠i,jt
(t,s)
i

t
(t,s)
j

1 + t
(t,s)
i

+ t
(t,s)
j

+ t
(t,s)
i

t
(t,s)
j

�

=
1

n
E lnZ⇠i,j

t,s;✏ +
E[✏̄(t,s)

i
]E[✏̄(t,s)

j
]

n
E ln

⇢
1 + h�ii⇠i,j + h�ji⇠i,j + h�i�ji⇠i,j

4

�

+
E[✏̄(t,s)

i
](1 � E[✏̄(t,s)

j
])

n
E ln

⇢
1 + h�ii⇠i,j

2

�

+
(1 � E[✏̄(t,s)

i
])E[✏̄(t,s)

j
]

n
E ln

⇢
1 + h�ji⇠i,j

2

�
, (4.116)

where (4.116) follows from taking the expectation over H̄(t,s)
i

and H̄
(t,s)
j

. From

(4.113) one can deduce that d
2

dE[✏̄(t,s)i ]2
ht,s;✏,� = 0. Therefore

d
2

dE[✏̄(t,s)]2ht,s;✏,� =
nX

i,j=1

d
2

dE[✏̄(t,s)
j

]dE[✏̄(t,s)
i

]
ht,s;Ē

����
✏1=···=✏n=✏

=
X

i 6=j

d
2

dE[✏̄(t,s)
j

]dE[✏̄(t,s)
i

]
ht,s;Ē

����
E[✏̄(t,s)i ]=···=E[✏̄(t,s)n ]=E[✏̄(t,s)]

.

The derivatives d
2

dE[✏̄(t,s)j ]dE[✏̄(t,s)i ]
ht,s;✏,� can be readily obtained from (4.116). This

provides

d
2

dE[✏̄(t,s)]2ht,s;✏,� =
1

n

X

i 6=j

E ln

⇢
1 + h�ii⇠i,j + h�ji⇠i,j + h�i�ji⇠i,j

1 + h�ii⇠i,j + h�ji⇠i,j + h�ii⇠i,jh�ji⇠i,j

�
.

(4.117)

We now simplify each term in the sum (4.117). Given that h�Si⇠i,j equals
either 0 or 1 for any subsets S ⇢ {1 . . . n}, one can verify that the numerator
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and denominator of (4.117) can be written as

ln
�
1 + h�ii⇠i,j + h�ji⇠i,j + h�i�ji⇠i,j

�
=
�
h�ii⇠i,j + h�ji⇠i,j + h�i�ji⇠i,j

�
ln 2

+
�
h�ii⇠i,jh�ji⇠i,j + h�ii⇠i,jh�i�ji⇠i,j + h�ji⇠i,jh�i�ji⇠i,j

��
ln 3 � 2 ln 2

�

+ h�ii⇠i,jh�ji⇠i,jh�i�ji⇠i,j

�
5 ln 2 � 3 ln 3

�
, (4.118)

and

ln
�
1 + h�ii⇠i,j + h�ji⇠i,j + h�ii⇠i,jh�ji⇠i,j

�
=
�
h�ii⇠i,j + h�ji⇠i,j

�
ln 2.

Special cases of the Nishimori identities (4.11),

E[h�ii⇠i,jh�ji⇠i,j] = E[h�ii⇠i,jh�ji⇠i,jh�i�ji⇠i,j],

E[h�ii⇠i,jh�i�ji⇠i,j] = E[h�ii⇠i,jh�ji⇠i,jh�i�ji⇠i,j],

E[h�ji⇠i,jh�i�ji⇠i,j] = E[h�ii⇠i,jh�ji⇠i,jh�i�ji⇠i,j],

can now be used to simplify (4.118) so that each term in the sum (4.117)
becomes

ln(2)E[h�i�ji⇠i,j � h�ii⇠i,jh�ji⇠i,j]. (4.119)

Moreover, as h�i�ji � h�iih�ji = 0 when H̄
(t,s)
i

and/or H̄
(t,s)
j

equal +1, we
obtain

E[h�i�ji � h�iih�ji] = (1 � E[✏̄(t,s)
i

])(1 � E[✏̄(t,s)
j

])E[h�i�ji⇠i,j � h�ii⇠i,jh�ji⇠i,j].
(4.120)

Finally, from (4.117), (4.119) and (4.120) we obtain (4.61).

Derivation of (4.62) and (4.63)

The derivation of (4.62) is the same as Sec. 4.8.6 except that the steps should be

done on H̃i instead of H̄(t,s)
i

. The derivation of (4.62) is the same as Sec. 4.8.6

except that the steps should be done on H̃i, H̃j instead of H̄(t,s)
i

, H̄
(t,s)
j

.

Proof of (4.64) and (4.65)

For x(✏) independent of �, from (4.59) we have

dE[✏̄(t,s)]
d�

=
1

n✓
(1 � ✏)e�

K
RT (sx̃t+

Pt�1
t0=1

x̃
t0 ) =

1 � E[✏̄(t,s)]
n✓ � �

and
d
2E[✏̄(t,s)]
d�2

= 0.

Together with (4.60) and (4.61) we can immediately derive

d

d�
ht,s;✏,� =

dE[✏̄(t,s)]
d�

dht,s;✏,�

dE[✏̄(t,s)] = � ln 2

n1+✓(1 � �/n✓)

nX

i=1

(1 � Eh�iit,s;✏,�)

d
2

d�2
ht,s;✏ =

d

d�

✓
dE[✏̄(t,s)]

d�

dht,s;✏,�

dE[✏̄(t,s)]

◆
=

✓
dE[✏̄(t,s)]

d�

◆2
d
2
ht,s;✏,�

dE[✏̄(t,s)]2 +
d
2E[✏̄(t,s)]
d�2

dht,s;✏,�

dE[✏̄(t,s)]

=
ln 2

n1+2✓(1 � �/n✓)2

X

i 6=j

E[h�i�jit,s;✏,� � h�iit,s;✏,�h�jit,s;✏,�].
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The first equality of (4.64) follows from applying the same argument in (4.115)
to H̃i.

Proof of (4.66)

We rearrange (4.64) to obtain

1

n

nX

i=1

Eh�iit,s;✏,� =
n
✓(1 � �/n

✓)

ln 2

d

d�
ht,s;✏,�. (4.121)

Then using (4.64) and (4.65) we have

d

d�

� 1
n

nX

i=1

Eh�iit,s;✏,�
�
=

n
✓(1 � �/n

✓)

ln 2

d
2

d�2
ht,s;✏,� � 1

ln 2

d

d�
ht,s;✏,�

=
1

n1+✓(1 � �/n✓)

�X

i 6=j

E[h�i�jit,s;✏,� � h�iit,s;✏,�h�jit,s;✏,�] �
nX

i=1

(1 � Eh�iit,s;✏,�)
�

=
1

n1+✓(1 � �/n✓)

nX

i,j=1

E[h�i�jit,s;✏,� � h�iit,s;✏,�h�jit,s;✏,�]

where the last equality uses one of the Nishimori identities (4.11), namely
Eh�ii = E[h�ii2].

4.8.7 Concentration of free entropy

Let J collect both the realization of J and the graph realization of all the
factor nodes carrying elements in J . Let U collect both the realization of U
and the graph realization of all the half edges carrying elements in U . The
proof of Lemma 4.12 can be decomposed into the following three lemmas. We
stress that the three Lemmas 4.16, 4.17 and 4.18 are valid under the condition
that J ,U are non-negative such that we can make use of the consequence
h�Sit,s;✏,� � 0 where S is any subset of {1, . . . , n}. Finally recall definitions
(4.22) and (4.23).

Lemma 4.16 (Concentration w.r.t. H). For any s, ✏, � all in [0, 1], t =
1, . . . , T , ⌫ > 0 and any realization H we have

P(|Ht,s;✏,� � EHHt,s;✏,�| � ⌫/3)  2 exp
⇣

� 2n⌫2

(3 ln 2)2

⌘
. (4.122)

Lemma 4.17 (Concentration w.r.t. J ). For any s, ✏, � all in [0, 1], t =
1, . . . , T , ⌫ > 0 and any realization J there exists a constant C1 > 0 such
that

P(|EHHt,s;✏,� � EH,JHt,s;✏,�| � ⌫/3)  3 exp(�n⌫
2
C1). (4.123)
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Lemma 4.18 (Concentration w.r.t. U). For any s, ✏, � all in [0, 1], t =
1, . . . , T , ⌫ > 0 and any realization U there exists a constant C2 > 0 such
that

P(|EH,JHt,s;✏,� � ht,s;✏,�| � ⌫/3)  3 exp(�n⌫
2
C2). (4.124)

Lemmas 4.16 to 4.18 are consequences of McDiarmid’s inequality, which
states that if X1, . . . , XN are independent variables and g is a function satis-
fying the bounded di↵erence property

|g(x1, . . . , xi, . . . , xN) � g(x1, . . . , x
0

i
, . . . , xN)|  di 8 i = 1, . . . , N

then for any ⌫ > 0 we have

P(|g(X) � EXg(X)| � ⌫)  2 exp
⇣

� 2⌫2
P

N

i=1 d
2
i

⌘
.

We provide the proof of those three lemmas at the end of this section.
From the triangle inequality and the union bound we have

P(|Ht,s;✏,� � ht,s;✏,�| � ⌫)  P(|Ht,s;✏,� � EHHt,s;✏,�| � ⌫/3)

+ P(|EHHt,s;✏,� � EH,JHt,s;✏,�| � ⌫/3)

+ P(|EH,JHt,s;✏,� � ht,s;✏,�]| � ⌫/3). (4.125)

From (4.122), (4.123), (4.124)

P(|Ht,s;✏,� � ht,s;✏,�| � ⌫)  8 exp(�n⌫
2
C0). (4.126)

where C0 ⌘ min{ 2
(3 ln 2)2 , C1, C2}. Let D ⌘ |Ht,s;✏,� � ht,s;✏,�|. We have

Z
1

0

d⌫ ⌫P(D � ⌫) =

Z
1

0

d⌫ ⌫ EDI(D � ⌫) = ED

Z
1

0

d⌫ ⌫ I(D � ⌫)

= ED

Z
D

0

d⌫ ⌫ =
1

2
ED[D

2]. (4.127)

Substituting (4.126) into (4.127), we have the required bound for Lemma 4.12
with C = 8/C0:

E
⇥
(Ht,s;✏,� � ht,s;✏,�)

2
⇤
= 2

Z
1

0

d⌫ ⌫P (|Ht,s;✏,� � ht,s;✏,�| � ⌫)

 16

Z
1

0

d⌫ ⌫ e
�n⌫

2
C0 =

C

n
.
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Proof of Lemma 4.16

Consider g(H1, . . . , Hn) ⌘ Ht,s;✏,� with Hi 2 {0,1} (note that Ht,s;✏,� given by

(4.23) is already averaged over fH , but not over H). As for all i = 1, . . . , n
the function g satisfies

|g(H1, . . . , Hi, . . . , Hn) � g(H1, . . . , H
0

i
, . . . , Hn)| =

���
1

n
E

H̃
lnheHi(�i�1)it,s;✏,�

���

=
���
1

n
E

H̃
ln(1 + h�iit,s;✏,� tanhHi) � 1

n
E

H̃
ln(1 + tanhHi)

���

 ln 2

n
.

McDiarmid’s inequality immediately gives the lemma.

Proof of Lemma 4.17

Let |J | be the number of components of the vector J . From the construction of
Gt,s in Sec. 4.4.1, we have E[|J |] = ↵n

T
(T�t+1�s)  ↵n. Setmmax = (1+�)↵n

for � > 0. The probability of the event |J | > mmax can be bounded by a
relaxed form of the Cherno↵ bound as follows.

Lemma 4.19 (Cherno↵ bound, [74, Theorem 4.4]). Let X =
P

N

i=1 Xi where
Xi = 1 with probability pi and Xi = 0 with probability 1 � pi, and all Xi are
independent. Let µ = E[X] =

P
N

i=1 pi. Then for all � > 0

P(X > (1 + �)µ)  exp
⇣

� µ

3
min{�, �2}

⌘
.

By the Cherno↵ bound we have

P(|J | > mmax)  exp
⇣

� ↵n

3
min{�, �2}

⌘
. (4.128)

Conditioned on |J |  mmax, we can have the representation J = (c1, . . . , cmmax)
where for a = 1, . . . ,mmax the profile ca ⌘ (Aa, Ja) encodes that a factor node
with weight Ja is connected to a K-tuple identified by Aa. For m < a  mmax

we denote ca = (;, 0).
Now consider g(c1, . . . , cmmax) ⌘ EHHt,s;✏,� and pick a ca for a given a. Let

c
0

a
⌘
�
A

0

a
, J

0

a

�
be a new profile with either Aa 6= A

0

a
or Ja 6= J

0

a
. Also let

c
00

a
⌘ (Aa, 0) and c

000

a
⌘ (A0

a
, 0). Note that

g(c1, . . . , c
00

a
, . . . , cmmax) = g(c1, . . . , c

000

a
, . . . , cmmax).
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We then have

|g(c1, . . . , ca, . . . , cmmax) � g(c1, . . . , c
0

a
, . . . , cmmax)|

= |g(c1, . . . , ca, . . . , cmmax) � g(c1, . . . , c
00

a
, . . . , cmmax)

+ g(c1, . . . , c
000

a
, . . . , cmmax) � g(c1, . . . , c

0

a
, . . . , cmmax)|

 |g(c1, . . . , ca, . . . , cmmax) � g(c1, . . . , c
00

a
, . . . , cmmax)|

+ |g(c1, . . . , c000a , . . . , cmmax) � g(c1, . . . , c
0

a
, . . . , cmmax)|

=
���
1

n
E

H̃,H
lnheJa(�Aa�1)it,s;✏,�

���+
���
1

n
E

H̃,H
lnheJ

0
a(�A0

a
�1)it,s;✏,�

���

=
���
1

n
E

H̃,H
ln(1 + h�Aait,s;✏,� tanh Ja) � 1

n
E

H̃,H
ln(1 + tanh Ja)

���

+
���
1

n
E

H̃,H
ln(1 + h�A0

a
it,s;✏,� tanh J 0

a
) � 1

n
E

H̃,H
ln(1 + tanh J 0

a
)
���

 2 ln 2

n

This allows the use of McDiarmid’s inequality to obtain

P(|EHHt,s;✏,� � EH,JHt,s;✏,�| � ⌫/3 | |J |  mmax)  2 exp
⇣

� n⌫
2

18↵(ln 2)2

⌘
.

(4.129)

Finally, we take the union bound based on (4.128) and (4.129):

P(|EHHt,s;✏,� � EH,JHt,s;✏,�| � ⌫/3)

 2 exp
⇣

� n⌫
2

18↵(ln 2)2

⌘
+ exp

⇣
� ↵n

3
min{�, �2}

⌘
.

Choosing ⌫2 = min{�, �2} and C1 = min{ 1
18↵(ln 2)2 ,

↵

3 }, we obtain the lemma.

Proof of Lemma 4.18

This proof can adopt the same presentation as in the proof of Lemma 4.17 by
noting that in the construction of Gt,s the Poisson process of adding half edges

with weight U (t0)
a!i

can be rephrased as follows:

1. (Create all the messages without specifying their location): We draw the

random numbers e(t
0)

i
, e(t)

i,s
and create the associated number of copies of

U
(t0) for t0 = 1, . . . , t. We collect all U (t0) to form a set {Uk}w

k=1, where w
follows a Poisson distribution with mean n↵K

T
(t � 1 + s)  n↵K.

2. (Specify the location of the messages): Given the number w and the
set {Uk}, we attach each Uk to variable node i chosen randomly and
uniformly.
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Let wmax = (1+ �)n↵K. The Cherno↵ bound (Lemma 4.19) provides that

P(w > wmax)  exp
⇣

� n↵K

3
min{�, �2}

⌘
. (4.130)

Conditioned on w  wmax, we have the representation U = (u1, . . . , uwmax)
where for k = 1, . . . , wmax the profile uk = (ik, Uk) represents that a half edge
with weight Uk is connected to variable node ik. For w < k  wmax we denote
uk = (;, 0).

Now consider g(u1, . . . , ummax) ⌘ EH,Jht,s;✏,� and pick any uk. Let u
0

k
⌘

(i0
k
, Uk) be a new profile with either ik 6= i

0

k
or Uk 6= U

0

k
. Also let u00

k
= (ik, 0)

and u
00

k
= (i0

k
, 0). Note that g(u1, . . . , u

00

k
, . . . , ummax) = g(u1, . . . , u

000

k
, . . . , uwmax).

We then have

|g(u1, . . . , uk, . . . , uwmax) � g(u1, . . . , u
0

k
, . . . , uwmax)|

= |g(u1, . . . , uk, . . . , uwmax) � g(u1, . . . , u
00

k
, . . . , uwmax)

+ g(u1, . . . , u
000

k
, . . . , uwmax) � g(u1, . . . , u

0

k
, . . . , uwmax)|

 |g(u1, . . . , uk, . . . , uwmax) � g(u1, . . . , u
00

k
, . . . , uwmax)|

+ |g(u1, . . . , u
000

k
, . . . , uwmax) � g(u1, . . . , u

0

k
, . . . , uwmax)|

=
���
1

n
E

H̃,H,J
lnheUk(�ik

�1)it,s;✏,�
���+
���
1

n
E

H̃,H,J
lnheU

0
k(�i0

k
�1)it,s;✏,�

���

=
���
1

n
E

H̃,H,J
ln(1 + h�ikit,s;✏,� tanhUk) � 1

n
E

H̃,H,J
ln(1 + tanhUk)

���

+
���
1

n
E

H̃,H,J
ln(1 + h�i0kit,s;✏,� tanhU

0

k
) � 1

n
E

H̃,H,J
ln(1 + tanhU 0

k
)
���

 2 ln 2

n
.

McDiarmid’s inequality is then used to obtain

P(|EH,JHt,s;✏,� � ht,s;✏,�| � ⌫/3
�� w  wmax)  2 exp

⇣
� n⌫

2

18(ln 2)2↵K

⌘
.

(4.131)

Finally, we take the union bound based on (4.130) and (4.131):

P(|EH,JHt,s;✏,� � ht,s;✏,�]| � ⌫/3)

 2 exp
⇣

� n⌫
2

18(ln 2)2↵K

⌘
+ exp

⇣
� n↵K

3
min{�, �2}

⌘
.

Choosing ⌫2 = min{�, �2} and C2 = min{ R

18(ln 2)2K ,
K

3R}, we obtain the lemma.

4.8.8 Illustration of the replica formula

Recall that the distribution of V is denoted by x = x�0+(1�x)�1, x 2 [0, 1].
From (4.4) the distribution of U is x̃ = x̃�0 + (1 � x̃)�1 where x̃ = 1 � (1 �
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Figure 4.2 – Illustration of hRS(x) with K = 3 and ↵ = 1/5. (Left) hRS(x)
as a function of x for q = 0, 0.1, 0.2, . . . , 0.9. hRS(x) increases with q when x

is fixed. Circles locate the maximum of hRS(x) for every q. (Right) The first
order phase transition for x⇤(q) = argmaxx hRS(x) as a function of q

q)(1 � x)K�1 2 [0, 1]. The first term of (4.5) can be simplified as

E ln
⇣ lY

B=1

(1 + tanhUB) +
lY

B=1

(1 � tanhUB)
⌘

= ElEU

h
l ln(1 + tanhU)

i
+ ElEU ln

⇣
1 +

lY

B=1

1 � tanhUB

1 + tanhUB

⌘

= El

⇥
l
⇤
(1 � x̃) ln 2 + El

⇥
x̃
l
⇤
ln 2

= ↵K(1 � q)(1 � x)K�1 ln 2 + e
�↵K(1�q)(1�x)K�1

ln 2

The remaining terms of (4.5) can also be simplified straightforwardly. Even-
tually, for BEC we can write (4.5) with a scalar expression:

hRS(x) = (ln 2)
⇥
e
�↵K(1�q)(1�x)K�1

+ ↵K(1 � q)(1 � x)K�1

� ↵(K � 1)(1 � q)(1 � x)K � ↵(1 � q)
⇤

We have illustrated hRS(x) with K = 3 and ↵ = 1/5 in Fig. 4.2.





Multi-overlaps for
Ferromagnetic Spin
Models on Sparse Graphs 5
5.1 Introduction

The adaptive interpolation for sparse graphs (developed in Chapter 4) shows
that the sum rule involves a sequence of overlap parameters {Qp : p � 1}.
This is in contrast to the dense graphs, where only the lowest order overlaps
are involved. Concentration of total fluctuation in the form Eh(Qp �EhQpi)2i
is critically required for the adaptive interpolation to fully validate the replica
symmetric formula. The control for p � 2 sets a new challenge. Thanks to
Lemma 4.4, the binary erasure channel is a special case where the overlaps Qp

for all p � 1 are the same and thus only Q1 matters. Therefore, Lemma 4.6
(full concentration of Q1) su�ces to complete the proof in Sec. 4.4.4. How to
generalize Lemma 4.6 for p � 1 and for other channels in an inference setting
remains an open problem. Therefore, we shall return to the origin in physics
and consider even simpler models for inspiration and future progress.

Spin models in physics have the same notion of overlaps. For a system
with binary spins �i 2 {�1,+1}, i = 1, . . . , n, the overlap parameters are gen-

erally defined as Qp ⌘ 1
n

P
n

i=1 �
(1)
i
�
(2)
i

. . . �
(p)
i

where p � 1 is an integer and

(�(↵)
i

)↵=1,...,p
i=1,...,n are distributed according to the replicated Gibbs distribution, in

other words the product of p copies of the Gibbs distribution. It is known
folklore that for “mean-field” spin models the concentration of the overlaps
is an important ingredient for the validity of a replica symmetric expression
for the free energy if it exists. However, to our knowledge, there is no direct
logical implication that has been mathematically settled in a clear way. In
[75], the authors show (for models on complete graphs) that if the free energy
is not given by a replica symmetric expression then the overlaps cannot con-
centrate. Also, the Guerra-Toninelli interpolation method [76, 77, 78] makes
it clear that if the free energy is not replica symmetric then the overlaps of an
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“interpolated model” cannot concentrate. The Ghirlanda-Guerra identities in
[79] provide a way to show the concentration of Q1 or Q2 for any spin model
under a suitable perturbation. This is further explained in [80, 81, 82]. In
[83, 84, 85, 86], non-trivial constraints analogous to the Aizenman-Contucci
identities and Ghirlanda-Guerra identities [87] are derived for all overlaps of
sparse models. But one cannot deduce their concentration from these con-
straints alone (nevertheless some of the techniques used in the present chapter
are inspired from these works).

In this chapter, our main interest is the study of fluctuations and concen-
tration properties of all overlaps {Qp, p � 1} for the ferromagnetic spin models
on sparse random hypergraphs (typically of Erdős-Rényi type). We distinguish
two types of fluctuations, namely, the thermal ones and those with respect to
the disorder, informally measured by the two quantities

Eh(Qp � hQpi)2i and E[(hQpi � EhQpi)2].

Adding these two fluctuations one finds the total fluctuations

Eh(Qp � EhQpi)2i.

Our main result states that both types of fluctuations vanish in the thermo-
dynamic limit for all temperatures. For this result to hold at all temperatures,
we must add suitable “infinitesimal” one-body perturbations to the Hamilto-
nian1. Indeed, concentration may hold only within a “pure state”2, and it is
well known that one should add suitable perturbations in order to select pure
states (that may coexist at low temperatures).

We would like to stress that, for disordered systems, the nature of the per-
turbation that one should add is not always clear. For example, all multi-spin
infinitesimal interactions are sometimes added to the two-body Sherrington-
Kirkpatrick Hamiltonian, and it is perhaps not so clear what the physical
interpretation of such perturbations is [88]. Here, we limit ourselves to sim-
ple one-body perturbations that can physically be interpreted as infinitesimal
external magnetic fields.

To the best of our knowledge, this is the first time a concentration result is
established for all overlaps {Qp, p � 1} in a dilute disordered spin model for all
temperatures. Examples of models that are covered by our results are the pure
and mixed K-spin ferromagnets on random sparse Erdős-Rényi hypergraphs.
With minor adjustments in the formulation of the models, we can also cover
ferromagnets on dense graphs. The coupling constants are ferromagnetic and
this allows the use of the Gri�th-Kelly-Sherman (GKS) inequality which plays
an important role in our analysis.

1By infinitesimal perturbations we mean perturbations that do not change the ther-
modynamic limit of the free energy when we take the limit of zero perturbation after the
thermodynamic limit.

2Recall the Curie-Weiss model introduced in Sec. 1.3. Without the external field h, the
magnetization can be in di↵erent “pure states” at low temperatures.
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In Section 5.2, we formulate the models and state our main theorems. The
proofs are found in Section 5.3. The appendices contain technical intermediate
results.

5.2 Ferromagnetic spin models and overlap
concentration

Consider a collection of n binary spins �i 2 {�1, 1}, i = 1, . . . , n. For any
subset A ⇢ {1, . . . , n} we denote �A =

Q
i2A

�i. A generic ferromagnetic spin
system has Hamiltonian

H0(�) ⌘ �
X

A⇢{1,...,n}

JA�A (5.1)

where JA � 0 and the sum runs over all possible 2n subsets of {1, . . . , n}. The
only subsets of spins that truly participate in the interactions are of course
those for which JA > 0. The random models that we consider have indepen-
dently distributed coupling constants JA, A ⇢ {1, . . . , n}, with distribution
supported on R�0. As said in the introduction our main interest is in sparse
systems, a typical example of which is given below.

The thermodynamic potential of interest is the free energy

Fn ⌘ � 1

n
lnZ = � 1

n
ln

X

�2{±1}n

exp(�H0(�))

where Z is the partition function of the model. The average free energy is
defined as fn ⌘ EFn where E is the expectation over all the coupling constants.
For models of physical interest one expects that Fn concentrates over fn. Our
theorems on overlap concentration stated below are formulated in a generic
setting and hold as long as the concentration of the free energy holds:

E[(Fn � fn)
2]  CF

n
(5.2)

for CF > 0 a constant independent of n. In Appendix 5.4.3 we verify by
standard arguments that the following simple condition implies (5.2) (we do
not need JA � 0 for this implication, see Proposition 5.1):

Condition 5.1. We assume that JA, A ⇢ {1, . . . , n} are independent random
variables with finite second moment and such that

P
A⇢{1,...,n} Var(JA)  CFn

for a numerical constant CF > 0 independent of n.

Models of physical interest also have a well-defined thermodynamic limit
for fn. This requires a little bit more structure on the distribution of the
couplings JA and will not be used (see [89, 90] for proofs of the existence of such
limits). For completeness we give a simple hypothesis and standard argument



110 Multi-overlaps for Ferromagnetic Spin Models on Sparse Graphs

in Appendix 5.4.3 that guarantees the existence of the thermodynamic limit
in the case of ferromagnetic models (see Proposition 5.2).

Let us give a canonical example of ferromagnetic spin system on a sparse
random graph where Condition 5.1 is satisfied as well as the existence of the
thermodynamic limit of the free energy. Note that our results also cover dense
graph systems as long as JA are suitably rescaled with n so that Condition 5.1
is met.

Example 5.1 (K-spin models on the Erdős-Rényi hypergraph). A sparse fer-
romagnetic K-spin model with coupling strength J > 0 and magnetic field
H > 0 can be constructed as follows. For all subsets A ⇢ {1, . . . , n} with
cardinalities di↵erent from 1 and K set JA = 0. For all A such that |A| = 1
set JA = H. In other words the Hamiltonian contains the one-body term
�H

P
n

i=1 �i. For all subsets with |A| = K take for JA Bernoulli random vari-
ables with P(JA = J) = �n/

�
n

K

�
and P(JA = 0) = 1 � �n/

�
n

K

�
where � > 0.

The Hamiltonian thus contains on average of the order of �n interaction terms
of the form �J�a1�a2 . . . �aK where ai, i = 1, . . . , K are chosen uniformly at
random in {1, . . . , n} without repetition.

This model can be generalized to mixed K-spin models as follows: Fix H >

0, J2, . . . , JK⇤ > 0, �2, . . . , �K⇤ > 0. Let k = 2, . . . , K⇤. We then draw
Bernoulli random variables for the couplings of subsets with cardinality |A| =
k such that P(JA = Jk) = �kn/

�
n

k

�
and P(JA = 0) = 1 � �kn/

�
n

k

�
. And

again of course JA = H for A such that |A| = 1 and JA = 0 if instead
|A| 6= 1, 2, . . . , K⇤. These models are generalizations of the Ising two-body
ferromagnet on a standard Erdős-Rényi random graph. In Appendix 5.4.3 we
verify that Condition 5.1 is satisfied so that Fn concentrates on fn, and also
that the thermodynamic limit of fn exists.

Any observable is a linear combination over subsets T ⇢ {1, . . . , n} of
�T ⌘

Q
i2T

�i and their Gibbs expectation is denoted by

h�T i ⌘ 1

Z
X

�2{±1}n

�T exp(�H0(�)) .

The crucial property of ferromagnetic models that will be instrumental in our
analysis are the Gri�ths-Kelly-Sherman (GKS) correlation inequalities (1.9)
and (1.10).

Themulti-overlaps (simply called overlaps) are defined for any integer p � 1
as

Qp ⌘ 1

n

nX

i=1

�
(1)
i

· · · �(p) (5.3)

where {�(↵)
,↵ = 1, . . . , p} is a set of p replicas of the spin configurations drawn

according to the p-fold tensor product of the Gibbs measure. We emphasize
that in this work the replicas are always uncoupled and i.i.d.. The Gibbs
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average w.r.t. the tensor product Gibbs measure is still indicated as h�i.
Note that

hQpi =
1

n

nX

i=1

h�(1)
i

· · · �(p)i = 1

n

nX

i=1

h�iip, p � 1 .

It is well known that concentration results for overlaps generally require the
addition of small perturbation terms whose role is to select “pure states”. With
suitable such perturbations, and under a suitable concentration hypothesis for
the free energy (of the perturbed model) we show that for large n: i) For any
instance of the random model (i.e. of the quenched disorder) Qp concentrates
over hQpi; and ii) hQpi concentrates over EhQpi. These two concentration
properties imply that overall Qp concentrates on EhQpi. One then expects
that the free energy is given by the replica symmetric formula but this is still
an open problem.

We consider one-body perturbation terms Hpert(�) added to the generic
Hamiltonian (5.1):

Hpert(�) ⌘ �h0

nX

i=1

�i � h1

nX

i=1

⌧i�i (5.4)

with h0 2 [0, 1], h1 2 [0, 1], ⌧i ⇠ Poi(↵n✓�1) i.i.d. for i = 1, . . . , n and
↵ 2 [0, 1], ✓ 2

�
1/2, 7/8]. The first part of the perturbation, proportional to h0,

is called homogeneous perturbation while the second part proportional to h1 is
called Poisson perturbation. Both are purely ferromagnetic such that the GKS

inequalities remain valid. Note that in distribution h1

P
n

i=1 ⌧i�i
d
= h1

P�
v=1 �iv

where � ⇠ Poi(↵n✓) and iv is randomly and uniformly chosen from {1, . . . , n}.
While this second expression might seem more natural, the first equivalent
expression allows a more compact notation in our analysis. We associate to
the total Hamiltonian (5.1) + (5.4), i.e.

H(�) ⌘ H0(�) + Hpert(�) , (5.5)

its partition function Zh0,h1,↵, Gibbs expectation h�ih0,h1,↵, free energy

Fn(h0, h1,↵) ⌘ � 1

n
lnZh0,h1,↵

and average free energy fn(h0, h1,↵) ⌘ EFn(h0, h1,↵) defined similarly as be-
fore with H0 replaced by H. Here E is the expectation over all quenched vari-
ables, i.e., JA, A ⇢ {1, . . . , n} and ⌧ = (⌧1, . . . , ⌧n). An elementary argument
shows that the perturbation does not modify the thermodynamic properties
as long as h0 ! 0+ (↵ can be taken fixed). More precisely in Appendix 5.4.1
we show

|fn(h0, h1,↵) � fn(0, 0, 0)|  h0 +
↵h1

n1�✓
. (5.6)
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In particular, limh0!0+ limn!+1 |fn(h0, h1,↵) � fn| = 0. Note also that the
pressure associated with the perturbed Hamiltonian satisfies the concentration
requirement (5.2) as soon as the unperturbed one does.

We can now state the main concentration results. From now on, in the rest
of the paper it is understood that n is always large enough.

Theorem 5.1 (Thermal concentration of the overlaps). Assume the Hamil-
tonian H given by (5.5) satisfies h�i�ji � h�iih�ji � 0 for all i, j = 1, . . . , n.
Then for any [h, h̄] ⇢ (0, 1), h1 2 [0, 1], ↵ 2 [0, 1], we have for any instance of
the random Hamiltonian

Z
h̄

h

dh0

⌦�
Qp � hQpih0,h1,↵

�2↵
h0,h1,↵

 2p

n
.

The next two results use the concentration of the free energy (5.2) for the
total Hamiltonian (5.5). This holds under Condition 5.1 and the constant CF

can easily be made independent of h0, h1,↵.

Theorem 5.2 (Total concentration of the magnetization/first overlap). As-
sume the Hamiltonian H given by (5.5) satisfies h�i�ji � h�iih�ji � 0 for
all i, j = 1, . . . , n and assume also that Condition 5.1 holds. Then for any
[h, h̄] ⇢ (0, 1), h1 2 [0, 1], ↵ 2 [0, 1] we have

Z
h̄

h

dh0 E
⌦�
Q1 � EhQ1ih0,h1,↵

�2↵
h0,h1,↵

 15CF + 40

n1/3
.

Remark: Let us make a few remarks about these two theorems. First of all,
the Poisson perturbation is not needed and we can set h1 = ↵ = 0. Second,
when both GKS inequalities hold 2p/n can be replaced by p/n in Theorem
5.1 as it will become clear from the proof. More interestingly: Assuming only
h�i�ji � h�iih�ji � 0 is weaker than assuming both GKS inequalities and
even weaker than assuming only the second one. This assumption is satisfied
(for example) for all Hamiltonians satisfying the Fortuin-Kasteleyn-Ginibre
(FKG) inequality. An example is JA � 0 except for one-body terms (magnetic
fields) that may have arbitrary sign. So in particular, Theorems 5.1 and 5.2
cover the random field Ising model (RFIM). Another example is strong enough
ferromagnetic two-body terms and any sign for magnetic fields and higher order
interactions.

The next theorem assumes both GKS inequalities and its extension to
systems satisfying only FKG is an open problem. It would be of interest
to extend this theorem to the RFIM. Moreover, both the homogeneous and
Poisson perturbations play an important role in the proof.

Theorem 5.3 (Total concentration of the overlaps). Assume the Hamiltonian
H given by (5.5) satisfies both GKS inequalities (in other words assume all
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JA � 0) and also that Condition 5.1 holds. Then for any [h, h̄] ⇢ (0, 1),
[↵, ↵̄] ⇢ (0, 1), h1 2 (0, 1] and ✓ 2 (1/2, 7/8] we have

Z
h̄

h

dh0

Z
↵̄

↵

d↵E
⌦�
Qp � EhQpih0,h1,↵

�2↵
h0,h1,↵

 4p2

(tanhh1)p

p
15CF + 40

n(✓�1/2)/3
.

The bound yields a decay O(n�1/8) for ✓ = 7/8. Also note that the prefac-
tor on the r.h.s. grows exponentially fast with k. The details of the proof show
that a slowly growing h1 can be accommodated and we can take h1 = O(lnn)
to mitigate this growth.

5.3 Proofs of concentrations for the overlaps

The main aim of this section is to prove Theorem 5.3. The proof is generic
and essentially requires only two ingredients: i) That the Hamiltonian H given
by (5.5) is purely ferromagnetic so that the two GKS inequalities, (1.9) and
(1.10) are verified; ii) the free energy of the perturbed model concentrates in
the sense of (5.2). In the process we also obtain the proofs of Theorems 5.1
and 5.2.

To ease the notations in this section we do not indicate explicitly the ar-
guments h0, h1, ↵ in the Gibbs brackets and free energy.

5.3.1 Preliminary remarks

Theorem 5.3 will be a consequence of the individual control of three types of
overlap fluctuations. One can verify by expanding the squares that the total
overlaps fluctuations can be decomposed as

E
⌦
(Qp � EhQpi)2

↵
= E

⌦�
Qp � hQpi

�2↵
+ E

⇥�
hQpi � E⌧ hQpi

�2⇤

+ E
⇥�
E⌧ hQpi � EhQpi

�2⇤
. (5.7)

The first type of fluctuations are purely thermal fluctuations and are controlled
in Theorem 5.1 thanks to the homogeneous part of the perturbation in (5.4);
for the analysis of these fluctuations the Poisson perturbation can be dropped.
The last two terms are the disorder fluctuations due to the quenched vari-
ables. Their control requires the Poisson perturbation3. The second term are
fluctuations directly related to the Poisson perturbation itself, called Poisson
fluctuations, and is controlled by Lemma 5.2. Here, E⌧ is the expectation with
respect to the Poisson random variables ⌧ , with ⌧i ⇠ Poi(↵n✓�1) i.i.d. for
i = 1, . . . , n. The third term are the fluctuations due to all other quenched
couplings in the unperturbed Hamiltonian and is controlled by Lemma 5.6. In
Section 5.3.6 we show how to combine all these concentration results in order
to obtain Theorem 5.3.

3It is an open problem to assess if these can be dropped and the fluctuations controlled
only thanks to the homogeneous perturbation.
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5.3.2 Thermal fluctuations of overlaps: proof of Theorem
5.1

We start by considering the thermal fluctuations for a fixed realization of
quenched variables. Note that

dFn

dh0
= � 1

n

nX

i=1

h�ii = �hQ1i , (5.8)

1

n

d
2
Fn

dh
2
0

= � 1

n2

nX

i,j=1

(h�i�ji � h�iih�ji) = �
⌦
(Q1 � hQ1i)2

↵
. (5.9)

The second identity shows that the free energy Fn, as well as its expectation
fn, are concave in h0 (a generic fact in statistical mechanics models).

By the definition (5.3) of Qp we have
⌦
(Qp � hQpi)2

↵
= hQ2

p
i � hQpi2

=
1

n2

nX

i,j=1

(h�i�jip � h�iiph�jip)

=
1

n2

nX

i,j=1

(h�i�ji � h�iih�ji)
p�1X

l=0

h�i�jip�1�lh�iilh�jil . (5.10)

Using h�i�ji � h�iih�ji � 0 for all i, j = 1, . . . , n and the triangle inequality,
(5.10) is upper bounded as

⌦
(Qp � hQpi)2

↵
 p

n2

nX

i,j=1

(h�i�ji � h�iih�ji) .

Hence, integrating this inequality over h0 2 [h, h̄] and using (5.9) we have
Z

h̄

h

dh0

⌦
(Qp � hQpi)2

↵
 �p

Z
h̄

h

dh0
1

n

d
2
Fn

dh
2
0

=
p

n
[hQ1i]h0=h̄

h0=h
 2p

n
.

Note that if the first GKS inequality also holds then hQ1i � 0. Therefore,

0  [hQ1i]h0=h̄

h0=h
 1,

and 2p/n becomes p/n. ⇤

5.3.3 Disorder fluctuations of the magnetization

Before considering the concentration of general overlaps we need to control
the quenched fluctuations of the first overlap Q1, that is the magnetization.
Indeed, our proof of the concentration of the overlaps w.r.t. the quenched
variables in Section 5.3.5 is based on an induction argument where the induc-
tion is on the order p of the overlaps Qp, and the following lemma will serve
as the base case for the induction. In order to control these fluctuations the
homogeneous perturbation alone is again su�cient.
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Lemma 5.1 (Concentration of the magnetization w.r.t. the quenched disor-
der). Assume that Condition 5.1 holds. Then for any [h, h̄] ⇢ (0, 1) we have

Z
h̄

h

dh0 E
⇥
(hQ1i � EhQ1i)2

⇤
 15CF + 40

n1/3
.

Remark: There is no need to assume JA � 0 here. So this lemma holds
generally even if GKS or FKG inequalities do not hold.
Remark: Combining Theorem 5.1 and Lemma 5.1 yields Theorem 5.2.

Proof. Below it will be convenient to indicate explicitly the h0 dependence in
the free energy. Recall fn(h0) = E fn(h0). From (5.9) we have

hQ1i � EhQ1i =
dfn(h0)

dh0
� dFn(h0)

dh0
.

Since Fn and fn are concave in h0 as seen from (5.9), we can use Lemma 3.12
to obtain

|hQ1i � EhQ1i|  �
�1

X

u2{h0��,�,h0+�}

|Fn(u) � fn(u)| + C
+
�
(h0) + C

�

�
(h0)

where
(

C
+
�
(h0) ⌘ dfn(h0)

dh0
� dfn(h0+�)

dh0
� 0 ,

C
�

�
(h0) ⌘ dfn(h0��)

dh0
� dfn(h0)

dh0
� 0 .

(5.11)

Squaring both sides, applying (
P

k

r=1 ur)2  k
P

k

r=1 u
2
r
, and then taking an

expectation we have

E
⇥
(hQ1i � EhQ1i)2

⇤
 5��2

X

u2{h0��,�,h0+�}

E[(Fn(u) � fn(u))
2]

+ 5C+
�
(h0)

2 + 5C�

�
(h0)

2
. (5.12)

Under the assumption (5.2) about concentration of the free energy, the first
term is smaller than 15CF/(n�2). Next, using | dfn

dh0
| = |EhQ1i|  1 allows to

assert from (5.11) the crude bound C
±

�
(h0)  2. Then using C

±

�
(h0) � 0,

Z
h̄

h

dh0

�
C

+
�
(h0)

2 + C
�

�
(h0)

2
�

 2

Z
h̄

h

dh0

�
C

+
�
(h0) + C

�

�
(h0)

�

= 2
⇥�
fn(h̄ � �) � fn(h̄+ �)

�
+
�
fn(h+ �) � fn(h � �)

�⇤

 8�,
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where the mean value theorem has been used to get the last inequality. When
(5.12) is integrated over h0 we reach

Z
h̄

h

dh0 E
⇥
(hQ1i � EhQ1i)2

⇤
 15CF

n�2
+ 40� .

The proof is ended by optimizing the bound by choosing � = n
�1/3 for n large

enough.

5.3.4 Poisson fluctuations of overlaps

Lemma 5.2 (Concentration of overlaps w.r.t. the Poisson perturbation).
Assume the Hamiltonian H given by (5.5) is fully ferromagnetic so that both
GKS inequalities hold. Then for any [h, h̄] ⇢ (0, 1) we have

Z
h̄

h

dh0 E⌧

⇥
(hQpi � E⌧ hQpi)2

⇤
 ↵ph1

n1�✓
.

Proof. Recall ⌧ is a random vector with i.i.d. components ⌧j ⇠ Poi(↵n✓�1)
for j 2 {1, . . . , n}. Let ⌧

j be the random vector that di↵ers from ⌧ only
at the j–th component, which is replaced by a new ⌧

0

j
⇠ Poi(↵n✓�1) drawn

independently from everything else. For this proof we explicitly keep track
of the ⌧ dependence in Gibbs expectations h�i⌧ . The Efron–Stein inequality
states (1(·) is the indicator function)

E⌧

⇥
(hQpi⌧ � E⌧ hQpi⌧ )2

⇤
 1

2

nX

j=1

E⌧\⌧jE⌧jE⌧
0
j

⇥
(hQpi⌧ j � hQpi⌧ )2

⇤

=
1

2

nX

j=1

E⌧\⌧jE⌧jE⌧
0
j

⇥
1(⌧ 0

j
> ⌧j)(hQpi⌧ j � hQpi⌧ )2

⇤

+
1

2

nX

j=1

E⌧\⌧jE⌧jE⌧
0
j

⇥
1(⌧ 0

j
= ⌧j)(hQpi⌧ j � hQpi⌧ )2

⇤

+
1

2

nX

j=1

E⌧\⌧jE⌧jE⌧
0
j

⇥
1(⌧ 0

j
< ⌧j)(hQpi⌧ j � hQpi⌧ )2

⇤

=
nX

j=1

E⌧\⌧jE⌧jE⌧
0
j

⇥
1(⌧ 0

j
> ⌧j)(hQpi⌧ j � hQpi⌧ )2

⇤
. (5.13)

To get the second equality we used that the term with ⌧ 0
j
= ⌧j vanishes and that

the terms with ⌧ 0
j
> ⌧j and ⌧ 0j < ⌧j are equal by symmetry (under exchange of

⌧
0

j
and ⌧j). The two GKS inequalities imply

dhQpi⌧
d⌧j

=
ph1

n

nX

i=1

h�iip�1
⌧

(h�i�ji⌧ � h�ii⌧ h�ji⌧ ) � 0
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and therefore hQpi⌧ j � hQpi⌧ � 0 when ⌧
0

j
> ⌧j (here note that ⌧j is an

integer but we formally consider it real when computing a derivative and then
restrict the obtained monotonicity result to the integer case). This together
with 0  hQpi⌧  1 (by GKS) implies (hQpi⌧ j � hQpi⌧ ) 2 [0, 1]. Then (5.13)
implies

E⌧

⇥
(hQpi⌧ � E⌧ hQpi⌧ )2

⇤


nX

j=1

E⌧\⌧jE⌧jE⌧
0
j

⇥
1(⌧ 0

j
> ⌧j)(hQpi⌧ j � hQpi⌧ )

⇤
.

(5.14)

Let �j ⌘ ⌧
0

j
� ⌧j and uj = (0, . . . , 0, 1, 0, . . . , 0) with uj = 1. This allows us to

rewrite ⌧
j = ⌧ +�juj. An interpolation gives

hQpi⌧+�juj � hQpi⌧

=

Z 1

0

ds
d

ds
hQpi⌧+s�juj

=
ph1�j

n

Z 1

0

ds

nX

i=1

h�iip�1
⌧+s�juj

�
h�i�ji⌧+s�juj � h�ii⌧+s�jujh�ji⌧+s�juj

�
.

(5.15)

Under the condition ⌧ 0
j
> ⌧j, the integrand in (5.15) is non-negative by the two

GKS inequalities. Also note that, again by the two GKS inequalities,

d

d⌧j

�
h�i�ji⌧ � h�ii⌧ h�ji⌧

�
= �2h1h�ji⌧

�
h�i�ji⌧ � h�ii⌧ h�ji⌧

�
 0

so that, as �j > 0,

h�i�ji⌧+s�juj � h�ii⌧+s�jujh�ji⌧+s�juj  h�i�ji⌧ � h�ii⌧ h�ji⌧ . (5.16)

Therefore, substituting (5.15), (5.16) into (5.14) and simply upper bounding
h�iik�1

⌧+s�juj by 1, we obtain

E⌧

⇥
(hQpi⌧ � E⌧ hQpi⌧ )2

⇤

 ph1

n

nX

i,j=1

E⌧E⌧
0
j

⇥
1(⌧ 0

j
> ⌧j)(⌧

0

j
� ⌧j)

�
h�i�ji⌧ � h�ii⌧ h�ji⌧

�⇤
. (5.17)

For given tauj fixed, the part containing ⌧ 0
j
has an upper bound independent

of j:

E⌧
0
j

⇥
1(⌧ 0

j
> ⌧j)(⌧

0

j
� ⌧j)

⇤
 E⌧

0
j
[⌧ 0

j
] =

↵

n1�✓

because ⌧j � 0 and ⌧ 0
j
⇠ Poi(↵n✓�1). This further relaxes (5.17) to

E⌧

⇥
(hQpi⌧ � E⌧ hQpi⌧ )2

⇤

 ↵ph1

n2�✓

nX

i,j=1

E⌧

⇥
h�i�ji⌧ � h�ii⌧ h�ji⌧

⇤
= ↵ph1n

✓E⌧

⌦
(Q1 � hQ1i⌧ )2

↵
⌧

(5.18)
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(recall (5.9) for the last equality). Finally, integrating (5.18) over h0 2 [h, h̄]
and using Theorem 5.1 with p = 1 (the factor 2 can be removed here because
we assume both GKS inequalities) ends the proof.

5.3.5 Last type of fluctuations of overlaps

In this section we tackle the last kind of fluctuations in the decomposition
(5.7). Before proceeding let us say a few words about the strategy. The proof
is decomposed in three steps (where the first two follow the ideas used in
proving the Ghirlanda-Guerra identities for spin glasses [79]). The first step
shows that the ↵-derivative of the free energy concentrates which will lead
to Lemma 5.3 (recall ↵ controls the mean of the Poisson quenched variables
⌧i). In the second step we derive an identity which links a “generating series”
containing overlap covariances to the product of an overlap and the free energy
↵-derivative fluctuations. Using the concentration result of step one we can
show that this generating series concentrates, leading to Lemma 5.4. In the
third step, from the concentration of this generating series we extract the
concentration of each overlap covariance, leading to Lemma 5.6. In particular,
this will imply the control of the third kind of fluctuations in (5.7). The third
step is non-trivial as the generating series has alternating signs. Nevertheless,
we overcome this problem using an induction argument over p (the order of
the overlap) thanks to the GKS inequalities and to Lemma 5.1 for the base
case p = 1.

Step 1: Concentration of the free energy ↵-derivative

Let F̂n(↵) ⌘ E⌧Fn. Note that the free energy fn(↵) = E F̂n is obtained by
taking an expectation over the rest of the quenched variables. We start with
a few preliminaries about these functions. We emphasize the ↵ dependence
in this section. As before let uj = (0, . . . , 0, 1, 0, . . . , 0) with uj = 1. Recall
⌧i ⇠ Poi(↵n✓�1). Then a straightforward algebra using the Poisson property
(4.46) yields the following identities:

dF̂n(↵)

d↵
= � 1

n2�✓

nX

i=1

E⌧ lnheh1�ii⌧

= � 1

n2�✓

nX

i=1

E⌧ ln(1 + h�ii⌧ tanhh1) � 1

n1�✓
ln coshh1 , (5.19)

d
2
F̂n(↵)

d↵2
= � 1

n3�2✓

nX

i,j=1

⇣
E⌧ lnheh1�ii⌧+uj � E⌧ lnheh1�ii⌧

⌘

= � 1

n3�2✓

nX

i,j=1

⇣
E⌧ ln(1 + h�ii⌧+uj tanhh1)

� E⌧ ln(1 + h�ii⌧ tanhh1)
⌘
, (5.20)
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where we used e
�x = coshx(1 + � tanh x) for � = ±1. The derivatives for

fn(↵) can directly be obtained by taking an expectation over the rest of the
quenched variables:

dfn(↵)

d↵
= � 1

n2�✓

nX

i=1

E ln(1 + h�ii⌧ tanhh1) � 1

n1�✓
ln coshh1 , (5.21)

d
2
fn(↵)

d↵2
= � 1

n3�2✓

nX

i,j=1

⇣
E ln(1 + h�ii⌧+uj tanhh1)

� E ln(1 + h�ii⌧ tanhh1)
⌘
. (5.22)

The second GKS inequality (1.10) implies that dh�ii⌧/d⌧j = h1(h�i�ji⌧ �
h�ii⌧ h�ji⌧ ) is non-negative, and therefore h�ii⌧  h�ii⌧+uj . Thus the identities
(5.20) and (5.22) imply (using also 1+ h�ii tanhh1 � 0) that d2F̂n(↵)/d↵2  0
and d

2
fn(↵)/d↵2  0, which means that F̂n(↵) and fn(↵) are concave in ↵

(note that in order to obtain this concavity we used only the second GKS
inequality, without the first one here). One can also see that

���
dfn(↵)

d↵

��� =

�����
1

n2�✓

nX

i=1

E lnheh1�ii⌧

����� 
h1

n1�✓
, (5.23)

noting that | lnheh1�ii⌧ |  h1 because h1 > 0 and �i 2 {�1,+1}.
We can now show a concentration result for the ↵-derivative of the free

energy based on Lemma 3.12.

Lemma 5.3 (Concentration of the free energy ↵-derivative). Assume the
Hamiltonian H given by (5.5) satisfies h�i�ji � h�iih�ji � 0 for all i, j =
1, . . . , n and assume also that Condition 5.1 holds. Then for any [↵, ↵̄] ⇢ (0, 1),
h0 2 (0, 1), h1 2 (0, 1] and ✓ 2 (1/2, 1) we have

Z
↵̄

↵

d↵E
h⇣

dP̂n(↵)

d↵
� dfn(↵)

d↵

⌘2i
 15CF + 40h2

1

n(5�4✓)/3
.

Proof. The proof is similar to the one of Lemma 5.1. Using Lemma 3.12, the
concavity of F̂n and fn in ↵ implies that for any � > 0 we have

���
dF̂n(↵)

d↵
� dfn(↵)

d↵

���  �
�1

X

u2{↵��,↵,↵+�}

|F̂n(u) � fn(u)|

+ C
+
�
(↵) + C

�

�
(↵)

(note we can take � small enough so that ↵� � > 0) where

C
+
�
(↵) ⌘ dfn(↵)

d↵
� dfn(↵ + �)

d↵
� 0 , C

�

�
(↵) ⌘ dfn(↵� �)

d↵
� dfn(↵)

d↵
� 0 .
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Squaring both sides, applying (
P

k

r=1 ur)2  k
P

k

r=1 u
2
r
and averaging we get

E
h⇣

dF̂n(↵)

d↵
� dfn(↵)

d↵

⌘2i
 5��2

X

u2{↵��,↵,↵+�}

E[(F̂n(u) � fn(u))
2]

+ 5C+
�
(↵)2 + 5C�

�
(↵)2 . (5.24)

It is easy to check that

E[(F̂n(↵) � fn(↵))
2] = E[(Fn(↵) � fn(↵))

2] � E[(Fn(↵) � F̂n(↵))
2]

 E[(Fn(↵) � fn(↵))
2] .

Thus under the concentration assumption (5.2) for the free energy, the first
term in the r.h.s. of (5.24) is smaller than 15CF/(n�2). Next, we recall (5.23)
which implies the crude bound C

±

�
(h0)  2h1/n

1�✓, so using C
±

�
(h0) � 0,

Z
↵̄

↵

d↵
�
C

+
�
(↵)2 + C

�

�
(↵)2

�

 2h1

n1�✓

Z
↵̄

↵

d↵
�
C

+
�
(↵) + C

�

�
(↵)
�

=
2h1

n1�✓

⇥�
fn(↵̄� �) � fn(↵̄ + �)

�
+
�
fn(↵ + �) � fn(↵� �)

�⇤

 8�h2
1

n2�2✓

where we used the mean value theorem for the last inequality. Thus when
(5.24) is integrated over ↵ we obtain

Z
↵̄

↵

d↵E
h⇣

dF̂n(↵)

d↵
� dfn(↵)

d↵

⌘2i
 15CF

n�2
+

40�h2
1

n2�2✓
. (5.25)

The proof is ended by choosing � such that n�1
�
�2 = �n

�2+2✓, in other words
� = n

(1�2✓)/3, which is possible for ✓ > 1/2 (because we must have � small
enough in (5.25)). With this choice the upper bound in (5.25) becomes (15CF+
40h2

1)/n
(5�4✓)/3. Note that 5 � 4✓ > 0 because ✓ < 1 anyway.

Step 2: Linking the fluctuations of the free energy ↵-derivative to a
series of overlap covariances

In this step P � 1 is an integer fixed throughout. Define the set of multi-
overlap covariances (w.r.t. the quenched variables except the Poisson ones ⌧ )
as

CovP,p ⌘ E[E⌧ hQP iE⌧ hQpi] � EhQP iEhQpi , k � 1 . (5.26)

The task is to bound the variance of E⌧ hQpi using Lemma 5.3. However,
here is a case where constructing a bound for the covariances is more flexible
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and feasible. Roughly speaking, we will show in this step that a generating
series for the set {CovP,p, p � 1} is small. From this knowledge, and despite
this series has alternating signs, we will in step 3 deduce that all individual
covariances CovP,p are also small. In particular, this will hold for the variance
term p = P .

Lemma 5.4 (Concentration of a generating series). Assume the Hamiltonian
H given by (5.5) satisfies h�i�ji � h�iih�ji � 0 for all i, j = 1, . . . , n and
assume also that Condition 5.1 holds. Then for any [↵, ↵̄] ⇢ (0, 1), h0 2 (0, 1),
h1 2 (0, 1], ✓ 2 (1/2, 1) and any fixed integer P � 1 we have

Z
↵̄

↵

d↵

���
1X

k=1

(�1)p+1

p
(tanhh1)

p CovP,p
��� 

p
15CF + 40h2

1

n(✓�1/2)/3
. (5.27)

Proof. By the Cauchy-Schwarz inequality and Lemma 5.3 we have

Z
↵̄

↵

d↵

���E
h
E⌧ hQP i

⇣
dF̂n(↵)

d↵
� dfn(↵)

d↵

⌘i���


nZ ↵̄

↵

d↵E
⇥�
E⌧ hQP i

�2⇤o1/2nZ ↵̄

↵

d↵E
h⇣

dF̂n(↵)

d↵
� dfn(↵)

d↵

⌘2io1/2


p

15CF + 40h2
1

n(5�4✓)/6
. (5.28)

The next step is to expand the ↵-derivatives of the free energy. For that
we recall the formulas (5.19) and (5.21). Taylor expanding the logarithms in
(5.19) and recalling n

�1
P

n

i=1h�iip = hQpi gives

dF̂n(↵)

d↵
= � 1

n1�✓

1X

p=1

(�1)p+1

p
(tanhh)p E⌧ hQpi � 1

n1�✓
ln coshh1 .

The series expansion of dfn

d↵
is obtained similarly based on (5.21), and is thus the

same with E⌧ replaced by the full expectation E. Substituting these expansions
in the left-most hand side of (5.28) yields

Z
↵̄

↵

d↵

���
1X

k=1

(�1)p+1

p
(tanhh1)

p
�
E[E⌧ hQP iE⌧ hQpi] � EhQP iEhQpi

 ���


p

15CF + 40h2
1

n(5�4✓)/6
n
1�✓

.

Recognizing (5.26) then ends the proof.
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Step 3: An induction argument over the overlap covariances

We start with a useful monotonicity lemma that will allow us to control the
alternating signs of the generating series in Lemma 5.4.

Lemma 5.5 (A property on monotonicity). Assume the Hamiltonian H given
by (5.5) is fully ferromagnetic and thus satisfies both GKS inequalities. Then
we have

1

p
CovP,p � tanhh1

p+ 1
CovP,p+1 � 0 .

Proof. Let J ⌘ (JA, A ⇢ {1, . . . , n}). Define gP (J) ⌘ E⌧ hQP i and g̃p(J) ⌘
1
p
E⌧ hQpi � tanhh1

p+1 E⌧ hQp+1i. One can then recognize

1

k
CovP,p � tanhh1

p+ 1
CovP,p+1 = E[gP (J) g̃p(J)] � E gP (J)E g̃p(J) (5.29)

so it is enough to verify that gP (J) and g̃p(J) are positively correlated. Note
that the expectations in (5.29) only carry over the set of i.i.d. random cou-
pling constants JA, A ⇢ {1, . . . , n}. By the GKS inequalities the following
derivatives are non-negative:

d

dJA
gP (J) =

P

n

nX

i=1

E⌧

⇥
h�iiP�1

�
h�i�Ai � h�iih�Ai

�⇤
� 0 ,

d

dJA
g̃p(J) =

1

n

nX

i=1

E⌧

⇥
h�iip�1

�
1 � h�ii tanhh1

��
h�i�Ai � h�iih�Ai

�⇤
� 0 .

In other words, gP (J) and g̃p(J) have same monotonicity w.r.t. each JA for
all A ⇢ {1, . . . , n}. We can then apply the Harris inequality (reproduced in
Lemma 5.7, Appendix 5.4.2) to finish the proof.

Now we have all the necessary ingredients in order to inductively extract
the concentration of each individual overlap from Lemma 5.4.

Lemma 5.6 (Concentration of the overlaps w.r.t. the quenched variables).
Assume the Hamiltonian H given by (5.5) is fully ferromagnetic so that it
satisfies both GKS inequalities, and also that Condition 5.1 holds. Then for
any [h, h̄] ⇢ (0, 1), [↵, ↵̄] ⇢ (0, 1), ✓ 2 (1/2, 1), h1 2 (0, 1] and any p, P � 1
we have
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p
15CF + 40
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,

where Mp is defined by M1 = 1, M2p = M2p�1 + 1, M2p+1 = M2p + 2 (so
Mp < 3p/2). In particular for p = P ,
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.
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Proof. We start the induction with the base case k = 1. From (5.26) we note
that

CovP,1 = E[E⌧ hQP iE⌧ hQ1i] � EhQP iEhQ1i
= E[E⌧ hQP i hQ1i] � EhQP iEhQ1i = E[E⌧ hQP i(hQ1i � EhQ1i)] .

Then, using successively Fubini’s theorem, the Cauchy-Schwarz inequality and
Lemma 5.1, we have
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. (5.30)

Note that the last inequality is valid because 0 < tanhh1  1 and ✓ < 1. For
p � 2 we adopt an induction in two steps: From 2p � 1 to 2p and then from
2p to 2p+ 1.

We start with the induction step from 2p � 1 to 2p. Suppose
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The left hand side of (5.27) is
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where (5.32) follows from h1 � 0 and Lemma 5.5. By the triangle inequality
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we have

(tanhh1)2p

2p

Z
h̄

h

dh0

Z
↵̄

↵

d↵ |CovP,2p|

=

Z
h̄

h

dh0

Z
↵̄

↵

d↵

���
⇣(tanhh1)2p�1

2p � 1
CovP,2p�1 � (tanhh1)2p

2p
CovP,2p

⌘

� (tanhh1)2p�1

2p � 1
CovP,2p�1

���


Z

h̄

h

dh0

Z
↵̄

↵

d↵

���
(tanhh1)2p�1

2p � 1
CovP,2p�1 � (tanhh1)2p

2p
CovP,2p

���

+
(tanhh1)2p�1

2p � 1

Z
h̄

h

dh0

Z
↵̄

↵

d↵ |CovP,2p�1|


Z

h̄

h

dh0

Z
↵̄

↵

d↵

���
1X

p0=1

(�1)p
0+1

p0
(tanhh1)

p
0
CovP,p0

���

+
(tanhh1)2p�1

2p � 1

Z
h̄

h

dh0

Z
↵̄

↵

d↵ |CovP,2p�1| (5.34)


p

15CF + 40h2
1

n(✓�1/2)/3
+M2p�1

p
15CF + 40

n(✓�1/2)/3
(5.35)

 (M2p�1 + 1)

p
15CF + 40

n(✓�1/2)/3
(5.36)

where (5.34) follows from (5.33), then (5.35) follows from Lemma 5.4 and the
hypothesis (5.31), and finally (5.36) uses h1 2 (0, 1]. Summarizing, we have
shown
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with M2p = M2p�1 + 1.
Now we proceed similarly for the induction from 2p to 2p + 1. This time

we start with
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where (5.38) follows from Lemma 5.5 and h1 � 0. Also we have
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Then we proceed as
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where (5.41) follows from (5.39), then (5.42) follows from (5.40), and finally
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(5.43) follows from Lemma 5.4, (5.30) and (5.37). Summarizing,
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with M2p+1 = M2p + 2, which ends the induction argument.

5.3.6 Proof of Theorem 5.3

We finally show how to combine all the concentration results we obtained
in order to prove the following theorem. This theorem is a mild variant of
Theorem 5.3. Inequality (5.44) below is exactly Theorem 5.3.

Theorem 5.4 (Overlap concentration). Assume the Hamiltonian H given
by (5.5) satisfies both GKS inequalities and also that Condition 5.1 holds.
Then for any moment k � 2, [h, h̄] ⇢ (0, 1), [↵, ↵̄] ⇢ (0, 1), h1 2 (0, 1],
✓ 2 (1/2, 7/8],
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Proof. We integrate both sides of (5.7) over h0 and ↵. As all the square terms
are bounded by 1, by Fubini’s theorem we are free to exchange the order of
the integrals. Theorem 5.1, and Lemmas 5.2 and 5.6 are applied accordingly
and lead to the estimate (for any p � 1)

Z
h̄

h

dh0

Z
↵̄

↵

d↵E
⌦�
Qp � EhQpi

�2↵

 2p

n
+

(↵̄2 � ↵
2)ph1

2n1�✓
+

pMp

(tanhh1)p

p
15CF + 40

n(✓�1/2)/3

 4p2

(tanhh1)p

p
15CF + 40

n(✓�1/2)/3
(5.44)

using ✓ 2 (1/2, 7/8] (the 7/8 is enforced by (✓�1/2)/3  1�✓), [↵, ↵̄] ⇢ (0, 1),
h1 2 (0, 1] and Mp < 3p/2. Finally, observe that
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By the Cauchy-Schwarz inequality we then have
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which ends the proof once combined with (5.44).
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5.4 Appendix

5.4.1 Proof of the approximation inequality (5.6)

Note that
��fn(h0, h1,↵) � fn(0, 0, 0)

��

=
��fn(h0, h1,↵) � fn(0, h1, 0)

��


��fn(h0, h1,↵) � fn(0, h1,↵)

��+
��fn(0, h1,↵) � fn(0, h1, 0)

�� .

We have |dfn(h0,h1,↵)
dh0

| = |EhQ1i|  1 and from (5.23) we also have |dfn(0,h1,↵)
d↵

| 
h1n

�(1�✓). Thus by the mean value theorem we obtain (5.6), i.e. |fn(h0, h1,↵)�
fn(0, 0, 0)|  h0 + ↵h1n

�(1�✓).

5.4.2 Multivariate Harris inequality

For completeness we provide here a simple proof of the multivariate version of
the Harris inequality. We refer to [91] for more information.

Lemma 5.7 (Multivariate version of the Harris inequality). Let g, g̃ : Rn 7! R
be two functions of the random vector x = (x1, . . . , xn) where all components
are independent random variables. If for all i 2 {1, . . . , n} g and g̃ are both
monotone w.r.t. xi with same monotonicity, i.e. @xig(x) @xi g̃(x) � 0 8 i, then
E[g(x) g̃(x)] � E g(x)E g̃(x) � 0.

Proof. Let xj

i
⌘ (xi, xi+1, . . . , xj). The monotonicity w.r.t. x1 implies
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which by expanding the product can be simplified to

Ex1 [g(x) g̃(x)] � Ex1g(x)Ex1 g̃(x) � 0 .

The proof then proceeds by induction. Suppose
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Again, the monotonicity w.r.t. xi implies
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which can be simplified to
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The induction is ended by noting that with the hypothesis (5.45) the identity
(5.46) can further be relaxed to

Exi
1
[g(x) g̃(x)] � Exi

1
g(x)Exi

1
g̃(x) � 0 .

This ends the induction argument and the proof.



128 Multi-overlaps for Ferromagnetic Spin Models on Sparse Graphs

5.4.3 On the concentration and existence of the free
energy

We consider Hamiltonian (5.1) with independent random couplings JA, A ⇢
{1, . . . , n} and prove the following generic result used in (5.2). We then discuss
a simple argument and condition that guarantees the existence of the thermo-
dynamic limit using the first GKS inequality. We verify that these results
applied to Example 5.1.

Proposition 5.1 (Concentration of the free energy). Let JA, A ⇢ {1, . . . , n}
be independent random variables such that

P
A⇢{1,...,n} Var(JA)  CFn for some

numerical constant CF > 0. Then we have E[(Fn � fn)2]  CF/n.

Proof. The proof is a simple application of the Efron-Stein inequality. Set
J ⌘ (JA, A ⇢ {1, . . . , n}). Let J

(A) be a vector such that J
(A) di↵ers from

J only at the A–th component which becomes J 0

A
drawn independently from

the same distribution as the one of JA (note that the random variables JA

for di↵erent A do not necessarily have the same distribution). Efron Stein’s
inequality tells us that
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Replacing in (5.47) (and recalling fn ⌘ EFn) gives
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With the hypothesis on Var(JA), the proof is complete.

An easy and more or less standard superadditivity argument proves that
the thermodynamic limit exists for the ferromagnetic model (5.1). We give
the argument for completeness. For simplicity we consider that there exists
a maximal size xmax independent of n such that |A|  xmax. We suppose
furthermore that all JA are independent with a distribution that depends only
on the cardinalities |A| (in other words, given a cardinality they are i.i.d.) and
also

1

n

X

A⇢{1,...,n}

E JA =
1

n

xmaxX

|A|=1

✓
n

|A|

◆
m(|A|)  C (5.48)
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where m(|A|) ⌘ E JA and C a positive constant independent of n.

Proposition 5.2 (Existence of the thermodynamic limit of the free energy).
Let JA, A ⇢ {1, . . . , n} be independent random variables with a probability
distribution supported on R�0 depending only on |A|. Moreover, assume JA =
0 for |A| > amax independent of n. Let (5.48) be satisfied. Then limn!+1 fn

exists and is finite.

Proof. Fix non-zero integers n1, n2 such that both are greater than xmax and
n ⌘ n1 + n2. Consider a set of realizations S ⌘ {JA, A ⇢ {1, . . . , n}}. This
set can be split in three disjoint sets S = S1 [ S2 [ S12 with S1 ⌘ {JA, A ⇢
{1, . . . , n1}}, S2 ⌘ {JA, A ⇢ {n1+1, . . . , n}} and S12 ⌘ {JA, A\{1, . . . , n1} 6=
;, A\{n1+1, . . . , n} 6= ;}. Let �n

�1 lnZ(S) be the free energy corresponding
to the Hamiltonian with couplings in S, and �n

�1
1 lnZ(S1) and �n

�1
2 lnZ(S2)

be the free energys corresponding to the Hamiltonians with couplings from S1

and S2 only. One can show, using the first GKS inequality, that

lnZ(S) � lnZ(S1) + lnZ(S2) .

Then averaging over all coupling constants in S, using that they are inde-
pendent with distributions depending only on the cardinality |A| and that all
cardinalities are contained in S, S1 and S2, we obtain

ES lnZ(S) � ES1 lnZ(S1) + ES2 lnZ(S2)

which is equivalent to nfn  n1fn1 +n2fn2 (for n1, n2 greater than xmax). This
means that the function n 7! npn is a subadditive sequence and therefore by
Fekete’s lemma the limit limn!+1 fn equals infn fn. To show that infn fn is
finite note that
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X
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E JA � ln 2  C � ln 2

using JA � 0 and condition (5.48). This ends the proof.

Consider now Example 5.1 for n large and K fixed. We have JA = 0
for all subsets with cardinalities |A| di↵erent from 1 and K. For |A| = 1
the coupling constants JA = H are deterministic so obviously Var(JA) = 0.
For |A| = K the couplings JA are independent Bernoulli variables taking

value J with probability �n
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��1
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Therefore, Proposition 5.1 applies. Similarly, the condition for the existence of
the thermodynamic limit of the free energy is also met because the left hand
side of (5.48) equals

1

n

X

A⇢{1,...,n}

E JA = H + J� .

The mixed K-spin models can be treated similarly.



Discussion and Conclusion 6
In this thesis, we have developed adaptive interpolation methods for comput-
ing exactly the asymptotic mutual information for the dense SBM in Chapter 3
and the sparse CBM in Chapter 4. The proofs are direct (without first mapping
to external models), conceptually simple and self-contained. They provide new
techniques for adaptive interpolation methods and make the methods robust
to a broader class of models. If we recall Figure 1.3, we can see that in this
thesis we have addressed models belonging to the blue regions in Figure 1.3,
namely, dense-graph models and the sparse-graph models with binary erasure
channels. It is desirable to extend our adaptive interpolation methods to the
other sparse-graph models in Figure 1.3, such as Example 1.1 (sparse SBM)
and Example 1.3 (sparse CBM with binary symmetric channels). One major
bottleneck of our method for general sparse graphs is proving the concentration
of multi-overlaps. In Chapter 5, we have proved the required concentration for
related spin models on sparse graphs. The concentration result suggests that
the issue about concentration could be addressed for more general models, and
this would enable further development of the adaptive interpolation method.
Finally, we point out some interesting open questions about the adaptive in-
terpolation method for further development of this thesis.

Q1: Does continuous interpolation for sparse graphs exist?

In Chapter 2 and 3, we have presented continuous adaptive interpolation for
dense factor graphs. In fact, the primitive version of interpolation in [55]
started with a discrete one. When applying the discrete version to the model
in Chapter 2, time is divided into integer steps t = 0, 1, . . . , T . At each step t,
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a new decoupled observation
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T
Xi +

Z̃
(t)
ip
T
, i = 1, . . . , n
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q(t/T, ✏)Xi + Z̃i, Z̃i ⇠ N (0, 1).

We consider that T tends to infinity (faster than n). This reduces the sum to
Riemann integral

1

T

TX

t=0

q(t/T, ✏)
T!1
=

Z 1

0

dsq(s, ✏),

and recovers the integral part of R(1, ✏) in (2.7).
On the contrary, in Chapter 4, we have presented a discrete adaptive in-

terpolation for sparse graphs. We might wonder if it could be simplified to a
continuous version. This is however not obvious. The interpolation in Chap-
ter 4 considers time t = 1, . . . , T . Recall (4.18). At time t = T , ignoring
the perturbation by Hi and H̃i, the decoupled observations has the sum of
log-likelihood ratio

Ui ⌘
TX

t=1

e
(t)
iX

B=1

U
(t)
B!i

, i = 1, . . . , n, (6.1)

where e
(t)
i

⇠ Poi(↵K/T ) follows a Poisson distribution. A continuous inter-
polation amounts to finding an integral expression for the distribution of Ui

when T tends to infinity. For BEC, where U (t)
B!i

either equals to 1 with prob-
ability x̃

(t) or equals to 0 otherwise, the distribution of Ui is characterized by
the probability

P(Ui = 1) = 1 �
TY

t=1

(1 � x̃
(t))e

(t)
i .

It is not clear how to write this probability with an integral expression similar
to R(1, ✏) for the dense graphs.

Q2: Can we extend Theorem 4.1 to an asymmetric prior?

We might want to understand how to extend Theorem 4.1 if we generalize the
prior to P0(�0

i
) = r��0

i ,+1 + (1 � r)��0
i ,�1 with r 2 (0, 1/2]. In this case the

posterior (4.1) would be replaced by

P(�|J) = 1

Z exp
n mX

A=1

JA(�A � 1) +
nX

i=1

Ĥi�i

o
(6.2)
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where

Ĥi ⌘ 1

2
ln

r

1 � r
,

Z ⌘
X

�2{�1,+1}n

exp
n mX

A=1

JA(�A � 1) +
nX

i=1

Ĥi�i

o
.

The equalities (4.7)–(4.14) that are based on the gauge transformation are no
longer true. Nevertheless, we still have the generic Nishimori identity (4.7).
In order to use this identity, we expect that the overlap parameters should be
re-defined with the one containing �

0. How this new overlap would appear in
the sum rule is unclear, as the expression (6.2) does not immediately contain
�

0.

Q3: Can we extend Theorem 5.3 (concentration of multi-overlaps) to
inference models?

A larger class in inference, such as the CBM in Chapter 4, under any sym-
metric channels satisfies a relaxed form of GKS inequalities [24]: for example,
under suitable perturbation to the Hamiltonian and assuming that Nishimori
identity (4.11) is satisfied, for any subsets of variable indices S, T ⇢ {1 . . . n}
we have

Eh�Si � 0 and
d

d✏T
Eh�Si � 0,

where ✏T is the mean and variance of the Guassian coupling constant of the
perturbation that applies to variables with indices T . These inequalities, how-
ever, are not strong enough to reproduce the proof of Theorem 5.3 for the
corresponding models. It would be interesting to uncover if the proof ap-
proach of Theorem 5.3 is specific to the ferromagnetic spin models, or if any
important identities in inference are still waiting to be discovered.

Q4: Can we extend Theorem 4.1 (the replica prediction for the sparse
CBM) to symmetric channels?

To extend Theorem 4.1 to symmetric channels by using adaptive interpolation,
we need to be careful when addressing Q3. We need to check if the concen-
tration of multi-overlaps still hold in the interpolating model with an adaptive
choice of decoupled observations. This is currently addressed by showing that
the Jacobian is lower bounded by a constant (this corresponds to dR

⇤
/d✏ � 1

in (2.15) in Chapter 2, and dE[✏̄(t,s)]/d✏ � 1 � E[✏̄(t,s)] in (4.71) in Chapter 3).
For symmetric channels, it is not always clear what the distribution of the
decoupled observations is, hence it is not clear what the notion of Jacobian
should be.
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Q5: What is the replica symmetric formula for ferromagnetic models?

We can replace all JA in (4.1) by a constant J > 0. The resulting distribution
defines a ferromagnetic spin model. We do not have one-sided bound as in 4.1
because we cannot show the remainder in the sum rule is either positive or
negative. Although this time we have the full concentration of multi-overlaps
due to Theorem 5.3, we are still unable to reproduce the other one-sided bound
as in Sec. 4.4.4. This is because we are stuck at reproducing Lemma 4.1. In
particular, the second equality of (4.96) does not hold. Note that this technical
issue also appears when we want to prove the conjecture of replica symmetry
formula for inference problems on sparse graphs with asymmetric channels.
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École Polytechnique Fédérale de Lausanne

M.Phil. in Information Engineering Aug 2013 – Jul 2015
B.Eng. in Information Engineering Aug 2009 – Jan 2013
The Chinese University of Hong Kong

JOURNAL

PREPRINTS

[1] J. Barbier, C. L. Chan and N. Macris, “Concentration of multi-overlaps
for random ferromagnetic spin models,” Submitted to Journal of Statistical
Physics, [Online]. Available: https://arxiv.org/abs/1901.06521

[2] J. Barbier, C. L. Chan and N. Macris, “Adaptive path interpolation for
sparse systems: application to a simple censored block model,” Submitted
to IEEE Transactions on Information Theory, [Online]. Available: https:
//arxiv.org/abs/1806.05121

[3] J. Barbier,C. L. Chan and N. Macris, “Mutual information for the stochas-
tic block model by the adaptive interpolation method,” Submitted to Infor-
mation and Inference: A Journal of the IMA, [Online]. Available: https:
//arxiv.org/abs/1902.07273

JOURNAL

PUBLICATIONS

[J4] D. Cruz et al. “E�cient quantum algorithms for GHZ and W states, and
implementation on the IBM quantum computer”, Advanced Quantum Tech-
nologies, vol. 2, no. 5 – 6, 2019 (2nd place of IBM Q Best Paper
Award)

[J5] C. L. Chan, W. Fernandes, N. Kashyap, M. Krishnapur, “Phase transitions
for the uniform distribution in the pattern maximum likelihood problem and
its Bethe approximation,” SIAM J. Discrete Math., vol. 31, no. 1, pp. 597
– 631, 2017

[J6] C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri, “Non-adaptive
group testing: explicit bounds and novel algorithms,” IEEE Transactions
on Information Theory, vol. 60, no. 5, pp. 3019 – 3035, May 2014

CONFERENCE

PUBLICATIONS

[C7] J. Barbier,C. L. Chan and N. Macris, “Mutual information for the stochas-
tic block model by the adaptive interpolation method,” IEEE International
Symposium on Information Theory (ISIT), Paris, France, 2019.

[C8] J. Barbier, C. L. Chan and N. Macris, “Adaptive path interpolation for
sparse systems: application to a simple censored block model,” IEEE Inter-
national Symposium on Information Theory (ISIT), Vail, CO, USA, 2018
(in the TPC choice session)

[C9] C. L. Chan and N. Macris, “Stability threshold and phase transition of
generalized censored block models,” IEEE Information Theory Workshop
(ITW), Kaohsiung, Taiwan, 2017.

[C10] C. L. Chan, M. J. Siavoshani, S. Jaggi, N. Kashyap and P. O. Vontobel,
“Generalized belief propagation for estimating the partition function of the
2D Ising model,” IEEE International Symposium on Information Theory
(ISIT), Hong Kong, China, 2015.

[C11] T. Li, C. L. Chan, W. Huang, T. Kaced, and S. Jaggi, “Group testing with
prior statistics,” IEEE International Symposium on Information Theory
(ISIT), Honolulu, HI, USA, 2014.

[C12] C. L. Chan, S. Cai, M. Bakshi, S. Jaggi and V. Saligrama, “Stochas-
tic threshold group testing,” IEEE Information Theory Workshop (ITW),
Seville, Spain, 2013.

[C13] C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri, “Non-adaptive
group testing: explicit bounds and novel algorithms,” IEEE International
Symposium on Information Theory (ISIT), Boston, MA, USA, 2012.

https://arxiv.org/abs/1901.06521
https://arxiv.org/abs/1806.05121
https://arxiv.org/abs/1806.05121
https://arxiv.org/abs/1902.07273
https://arxiv.org/abs/1902.07273


[C14] C. L. Chan, P. H. Che, S. Jaggi, V. Saligrama, “Non-adaptive probabilistic
group testing with noisy measurements: Near-optimal bounds with e�cient
algorithms,” 49th Allerton Conference on Communication, Control, and
Computing, Monticello, IL, USA, 2011.

TEACHING TA for bachelor courses: quantum computation (Fall & Spring 2016, Fall 2017,
Spring 2018)
TA for master courses: machine learning (Fall 2018), learning theory (Spring
2019)

SERVICE Reviewer for ITW, ISIT, and IEEE Trans. Inform. Theory
Committee member of EPFL Quantum Computing Association




