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Abstract	 	
Knowledge of the atomic-level structure is key to understanding and predicting properties of materials. X-ray diffraction (XRD) is the 
methods of choice for structures containing well-defined long-range order. However, many materials contain various degrees of 
disorder and are thus not characterizable by diffraction methods. In contrast, NMR directly probes local atomic environments and 
thus allows for structural characterization. In solid-state NMR several types of observables (such as quadrupolar coupling constants, 
dipole coupling constants, 1H/1H spin diffusion and chemical shifts) can be used to extract structural information. 

In chemical shift driven NMR Crystallography (NMRX) comparisons between experimental and calculated chemical shifts are used to 
identify the experimental structure from an ensemble of trial structures. The candidate structures are generated either by a compre-
hensive crystal structure prediction (CSP) search or through searches using different degrees of chemical intuition in combination 
with constraints extracted from experimental data. 

In the present thesis we use chemical shift driven NMRX to investigate materials containing different types of structural disorder, 
ranging from microcrystalline solids over doped structures up to amorphous materials. 

A perfect application for NMRX is the structural determination of drug polymorphs, where the samples are often only available as 
microcrystalline powders. Here, we investigate a combined CSP-NMRX approach for structure determination of microcrystalline mo-
lecular solids. To this end, we first evaluate the positional accuracy of the combined approach. Then, we develop empirical-based 
methods as well as machine learning algorithms to extend the scope of the CSP-NMRX approach. Finally, we combine the developed 
methods to determine the crystal structure of powdered ampicillin, for which the traditional approach to CSP-NMRX would have 
failed. 

Another interesting class of structures to investigate with NMRX are amorphous compounds, which are an important component in 
many industrial devices and materials. Amorphous structures cannot be described by a single crystalline unit-cell, and therefore, the 
CSP-NMRX approach is no longer applicable. Here, we determine the atomic-level structure of amorphous calcium silicate hydrate 
by generating a constrained ensemble of local structural motifs using chemical intuition and experimental data. We then evaluate 
the local structural motifs by comparing calculated and experimental chemical shifts. Finally, we combine the selected local motifs 
to generate an extended amorphous structural model. 

The last applications for NMRX which we investigate are doped structures. Doping is a key technology to design new functional 
materials with desired properties and has been successfully used in various industrial materials. However, the presence of dopants 
inevitably leads to disorder within the material. In general, the same approach we investigated for amorphous materials should be 
applicable. However, the systems analyzed here contain heavy atoms and thus a higher level of theory is required in order to accu-
rately calculate chemical shifts. We investigate different hypothesis for doping mechanisms in a set of photovoltaic lead halide per-
ovskite materials. For these materials, we show that chemical shift based NMRX is able to differentiate between interstitial dopants, 
surface passivation layers and the formation of segregated phases.	

Keywords	

solid-state NMR, NMR crystallography, machine learning, pharmaceutical compounds, polymorphism, perovskites, amorphous cal-
cium silicate hydrate, microcrystalline solids, density-functional theory (DFT), crystal structure prediction (CSP)
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Abstrakt	 	
Die Kenntnis der atomaren Struktur eines Materials ist fundamental zum Verständnis der Materialeigenschaften. Röntgenstrahlen-
diffraktion (XRD) ist der Standard zur Analyse von geordneten Strukturen. Viele Materialien beinhalten jedoch diverse Arten von 
Unordnung und können daher nicht mit diffraktionsbasierten Methoden charakterisiert werden. Als Alternative bietet sich hier die 
Kernspinresonanzspektroskopie (NMR) an, da diese direkt die lokalen atomaren Umgebungen analysiert. In Festkörper-NMR sind 
verschiedene Arten von Informationen, z.B. Quadrupole Interaktionen, Dipol-Dipol Interaktionen, Protonen Spin-Diffusion und die 
chemische Verschiebung, direkt von der atomaren Struktur abhängig und können zur Strukturbestimmung genutzt werden. 

Auf chemischer Verschiebung basierte NMR-Kristallographie (NMRX) nutzt den Vergleich zwischen experimentellen und berechneten 
chemischen Verschiebungen, um aus Teststrukturen die Experimentalstruktur zu bestimmen. Die Teststrukturen werden entweder 
durch eine vollständige Krystallstrukturvorhersage (CSP), oder durch eine auf experimentellen Daten und Intuition basierten Suche 
generiert. 

In dieser Doktorarbeit nutzen wir auf chemischer Verschiebung basierte NMRX, um Materialien mit verschiedenen Arten von Unord-
nung zu untersuchen. Die untersuchten Materialien reichen von mikrokristallinen Pulvern über dotierte Strukturen bis hin zu amor-
phen Materialien. 

Die Strukturbestimmung von Arzneistoffpolymorphen, welche oft nur als mikrokristalline Pulver verfügbar sind, ist ein optimales 
Anwendungsgebiet von NMRX. Hier untersuchen wir eine kombinierte CSP-NMRX Methode. Dazu evaluieren wir zuerst die Positi-
onsgenauigkeit der Methode. Danach entwickeln wir empirische und auf Maschinellem Lernen basierte Algorithmen, um den Umfang 
der Methode zu erweitern. Zum Schluss kombinieren wir alle entwickelten Ansätze zur Bestimmung der Kristallstruktur von mikro-
kristallinem Ampicillin.  

Amorphe Materialien sind ein wichtiger Bestandteil vieler industrieller Komponenten und Apparaturen. Sie bilden eine weitere inte-
ressante Materialklasse, welche mit NMRX untersucht werden kann. Im Gegensatz zu mikrokristallinen Pulvern kann ihre Struktur 
aber nicht durch ein Kristallgitter definiert werden. Daher ist der CSP-NMRX Ansatz nicht mehr anwendbar. Hier bestimmen wir durch 
NMRX die atomare Struktur von amorphen Kalzium-Silikat-Hydrat. Dazu nutzen wir chemische Intuition und experimentelle Daten, 
um ein Ensemble an möglichen lokalen Strukturmotiven zu generieren. Danach bestimmen wir die wahrscheinlichsten Motive durch 
einen Vergleich der berechneten und experimentellen chemische Verschiebungen. Schliesslich erhalten wir wiederum eine vollstän-
dige amorphe Struktur zu erhalten durch die Kombination der ausgewählten Motive. 

Zum Schluss untersuchen wir mittels NMRX dotierte Materialien. Dotierung ist eine Schlüsseltechnologie, bei der Spuren von Fremda-
tomen zu funktionellen Materialien beigemischt werden. Die Anwesenheit von Dotierungen führt aber zwangsläufig zu Unordnung 
im Material. Im Allgemeinen sollte der gleiche NMRX-Ansatz wie für amorphe Materialien anwendbar sein. Hier untersuchen wir 
jedoch diverse photovoltaisch aktive Blei-Halogenide-Perowskite; diese beinhalten schwere Atome und müssen daher durch ein hö-
heres Niveau an Theorie beschrieben werden. Für diese Materialien zeigen wir, dass es möglich ist zwischen interstitieller Dotierung, 
Oberflächen-Passivierung und der Bildung getrennter Phasen zu unterscheiden. 

Schlüsselwörter	

Festkörper-Kernspinresonanzspektroskopie (NMR), NMR Kristallographie, Maschinelles Lernen, Arzneistoffe, Polymorphie, 
Perowskit, amorphes Kalzium-Silikat-Hydrat, mikrokristalline Pulver, Dichtefunktionaltheorie (DFT), Krystallstrukturvorhersage (CSP)
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 Introduction	
1.1 Structure	elucidation	of	solids	
Structure-activity relationships play a central role in chemistry and material science. Determining three-dimensional atomic-level 
structures is key to understanding and predicting properties and for ultimately designing new functional materials. Many molecules 
and materials have been characterized by single crystal X-ray (XRD)1 diffraction and to a lesser extent by neutron2-3 or electron dif-
fraction.4-7 However, a wide range of materials are unavailable as single crystals (e.g., composites, amorphous and glassy materials, 
disordered and doped materials, fine powders, formulated samples and fibrils) and are thus not characterizable by diffraction meth-
ods. Examples include active pharmaceutical ingredients (APIs), which are often only available as microcrystalline powders. The de-
termination of their structures and crystal packings is essential to extract structure-property relations for formulations in the drug 
development process. Also, the optical, electronic, magnetic and energetic properties in amorphous materials and doped solids cru-
cially depends on their intrinsic disorder. For all these materials, the characterization of the atomic level structure using diffraction is 
extremely challenging, due to the lack of long-range order. In contrast, solid-state nuclear magnetic resonance spectroscopy (NMR) 
directly probes the local atomic environments and thus allows for characterization without the need for long-range order. This has 
led to its broad use today in many fields, including materials and pharmaceutical chemistry.8-59 

1.2 Solid	state	NMR	as	probe	of	local	environments		
NMR spectroscopy detects the motion of nuclear magnetic moments (𝜇) which are associated to the nuclear spin (I), an intrinsic 
nuclear property through, 

𝜇 = 𝛾ℏ𝐼, 

(1-1) 

where 𝛾 is the gyromagnetic ratio of the nuclei and ℏ is the reduced Planck’s constant. The energy of the nuclear spin (I) is in turn 
described by the NMR Hamiltonian, which can contain up to 13 interactions. However, most of them are usually zero or are not 
observable. The relevant terms for solid-state NMR are usually given by Equation 1-2. 

ℋ)*+ = 	−ℏ∑ 𝛾/𝐵123416 − 𝜎68/ 𝐼/ +
:
;
ℏ; ∑ ∑ 𝛾/𝛾<𝐼/4𝐷>/< + 𝐽/̿<8𝐼<<A// + ∑ 𝐼/𝑄6/𝐼//,|/E|F: .  

(1-2) 

The first term describes the interaction of the nuclear spin operator (II) with an external magnetic field (𝐵123 ) (Zeeman and chemical 
shift / magnetic shielding (𝜎6) interaction). The second term describes the interaction between two different nuclear spins (II and IJ) 
either through space (through the nuclear magnetic dipolar coupling, 𝐷>/<) or through chemical bonds (through the indirect nuclear 
spin-spin coupling, 𝐽/̿<). The third term describes the interaction between a spin and an electric field gradient (through the nuclear 
quadrupolar coupling, 𝑄6/).  

In principle structural information can be extracted from all three of the terms in the NMR Hamiltonian. However, here we are going 
to focus mainly on the structural information contained in the chemical shift interaction. (In Chapter 2.1 we present a method to 
extract complementary structural information from dipolar coupling interactions.) The interaction of an isolated nuclear spin with an 
external magnetic field (𝐵123)	is described through the Zeeman interaction, given as,  

ℋH11IJK = 	−ℏ𝛾/𝐵123𝐼/. 
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(1-3) 

However, the chemical systems investigated here do not consist of isolated spins. Instead the nuclear spins are embedded in an 
electronic charge density which is determined to 1st order by the investigated nuclei, to 2nd order by the adjacent and bonded nuclei 
(or by the molecule the nuclei belong to) and to 3rd order by the crystal packing surrounding the investigated nuclei. Additionally, the 
electronic charge density is also influenced through charges and currents applied over the structure as well as excitations within the 
crystal. Following Lenz’s law, the external magnetic field will induce a current in the electronic density around the nuclei, which 
according to Biot-Savart’s law (Equation 1-4) will lead to an induced magnetic field opposing the external magnetic field.  

𝐵LMN(r) =
µR
4πU𝑗

(𝑟X) ×
Z

r − rX

|𝑟 − 𝑟X|[ dr
X, 

(1-4) 

where 𝑗(𝑟X)	describes the induced current density at point 𝑟′ on the closed curve C	around the reference point 𝑟.  

The direct relation between the external magnetic field (𝐵_`a) and the locally induced magnetic field (𝐵LMN) is given by the magnetic 
shielding tensor (𝜎6), as: 

𝐵LMN = −𝜎6𝐵_`a. 

(1-5) 

Additionally, for a given nucleus A the chemical shielding tensor can be expressed as the 2nd derivative of the electronic energy with 
respect to the i-th component of the external magnetic field (𝐵b) and the j-th component of the nuclear magnetic moment of nucleus 
A (𝜇cd) (Equation 1-6). Note, that from this expression the gauge problem becomes apparent, as the external magnetic field appears 
as a vector potential without fixed origin. This problem is overcome by using so-called gauge invariant or gauge including calculation 
formalisms (GIPAW and GIAO). 60-63 

𝜎bcd =
𝜕;𝐸

𝜕𝐵b𝜕𝜇cd
 

(1-6) 

However, in NMR experiments the magnetic shielding is not measured directly. Instead the relative shielding (or respectively the 
deshielding) of a nucleus with respect to a fixed reference value (𝜎6g1h) is measured. This referenced shielding is the chemical shift (𝛿̿) 
and is given as: 

𝛿̿ = 𝜎6g1h − 𝑏	𝜎6, 

(1-7) 

where the slope (𝑏) should be fixed at unity for an ideal case, but is typically used to account for systematic errors within calculations, 
including incomplete basis sets and nuclear quantum effects.64 From the description above it becomes clear how the motion of nu-
clear magnetic moments, which is measured in an NMR experiment, depends on the effective magnetic field. The effective magnetic 
field is given by the response of the local electronic density to an external magnetic field through the chemical shift tensor, which is 
in turn determined by the local atomic environment. In conclusion, the chemical shifts of a structure are uniquely determined by its 
electronic structure and thus by the crystal structure. Therefore, the full structural information of the local environments is con-
tained within the chemical shifts and should be accessible by NMR.  
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1.3 Computational	methods	for	NMR	crystallography	
Initially, structural constraints from solid-state NMR were used to refine diffraction structures and to obtain information for a few ill-
defined atomic environments within a given diffraction structure.41, 55, 65 Additionally, solid-state NMR has also been used as a com-
plementary tool in crystallographic studies to determine the tautomeric form present,66 to locate regions of disorder67 or to provide 
key distance measurements.51, 68 More recent developments in solid-state NMR and complementary computational methods have 
led to the point where full atomic level structures can be determined using only NMR without any type of diffraction data.26, 54, 58 This 
recently emerged field is now often referred to as NMR crystallography (NMRX).  

Most commonly, in NMRX structures have been characterized and / or determined using selected distance constraints extracted via 
dipolar couplings,26, 28, 47, 69 quadrupolar couplings59, 70 or 1H/1H spin diffusion.46 However, already 1993 Facelli and Grant71 have 
shown that the chemical shift tensor contains sufficient information to determine molecular symmetry in crystalline solids. Addition-
ally, de Dios et al.48 and Harper et al.9 and have shown in 1993 and 2001 that the information contained in the chemical shifts is 
sufficient to characterize the secondary and tertiary structure of proteins as well as the stereochemistry and conformation of molec-
ular solids. Further, in 2006, 2009 and 2011 Harris et al.72, Salager et al.73 and Abraham et al.74 demonstrated that calculated chemical 
shifts are sufficiently accurate to assign chemical shifts from experimental solid-state NMR and to differentiate between different 
polymorphs. These developments have given rise to the field of chemical shift based NMRX. Due to the relative simplicity in extracting 
experimental chemical shifts together with the strong dependence of chemical shifts on the local atomic environment (see Chapter 
1.2) as well as the progress being made both in measuring as well as in calculating accurate chemical shifts, the scope of chemical 
shift driven NMRX has steadily increased in the past years. 

A large step towards extracting the structural information contained in the chemical shift space has been taken with the development 
of accurate computational methods to predict chemical shifts48, 60-63, 75-84 of single molecules as well as extended structures (Figure 
1-1), as described further below. However, there is currently no method to directly transform the chemical shift information into 
atomic-level structures, as a direct and simple analytical expression linking the chemical shifts back to the atomic structure does not 
exist. Instead chemical shift driven NMRX is based on the generation of reasonable structural hypotheses and / or structural models, 
either by a comprehensive structure search13, 26, 35, 56, 58 or through searches using different degrees of intuition in combination with 
experimental constraints.12, 22, 25, 51, 54, 57, 71, 85 The structural models are then validated by comparing calculated and experimental 
chemical shifts.86 

 

Figure 1-1. Correlation between DFT calculated and experimental 13C chemical shifts of the a and b forms of testosterone adapted with authoriza-
tion from Harris et al.72 (copyright 2006 Royal Society of Chemistry) (a), of the Ca carbons of the 12 Ala sites in SNase as adapted with authorization 
from de Dios et al.48 (copyright 1993 AAAS) (b) and of naphthalene as adapted with authorization from by Facelli and Grant71 (copyright 1993 Nature 
Publishing Group). 

The result of this indirect structure determination approach means that the power of NMRX critically depends on the methods used 
to generate the structural models as well as on the number of structural models for which chemical shifts can be calculated with 
reasonable computational cost. Further, both of these points strongly depend on the type of investigated system. For example, the 
1H, 13C and 15N chemical shifts of proteins are typically calculated using statistical87-94 or machine learning95-97 approaches based on 
large experimental databases. This allows for the screening of thousands of structural models and has met with considerable success 
in predicting local sequences and structural motifs.15, 98-100 

(a) (b) (c)
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However, for most materials such database approaches do not exist or are currently being developed101-103 (as discussed in Chapter 
2.2). For these systems, the development of accurate ab-initio methods to calculate chemical shifts,104 in particular using plane wave 
density functional theory (DFT) methods based on the gauge including projected augmented wave (PAW/GIPAW) approach62-63, 81 as 
well as fragment based DFT methods83-84 in combination with the Gauge-Independent Atomic Orbital (GIAO) method,60-61, 75, 77, 82 has 
greatly contributed to the success of NMRX. For a wide range of organic and inorganic materials, such as molecular solids, graphite, 
silicates, zeolites and oxides, the DFT errors on the isotropic chemical shift values are around 1-2% of the chemical shift range of the 
investigated nucleus. Example nuclei include, but are not limited to, 1H, 13C, 15N, 17O, 19F, 27Al, 29Si and 43Ca.18, 36, 70, 83, 105-112 Figure 1-1 
shows the correlation between the DFT calculated and experimental 13C chemical shifts for a set of reference structures as given by 
Harris et al.,72 de Dios et al.48 and Facelli and Grant.71  

Figures 1-2 and 1-3 show the 1H, 13C and 19F DFT isotropic chemical shift accuracy that can be obtained today for a set of example 
crystal structures. The investigated crystal structures were obtained as described in Table 1-1 and optimized using plane-wave DFT 
as described in Chapter 2. The 1H, 13C and 19F chemical shifts were calculated using plane-wave DFT as described in Chapter 2. The 
experimental 13C and 1H chemical shifts were acquired as described in Chapter 2. The 19F chemical shifts were obtained as described 
in Table 1-1. Using the shielding (𝜎) to shift (𝛿) conversion, given in Equation 1-7, we obtain a chemical shift root-mean-square error 
(RMSE) of 0.42 ppm for 1H, 2.49 ppm for 13C and 2.96 ppm for 19F.  

 

Figure 1-2. Correlation between DFT calculated and experimental 1H (a) and 13C (b) chemical shifts for a set of example crystal structures (c), which 
are given in Table 1-1. For 1H we obtain a chemical shift RMSE of 0.42 ppm and a slope (b) of 0.912. For 13C we obtain a chemical shift RMSE of 2.49 
ppm and a slope (b) of 0.962. In (a) and (b) the dotted orange line indicates a perfect linear correlation. 
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Figure 1-3. Correlation between DFT calculated and experimental 19F chemical shifts (a) for a set of example crystal structures (b, c), which are given 
in Table 1-1. Panel (b) shows the donors: 1,4-diiodotetrafluorobenzene (p-DITFB, 1) and 1,3,5-trifluoro-2,4,6-triiodobenzene (sym-TFTIB, 2) and 
acceptors: acridine (ACD, A), 1,10-phenanthroline (PHN, B), 2,3,5,6-tetramethylpyrazine (TMP, C), and hexamethylenetetramine (HMT, D) for the 
investigated cocrystals. For 19F we obtain a chemical shift RMSE of 2.96 ppm and a slope (b) of 0.913. In (a) the dotted orange line indicates a perfect 
linear correlation. 

For microcrystalline powders and amorphous materials, the power of chemical shift based NMRX arises from the fact that DFT is 
today accurate enough to reproduce the exquisite sensitivity of chemical shifts to changes in local atomic environments. However, 
compared to database approaches for chemical shift predictions, the computational cost of DFT chemical shift calculations prevents 
the extensive screening of the structural landscape. Therefore, NMRX is often combined with structure selection algorithms to iden-
tify relevant structural motifs and regions. Here, the choice of the selection algorithm critically depends on the type of structure 
present.  

Microcrystalline powders of molecular solids are characterized by the combinatorial complexity and diversity of organic chemistry, 
the subtle dependence on conformations, and the long and short-range effects of crystal packing. Here, the relatively small size of 
the crystals in powders limits the diffraction approach, whereas the atomic level structure is still uniquely determined through the 
single-crystal parameters. Thus, NMRX has been combined with crystal structure prediction113 (CSP) protocols to generate a set of 
trial crystal structures, which are then evaluated by comparing DFT calculated and experimental chemical shifts, to determine de 
novo crystal structures from powders.34-35, 38, 44, 58, 114 However, CSP and accurate DFT chemical shift calculations still require consid-
erable computational resources thus limiting the combined approach to relatively small systems. Additionally, errors and uncertain-
ties, both for the full structural model and for individual atomic positions, are not determined by CSP-NMRX and in that sense the 
structures remain just models. 

For amorphous and doped materials, disorder is present on a more local level and the atomic-level structure is not uniquely deter-
mined by the single crystal parameters. Additionally, the disorder leads to a distribution in the observable chemical shifts, which 
generally makes it more challenging to extract the structural information contained in the experimental NMR spectra. Thus, the CSP-
NMRX approach described above is not applicable. Here, NMRX can be combined with large-scale molecular-dynamics (MD) simula-
tions to generate an ensemble of trial structural motifs, which can then be evaluated by comparing DFT calculated and experimental 
chemical shifts.40, 115-121 However, the large-scale structures generated in the MD simulations are too large for DFT chemical shift 
calculations. Thus, an approach has to be developed to generate representative structural fragments and motives, which are amend-
able for accurate chemical shift calculations. 
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NMRX is further complicated for materials containing heavy atoms, e.g., nuclei heavier than the 5th row of the periodic table. For 
these systems it has been shown that a full relativistic treatment of the electronic density has to be considered.122-127 This prohibits 
the use of periodic DFT calculations and leads to a drastic increase in the required computational resources, which in turn strongly 
limits the number of computationally investigable trial structures. Therefore, NMRX for these systems is often limited to the evalua-
tion of relatively general structural hypotheses. However, in many cases the local structural information extracted from the NMRX 
evaluations complements the information which can be extracted from other characterization methods and thus can lead to novel 
structural insights.  

Note that, open-shell and paramagnetic systems as well as metallic materials further complicate DFT chemical shift calculations.128-

130 These systems are not investigated here. However, similar considerations as in Chapter 4 must be considered.16, 20, 33 

Table 1-1. List of references for the crystal structure coordinates and 1H, 13C and 19F experimental chemical shifts of the investigated crystal struc-
tures. 

Structure 
CSD Refcodes / 
structure reference 

Experimental chemical 
shift reference 

Cocaine COCAIN10 Chapter 2. 

AZD8329 CCDC 957764 Chapter 2. 

Flutamide WEZCOT Chapter 2. 

Ampicillin AMCILL Chapter 2. 

Fluorouracil FURACL Viger-Gravel et al.131 

Perfluoronaphtalene OFNAPH01 Robbins et al.14 

1 (p-DITFB) CCDC 819337  Szell et al.36 

2 (sym-TFTIB) CCDC 293751 Szell et al.36 

A1 (ACD-DITFB) CCDC 712048 Szell et al.36 

A2 (ACD-TFTIB) Szell et al.36 Szell et al.36 

B1 (PHN-DITFB) CCDC 259705 Szell et al.36 

B2 (PHN-TFTIB) Szell et al.36 Szell et al.36 

C1 (TMP-DITFB) CCDC 259702 Szell et al.36 

C2 (TMP-TFTIB) Szell et al.36 Szell et al.36 

D1 (HMT-DITFB) CCDC 161327 Szell et al.36 

D2 (HMT-TFTIB) CCDC 1018109 Szell et al.36 
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1.4 Outline	of	the	present	thesis		
In this chapter I have presented an overview of NMR as probe of local environments and how solid-state NMR can be used for 
structure elucidation of materials which are not amendable by diffraction-based methods. Additionally, I have briefly discussed the 
applicability and the current limitations of NMRX to materials containing different degrees of disorder. The focus of my PhD has been 
the application and development of computational methods for NMRX. In the following chapters I will present selected results on 
method development and applications of NMRX for microcrystalline molecular solids, amorphous materials and doped systems con-
taining heavy atoms. 

Chapter 2 describes chemical shift based NMRX in combination with CSP for the atomic-level structure determination of microcrys-
talline molecular solids. We investigate the current limitations of CSP-NMRX with respect to the computational cost, the structure 
selection confidence and the structural uncertainty. For this, we investigate the positional accuracy of the combined CSP-NMRX ap-
proach and we develop machine learning and empirically based methods to extend the scope of NMRX for molecular crystals. Fur-
thermore, we combine the presented methods to correctly determine the atomic-level structure, including positional uncertainties, 
of microcrystalline ampicillin with up to 95% confidence.  

Chapter 3 discusses the application of NMRX to amorphous materials. We determine the atomic-level structure of amorphous cal-
cium silicate hydrate using NMRX. In contrast to the comprehensive CSP based approach for molecular crystals, we use experimental 
data and chemical intuition to generate a constrained ensemble of local structural motifs. The individual motifs are then evaluated 
by comparing their calculated 1H and 29Si chemical shifts to experiment. Further we use MD simulations to verify the stability of the 
proposed structures.  

Chapter 4 investigates the atomic-level nature of doped materials containing heavy atoms. Here, we propose and evaluate a set of 
possible doping mechanism using NMRX in combination with other characterization methods. We investigate the doping mechanism 
for different cation dopants (39K, 133Cs and 87Rb) in hybrid organic-inorganic multi-cation lead halide perovskites.  

Chapter 5 summarizes the achieved results and presents a general outlook on advanced computational methods for NMRX.  
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 Microcrystalline	solids	
2.1 Introduction	
The 40,000-60,000 crystal structures published every year132-135 perfectly illustrate the importance of the knowledge of atomic level 
structures of solids. In pharmaceutical compounds, crystal structures guide the understanding of physicochemical and pharmacoki-
netic properties such as bioavailability or solubility.136 However, many active pharmaceutical ingredients (APIs) are only available as 
powders that are not amenable to resolution with X-ray diffraction methods if, for example, they are sub-micron in size, or they 
contain elements of disorder. 

For microcrystalline powders of molecular solids NMRX often involves CSP113 protocols to generate reliable trial crystal structures (see 
Chapter 1.3) and has already been used to determine de novo crystal structures from powders34-35, 38, 44, 58, 114 as well as to determine 
elements of structure such as hydrogen bonding, proton positions and stereochemistry,9-10, 13, 137-139 to validate and refine crystal 
structures of molecular solids, or to identify known polymorphs.8, 12-13, 17-18, 24, 29-32, 37, 39, 47, 56, 73, 83-84, 138, 140-149  

However, CSP requires considerable computational resources, which increases rapidly with the structural degrees of freedom. Thus, 
CSP based NMRX (CSP-NMRX) for de novo determination is currently limited to systems with up to about 10 degrees of torsional 
freedom within the molecule,150 and going beyond this requires some prior knowledge or intuition.35, 114 Indeed, in order to circumvent 
these limitations CSP methods often make assumptions based on space groups or predicted conformational energies for example to 
help limit the search space of possible structures. However, this can lead to failure of the CSP-NMRX method to determine the crystal 
structures when the correct structure is excluded from the search space.  

A common feature of CSP-NMRX methods developed to date is that they exploit structural constraints from solid-state NMR only in 
the final step, to select the correct crystal structure from an ensemble of predicted structures. Introducing experimental constraints 
earlier in the CSP process would be an obvious way to guide and accelerate structure determination. The bottleneck for CSP of flexible 
molecules usually relates to the size of the molecular conformational space, so guidance to constrain the size of the search space 
would be most valuable if it relates to single molecule conformations. However, it is not immediately clear how experimental meas-
urements on the crystalline samples would be relevant to restrict the single molecule conformational space. 

In Chapter 2.2, we introduce a CSP-NMRX method to determine crystal structures in which we use unambiguous constraints from 
solid-state NMR on microcrystalline samples to restrict the CSP search space to the relevant regions of conformational space. The 
approach directs the determination procedure from the first steps towards the correct crystal structure, without the need for assump-
tions. We parametrize the approach on the crystal structures of cocaine, flutamide, and flufenamic acid and demonstrate a significant 
acceleration in computational times for these compounds.  

The power of the CSP-NMRX method for molecular solids arises from the fact that plane wave DFT with the GIPAW method is accurate 
enough to reproduce the exquisite sensitivity of chemical shifts to changes in local atomic environments (see Figures 1-1 to 1-3). 
However, this approach also has severe limitations such as the cubic scaling of the computational cost with system size prevents the 
application to larger and more complex crystals, or non-equilibrium structures. If one wanted to use more accurate ab initio calcula-
tions, the expense is prohibitive.  
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Machine learning (ML) is emerging as a new tool in many areas of chemical and physical science, and potentially provides a method 
to bridge the gap between the need for high accuracy calculations and limited computational power.151-155 Notably, prediction of 
chemical shifts for the specific case of proteins in solution using methods based on large experimental databases, with traditional87-94 
or machine learning approaches,95-97 have met with considerable success in predicting shifts based on local sequence and structural 
motifs, and are widely used today (see Chapter 1.3). While there are some examples of machine learned experimental and ab-initio 
chemical shifts of liquid and gas phase molecules,156-160 at the start of this work there was only one example of machine learning being 
applied to calculations of chemical shifts in solids, which deals with the specific case of silicas.101 Molecular solids are characterized 
by the combinatorial complexity and diversity of organic chemistry, the subtle dependence on conformations, and the long and short 
range effects of crystal packing, which leads to a considerably broader range of chemical environments and possible chemical shield-
ings than found e.g. in proteins. All these aspects, compounded by the fact that there is no extensive database of experimental chem-
ical shifts for molecular solids, make this class of systems particularly challenging for machine learning. 

In Chapter 2.3, we develop a machine learning framework to predict chemical shifts in solids which is based on capturing the local 
environments of individual atoms, and thus suitable for the prediction of local properties such as chemical shifts. Most significantly, 
even though no experimental shifts were used in training, we show that the model has sufficient accuracy to be used in a chemical 
shift driven CSP-NMRX protocol to correctly determine, based on the match between experimentally-measured and ML-predicted 
shifts, the correct structure of cocaine, and the drug 4-[4-(2-adamantylcarbamoyl)-5-tert-butylpyrazol-1-yl]benzoic acid (AZD8329). 
We also show that this method allows to calculate the NMR spectrum of very large molecular crystals, which cannot be calculated 
using DFT. 

An additional key difference between NMR and XRD crystallographic methods is that there exists no protocol to quantify the positional 
errors on individual atoms for structures determined by chemical shift-based NMRX.  

In Chapter 2.4, we introduce a method, based on MD, DFT and machine learning methods, to estimate the correlation between the 
root mean squared deviation (RMSD) of the experimental and calculated chemical shifts, and the variances of atomic positions of 
individual atoms in structures determined by CSP-NMRX, thereby making them directly comparable to structures determined by other 
methods. The approach is demonstrated on multiple crystal structures recently characterized by CSP-NMRX.56, 58, 142  

While usually sufficiently accurate, DFT chemical shifts are not exact and the underlying atomic structures of candidates is subject to 
the accuracy of the level of theory at which they are described, leading to uncertainties in predicted NMR shifts.18 Conventionally 
candidates are therefore considered to be consistent with experiment if the RMSE of their shifts from the experimentally measured 
values falls within these uncertainties. However, this approach is severely limited. It neither allows determination of the experimental 
structure when multiple candidates exhibit similar RMSEs within the “confidence interval", nor does it provide a means of quantifying 
how likely different candidates are to match the experimental structure in any but the most clear-cut cases.  

In Chapter 2.5, we propose a probabilistic approach to overcome these limitations in the evaluation of candidate structures in chemical 
shift based NMRX. Whereas previously, structures were considered either in agreement or not with the data, this method allows one 
to quantitatively evaluate the probability that a structure among a given set corresponds to the experiment, on a continuous scale 
from 0 to 100% confidence. We demonstrate the method on structures determined with different levels of confidence. As a demon-
stration of the capabilities of the method, we combine experimental NMR data with DFT and ML predictions of the shifts of a set of 
CSP candidates to determine the confidence in the structure determination of five different molecular crystals. 

In Chapter 2.6, we combine the unambiguous prior constraints for CSP-NMRX together with chemical shifts calculated with both DFT 
and ML161 as well as the Bayesian approach to correctly determine the full crystal structure, including positional uncertainties, of 
powdered ampicillin with up to 95% confidence, for which the usual approach to CSP-NMRX would have failed. 
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2.2 NMR	crystallography	directed	by	unbiased	prior	constraints	
This chapter has been adapted with permission from: Hofstetter, A.; Balodis, M.; Paruzzo, F.M.; Widdifield, C..M.; Stevanato, G.; Pinon, 
A.C.; Bygrave, P.; Day, G.M.; Emsley, L., “Rapid Structure Determination of Molecular Solids Using Chemical Shifts Directed by Unam-
biguous Prior Constraints”. Journal of the American Chemical Society 2019, XXXX, XXX. (pre-print) 

2.2.1 Introduction	
The CSP-NMRX approach (see Chapter 1.3) involves the combination of crystal structure prediction methods, ab-initio calculated 
chemical shifts and solid-state NMR experiments and is a powerful tool for crystal structure determination of microcrystalline pow-
ders.34-35, 38, 44, 58, 114 However, currently structural information obtained from solid state NMR is usually included only after a set of 
candidate crystal structures has already been independently generated, starting from a set of single molecule conformations. Here, 
we show that this can lead to failure of the structure determination. We thus propose a crystal structure determination method that 
includes experimental constraints already during conformer selection. To overcome the problem that experimental measurements on 
the crystalline samples are not obviously translatable to restrict the single molecule conformational space, we propose constraints 
based on the analysis of absent cross-peaks in solid-state NMR correlation experiments. We show that these absences provide unam-
biguous structural constraints on both the crystal structure and the gas phase conformations, and therefore can be used for unambig-
uous selection. The approach is parameterized on the crystal structure determination of flutamide, flufenamic acid, and cocaine, 
where we reduce the computational cost by around 50%. 

2.2.2 Methods	
Figure 2-1a schematically illustrates the workflow in a successful case for the current CSP-NMRX approaches.56-58 In the first step, the 
torsional degrees of freedom are explored to generate a comprehensive ensemble of energetically stable single molecule conformers. 
The ensemble is then sorted according to the calculated conformational energies and the lowest energy conformers are selected to 
proceed to the next step, based on an empirical cut-off energy. Although flexible molecules often do not assume their lowest energy 
molecular conformation in their observed crystal structures,162 the assumption here is that low energy crystal structures, including 
the correct (observed) polymorph, will generally result from low energy molecular conformers. However, this is not always the case, 
as will be demonstrated in Chapter 2.6 below.  

The selected conformations are then each subjected to a crystal structure search, during which trial structures are generated by var-
ying the unit cell dimensions, molecular positions, packing symmetry, and the number of molecules per asymmetric unit, leading to 
hundreds or thousands of possible crystal structures from each single molecular conformer. The energy of each structure is then 
minimized, typically using atom-atom force fields and DFT.113 

Next, this ensemble is ranked by calculated lattice energy and again only the structures below a given cut-off energy are retained. In 
the final step, these structures are further optimized, typically using periodic boundary DFT calculations, and then the chemical shifts 
(or other experimental data such as dipolar couplings or chemical shift anisotropies)13, 35, 85, 149, 163-164 for this sub-ensemble of crystal 
structures are calculated and compared to experimental chemical shifts measured on a powder sample. The error between the calcu-
lated and the experimental chemical shift data is then used to determine the unique crystal structure present in the powder. Note, 
that the computational cost rises sharply when moving from the energy calculations of a single molecule to lattice energy calculations 
to DFT GIPAW chemical shift calculations, thus requiring the use of successive selection steps to reduce the number of candidate 
structures at each stage.  

From the description of the NMRX procedure above, it is evident that a gas phase conformer similar to the one present in the correct 
crystal structure must be among those initially selected. 

Figure 2-1b illustrates a case where the current CSP-NMRX method fails. Analogously to the previous case, a large ensemble of single 
molecule conformers is generated and sorted by conformational energy. However, here the molecular conformer present in the crystal 
structure is too energetically unfavorable in the gas phase, thus failing to pass the selection criteria by energy. An illustrative example 
of this case could be when intra-molecular hydrogen bonds stabilize the most stable conformations in the gas phase, while the crystal 
structure conformation is stabilized through inter-molecular hydrogen bonds or other interactions only present in the solid phase. 
Thus, following the normal selection steps based on the conformational energy, the correct conformer is not included in the crystal 
structure search, and consequently is not present in the trial crystal structures that are compared to the experimental data.  
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Taking this into account, one could extend the crystal structure determination procedure in two ways. Options are to loosen the initial 
selection criteria, thus allowing more conformers to proceed to the following steps, increasing the computational cost, usually pro-
hibitively, or to use a different initial selection criterion including information from experiment. 

Figure 2-1c illustrates this second approach, which we introduce here. Contrary to the standard CSP methods, no assumptions based 
on calculated energy are made in the initial conformer selection process. Instead a sub-ensemble of conformers is selected using 
experimental constraints from solid-state NMR experiments on the powdered microcrystalline sample. This approach guarantees that 
the conformational sub-ensemble selection is guided towards the correct crystal conformer, and thus that the structure determination 
is not limited by possibly erroneous assumptions.  

 
Figure 2-1. Schematic of the current and proposed CSP-NMRX methods. (a) an example of a successful structure prediction using the current CSP-
NMRX method. (b) an example of a failed structure prediction using the current CSP-NMRX method. (c) an example of the proposed experimentally 
constrained CSP-NMRX method, which successfully overcomes the failure of the current CSP-NMRX method shown in panel (b). In each panel the 
structures in the first line depict single molecule gas phase conformations sorted by their conformational energy. After applying a given selection 
criteria a reduced conformer set is used to generate an ensemble of possible crystal structures (represented by the 2nd line in each panel). The 
colored boxes are indented as a guide to the eye, as to which conformer results in which crystal structures. The 3rd line in each panel represents 
crystal structures picked from the 2nd line after a further selection criterion. This final set of structures is then compared to the experimental chemical 
shifts, to determine the correct crystal structure. In each panel the scatterplot shows the experimental 1H chemical shift plotted against the DFT 
calculated 1H chemical shift for the trial structure with the lowest error between DFT and experimental chemical shifts. 
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However, experimentally we only have access to the full crystal structures and cannot probe the underlying “virtual” gas phase con-
formations independently. Thus, we need to measure experimentally accessible constraints that would be unambiguously fulfilled 
both in the crystal structure as well as in the gas phase conformations. Note that commonly used solid-state NMR constraints, such as 
the presence of (dipolar-coupling mediated) cross peaks in NMR correlation experiments28, 34, 46, 50, 165-172 due to internuclear proximity, 
do not contain unambiguous information about the gas phase conformations. This is because a cross peak could arise either from intra 
or inter molecular proximity. 

 
Figure 2-2. Schematic illustrations of 1H-13C HETCOR spectra (right) for four different structural fragments (left) and the derived constraints. Struc-
tures (a) and (b) contain an “open” conformer. Structures (c) and (d) contain a “closed” conformer. Blue dotted lines are sufficiently short C-H 
distances between CM and HO to generate peaks in the spectra. Orange dotted lines are too long to generate peaks. After applying the constraints 
with a threshold distance of X=3.5 Å, we see that the absence of a peak in fragment (a) is the only unambiguous constraint. 

Here we introduce a novel approach that extracts unambiguous conformational constraints on the single molecule conformations 
present in crystalline samples. The approach is schematically illustrated in Figure 2-2, where we differentiate between two conformers 
(“open” and “closed”) by analyzing a 1H-13C HETCOR spectrum. 

The 1H-13C HETCOR spectrum contains two different types of information. First, cross-peaks which are present indicate atoms that are 
close in space. Second, absent cross-peaks contain information about atoms that are more than a certain distance “X” apart, where 
“X” possibly depends on the CP contact time, experimental setup and the investigated system. Figure 2-2 shows that only the infor-
mation from the absent cross-peaks in the solid-state spectra can be directly transferred to constraints on the single molecule confor-
mations. This is best demonstrated with a thought experiment. If the heteroatoms CM and HO are close in space, the cross-peak at CM-
HO will be present in the HETCOR spectra. However, the cross-peak can result either from a short intra-molecular CM-HO distance (i.e. 
the “closed” conformer) (Figure 2-2c-d) or from a short inter-molecular interatomic distance (which can be from the “closed” or the 
“open” conformer) (Figure 2-2b-c). Thus, the presence of a cross peak does not contain unambiguous information about the single 
molecule conformer, as the fragments in Figure 2-2b-d contain both possible conformations.  

An absent cross-peak for CM-HO however indicates that CM and HO are at least “X” angstroms apart, for both intra- and inter-molecular 
CM-HO distances (Figure 2-2a). This can only happen for the “open” conformer. Thus, the information from the absent cross-peaks is 
unambiguous regarding the single molecule conformation and can be used as a constraint on trial structure generation. 

Note that, the fragment in Figure 2-2b also contains the “open” conformation, but does contain a cross-peak for CM-HO and thus will 
not result in a constraint on the distance between CM and HO. However, such cases only result in fewer constraints on the single 
molecule conformer but do not induce any incorrect constraints. 

Note also that, it is not a priori clear what the threshold distance “X” is. In general, we expect to reliably see all 1H-13C HETCOR cross-
peaks at least up to 3.0 Å.173 In order to establish a reliable value for the threshold distance “X”, accessible in the 1H-13C HETCOR 
experiments used here, we investigate the correlation between interatomic 1H-13C distances and signal intensities of the cross-peaks 
in the HETCOR experiments recorded for cocaine, flutamide and flufenamic acid.  

For these three compounds the experiments were performed at different contact-times, spinning-rates and on different spectrome-
ters. Figure 2-5a shows that for cocaine we have signal to noise ratios (SNR) of up to 80, while flufenamic acid has a maximum SNR of 
around 10. Additionally, for a 1H-13C HETCOR experiment, where the signal is transferred from the 1H to the 13C, the SNR also depends 
on the number of protons involved in the transfer, as well as the number of protons overlapping at a given frequency.  
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To make different spectra comparable, we first estimate the number of active protons for a given cross-peak in a spectrum to be 
proportional to the maximum signal intensity at a given frequency in ω1. The signal intensity of each cross-peak is then re-normalized 
by this number of active protons. Then, we consider the difference in overall SNR between spectra by re-normalizing each cross-peak 
with respect to the maximum proton-normalized SNR per spectra. This leads to a normalized SNR per 1H, which is comparable across 
all experiments, and which is shown in Figure 2-5b. 

Once we have selected a reliable threshold distance X Å for a given SNR cut-off (this process is described below), the selected threshold 
distance in combination with each absent HETCOR cross peak is transformed into a constraint on the conformer space as, “if the 
HETCOR cross peak between Cx and Hy is below the SNR cut-off it is classified as absent and so the distance between the atoms Cx and 
Hx must exceed X Å.”  

For each single molecule conformer all the generated constraints are checked and the conformers are sorted according to the number 
of constraints violated. This procedure allows to select conformers for the subsequent CSP procedure. If we are confident in the 
extracted constraints, it is sufficient to only select the sub-ensemble with the lowest amount of violations. However, if this sub-en-
semble is very small or if additional computational resources are available, the selected sub-ensemble can easily be extended to in-
clude structures with a progressively higher amount of violations. Accepting conformations with a small number of constraint viola-
tions can allow for moderate changes in molecular geometry between the gas phase and crystal structure. 

2.2.3 Results	and	Discussion	
In a first step, we establish the range of reliable threshold distances “X” for a given SNR cut off Snorm. For this we investigate the 
correlation between Snorm and the corresponding inter-atomic distances for the three trial compounds cocaine, flufenamic acid and 
flutamide. Then, we investigate the application of the parametrized constraints to CSP-NMRX structure determination of these three 
compounds.  

Parametrization using known structures.  

For cocaine, flufenamic acid and flutamide, 1H-13C HETCOR experiments were performed with 1H-13C contact times of 0.5, 0.75, 1.0 
and 1.5 ms, 0.1, 0.5, 1.5, 2.0, 3.0, and 3.5 ms and 0.1, 0.3, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 ms respectively. We re-normalized the 
spectra as described above, (see Appendix I for details). The resulting normalized SNR per 1H is then comparable between compounds, 
see Figure 2-5b.  

However, Figure 2-5b shows that although there is a correlation between the normalized SNR and the corresponding inter-atomic 
distance, there are significant fluctuations. This is expected since the HETCOR experiment is quite simple (and robust) but is subject 
to spin relayed transfer and dipolar truncation effects, among others. We find that the effect of these fluctuations can be minimized 
by only considering correlations/distances from protons which are situated towards the extremities of the molecules. These distances 
are the most information-rich in terms of the overall molecular conformations. We thus only consider cross-peaks resulting from the 
“terminal”-protons shown in Table 2-4, and marked with a green circle in Figure 2-6a. This results in a much clearer correlation be-
tween normalized SNR and the corresponding inter-atomic distances, as shown in Figure 2-6b. 

From Figure 2-6b it is clear that only a very limited number of inter-atomic distances below 3 Å result in a SNR above 0.2. We then 
test a range of Snorm cut-off values from 0.08 to 0.22 with threshold distances “X” ranging from 2.0 to 5.0 Å. For this we use the single 
molecule conformer ensembles previously generated for the successful CSP-NMRX structure determination protocol described by 
Baias et al.56 Our goal is to verify that the proposed parameterization can select the gas-phase conformer that leads to the correct 
crystal structure while at the same time significantly reducing the total amount of conformers which have to be considered.  

Figure 2-3a shows the set of parameters for which the selection procedure is successful for all three molecules simultaneously. Figure 
2-10 shows the set of successful parameters for each molecule individually. The dashed orange line in Figure 2-3a shows the limit at 
which the selection process starts to fail. To obtain maximal selection power, the parameters should be chosen as close as possible to 
this limit. For cocaine, flufenamic acid and flutamide the highest selection power within the investigated conformer ensembles ex-
plored here was obtained using Snorm =0.14 and “X” = 3.5 Å.  

To aid our interpretation of the selection procedure we apply a sketch-map174-177 analysis to the gas-phase conformer ensembles. The 
details of the sketch-map analysis including an interpretation of the underlying conformational changes for cocaine, flutamide and 
flufenamic acid are given in the Appendix I in Figures 2-7 to 2-9. 
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Flutamide.The initial gas-phase ensemble of flutamide generated in the first step of CSP contains 15 conformers,56 of which 7 are in 
the trans and 8 are in the cis conformation with respect to the amide group (Figure 2-8). The absent cross-peaks in a series of 1H-13C 
HETCOR spectra (Figure 2-4a) are used to generate the conformational constraints shown in Figure 2-4a. Figure 2-3b shows the se-
lected sub-ensemble of conformers in the sketch map that fulfil the most constraints. The sub-ensembles with the lowest number of 
violations (2 of 10 total constraints) are selected for the subsequent CSP procedure. Note, that these two constraints are violated for 
all conformers and do not correspond to significant changes in the conformation, as the involved atoms are not separated by more 
than 2 bonds. The reduced ensemble contains the gas-phase conformer that led to the correct crystal structure during the subsequent 
CSP procedure,56 while being able to reduce the gas-phase ensemble from 15 to 7 conformations. This significantly reduces the com-
putational cost of the following CSP steps by approximately 54% (assuming that all conformers lead to similar numbers of putative 
crystal structures), while still including the correct gas-phase conformer that leads to the observed crystal structure. Additionally, the 
constraints from the absent cross-peaks uniformly select all 7 structures in the trans amide conformation (see Figure 2-11). 

 

 
Figure 2-3. (a) Grid search results of the threshold distance “X” and Snorm cut-off values for flutamide, cocaine and flufenamic acid. The color-map 
shows the fraction of selected structures from within the conformer ensemble. The white area indicates the region where the correct conformer is 
not selected. Optimal selection parameters should select the smallest conformer ensemble, while still containing the correct structure. This corre-
sponds to the dark blue regions within the different panels. The dashed orange line shows the limit, at which the selection process starts to fail. (b-
d) Conformer selection for flutamide (b), flufenamic acid (c) and cocaine (d). The panels show the sketch-map projections of the gas-phase ensem-
bles. Red dots represent the structures which are selected for a threshold distance of 3.5 Å and a Snorm cut-off value of 0.14. The green triangle shows 
the gas-phase conformer of the XRD crystal structure. The green arrow points to the gas-phase conformer which results in the correct crystal struc-
ture after the CSP procedure.  

Cocaine. The initial CSP ensemble for cocaine contains 27 single molecule conformers.56 Figure 3d shows the sub-ensembles with the 
lowest number of violated constraints (2 out of 10 total constraints) extracted from the 1H-13C HETCOR spectra (Figure 2-4b). As for 
flutamide, these two constraints are violated for all conformers and do not correspond to significant changes in the conformation, as 
the involved atoms are separated by only 3 bonds. Figure 2-12 shows that the HETCOR constraints can distinguish between the folding 
and stretching of the cocaine molecule with respect to the aromatic group as well as a flip in the methylamine group. Here, the relevant 
ensemble is reduced by around 55% (from 27 to 12 conformers), while retaining the conformer that leads to the correct crystal struc-
ture. 
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Flufenamic acid. The gas-phase ensemble for flufenamic acid contains 26 molecular conformations.56 Figure 2-3c shows the sub-en-
sembles with the lowest number of violations (0 of 2 total constraints) selected from 1H- 13C HETCOR. The extracted constraints are 
shown in Figure 2-4c. Note that, for flufenamic acid, there are only two non-aromatic protons and that the cross-peaks from the 
aromatic protons are not distinguishable due to overlap in the 1H dimension. However, the distance constraints extracted solely from 
the carboxyl proton (see Figure 2-4c and Figure 2-13) are sufficient to reduce the number of relevant conformers by 46% (from 26 to 
14 conformers), while still selecting the correct conformer, leading to the observed crystal structure.  

 
Figure 2-4. The top part in each panel shows the 1H-13C HETCOR spectrum of: flutamide with 1.25 ms contact time (a), cocaine with 1.0 ms contact 
time (b) and flufenamic acid with 1.5 ms contact time (c) (further details and raw data in Appendix I). 13C peaks are assigned based on the litera-
ture178 and 1H peaks are assigned from HETCOR spectra and DFT chemical shift calculations (see Appendix I). The cross-peaks from the terminal 
protons (Figure 2-6) below a Snorm of 0.14 were used as constraints on the conformer ensembles, and are indicated as orange ellipsoids. The lower 
part of each panel shows the violated constraints extracted from all the 1H-13C HETCOR cross-peaks for different example conformers within the 
ensembles.  
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2.2.4 Conclusion	
The most severe limitations of CSP-NMRX are encountered when a molecule has many possible conformers and the molecular con-
formation adopted in the crystal could be significantly higher in energy than the most stable gas-phase conformation. In such cases, 
the usual energetic thresholds applied to the conformational ensemble used to generate candidate crystal structures create a risk of 
missing the true crystal packing. 

However, removing any conformer selection and including all possible conformers during crystal structure generation can lead to 
prohibitively high computational costs. To overcome this, we propose a modified CSP-NMRX method which includes unambiguous 
prior NMR constraints, in this case 1H-13C correlations, at the conformer search stage within CSP. The key development is a novel 
approach that extracts unambiguous conformational constraints on the single molecule conformations present in crystalline samples. 
We parametrize the proposed method on the crystal structure determination of three flexible molecules that we previously studied 
using CSP-NMRX: cocaine, flutamide and flufenamic acid. For all these compounds we found that the method reproduces CSP-NMRX 
results and determines the correct crystal structure, while reducing the computational cost by between 46 and 55%. Note that these 
three molecules are relatively small and the savings in computational expense will be greater for larger molecules with more confor-
mational degrees of freedom. 

The compounds studied here were not subjected to any modification prior to the experiments, and they were investigated using 
powder samples at natural isotopic abundance. 

We note that the experimentally guided CSP method demonstrated here is not limited to pure NMRX applications but that the derived 
constraints can be used in any crystal structure determination methodology, which needs to limit the number of investigated confor-
mations to reduce its computational cost 

We believe that the method is robust and we have chosen the experimental constraints, based on 1H-13C NMR correlation experiments, 
for their relative simplicity and ease of access. However, we note that 1H-13C correlation-based experiments are not the only ones that 
can give conformational constraints. Future work could incorporate other types of experiments such as 13C-13C correlations, or more 
accurate 1H-13C correlation experiments, which could be simpler to parameterize. Here the extraction of the constraints was per-
formed in a fairly basic and straightforward manner. We believe that if the constraints could be extracted in a more quantitative 
manner, e.g. by accounting for changes in peak intensities due to 1H-1H spin diffusion or dipolar truncation, the selection criteria can 
be made stronger, further reducing the conformational space and improving the computational efficiency and reliability of the meth-
odology. 

2.2.5 Appendix	I	

Samples  

The powdered samples of free base cocaine (Methyl (1R,2R,3S,5S)-3-(benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate, 
purity > 98.0%) was purchased from Toronto Research Chemicals, while the powdered samples of flutamide (2-Methyl-N-[4-nitro-3-
(trifluoromethyl)phenyl]propenamide, purity > 98.0%) and flufenamic acid (2-((3-(Trifluoromethyl)phenyl)amino)benzoic acid, purity 
> 98.0%) were purchased from Tokyo Chemical Industry. All samples were used without further purification. For all compounds, the 
reference crystal structures were previously determined by single-crystal XRD.179-181  

The reference structure of flutamide, (CSD entry: WEZCOT) contains 4 molecules in the unit cell, and it is orthorhombic, space group 
Pna21, with unit cell parameters a = 11.856(2) Å, b = 20.477(3) Å, c = 4.9590(9) Å.  

The crystal structure of cocaine, (CSD entry: COCAIN10) contains 2 molecules in the unit cell, it is monoclinic, space group P21, with 
unit cell parameters a = 10.130(1) Å, b = 9.866(2) Å, c = 8.445(1) Å. 

The flufenamic acid structure (CSD entry: FPAMCA11) is monoclinic, space group P21/c, with unit cell parameters a = 12.523(4) Å, b = 
7.868(6) Å, c = 12.874(3) Å and 4 molecules in the unit cell. 
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Solid-state NMR experimental setup 

Experiments were performed at room temperature on a Bruker 500 wide-bore Avance III and a Bruker 900 US2 wide-bore Avance Neo 
NMR spectrometers operating at Larmor frequencies of 500.43 and 900.13 MHz, equipped with H/X/Y 3.2 mm and H/C/N/D 1.3 mm 
probes.  

The 2D 1H-13C dipolar heteronuclear correlation (HETCOR) experiments were performed at 12.5 kHz MAS rate for flutamide and co-
caine and at 24.0 kHz MAS rate for flufenamic acid. In all experiments, we used SPINAL-64 for heteronuclear decoupling during t1 and 
eDUMBO-122 for homonuclear decoupling in the indirect dimension. 64 transients and 256 increments for flutamide, 4 transients with 
64 increments for flufenamic acid and 16 transients with 256 increments for cocaine.  

All chemical shifts were referenced indirectly to tetramethylsilane using the methyl signals of l-alanine at 1.3 ppm (1H) and 20.5 ppm 
(13C).182 1H chemical shifts were corrected for the scaling factor due to homonuclear decoupling, which was determined using 1H 1D 
spectra acquired under fast spinning on Bruker 900 spectrometer. Post-processing was done using Topspin 3.5.  

Assignment of experimental NMR spectra 

The assignment of 13C and 1H chemical shifts for flutamide, flufenamic acid and cocaine was taken from the paper by M. Baias et al.56  

Experimental chemical shifts 

Table 2-1. Cocaine experimental chemical shifts. 

Label 1H, ppm 13C, ppm 

1 3.5 66.0 

2 3.5 50.2 

3 5.5 66.7 

4 3.3 36.7 

5 3.4 62.6 

6 3.4 25.6 

7 2.4 25.6 

8 - 165.9 

Ar () 7.8 129.4 

Ar (ipso) - 134.5 

15 - 172.2 

16 3.5 50.2 

17 1.2 41.52 
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Table 2-2. Flufenamic acid experimental chemical shifts. 

Label 1H, ppm 13C, ppm 

1 - 149.3 

2 - 109.7 

3 8.3 133.0 

4 6.0 117.2 

5 5.4 136.3 

6 6.8 112.0 

7 - 175.0 

8 9.6 - 

9 -6.6 - 

10 - 139.9 

11 6.9 121.7 

12 - 131.7 

13 6.2 119.8 

14 5.9 129.5 

15 7.3 128.1 

16 - 124.1 

Table 2-3. Flutamide experimental chemical shifts. 

Label 1H, ppm 13C, ppm 

1 - 145.4 

2 - 124.5 

3 7.9 130.9 

4 - 140.9 

5 9.9 124.5 

6 7.1 116.7 

7 - 122.0 

8 8.0 - 

9 - 176.1 

10 2.3 35.7 

11 1.3 17.7 

12 1.3 21.7 

 

 

 

 

Signal to Noise analysis 

The signal to noise ratio (SNR) extraction and analysis was done using the Signals extracted directly from TopSpin 4.0.5 in text file 
format together with a home-written python script. The SNR was extracted as: 

𝑆𝑁𝑅 = 𝑚𝑎𝑥𝑣𝑎𝑙(𝑆)/(2 ∗ 𝑛𝑜𝑖𝑠𝑒), 

(2-1) 

where maxval(S) is the maximum intensity at a given 1H and 13C coordinate ±0.2𝑝𝑝𝑚. Note, that after a first extraction of maxval(S) 
the 1H and 13C coordinates were centered above maxval(S) and a refined maxval(S) was extracted.  

The noise was extracted as the variance of the intensity for 100 areas (0.4 × 0.4	𝑝𝑝𝑚) within the spectra. The initial 10 noise-areas 
were chosen manually, as to not contain any cross-peaks. The subsequent 90 noise-areas were chosen at random and were included 
in the noise intensity if the maximum signal intensity within the random area was less-or-equal to two times the maximum signal 
intensity in the already chosen areas. Figure 2-5a shows the extracted SNR of all 1H-13C HETCOR spectra for cocaine, flufenamic acid 
and flutamide against the corresponding inter-atomic distance.  
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First, we normalize each cross-peak by the number of active protons. For this we estimate the number of active protons for a given 
cross-peak in a spectrum by the maximum signal intensity at the given frequency, which is given from the maximum SNR at a given 1H 
coordinate. In a next step, we consider the difference in sensitivity between the spectra, due to the specific experimental setups, by 
normalizing each cross-peak with respect to the maximal proton-normalized SNR per spectrum. This leads to a normalized SNR per 
1H, which is comparable across all experiments and is shown in Figure 2-5b. 

 

Figure 2-5. Signal intensity of 1H-13C HETCOR cross-peaks plotted against the corresponding interatomic distance for cocaine (green), flufenamic-acid 
(orange) and flutamide (cyan). (a) The SNR is extracted directly for all 1H-13C HETCOR at different contact-times and different experimental setups. 
(b) The normalized SNR per 1H allows a direct comparison across different experimental setups and for cross-peaks with a different number of active 
protons. 

 

 

Figure 2-6. (a) Illustration of terminal protons, for which cross-contribute to conformational constraints. (b) normalized SNR of 1H-13C HETCOR cross-
peaks plotted against the corresponding interatomic distance for center protons (red) and terminal protons (blue), which are used to generate 
conformational constraints. 
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Table 2-4. Terminal protons contributing to conformational constraints for cocaine, flufenamic acid, flutamide and ampicillin 

Molecule terminal 1H 

Cocaine Ar 

 16 

 17 

Flufenamic acid 9 

Flutamide 10 

 11 

 12 

 

Gas-phase conformer generation 

For cocaine, flutamide and flufenamic acid the CSP conformers and crystal structures were generated as described in the paper by M. 
Baias et al.56  

Sketch-map analysis 

The cluster generation and analysis were performed with home-written Python and MATLAB codes and using the sketch-map pack-
age.174-177 The sketch-map parameters are given Table 2-5. They were chosen following the procedure described in Ceriotti et al.175 
and the tutorial on sketchmap.org. The sketch-map analysis was not sensitive to small variations in the chosen parameters, as was 
already noted in the references.175-177 As starting point for the sketch-map analysis we used all dihedral angles, not containing protons, 
over the full 2p range. This gives 47, 31 and 35 dihedral angles for cocaine, flutamide and flufenamic acid, within a range of –p to p. 

Table 2-5. Sketch-map parameters for all compounds. 

Structure 𝚺 = 𝝈 A B a b 

Cocaine 13 4 4 1 2 

Flutamide 6 3 3 1 1 

Flufenamic Acid 6 2 2 1 1 

 

Cocaine. The gas-phase CSP conformer ensemble of cocaine contains 27 locally stable conformations (after DFT-D geometry optimi-
zation). The conformers are labeled according to increasing force-field energy. The 2nd conformer resulted in the correct crystal struc-
ture after the remaining CSP procedure.56 Figure 2-7 shows the sketch-map representation of the locally stable cocaine conformers. 
The main changes along the sketch-map principle components are rotations of the ester group (along SV(1)) and rotations within the 
methylamine group (along SV(2)). 
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Figure 2-7. Top) Sketch-map representation of the locally stable cocaine conformations. To show the extent of the sub-clustering the panels are 
colored according to different torsion angles reporting on different rotations in the molecule. Θester is defined as the torsion angle between C1-C2-
C15-O4 and reports on rotations of the ester group. Θmethylamine is defined as the torsion angle between C2-C1-N-C17 and reports on rotations of the 
methyl group attached to the nitrogen. Θaromatic is defined as the torsion angle between C(ortho)-C(ipso)-C8-O2 and reports on flips of the aromatic 
group. The lower right panel shows the overlapped conformation without (a) and with (b) a flipped aromatic ring. Bottom) 2D structure of cocaine 
with the used labelling scheme.  

 

Figure 2-8. Sketch-map representation of the gas-phase flutamide ensemble. To show the extent of the sub-clustering the panels are colored ac-
cording to different torsion angles reporting on different rotations in the molecule. Θmethyl is defined as the torsion angle between C11-C10-C9-N(H) 
and reports on rotations of the methyl groups. Θamide is defined as the torsion angle between C4-N(H)-C9-O1 and reports on the amide conformation. 
Θaromatic is defined as the torsion angle between C3-C4-N(H)-C9 and reports on rotations of the aromatic group. The lower right panel shows the 2D 
structure of flutamide with the used labelling scheme.  
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Flutamide. The gas-phase CSP conformer ensemble of flutamide contains 15 locally stable conformations (after DFT-D geometry op-
timization). Of those, 7 are in the trans and 8 in the cis conformation with respect to the amide group. The conformers are labeled 
according to increasing force-field energy. The 1st conformer resulted in the correct crystal structure after the remaining CSP proce-
dure.56 Figure 2-8 shows the sketch-map representation of the locally stable flutamide conformers. The sketch-map representation 
shows a relative distinctive clustering along the sketch-map axes, which correspond to the cis and trans conformations and rotations 
of the methyl groups. The SV(2) axis also partially correspond to rotations of the aromatic ring. 

Flufenamic acid. The initial CSP conformer ensemble of flufenamic acid contains 26 locally stable conformations (after DFT-D geometry 
optimization). The 3rd conformer resulted in the correct crystal structure after the remaining CSP procedure.56 Figure 2-9 shows the 
sketch-map representation of the flutamide gas-phase ensemble. The main changes along the sketch-map principle components cor-
respond to rotations of the carboxyl group (along SV(1)) and rotations of the two aromatic groups (along SV(2)).  

 

Figure 2-9. Sketch-map representation of the gas-phase flufenamic acid conformations. To show the extent of the sub-clustering the panels are 
colored according to different torsion angles reporting on different rotations in the molecule. Θaromatic(1) is defined as the torsion angle between C15-
C10-N(H)-H(N) and reports on rotations of aromatic ring with the attached trifluoromethyl. Θaromatic(2) is defined as the torsion angle between C2-C2-
N(H)-H(N) and reports on rotations of aromatic ring with the attached carboxyl. Θcarboxyl is defined as the torsion angle between C1-C2-C7-O(H) and 
reports on rotations of the carboxyl group. The lower right panel shows the 2D structure of flufenamic acid with the used labelling scheme.  
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Parametrization of the constraints 

It is not a priori clear as to what the threshold distance “X” should be but in general we expect 1H-13C HETCOR cross-peaks in solid-
state NMR for up to 3.5 Å. Here, we investigate the use of threshold distances (“X”) from 2.0 to 5.0 Å in steps of 0.5 Å and for Snorm 

cut-off values from 0.08 to 0.22 in steps of 0.02 for the polymorphs of cocaine, flutamide, flufenamic acid. Figure 2-10 shows the set 
of successful parameters for each molecule individually.  

 

Figure 2-10. Grid search results of the threshold distance “X” and Snorm cut-off values for (a) flutamide, (b) cocaine and (c) flufenamic acid. The color-
map shows the percentage of selected structures from within the conformer ensemble. The white area indicates the region where the correct 
conformer is not selected. Optimal selection parameters should select the smallest conformer ensemble, while still containing the correct structure. 
This corresponds to the dark blue regions within the different panels.  
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Conformer selection  

The ensemble selection was done with home-written Python codes. For the constraints the peaks below a Snorm cut-off value of 0.14 
were interpreted as proton-carbon distances greater than a threshold distance “X” of 3.5 Å. For each conformation the number of 
fulfilled constraints was counted and the conformations were sorted in decreasing order.  

Flutamide. The sub-ensemble selection for flutamide is done based on constraints from multiple HETCOR contact times 0.1, 0.3, 0.5, 
0.75, 1.0, 1.25, 1.5, 1.75 and 2.0ms. The 1H and 13C cross peaks from the two methyl groups were not distinguished. Also, the 1H cross 
peaks from H3 and H8 as well as the 13C cross peaks from C5 and C2 are too close and not distinguishable. Therefore, if a cross-peak 
was seen it was attributed to all the atoms within the given group.  

 

Figure 2-11. Sketch-map representation of the gas-phase flutamide ensemble. To show the extent of the sub-clustering the panels are colored ac-
cording to different torsion angles reporting on different rotations in the molecule. Θmethyl is defined as the torsion angle between C11-C10-C9-N(H) 
and reports on rotations of the methyl groups. Θamide is defined as the torsion angle between C4-N(H)-C9-O1 and reports on the amide conformation. 
(c) Sketch-map projection of the gas-phase flutamide ensemble. Red dots represent the structures with the lowest violations that are selected. The 
green triangle shows the gas-phase conformer of the XRD crystal structure. The green arrow points to the gas-phase conformer, which resulted in 
the correct crystal structure after the CSP procedure. The black dashed lines indicate the regions where the different conformer sub-ensembles, 
shown in (d) are located. (d) Overlap of the structures within the different sketch-map clusters. The “stretched” conformations correspond to the 
trans conformers and are all selected. The “bent” and “closed” conformations correspond to the cis conformers and are not selected. (e) 2D structure 
of flutamide with the used labelling scheme. 
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Cocaine. The cocaine HETCOR were performed at the contact times 0.5, 0.75, 1.0 and 1.5 ms. The 1H and 13C cross peaks from the 
aromatic group were not distinguished. Also, the 13C cross peaks from C6 and C7, the 13C cross peaks from C2 and C16 as well as the 
1H cross peaks from H1, H2, H4, H5, H6 and are too close and not distinguishable. Therefore, if a cross-peak was seen it was attributed 
to all the atoms within the given group.  

 

Figure 2-12. (a-b) Sketch-map representation of the locally stable cocaine conformations. To show the extent of the sub-clustering the panels are 
colored according to different torsion angles reporting on different rotations in the molecule. Θmethylamine is defined as the torsion angle between C2-
C1-N-C17 and reports on rotations of the methyl group attached to the nitrogen. Θaromatic is defined as the torsion angle between C(ortho)-C(ipso)-
C8-O2 and reports on flips of the aromatic group. (c) Sketch-map projection of the gas-phase cocaine ensemble. Red dots represent the structures 
with the lowest violations that are selected. The greed triangle shows the gas-phase conformer of the XRD crystal structure. The green arrow points 
to the gas-phase conformer, which resulted in the correct crystal structure after the CSP procedure. (d) Overlap of the structures within the different 
sketch-map clusters. The “stretched” conformations correspond to the selected conformers. The “closed” conformation contain a different Θaromatic 
torsional angle and are not selected. The “open” conformation contains a different Θmethylamine torsional angle and are not selected. (e) 2D structure 
of cocaine with the used labelling scheme. 
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Flufenamic Acid. The sub-ensemble selection for flufenamic acid is done based on constraints from multiple HETCOR contact times 
0.1, 0.5, 1.0, 1.5, 3.0 and 3.5 ms. The 1H cross peaks from H4, H13 and H14 as well as the 1H cross peaks from H6, H11 and H15 are too 
close and not distinguishable. Therefore, if a cross-peak was seen it was attributed to all the atoms within the given group.  

 

Figure 2-13. (a-b) Sketch-map representation of the gas-phase flufenamic acid conformations. To show the extent of the sub-clustering the panels 
are colored according to the distance [Å] between the OH group and the two aromatic rings. The distance is expressed as the distance between the 
carboxyl proton and C3/C11 (as shown in e). (c) Sketch-map projection of the gas-phase flufenamic acid ensemble. Red dots represent the structures 
with the lowest violations that are selected. The green triangle shows the gas-phase conformer of the XRD crystal structure. The green arrow points 
to the gas-phase conformer, which resulted in the correct crystal structure after the CSP procedure. (d) Overlap of the structures within the different 
sketch-map clusters. (e) 2D structure of flufenamic acid with the used labelling scheme. 
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2.3 Chemical	shifts	by	machine	learning	
This chapter has been adapted with permission from: Paruzzo, F. M.; Hofstetter, A.; Musil, F.; De, S.; Ceriotti, M.; Emsley, L., “Chemical 
shifts in molecular solids by machine learning”. Nature Communications 2018, 9 (1), 4501. (post-print) 

2.3.1 Introduction	 	
For microcrystalline powders of molecular solids, the scope of CSP-NMRX is mainly limited by the considerable computational re-
sources required by both the CSP search and the calculation of accurate DFT chemical shifts (see Chapters 1.3 and 2.1). In Chapter 2.2 
we have introduced an approach to reduce the computational cost of the CSP search. In this chapter we investigate an approach to 
reduce to computational cost of the chemical shift calculations, while maintaining sufficiently high accuracy needed in chemical shift 
driven NMRX.  

ML has recently emerged as a way to overcome the need for quantum chemical calculations but for chemical shifts in solids it is 
hindered by the chemical and combinatorial space spanned by molecular solids, the strong dependency of chemical shifts on their 
environment, and the lack of an experimental database of shifts.  

Here, we propose a ML method based on local environments to accurately predict chemical shifts of molecular solids and their poly-
morphs to within DFT accuracy. The protocol is schematically illustrated in Figure 2-14. In the absence of a database of experimental 
shifts, and given that experiments alone do not provide a 1:1 mapping between chemical shifts and a single atomic configuration, we 
train the model on DFT calculated chemical shifts for structures taken from the Cambridge Structural Database (CSD),135 chosen to be 
as diverse as possible, and then show that the method can predict chemical shifts in a test set with a R2 coefficients between the 
chemical shifts calculated with DFT and with ML of 0.97 for 1H, 0.99 for 13C, 0.99 for 15N, and 0.99 for 17O, corresponding to RMSEs of 
0.49 ppm for 1H, 4.3 ppm for 13C, 13.3 ppm for 15N, and 17.7 ppm for 17O. Predicting the chemical shifts for a polymorph of cocaine, 
with 86 atoms in the unit-cell, using the ML method takes less than a minute of CPU time, thus reducing the computational time by a 
factor of between 5 to 10 thousand, without any significant loss in accuracy as compared to DFT.  

We also demonstrate that the trained model is able to determine, based on the match between experimentally-measured and ML-
predicted shifts, the structures of cocaine and the drug 4-[4-(2-adamantylcarbamoyl)-5-tert-butylpyrazol-1-yl]benzoic acid, even 
though no experimental shifts were used in training. We also show that it is possible to calculate the NMR spectrum of very large 
molecular crystals. For this we calculate the chemical shifts of six structures from the CSD with between 768 and 1,584 atoms in the 
unit-cells. 

 

Figure 2-14. Scheme of the machine learning model used for the chemical shift predictions. 
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2.3.2 Results		

Training and validation using DFT calculated shifts of known crystal structures.  

Note that machine learning models must by definition be trained on the property that is to be predicted. Here that corresponds to 
experimental chemical shifts. However, for molecular solids there are currently only around 100 compounds with reliable crystal 
structures and for which assigned 1H or 13C shifts have been published, despite the rapidly increasing activity of NMR in crystal struc-
ture determination. This is at least an order of magnitude too few structures to hope to determine a reliable prediction model. In this 
light, we note that today GIPAW chemical shift calculations can accurately reproduce experimental shifts.18, 83 Thus we propose to 
develop a machine learning model to predict chemical shifts by training the model on a database made up of GIPAW calculated shifts 
from a large and diverse set of reference crystal structures. If the model can then accurately predict GIPAW chemical shifts, we hy-
pothesize that it should also be in good agreement with experimental shifts. We also note in this context that even if there was a 
database of experimental shifts, there would be a challenge to machine learning related to the fact that the experiment reports on 
structures that include dynamics or distributions, making the connection between shifts and environments ambiguous. Learning using 
GIPAW calculated shifts does not suffer from this problem. 

The approach we take to predicting chemical shifts in molecular solids is illustrated in Figure 2-14. We use the Gaussian Process 
Regression (GPR) framework183 to predict the chemical shift of a new atomic configuration based on a statistical model that identifies 
the correlations between structure and shift for a reference set of training configurations, for which the chemical shifts have been 
determined by a GIPAW DFT calculation. The predicted chemical shielding for a given atom is given by, 

σ(𝛸) =�𝛼b𝑘(𝛸,𝛸b),
b

 

(2-2) 

where 𝛸 and 𝛸b correspond respectively to a description of the chemical environment of the atom for which we are making a predic-
tion, and that of one of the training configurations. The weights 𝛼b are obtained by requiring that Equation 2-2 is consistent with the 
values computed by DFT for the reference structures. The essential ingredient that differentiates one GPR-based framework from 
another is the kernel function 𝑘(𝛸, 𝛸b) which describes and assesses the similarity between atomic environments, and provides basis 
functions to approximate the target properties. 

Our model relies on the Smooth Overlap of Atomic Positions (SOAP) kernel,176, 184 in which any atomic environment is represented as 
a three dimensional neighborhood density given by a superposition of Gaussians, one centered at each of the atom positions in a 
spherical neighborhood within a cut-off radius rc from the core atom. This framework, combined with GPR, has been used to model 
the stability and properties of a number of different systems,155, 176, 184 and has been extended to the prediction of tensorial proper-
ties.185 We can see that this choice of kernel should be particularly well adapted to predicting chemical shifts, since it describes the 
local environments around each atom without any simplification, and this is indeed what the chemical shift also probes, as it is deter-
mined by the screening of the nucleus from the main magnetic field by the electron density at the nucleus. Note that it should be 
possible to tune and train other ML methods to accurately predict chemical shifts of molecular crystals. While these possibilities will 
be explored in future work, the model we present here is already accurate enough to substitute for DFT calculations in chemical shift-
based NMR crystallography. 

As shown in Figure 2-14, in the absence of an experimental database of shifts the model is developed by using a reference training set 
of structures for which chemical shifts are calculated with GIPAW DFT. To obtain a model which is robust and general, the training set 
should be as large, as reliable, and as diverse as possible. We first extract from the CSD a large set of about 61,000 structures, corre-
sponding to all the structures in the CSD with fewer than 200 atoms, in order to make DFT chemical shift calculation affordable, and 
containing C and H and allowing for N and/or O, to reduce the space to organic molecular crystals (we call this set CSD-61k, see 
Methods for details on the structures selection). Given that performing a GIPAW calculation for all of these structures would be pro-
hibitively demanding, we then select a random subset of 500 structures (CSD-500, see Methods) that are representative of the chem-
ical diversity in the CSD, and we use it to test the accuracy of our model. For cross-validation and training, instead, we select 2,000 
structures (corresponding to about 185,000 atomic environments) out of the CSD-61k using a farthest point sampling algorithm 
(FPS)186-187 (CSD-2k, see Methods). This step ensures near-uniform sampling of the conformational space, improving the quality of the 
model when using a relatively small number of reference calculations.   
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To avoid including spurious environments in the model, e.g. environments which might not be well described by DFT, we also auto-
matically detect and discard from the training set atomic environments with values of the DFT calculated shifts that are anomalous 
based on a cross validation procedure described in the Methods. Note that using this unbiased statistical analysis we detected only a 
small fraction of environments as outliers (e.g. 211 out of 76,214 for 1H, or 0.3%). This is discussed in detail in the Methods. We observe 
that the performance of the model degrades noticeably if one does not use this procedure.  This pruning as well as the parame-
ter optimization procedure, described below, were done exclusively using cross validation on the CSD-2k set. (Notably the test sets 
were not subject to any curation.)  

In order to reduce the computational cost of the training and testing procedures we then finally remove from the training set all the 
symmetrically equivalent environments. In case of 1H, this reduced the size of the training set from 70,000 to about 35,000 different 
atomic environments. (Details of the selection method and the members of the different sets used are given in the Methods section).  

All the atomic positions of the structures in the training and testing sets were relaxed with DFT, using the Quantum Espresso suite,188-

190 prior to calculation of the chemical shieldings using the GIPAW DFT method.62-63 Note that the DFT relaxation ensures “reasonable” 
geometries will be used even for crystal structures containing errors (e.g. improbable 1H positions). Parameters for the DFT calculations 
are given in the Methods section. The calculated chemical shieldings s are converted to the corresponding chemical shifts d  through 
the relationship d  = sref - s. Here, we used a sref of 30.8 ppm (for 1H) and 169.5 ppm (for 13C), found through linear regression between 
the calculated and experimental chemical shifts for cocaine.  

Figure 2-15 shows the chemical shift error between the DFT calculations and the ML predictions for the CSD-500 set, which is repre-
sentative of the expected accuracy for the entire CSD-61k. The figure shows the overall prediction accuracy for 1H chemical shifts as 
RMSE in ppm between the shifts calculated with DFT and with the protocol described above, which we refer to in the following as 
ShiftML, as a function of the cut-off radius (rc) and as a function of the number of training structures included from CSD-2k. The effect 
of the different cut-off radii is clearly visible. For example, for rc=2Å the prediction error for a small training set (<10 structures or <100 
atomic environments) can be smaller than for the larger radii, but does not improve significantly with increasing size of the training 
set. On the contrary, for rc=7Å we observe a relatively large prediction error for a small training set, but even with 2,000 structures 
(35,000 environments), the prediction error is still decreasing. A similar behavior is observed for the prediction errors of the 13C, 15N 
and 17O chemical shifts (see Figures 2-25 to 2-28).  

 

Figure 2-15. 1H chemical shift prediction error of the trained model for the CSD-500 set. The RMSE prediction error between chemical shifts calculated 
with ShiftML and GIPAW DFT is shown for different local environment cut-off radii, and for the multi-kernel (labelled as msk), as a function of the 
training set size. 

The observed differences in the behavior of the prediction error with respect to rc clearly indicates the influence of the different 
extents of the local environment on the chemical shift. Short range interactions are sufficient to explain the rough order of magnitude 
of the shift, but long-range interactions are required to learn about the higher order influences of next-nearest neighbors on shifts. 
However, for long range interactions, a much larger number of environments is needed in order to determine the correlation between 
environment and shift. 
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We exploit these differences to generate a combined SOAP kernel consisting of a linear combination of the single local environment 
kernels,155 with weightings of 256 (rc=2Å), 128 (rc=3Å), 32(rc=4Å), 8 (rc=5Å and rc=6Å) and 1 (rc=7Å). This weighting was determined 
by rough optimization around values inspired by previous experience,155 and by cross-validation on the CSD-2k training set (as de-
scribed in the Methods section). It is clear that learning with the combined kernel leads consistently to lower prediction errors than 
any of the single kernels, although the improvement in performance varies between nuclei (see Figures 2-25 to 2-28).  

Figure 2-16a-d shows correlation plots between 1H, 13C, 15N and 17O chemical shifts calculated by DFT and by ShiftML for the CSD-500 
set trained on the whole CSD-2k combined kernel. Using the combined kernel, we reach an error between ShiftML and DFT calculated 
chemical shifts of 0.49 ppm for 1H (4.3 ppm for 13C, 13.3 ppm for 15N and 17.7 ppm for 17O). This is very comparable with reported DFT 
chemical shift accuracy for 1H of 0.33-0.43 ppm,18, 83 while requiring a fraction of the computational time and cost: less than 1 CPU 
minute compared to ~62-150 CPU hours for DFT chemical shift calculation on structures containing 86 atoms (around 350 valence 
electrons) (see Figure 2-24). For the other nuclei, the ML accuracy is slightly lower than reported values (1.9-2.2 ppm for 13C, 5.4 ppm 
for 15N and 7.2 ppm for 17O),18, 83 which is not surprising as there are (currently) significantly less training environments for the het-
eronuclei than for 1H. 

 

Figure 2-16. Comparison of predictions from ShiftML and GIPAW DFT. Histograms and scatterplots showing the correlation between 1H (a), 13C (b), 
15N (c) and 17O (d) chemical shifts (shieldings) calculated with GIPAW and ShiftML. The black lines indicate a perfect correlation. 
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The R2 coefficients between the chemical shifts calculated with DFT and with ShiftML are 0.97 for 1H, 0.99 for 13C, 0.99 for 15N, and 
0.99 for 17O.  

Note that, the CSD-500 set used for testing is selected randomly from CSD-61k and not curated. Indeed, we find that many of the 
atomic environments in the CSD-500 set with a relatively high prediction RMSE possess either unusual cavities inside their crystal 
structure, possibly indicating an organic cage surrounding non-crystalline solvent or other atoms, or exhibit strongly delocalized π-
bonding networks. While there is no theoretical reason preventing the machine learning model from correctly describing such envi-
ronments, they are rare and not well represented within the training set. CSD-500 thus constitutes a fairly demanding test set.  

Predicting shifts for polymorphs 

Having evaluated the power of the trained model to predict the diverse CSD-500 set, we now look at the capacity to predict potentially 
subtler differences by looking at a set of polymorphs of a given structure. Figure 2-17a and b show the correlation between the 1H 
shifts calculated by GIPAW DFT and by ShiftML for 30 polymorphs of cocaine and 14 polymorphs of AZD8329, all of which were previ-
ously generated with a crystal structure prediction (CSP) procedure.56, 58 The figure clearly shows that ShiftML is able to accurately 
predict the differences in 1H chemical shift for different polymorphs.  

We find a chemical shift prediction error (RMSE) between GIPAW DFT and ShiftML for 1H for the cocaine polymorphs of 0.37 ppm and 
for AZD8329 of 0.46 ppm. Note that these values are slightly less than for the CSD-500 set, which might be expected when looking at 
these two fairly typical organic structures, and suggesting that the randomly selected CSD-500 indeed provides a good overall bench-
mark. 

Note that for these cases the DFT structure optimization and GIPAW chemical shift calculation were done with a different DFT program 
(CASTEP)191, which suggests that ShiftML is robust with respect to small deviations from the fully optimized structures. (As shown in 
the Figure 22, performing the prediction using Quantum Espresso consistently leads to comparable prediction accuracy.) 

 

Figure 2-17. Comparison of predictions from ShiftML and GIPAW DFT for polymorphs of cocaine and AZD8329. (a) Histogram showing the distribution 
of the differences between 1H chemical shifts calculated with GIPAW and with ShiftML for the polymorphs of cocaine (blue), and the polymorphs of 
AZD8329 (orange). (b) Scatterplot showing the correlation between 1H chemical shifts calculated with GIPAW and ShiftML for cocaine (blue) and 
AZD8329 (orange). The black line indicates a perfect correlation 

For the heteronuclei we obtain an RMSE between GIPAW DFT and ShiftML for cocaine of 3.8 ppm for 13C, 12.1 ppm for 15N and 15.7 
ppm for 17O. For AZD8329 the 15N and 17O RMSEs are proportionally larger (17.7 and 54.7 ppm), and we attribute this to the fact that 
the molecule contains a rather unusual C-O…H-N / C-O…H-O H-bonded dimer structure, for which the learning is thus even sparser 
than for the heteronuclei in general. To illustrate the unusual nature of this motif, we note that the calculated 17O shifts using DFT also 
change by up to 50 ppm for structures relaxed either by the CASTEP protocol used in ref. 30, or the Quantum Espresso protocol used 
here (the RMSE between ML and DFT for the Quantum Espresso relaxed structures is reduced to 10.9 and 11.5 ppm for 15N and 17O!). 
The RMSE of 4.0 ppm for 13C for AZD8329 is in line with the other systems.  
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Predicting experimental shifts and structure determination 

Further, the significance of the method is illustrated by comparison to experimentally measured shifts. This comparison is particularly 
important since the training protocol did not involve any experimentally measured chemical shifts. We find that the predicted shifts 
are accurate enough to allow crystal structure determination for both cocaine and AZD8329 from powder samples in a chemical shift 
driven NMR crystallography approach.  

Figure 2-18a and b show the correlation between experimentally measured 1H chemical shifts and the 1H chemical shifts calculated 
by ShiftML for crystal structures of the six molecules shown in Figure 2-19 (numerical values of the experimental chemical shifts, the 
crystal structures, and the shifts calculated with ShiftML are given in the Methods section). The comparison between experimental 
and calculated 1H chemical shifts for all crystal structures (for a total of 68 shifts) gives an error (RMSE) of 0.39 ppm and a R2 coefficient 
of 0.99. This compares very favorably to the equivalent agreement found between GIPAW DFT and experiment which for this set of 
structures is an RMSE of 0.38 ppm. 

Figure 2-18a and d show in blue the RMSE between DFT calculated and experimental 1H chemical shifts for the 30 polymorphs pre-
dicted by CSP to have the lowest energy for cocaine and the 14 cis polymorphs of AZD8329. For both molecules the only structure in 
agreement with the GIPAW DFT calculations, to below a 1H DFT chemical shift confidence interval of 0.49 ppm,18 is the correct crystal 
structure. In the same plots we overlay the result where the experimental shifts are now compared to shifts predicted with ShiftML. 
Note that the RMSE between experiment and the predicted chemical shifts follows the same trends as for the DFT calculated shifts, 
and that here again the only structures below the confidence interval of 0.49 ppm are the two correct crystal structures. Note, that 
the cut-off of 0.49 ppm with respect to experiment has been evaluated for GIPAW DFT chemical shifts18, 83 and to rigorously repeat 
the CSP procedure for the ML method, the accuracy should be re-evaluated using more extensive benchmarking of ShiftML to exper-
iment, which will be the subject of further work. 

 

Figure 2-18. Comparison of ShiftML to experimentally measured shifts. (a) Histogram showing the distribution of differences between experimentally 
measured 1H chemical shifts and 1H chemical shifts calculated with ShiftML for six different crystal structures (see Methods section for the structures 
and numerical values of the shifts). (b) Scatterplot showing the correlation between these experimentally measured 1H chemical shifts and shifts 
calculated with ShiftML. (c-d) Comparison between calculated and experimental 1H chemical shifts for the most stable structures obtained with CSP 
for cocaine (c) and AZD8329 (d). For each candidate structure an aggregate RMSE is shown between experimentally measured shifts and shifts 
calculated using either GIPAW (blue) or ShiftML (red). The grey zones represent the confidence intervals of the GIPAW DFT 1H chemical shift RMSD, 
as described in the text,18 and candidates (in c and d) that have RMSEs within this range would be determined as correct crystal structures using a 
chemical shift driven solid-state NMR crystallography protocol. 
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Figure 2-19. Chemical structures of the six molecules used to evaluate the correlation between experimentally measured 1H chemical shifts and the 
shifts calculated by ShiftML. The structures are given as AZD8329 (a), theophylline (b), cocaine (c), uracil (d), 3,5-dimethylimidazole and 4,5-dime-
thylimidazole (e) and naproxen (f). 

Finally, we note that the accuracy of the method does not depend on the size of the structure, and that the prediction time is linear 
in the number of atoms. For the structures we calculate here the prediction time appears nearly constant, because it is dominated by 
the loading time of the reference SOAP vector (see Figure 2-20a). We have used this method to calculate the NMR spectra (shown in 
Figure 2-20b-g) for six structures from the CSD having among the largest numbers of atoms per unit cell (containing only H,C,N,O), 
with between 768 and 1,584 atoms per unit cell. (See Figure 2-30 for the chemical formula). The values of the predicted chemical 
shifts are given as CSD-6 in the Methods section. Figure 2-20a shows the comparison between the GIPAW calculation time and the 
required ML prediction time. We estimate that the whole calculation would require around 16 CPU years by GIPAW. ShiftML requires 
less than 6 CPU minutes to calculate the shifts for all the compounds.  

 

Figure 2-20. Chemical shift calculation times and large structures. (a) DFT GIPAW calculation time (blue) and ShiftML prediction time (turquoise) for 
different system sizes. The GIPAW DFT calculation time for the six large structures (orange) is estimated from a cubic dependence on the number of 
valence electrons in the structure (see Methods section). (b-g) 3D-shemes and 1H NMR spectra predicted with ShiftML, of the six large molecular 
crystals with CSD Refcodes: (b) CAJVUH,192 Natoms = 828, (c) RUKTOI,193 Natoms = 768, (d) EMEMUE,194 Natoms = 860, (e) GOKXOV,195 Natoms = 945, (f) 
HEJBUW,196 Natoms = 816, (g) RAYFEF,197 Natoms = 1,584.  
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2.3.3 Discussion	
We have presented a ML model based on local environments to predict chemical shifts of molecular solids containing HCNO to within 
current DFT accuracy. The R2 coefficients between the chemical shifts calculated with DFT and with ShiftML are 0.97 for 1H, 0.99 for 
13C, 0.99 for 15N, and 0.99 for 17O. The approach allows the calculation of chemical shifts for structures with ~100 atoms in less than 1 
minute, reducing the computational cost of chemical shift predictions in solids by a factor of between 5 to 10 thousand compared to 
current DFT chemical shift calculations, and thereby relieves a major bottleneck in the use of calculated chemical shifts for structure 
determination in solids.  

Far from being just a benchmark of a machine-learning scheme, the method is accurate enough to be used to determine structures 
by comparison to experimental shifts in chemical shift based NMR crystallography approaches to structure determination, as shown 
here for cocaine and AZD8329. The ML model only scales linearly with the number of atoms and, for the prediction of individual 
structures, is dominated by a constant I/O overhead. Here it allows the calculation of chemical shifts for a set of six structures with 
between 768 and 1584 atoms in their unit cells in less than six minutes (an acceleration of a factor 106 for the largest structure). 

The accuracy of the method is likely to increase further with the size of the training set, and subsequently with the future evolution 
of the accuracy of the method used to calculate the reference shifts used in training (here DFT), or by using experimental shifts if a 
large enough set were available. A web version based on the protocol described here is publicly available at http://shiftml.epfl.ch. The 
model used here can easily be extended to organic solids including halides or other nuclei, and to network materials such as oxides, 
and these will be the subject of further work. 

Note that, the current version of ShiftML has already been updated (see Chapters 2.5 and 2.6). The training set of the current version 
has been extended to include structures containing H, C, N, O and S atoms (see Chapter 2.6). Additionally, the prediction procedure 
has been changed to reduce the memory requirements, while maintaining comparable chemical shift accuracy. Most notably, the new 
ShiftML version contains one radially SOAP kernels176, 184, 198 as opposed to the seven multi-scale SOAP kernels (see Chapter 2.6). 
Further, a projected process183, 199-200 (PP) strategy is used for the prediction, in which the full (𝑁 × 𝑁) kernel matrix is approximated 
by a lower rank (𝑀 ×𝑀) kernel matrix corresponding to an “active set” of M training data containing the most relevant information 
(see Chapter 2.5). Note, that the PP strategy allows for the rapid calculation of uncertainties associated with the individual chemical 
shift predictions.201 To further accelerate the ML predictions, we also sparsified the SOAP fingerprints using an FPS strategy202 (see 
Chapter 2.5).  

We also note, that after the publication of the initial ShiftML paper in 2018, already a number of further ML models being applied to 
calculations of chemical shifts in solids has been published.101-103 
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2.3.4 Methods		

Crystal Structures 

All the crystal structures of CSD-61k and CSD-500 were obtained from the Cambridge Structural Database (CSD).135 A total of 88,648 
structures was downloaded from the CSD, using two different selection criteria: the maximum number and the type of atoms con-
tained in the unit-cell. We selected only structures with a maximum of 200 atoms, containing either (i) only H and C or (ii) H, C and 
one heteroatom between N and O or both. From this set we extracted a subset of 61,012 (CSD-61k) structures by removing (i) struc-
tures with missing protons, and (ii) structures where the distance of at least one pair of atoms was smaller than the sum of their 
covalent radii minus 0.3 Å. In addition, structures containing partial occupancy were resolved by keeping only the first of the atoms 
with partial occupancy. If we were not able to resolve the disorder, the entire structure was not included. The disorder was assumed 
to be removed, if the number of atoms, for each atom type, was an integer multiple of the number of atoms given in the chemical 
formula. Note, that as we sorted through more that 60,000 structures, the whole procedure was automatized and we didn't manually 
select the most stable structure for a given disorder. However, here we are not looking for ground state structures but instead only 
for physically reasonable structures to expand our data-set. The remaining structures were then used to create both the training (CSD-
2k, given as Supplementary Dataset 1) and the testing set (CSD-500, given as Supplementary Dataset 2) for the 1H, 13C, 15N and 17O 
chemical shift prediction as described in the main text. The test set (CSD-500) was created by randomly picking 500 structures from 
the CSD-61k excluding the structures already selected for the training set. The Refcodes of all CSD sets are given in Paruzzo et al.161 

Crystal Structure Prediction 

Here we use a set of possible polymorphs predicted by CSP for cocaine and the drug 4-[4-(2-adamantylcarbamoyl)-5-tert -butylpyrazol-
1-yl]-benzoic acid (also referred as AZD8329). General details on the CSP protocol can be found in ref. 203. In chemical shift based NMR 
crystallography, the CSP trial polymorphs are tested against experimental parameters (1H chemical shifts) to determine the experi-
mental crystal structure. 

In this work we used 30 possible polymorph structures of cocaine and 14 trial structures of AZD8329 generated with CSP. The 30 
structures of cocaine were obtained from the Electronic Supporting Information (ESI) of ref. 56, and correspond to the most stable 
polymorphs obtained with CSP. Crystal structures of AZD8329 were obtained from the ESI of ref. 58, and correspond to the 14 most 
stable predicted polymorphs with the cis conformation of the amide bond. From the same sources we obtained chemical shifts for 
each structure calculated with GIPAW62-63 using the DFT program CASTEP191 and the experimental chemical shifts. Labels for the dif-
ferent polymorphs of each structure are based on their DFT calculated energy, with 1 being the most stable trial polymorph of a given 
molecule.  

DFT Calculations 

All the DFT calculations were carried out using the DFT program Quantum ESPRESSO.188, 190 For all structures in the CSD-2k and CSD-
500 databases we first carried out geometry optimization using plane wave DFT. We used ultrasoft pseudopotentials with GIPAW62-63 
reconstruction, H.pbe-kjpaw_psl.0.1.UPF, C.pbe-n-kjpaw_psl.0.1.UPF, N.pbe-n-kjpaw_psl.0.1.UPF and O.pbe-n-kjpaw_psl.0.1.UPF 
from the USSP pseudopotential database [http://www.quantum-espresso.org/pseudopotentials].204 The optimizations were done 
with the generalized-gradient-approximation (GGA) density functional PBE,205 using a wave-function energy cut-off of 60 Ry, a charge 
density energy cut-off of 240 Ry and without k-points. The Grimme van der Waals dispersion correction206 was included in order to 
account for van der Waals interactions. The geometry optimization was done relaxing all atomic positions while keeping the lattice 
parameters fixed. 

A single point energy (scf) was then computed for the relaxed geometry, using higher wave-function and charge density energy cut-
offs which were set to 100 Ry and 400 Ry respectively. For this calculation we also used a Monkhorst-Pack grid of k-points207 corre-
sponding to a maximum spacing of 0.06 Å-1 in the reciprocal space. The k-points and energy cut-off values were optimized to ensure 
convergence of the electron density. Finally, we calculated the chemical shielding �DFT using the GIPAW method, with the same pa-
rameters as used in the scf calculation.  

Note that using a convergence threshold of in the scf calculation of 1e-8 Ry leads to a residual random error on the macroscopic 
contribution to the shifts of the order of 0.1 ppm. Fully converged results can be achieved with a threshold of 1e-12-1e-14 Ry. 
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Machine Learning 

For the SOAP kernels,176, 184 each atomic environment is represented as a three dimensional neighborhood density given by a super-
position of Gaussians, one centered at each of the atom positions in a spherical neighborhood within a cut-off radius rc from the core 
atom. The Gaussians have a variance 𝜍 2, and a separate density is built for each atomic species. The kernel is then constructed as the 
symmetrized overlap between the amplitudes representing 𝛸 and 𝛸′. This degree of overlap thus measures the similarity between 
the environments 𝛸 and 𝛸′. 

SOAP-based structural kernels contain several adjustable hyper-parameters, which are discussed in refs.176 However, we have not 
systematically explored the full parametric space here, instead we chose reasonable values of the parameters without extensive fine-
tuning, based on previous experience155 and with some optimization by cross-validation on the CSD-2k training set (see Methods for 
details).We also combine kernels computed for different cutoff radii to capture the contributions to shifts from different length 
scales,155 as is described in detail above. The calculations of the local environment, the similarity kernel and the weighted correlations 
were done using the glosim2 package.208  

We model the isotropic chemical shielding as a function of the local environment 𝐴 using a Gaussian Process Regression framework, 
that assumes that chemical shift values predicted by the model can be written as  

𝜎(𝐴) = 𝑓(𝐴) + 𝜀,  

(2-3) 

where the function 𝑓 is a Gaussian Process183 and 𝜀 represents the error of the prediction, which is modeled as independent identically 
distributed Gaussian variates, with variance 𝜎K;. Following the Gaussian Process Regression framework, the isotropic chemical shield-
ing function becomes: 

𝜎(𝐴) =�𝛼b𝑘(𝐴, 𝑋b)�
)

b�:

, 

(2-4) 

where {𝑋b}b�:) is a training set of N reference local environments for which the isotropic chemical shieldings are known, 𝑘 is a kernel 
function measuring the covariance between local environments and 𝜁 is a hyperparameter controlling the sensitivity of the kernel. 
The weights can be computed by inverting the kernel matrix 𝐾bc = 𝑘4𝑋b,𝑋c8 computed between the reference configurations, includ-
ing a regularization that depends on an estimate of the intrinsic uncertainty in the fit, due to errors in the training set, the limitations 
of the model or the reduced number of training configurations 

𝛼b = ∑ �𝐾� + 𝜎K;1�
�:

bcc 𝜎4𝑋c8. 

(2-5) 

To assess the correlation between local atomic environments A and B, we use the SOAP kernel184 defined by the rotationally invariant 
overlap between smooth representations of their atomic density: 

𝑘(𝐴, 𝐵) = U �U ρ�
��

(𝐫⃗)𝜌�4𝑅𝐫⃗8d𝐫⃗�
;

��([)
𝑑𝑅, 

(2-6) 

where the density is built as a superimposition of Gaussians having width ς, centered on the atoms within a cutoff distance of the 
central atom in the environment 

𝜌d(𝐫⃗) = ∑ 𝑒𝑥𝑝b∈d [‖𝐫⃗ − (𝐫⃗𝐢 − 𝐫⃗𝐀)‖; 2𝜍;⁄ ]𝑓 (|𝐫⃗b − 𝐫⃗𝐀|).  

(2-7) 
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The details of the construction, and the extension to the case with many atomic species, are given in refs. 176 and 155. 

Farthest Point Sampling Algorithm 

Given that a GPR model is essentially an interpolation procedure between the reference configurations, it is crucial that training points 
are chosen to cover as uniformly as possible the space of structures for which one wants to perform predictions. To achieve this 
uniform sampling, we use a farthest point selection algorithm186-187 to sort the CSD-61k in descending order of “diversity”. Essentially, 
we select a first structure at random, and then pick the others in the sequence such that  

𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥
ª∈«�¬�­:ª

𝑚𝑖𝑛
c∈®1¯1¨3b°K

±𝑋ª − 𝑋c±,  

 (2-8) 

where the distance is the kernel-induced distance associated with an average SOAP kernel for the entire structure.176 The CSD-2k set 
corresponds to the first 2,000 configurations identified with this procedure. 

Detection of Unusual Environments 

The quality of the training set is essential to ensure the optimal performance of a machine learning algorithm. However, the individual 
curation of the 2,000 molecular crystals of the CSD-2k dataset would be very time consuming and cumbersome. Note, that the 2,000 
molecular crystals correspond to around 35,000 symmetrically non-equivalent atomic environments for 1H alone and the following 
detection procedure is applied directly to the individual atomic environments instead of the whole molecular crystals. 

We automate this detection procedure by assessing the ‘instability’ of the prediction of the shielding of a given local environment 
using the difference between the predictions of several GPR models and the reference DFT-shielding. We define this indicator as: 

𝜀(𝑋) = :
*
∑ (𝑦b(𝑋) − 𝑦(𝑋))*
b�: ,  

 (2-9) 

where each of the M models is made using a 2-fold split of the shuffled training set that does not include the structure X. In total we 
generate M=40 models, where each is generated using a different random shuffling of the data.  

Environments with a large value of |𝜀(𝑋)| are not well-described by the rest of the training set within the SOAP-GPR framework. Note, 
that the error would cancel out in the case of random noise within the prediction, while a large value of |𝜀(𝑋)| corresponds to a 
systematic error in the predicted chemical shielding, that could be associated to the limitations listed below. We define local environ-
ments to be unusual when |𝜀(𝑋)| is larger than three times the standard deviation of |𝜀(𝑋)| over the whole training set, and we then 
do not use them for training.  

We perform this elimination procedure on the CSD-2k dataset using a single kernel for each element (rc = 4.5 Å for 1H, 4 Å for 13C, 4 Å 
for 15N and 3 Å for 17O). The hyperparameters of the single kernels used in the elimination procedure were determined using a grid 
search and 3-fold cross validation on the uncleaned CSD-2k training set. The 1H environments excluded with this approach are shown 
in Figure 2-21, while further details for 1H and the other nuclei are listed in the below.  

It is interesting to see that in several cases we can trace the unusual behavior of the environment to subtle errors in the DFT calcula-
tions, or to physical phenomena that are ill described within our DFT model (metallic systems, zwitterions…). However, note that we 
are not systematically removing such structures and that the training set still contains many structures with the listed features. 

Of the 76,214 1H environments of the CSD-2k, 211 environments were detected as unusual. Of the 58,148 13C environments of the 
CSD-2k, 1,419 environments were detected as unusual. Of the 27,814 13C environments of the CSD-2k, 514 environments were de-
tected as unusual. Of the 25,924 13C environments of the CSD-2k, 441 environments were detected as unusual. The unusual environ-
ments are detailed in Paruzzo et al.161 

Most of the environments detected as “unusual” are part of zwitterionic structures or charged structures (such as VIWYEH, ZACSOO 
or EKUJIF). Others are metallic structures (ELUMO – EHOMO = 0), such as HAZQUV, QUICNA02, DMEBQU01 or AYUKIP, or have a partially 
empty unit cell (QAHVUQ). An intrinsic limit of this procedure is the fact that it might detect structures with uncommon functional 
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groups as “anomalies” (e.g. TIMCHX, which is an aziridine – a three membered heterocycle with one amine group, or FIGMAJ which 
has a cubane group), due to the fact that these structures are not well represented by the used training set. However, with increasing 
training size, we expect these structures to be better represented and they will not be detected as anomalies anymore. 

 

Figure 2-21. 1H chemical shifts of the 76,214 environments in the CSD-2k set. The environments excluded using the unusual structures detection 
procedure described in the text are shown in red. 

NMR Crystallography 

To validate the accuracy of the chemical shifts calculated with ShiftML, we replicated the last step of the protocol for the ab initio 
crystal structure determination of powdered solids18, 56, 58 using predicted shifts. This step consists in the comparison between exper-
imental and predicted 1H chemical shifts for the candidate crystal structures selected from a crystal structure prediction method. We 
perform this analysis for cocaine and form 4 of AZD8329.56, 58 The value sref for the conversion between chemical shieldings to chemical 
shifts is calculated for each structure with a linear regression between calculated and experimental shifts, imposing a slope equal to 
1. This procedure is done independently for the 1H chemical shieldings calculated with DFT and ShiftML. The geometry of the structures 
predicted with CSP, as well as their chemical shift values calculated with GIPAW and the experimental chemical shifts of the observed 
polymorphs were obtained from refs. 56 and 58.  

Remarkably, the high accuracy shown in Figure 2-17 was obtained using crystal structures with only 1H positions relaxed and DFT 
chemical shift calculations carried out using a different program (CASTEP) to the one we used to build our training set (Quantum 
Espresso). Figure 2-22 shows the results obtained for cocaine and AZD8329 after all-atom optimization and calculation of GIPAW chem-
ical shifts with Quantum Espresso. Here we show fewer structures compared to Figure 2-17, due to the fact that we limit ourselves to 
calculate DFT chemical shifts of structures with less than 250 atoms. This selection removes structures 15 for cocaine and structures 
2, 11 and 14 for AZD8329. The accuracy is consistent with that reported in Figure 2-17, although the all-atom optimization leads to 
some significant structural differences compared to the only 1H relaxed structures, especially for AZD8329. We find a chemical shift 
prediction error (RMSE) for 1H for cocaine of 0.40 ppm and for AZD8329 of 0.51 ppm, which is very comparable to the expected GIPAW 
DFT accuracy. For the heteronuclei we obtain, for cocaine and AZD 8329 respectively, 3.5 and 3.4 ppm for 13C, 9.3 ppm and 11.0 ppm 
for 15N and 12.2 ppm and 11.5 ppm for 17O. 

Experimental chemical shifts were referenced to the 1H resonance observed for adamantane at 1.87 ppm with respect to TMS. We 
used assigned chemical shifts values and we account for rotational dynamics of the methyl groups by averaging the chemical shift 
values of the three 1H positions to a single value for each methyl group. For AZD8329 the chemical shifts of the CH2 groups were also 
averaged. The RMSE calculation was carried out in MATLAB using a home-written script. The chemical structures of cocaine and 
AZD8329, together with the assignment of the experimental chemical shifts are shown in Figure 2-23 and Table 2-6. 
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Figure 2-22. NMR crystallography of cocaine and the form 4 of AZD8329. (a) Histogram showing the distribution of the differences between chemical 
shifts calculated with GIPAW and ShiftML. The blue bars were calculated for the polymorphs of cocaine, and the orange ones for the polymorphs of 
AZD8329. (b) Scatterplot showing the correlation between GIPAW and ShiftML chemical shifts for cocaine (blue) and AZD8329 (orange). The black 
line indicates a perfect correlation. (c-d) Comparison between calculated and experimental 1H chemical shifts for the most stable structures obtained 
with CSP for cocaine (c) and form 4 of AZD8329 (d). Chemical shifts were calculated using GIPAW (blue) and ShiftML (red). The highlighted bars 
correspond to the candidates that would be selected as correct crystal structures using the chemical shift based solid-state NMR crystallography 
protocol. In (a-d) the grey zones represent the confidence intervals of the 1H chemical shift RMSD, as described in the text.18
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Figure 2-23. Chemical structure of cocaine (a) and AZD8329 
(b) and the labelling scheme used here. 

Table 2-6. Experimental chemical shifts of cocaine and the form 
4 of AZD8329. The labelling scheme is given in Figure 2-23. When 
more than one atom corresponds to a single chemical shift value, 
their values were averaged.  

Cocaine AZD8329 

Atom Label 1H d (ppm) Atom Label 1H d (ppm) 

1 3.76 1 6.92 

2 3.78 2 8.69 

3 5.63 3 9.01 

4 3.32 4 8.47 

5 3.49 5 15.37 

6 3.06 6 7.73 

7 2.91 7 9.64 

8 3.38 8 2.90 

9 2.56 9 1.78 

10 2.12 10,11 1.88 

11,12,13 1.04 12 1.8 

14 8.01 13 1.6 

15 8.01 14 0.44 

15 8.01 15 1.54 

17 8.01 16,17 1.88 

18 8.01 18,19 0.8 

19,20,21 3.78 20 1 

  21,22 1.74 
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DFT Calculation Times 

Figure 2-24 shows the CPU time needed for part of the GIPAW DFT calculations done for this work. The calculations shown 
in Supplementary Figure 2-24a were done on polymorph 1 of the cocaine dataset, which contains 86 atoms per unit-cell, 
while the one in Supplementary Figure 2-24b were done on 500 structures of the CSD-2k set. In Figure 2-24a the calculation 
time is plotted as a function of the number of Monkhorst-pack k-points per axis for three different energy-cut-off (Ecutoff) 
values: 40 Ry (blue), 70 Ry (red), 100 Ry (yellow). When increased, these two parameters improve the accuracy of the calcu-
lation, but at the same time they drastically increase the computational time needed to carry out the calculation. Figure 
2-24b shows the CPU time for the GIPAW chemical shift calculations (blue dots) and for the DFT structure optimizations 
(green squares) as a function of the number of valence electrons (Ne) per unit-cell. For the GIPAW chemical shift calculations 
the energy-cut-off was 100 Ry, using a Monkhorst-pack grid with a k-point spacing of 0.06 Å-1. For the DFT structure optimi-
zations the energy-cut-off was 60 Ry and no k-points were used. The red line shows the best fit between the number of 
valence electrons and the required CPU time for the GIPAW chemical shift calculations as 𝑡Z´µ = 𝑎𝑁1; + 𝑏𝑁1[, where the 𝑁1[ 
scaling accounts for the general DFT scaling and the 𝑁1; describes the scaling of the matrix inversion, which dominates for 
small system sizes. The best fit parameters are given as 8.83e-04 (a) and 1.02e-06 (b). 

Currently the machine learning model has only been rigorously tested and applied for structures optimized with DFT. Also 
slight structural changes away from the equilibrium geometry of a molecular crystal have been shown to result in significant 
changes in the chemical shifts.209 For this reason, the predictive accuracy of ShiftML for non-equilibrium structures has not 
yet been quantified. This will be the subject of further work. However, Figure 2-24b clearly shows that the computational 
cost for the structure optimization is negligible compared to the computational cost of the GIPAW chemical shift calculations.  

For structures with 𝑁1 ≈ 100 the GIPAW shift calculations require around 10x more CPU time as the DFT structure optimi-
zation, and for 𝑁1 ≈ 1,000, 80x more CPU time is required.  

 

Figure 2-24. CPU time for NMR chemical shift calculations using the GIPAW method. (a) The CPU time is shown as function of the DFT 
accuracy, determined by the plane-wave cutoff energy 𝐸·¸a¹ºº	and the number of k-points in each dimension for polymorph 1 of cocaine. 
The charge density energy cut-offs were set to 𝐸» = 4𝐸·¸a¹ºº. (b) The CPU time is shown as function of increasing system size in CSD-2k. 
The green squares and blue dots show individual geometry optimization and GIPAW chemical shift DFT calculations, respectively. The red 
line shows the best fit between the number of valence electrons and the required CPU time as 𝑡Z´µ = 𝑎𝑁1; + 𝑏𝑁1[ (8), with 𝑎 = 0.0162 
and 𝑏 = 5.91𝑒 − 06. 
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ShiftML Prediction Times 

The ShiftML run-times are shown in Figure 2-18. They scale linearly with the number of atoms per unit cell. However, for all 
the structures investigated here (from 20 to 1,500 atoms per unit-cell) the required prediction time is dominated by a con-
stant pre-factor associated with the used training set.  

Prior to the prediction step, the SOAP reference vector between the test and the training structures is created. This step 
should be linear in the size of the test-structures, but is currently dominated by the size of the training set. As a result, this 
takes around one CPU minute for any of the investigated structures here.  

The actual subsequent chemical shift prediction, which is linear in the number of atoms within the test-structure, requires 
at most 10-20 CPU seconds for the large investigated structures.  

Note that prior to the chemical shift predictions, the single kernels for all the atomic species must be loaded into virtual 
memory and the multiscale kernel created. On one CPU this currently takes around 45 minutes. Note, that this has to be 
done only once, independently of the number and size of the test-structures that are subsequently calculated.  

Prediction Parameters, Leaning and Evaluation Curves 

Tables 2-7 and 2-8 and show the parameters used for the single and the multi-scale kernel predictions respectively. Using 
these parameters, we obtained the curves shown in Figure 2-15 and the ones shown in Figures 2-25-to 2-28. Figures 2-25 
and show the RMSE and MAE learning curves for 1H, 13C, 15N and 17O for the different local environment cut-off radii, and for 
the multi-kernel. The training was done on up to 1500 randomly selected frames, while testing on 400 structures selected 
randomly from the CSD-2k set excluding the structures already selected for the training set. For each point, the random 
sampling was repeated N times (where N is equal to 300, 255, 215, 170, 130, 85, 45 and 5 respectively for training set sizes 
of 40, 100, 200, 400, 600, 1000, 1400 and 1500 structures) 

Figures 2-27 and 2-28 show the results of the predictions of the chemical shifts of the CSD-500 set as a function of the cut-
off value and the size of the training set. The parameters for the multi-scale kernel prediction were optimized using 3-fold 
cross validation on the CSD-2k set and are given in Paruzzo et al.161 

Table 2-7. Kernel weights and GPR parameters used for multi-scale kernel prediction.  

Atom 
Multi-Scale Kernel Weights 

sn z 
rc = 2 Å rc = 3 Å rc = 4 Å rc =5 Å rc = 6 Å rc = 7 Å 

1H 256 128 32 8 8 1 0.1 2 

13C 256 512 64 8 8 1 2.0 2 

15N 256 128 32 8 8 1 0.1 2 

17O 256 128 32 8 8 1 5.0 2 
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Table 2-8. Kernel and GPR parameters. The GPR parameters (sn and z) are the ones used in single kernel predictions.  

Atom Cut-off (rc) Gaussian width (V) lmax nmax sn z 

1H 2 0.3 9 9 0.1 2 

 3 0.3 9 9 0.1 2 

 4 0.4 9 9 0.1 2 

 5 0.4 9 9 0.1 2 

 6 0.5 9 12 0.1 2 

 7 0.5 9 12 0.1 2 

13C 2 0.3 9 9 0.01 2 

 3 0.3 9 9 3.0 2 

 4 0.4 9 9 5.0 2 

 5 0.4 9 9 3.0 2 

 6 0.5 9 12 1.0 2 

 7 0.5 9 12 1.0 1 

15N 2 0.3 9 9 0.5 2 

 3 0.3 9 9 1.0 2 

 4 0.4 9 9 0.1 2 

 5 0.4 9 9 0.1 2 

 6 0.5 9 12 0.1 2 

 7 0.5 9 12 0.05 2 

17O 2 0.3 9 9 0.5 2 

 3 0.3 9 9 5.0 2 

 4 0.4 9 9 5.0 2 

 5 0.4 9 9 5.0 2 

 6 0.5 9 12 1.0 2 

 7 0.5 9 12 7.0 2 
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Figure 2-25. RMSE learning curves showing the error between chemical shifts calculated with DFT and ShiftML. The curves are for 1H (a), 
13C (b), 15N (c) and 17O (d) chemical shieldings. The multi-kernel learning-curve is labelled as msk.  
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Figure 2-26. MAE learning curves showing the error between chemical shifts calculated with DFT and ShiftML. The curves are relative to 
1H (a), 13C (b), 15N (c) and 17O (d) chemical shieldings. The multi-kernel learning-curve is labelled as msk. 
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Figure 2-27. RMSE evaluation curves showing the error between chemical shifts calculated with DFT and ShiftML. The curves are relative 
to 13C (a), 15N (b) and 17O (c) chemical shieldings. The errors were measured for different training set sizes, and evaluated on the CSD-500 
test set. The multi-kernel learning-curve is labelled as msk.  
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Figure 2-28. MAE evaluation curves showing the error between chemical shifts calculated with DFT and ShiftML. The curves are relative 
to 1H (a), 13C (b), 15N (c) and 17O (d) chemical shielding. The errors were measured for different training set sizes, and evaluated on the 
CSD-500 test set. The multi-kernel learning-curve is labelled as msk. 
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Comparison to Experiments 

Comparison between 1H experimental chemical shifts and 1H chemical shifts calculated with ShiftML were carried out ana-
lyzing 68 chemical shifts obtained from 6 crystal structures. The names, IUPAC IDs, CSD reference codes (when available) and 
references to the experimental NMR data of the analyzed crystal structures are the following:  

(i) Naproxen, (2S)-2-(6-Methoxy-2-naphthyl)propanoic acid, COYRUD11, Ref. 210 

(ii) Uracil, Pyrimidine-2,4(1H,3H)-dione, URACIL, Ref. 211 

(iii) Co-crystal of 3,5-dimethylimidazole and 4,5-dimethylimidazole, Ref. 212 

(iv) Theophylline, 1,3-Dimethyl-3,7-dihydro-1H-purine-2,6-dione, BAPLOT01, Ref. 56 

(v) Cocaine, methyl (1R,2R,3S,5S)-3- (benzoyloxy)-8-methyl-8-azabicyclo[3.2.1] octane-2-carboxylate, COCAIN10, 
Ref. 56 

(vi) AZD8329, 4-[4-(2-adamantylcarbamoyl)-5-tert-butylpyrazol-1-yl]benzoic acid, Ref. 58 

The crystal structures (i-iv) were obtained from Ref. 83, where the experimentally determined crystal structures were sub-
jected to all-atom geometry optimization with fixed lattice parameters, as described in the reference. Crystal structures (v) 
and (vi) were obtained from Refs. 56 and 58 respectively.  

We used assigned chemical shift values and we account for rotational dynamics of the methyl groups by averaging the chem-
ical shift values of the three 1H positions to a single value for each methyl group. The calculated chemical shieldings s are 
converted to the corresponding chemical shifts d  through the relationship d  = sref - bs. For each structure, we calculated 
the value of sref and b by a linear regression between calculated and experimental shifts. The calculations were carried out 
in MATLAB using a home-written script. The chemical structures, together with the assigned experimental chemical shifts 
and the parameters for conversion between shieldings and shifts are shown in Figure 2-29 and Table 2-9.  

 

Figure 2-29. Chemical structures of the compounds used for experimental comparison. In order, cocaine (a), 3,5-dimethylimidazole and 
4,5-dimethylimidazole (b), AZD8329 (c), naproxen (d), theophylline (e) and uracil (f), and the labelling scheme used here. 
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Table 2-9. Experimental and calculated chemical shifts of naproxen, uracil, the co-crystal of 3,5-dimethylimidazole and 4,5-dimethylimid-
azole, theophylline, cocaine and AZD8329. The labelling scheme is given in Figure 2-29. When more than one atom corresponds to a single 
chemical shift value, their values were averaged. 

Naproxen Uracil 

Atom Label 
Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 
Atom Label 

Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 

1 7 6.87 3 7.5 7.76 

2 6.1 6.07 2 10.8 10.68 

3 3.8 3.74 1 11.2 11.22 

4 4.5 4.40 4 6 5.85 

5 4.1 4.51    

6 5.9 5.11    

7 3.2 3.15    

8,9,10 1.8 1.98    

11,12,13 2.3 2.63    

14 11.5 11.74    

sref 25.38 b 0.81 sref 23.71 b 0.74 

3,5-dimethylimidazole & 4,5-dimethylimidazole Theophylline 

Atom Label 
Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 
Atom Label 

Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 

2’ 4.8 5.17 2 14.6 14.57 

6’,7’,8’ 0.7 0.77 1 7.7 7.27 

3’,4’,5’ 1.4 0.91 3,4,5 3.4 3.22 

1’ 13 12.55 6,7,8 3.4 3.52 

6’,7’,8’ 1.4 1.20    

3’,4’,5’ 1.5 1.35    

1’ 15 14.92    

2’ 5.2 6.14    

sref 29.91 b 0.99 sref 25.98 b 0.83 
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Cocaine AZD8329 

Atom Label 
Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 
Atom Label 

Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 

1 3.76 3.95 1 6.92 6.53 

2 3.78 3.22 2 8.69 7.85 

3 5.63 6.11 3 9.01 9.35 

4 3.32 3.73 4 8.47 7.91 

5 3.06 2.55 5 15.37 15.95 

6 3.49 2.99 6 7.73 7.60 

7 2.91 2.69 7 9.64 9.37 

8 3.38 3.18 8 2.90 2.79 

9 2.56 2.44 9 1.78 1.98 

10 2.12 2.37 10 1.88 1.79 

11,12,13 1.04 1.80 11 1.88 2.61 

14 8.01 8.40 12 1.8 1.68 

15 8.01 7.39 13 1.6 1.28 

15 8.01 7.66 14 0.44 0.87 

17 8.01 8.09 15 1.54 1.94 

18 8.01 8.03 16 1.88 2.76 

19,20,21 3.78 4.28 17 1.88 1.69 

   18 0.8 1.21 

   19 0.8 0.43 

   20 1 1.42 

   21 1.74 1.47 

   22 1.74 1.21 

   23,24,25 0.73 0.84 

   26,27,28 0.73 1.02 

   29,30,31 0.73 0.14 

sref 30.04 b 0.96 sref 28.39 b 0.91 
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Structures and Chemical Shifts of the CSD-6 Set 

For all the structures in CSD-6 we removed atoms with partial occupations, following the same procedure as for the CSD-61k 
set, leaving only one conformation in the structure file. Missing Hydrogen atoms were added with the program IQmol. Prior 
to the chemical shift calculations all the coordinates of the structures were DFT optimized using the same parameters as for 
the CSD-2k set.  

 

Figure 2-30. Chemical formula and corresponding 13C, 15N and 17O NMR spectra predicted using ShiftML of the six large molecular 
crystals with CSD Refcodes. (a) CAJVUH,192 Natoms = 828, (b) RUKTOI,193 Natoms = 768, (c) EMEMUE,194 Natoms = 860, (d) GOKXOV,195 
Natoms = 945, (e) HEJBUW,196 Natoms = 816, (f) RAYFEF,197 Natoms = 1,584.  
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2.4 Positional	variance	and	uncertainty	
This chapter has been adapted with permission from: Hofstetter, A.; Emsley, L., “Positional variance in NMR crystallography”. Journal 
of the American Chemical Society 2017, 139 (7), 2573-2576. (post-print) 

2.4.1 Introduction	
The scope of the combined CSP-NMRX approach has rapidly increased and today there are many examples of structure validation 
and determination by chemical shift measurements combined with DFT8, 18, 37, 56-58, 72-73, 141-142, 148 In Chapters 2.2 and 2.3 we have 
introduced approaches to reduce the computational cost of CSP-NMRX and thus to further extend the scope of this combined ap-
proach. In this chapter we investigate a further aspect of CSP-NMRX, namely the positional accuracy of the determined structures. 
In contrast to diffraction based methods, there exists no protocol to quantify the positional errors on individual atoms for structures 
determined by chemical shift based NMRX. 

We propose a method to quantify positional uncertainties in crystal structures determined by chemical shift based NMR crystallog-
raphy. The method combines MD simulations and DFT calculations with experimental and computational chemical shift uncertainties. 
In this manner we determine the average positional accuracy as well as the isotropic and anisotropic positional accuracy associated 
with each atom in a crystal structure determined by NMRX. The approach is demonstrated on the crystal structures of cocaine, 
flutamide, flufenamic acid, the K salt of penicillin G, and form 4 of the drug 4-[4- (2-adamantylcarbamoyl)-5-tert-butyl-pyrazol-1-
yl]benzoic acid (AZD8329), which have been recently characterized by NMRX.56, 58, 142 We find that, for the crystal structure of cocaine, 
the uncertainty corresponds to a positional root mean squared deviation (RMSD) of 0.17 Å. This is a factor of 2.5 less than for single 
crystal X-ray diffraction based structure determination. 

2.4.2 Methods	
First, we generate an ensemble of slightly perturbed crystal structures with MD simulations at finite temperatures. By slightly per-
turbed we refer to structures that remain within the same local minima, and do not undergo any significant conformational shifts. 
The temperature ranges used and the associated computational costs are detailed in the Appendix II. Predicted 1H and 13C chemical 
shifts are then calculated for the members of the ensemble using plane wave DFT and the GIPAW63 method. Given the estimated 
errors in the measured and predicted chemical shifts, we then correlate this directly with the atomic positions that are compatible 
with the measured chemical shifts to within the error, yielding a distribution of positions for each atom. The positional distributions 
are then converted into anisotropic displacement parameters (ADPs)213, which can be represented by ellipsoids on the determined 
structure. The results of this process are given in Figure 2-31 for cocaine, flutamide, flufenamic acid, AZD832958 and the K salt of 
Penicillin G. 

 

Figure 2-31. ORTEP plots drawn at the 90% probability level for the NMR determined crystal structures of (a) cocaine (b) flutamide, (c) flufenamic 
acid, (d) AZD8329 and (e) the K salt of Penicillin G. The ellipsoids correspond to positions within a 1H chemical shift RMSD of 0.49 ppm. 

  

(b)

(a)

O1 O2

O3

O4

N1

N1

N2

O1

O2

O3

F1

F2
F3

(d)

(c)

O1
O2

F1

F2
F3

N1

N1 N2

N3

O1

O2

O3

(e)

O1

O2

O3

O4

N1

N2

S1

K1



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

64 

To obtain the correlation between the chemical shift uncertainty and the ADPs, first the chemical shift RMSD between each structure 
in an ensemble and a reference structure from the ensemble is calculated. Next the positional deviations between each structure 
and the reference structure are calculated. For each individual atom the principle axis system (PAS) of the ensemble of positional 
deviations is determined using principle component analysis (PCA) as detailed in the Appendix II. This results in a scatter plot of the 
type shown in Figure 2-32a. 

 

Figure 2-32. (a) Contour plot of the Gaussian fit of the correlation between the positional displacement (Å) and the 1H chemical shift RMSD (ppm) 
along one principal axis of the anisotropic displacement tensor for the O1 atom for the cocaine crystal structure. (b) Probability distribution of the 
positional displacement (Å) for to a 1H chemical shift RMSD of 0.49 ppm. 

A continuous correlation function is obtained by maximizing the log-likelihood between the correlation points and a Gaussian distri-
bution: 

𝐺4〈𝑟b,¯〉, 〈𝛿〉8 = 	
1

Â2𝜋𝛴b,¯; 〈𝛿〉;
exp È−

(〈𝑟b,¯〉 − 𝜇b,¯〈𝛿〉);

2𝛴b,¯; 〈𝛿〉;
É, 

(2-11) 

where < 𝑟 > denotes the positional deviation, < 𝛿 > the chemical shift RMSD, 𝛴 the scaling of the variance and 𝜇 the scaling of the 
mean. The indices l and i denote the atom and the principle axis respectively. The fit parameters are 𝛴 and 𝜇. The detailed procedure 
is given in Appendix II. The result of this procedure for the O1 atom of cocaine is shown in Figure 2-32. Please note, that the uncer-
tainty prediction method described here is not limited to the use of a Gaussian distribution function (details in the Appendix II).  

The principal values of the ADPs in the PAS are calculated as the mean-square displacements, which for Gaussian distributions is 
given as the variance, as a function of the chemical shift RMSD,  

𝑈bb,¯Íd� = 𝛴b,¯; 〈𝛿〉;. 

(2-12) 

The amplitudes of the second rank tensors describing the ellipsoids at a given probability (W) are calculated in the PAS, where they 
are diagonal, as, 

𝑇bb,¯Íd� = 𝑝b,¯(𝑊, 〈𝛿〉);, 

(2-13) 

where 𝑝b,¯(𝑊,< 𝛿 >)	denotes the Wth percentile of the fitted Gaussian for a chemical shift RMSD < 𝛿 >. These are the quantities 
that are usually plotted in so-called ORTEP plots as anisotropic displacement ellipsoids, and this is what is shown in Figure 2-1.  
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Note that, for simplicity, or for cases with insignificant anisotropy in the displacements, the second rank ADP can be replaced by the 
equivalent isotropic displacement parameter.214-215 

𝑈1Ð¯ = 	
1
3	4𝑈::,¯

Íd� + 𝑈;;,¯Íd� + 𝑈[[,¯Íd�8. 

(2-14) 

Note also that, from the equivalent isotropic displacement parameters, we can derive a global measurement of the positional uncer-
tainty (𝑈1Ð	and 𝑇1Ð) for the whole structure, which is given as the average of the equivalent isotropic displacement parameters over 
all the N atoms in the structure, 

𝑈1Ð =	
1
𝑁	�𝑈1Ð¯

)

¯�:

. 

(2-15) 

The radii of the isotropic spheres and of the average isotropic spheres at a certain probability (W) are calculated analog to the axes 
of the anisotropic displacement ellipsoids (Equation 2-13), the formula is detailed in the Appendix II. The isotropic spheres and the 
average isotropic spheres are shown for cocaine in Figure 2-33b and Figure 2-33c respectively. The average positional RMSD <rav> 
for a given chemical shift RMSD <δ> is then calculated as ,  

< 𝑟JÒ >	= 	Â3𝑈1Ð. 

(2-16) 

The factor √3 results from the fact that the isotropic displacement parameter is given as in Equation 2-14, while the RMSD is calcu-

lated as < r >	=	ÔΔx; + Δy; + Δz;. (2-17) 

 

Figure 2-33. ORTEP plot of the cocaine structure drawn at the 90% probability level. (a) Anisotropic ellipsoids, corresponding to a 1H chemical shift 
RMSD of 0.49 ppm. (b) Equivalent isotropic spheres, corresponding to a 1H chemical shift RMSD of 0.49 ppm. (c) Average thermal spheres for a 
chemical shift RMSD <δ> of 0.49 ppm , corresponding to an average positional RMSD <rav> of 0.169 Å. 
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2.4.3 Results	
As indicated in Figure 2-34, we find that the positional RMSD <rav> shows an approximately linear correlation with the average chem-
ical shift RMSD < 𝛿 > for each of the five structures, but that the slope of the correlation is different for each structure. For example, 
for a given chemical shift RMSD the structure determined for penicillin has more than a factor two less uncertainty than that for 
flutamide. This is not surprising. The sources of this variation depend on the rigidity of the molecule, its hybridization, and the electron 
density gradients in the crystal structure. A detailed investigation of these factors will be the subject of future studies. Also, the 
positional uncertainty depends on how internal dynamics (such as methyl rotation) is accounted for (detailed in the Appendix II), as 
one of the main contributors to the positional RMSD. The positional uncertainty presented here should therefore be viewed as an 
upper limit.  

From Equations 2-12 and 2-14 to 2-16 the correlation between the chemical shift RMSD <δ> and the average positional RMSD <rav> 
is,  

< 𝑟JÒ >	= 	Ø
1
𝑁� 𝛴b,¯; 	

b,¯
< 𝛿 >	= 	𝛴Ù < 𝛿 >. 

 (2-18) 

For the crystal structure of cocaine, we find a direct correlation (𝛴Ù)	of 0.345. Given an average chemical shift RMSD <δ> of 0.49 
ppm, which is the current estimated upper limit for the accuracy in 1H chemical shift based crystallography methods18, this leads to 
an average positional RMSD <rav> of around 0.169 Å, corresponding to an average equivalent displacement parameter (𝑈1Ð)	of 
0.0095 Å2 . Compared to other structure determination methods, for example XRD which yielded an average positional RMSD of 
0.458 Å for the crystal structure of cocaine,180 C 17 H 21 NO 4 we find an increase in positional accuracy by a factor 2.5.  

It is interesting to note that for XRD the positional uncertainty mainly results from the thermal motion of the atoms and is a direct 
result of the decrease in scattering amplitude due to vibrations. In contrast, in NMR spectroscopy thermal motion and fast lattice 
vibrations lead to motional narrowing of the measured signal, and if anything, are likely to increase accuracy; thus, we see that the 
different techniques naturally have different limits on the positional accuracy.  

 

Figure 2-34. (a) Correlation between positional RMSD (Å) and 1H chemical shift RMSD (ppm) for five ensembles of perturbed crystal structures 
generated by MD. (b) Correlation between positional RMSD (Å) and 13C chemical shift RMSD (ppm) for five ensembles of slightly perturbed crystal 
structures. 

We remark that the methods used to create the ensemble of structures and to calculate the chemical shifts are important in deter-
mining the positional errors. We have evaluated the use of different force-fields in the MD simulation, as well as a fixed versus a 
variable unit cell as discussed in the Appendix II, and we find they have no significant effect on the uncertainty quantification. 
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Comparable calculations were also done for an ensemble of perturbed cocaine crystal structures generated by random uncorrelated 
displacement of the atoms (i.e. this correspond to systematic uncorrelated bond stretching). For this ensemble the correlation pre-
dicts much larger deviations in chemical shift for a given average displacement (see Figure 2-47), and would lead to much higher 
apparent positional accuracy. This is expected, due to the generation of physically improbable structures resulting in an unreasonable 
electronic density. A possibility to overcome this would be to weight the random structures with a Boltzmann factor based on their 
calculated energy, but this should provide no direct advantage compared to the MD method. The MD method on the other hand 
searches the conformational space more efficiently and implicitly weights the generated structures with a Boltzmann factor. The 
random displacement method thus severely underestimates the positional errors. The MD ensemble allows for a significantly larger 
uncertainty in position than the random displacement method for a given chemical shift RMSD, and it is thus a better representation 
of the uncertainty in positions in the experimentally determined structures. We are currently exploring other methods to generate 
physically reasonable ensembles, for example through the exploitation of vibrational modes of the crystal structures. 

Finally, it is possible, that the choice of the DFT functional might have an influence on the calculated uncertainties. The PBE205 func-
tional used here is the current standard for the computation of chemical shifts in molecular crystals,216 and we remark that the 
systematic error in chemical shift calculations has shown to be similar for different functionals.217 This systematic error likely results 
from the difficulty for DFT to correctly describe polar groups and long range dispersion forces, e.g. Hydrogen bonds. However, here 
we would not be sensitive to this systematic error, but only to any systematic variation within the error, which is likely to be small. 

2.4.4 Conclusion	
In conclusion, we have introduced a method to quantify positional uncertainties in crystal structures derived from NMR chemical 
shifts. The structures quantified here were determined by chemical shift based NMR crystallography, but in principle structures de-
termined by other methods, e.g. XRD, could be refined with this method. An ensemble of structures around the experimentally 
determined structure is generated in silico, and the predicted chemical shift deviations for this ensemble are compared to the posi-
tional deviations. In this way we determine the average positional error of the experimentally determined structure for each atom in 
the crystal structure. We find that the average positional uncertainty in the five structures studied here yield an RMSD of 0.17 Å, or 
an average value of the equivalent displacement parameter of 0.0095 Å2. We find that chemical shift based NMR crystallography 
methods provide a gain in positional accuracy of around a factor 2 compared to XRD structure determination. This is mainly because 
thermal vibrations are not limiting for chemical shift based NMR methods. 

  



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

68 

2.4.5 Appendix	II	

Experimental and Computational Details 

Crystal Structures. The initial NMR determined crystal structures were obtained from the supplementary information of M. Baias et 
al56, for cocaine, flutamide and flufenamic acid, and from the Cambridge Crystallographic Database for AZD8329 and the K salt of 
penicillin G . The CSD Refcodes for the structures are: BZPENK01 for the K salt of penicillin G and the CCDC number 957764 for 
AZD8329.  

Molecular Dynamics. The all-atom optimized potential for liquid simulations (OPLS-aa) force-field218 within the GROMACS suite219 

flexible, and free was used for the MD simulations. The force-field was chosen after performance tests with multiple force-fields. It is the 
same force-field as in the crystal prediction method used for the structure elucidation of cocaine, flutamide and flufenamic acid.56 
Prior to the MD simulations the crystal structures were relaxed in the force-field. During the relaxation the structures changed on 
average by a RMSD of 0.74 ± 0.18 Å. The relaxation was done to avoid any significant structural changes during the MD simulation. 
During the MD simulations the crystal structures were kept in a constant heat bath, at multiple values between 1° and 250° K, for 
300ps. For the different compounds the simulation temperatures were set as given in Table 2-10. For each temperature the simula-
tion was run for around 20min on 1 node with 2 Ivy Bridge processors running at 2.6 GHz, each with 8 cores and 64 GB of DDR3 RAM. 

Table 2-10. Temperatures used during the MD simulations of the crystal structures.  

cocaine flutamide flufenamic acid AZD 8329 K salt of penicillin G 

1° K,  

5° to 50° K in steps of 5° 
K, 

60° to 250° K in steps of 
10° K. 

1° K,  

5° to 50° K in steps of 5° 
K, 

1° K,  

5° to 60° K in steps of 5° 
K, 

 

1° K,  

5° to 55° K in steps of 5° 
K, 

 

1° K,  

5° to 55° K in steps of 5° 
K, 

 

 

DFT Chemical Shift Calculations. The DFT calculations were performed using the generalized gradient approximation (GGA) func-
tional PBE205 within the Quantum Espresso code188. The plane-wave cutoff energy and the reciprocal grid spacing were optimized for 
each crystal structure, and found to be: cocaine, Ecutoff = 70 Ry with a 2 x 2 x 2 Monkhorst-Pack grid of k-points220; flutamide, Ecutoff 
= 80 Ry and a 2 x 1 x 3 Monkhorst-Pack grid of k-points; Penicillin G, Ecutoff = 50 Ry and a 2 x 2 x 1 Monkhorst-Pack grid of k-points; 
flufenamic acid, Ecutoff = 110 Ry and a 1 x 2 x 1 Monkhorst-Pack grid of k-points; AZD8329, Ecutoff = 60 Ry and a 2 x 2 x 2 Monkhorst-
Pack grid of k-points. The chemical shifts 𝛿¨J¯¨ were calculated using the GIPAW method63 with the parametrization described above. 
For each compound chemical shifts were calculated for an ensemble of 620 (cocaine), 260 (flufenamic acid), 240 (penicillin and 
AZD8329) and 220 (flutamide) structures extracted uniformly from the 1.92 x107 (cocaine), 7.8 x106 (flufenamic acid), 7.2 x106 (pen-
icillin and AZD8329) and 6.6 x106 (flutamide) in the complete MD set. For each structure the DFT calculation was run for around 
120min on 2 nodes each with 2 Ivy Bridge processors running at 2.6 GHz, each with 8 cores and 64 GB of DDR3 RAM.  
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Continuous Positional and Chemical Shift Correlation 

Chemical Shift RMSD. The chemical shift RMSD is determined by a linear regression between the reference and calculated chemical 
shifts (𝛿g1h = 	𝑎 − 𝑏	𝛿¨J¯¨ ), illustrated in Figure 2-35. It is used as a measurement of the goodness of the fit for a given trial structure. 

 

Figure 2-35. Linear regression between the reference and calculated 1H chemical shifts for a predicted crystal structure of cocaine. 

Principle Component Analysis (PCA) 

For each atom (l) the mean atomic position (𝑚ÝÝ⃗ ¯)	and the covariance matrix of displacements (𝛴¯) over the whole ensemble of slightly 
perturbed structures is calculated:  

𝑚ÝÝ⃗ ¯ = 	
1
𝑀�𝑟 (𝑘)

*

ª�:

, 

(2-19) 

𝛴¯ = 	
1
𝑀�(𝑟 (𝑘) −	

*

ª�:

𝑚ÝÝ⃗ ¯ 	)	(𝑟 (𝑘) − 𝑚ÝÝ⃗ ¯	)Þ, 

(2-20) 

where k indexes the structure and M denotes the total number of structures in the ensemble.  

The eigenvectors 𝑢à¯ = [𝑢Ý⃗ :¯ , 𝑢Ý⃗ ;¯ , 𝑢Ý⃗ [¯ ] of the covariance matrix of displacements (𝛴¯) are used to transform the displacement vectors in 
the reference frame (𝛥𝐴¯	(𝑘)) into the displacements in the principle axis system (PAS) (𝛥𝐵Ý⃗ ¯ 	(𝑘)). 

𝛥𝐴¯	(𝑘) = 	𝑟 (𝑘) −	𝑟 4𝑘g1h8, 

(2-21) 

𝛥𝐵Ý⃗ ¯ 	(𝑘) = 	 𝑢à¯⊺𝛥𝐴¯	(𝑘). 

(2-22) 
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Maximum Likelihood Estimation (MLE) 

The correlation function (𝐺4〈𝑟b,¯(𝑘)〉, 〈𝛿(𝑘)〉8), which is detailed in the main text, is fitted to the discrete correlation data in order to 
find the parameters 𝛴b,¯	and 𝜇b,¯. Where i denotes the principle axis, l the atom and k the structure in the ensemble. 

𝐺4〈𝑟b,¯(𝑘)〉, 〈𝛿(𝑘)〉8 = 	
1

Â2𝜋𝛴b,¯; 〈𝛿(𝑘)〉;
expÈ−

(〈𝑟b,¯(𝑘)〉 − 𝜇b,¯〈𝛿(𝑘)〉);

2𝛴b,¯; 〈𝛿(𝑘)〉;
É. 

(2-23) 

For this subchapter the indices i and l are omitted, but the procedure is done for each principle axis (i) of each atom (l) individually. 
The fit is done by maximizing the logarithm of the Likelihood functional (𝐿[𝐺|𝜇, 𝛴]). 

𝐿[𝐺|𝜇,𝛴] = 	∏ 𝐺(〈𝑟(𝑘)〉, 〈𝛿(𝑘)〉)*
ª�:  = (∏ 〈𝛿(𝑘)〉�:*

å�: )æ :
;çèé	

ê
*/;

exp ë−∑ (〈g(ª)〉�ì〈í(ª)〉)é

;èé〈í(ª)〉é
*
ª�: î, 

(2-24) 

log 𝐿[𝐺|𝜇, 𝛴] = 	−ò�log〈𝛿(𝑘)〉
*

ª�:

ó−
𝑀
2 log 2𝜋𝛴

; −�
(〈𝑟(𝑘)〉 − 𝜇〈𝛿(𝑘)〉);

2𝛴;〈𝛿(𝑘)〉;

*

ª�:

. 

(2-25) 

Where k indexes the structure and M denotes the total number of structures in the ensemble. The maximum of the log-Likelihood is 
found by differentiating with respect to the parameters 𝛴 and 𝜇.  

𝜕 log 𝐿[𝐺|𝜇, 𝛴]
𝜕𝜇 =

𝜕 log 𝐿[𝐺|𝜇, 𝛴]
𝜕𝛴 = 	0, 

(2-26) 

𝜇 =	
1
𝑀�

〈𝑟(𝑘)〉
〈𝛿(𝑘)〉

*

ª�:

, 

(2-27) 

𝛴; = 	
1
𝑀�

(〈𝑟(𝑘)〉− 𝜇〈𝛿(𝑘)〉);

〈𝛿(𝑘)〉;

*

ª�:

. 

(2-28) 
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Isotropic and average isotropic spheres 

The isotropic spheres are calculated as,  

𝑇1Ð¯ = :
[
(𝑇::,¯Íd� 	+ 𝑇;;,¯Íd� + 𝑇[[,¯Íd�), 

(2-29) 

where l denotes the index of the atom. Analog, the average isotropic spheres are calculated as, 

𝑇1Ð =
1
𝑁�𝑇1Ð¯

)

¯�:

, 

(2-30) 

where N denotes the total number of atoms in the structure. 

 

Cauchy-Lorentz distribution as an alternative kernel 

As mentioned above, the uncertainty quantification method described above is not limited to the use of a Gaussian distribution 
function as the kernel for the MLE. For the observed correlation a Gaussian kernel seems to be a pertinent choice, but in other cases 
a different kernel might be more appropriate. One of the main advantages of a Gaussian kernel is the existence of an analytical 
solution for the MLE. For other kernels, where no analytical solution exists, a more general procedure, as illustrated with a Cauchy-
Lorentz distribution, can be used. 

A Cauchy-Lorentz distribution (𝐶4〈𝑟b,¯(𝑘)〉, 〈𝛿(𝑘)〉8), following the same principles as the Gaussian distribution above, is fitted to the 
discrete correlation data in order to determine the parameters 𝛾b,¯	and 𝜇b,¯. 

𝐶4〈𝑟b,¯(𝑘)〉, 〈𝛿(𝑘)〉8 = 	
1

𝜋𝛾b,¯〈𝛿〉
ò1 + õ

〈𝑟b,¯(𝑘)〉 − 𝜇b,¯〈𝛿(𝑘)〉
𝛾b,¯〈𝛿(𝑘)〉

ö
;

ó
�:

. 

(2-31) 

For this subchapter the indices i and l are omitted, but the procedure is done for each principle axis (i) of each atom (l) individually. 
The fit is done by numerically minimizing the logarithm of the inverse Likelihood functional (𝐿[𝐶|𝜇, 𝛴]). 

𝐿[𝐶|𝜇, 𝛴] = 	÷𝐶(〈𝑟(𝑘)〉, 〈𝛿(𝑘)〉)
*

ª�:

=÷
𝛾〈𝛿(𝑘)〉
𝜋

*

ª�:

æ𝛾b,¯; 〈𝛿(𝑘)〉; + 4〈𝑟b,¯(𝑘)〉− 𝜇b,¯〈𝛿(𝑘)〉8
;ê
�:
, 

(2-32) 

−log 𝐿[𝐶|𝜇, 𝛴] = 	−𝑀 log[𝛾] +	𝑀 log[𝜋] −	ò� log	[〈𝛿(𝑘)〉]
*

ª�:

ó + ò� log ø𝛾b,¯; 〈𝛿(𝑘)〉; + 4〈𝑟b,¯(𝑘)〉 − 𝜇b,¯〈𝛿(𝑘)〉8
;ù

*

ª�:

ó. 

(2-33) 

Due to the fact that the Cauchy-Lorentz distribution does not possess any moments of finite order, it is impossible to calculate the 
principal values of the ADPs in the PAS as the mean-square displacements of the Cauchy-Lorentz distribution. A possible estimation 
of the mean-square displacement can be to use the value of displacement at the 68th percentile, in accordance with the Gaussian 
mean-square displacement. By applying this estimation, we calculate an average positional RMSD < 𝑟JÒ > of 0.061 Å for a 1H chem-
ical shift RMSD of 0.49 ppm for Cocaine, compared to an average positional RMSD of 0.169 Å for a Gaussian kernel. Please note, that 
the Cauchy-Lorentz kernel is just used here to illustrate the potential applicability of the uncertainty quantification described here 
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for different MLE kernels. Also note that the Cauchy-Lorentz kernel is not an appropriate choice for the correlation we observe here 
and thus severely underestimates the average positional RMSD < 𝒓𝒂𝒗 >. 

Displacement Parameters from 1H Chemical Shifts 

The ORTEP plots were made with the programs CRYSTALS221 and CAMERON222 1996, CAMERON. 

 

Figure 2-36. ORTEP plot of the unperturbed cocaine structure drawn at the 90 % probability level. (a) Anisotropic ellipsoids, corresponding to a 1H 
chemical shift RMSD of 0.49 ppm. (b) Equivalent isotropic spheres, corresponding to a 1H chemical shift RMSD of 0.49 ppm. (c) Average thermal 
spheres. The 1H chemical shift RMSD of 0.49 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.169 Å.  
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Figure 2-37. ORTEP plot of the unperturbed flutamide structure drawn at the 90 % probability level. (a) Anisotropic ellipsoids, corresponding to a 
1H chemical shift RMSD of 0.49 ppm. (b) Equivalent isotropic spheres, corresponding to a 1H chemical shift RMSD of 0.49 ppm. (c) Average thermal 
spheres. The 1H chemical shift RMSD of 0.49 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.202 Å.  

 

Figure 2-38. ORTEP plot of the unperturbed flufenamic acid structure drawn at the 90 % probability level. a) Anisotropic ellipsoids, corresponding 
to a 1H chemical shift RMSD of 0.49 ppm. b) Equivalent isotropic spheres, corresponding to a 1H chemical shift RMSD of 0.49 ppm. c) Average 
thermal spheres. The 1H chemical shift RMSD of 0.49 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.111 Å.  
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Figure 2-39. ORTEP plot of the unperturbed penicillin structure drawn at the 90 % probability level. (a) Anisotropic ellipsoids, corresponding to a 1H 
chemical shift RMSD of 0.49 ppm. (b) Equivalent isotropic spheres, corresponding to a 1H chemical shift RMSD of 0.49 ppm. (c) Average thermal 
spheres. The 1H chemical shift RMSD of 0.49 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.109 Å.  
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Figure 2-40. ORTEP plot of the unperturbed AZD8329 structure drawn at the 90 % probability level. (a) Anisotropic ellipsoids, corresponding to a 1H 
chemical shift RMSD of 0.49 ppm. (b) Equivalent isotropic spheres, corresponding to a 1H chemical shift RMSD of 0.49 ppm. (c) Average thermal 
spheres. The 1H chemical shift RMSD of 0.49 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.215 Å.  
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Displacement Parameters from 13C Chemical Shifts 

 

Figure 2-41. ORTEP plot of the unperturbed cocaine structure drawn at the 90 % probability level. (a) Anisotropic ellipsoids, corresponding to a 13C 
chemical shift RMSD of 2.3 ppm. (b) Equivalent isotropic spheres, corresponding to a 13C chemical shift RMSD of 2.3 ppm. (c) Average thermal 
spheres. The 13C chemical shift RMSD of 2.3 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.083 Å.  

 

Figure 2-42. ORTEP plot of the unperturbed flutamide structure drawn at the 90 % probability level. (a) Anisotropic ellipsoids, corresponding to a 
13C chemical shift RMSD of 2.3 ppm. (b) Equivalent isotropic spheres, corresponding to a 13C chemical shift RMSD of 2.3 ppm. (c) Average thermal 
spheres. The 13C chemical shift RMSD of 2.3 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.171 Å.  
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Figure 2-43. ORTEP plot of the unperturbed flufenamic acid structure drawn at the 90 % probability level. (a) Anisotropic ellipsoids, corresponding 
to a 13C chemical shift RMSD of 2.3 ppm. (b) Equivalent isotropic spheres, corresponding to a 13C chemical shift RMSD of 2.3 ppm. (c) Average 
thermal spheres. The 13C chemical shift RMSD of 2.3 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.072 Å.  
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Figure 2-44. ORTEP plot of the unperturbed penicillin structure drawn at the 90 % probability level. (a) Anisotropic ellipsoids, corresponding to a 
13C chemical shift RMSD of 2.3 ppm. (b) Equivalent isotropic spheres, corresponding to a 13C chemical shift RMSD of 2.3 ppm. (c) Average thermal 
spheres. The 13C chemical shift RMSD of 2.3 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.050 Å.  
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Figure 2-45. ORTEP plot of the unperturbed AZD8329 structure drawn at the 90 % probability level. (a) Anisotropic ellipsoids, corresponding to a 
13C chemical shift RMSD of 2.3 ppm. (b) Equivalent isotropic spheres, corresponding to a 13C chemical shift RMSD of 2.3 ppm. (c) Average thermal 
spheres. The 13C chemical shift RMSD of 2.3 ppm leads to a structural positional RMSD with a 90% confidence interval of 0.130 Å.  
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Temperature Ranges used for Ensemble Generation 

The temperatures used for the ensemble generation are detailed in Table 2-10. Note, that the MD simulation is not required to 
replicate any potential actual dynamical behavior of the molecule in the crystal structure. Instead the MD simulation is simply used 
as a method to generate the potentially most physically reasonable ensemble of distorted structures. (As mentioned in the above, 
there are potentially other approaches to generate such an ensemble including weighting structures having small random displace-
ments with a Boltzmann factor, or exploiting vibrational modes of the molecular crystal.) For these reasons, the ensemble can be 
generated using one or more MD runs over temperature ranges that are sufficient to generate an ensemble that covers a space of 
distortions that is larger than that needed to explain the uncertainty in the chemical shifts. The temperatures used in the MD run(s) 
have no relation to the temperatures used to determine the crystal structures (whether they were determined by NMR or XRD). In 
this context we consider slightly perturbed structures as crystal structures with small atomic displacements about the local minima, 
but which do not undergo significant conformational changes or jumps to other local minima. The temperature range used in the MD 
runs is also chosen so as to avoid such larger structural changes.  

We are aware that there might be an explicit temperature dependence of calculated or measured NMR chemical shifts.223-225 Alt-
hough it is out of the scope of this work to investigate this effect in detail, we see here that the temperature dependence can be 
neglected for the uncertainty quantification here (see Figure 2-46). The calculated average positional RMSD < 𝒓𝒂𝒗 > only changes 
by ± 0.015 Å for changes in the temperature ranges of around ± 100°K (see Table 2-11).  

 

Figure 2-46. Correlation between the overall positional RMSD (Å) and the 1H chemical shift RMSD (ppm) for an ensemble of cocaine crystal struc-
tures generated for different temperature ranges (1°-10°K in cyan, 15°-50°K in red, 60°-150°K in blue and 160°-250°K in green). The figure illustrates 
that different temperature ranges display a nearly identical correlation between the positional deviation and the chemical shift RMSD. The figure 
also shows that higher temperature ranges can be used to access higher chemical shift RMSD ranges if required.  

Table 2-11. Average positional RMSD < 𝒓𝒂𝒗 > calculated for different temperature ranges. 

tempera-
ture range 

1°-10°K 1°-50°K 1°-150°K 1°-250°K 60°-150°K 60°-250°K 160°-
250°K 

mean 
value 

average   
positional 
RMSD 

< 𝒓𝒂𝒗 > 

0.146 Å 0.153 Å 0.163 Å 0.169 Å 0.168 Å 0.174 Å 0.176 Å 0.164 ± 
0.015 Å 
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Comparison to Randomly Generated Ensembles 

For cocaine the correlation between the overall positional RMSD and the chemical shift RMSD was also calculated for an ensemble 
generated by a random displacement method, where all atoms are randomly placed such that a certain total positional RMSD for 
each structure, with respect to the initial structure, is achieved. Neither the individual mobility of the atoms nor their vibrational 
properties are considered. Figure 2-47 shows clearly that for a comparable positional RMSD, an unreasonably high chemical shift 
RMSD is generated. Figure 2-47 also indicates, that for the same positional RMSD a huge variance (up to 2 ppm) in the 1H chemical 
shift is obtained. This is likely due to the generation of physically improbable structures resulting in an unreasonable electronic den-
sity. The MD method on the other hand creates an ensemble of more physically reasonable structures for a given average displace-
ment. The random displacement method would thus severely underestimate the positional errors. The MD ensemble allows for a 
significantly larger uncertainty in position than the random displacement method for a given chemical shift RMSD, and it is thus a 
better representation of the uncertainty in positions in the experimentally determined structures. 

 

Figure 2-47. Correlation between the overall positional RMSD (Å) and the 1H chemical shift RMSD (ppm) for an ensemble of cocaine crystal struc-
tures genera 

Comparison to MD with a Variable Unit Cell 

The effects of a variable unit cell on the correlation between the positional displacement and the chemical shift RMSD are studied by 
performing a MD simulation with identical temperature protocol but with a variable unit cell. Figure 2-48 clearly indicates that for 
small positional deviations the correlation between the positional displacement and the chemical shift RMSD is not strongly influ-
enced by a variable unit cell.  
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Figure 2-48. Correlation between the average positional RMSD (Å) and the 1H chemical shift RMSD (ppm) for an ensemble of cocaine crystal struc-
tures generated by a MD simulation with fixed unit cell (red circles) and a MD simulation, where the unit cell was allowed to vary (blue diamonds). 

Force Field used for Ensemble Generation 

By employing different force-fields in the MD simulation we generate a set of different ensembles in order to evaluate the effect of 
the force field used in the MD simulation. The tested force fields are OPLS-aa, Amber-03226 Nucleic Acids and Organic Molecules and the Charmm-
27227 force-field, all within the GROMACS suite. The bond distance, bond angle and dihedral angle distributions found for a given 
positional RMSD (0.05 ± 0.01 Å) are evaluated. The distributions generated by the random displacement method, described above, 
are also compared to the other distributions. Figures 2-49 to 2-51 illustrate that the different force-fields generate ensembles with 
similar molecular properties. In contrast, the distributions generated by the random displacement method display a much larger 
spread in the molecular property distributions.  

We are aware that for large scale dynamics, including conformational changes, distinct differences between different force-fields can 
be observed,228 but since we do not need to correctly model the dynamic behavior of the molecular crystal and do not need to explore 
the whole energy landscape or model conformational changes of the molecule, this does not matter here. We only use the MD to 
create a physically reasonable ensemble of slightly perturbed crystal structures within a local energy minimum. Our calculations 
summarized in Figures 2-49 to 2-51 suggest that all the tested force-fields generate similar ensembles within the desired boundaries. 
We therefore conclude, that the force-field does not significantly impact the evaluation of the positional uncertainty.  

 

Figure 2-49. Standard deviations of the bond distance distribution at a given positional RMSD of 0.05 ± 0.01 Å for different force-fields (OPLS-aa 
blue, Amber03 red and Charmm27 green) and the random displacement method (yellow) for four selected bond distances labeled according to the 
scheme in Figure 2-52.  

 

Figure 2-50. Standard deviations of the bond angle distribution at a given positional RMSD of 0.05 ± 0.01 Å for different force-fields (OPLS-aa blue, 
Amber03 red and Charmm27 green) and the random displacement method (yellow) for four different bond angles labeled according to the scheme 
in Figure 2-52. 
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Figure 2-51. Standard deviations of the dihedral angle distribution at a given positional RMSD of 0.05 ± 0.01 Å for different force-fields (OPLS-aa 
blue, Amber03 red and Charmm27 green) and the random displacement method (yellow) for four different dihedral angles. The dihedrals are 
labeled according to the scheme in Figure 2-52. 

 

Figure 2-52. Scheme of the cocaine molecule with the atom labels used in the bond, angle and dihedral labeling. 

 

Treatment of Internal Dynamics and Rotating Groups 

Here we neglect any potential internal dynamics, except for the case of methyl group rotation. In solid-state NMR chemical shift 
measurements at room temperatures methyl group rotation usually leads to a single average line shape229 for the 1H chemical shifts 
of the methyl protons. On the other hand, methyl group rotation leads to high positional deviations for the individual atoms involved, 
leading to an overestimation of the correlation between positional deviations and the chemical shift RMSD, if methyl group rotations 
are present. This overestimation can be corrected in two ways. Either by calculating the positional deviation for crystallographic sites 
instead of individual atoms. This still leads to a slight overestimation, but it allows a direct positional uncertainty quantification for 
each proton site in the methyl group. This method was applied in the calculations here. Another method is to consider only a single 
average proton position for the whole methyl group, thus significantly lowering the positional deviation but disabling a direct quan-
tification of uncertainty for each individual proton site.  
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2.5 A	Bayesian	approach	to	NMRX	
This chapter has been adapted with permission from: Engel E.A.; Anelli, A.; Hofstetter, A.; Paruzzo, F.; Emsley, L.; Ceriotti, M., “A 
Bayesian approach to NMR crystal structure determination”, submitted 2019, (pre-print) 

2.5.1 Introduction	
In Chapter 1 we discussed how the scope of chemical shift driven NMRX has been greatly extended by the development of accurate 
computational methods to calculate chemical shifts.48, 60-63, 75-84 However, th error contained within DFT (and ML) chemical shifts 
leads to uncertainties in the predicted NMR shifts (see Chapter 1). 18, 36, 70, 83, 105-112 In Chapter 2.4 we investigated how the prediction 
uncertainties in 1H and 13C chemical shifts translate to variances of individual atomic positions in the determined structures. In this 
chapter we investigate how the chemical shift prediction uncertainty within a set of candidate structures, generated by a structure 
search (see Chapter 1),12-13, 22, 25-26, 35, 51, 54, 56-58, 71, 85 can be translated into a quantitative probability that one of the candidate struc-
tures corresponds to the experimental structure. 

In the CSP-NMRX approach presented in Chapters 2.2 to 2.4, structures were considered indistinguishable from experiment if the 
RMSE of their shifts falls within the currently expected chemical shift accuracy.18, 83, 112 However, this approach fails when multiple 
candidates exhibit similar RMSEs within the “confidence interval”. In this chapter we propose a Bayesian framework to determine 
the confidence, on a continuous scale from 0 to 100%, in the identification of the experimental crystal structure from a set of candi-
date structures. As a demonstration of the capabilities of the method, we combine experimental NMR data with GIPAW-DFT and ML 
predictions of the shifts of a set of CSP candidates to determine the confidence in the structure determination of five different mo-
lecular crystals. We find that the structures of flufenamic acid, cocaine, and AZD8329 can be identified with very high confidence 
(between 91% and 100%). In contrast, we show that the determination of the structure of flutamide is substantially less certain (82% 
confidence) and confirm the low confidence (13%) in the capability to determine the structure of theophylline.58 We further introduce 
a method to visualize the Bayesian probabilities of the candidate structures in combination with a low-dimensional representation 
of their similarity, computed according to their chemical shifts or their geometry. We find that for the compounds considered here 
the errors in the calculated 13C shifts are substantially larger than literature estimates of the uncertainty in 13C shifts, and that with 
self-consistently determined uncertainties the inclusion of 13C shifts (in addition to 1H shifts) leads to more reliable structure deter-
minations. 

2.5.2 Theory	
In our probabilistic approach to chemical shift driven NMRX each candidate structure constitutes a “model”, M, for which we deter-
mine the posterior probability, 𝑝(𝑀|𝒚∗), of corresponding to the experimental structure, given experimentally determined shifts, 𝒚∗. 
The experimental shifts may originate from a single or multiple chemical species and may or may not have been partially or fully 
assigned to particular nuclei within the compound of interest. For each model the prior probability of matching the experimental 
structure is denoted by 𝑝(𝑀) and can in principle incorporate information regarding the thermodynamic stability of different candi-
dates. Noting that stability estimates are often not accurate on the scale of differences between models, here we choose to set aside 
such considerations and assume uniform priors for all 𝑛*models, 𝑝(𝑀) = 1 = 𝑛*. 

We denote the probability of observing shifts 𝒚 for a given model 𝑀 as 𝑝(𝒚|𝑀) and the probability of observing a shift 𝒚 before we 
run the experiment as 𝑝(𝒚) = ∑ 𝑝(𝒚|𝑀)𝑝(𝑀)* . Bayes theorem dictates that 

𝑝(𝑀|𝒚∗) =
𝑝(𝒚∗|𝑀)𝑝(𝑀)

𝑝(𝒚∗) =
𝑝(𝒚∗|𝑀)𝑝(𝑀)

∑ 𝑝(𝒚∗|𝑀X)𝑝(𝑀X)*þ
. 

(2-34) 

Clearly, in order to evaluate the posterior 𝑝(𝑀|𝒚∗), the conditional probability distribution 𝑝(𝒚|𝑀) must be defined. Given GIPAW 
or ML estimates of the shifts 𝒚* for each model 𝑀, the simplest model for the conditional distribution of the shift associated with a 
particular nucleus j takes the form of a normal distribution. 

𝑝c(𝑦|𝑀) =
1

Â2𝜋𝜎c;
expò−

1
2õ
𝑦 − 𝑦c*

𝜎c
ö
;

ó 
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(2-35) 

The width 𝜎c represents an estimate of the typical error in the calculated shift with respect to experiment. We will discuss different 
approaches to determining 𝜎c later, and will start by discussing how to translate Equation 2-35 into a posterior 𝑝(𝑀|𝒚∗), which 
quanties the confidence in designating the model 𝑀 as the experimental structure. 

With full assignments of shifts 

In order to evaluate 𝑝(𝑀|𝒚∗), one needs to combine information from all experimental shifts 𝒚∗ = ÿ𝑦c∗!, determining the conditional 
probability 𝑝(𝒚∗|𝑀) based on the probabilities for individual shifts in Equation 2-35. In the simplest case a full assignment of the 
experimental shifts to the nuclei in the compound has been determined, for example through methods such as those described in 
Baias et al.56 Assuming independent errors on shifts from distinct nuclei, 𝑝(𝒚∗|𝑀)	becomes, 

𝑝(𝒚∗|𝑀) =÷𝑝c4𝒚c∗|𝑀8
c

. 

(2-36) 

Without assignments of shifts 

Although the default scenario will involve full assignments of experimental shifts to particular nuclei, in rare cases definitive assign-
ments may not be available. One must then consider the different ways of assigning the experimental shifts. If the permutation vector 
that describes one such assignment is denoted as a, the conditional probability may be written as a sum over assignments, 

𝑝(𝒚∗|𝑀) =�𝑝(𝒚∗|𝑀, 𝒂)𝑝(𝒂|𝑀)
𝒂

, 

(2-37) 

where one can define the conditional probability for a given assignment as, 

𝑝(𝒚|𝑀, 𝒂) =÷𝑝J"4𝑦c|𝑀8.
c

 

(2-38) 

If there is no heuristic way to determine the likelihood of a given assignment, 𝑝(𝒂|𝑀) has to be set to a constant. In this case, if one 
defines the matrix of conditional probabilities 𝑃bc = 𝑝b4𝑦c±𝑀8, 𝑝(𝒚∗|𝑀) is proportional to the permanent of the matrix, 𝑝(𝒚∗|𝑀) =
perm𝑷 𝑛!⁄ . 

Partial assignments of shifts 

Cases in which none of the experimental shifts can be assigned are rare. In most cases the sum in Equation 2-37 only needs to be 
evaluated over a subset of all the possible permutations of indices a. In practice this means that P can be made block-diagonal, each 
block Pk corresponding to a group of nuclei that are distinct from the rest, but for which assignments among them are not available. 
The overall conditional probability can be written as a product between the permanents of the blocks,  

𝑝(𝒚∗|𝑀) =÷perm𝑷ª 𝑛ª!⁄
ª

 

(2-39) 

Where 𝑛ª indicates the size of the k-th block. While evaluating the permanent has a cost that grows combinatorically with the size 
of 𝒚∗, algorithms with a low pre-factor make its evaluation an ordable up to a few tens of nuclei (per block k). In extraordinary cases 
where its evaluation is not possible, a pragmatic but generally inaccurate alternative is to assume Equations 2-37 and 2-39 to be 
dominated by the contribution from the assignment producing the best-match between 𝒚* and 𝒚∗.  
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Examples and a discussion of chemical shift driven NMRX with partial assignments or without assignments of shifts are given in the 
original publication: Engel E.A.; Anelli, A.; Hofstetter, A.; Paruzzo, F.; Emsley, L.; Ceriotti, M., “A Bayesian approach to NMR crystal 
structure determination”, submitted 2019, (pre-print). 

Estimate of the reference errors 

Clearly, the evaluation of 𝑝(𝑀|𝒚∗) requires an estimate of the uncertainties 𝜎c in calculated shifts. Assuming that any errors in the 
experimental determination of the shifts can be neglected, there are still multiple sources of errors to consider. First, experimental 
shifts average over thermal and quantum fluctuations, while GIPAW shifts are usually calculated for the nearest local energetic min-
imum. Second, approximations in the description of the electronic structure lead to errors in the predicted shifts. Third, errors are 
incurred by the conversion of the chemical shieldings obtained from GIPAW calculations (and ML models trained thereon) into chem-
ical shifts. Finally, when using a ML model, an environment-dependent statistical error relative to the GIPAW reference is added on 
top of the underlying theory/experiment discrepancy. 

The statistical error 𝜎c*', can be characterised efficiently and accurately (see Appendix III), but estimating the error of the underlying 
GIPAW shifts with respect to experiment 𝜎c¬(), usually requires extensive benchmarks. Existing datasets18, 83, 112 suggest that the 
typical errors are of the order of 𝜎*¬() = 0.33± 0.16	𝑝𝑝𝑚, and 𝜎«¬() = 1.9 ± 0.4	𝑝𝑝𝑚. As an alternative to these estimates, one 
can assess 𝜎c for a specific molecule by considering	𝑝c(𝑦|𝑀) to depend parametrically on the uncertainty 𝜎c and maximizing	𝑝(𝒚∗) 
with respect to ÿ𝜎c!. Notably, this kind of maximum-likelihood approach usually requires large amounts of data. Consequently, one 
should either use a single, global value of for all environments in the crystal, or use the benchmark values to define a prior distribution 
for 𝜎c. In the following we discuss results obtained using a single, global value of per chemical species. The uncertainty in the predicted 
shifts arising from the conversion of the chemical shieldings is generally insignificant and will henceforth be neglected. 

Accounting for missing structures 

Chemical shift driven NMRX relies strongly on CSP to generate candidate structures. Although CSP is constantly improving in thor-
oughness and energetic accuracy,113 one cannot entirely rule out the possibility that the experimental structure is not among the 
proposed candidates. We account for this scenario by adding a virtual structure 𝑀+  to the ensemble of CSP candidates, which repre-
sents the “neglected” structures. While its properties are largely an arbitrary choice, it makes sense to use a Gaussian with a mean 
and width corresponding to the mean and standard deviation of the shifts of the CSP candidates.  If 𝑀+  has a substantial probability 
of matching experiment, one should question the comprehensiveness of the CSP candidate pool. 

Visualizing the NMR structural landscape 

Particularly in cases in which the Bayesian analysis does not allow the conclusive identification of the experimental structure, it is 
useful to gather further insights into the reasons why NMRX has reached the limits of its resolving power, and into whether and how 
it might be possible to reach a clearer assignment. A principal component analysis (PCA) of the shifts of all models provides a means 
of generating a low-dimensional representation that reflects the similarity of the different models in terms of their NMR shifts, in 
which one can then embed experiment. Unfortunately, prior assignments of shifts are required and one is limited to considering 
shifts from one chemical species. 

We thus instead introduce a universally applicable approach, based on the definition of a kernel 𝑘(𝑀;𝑀X), which can be found in 
Appendix III and which reflects the probability that two models could be confused with each other when seen through the lens of 
their chemical shifts and the available degree of shift-structure assignment. A kernel PCA (KPCA) extracts a principal component 
projection of the models (and experiment). This approach owes its universal applicability to the availability of meaningful estimates 
of 𝑝(𝒚|𝑀) in the presence of shifts from multiple chemical species and irrespective of whether shift assignments are available or not. 
Note that, if assignments are indeed available, i.e. when 𝑝(𝒚|𝑀) is defined by Equations 2-35 and 2-36, and a global uncertainty is 
used, the distances in the KPCA representation again become a direct measure of the shift RMSDs – with the caveat that distortions 
can be introduced by the low-dimensional projection. 

Embedding the experimentally measured shifts in a low-dimensional representation of the shift similarity provides a scale to the (dis-
)similarity of CSP candidates. In cases in which the experimental structure cannot uniquely be identified, it further provides a means 
of assessing whether two or more models are viable representatives of the experimental structure because they are indistinguishable 
in terms of their shifts, or because their predicted shifts are too inaccurate to resolve which one agrees with experiment despite 
distinct shift signatures. 
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We further perform a PCA on the structural features of all models as described within SOAP framework.176, 184 Loosely speaking, 
atomic configurations are represented in terms of an atom-density, which distinguishes the different involved chemical species.230 It 
is constructed as the sum of Gaussian distributions centered on the atomic positions and symmetrized with respect to global trans-
lations and rigid rotations of the atomic configuration. The SOAP features correspond to coefficients obtained by expanding this 
atom-density description of atomic configurations in spherical harmonics and a set of orthogonal radial basis functions. A more de-
tailed description can be found in Chapter 2.4.2 and Appendix III. This structural PCA allows us to generate a low-dimensional rep-
resentation of the structural similarity of the different models. This provides complementary information to the KPCA representation 
of shift similarity, and permits distinguishing whether NMRX has reached the limits of its resolving power (a) because structurally 
dissimilar models produce similar shifts, (b) because the distinction between structurally very similar models is impossible (Chapter 
2.3), or (c) because the distinction between structurally dissimilar models with dissimilar shifts cannot be made due to the uncertain-
ties in the predicted (and measured) shifts. It is worth noting that constructing the measure of structural similarity on a SOAP repre-
sentation of the models is but one particular choice. In general, any metric of structural (dis-)similarity for example the single mole-
cule RMSE231 – can be used as a basis for a KPCA projection of structural similarity. 

2.5.3 Computational	Methods	
In Chapter 2.5.4 we discuss chemical shifts predicted using a ML model, which extends the GPR model built around the SOAP frame-
work176, 184 presented in Chapter 2.3 by (i) training set sparsification via a projected process (PP) strategy,183, 199-200 (ii) the efficient 
estimation of the uncertainty in predictions using a resampling approach,201 and (iii) the radial scaling approach introduced in Ref.230 
and Chapter 2.6, which drastically improves the computational performance compared to the original multi-scale approach. Sparsi-
fication of the SOAP descriptions of atomic environments further speeds up predictions. The construction of the ML model is de-
scribed in detail in the Appendix III. The new model extends the original model presented in Chapter 2.3 by incorporating sulfur-
containing compounds thereby increasing the training set from 2000 to 2500 structures, and (slightly) outperforming it (see Chapter 
2.6). Crucially, the expected errors of 0.48 ppm for out-of-sample predictions of 1H shifts are comparable to the inherent error of the 
underlying GIPAW-DFT predictions with respect to experiment of around 0.33 ± 0.16	𝑝𝑝𝑚.18, 83, 112 

It is worth noting that Liu et al.103 have recently demonstrated that, despite replacing the SOAP description of atomic densities with 
a non-symmetry-adapted real-space discretized equivalent, a sufficiently complex neural network architecture can tease out im-
provements of up to around 20% in prediction accuracy using the original training data. We nonetheless here choose a SOAP-GPR 
framework noting that the statistical ML uncertainties are uncorrelated with the inherent errors of the reference GIPAW data and 
must therefore be added to the GIPAW error(s) in quadrature. In consequence, reductions in ML errors at this point reap insignificant 
improvements to the resolving power of ML-based NMR crystallography without accompanying reductions in the underlying GIPAW 
errors with respect to experiment. The SOAP-GPR framework is robust, easily trained, has recently been generalized to the prediction 
of tensorial properties such as (anisotropic) chemical shielding tensors.185 Furthermore, it provides accurate estimates of prediction 
uncertainty.201 These are particularly important in this context, not only to estimate the reliability of assignments, but also because 
DFT calculations can at times yield unreliable results, and the ML model can be improved by automatically discarding problematic 
training data (see Appendix III). 

2.5.4 Results	and	discussion	
In order to demonstrate the Bayesian approach to NMRX, we use it to quantify the confidence in the structure determination of five 
molecular crystals (see Figure 2-53). We also demonstrate the use of two-dimensional visualizations of the similarity between candi-
date structures, both in terms of their structural features and in terms of their predicted chemical shifts, following the recipe of 
Chapter 2.5.2. 

Benchmark systems 

Cocaine, 4-[4-(2-adamantylcarbamoyl)-5-tert-butyl-pyrazol-1-Yl] benzoic acid (referred to as AZD8329), theophylline, flufenamic acid, 
and flutamide (see Figure 2-53) have all previously been studied using NMRX.56, 58, 148 In each case the experimental NMR shifts have 
been fully assigned to nuclei, the corresponding crystal structures are known, and DFT shifts for a pool of CSP candidates are available. 
Furthermore, for all five compounds the CSP candidates include a representative of the experimental structure, which is referred to 
as the correct candidate in the following. The full assignments of the experimentally measured shifts to particular nuclei in the com-
pounds used in the following are detailed in Appendix III. 
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Figure 2-54 shows examples of the analysis that is traditionally performed in chemical shift driven NMRX. The RMSE between the 
experimental shifts and those predicted for multiple CSP candidates is computed using fully assigned 1H chemical shifts, and com-
pared to the typical uncertainty of DFT(or ML) predictions. The structure with the lowest RMSE is deemed to be the best candidate 
and identified as the experimental structure, provided the RMSE is consistent with the inherent uncertainty in the predicted shifts. 
In the case of cocaine and AZD8329, only one structure is consistent with experiment, making the structure determination conclusive. 
In the case of flufenamic acid, although the correct candidate has the lowest RMSE, several others are consistent with experiment 
within the inherent uncertainty in their predicted shifts. Based on this analysis, it is consequently impossible to assess how trustwor-
thy identifying the best candidate as the experimental structure would be. In practice energetic considerations strongly favor the 
correct candidate and facilitate determining the correct crystal structure.  

 

Figure 2-53. Chemical structures of flutamide (a), flufenamic acid (b), AZD8329 (c), theophylline (d) and cocaine (e). 

Quantitative structure determination and visualization  

Cases such as flufenamic acid, in which chemical shift driven NMRX is complicated by the presence of two or more candidates in close 
agreement with experimental NMR shift data, are the primary reason for developing the Bayesian framework. From Figure 2-55 we 
see that on the basis of the same 1H shifts from GIPAW calculations, we estimate that the correct structure is identified with high 
confidence in 4 out of the 5 benchmark cases (88% for flutamide, and 100% for AZD8329 and cocaine), and with some uncertainty in 
the case of flufenamic acid (60%). In the case of theophylline, the analysis confirms that the experimental structure cannot be distin-
guished (see Baias et al.56).  

In order to elucidate why the level of confidence in the structural determination varies among the benchmark problems, we generate 
a two dimensional visualization in which the CSP candidates for each compound are arranged such that pairwise distances reflect 
their dissimilarity, and which simultaneously shows the probability with which each candidate matches experiment. Figure 2-56 
shows the representations of the similarity of the CSP candidates for each of the five compounds. For each compound we show the 
similarity in terms of 1H chemical shifts (top panels) and in terms of structure (lower panels). The similarity in terms of chemical shifts 
reflects the resolving power of NMR. The similarity in terms of their structural features reflects how distinct the geometries of differ-
ent candidates are. By embedding experiment, i.e. the experimentally measured shifts, in the representations of shift similarity one 
can also assess how closely (or not) the shifts of different candidates agree with experiment.  

First, by looking at the similarity as seen through the chemical shifts one can tell whether failure to identify conclusively the correct 
structure is due to lack of resolving power of NMR, or to the inaccuracy of the predicted shifts. For example, the case of theophylline 
(Figure 2-56e) shows that structures 8 and 16, which are identified as the most likely candidates, exhibit very distinct 1H chemical 
shifts from structure 13, which is the correct candidate. Hence, even though there are only four 1H shifts, this analysis suggests that 
more accurate predictions of the 1H shifts would probably suffice to correctly determine the structure. In contrast, in the case of 
flufenamic acid (Figure 2-56c) the three structures with non-zero probability are all similarly close to experiment as they are to each 
other. (Actually, Figure 2-56c seems to indicate that structure 41 is closer to experiment than structure 14, whose chemical shifts 
agree most closely with the experimentally measured ones and which happens to be the correct candidate. This distortion is an 
artifact of the projection of the NMR (and geometric) similarities, which correspond to a distance in a high-dimensional space, onto 
a two-dimensional representation.) In this case, it seems that shifts from additional chemical species, or a dramatic increase in the 
accuracy of shift predictions, would be needed to resolve the ambiguity.  
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Figure 2-54. RMSEs of the GIPAW (blue) and ML (red) 1H chemical shifts of the most stable cocaine (a), AZD8329 (b) and flufenamic acid (c) CSP 
candidates with respect to experiment. The gray area indicates the one sigma confidence interval for the GIPAW-DFT 1H chemical shifts as deter-
mined by the typical error of GIPAW-DFT predictions with respect to the experimentally measured shifts for a set of benchmark compounds of 
known atomic structure. 

Whenever two or more structures are close together in the shift-based representation, it would be hard to distinguish them by means 
of an NMR experiment. For instance, this is the case for structures 13, 17 and 22 of theophylline, as can be seen in Figure 2-56e. 
Meanwhile, the geometry-based representation, which is also shown in Figure 2-56e clearly shows that structure 13 is actually dis-
tinct. This geometric difference is not reflected in the value of the shifts, which is at least in part due to the small number of hydrogen 
atoms in a theophylline molecule. For comparison, the similarity of the structures 3, 8, 16, 23 in terms of chemical shifts clearly 
reflects an underlying geometric similarity. 
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Figure 2-55. Overview of the results of NMR crystal structure determinations for the five benchmark compounds using 1H and 13C shifts calculated 
with ML or GIPAW, respectively. Each cell is colored and labeled according to the Bayesian probability of matching experiment assigned to the 
representative of the experimental structure among the CSP candidates -- this probability provides the key indicator of the reliability of the structure 
determination. The left and middle panels show the Bayesian probabilities of matching experiment calculated on the basis of the default global 
uncertainties of 𝜎*¬() = 0.33 ± 0.16	𝑝𝑝𝑚, and 𝜎«¬() = 1.9 ± 0.4	𝑝𝑝𝑚. The right panel shows the Bayesian probabilities based on uncertainties 
estimated for each individual compound under consideration by maximizing 𝑝(𝒚∗) with respect to ÿ𝜎c! as described in Chapter 2.5.2. The estimated 
uncertainties are given as, 𝜎*¬() = 0.28 ± 0.09	𝑝𝑝𝑚, and 𝜎«¬() = 2.7 ± 0.9	𝑝𝑝𝑚. 

NMRX using ML predictions of chemical shifts 

Above we have made use of extensive preexisting GIPAW NMR calculations. In practice GIPAW shift predictions come at substantial 
cost, if the size and complexity of the system of interest permits them in the first place. Fortunately, ML shift predictions prove 
sufficiently reliable to determine structures. This is demonstrated by reconstructing the Bayesian models on ML shifts for all systems 
except flufenamic acid and flutamide. The latter two contain fluorine, leaving them outside the scope of the current ML model. The 
results are shown in Figure 2-55 and demonstrate that ML-based NMRX almost matches the resolving power achieved with GIPAW 
predictions of NMR shifts. 

13C NMRX  

Irrespective of whether NMR chemical shifts are predicted using GIPAW-DFT calculations or ML methods, 1H shifts do not always 
suffice to pin down the experimental structure. The cases of flufenamic acid and theophylline highlight the limits of 1H NMRX for 
compounds with few distinct hydrogen atoms, with a low, 60 % confidence in the structure determination in the former case, and 
the determination of the experimental structure being simply impossible in the latter. This makes it tempting to turn to 13C chemical 
shift data in search for more information to exploit in distinguishing the experimental structure. However, in agreement with current 
wisdom,56 Figure 2-55 suggests that the inclusion of 13C shifts reduces the confidence in the identification of the experimental struc-
ture. 

The fact that the resolving power of NMRX appears to deteriorate upon inclusion of 13C shifts warrants further discussion. Note that, 
in a Bayesian framework, adding more information should never degrade the prediction accuracy, unless the accuracy of such infor-
mation is overestimated. The degradation of prediction accuracy therefore indicates that the value 𝜎«¬() = 1.9± 0.4	𝑝𝑝𝑚 based on 
benchmark data18, 83, 112 substantially underestimates the actual error for the compounds considered here.  

Following the strategy of maximizing 𝑝(𝒚∗) with respect to ÿ𝜎c! proposed in Chapter 2.5.2, the typical error in 13C shifts can be 
estimated to a substantially larger 𝜎«¬() = 2.7± 0.9	𝑝𝑝𝑚. This is substantiated by the RMSD of the GIPAW shifts of the correct 
candidates with respect to the respective experimentally measured shifts of 2.6 ± 1.4	𝑝𝑝𝑚. For comparison, the corresponding 
RMSD of the 1H GIPAW shifts is 0.28± 0.09	𝑝𝑝𝑚 and thus entirely consistent with the global estimate of 𝜎*¬() = 0.33± 0.26	𝑝𝑝𝑚.  

Figure 2-55 demonstrates that, provided the compound-dependent, data-driven estimate of the errors in GIPAW 13C chemical shifts 
derived here is used, the inclusion of 13C shifts in the analysis indeed tends to improve rather than impair the resolving power of 
NMRX. 
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For instance, for flufenamic acid the structure determination is not limited by the accuracy of the predicted 1H (and indeed 13C) shifts, 
but rather by the accuracy of the estimates of the typical errors in those shift. Accordingly, its structure can be determined with 
almost complete confidence (96%) provided accurate estimates of the typical errors in 1H (and 13C) shifts (see Figure 2-55). 

 

Figure 2-56. Evaluation of the top 10 AZD8329 (a), cocaine (b), flufenamic acid (c), flutamide (d) and theophylline (e) CSP candidates. The correct 
candidates are shown as filled circles and the others as empty circles. For each candidate the probability of matching experiment 𝑝(𝑀|𝒚∗) is indi-
cated by the area of the blue disk. The candidates are labelled according to their rank in terms of configurational energy with zero indicating the 
energetically most favorable candidate. The respective upper panels show the similarity of the candidates to each other and to the (out-of-sample 
embedded) experimental data (shown as a red cross) in terms of their fully assigned 1H GIPAW-DFT shifts. 𝑝(𝑀)/  denotes the probability that the 
virtual candidate, which represents structures potentially missing from the CSP candidate pool, matches experiment. The respective lower panels 
show the structural similarity of the candidates in terms of their SOAP features. While the relative distances of structures are a measure of their 
(dis-)similarity, the absolute value of the principal components (pc) from the (K)PCA constructions described in Chapter 2.5.2 has no intuitive phys-
ical meaning and is therefore not shown. 

(a) (b) (c)

(d) (e)
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2.5.5 Conclusion	
We have introduced an analysis framework for chemical shift driven NMRX, which is suited to a variety of experimental (and compu-
tational) setups. By quantifying the confidence in identifications of experimental structures our analysis framework demonstrates 
that definitive identifications are sometimes possible even if the corresponding shift RMSE does not fall within the traditional confi-
dence interval. This relies on exploiting all available information, much of which the traditional RMSE measure of agreement with 
experiment is blind to.  

We also notably use this approach to conclude that literature benchmarks for the accuracy in the prediction of 13C chemical shifts 
underestimate the uncertainties. We find that 13C errors for GIPAW-DFT predicted shifts for the compounds used here 2.7± 0.9	𝑝𝑝𝑚 
as opposed to previous, estimates of 1.9 ± 0.3	𝑝𝑝𝑚. If we use our corrected error estimates, incorporating 13C shifts into the analysis 
improves the reliability of structure determination. In one of the cases we considered, the use of self-consistently computed uncer-
tainties lifts the ambiguity on the structure determination. 

We also introduce a visual representation of the crystal structure landscape based on a low-dimensional projection that reflects the 
similarity between the structure of the candidates, or directly on their NMR shifts. These visualizations help determine whether lack 
of structural diversity, insufficient resolving power of the experiment, or uncertainties in the computationally-determined shifts are 
involved in inconclusive structural determinations.  

In combination, the Bayesian framework and the low-dimensional representations of candidate similarity provide an integrated way 
of  

(i) identifying among a pool of candidate structures which most closely approximates the experimental one,  
(ii) performing sanity checks of the comprehensiveness of the pool, the associated predicted NMR shifts, and the initial iden-

tification,  
(iii) quantifying the confidence in the identification assuming the sanity checks have provided satisfactory results,  
(iv) analyzing what factors limit the confidence or, when definitive identification of the experimental structure is not possible, 

the resolving power of the crystal structure determination. 

2.5.6 Appendix	III	

Applications 

Crystal structure prediction. Detailed descriptions of the generation and refinement of the candidate crystal structures for all com-
pounds discussed in this work can be found in the original publications. 56, 58, 148 In summary, the theophylline, flutamide, flufenamic 
acid, cocaine, and AZD8329 candidates were generated starting from their chemical formulae using CrystalPredictor232 to perform a 
quasi-random sampling of unit cells and molecular predictions within the most commonly observed Söhnke space groups, all with 
one molecule (geometry optimized using DFT with the hybrid B3LYP functional 233-234 in the asymmetric unit cell. For cocaine this was 
prefaced by an automated conformer search using the low-mode search method235 leading to 16 starting conformations, while for 
the other compounds a search of their torsional energy profiles203 provided eight (flutamide) and six (flufenamic acid and AZD8329) 
starting conformations, respectively. 

Subsequently, the theophylline candidates were geometry optimized at fixed molecular geometry using the DMACRYS code236 with 
the FIT potential of Coombes et al.237 and electrostatics based on atomic multipoles from a distributed multipole analysis238 of the 
electron density at the B3LYP/6-31G(d,p) DFT level of theory. For flufenamic acid and flutamide the candidates were geometry op-
timized using a molecular mechanics description of inter- and intra-molecular interactions using an atom-atom model with exp-6 + 
atomic multipoles electrostatics and B3LYP/6-31G(d,p) DFT, respectively. The influence of polarization effects was approximated by 
performing the molecular calculations in a continuum dielectric (𝜀 = 3). For cocaine the lowest energy structures were geometry 
optimized using CrystalOptimizer239 using the same description of the intra- and inter-molecular interactions as for flufenamic acid 
and flutamide. 45 theophylline, 50 flufenamic acid, 21 flutamide, and 30 cocaine candidates within 10 kJ/mol of the respective lowest-
energy structure were retained and are considered in this work. They can be found (in CIF format) in the supplementary information 
of Ref.56  

  



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

94 

The AZD8329 structures were geometry optimized using the molecular mechanics description outlined in Ref.,203 using the Open 
Force Field module of the Cerius2 v4.6 package, and refined using DMACRYS236 with DFT calculations in the Gaussian03 software240 
for the intra-molecular contribution and an atom-atom model of inter-molecular interactions with atomic multipole electrostatics. 
11 AZD8329 candidates within 30 kJ/mol of the most stable predicted crystal structure for a given conformation were further geom-
etry optimized using CASTEP191 at the PBE-DFT level of theory and can be found in the supplementary information of Ref.58 

DFT chemical shift calculations. The GIPAW DFT calculations for the different compounds were performed as follows: 

• Flutamide and theophylline : the NMR calculations were performed using CASTEP v5.0 with the PBE exchange-correlation 
functional205 without dispersion correction, an equivalent plane-wave energy cut-off of 550 eV and a Monkhorst-Pack k-
point grid207 with a maximum spacing of 2𝜋 × 0.05	Å�:. The calculations used on-the-fly generated GIPAW pseudopoten-
tials.62 

• Flufenamic acid : the NMR calculations were performed using CASTEP v5.5 with the PBE exchange-correlation functional205 
with a Tkatchenko-Scheffler semi-empirical dispersion correction,241 an equivalent plane-wave energy cut-off of 700 eV and 
a Monkhorst-Pack k-point grid with a maximum spacing of 2𝜋 × 0.05	Å�:. The calculations used on-the-fly generated 
GIPAW pseudopotentials. 

• AZD8320 and cocaine : the NMR calculations were performed using Quantum Espresso v6.3. with the PBE exchange-cor-
relation functional205 with a Grimme D2 semi-empirical dispersion correction206 and an equivalent plane-wave energy cut-
off of 100 and 400 Ry for the wavefunction and density, respectively. The calculations used pseudopotentials from the PS 
library database.242 

Experimental chemical shifts. For flufenamic acid, flutamide and cocaine the fully assigned experimental 1H and 13C chemical shifts 
with the corresponding labels are given in Appendix I. For AZD8329 and theophylline the fully assigned experimental shifts were 
taken from Refs.58, 148 and are given in Tables 2-12 and 2-13. The corresponding labels are given in Figure 2-57. 

 

Figure 2-57. Chemical structures of theophylline (a) and AZD8329 (b). The distinct 1H and 13C sites are labeled. 

  

(a) (b)
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Table 2-12. AZD8329 experimental chemical shifts. 

Label 1H, ppm 13C, ppm 

1 15.37 – 

2 – 171.04 

3 – 131.19 

4 8.69 130.48 or 128.05 

5 6.92 128.05 or 130.48 

6 – 147.31 

7 8.47 128.05 or 130.48 

8 9.01 130.48 or 128.05 

9 – 148.71 

10 – 114.10 

11 7.73 138.43 

12 – 33.42 

13 0.73 29.53 

14 0.73 29.53 

15 0.73 29.53 

16 – 172.98 

17 9.64  

18 2.90 60.16 

19 1.54 34.14 

20 0.44 or 1.6 30.80 or 37.41 

21 1.00 27.81 

22 0.80 36.42 or 30.80 

23 1.78 32.45 

24 1.88 30.90 or 36.42 

25 – 27.81 

26 1.88 37.41 or 30.80 

27 1.74 37.41 
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Table 2-13. Theophylline experimental chemical shifts. 

Label 1H, ppm 13C, ppm 

1 – 150.8 

2 – 146.1 

3 7.7 140.8 

4 14.6 – 

5 – 105.8 

6 – 155.0 

7 3.4 29.9 

8 3.4 29.9 

 

Machine-learning with uncertainty estimation 

Above, we discuss chemical shifts predicted using a ML model which extends that of Chapter 2.3 by training set sparsification and 
the efficient estimation of the uncertainty in predictions. It is built on the same framework that combines physically-motivated struc-
tural representations with a GPR framework. Properties y are predicted from inputs X via an interpolating function f(X) assuming 
normally distributed noise 𝜀 ∼ 𝒩(0,𝜎): 

𝑦(𝑋) = 𝑓(𝑋) + 𝜀. 

(2-40) 

Given a training set of N input-property pairs (𝑿,𝒀) = {(𝑋b,𝑌b)} one can model f as a Gaussian process GP(0,K), where K is the covar-
iance function between the inputs. The prediction for an input X can then be written as a linear combination :183  

𝑦(𝑋) =�𝑤b𝑘(𝑋b, 𝑋) = 𝐾7)𝐾))�:𝒚
)

b�:

. 

(2-41) 

where 𝑘(𝑋b,𝑋) = (𝐾7))b and 𝑤b = ∑ (𝐾))�:)bc𝑦cc . While predictions can in principle be converged to any desired level of accuracy by 
including more training data, this rapidly produces kernel matrices 𝐾)) of considerable dimensions, slowing down training and pre-
dictions. We thus follow a projected process (PP) strategy,183, 199-200 in which the full (𝑁 × 𝑁) kernel matrix 𝐾)) is approximated by 
a lower rank (𝑀 ×𝑀)	𝐾** corresponding to an ”active set” composed of the M training data which retain the most relevant infor-
mation. The correlations between all the training points and the active set are encoded in an (𝑀 ×𝑁) kernel matrix 𝐾*), and pre-
dictions for new points X are calculated as, 

𝑦(𝑋) = 𝐾7*(𝐾** + 𝜍�;𝐾*)𝐾*)) )�:𝐾*)𝒚. 

(2-42) 

Here 𝜍 is a regularisation parameter. During training, the size of the matrix to be inverted is thereby reduced to $(𝑀×𝑀), at the 
cost of computing, once, the Gram matrix of the active-passive kernel. Conversely, when predicting, only similarities between the 
new structures and the active set have to be considered. 
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In principle the uncertainty associated with a PP prediction can be calculated directly as, 

𝜎(𝑋); = 𝜍; + 𝐾77 − 𝐾7*𝐾**�: 𝐾7* + 𝐾7*(𝐾** + 𝜍�;𝐾)*) 𝐾)*)�:𝐾7*) . 

(2-43) 

This estimate, however, is considerably more demanding than that of y. We therefore instead employ the scheme for accurate and 
efficient uncertainty estimation proposed in Ref.201 which is based on a committee of models. An ensemble of 𝑁I	models is trained 
on subsamples of the full training set of size 𝑁® < 𝑁. Crucially, the different structural variance covered by the subsamples affects 
the spread of predictions ÿ𝑦(I)(𝑋)! obtained from the different models m. This is corrected for by rescaling, 

𝑦(I)(𝑋)→ 	 𝑦Ù(I)(𝑋) + 𝛼 æ𝑦(I)(𝑋) − 𝑦Ù(I)(𝑋)ê
9 ;::⁄

, 

(2-44) 

where 𝑦Ù(I)(𝑋) ≡ 1 𝑁I⁄ ∑ 𝑦(I)(𝑋)I , using the constants 𝛼 and 𝛾 which maximise the log-likelihood of the rescaled ensemble pre-
dictions for a validation set of choice, 

𝑃4𝒚±{𝑋K}K�R,:,..8 =÷
1

Ô2𝜋𝜎;(𝑋K)
exp

4𝑦K − 𝑦(𝑋K)8
;

2𝜎;(𝑋K)

)<

K�R

, 

(2-45) 

where 𝜎;(𝑋) ≡ 1 𝑁IVar(ÿ𝑦(I)(𝑋)!⁄ ) and 𝑁Ò is the size of the validation set. In practice we apply a linear rescaling (𝛾 = 0), for 
which the log-likelihood is maximised by, 

𝛼; =
1
𝑁Ò
�

4𝑦K − 𝑦Ù(𝑋K)8
;

𝜎;(𝑋K)
.

K

 

(2-46) 

Uncertainties in predictions can then simply be estimated as the standard deviation over the ensemble of models, 

𝜎*'(𝑋) ≈ >∑ æ𝑦(I)(𝑋) − 𝑦Ù(𝑋K)ê
;

I

𝑁I − 1
. 

(2-47) 

It is worth noting that the resultant uncertainties are environment- and model-dependent. Further they are statistical uncertainties 
which are uncorrelated with the inherent errors of the underlying reference (GIPAW-DFT) data relative to experiment. In conse-
quence they must be added to the GIPAW-DFT error(s) in quadrature. 

In practice our GPR model is built around SOPA kernels,176, 184 in which atomic environments are represented as species-dependent 
atomic densities constructed by associating a Gaussian density with each atomic position within a cut-off radius of the central atom. 
Using the radially-scaled variant of the SOAP framework198 drastically improves the computational performance compared to the 
multi-scale approach described in Chapter 2.3, which effectively requires the construction and evaluation of multiple GPR models 
per chemical species. The associated hyperparameters were determined using a cross-validation scheme and are detailed in Table 
2-14. The SOAP-GPR framework has proven successful in the context of regressions for different systems155, 243-244and (scalar as well 
as tensorial) properties.185 Most importantly, SOAP-GPR has previously proven suitable for GIPAW-DFT accurate predictions of NMR 
chemical shifts (see Chapter 2.3). 
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Table 2-14. SOAP hyperparameters and sparsification parameters for all species. 

 H C N O 

cut-off radius 𝑟  [Å] 4.5 4.0 4.5 4.5 

Gaussian width 𝜎 
[Å] 

0.3 0.3 
0.3 0.3 

radial basis set size n 12 12 12 12 

angular basis set 
size l 

9 9 
9 9 

kernel exponent 𝜁 3 3 3 3 

scaling onset 𝑟® [Å] 2.0 2.0 2.0 2.0 

scaling exponent 𝑒® 3 3 3 3 

training set size N 50k 50k 40k 40k 

active set size M 20k 20k 20k 20k 

number of FPS fea-
tures 

8000 8000 8000 8000 

regularization 𝜍 1800 3200 5300 3000 

test set RMSE [ppm] 0.48 4.13 13.70 17.05 

 

A critical element of the ML model are the underlying training and test sets, which are detailed in Chapter 2.6. Shifts are calculated 
for atomic centers, i.e. for local “environments”, rather than structures. Crystal structures often contain redundant environments, 
for example due to crystal symmetries. Hence, the training set was reduced in size by FPS ordering the individual environments and 
retaining only the 100,000 (1H and 13C) and 40,000 (15N and 17O) most structurally diverse and therefore informative ones. At this 
point environments exhibiting GIPAW-DFT shifts far outside the physical ranges of around 5 to -50 ppm for 1H (64 unphysical envi-
ronments), around -100 to -200 ppm for 13C (149 unphysical environments), around -700 to -400 ppm for 15N (12 unphysical environ-
ments), and around -1250 to -350 ppm for 17O (13 unphysical environments) were eliminated. Their presence highlights that GIPAW-
DFT shifts are not always reliable. Initial ML models were therefore trained in a cross-validation scheme to assess (i) the residual error 
with respect to the GIPAW-DFT reference and (ii) the estimated ML uncertainty for all training environments. These were then used 
to identify anomalous environments with residual errors outside the 3𝜎 confidence interval associated with the estimated ML un-
certainty, suggesting a possible failure of the GIPAW-DFT shift calculation. For each anomalous environment the entire associated 
structure was purged from the training set. We found this procedure to improve the accuracy of the model when applied to the 
validation set, which suggests that indeed “outliers” in the train set affect adversely the accuracy of the model. All in all, 373 1H, 347 
13C, 44 15N, and 113 17O environments were eliminated. 

Active sets were then extracted on the basis of the FPS order, so as to incorporate the largest amount of information for a given 
size.186-187, 202, 245 The ”learning curves” with respect to the size of the active set in Figure 2-58 suggests that for all species active sets 
of 𝑀 = 20,000 environments suffice to match the accuracy of the non-sparsified models to within less than 1% of the RMSE of the 
full model. It is worth noting that within the PP framework the underlying training set can be arbitrarily large since 𝐾*)𝐾*))  in 
Equation 2-42 can be calculated in chunks, so that the only limiting factor in constructing and applying the PP model is the size of the 
active set. In practice underlying training sets of 𝑁 = 50,000 for 1H and 13C and 𝑁 = 40,000 for 15N and 17O were found to be suffi-
cient to saturate the accuracy of the respective models. 
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Figure 2-58. Convergence of training set RMSE from a CV scheme with the number of environments in the active set (blue) and the fraction of 
retained SOAP features (black) for 1H (a), 13C (b), 15N (c) and 17O (d). Results from models using the full training set explicitly are shown using square 
symbols. 

To further accelerate the ML predictions, we also sparsified the SOAP fingerprints, using an FPS strategy, 202 performing a separate 
selection for each element. Cross-validation (CV) demonstrates that the first 20,000 training environments for any given chemical 
species suffice to guide the FPS of the SOAP features. The FPS-based choice of SOAP features is guided by structural variance and 
consequently leads to sparsified fingerprints which should be suitable for regressions of general observables. The RMSE of models 
built with an increasing number of SOAP features (see Figure 2-58) shows that sparsifying from an initial 18,301 components to 8000 
leads to a negligible decrease in model accuracy for all species (less than 1% increase in the RMSE). 

The full sets of hyperparameters defining the specific ML models constructed in this work are collected in Table 2-14.The final accu-
racy of this sparse model is (slightly) better than that of the original ShiftML model presented in Chapter 2.3. The expected errors of 
0.48 ppm for out-of-sample predictions of 1H shifts are comparable to the inherent error of the underlying GIPAW-DFT predictions 
with respect to experiment of around 0.33± 0.26	𝑝𝑝𝑚. 18, 83, 112 Further reductions in ML errors would reap insignificant improve-
ments to the resolving power of ML-based NMRX without accompanying reductions in the underlying GIPAW-DFT errors with respect 
to experiment. For 13C the expected ML errors of 4.13 ppm are about twice as large as the typical error in GIPAW-DFT predictions of 
1.9 ± 0.4	𝑝𝑝𝑚. 18, 83, 112 Even though, as demonstrated in Chapter 2.5.4, GIPAW-DFT 13C errors are often much larger than this value, 
an improvement in the accuracy of ShiftML for carbon, oxygen and nitrogen would be desirable, and will be the subject of future 
improvements of ShiftML. 

Finally, Figure 2-59 demonstrates the agreement between the distributions of ML errors with respect to GIPAW-DFT, |𝑦Ù(𝑋b) − 𝑦b|, 
and that predicted in terms of the distribution around the mean of the ensemble of subsampling models, ±∑ 𝑦(I)(𝑋b) − 𝑦Ù(𝑋b)I ±. 
The qualitative agreement between the distributions confirms that the standard deviation over the ensemble of models provides a 
good estimate of the uncertainty in the ML predictions. 

(a) (b)

(c) (d)
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Figure 2-59. Distribution of 1H (a), 13C (b), 15N (c) and 17O (d) chemical shielding predictions. The colored solid lines show contours of the distribution 
of actual errors relative to the reference, 𝑃(ln|𝑦Ù(𝑋b) − 𝑦b| ln𝜎*'(𝑋)), while the colored dashed lines show contours of distribution of the predic-
tions of the subsampling models around their mean,	𝑃4ln±𝑦(I)(𝑋b) − 𝑦Ù(𝑋b)± ln𝜎*'(𝑋)8. The gray scale density plot corresponds to the marginal 
distribution of the predicted uncertainty 𝑃(ln𝜎*'(𝑋)). The solid black line shows 𝑦 = 𝑥 to guide the eye. 

  

(a) (b)

(c) (d)
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NMR-based similarity kernel 

We construct a matrix of pairwise distances between models (one of which may be experiment) 𝑑(𝑀,𝑀X) = − ln𝑝(𝑀,𝑀X), where 
𝑝(𝑀,𝑀X) is the probability of mistaking M for M’ on the basis of shifts measurements. Momentarily setting aside normalization, 
𝑝(𝑀,𝑀X)	can be calculated as, 

𝑝(𝑀,𝑀X) = U𝑑𝒚𝑝(𝑀|𝒚)𝑝(𝒚|𝑀X) =U𝑑𝒚
𝑝(𝒚|𝑀)𝑝(𝒚|𝑀X)
𝑝(𝒚|𝑀) + 𝑝(𝒚|𝑀X). 

(2-48) 

In the limit of infinitesimal uncertainties in the reference shifts, 𝒚𝑴þ, this simplifies to, 

lim
BCþ→D

𝑝(𝑀,𝑀X) ∝ 𝜀𝑝(𝒚𝑴þ|𝑀), 

(2-49) 

which is then symmetrized and normalized, giving  

𝑝(𝑀,𝑀X) =
𝑝4𝒚𝑴þ±𝑀8 + 𝑝(𝒚𝑴|𝑀X)

2Â𝑝(𝒚𝑴±𝑀)𝑝(𝒚𝑴þ|𝑀X)
. 

(2-50) 

In the case, in which the probability is constructed from fully-assigned shifts, the resulting distance function is proportional to the 
squared Euclidean distance between the vectors containing chemical shifts of the various nuclei. A similarity kernel is then con-
structed by centering the associated distance matrix d, 

𝑘(𝑀,𝑀X) = � ℎ(𝑀,𝑀XX)𝑑(𝑀XX,𝑀XXX)ℎ(𝑀XXX,𝑀X)
*þþ,*þþþ

, 

(2-51) 

ℎ(𝑀,𝑀X) = 𝛿*,*þ − 1 𝑁*⁄ , 

and is then used in a KPCA scheme to identify the two principal components on which to represent structural diversity. 



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

102 

  



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

103 

2.6 Structure	determination	of	Ampicillin	
This chapter has been adapted with permission from: Hofstetter, A.; Balodis, M.; Paruzzo, F.M.; Widdifield, C..M.; Stevanato, G.; 
Pinon, A.C.; Bygrave, P.; Day, G.M.; Emsley, L., “Rapid Structure Determination of Molecular Solids Using Chemical Shifts Directed by 
Unambiguous Prior Constraints”. Journal of the American Chemical Society 2019, XXXX, XXX. (pre-print) and Engel E.A.; Anelli, A.; 
Hofstetter, A.; Paruzzo, F.; Emsley, L.; Ceriotti, M., “A Bayesian approach to NMR crystal structure determination”, submitted 2019, 
(pre-print) 

2.6.1 Introduction	
In the current CSP-NMRX approaches, structural information obtained from solid state NMR is usually included only in the final step, 
to select the correct crystal structure from an ensemble of predicted structures. Here, we show with the case of ampicillin that this 
can lead to failure of structure determination, as the correct structure is excluded from the search space during the preceding con-
former selection in the CSP approach. In Chapter 2.2 we proposed a crystal structure determination method, based on the analysis 
of absent cross-peaks in solid-state NMR correlation experiments, that includes experimental constraints already during conformer 
selection. In Chapter 2.2 we also showed that these absences provide unambiguous structural constraints on both the crystal struc-
ture and the gas phase conformations, and therefore can be used for unambiguous selection. The approach was also parameterized 
on the crystal structure determination of flutamide, flufenamic acid, and cocaine. 

Here, we apply the approach presented in Chapter 2.2 to correctly determine the crystal structure of ampicillin, which would have 
failed using current methods because ampicillin adopts a high energy conformer in its crystal structure. Additionally, we adapt the 
machine learning approach (ShiftML) presented in Chapter 2.3, to predict the chemical shifts of molecular solids containing H,C,N,O 
and S atoms with an 1H RMSE compared to experiment of 0.346 ± 0.195 ppm. Thus, making ShiftML applicable to the NMRX crystal 
structure determination of ampicillin. Further, we apply the Bayesian approach to NMRX, described in Chapter 2.5, to determine the 
crystal structure of powdered ampicillin with up to 95% confidence. Finally, we apply the positional uncertainty approximation pre-
sented in Chapter 2.4 to determine that the average positional RMSE on the NMR powder structure is 〈𝑟JÒ〉 = 0.176	Å, which corre-
sponds to an average equivalent displacement parameter 𝑈1Ð = 0.0103	Å;.  

2.6.2 Results	and	Discussion	
In contrast to the three cases discussed in Chapter 2.2 the crystal structure determination of ampicillin would have failed using the 
usual CSP-NMRX protocol. In the first step, an ensemble of 16 locally stable gas-phase conformers is generated (for details, see 
Methods) and the ensemble is then sorted according to the isolated molecule conformational energy. Figure 2-61b and shows that 
all the conformers within 25 kJ mol-1 of the lowest energy structure are stabilized through an intra-molecular hydrogen bond between 
the amino nitrogen and oxygen atoms of the carboxyl group, whose strength is enhanced by the zwitterionic nature of the molecule. 
However, in the known single-crystal XRD structure, these intra-molecular hydrogen bonds between charged ends of the molecule 
are sacrificed to allow the formation of strong, charge-assisted inter-molecular hydrogen bonds, with the molecule adopting a more 
extended, open conformation.  

Figure 2-61b also shows that the single molecule conformation closest to the crystal conformer is one of the highest energy gas phase 
conformers, nearly 100 kJ · mol-1 higher in energy than the lowest energy single molecule conformer. In the normal CSP method a 
cut-off of around 20-25 kJ · mol-1 would typically be applied to the conformational ensemble56, 162 to limit the number of conformers 
that must be considered during the time-consuming crystal packing search. The correct conformer falls well outside this energy range 
and, thus, would be eliminated at this stage, preventing successful generation of the observed crystal structure. To successfully de-
termine the correct crystal structure, the subsequent CSP steps would have had to proceed without applying any energetic cutoff on 
the single-molecule conformers. This would be possible for the 16 conformers of ampicillin and use of large scale computing to 
perform the searches in parallel, but is problematic as a general method, as the conformational space of even moderately flexible 
molecules can often include hundreds of individual conformers.162  
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To solve this problem, we apply experimental constraints extracted from 1H-13C HETCOR spectra at different contact times 0.1, 0.3, 
0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0 and 2.25 ms, detailed in the Methods section. Figure 2-60 shows the assigned HETCOR spectrum of 
ampicillin at 1.5 ms contact time together with the labelled 2D structure. Following the protocol established for cocaine, flutamide 
and flufenamic acid, the SNR is then normalized over all experimental setups and for the amount of active 1H. As we did for the other 
three molecules, we only consider cross-peaks resulting from terminal-protons, see Figure 2-67. Using the Snorm of 0.14, and X of 3.5 
Å, that were parametrized on the reference compounds in Chapter 2.2, the extracted constraints are circled in orange and are shown 
on three example conformers below the spectra. Figure 2-61a shows the sub-ensembles with no violations (0 out of 1 total con-
straint). Figures 2-60 and 2-69 show that only conformers without an intra-molecular hydrogen bond are selected. Also, from Figure 
2-61b it is clear the energetically high conformers are preferentially selected. Note, that in a classical CSP-NMRX approach these 
conformers would have not been selected. For the next step in the CSP procedure we now continue with only 7 out of the original 
16 structures. This reduces the computational cost by approximately 55% 

 

Figure 2-60. The left part shows the 1H-13C HETCOR spectrum of ampicillin with 1.5 ms contact time (further details in Methods). 13C peaks are 
assigned based on the literature178 and 1H peaks are assigned from HETCOR spectra and DFT chemical shift calculations (see Methods). The cross-
peaks from the terminal protons (Figure 2-67) below a Snorm of 0.14 were used as constraints on the conformer ensembles, and are indicated as 
orange ellipsoids. The right part shows the violated constraints extracted from all of the 1H-13C HETCOR cross-peaks for different example conform-
ers within the ensemble. 

For each conformer within this reduced gas-phase ensemble, we generated a crystal structure ensemble using a quasi-random sam-
pling246 of lattice parameters, molecular positions and orientations within the commonly observed space groups. All 154,000 gener-
ated crystal structures were first optimized using an atomic-multipole based force field,236 followed by DFT re-optimization of the 
lowest energy crystal structures, producing a final set of 75 candidate crystal structures. The full procedure is detailed in the Methods. 

1H chemical shieldings were then calculated with GIPAW DFT and a machine learned method (ShiftML)161 for each candidate structure 
and compared to the experimental chemical shifts (details are given in the Methods). Figure 2-62 shows the RMSE between DFT 
calculated and measured 1H chemical shifts together with the calculated relative lattice energies for the candidate set. With current 
accuracy we expect a correct structure to have a 1H RMSE of 0.33 ppm (±0.16 ppm) or lower.18 This is indicated as the grey zone in 
Figure 2-62. Predicted structures with 1H chemical shift errors within this zone are thus considered to be indistinguishable from 
experiment. 
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Figure 2-61. Conformer selection for ampicillin. (a) The panel shows the sketch-map projections of the gas-phase ensemble. Red dots represent the 
structures which are selected for a threshold distance of 3.5 Å and a Snorm cut-off value of 0.14. The green triangle shows the gas-phase conformer 
of the XRD crystal structure. The green arrow points to the gas-phase conformer which results in the correct crystal structure after the CSP proce-
dure. (b) Scatterplot showing the relative difference in the energy (DE) for the single molecule conformers of ampicillin against the shortest intra-
molecular hydrogen-bond distance (N-O distance). The blue dashed line is the typical cut off energy (25 kJ/mol) used for selection in CSP. The green 
dotted line is a guide to the eye to show at which DE the conformers with inter-molecular hydrogen bonds become accessible. The green arrow 
shows the conformer which results in the correct crystal structure. 

 

 

Figure 2-62. Comparison of crystal structure candidates. The structures are sorted according to their relative lattice energy, horizontal axis. The 
vertical axis shows 1H chemical shift RMSE between DFT calculated and experimental chemical shifts. The orange marker shows the 1H chemical 
shift RMSE for the single-crystal XRD structure. The red line shows the mean of the current error between experimental and DFT calculated 1H 
chemical shifts with the limits indicated as grey shaded zone, as described in the main text.  

 
Figure 2-71 shows the RMSE between ShiftML calculated and measured 1H chemical shifts together with the DFT calculated relative 
lattice energies for the candidate set. Using a benchmark set of 11 molecular crystal structures with around 150 experimental 1H 
chemical shifts (as described in the Methods, Table 2-19) we expect a correct structure to have a 1H RMSE of 0.346 ppm (±0.195 
ppm) or lower. Note that the RMSE between experiment and the predicted chemical shifts follows the same trends as for the DFT 
calculated shifts (Figure 2-62).  

Based on the agreement between experimental and calculated 1H chemical shifts, both for ShiftML and DFT, we find that the crystal 
structure lowest in lattice energy, with a large gap in energy to the next predicted structure, also best produces the experimental 
NMR chemical shifts from the powdered microcrystalline sample used in the present study (Figures 2-62 and 2-69). Thus, we identify 
this structure as the correct candidate structure. Using chemical shifts calculated either directly from DFT or using ShiftML, several 
higher energy putative crystal structures produce 1H chemical shifts within the acceptable error bounds. However, none of these 
alternative structures falls within the usual energy range of observed polymorphism (typically up to 7-8 kJ/mol)247 above the best 
candidate structure. Thus, our final structure selection relies on both the chemical shifts and calculated lattice energies. 
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Further, we apply the Bayesian approach to NMRX, described in Chapter 2.5. Figure 2-63a shows the prediction confidence with 
which we identify the correct crystal structure – 75% confidence using DFT calculated 1H chemical shifts and 94% confidence using 
ShiftML calculated chemical shifts. If we include the information obtained from 13C chemical shifts the prediction confidence increases 
to 90% and 95% confidence. Note that, contrary to the RMSE based structure determination, calculated lattice energies do not have 
to be considered too clearly determine the correct crystal structure. 

 

Figure 2-63. Bayesian approach to NMRX for powdered ampicillin. Prediction confidence of the determined ampicillin crystal structure using 1H and 
13C chemical shifts calculated with DFT and ShiftML (a). Evaluation of the top 10 ampicillin CSP candidates. The correct candidates are shown as 
filled circles and the others as empty circles. For each candidate the probability of matching experiment 𝑝(𝑀|𝒚∗) is indicated by the area of the 
blue disk. The candidates are labelled according to their rank in terms of configurational energy with zero indicating the energetically most favorable 
candidate (b-c). Panel (b) shows the similarity of the candidates to each other and to the (out-of-sample embedded) experimental data (shown as 
a red cross) in terms of their fully assigned 1H DFT chemical shifts. 𝑝(𝑀)/  denotes the probability that the virtual candidate, which represents struc-
tures potentially missing from the CSP candidate pool, matches experiment. Panel (c) shows the structural similarity of the candidates in terms of 
their SOAP features. While the relative distances of structures are a measure of their (dis-)similarity, the absolute value of the principal components 
(pc) from the (K)PCA constructions described in Chapter 2.5.2 has no intuitive physical meaning and is therefore not shown. 

Figures 2-63b-c show the representations of the similarity of the CSP candidates for ampicillin. We show the similarity in terms of 
DFT calculated 1H chemical shifts (b) and in terms of structure (c). The similarity in terms of chemical shifts reflects the resolving 
power of NMR. The similarity in terms of their structural features reflects how distinct the geometries of different candidates are. 
Both in term of 1H chemical shifts and in terms of structure the determined crystal structure is clearly distinguishable from the re-
maining CSP candidates. 

The structure determined here agrees very well with the known reference structure determined by single-crystal XRD,248 as illustrated 
in Figure 2-64a. The deviation in atomic positions in the NMR structure from the powder is 0.278 Å, measured as the RMSD of all 
heavy atoms (excluding protons) in a 20-molecule cluster taken from the two structures. The single-molecule heavy atom RMSD is 
0.068 Å, demonstrating an excellent determination of the molecular conformation in the crystal structure. The largest deviation in 
the lattice parameters is a contraction of 6.8% in the b lattice parameter, and a unit cell volume of the CSP-NMRX structure 7.4% 
smaller than the single crystal structure (see Table 2-20). This difference in volume is not unexpected as the NMRX structure is a 
temperature-free structure resulting from lattice energy minimization, while the single crystal structure was determined at room 
temperature. The slightly shorter lattice parameters in the NMRX structure are in line with the expected thermal expansion of an 
organic molecular crystal. 

Finally, we proceed with a positional error analysis that leads to the fully determined structure shown in Figure 2-64b-c. The positional 
error analysis is performed using the DFT calculated 1H chemical shifts following the procedure outlined by in Chapter 2.4 and is 
detailed in the Methods (using DFT-MD here). The average positional RMSE on the NMR powder structure is 〈𝑟JÒ〉 = 0.176	Å, which 
corresponds to an average equivalent displacement parameter 𝑈1Ð = 0.0103	Å;. This compares with 〈𝑟JÒ〉 = 0.149	Å and 𝑈1Ð =
0.0074	Å; for the single-crystal XRD structure.248 Note that the positional RMSE on the single-crystal XRD structure only considers 
the heavy atoms, while the positional RMSE on the NMR powder structure also includes the 1H atoms.  
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Figure 2-64. (a) Comparison between the structure of ampicillin as determined by the constrained powder 1H CSP-NMRX and the single crystal XRD 
determined structure.248 (b-c) ORTEP plot of the ampicillin crystal (b) and single molecule (c) structure drawn at the 90% probability level. The 
anisotropic ellipsoids correspond to a 1H chemical shift RMSE of 0.49 ppm and to an average positional RMSE of 〈rGH〉 = 0.144	Å. (d) 

2.6.3 Conclusion	
Here we demonstrated the capability of the novel constrained CSP-NMRX method and the Bayesian approach to NMRX by success-
fully determining the crystal structure of powdered ampicillin with up to 95% confidence, which would have been very challenging 
for previous methods and either requiring that no energetic limit was applied to the conformational energy, or likely missing the 
correct crystal structure. Here, a rough estimation shows that to run the CSP-NMRX calculations, including CSP search, DFT optimiza-
tion and chemical shift calculations, for all 16 conformers would take approximately 54 days on 200 dedicated CPUs. By constraining 
the structural search space, we were able to more than halve this for the full crystal structure determination, while ensuring that the 
correct conformer is not excluded. We also emphasize that the large reduction in computational resources, demonstrated here, 
paves the way for the CSP-NMRX based determination of larger and more flexible molecules, which would previously have been out 
of the scope of the CSP-NMRX approach. 

Note that the compounds studied here were not subjected to any modification prior to the experiments, and they were investigated 
using powder samples at natural isotopic abundance. The resulting structures have a positional accuracy that is comparable to struc-
tures from, for example, single crystal XRD, while including the positions of the light atoms. 
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2.6.4 Methods	

Samples 

The powdered sample of anhydrous ampicillin ((2S,5R,6R)-6-([(2R)-2-amino-2-phenylacetyl]amino)-3,3-dimethyl-7-oxo-4-thia-1-
azabicyclo[3.2.0]heptane-2-carboxylic acid, purity > 98.0%) was purchased from Sigma-Aldrich The reference crystal structure (CSD 
entry: AMCILL) was previously determined by single-crystal XRD179-181, 248 and is monoclinic, space group P21, with unit cell parameters 
a = 12.40 Å, b = 6.20 Å, c = 12 Å, and 2 molecules in the unit cell. 

Solid-state NMR experimental setup 

Experiments were performed at room temperature on a Bruker 500 wide-bore Avance III and a Bruker 900 US2 wide-bore Avance 
Neo NMR spectrometers operating at Larmor frequencies of 500.43 and 900.13 MHz, equipped with H/X/Y 3.2 mm and H/C/N/D 1.3 
mm probes.  

The 2D 1H-13C dipolar heteronuclear correlation (HETCOR) experiments were performed at 12.5 kHz MAS. In all experiments, we used 
SPINAL-64 for heteronuclear decoupling during t1 and eDUMBO-122 for homonuclear decoupling in the indirect dimension. 16 and 
128 transients with 256 increments were acquired for ampicillin.  

The 1H and 13C chemical shifts were referenced indirectly to tetramethylsilane using the methyl signals of L-alanine at 1.3 ppm (1H) 
and 20.5 ppm (13C),182 while 15N chemical shifts were referenced using glycine at −347.54 ppm. 1H chemical shifts were corrected for 
the scaling factor due to homonuclear decoupling, which was determined using 1H 1D spectra acquired under fast spinning on a 
Bruker 900 spectrometer. Post-processing was done using Topspin 3.5 or 3.6.1.  

The 11.7 T 2D 13C-13C refocused Incredible Natural Abundance Double Quantum Transfer Experiment (INADEQUATE) was performed 
using a 13.0 kHz MAS frequency at a temperature of 295 K. Prior to the indirect evolution period, cross-polarization (CP) from the 1H 
nuclei was carried out (contact time of 2.5 ms). SPINAL-64 heteronuclear decoupling (100 kHz nutation frequency) was used during 
both evolution dimensions. 1760 transients with 128 t1 increments were used. Each τ delay during the indirect dimension evolution 
was set to 3.84 ms, the length of the z-filter was 1.0 ms, and the recycle delay was 1.0 s. 

The 16.4 T 1H-15N CP-HETCOR NMR experiment was carried out at T = 265 K using a 15 kHz MAS rotation frequency, while a 15N magic-
angle-turning (MAT) experiment was performed at T = 266 K and a 1.90 MAS rotation frequency. For the 1H-15N HETCOR experiment, 
SPINAL-64 heteronuclear decoupling was used during the t2 dimension (83 kHz nutation frequency), and eDUMBO-122 was used for 
homonuclear decoupling in the indirect dimension (the scaling factor was set to 0.564). Prior to the indirect evolution period, CP from 
the 1H nuclei was done (contact time = 300 μs). 1440 transients with 64 t1 increments were used. For the 15N MAT experiment, 
SPINAL-64 heteronuclear decoupling was used during both the t1 and t2 dimensions (100 kHz nutation frequency). Prior to the indirect 
evolution period, CP from the 1H nuclei was done (contact time = 5.5 ms), with 1024 transients being acquired and averaged per t1 
increment, and with 125 t1 increments being used.  

 

Assignment of experimental NMR spectra 

The assignment of the 13C spectra of ampicillin has been done by Clayden et al.249 and then revised by Antzutkin et al.178, but as the 
above authors mentioned, the assignment remains ambiguous, and so we revised it. To assign the 13C NMR spectra at natural abun-
dance a 13C-13C INADEQUATE experiment was done. To assign the 1H directly attached to 13C, the 1H-13C HETCOR spectra were used. 
To assign the 1H directly attached to 15N, a 1H-15N HETCOR experiment was done, which also helped for the assignment of 15N reso-
nances. To distinguish the 15N chemical shifts belonging to NH and NH3 resonances, a 15N CP-MAT experiment was done, from which 
it was possible to tell that the NH3 resonance corresponds to the peak with negligible chemical shift anisotropy due to the fast ex-
change of the three attached 1H atoms. The assignment was cross-validated by comparing the experimental chemical shifts to shifts 
calculated with the GIPAW DFT method using the XRD crystal structure, albeit with optimized hydrogen positions. 
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Figure 2-65. 15N spectra of ampicillin used for the 1H and 15N assignments. (a) 1H-15N HETCOR spectra of ampicillin measured at 16.4 T and 15 kHz 
MAS. (b) 15N MAT spectra of ampicillin at 16.4 T. 

 

Figure 2-66. 13C-13C INADEQUATE spectra of ampicillin used for the 13HC assignments, measured at 11.7 T and 13 kHz MAS.  
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Experimental chemical shifts 

Table 2-15. Ampicillin experimental chemical shifts. 

Label 1H, ppm 13C, ppm 15N, ppm 

Me1 0.6 30.1 - 

Me2 1.6 28.9 - 

4 4.0 75.3 - 

10 4.8 57.4 - 

6 5.2 64.8 - 

Ar(meta) 5.4 128.3 - 

5 6.6 56.5 - 

Ar () 7.1 129.0 - 

Ar () 7.2 132.0 - 

Ar () 7.3 129.9 - 

Ar () 7.6 126.9 - 

N - - Around -210 

NH 7.5 - Around -270 

NH3 10 - Around -340 

3 - 64.8  

Ar(ipso) - 135.4  

7 - 169.8  

1 - 173.2  

2 - 175.0  

  

Signal to Noise analysis 

 

Figure 2-67. Illustration of terminal protons, for which cross-peaks contribute to conformational constraints. 
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Table 2-16. Protons contributing to conformational constraints for ampicillin 

Molecule terminal 1H 

Ampicillin Ar 

 NH3 

 Me(1) 

 Me(2) 

 

Gas-phase conformer generation 

For ampicillin, we generated as complete set of gas phase conformers as possible using a low-mode conformational search (LCMS) 
method,235, 250 as implemented in MacroModel.251 Energies were calculated during the conformer search using the OPLS3 force 
field.252 The only prior knowledge used was that bonding within the molecule was fixed in the zwitterionic configuration throughout 
the conformer search; this information is readily available from NMR. Minimum and maximum move distances of 3 and 6 Å were 
applied and 12,000 search steps were performed (2,000 per flexible dihedral angle). Duplicate molecular geometries were identified 
and removed using an all-atom RMS deviation of atomic positions, with a 0.05 Å tolerance. 

All conformers were re-optimized within Gaussian09 using dispersion corrected density functional theory (DFT-D) at the B3LYP/6-
311G** level of theory with the D3BJ dispersion correction. The N-H bond lengths at the amino nitrogen atom were constrained to 
1.035 Å to keep the molecule in its zwitterionic form. Without this constraint, a proton transfers from the amino to the carboxyl 
group during DFT optimization of many of the conformers. However, the resulting non-zwitterionic conformers are not relevant to 
the crystal structure of ampicillin. 

In analyzing the conformers resulting from the search, we found that the configuration around chiral centers could be reversed during 
the LCMS search. Therefore, all possible diastereomers of ampicillin were found to be present in the results. All conformers of a 
different diastereomer to that of interest were removed from the conformational ensemble before selection was performed for CSP. 

Sketch-map analysis 

The cluster generation and analysis were performed as described in Chapter 2.2 The sketch-map parameters are given Table 2-17. 
They were chosen following the procedure described in Ceriotti et al.175 and the tutorial on sketchmap.org. The sketch-map analysis 
was not sensitive to small variations in the chosen parameters, as was already noted in the references.175-177 As starting point for the 
sketch-map analysis we used all dihedral angles, not containing protons, over the full 2p range. This gives 55 dihedral angles for 
ampicillin, within a range of –p to p. 

Table 2-17. Sketch-map parameters for all ampicillin. 

Structure 𝚺 = 𝝈 A B a b 

Ampicillin 6 2 2 1 1 

      

 

The gas-phase CSP conformer ensemble of ampicillin contains 16 locally stable conformations (after DFT-D geometry optimization). 
The conformers are labeled according to increasing force-field energy. The 14th conformer is the most similar to the crystal conformer 
and resulted in the correct crystal structure after the remaining CSP procedure. Figure 2-68 shows the sketch-map analysis of the 
ampicillin gas-phase ensemble.  
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Figure 2-68. Sketch-map representation of the locally stable ampicillin conformers. To show the extent of the sub-clustering the panels are colored 
according to different molecular properties. Top left shows the difference in conformational energy (DEconformation). Top right shows the shortest 
intra-molecular hydrogen-bond distance between either NH3 or NH and the carboxyl group . Bottom left shows the torsion angle θA, defined as the 
torsion angle between C10-C7-N(H)-(N)H. In general, the clustering seems to correspond to conformational changes along the Cipso-C10-C7-N(H)-C5 
chain and to relative changes between the methyl and carboxyl groups. Bottom right, shows the 2D structure of ampicillin with the used labelling 
scheme. 

 

Conformer selection  

The ensemble selection was done with home-written Python codes. For the constraints the peaks below a Snorm cut-off value of 0.14 
were interpreted as proton-carbon distances greater than a threshold distance “X” of 3.5 Å. For each conformation the number of 
fulfilled constraints was counted and the conformations were sorted in decreasing order.  

The sub-ensemble selection for ampicillin, is done based on constraints from multiple HETCOR contact times 0.1, 0.3, 0.5, 0.75, 1.0, 
1.25, 1.5, 1.75 and 2.25 ms. The 1H and 13C cross peaks from the two methyl groups were not distinguished. Also, the 1H cross peaks 
from Ar2-6, H5 and NH, the 1H cross peaks from Ar1, H10 and H6, the 13C cross peaks from C3 and C6 as well as the 13C cross peaks 
from Ar1-5 are too close and not distinguishable. Therefore, if a cross-peak was seen it was attributed to all of the atoms within the 
given group.  
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Figure 2-69. (a) Sketch-map representation of the locally stable ampicillin conformations. To show the extent of the sub-clustering the panel is 
colored according to the shortest intra-molecular hydrogen-bond distance [Å] between either NH3 or NH and the carboxyl group. (b) Sketch-map 
projection of the gas-phase ampicillin ensemble. Red dots represent the structures with the lowest violations that are selected. The greed triangle 
shows the gas-phase conformer of the XRD crystal structure. The green arrow points to the gas-phase conformer, which resulted in the correct 
crystal structure after the CSP procedure. (c) 2D structure of ampicillin with the used labelling scheme. (d) Overlap of the structures within the 
different sketch-map clusters. The “open” conformations correspond conformers without an intra-molecular hydrogen bond and are selected. The 
“closed” conformations mostly contain an intra-molecular hydrogen bond and are not selected.  

 

Ampicillin crystal structure generation 

From the 7 selected conformations (AMCILL_OPLS3_5, AMCILL_OPLS3_7, AMCILL_OPLS3_10, AMCILL_OPLS3_12, 
AMCILL_OPLS3_13, AMCILL_OPLS3_14 and AMCILL_OPLS3_15) a set of crystal structures was generated using a low-discrepancy, 
quasi-random search of crystal packing variables using the GLEE (Global Lattice Energy Explorer) code.246 Each space group considered 
is sampled separately, by generating trial structures with unit cell dimensions, molecular positions and orientations sampled using a 
low discrepancy method. Crystal structures were generated in the 11 most commonly observed Söhnke space groups (1, 4, 5, 18, 19, 
76, 78, 92, 96, 144, 145) until 2000 valid (successfully lattice energy minimized) crystal structures were generated in each space 
group, for each conformer.  

All generated trial crystal structures were geometry-optimized using the crystal structure modelling code DMACRYS236 with the mo-
lecular geometry kept fixed at the gas phase geometry. Intermolecular interactions were evaluated using the empirically parameter-
ized FIT force field237 with electrostatic interactions modelled using atomic multipoles, up to hexadecapolar on each atom, derived 
using a distributed multipole analysis253 of the B3LYP/6-311G** charge density.  

All predicted crystal structures within 20 kJ mol-1 in total (intermolecular + conformational) energy of the lowest energy structure 
were then re-optimized using solid state dispersion-corrected DFT. To ensure that all selected conformers were represented in the 
final crystal structures, a minimum of 5 crystal structures were taken from each conformer (whether or not they fell within the lowest 
20 kJ mol-1). This selection resulted in a total of 75 crystal structures. These were relaxed with DFT using the Castep191 suit, using the 
PBE- functional, the D2 dispersion correction, a 500eV basis set cutoff and k-points sampled on a Monkhorst-Pack grid to provide a 
maximum reciprocal point spacing of 0.04 Å-1. Each crystal structure was optimized in two stages: first, with the unit cell fixed from 
the force field predicted crystal structure, then fully relaxed, including the unit cell and all atomic positions. The resulting structures 
were used as starting points for the chemical shift modelling (see below). 
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Ampicillin chemical shift calculations and crystal structure selection 

Structure modelling. Prior to the chemical shift calculations, all the trial structures and the single-crystal XRD structure of ampicillin248 
were fully relaxed, including the unit cell and all atomic positions, using the same DFT parametrization as for the chemical shift 
calculations described below. 

DFT chemical shielding calculation. For the ampicillin crystal structure selection the magnetic shielding of the 75 trial crystal struc-
tures were calculated with plane-wave DFT using the GIPAW formalism254 and the Quantum ESPRESSO suite.188 For the GIPAW DFT 
calculations the generalized-gradient-approximation (GGA) density functional PBE205 was used. We used the ultrasoft pseudopoten-
tials with GIPAW62-63 reconstruction, C.pbe-n-kjpaw_psl.1.0.0.UPF, N.pbe-n-kjpaw_psl.1.0.0.UPF, H.pbe-kjpaw_psl.1.0.0.UPF, O.pbe-
nl-kjpaw_psl.1.0.0.UPF and S.pbe-nl-kjpaw_psl.1.0.0.UPF from the PS library database.242 A wave-function energy cut-off of 100 Ry, 
a charge density energy cut-off of 400 Ry and a Monkhorst-Pack grid of k-points207 corresponding to a maximum spacing of 0.04 Å-1 
in the reciprocal space was used. The electron density self-consistency convergence threshold was set to 10-12 Ry.  

ShiftML chemical shielding calculation. For the ampicillin crystal structure selection, the magnetic shieldings of the 75 trial crystal 
structures were calculated as described below. 

Shielding to shift conversion. The calculated magnetic shielding was referenced to the experimental chemical shifts, using the linear 
relationship 𝛿12I = 𝑎 − 𝑏𝜎¬() , where the slope (b) and the offset (a) were fit for each trial structure individually. For the 1H chemical 
shift RMSE calculation the methyl protons of each methyl group and the NH3 protons were averaged. As it was not possible to distin-
guish the aromatic protons experimentally as well as to distinguish the 2 methyl groups experimentally, the chemical shifts within 
each group were sorted, both for experimental and DFT (ShiftML) chemical shifts, and then compared to each other. This was done 
for each crystal structure individually. The RMSE was calculated as,  

𝑅𝑀𝑆𝐸 =	Â∑ (íJ,KLM�íJ,NOPN)é

)
)
b�: , 

(2-52) 

where 𝛿12I denotes the experimental chemical shift, 𝛿¨J¯¨ denotes the calculated chemical shift and the index i runs over all protons 
(N) within the asymmetric unit.  

 

ShiftML  

The machine-learning model used to predict the 1H chemical shifts follows the basic concepts behind ShiftML,161 which are detailed 
in Chapter 2.2. However, the original implementation of ShiftML is only able to predict 1H chemical shifts of structures containing 
H,C,N and O atoms. Thus, we extended the training set in the following manner:  

a) Starting from the CSD-61k set and including the CSD-2k training set, described in Chapter 2.2, we used a farthest point 
sampling algorithm (FPS) to include an additional 1,000 training structures.  

b) From the Cambridge Structural Database (CSD),135 we extracted a set of around 22’000 molecular crystal structures con-
taining less than 200 atoms in the unit-cell and containing H,C and S atoms as well as optionally N and O atoms (CSD-S22k). 
This set was curated analogously to the CSD-61k set and using an FPS algorithm we selected 546 structures from this set.  

c) These three structure sets were combined to form the CSD-3k+S546 set. 

d) As structures often contain redundant environments, for example due to crystal symmetries, the training set was reduced 
by FPS ordering the individual environments and retaining only the 65,000 most structurally diverse.  

Additionally, the ShiftML model was changed to contain radially scaled smooth overlap of atomic positions (SOAP) kernels176, 184, 198 
as opposed to the seven multi-scale SOAP kernels described in Chapter 2.2. This change was implemented to increase the computa-
tional efficiency of the model. The parameters of the used ShiftML implementation are given in Table 2-18, using the same notation 
as in Chapter 2.2 and Willatt et al. 198 
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In order to estimate the prediction accuracy of the updated ShiftML model, we combined the CSD-500 test set from Chapter 2.2 with 
104 random structures extracted from the CSD-S22k set. For this combined CSD-500+S104 test set, we find a RMSE of 0.44 ppm 
between 1H chemical shifts calculated with DFT and ShiftML. This is directly comparable to the 1H RMSE of 0.49 ppm reported in 
Chapter 2.2. We ascribe the slightly lower 1H chemical shift RMSE to the fact that a larger training set was used.  

The Refcodes of all CSD sets are given in the original publication : Hofstetter, A.; Balodis, M.; Paruzzo, F.M.; Widdifield, C..M.; Steva-
nato, G.; Pinon, A.C.; Bygrave, P.; Day, G.M.; Emsley, L., “Rapid Structure Determination of Molecular Solids Using Chemical Shifts 
Directed by Unambiguous Prior Constraints”. Journal of the American Chemical Society 2019, XXXX, XXX. 

Note, that all the DFT calculations and all of the treatment of the training set, e.g. the detection of unusual environments, was done 
as described in Chapter 2.2. 

Table 2-18. Parameters used for the implemented ShiftML version. 

Atom rc (cutoff) c (cutoff 
rate) 

m (cutoff 
dexp) 

r0 (cutoff 
scale) 

u0 (cen-
tral 
weight) 

gw 
(atom 
sigma) 

nmax lmax cutoff transition 
width 

1H 5 1 4 2.5 1.0 0.3 9 9 0.5 

 

The RMSE between the 1H chemical shifts calculated with DFT and ShiftML is calculated as 0.464 ppm over all the ampicillin trial 
structures. This agrees with the overall error reported for this implementation of ShiftML. Figure 2-70 shows the correlation between 
1H chemical shieldings calculated with DFT and ShiftML. 

Figure 2-71 shows the RMSE between ShiftML calculated and measured 1H chemical shifts together with the DFT calculated relative 
lattice energies for the candidate set. Note that the RMSE between experiment and the predicted chemical shifts follows the same 
trends as for the DFT calculated shifts (Figure 2-62a).  

Note that, for the Bayesian approach to NMRX for ampicillin (see Figure 2-63) the ML chemical shifts were calculated with the 
ShiftML version described in Appendix III.  

 

Figure 2-70. Scatterplot showing the correlation between 1H chemical shieldings calculated with DFT and ShiftML, with a RMSE of 0.464 ppm. The 
blue dotted line indicates a perfect correlation. 
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Figure 2-71. Comparison of crystal structure candidates. The structures are sorted according to their relative lattice energy, horizontal axis. The 
vertical axis shows 1H chemical shift RMSE between ShiftML calculated and experimental chemical shifts. The orange marker shows the 1H chemical 
shift RMSE for the single-crystal XRD structure. The red line shows the mean of the current error (0.346 ppm) between experimental and ShiftML 
calculated 1H chemical shifts with the limits at one standard deviation (0.195 ppm) indicated as grey shaded zone, as described below.  

ShiftML error estimation.  

Comparison between 1H experimental chemical shifts and 1H chemical shifts calculated with ShiftML were carried out analyzing 
around 150 chemical shifts obtained from 11 crystal structures. The names, IUPAC IDs, CSD reference codes (when available) and 
references to the experimental NMR data of the analyzed crystal structures are the following:  

(i) Naproxen, (2S)-2-(6-Methoxy-2-naphthyl)propanoic acid, COYRUD11, Ref.210  

(ii) Uracil, Pyrimidine-2,4(1H,3H)-dione, URACIL, Ref. 211 

(iii) Co-crystal of 3,5-dimethylimidazole and 4,5-dimethylimidazole, Ref. 212 

(iv) Theophylline, 1,3-Dimethyl-3,7-dihydro-1H-purine-2,6-dione, BAPLOT01, Ref. 56 

(v) Anthranilic acid, AMBACO05, Refs.83, 255 

(vi) Cimetidine, CIMETD, Refs.83, 256 

(vii) Phenobarbital, PHBARB06, Refs.74, 83 

(viii) Thymol, IPMEPL, Ref.18  

(ix) Terbutaline hemi-sulfate, ZIVKAQ, Refs.21, 83 

(x) Cocaine, methyl (1R,2R,3S,5S)-3- (benzoyloxy)-8-methyl-8-azabicyclo[3.2.1] octane-2-carboxylate, COCAIN10, Ref. 56 

(xi) AZD8329, 4-[4-(2-adamantylcarbamoyl)-5-tert-butylpyrazol-1-yl]benzoic acid, Ref.58 

The crystal structures (i-ix) were obtained from Ref. 83, where the experimentally determined crystal structures were subjected to 
all-atom geometry optimization with fixed lattice parameters, as described in the reference. Crystal structures (x) and (xi) were ob-
tained from Refs. 56 and 58 respectively. We only used the 1H chemical shifts from the references, which were clearly distinguishable 
and did not have a broad peak spanning several ppm.  
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We used assigned chemical shift values and we account for rotational dynamics of the methyl groups by averaging the chemical shift 
values of the three 1H positions to a single value for each methyl group. For chemical shifts which could not be assigned unambigu-
ously, such as e.g. shifts from CH2 protons, we assigned the chemical shifts on a best match basis. The calculated magnetic shieldings 
s are converted to the corresponding chemical shifts d  through the relationship 𝛿12I = 𝑎 − 𝑏𝜎¬() , where the slope (b) and the 
offset (a) were fit for each reference structure individually. The chemical structures, the RMSE between experimental and ShiftML 
predicted 1H chemical shifts, together with the assigned experimental chemical shifts and the parameters for conversion between 
shieldings and shifts are shown in Figure 2-72 and Table 2-19. For the entire reference set we calculate an average RMSE of 0.346 
ppm and a standard deviation of 0.195 ppm.  

 

Figure 2-72. Chemical structures of the compounds used for experimental comparison. In order, cocaine (a), 3,5-dimethylimidazole and 4,5-dime-
thylimidazole (b), uracil (c), AZD8329 (d), naproxen (e), theophylline (f), cimetidine (g), anthranilic acid (h), terbutaline hemi-sulfate (i), thymol (j) 
and phenobarbital (k) and the labelling scheme used here. 
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Table 2-19. Experimental and calculated chemical shifts of the structures used in the ShiftML benchmarking, . The labelling scheme is given in Figure 
2-72. When more than one atom corresponds to a single chemical shift value, their values were averaged. 

Naproxen Uracil 

Atom Label 
Experimental 
1H d (ppm) 

ShiftML 

1H d (ppm) 
Atom Label 

Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 

1 7 6.44 3 7.5 7.43 

2 6.1 5.60 2 10.8 10.79 

3 3.8 3.86 1 11.2 11.22 

4 4.5 4.65 4 6 6.05 

5 4.1 4.65    

6 5.9 5.48    

7 3.2 2.88    

8,9,10 1.8 1.56    

11,12,13 2.3 2.80    

14 11.5 11.75    

a = 4.79 ppm  b = 0.81 RMSE = 0.393 ppm a = 5.15 ppm  b = 0.77 RMSE = 0.048 ppm 

3,5-dimethylimidazole & 4,5-dimethylimidazole Theophylline 

Atom Label 
Experimental 
1H d (ppm) 

ShiftML 

1H d (ppm) 
Atom Label 

Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 

1’ 13.0 13.25 2 14.6 14.79 

2’ 4.8 5.03 1 7.7 7.10 

3’,4’,5’ 1.4 1.12 3,4,5 3.4 3.54 

6’,7’,8’ 0.7 1.07 6,7,8 3.4 3.40 

1 15 14.62    

2 5.2 5.52    

3,4,5 1.5 1.47    

6,7,8 1.4 1.20    

a = 4.85 ppm  b = 0.92 RMSE = 0.27 ppm a = 5.19 ppm  b = 0.84 RMSE = 0.24 ppm 

  



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

119 

Cocaine AZD8329 

Atom Label 
Experimental 
1H d (ppm) 

ShiftML 

1H d (ppm) 
Atom Label 

Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 

1 3.76 4.17 1 6.92 6.54 

2 3.78 2.79 2 8.69 8.30 

3 5.63 5.78 3 9.01 8.74 

4 3.32 3.54 4 8.47 7.64 

5 3.06 1.83 5 15.37 14.90 

6 3.49 2.56 6 7.73 8.04 

7 2.91 2.17 7 9.64 10.70 

8 3.38 3.04 8 2.90 2.72 

9 2.56 2.19 9 1.78 2.03 

10 2.12 2.37 10 1.88 2.28 

11,12,13 1.04 1.87 11 1.88 2.28 

14 8.01 7.90 12 1.8 1.99 

15 8.01 7.90 13 1.6 1.48 

15 8.01 7.90 14 0.44 1.21 

17 8.01 7.90 15 1.54 1.71 

18 8.01 7.90 16 1.88 2.10 

19,20,21 3.78 4.27 17 1.88 2.10 

   18 0.8 1.39 

   19 0.8 1.39 

   20 1 1.85 

   21 1.74 1.75 

   22 1.74 1.75 

   23,24,25 0.73 0.39 

   26,27,28 0.73 0.83 

   29,30,31 0.73 -0.16 

a = 5.88 ppm  b = 1.05 RMSE = 0.59 ppm a = 5.40 ppm  b = 1.06 RMSE = 0.50 ppm 
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Cimetidine Anthranilic acid 

Atom Label 
Experimental 
1H d (ppm) 

ShiftML 

1H d (ppm) 
Atom Label 

Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 

2 7.64 7.55 Aromatic (1) 5.8 5.74 

3 11.84 11.55 Aromatic (2) 6.8 6.66 

7 2.24 2.17 NH2 5.4 5.52 

10 8.44 9.00 COOH 12.3 12.33 

15 9.94 9.86    

16 2.24 2.28    

a = 5.12 ppm  b = 0.86 RMSE = 0.21 ppm a = 4.95 ppm  b = 0.79 RMSE = 0.095 ppm 

Phenobarbital Thymol 

Atom Label 
Experimental 
1H d (ppm) 

ShiftML 

1H d (ppm) 
Atom Label 

Experimental 1H 
d (ppm) 

ShiftML 

1H d (ppm) 

1 10.3 10.49 1 5.4 5.80 

3 8.1 8.34 2 6.19 5.90 

7a 2.7 2.69 3 7.08 6.35 

7b 1.7 1.63 4 3.38 2.91 

8a-c 0.6 0.78 5-7 1.05 0.44 

9-14 6.9 6.60 8-10 1.45 1.14 

   11-13 0.42 1.68 

   14 9.99 10.08 

a = 5.08 ppm  b = 0.78 RMSE = 0.33 ppm a = 4.93 ppm  b = 0.85 RMSE = 0.72 ppm 
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Terbutaline hemi-sulfate  

Atom Label 
Experimental 
1H d (ppm) 

ShiftML 

1H d (ppm) 
   

1 6.83 7.60    

3 6.83 6.50    

4 10.93 10.07    

5 6.83 6.96    

7 4.73 5.26    

10-12 1.33 1.25    

13 7.6 8.22    

a = 5.25 ppm  b = 1.00 RMSE = 0.44 ppm     

 

Ampicillin lattice parameters 

A comparison between lattice parameters of the ampicillin crystal structure, as primitive cell, determined with XRD248 and NMRX are 
given in Table 2-20.  

Table 2-20. Comparison between ampicillin lattice parameter of the crystal structures, as primitive cell, determined with XRD248 and NMRX. 

 XRD248 NMRX deviation (%) 

a [Å] 12.4 11.7 -5.6 

b [Å] 6.2 5.78 -6.8 

c [Å] 12.0 12.63 +5.25 

a 90.0 90.0 0.0 

b 114.5 114.506 <0.1 

g 90.0 90.0 0.0 

A [ Å3] 839.494 777.213 -7.4 
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Positional error estimation 

The positional error estimation, using DFT calculated chemical shifts, is done following the procedure described in Chapter 2.4. First, 
we generate an ensemble of slightly perturbed crystal structures using a set of molecular dynamics (MD) simulations at finite tem-
peratures. By “slightly perturbed” we refer to structures that remain within the same local minima and do not undergo any significant 
conformational shifts. The MD simulations are done at the DFT level using the universal force engine i-PI257 together with the Quan-
tum ESPRESSO suite.188 During the MD simulations the crystal structures were kept at a constant temperature using the NVT ensem-
ble and a GLE thermostat.258 The used temperatures are given as 1° K, 5° to 50° K in steps of 5° K and 60° to 240° K in steps of 10° K. 
For each temperature a MD simulation was run during 20 ps and with 1 step per fs. From each temperature we then extract 10 
structures at random (5 from the first 10 ps and 5 from the last 10 ps), leading to 300 structures in total with a maximal positional 
displacement of 1.75 Å, for which the 1H chemical shifts are calculated. This leads to a maximal chemical shift RMSD for 1H of 1.99 
ppm. Figure 2-73 shows the correlation between positional deviations and the 1H chemical shift RMSD. 

 

Figure 2-73. Correlation between positional RMSD (Å) and 1H chemical shift RMSD (ppm) for an ensembles of perturbed crystal structures of ampi-

cillin generated by MD. With < 𝑟JÒ >	= 	Â
:
)
∑ 𝛴b,¯; 	b,¯ < 𝛿 >	= 	𝛴Ù < 𝛿 >, we find a slope (𝛴Ù = 0.36)	for the crystal structure of ampicillin. 

For the MD DFT calculations the generalized-gradient-approximation (GGA) density functional PBE205 was used. We used the ultrasoft 
pseudopotentials with GIPAW62-63 reconstruction, C.pbe-n-kjpaw_psl.1.0.0.UPF, N.pbe-n-kjpaw_psl.1.0.0.UPF, H.pbe-
kjpaw_psl.1.0.0.UPF, O.pbe-nl-kjpaw_psl.1.0.0.UPF and S.pbe-nl-kjpaw_psl.1.0.0.UPF from the PS library database.242 A wave-func-
tion energy cut-off of 60 Ry, a charge density energy cut-off of 240 Ry and no k-points. The electron density self-consistency conver-
gence threshold was set to 10-8 Ry. For the GIPAW DFT calculations the same parametrization as for the chemical shift calculations 
of the trial crystal structures was used. 
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2.7 Conclusion	and	Outlook	
In conclusion, we demonstrated how the abundant information on the electronic structure contained in the 1H and 13C chemical shifts 
of a molecular solid can be used to extract structural information. Previously it had already been demonstrated how this structural 
information in combination with CSP protocols can be used to determine de novo crystal structures from powders34-35, 38, 44, 58, 114 as 
well as to validate and refine crystal structures of molecular solids, or to identify known polymorphs.8, 13, 17-18, 24, 29-31, 37, 39, 47, 56, 58, 73, 

138, 140-149  

Here, we extended this CSP-NMRX approach by including structural information extracted from absent signals in 2D solid-state NMR 
correlation experiments. As a result, we were able to transfer the structural information extracted from solid-state NMR experiments 
on the crystal phase directly to the single molecule conformational search. 

Additionally, we demonstrated how the 1H and 13C chemical shifts of molecular solids not only contain enough information to validate 
and determine de novo crystal structures from powders but also to quantify the positional uncertainties of these crystal structures. 
From this we determined that the average positional errors of crystal structures determined by NMRX are more than comparable to 
structures determined by single crystal XRD. 

Further, we demonstrated a direct mapping between the structural information and the chemical shifts of a molecular solid, without 
the necessity to calculate the electronic structure. We used this direct mapping to train a ML model based on local environments to 
predict chemical shifts of molecular solids containing H, C, N, O and S nuclei to within current DFT accuracy. Thus, reducing the 
computational cost of chemical shift predictions in solids by a factor of between 5 to 10 thousand compared to current DFT chemical 
shift calculations. 

Finally, we extended the existing chemical shift based CSP-NMRX approach by including these three approaches to successfully de-
termining the crystal structure of powdered ampicillin, which would have been very challenging for previous methods.  

Note that the greatly demonstrated approaches greatly extend the scope of the existing CSP-NMRX methods, which should allow for 
the routine CSP-NMRX based structure determination of larger and more flexible molecules. However, at the moment, all of the 
proposed methods are still strongly dependent on the traditional CSP-NMRX approach and do not, on their own, present a novel 
method of NMRX based structure determination. However, starting from the premise, that the chemical shift information of a crystal 
structure is uniquely determined by its electronic structure, which is in turn uniquely determined by the crystal structure, it should 
theoretically be possible to determine a crystal structure using solely the information contained in the chemical shifts without the 
need for an elaborate CSP protocol.  

One possible approach to include information from solid-state NMR experiments more actively into the structure determination 
would fully discard the need of a CSP structure search. In Chapter 2.3 we have shown, that it is possible to map the chemical shift 
information directly onto the structural information of an atomic environment, without the need for electronic structure calculations. 
If it would be possible to reverse this process, meaning to map the structural information directly onto the chemical shift information, 
the NMRX structure determination process would be revolutionized. However, this mapping is not straightforward and poses a diffi-
cult combinatorial problem. A possible approach would be the use of deep learning methods, e.g. neural networks101, 259-262 in com-
bination with the SOAP fingerprints, to evaluate the difference between the input and the target output structures during training.  

 

  



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

124 

  



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

125 

 Amorphous	solids	
3.1 Introduction	
Amorphous and glassy solids are present in a large number of industrial devices and materials, such as in optical fibers,263 as con-
struction materials264-265 or for the storage of nuclear waste.266-267 Note that in XRD, the diffraction pattern of ideal crystals is char-
acterized by well-defined Bragg peaks. However, the chemical and geometrical disorder, which is characteristic for amorphous ma-
terials, leads to a large bump in the diffraction pattern and thus renders these materials unsuitable for determination with X-ray or 
neutron diffraction spectroscopy (Figure 3-1). In contrast, solid-state NMR directly probes the local atomic environment (see Chapter 
1.3) thus making it one of the most powerful tools for the structural characterization of amorphous and glassy solids. 45, 49, 268-270 

However, the structural disorder present in amorphous materials leads to a distribution in both the isotropic and the anisotropic 
parts of the observable NMR parameters. This generally makes it very challenging to extract the structural information present in the 
NMR spectra. Therefore, it is crucial to develop additional computational approaches to complement the experimental measure-
ments. Figure 3-1 shows the difference between the 29Si MAS NMR spectra of an amorphous and a crystalline lithium silicate. Note 
that in contrast to XRD, detailed structural information can still be extracted from the amorphous NMR spectra.  

 

Figure 3-1. Examples of amorphous and crystalline NMR spectra (a-b) and powder XRD patterns (c-d). 29Si MAS NMR spectra of an amorphous 
lithium silicate glass (a) and of a crystalline lithium silicate (b). Both spectra were adapted with permission from De Jong et al.271 (copyright 1984 
American Chemical Society) Powder XRD patterns of amorphous (c) and crystalline (d) griseofulvin samples. Both patterns were adapted with 
permission from Feng et al.272 (copyright 2008 Elsevier) 
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Analog to the method presented in Chapter 2 for microcrystalline powders, a general approach to get a better understanding of the 
local structure of amorphous material is to compare the experimental NMR parameters with calculated NMR parameters generated 
for a theoretical model of the structure.254, 273-274 Often this is combined with a MD simulation in order to represent the large amount 
of structural disorder present in amorphous materials. This has been successfully demonstrated for several amorphous systems, such 
as phosphate glasses,42, 275 chalcogenide glasses,120, 276-277 silicate and aluminosilicate glasses40, 45, 49, 115-119, 121, 278-279 and proton-con-
ducting polymers.280-281  

The number of atoms required to quantitatively represent the statistical distribution of disorder and chemical environments present 
in an amorphous solid is large. For example, for bulk silica it has been shown that a unit-cell of around 3000 atoms is needed to 
generate a realistic model of the atomic structure.282 As a consequence, MD simulations modelling amorphous systems have gener-
ally been performed using several hundreds or thousands of atoms.283-285 However, the calculation of sufficiently accurate NMR 
parameters, as required for structural characterization, currently relies on DFT and can only handle a limited number of atoms. There-
fore, the application of such combined methods to amorphous and glassy solids is limited to small systems containing only a few 
hundred atoms 40, 115-121. Thus, structural characterization using NMR crystallography, as described in Chapter 2 for microcrystalline 
solids, is not directly applicable to amorphous systems.  

In Chapter 3.2 we present a combined approach for the determination of the atomic-level structure of amorphous calcium silicate 
hydrate (C-S-H) based on local structural motifs. First, we characterize the composition and the uniformity of the material using 
various spectroscopic methods. In a second step, we constrain the atomic environments present in the structure using multi-dimen-
sional 1H and 29Si solid-state NMR experiments. Next, we systematically generate well-defined structural motifs in agreement with 
the experimental constraints. These motifs are then assessed by comparing their calculated 1H and 29Si chemical shifts to experiment. 
We then use the accepted structural motifs as building blocks to generate an atomic-level structural model of amorphous C-S-H. 
Finally, the stability of the proposed structural model is verified using MD simulations.  
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3.2 The	atomic-level	structure	of	cementitious	calcium	silicate	hydrate	
This chapter has been adapted with permission from: Kumar, A.; Walder, B. J.; Kunhi Mohamed, A.; Hofstetter, A.; Srinivasan, B.; 
Rossini, A. J.; Scrivener, K.; Emsley, L.; Bowen, P., “The atomic-level structure of cementitious calcium silicate hydrate”. The Journal 
of Physical Chemistry C 2017, 121 (32), 17188-17196. (post-print) 

3.2.1 Introduction	
Calcium silicate hydrate (C-S-H) is the primary binding component of concrete, forming about 50-60% by volume of hardened cement 
paste and making it one of the most common substances of the modern world. Because of its ubiquity, it is surprising that a complete 
description of its atomic-level structure remains the subject of debate,286-287 and consequently its structure-property relationships 
are not well known. This makes it difficult to engineer C-S-H not only for its primary uses in construction, in which high reactivity and 
strength at low carbon footprints are desirable, but also for emerging applications such as dental filling and bone repair,288-289 which 
require biocompatibility; waste water treatment,290-291 which requires high specific surface areas; and encasement of nuclear 
waste,292 which requires high structural integrity in the presence of significant radionuclide concentrations. 

For Portland cements the precipitation of C-S-H occurs in conjunction with the precipitation of other material phases such as crystal-
line Ca(OH)2, ettringite, and CaCO3.264-265 The C-S-H phases are known to be rich in calcium, with Ca:Si ratios exceeding 1.75 at early 
stages of hardening.293 In contrast, synthetic C-S-H with Ca:Si ratios above ~1.5 are often observed in coexistence with a Ca(OH)2 
phase. Because of an inability to synthesize pure C-S-H with Ca:Si ratios above 1.5, many researchers believe that Ca-rich C-S-H sys-
tems are intrinsically a binary mixture of a chemically disordered single phase C-S-H material. In such a case, one phase consists of a 
“proper” C-S-H phase, with a layered silicate chain structure related to that of the naturally occurring calcium silicate hydrate mineral 
tobermorite and limited to Ca:Si ratios around 1.6. The other phase consists of nanocrystalline Ca(OH)2, which is thought to occur in 
bulk form occupying pores in the proper C-S-H phase or as chemically distinct ribbons or sheets interwoven within the C-S-H structure 
itself.286, 294-296 This interpretation has the support of thermodynamic and solubility data analyzing a multitude of C-S-H systems.297 
Furthermore, in spite of a vast amount of experimental data yielding partial characterization, the positions of the calcium atoms in 
the interlayer, which are the essential aspects of high Ca:Si ratios in C-S-H, remain undefined. Thermodynamic modeling and crystal 
chemical reasoning have been applied to propose complete C-S-H structural models at Ca:Si ratios greater than 1.5,286 but for these 
compositions the focus has been on the binary C-S-H/Ca(OH)2 representation, for which experimental validation is ongoing.298 

Here, we introduce a method which achieves the synthesis of C-S-H possessing Ca:Si ratios between 1.0 and 2.0, maintaining a single 
phase composition even for C-S-H whose Ca:Si ratio exceeds 1.6. Aqueous calcium nitrate and sodium silicate solutions are reacted 
under conditions of high supersaturation and constant pH, the latter of which is set by the addition of a predetermined amount of 
alkali hydroxide. The production of a single phase composition at such Ca:Si ratios has not been achieved using conventional methods 
for C-S-H synthesis299-303 18–22 relying on combinations of dissolution and direct precipitation287, 304-305 reactions that operate at either 
lower supersaturation or uncontrolled pH conditions. We also use 1H-29Si cross-polarization (CP) MAS NMR to measure populations 
of Q species, the connectivity between those species, and correlations between 29Si and 1H chemical shifts of the single-phase C-S-H 
produced using our rapid precipitation method. The greatest drawback of 29Si solid-state NMR is its low sensitivity, which we circum-
vent by using modern dynamic nuclear polarization (DNP) strategies306-308 that have been recently used to study the hydration of 
cementitious systems with tremendous success.309 The Q species information allows us to quantify the extent of silicate polymeriza-
tion in the structure. Finally, we use atomistic modeling to establish a connection between the measured 1H chemical shifts and the 
atomic-level position of calcium atoms in the interlayer, allowing us to solve the three-dimensional atomic-level structure of synthetic 
cementitious C-S-H. 
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3.2.2 Methods	

Synthesis 

The pH governs the type of silicates species available for precipitation of C-S-H. The Ca:Si ratio attained in the solid phase was found 
to depend on the pH of the solution. Thermodynamic modeling310-311 also predicts that Ca:Si ratios above 1.5 can only be produced 
under high pH conditions, as occurs in the hydration of real Portland cement systems, in order to ensure that the electrostatically 
stable monomeric SiO2(OH)22- species remains in abundance at high supersaturation and rapid precipitation conditions.  

To maintain the desired supersaturation, pH, and mixing conditions, and to avoid carbonation, we developed a synthetic apparatus 
for controlling the reaction conditions to the degree of precision required, aided by real-time acquisition of kinetic data such as Ca2+ 
ion concentration, pH and conductivity. Details regarding its construction are given in the Appendix IV. 

All reaction solutions were prepared in decarbonized, demineralized ultrapure water. The reaction chamber was kept under an inert 
nitrogen atmosphere in order to prevent carbonation. C-S-H precipitates were collected after a duration of 3 hours and again after 
24 hours. The products were separated from mother liquor using vacuum filtration over a 20 nm organic filter and later washed with 
ethanol and water to remove salts and unwanted ions from the surfaces of C-S-H. We produced five different C-S-H powders with 
nominal Ca:Si ratios of 1.0, 1.25, 1.5, 1.75 and 2.0. The precise experimental conditions for the precipitation of the different stoichi-
ometry of the C-S-H were determined using thermodynamic modelling,310-312 with the exclusion of calcium hydroxide, as there was 
no experimental evidence for its formation. Additional details are given in the Appendix IV. 

Dynamic nuclear polarization 

DNP solid-state NMR experiments were carried out on the aqueous suspensions of freshly prepared C-S-H nanoparticles with added 
impregnation agent and were not dried. The impregnation agent used was 22 mM AMUPol in 65:35 v:v d8-glycerol:D2O, which was 
purged of dissolved oxygen by bubbling with N2 gas for roughly five minutes. The addition of the radical polarizing agent further 
dilutes the samples by about 20%, but simple drying steps to increase the concentration of C-S-H led to sample deterioration (see 
Appendix IV). About 25 mg of the impregnated gels were worked into a 3.2 mm OD sapphire rotor and plugged with a PTFE insert. 
The drive caps were zirconia. The DNP enhanced NMR experiments were carried out at a nominal field strength of 9.4 T using a 
commercial Bruker AV I 400 MHz/263 GHz DNP NMR spectrometer.313 The samples were rapidly transferred into the stator of the 
NMR probe which was pre-cooled to 100 K to promote glass formation. Proton DNP enhancements were found to exceed 35 for all 
samples. 

High resolution electron microscopy (HRSEM) 

HRSEM micrographs were obtained by coating the samples with 6 nm of osmium (gas phase coating). The metallization reduces 
charging and provides enhanced image contrast. High resolution SEM analysis was performed on a Zeiss Merlin, equipped with the 
GEMINI II column which combines ultra-fast analytics with high resolution imaging using advanced detection modes. Osmium coated 
samples were analyzed with acceleration voltage of 1 kV with probing current of 300 nA. On-axis in-lens secondary electron detection 
mode was employed for imaging. The instrument provides up to 0.6 nm resolution in STEM mode. In TEM mode, the samples were 
imaged at room temperature using a Tecnai F20 (FEI, The Netherlands) operating at an acceleration voltage of 100kV LaB6 gun with 
a line resolution of 0.34 nm, with images being recorded on a high sensitivity 4k x 4k pixel CCD camera. For SEM and TEM analysis, 
50 mg of sample was dispersed in 40 mL of isopropanol. A drop of the suspended liquid was allowed to dry on a copper grid (200 
mesh grids). The copper grids were glow discharged prior to sample disposition. 

Fourier-transform infrared spectroscopy (FTIR) 

Freshly prepared samples were analyzed with a PerkinElmer FTIR spectrometer, with a resolution of 0.5 cm–1 to 64 cm–1. Wavelength 
accuracy was about 0.1 cm–1 at 1600 cm–1. FTIR measurements were performed with an attenuated total reflectance (ATR) unit and 
data was recoded and processed using Spectrum One software. The ATR unit included a diamond crystal and a clamp for pressing 
solid materials onto the crystal with constant pressure. The transmittance results of 256 scans were recorded between 4000 and 450 
cm–1, with individual measurements taken every 2 cm–1. For the solid gels, air was used as the background. 
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Raman spectroscopy 

Non-invasive Raman microscopy was carried out using a Renishaw inVia Reflex spectrometer equipped with a 785 nm diode laser. 
The power delivered to the sample was 164 mW at a full power specification. The grating size was 1200 lines/mm with an edge filter 
for Rayleigh rejection. Ca(OH)2 and CaCO3 standards were measured at 5% power with a single 10 s accumulation period. Freshly 
prepared C-S-H was measured with multiple accumulation periods, each of 13 s exposure.  

Molecular Dynamics (MD) simulations 

Classical MD simulation with force field potentials were used to test the structural stability of the proposed structures. The force field 
parameters used are known to describe well cementitious material systems.314 Simulations were done in a constant pressure ensem-
ble at 300 K and a time step of 0.7 fs using Velocity Verlet integration algorithms implemented in DLPOLY.315 Ewald summation was 
used to take into account the long range forces above a cutoff distance of 8.5 Å. 

NMR chemical shift calculations 

Atomic positions and unit cell parameters were optimized as described in Appendix IV. The chemical shielding σ·GQ· was calculated 
using the generalized gradient approximation (GGA) functional PBE205 within the Quantum Espresso code188 and the GIPAW 
method.63 In every calculation a plane-wave maximum cutoff energy of 80 Ry, and a Monkhorst-Pack grid of k-points220 corresponding 
to 0.03 Å-1 - 0.04 Å-1 in reciprocal space was employed. The chemical shielding was converted into calculated chemical shifts δ·GQ· by 
the relation δ·GQ· = σR_º −	σ·GQ·, with the value of σR_º determined by a linear regression between the calculated and experimental 
values for the calcium hydroxide structure (1H chemical shifts) and the unperturbed tobermorite structure109 (29Si chemical shifts). 

3.2.3 Results	and	Discussion	

Morphology 

Two typical morphologies were seen by electron microscopy: “nanoglobules”, for the Ca:Si ratio of 1.00; and “nanofoils”, for Ca:Si 
ratios ≥ 1.25, which is the morphology shown in Figure 3-2a. The foil morphology is very similar to morphologies for C-S-H seen in 
Portland cement systems with high alkaline contents.310, 316 Thicknesses of the foil-like structures are generally between 6 nm and 10 
nm. The pure phase C-S-H systems were all shown by high-resolution analytical transmission electron microscopy (TEM) to be uniform 
for Ca:Si ratios between 1.0 and 2.0 at less than a 9 nm2 pixel size. This is also supported by X-ray diffraction (XRD) and scanning TEM 
with energy dispersive X-ray analysis (STEM-EDX), as described in Appendix IV. No secondary phases such as Ca(OH)2 were detected 
by IR or thermogravimetric analysis (TGA), as shown in Figure 3-2b; however, long exposure of C-S-H sample to open air (for example 
in TGA or XRD analysis) does eventually lead to the formation of CaCO3. This phenomenon manifests well in the Raman spectra of 
Figure 3-2c, showing that CaCO3 forms during prolonged measurements in air, whereas the signature of Ca(OH)2 is never observed 
regardless of measurement duration. z-potential measurements on the show negative potential surfaces indicating that calcium does 
not reside at the surface but is incorporated into the particles. 

Characterization by DNP NMR 

C-S-H is a poorly ordered material, making atomic level structural determination using conventional X-ray and neutron diffraction 
methods challenging, especially for non-dried samples. Solid-state magic-angle spinning (MAS) NMR is a powerful method for study-
ing disordered systems, and has been extensively used to study the molecular structure of C-S-H and related mineral phases.317 
Previous 29Si MAS NMR19, 52, 109, 318-320 and diffraction studies, often on dried materials, have established that the silicate chains in C-
S-H are arranged according to the “dreierketten” model,52, 319, 321-322 which specifies a repeating unit for the chains comprised of a 
bridging-type Q(2b) silicate tetrahedron flanked by pairing-type Q(2p) silicate tetrahedrons, highlighted in the tobermorite structure 
shown in Figure 3-2d. The silicate chains are flanked by a calcium oxide layer and a hydrous interlayer. Each silicate tetrahedron 
shares two O atoms with other silicate tetrahedrons and on this basis are both classified as Q(2) species. The pairing-type Q(2p) species 
direct the other two O atoms toward the main calcium layer whereas the bridging-type Q(2b) species direct them toward the hydrous 
interlayer. Defects occur through the removal of a Q(2b) SiO2 unit, breaking up the idealized infinite silicate chains of tobermorite into 
finite segments consisting of (3n+2) silicate tetrahedrons, as illustrated in Figure 3-2e. The segments are terminated by Q(1) silicate 
species.  
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The interlayer calcium and water present in the original 14 Å tobermorite are CaI and H2O respectively whereas the CaB, CaA and OHI 
are only present in the defective structures. CaB sites replace bridging silicate tetrahedrons, CaA sites are additional calcium atoms in 
the interlayer, and OHI are additional hydroxyl groups in the interlayer to charge compensate the additional Ca ions needed to reach 
high Ca:Si ratios. Silicate dimers (n = 0) have been observed by 29Si-29Si correlation NMR experiments to be the dominant species for 
systems with Ca:Si ~ 1.5, both for synthetic C-S-H systems and during the initial formation of C-S-H in hydrating tricalcium silicate.52, 

323  

 

Figure 3-2. Structural elements of C-S-H. (a) High-resolution TEM image of pure C-S-H with Ca:Si ratio of 2.00, showing its “nanofoil” morphology. 
(b) Fourier transform IR spectroscopy showed no evidence of phases other than the C-S-H, including Ca(OH)2. (c) Comparison of Raman spectra of 
Ca(OH)2 (green), CaCO3 (blue), a sample of C-S-H with Ca:Si = 2.0 after 4 scans (lower black), and a sample of C-S-H with Ca:Si = 2.0 after 78 scans 
(upper black). (d) Chain topology in the layered 14 Å tobermorite (Ca:Si = 0.83). (d) Defective and short dreierketten chains in C-S-H, showing two 
dimers (n = 0) and one pentamer (n = 1). 

To overcome the low sensitivity of 29Si MAS NMR at natural isotopic abundance we use modern DNP strategies.306-308 DNP is based 
on the transfer of large unpaired electron spin polarization to nearby protons by saturation of the electron spin transitions with 
microwaves, followed by CP transfer of the enhanced polarization to the 29Si nuclei. The electron polarization is provided here by the 
organic biradical AMUPol324 that is added to the wet C-S-H as a minimal amount of d8-glycerol/D2O solution before the NMR sample 
is rapidly cooled to 100 K for the experiments.308, 325-327 The cryogenic temperatures are required to maximize the sensitivity enhance-
ments by DNP, but are also important here to quench proton exchange and prevent the C-S-H from degrading during the experiments. 
Efficient DNP occurs only for those parts of the sample that have successfully passed through the glass transition. We also note that 
pore water is susceptible to glass formation when rapidly inserted into the pre-cooled NMR probe even without the addition of a 
glassing agent such as glycerol.328 We therefore do not expect the C-S-H structure to be disrupted by our experimental conditions; 
furthermore, even if pore water does crystallize in parts of the sample, inefficient DNP will suppress the NMR signal from these 
regions. 
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The polarizing agent contains labile deuterons, which can lead to the formation of calcium silicate deuterate through isotope ex-
change. At most, 40 mol% of labile hydrogen in the impregnated C-S-H gels (C-S-H hydrogen, D2O, and the -OD groups of the d8-
glycerol) are deuterons given our DNP sample formulation and estimated C-S-H composition. If a reasonable allowance for excess 
pore and adsorbed water is made, this falls to about 25%. In fact, this upper limit is almost certainly never reached. Small-angle 
neutron scattering studies have shown that deuteron exchange into the gel is a diffusion driven process providing full isotope ex-
change on the time scale of tens of hours.329 Since the impregnated sample never spent more than 1.25 h, and usually just 0.25 h, at 
room temperature prior to experiments, we expect the highest degree of partial deuteration to be surface based and the NMR signal 
should be representative of fully protonated bulk C-S-H. Moreover, there is little in the way of evidence in the small-angle neutron 
scattering literature to suggest that isotope exchange modifies C-S-H in any structurally significant way. 

 

Figure 3-3. One- and two- dimensional DNP enhanced 29Si CP MAS spectra of C-S-H samples for quantification of silicate chain distributions. (a) 1D 
spectra across the compositional series. (b) Experimental 2D refocused INADEQUATE spectra for three of the C-S-H compositions studied (the 
spectra have been sheared to produce a COSY-like representation). Contours are drawn in 10% intervals beginning at 5% of the maximum signal 
intensity. 

One-dimensional 1H-29Si DNP CP echo spectra for the five compositions are shown in Figure 3-3a. With the exception of the Ca:Si = 
1.00 composition, good fits to the line shapes are obtained by modeling each of the constituent Q sites as a Gaussian function, whose 
amplitudes are used to determine the relative populations of the Q species. Relative signal intensities in DNP enhanced CP MAS 
experiments are not usually in proportion to the relative populations of the nuclei generating the signal as they often are in experi-
ments using direct excitation without hyperpolarization unless we assume that 1) the length scale of hyperpolarization non-uni-
formity is larger than the unit cell of the particle, and 2) cross-polarization kinetics can be measured and used to adjust the signal 
intensities appropriately. 

The C-S-H particles are sufficiently small and have a proton density sufficient for nearly uniform polarization of the particles over the 
recycle period. To the second point, we performed cross-polarization measurements for different values of the cross-polarization 
contact time. This data was fit to a simple IS model of CP kinetics for each site330. A detailed description of the fitting procedure and 
the Q populations determined by this method are given in Appendix IV. We note here that the failure of the Ca:Si = 1.00 composition 
to fit well to the three-Gaussian model suggests a different molecular structure. 

The 29Si-29Si connectivity is measured using 2D refocused INADEQUATE experiments,331 whose application to cementitious systems 
has hitherto not been feasible without isotopic enrichment.52, 323 In the 29Si-29Si INADEQUATE spectrum only signals from covalently 
bonded 29Si – O – 29Si pairs are retained. For linear silicate chains at natural isotopic abundance, these constitute at most 0.5% of all 
Si – O – Si pairs. The improvement in NMR sensitivity provided by DNP makes it possible to obtain such spectra,27 as shown in Figure 
3-3b. Autocorrelation peaks corresponding to Q(1)-Q(1) dimer and Q(2p)-Q(2p) extender units are observed, but peaks corresponding to 
Q(2b)-Q(2b) are always absent, consistent with the dreierketten model. Remarkably, the usually dominant Q(1)-Q(1) autocorrelation peak 
is entirely absent for the Ca:Si = 1.00 composition (see Appendix IV) suggesting that this composition does not contain silicate dimers. 
Cross peaks from all three Q sites to Q(2p) are also observed. Using the chemical shift constraints from the deconvolution of the 1D CP 
echo spectra, the INADEQUATE spectra are decomposed using 2D Gaussian line shapes to model each of the six possible correlation 
peaks. This line shape generates reasonably good fits (see Appendix IV), suggesting that the chemical disorder is very local. The 2D 
peak intensities are fit simultaneously across the four compositions for a conditional probability P(A|B) that Q site A is connected to 
Q site B. 
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Figure 3-4. DNP enhanced 2D 1H-29Si HETCOR correlating 1H spectra to specific Si sites. (a) The 2D correlation spectrum for the Ca:Si = 1.50 compo-
sition acquired with a 7 ms CP contact time. (b) 1D cross sections parallel to the 1H dimension extracted at the position of the dashed line in the 2D 
spectrum, representing 1H spectra correlated to Q(1). (c) Simulated 1H chemical shift spectra aggregated over C-S-H substructures that either possess 
(blue) or lack (red) the bridging calcium site CaB. The intensity of these spectra is normalized with respect to the maximum of the Q(1) peak. The 
region downfield of 10 ppm is shaded to indicate the domain of strongly hydrogen bonded species. 

2D 1H-29Si HETCOR experiments were used to correlate 1H chemical shifts with the 29Si chemical shifts. Measurements were made 
using CP contact times of 0.7 ms and 7 ms for each sample. The use of a short contact time biases the contribution to the NMR signal 
from those protons that are close to the correlating 29Si nuclei, as compared to longer range correlations observed in the long contact 
time experiment, which samples proton environments out to ~1 nm. 

The line shape in the 2D 1H-29Si HETCOR spectrum shown in Figure 3-4a is dominated by inhomogeneous broadening resulting from 
chemical disorder, which prevents an accurate line shape deconvolution on the basis of proton site. Cross sections of these spectra 
yield 1H chemical shift spectra correlated to specific Q sites, as shown in Figure 3-4b for the Q(1) correlation and in the Appendix IV 
for the others. We find that the intensity of the of the Q(1) site relative to the Q(2) sites is greater at shorter contact time, implying 
that Q(1) species are located in a relatively hydrogen rich environment. We also see that the 1H chemical shift profiles for the Ca:Si ≥ 
1.25 ratios possess a significant contribution above 10 ppm, indicative of strong hydrogen bonding.332 A comparison to HETCOR 
spectra taken at short contact time (see Appendix IV) reveals that the prominence of the downfield region for the Q(1) correlated 
cross sections increases significantly at short contact time, a feature which is not shared by the Q(2b) and Q(2p) cross sections. This 
suggests that the strong hydrogen bonding occurs primarily in association with Q(1) sites. We note that the signature of strong hydro-
gen bonding is almost entirely absent from the HETCOR spectrum of the Ca:Si = 1.00 composition, once again producing a spectrum 
deviating substantially from its relatively calcium rich counterparts.  

The line shapes lack any significant features near 2 ppm, where basic hydroxide protons would be prominent, suggesting any second-
ary amorphous or crystalline Ca(OH)2 phase, if present, is not intimately mixed with the C-S-H structure. Such a signal was previously 
reported for C-S-H compositions with Ca:Si ratios up to 1.5.52, 323 It may be that the C-S-H/Ca(OH)2 nanocomposite results from ex-
cessive drying and aging of the sample. Indeed, a recent high energy X-ray study lending support for a secondary phase of Ca(OH)2 
nanosheets interwoven into the C-S-H interlayer suggests that the Ca(OH)2 phase grows as C-S-H ages.298 

Structural determination 

It is known that C-S-H resembles a defective tobermorite.319, 333 In contrast to previous structural modeling studies for C-S-H, which 
consider random defects in tobermorite systems containing hundreds of atoms,319, 334 we adopt a methodology that focuses on the 
systematic creation of structurally well-defined defects. The defective substructures are then used as building blocks to represent C-
S-H at higher Ca:Si ratios. 

A suitable base structure is required to begin. Tobermorite structures are generally named after their characteristic interlayer dis-
tances; namely, 9 Å, 11 Å, or 14 Å tobermorite.334-336The choice of base structure for modeling depends the Ca:Si ratio337 and drying 
conditions.286, 296 A dataset compiled by Richardson286 shows that the interlayer distance in C-S-H decreases from ~13-14 Å at Ca:Si = 
0.8 to ~10 Å at Ca:Si = 1.5. Recently, Roosz et al.338 have shown that sample preparation and relative humidity significantly affect the 
interlayer distance measurement. The interlayer distance measured for a C-S-H of Ca:Si = 1.2 using XRD in dry and fully hydrated 
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states were 9.5 and 12.3 Å, respectively. Since our samples are hydrated, we choose 14 Å tobermorite (Figure 3-2d) as the base 
motif for constructing our atomic-level model of C-S-H. 

Table 3-1. Dimer mole fraction x0 and mean repeat index for the four compositions analyzed. 

Sample 𝑥R �𝑥K𝑛
K�R

 

Ca:Si = 1.25 0.751 0.450 

Ca:Si = 1.50 0.816 0.285 

Ca:Si = 1.75 0.873 0.185 

Ca:Si = 2.00 0.900 0.136 

 
A defect is introduced by the removal of an SiO2 unit from a Q(2b) unit. The extent to which we need to create defects is determined 
by the distribution of silicate chain lengths. With the Q species populations and connectivities we can determine the distribution of 
chain lengths for each composition, as described in the Appendix IV and given in Table 3-1, to find 

∑ 𝑥K𝑛K�R = Í(Q(2p))
Í(Q(1))

, 

(3-1) 

where xn is the mole fraction of dreierketten chain species with repeat index n, and 

𝑥R = 𝑃4Q(:)±Q(:)8,  

(3-2) 

as the mole fraction of dimers. The quantitative NMR results thereby provide three independent constraints for calculating the dis-
tribution of silicate chains for each C-S-H composition. Using these constraints, we adopt a Monte Carlo method to predict the mole 
fraction distribution for chains up to n = 10, which we report in the Appendix IV for each composition. 

Defect creation transforms the silicate tetrahedrons adjacent to the removed Q(2b) site into Q(1) sites, requiring the addition of H+ and 
CaOH+ to satisfy requirements of local charge balance. Additional molecular units of H2O and Ca(OH)2 can also be incorporated into 
the structure. The defective motif is deemed acceptable if correct atomic bond distances, coordination numbers, and local charge 
balance remain satisfied after structural relaxation using density functional theory (DFT), leading to a series of substructures which 
are classified based on defect geometry. Reduced unit cells are constructed by connecting the defect units through an aqueous 
interlayer or an aqueous interlayer with a CaI and additional OH- for charge balance. To study medium range effects, we also consider 
different ways to combine the reduced unit cells, resulting in chain, dimer, and pentamer motifs. 

We study the effect of these different defect structures on the 1H chemical shifts. A set of reduced unit cells are chosen to ensure a 
wide variety of different local defect environments as represented by the defect classification scheme described in Appendix IV. In 
Figure 3-4c, we show two calculated 1H chemical shift spectra composed by summing over substructures that either possess or lack 
CaB. In comparison with the experimental 1H spectra in Figure 3-4b the calculated spectra suggest that CaB is responsible for gener-
ating 1H NMR signals downfield of 10 ppm. Furthermore, the association between downfield shifted protons and hydrogen bonding 
leads us to infer that bridging calcium holds terminating chains together by coordinating to the defect site and promoting the for-
mation of strong hydrogen bonds. On this basis we might also conjecture that bridging calcium is preferentially associated with sili-
cate dimers, as suggested by the fact that both strong hydrogen bonds and dimers are lost when crossing under to the Ca:Si = 1.00 
composition, though without further evidence this remains speculative. 
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Figure 3-5. Scatter plot showing the correlation between the O–O distances and the chemical shifts of protons participating in the different types of 
hydroxyl-oxygen interactions occurring in the C-S-H substructures. 

The proton chemical shift calculations provide additional structural insight regarding the nature of the hydrogen bonding interactions. 
As Figure 3-5 shows, there is a linear correlation between the calculated 1H chemical shift and the O – O separation of the species 
engaged in electrostatic hydrogen-oxygen interactions, a well-established trend for inorganic oxide systems.60 In particular, we ob-
serve that interlayer water protons that interact with interlayer hydroxide ions and the oxygen atoms of Q(1) sites dominate in their 
contribution to the 1H chemical shift signal above 10 ppm. The key observation here is that each of these types of protons are located 
within 3 to 4 Å of CaB. Furthermore, we may consider that the protons involved in hydrogen bonding between interlayer water and 
a Q(1) oxygen atom are less than a 3 Å from the Q(1) silicon atom and are therefore favored in the HETCOR experiments at short 
contact time. For only two of the substructures analyzed, one of which lacks CaB entirely, the proton from the strongest OH2–OH– 

group is located greater than 5 Å away from a Q(1). We infer that it is these types of protons which explains the prominence of the 
region downfield of 10 ppm in the Q(1) correlated proton spectrum, and that their association with bridging calcium in the structures 
that we have analyzed strengthens the confidence of our association.  

 

Figure 3-6. The structure determined here of C-S-H for a Ca:Si ratio of 1.5, viewed along the [A] axis. The relative proportions of dimers, pentamers, 
octamers, undecamers, and tetradecamers are 81%, 14%, 3% 1%, and 1%, respectively. The chemical composition of this structure is 
Ca1.5SiO3.35(OH)0.3•2H2O. The relative positions of hydroxyls and water molecules have been relaxed keeping all other atoms frozen for ease of visu-
alization. 
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Construction of structures that are representative of C-S-H proceeds by drawing from these defective substructures and the defect-
free motif and tessellating them in a way that satisfies both the constraints of stoichiometry and the chain distribution determined 
by the 29Si NMR results. High Ca:Si ratios are obtained by deprotonation of a Q(2b) silanol and adding CaOH+ and Ca(OH)2 in the form 
of CaA to the interlayer (Figure 3-2e). Our representative C-S-H unit cell is a tessellation of sixty such substructures coming to roughly 
3 nm on each side, consistent with the degree of uniformity found by high-resolution analytical TEM. One such bulk C-S-H structure 
permitted by the ensemble of experimental NMR constraints determined for the Ca:Si ratio of 1.50 is shown in Figure 3-6. A 2 ns MD 
simulation at constant pressure and temperature (300 K) shows that the resulting structures are stable, with realistic bond lengths 
and coordination geometries predicted. The C-S-H structures we propose for each of the four compositions are given in Appendix IV. 
Unlike previously proposed structures based upon defective tobermorite,286, 319, 339-340our computational methodology specifies un-
ambiguously the positions and coordination of calcium in the interlayer, rather than leaving them undefined or relegating its exist-
ence to a second phase, as in the tobermorite/Ca(OH)2 model. We do not claim that these structures represent the most energetically 
stable configurations; rather, we locate a viable, locally minimized configuration satisfying the NMR constraints. The proposed bulk 
structures are representative of a series of similar structures with similar defect concentrations and slightly different atomic arrange-
ments. This should not change the average properties, but does explain why there is very little structural order seen in X-ray powder 
diffraction of non-dried C-S-H. 

3.2.4 Conclusion	
We introduce a new synthetic method for C-S-H which controls pH throughout the process, and we produced uniform C-S-H with 
controlled Ca:Si ratios up to 2.0 for the first time. High sensitivity DNP solid-state NMR techniques have been used to characterize 
unique highly uniform synthetic C-S-H particles with high Ca:Si ratios. In conjunction with atomistic scale modeling, atomic-level 
structures of defective tobermorite coherent over Ca:Si ratios from 1.25 to 2.00 have been determined without invoking secondary 
phases or glassy structures as confirmed by the clear absence of a signal from basic Ca-OH units in the 2D 1H-29Si HETCOR experiments. 
To interpret this data, we developed a computational approach which explores defective tobermorite sub-structural candidates, 
combining them in a manner satisfying our experimental constraints to build a full 3D structure which provides an accurate repre-
sentation of structural and chemical environments in C-S-H for Ca:Si ratios up to 2.0. essential aspect of these structures is the inclu-
sion of a calcium site in the interlayer which bridges chain terminating silicate Q(1) sites. This site is associated with an environment 
of strong hydrogen bonding which stabilizes the structure and, consequently, promotes high Ca:Si ratios in C-S-H. This thus establishes 
a clear relation between the atomic-level defect structure and the high Ca:Si ratio in C-S-H. This knowledge of the defect structure is 
a prerequisite for overcoming the self-limiting growth of C-S-H and to better understand growth mechanisms and kinetics. Such 
knowledge can further help formulate new classes of sustainable cements capable of exhibiting strong chain-bridging hydrogen bond-
ing features while ensuring the early age strength development of the material.  

3.2.5 Appendix	IV	

Supporting Analysis 

XRD. X-ray diffraction data was collected with a Bruker D8 Discover X-Ray diffractometer using double bounced monochromatic CuK 
alpha radiation (λ=1.54 Å) with a fixed divergence slit size 0.5° and rotating sample stage. Freshly prepared C-S-H collected after 
washing with a water-ethanol solution followed by vacuum filtration was placed onto the sample stage and XRD patterns were rec-
orded. 

STEM EDX. Uniformity of the C-S-H was proved by chemical mapping or EDX measurements in STEM mode, using a FEI Tecnai Osiris 
analytical TEM instrument optimized for speed and sensitivity. The four windowless Super-X SDD EDX detectors integrated into the 
pole piece allow detection of 200,000 X-ray counts/s over a 0.9 rad solid angle. A high brightness XFEG gun allows EDX maps to be 
acquired in seconds to minutes. With a 11 Mpx Gatan Orius CCD camera, the microscope is also suitable for conventional BF/DF and 
high resolution TEM imaging. A BF, two ADF, and an HAADF STEM detector provide a wide range of diffraction and Z-contrast condi-
tions. It operates with 200 kV high brightness XFEG with a point resolution of 0.24 nm and a probe current of 2 nA for EDX studies. 
The sample was prepared by dispersing 50 mg of C-S-H in 40 mL of isopropanol. A drop of the suspended liquid was allowed to dry 
on a 300 mesh copper grid. 

XRF. In order to cross check the ICP results the samples were analyzed using X-Ray fluorescence spectroscopy (Optim’X 9900 Ceram 
XRF model). 20 g of hydrated sample was dried at 105 °C for 24 hours and ignited at 950 °C for 1 hour. 7.7 g of lithium tetraborate 
(Li2B4O7) was added to the 0.7 g of calcinated sample to make a fused bead. 
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TGA. Samples were heated at 10 °C/min from 30 °C to 1000 °C to record the weight losses in setup from Mettler Toledo AG 
(TGA/SDTA851e). The total water bound in C-S-H was quantified from the total water loss between 30 and 250 °C. The amount of 
portlandite is quantified from the water loss around of the peak in the range from 400 – 480 °C and calcium carbonate was around 
630 – 710 °C. No prior sample preparation involved. 

ICP. ICP was performed on an ICPE-9000 series (Shimadzu) instrument, a multi-type ICP emission spectrometer with a near ppb 
detection limit. The sample compositions were analyzed using Optical Emission Spectroscopy mode (ICP-OES). 7 mL of 65% HNO3 was 
added to a 0.25 g sample of C-S-H, then another 5 mL of fuming 100% ultra-pure HNO3 was added to ensure complete dissolution. 
Each analysis consists of verification at further levels of 1-, 10-, and 100-fold dilution in pure water, with the 10-fold dilution affording 
concentrations best situated in the calibrated range of the instrument. Each analysis was repeated three times to check consistency. 

Synthetic apparatus  

The reaction system was fabricated in-house for the synthesis of C-S-H. The construction material is poly(methyl methacrylate), which 
is chemically stable under acidic or basic conditions. Figure 3-7 shows a schematic of the reactor. It has four main parts – base, 
cylindrical wall, lid and micromixer unit. Calcium ion selective, conductivity, and pH measurement electrodes are inserted into the lid 
for real-time monitoring of the reaction conditions. There are also channels that allow for a purging flow of nitrogen gas across the 
main reaction chamber and an opening used for withdrawing small amounts of sample for kinetic analysis. A micromixer system is 
mounted on top of the vessel, consisting of three channels emerging form a central vertical column. The length of the column is fitted 
with a spiral static mixer to combine the reactant solutions prior to admission into the reaction chamber. 

 

Figure 3-7. Schematic of the reaction vessel. A low pulsation piston pump was used to feed the reactants into the channels A, B, and C at rates 
between 0.01 mL/min to 5 mL/min. The off-axis reactant channels join the mixing column at an angle of 60°. The stirring rate was 700-800 rpm. 
Calcium ion selective, conductivity, and pH measurement electrodes are inserted into the lid for real-time monitoring of the reaction conditions. 
There are also channels that allow for a purging flow of nitrogen gas across the main reaction chamber and an opening used for withdrawing small 
amounts of sample for kinetic analysis. Nitrogen gas flowing at a rate of 20 mL/min was used to purge the chamber over the course of the reaction. 
Data was Recorded on a PC using LabX software (Mettler-Toledo). 
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Preparation and recovery 

Solutions of calcium nitrate and sodium silicate were prepared in decarbonized water by boiling demineralized ultra-pure water 
(milliQ) for one hour and cooling in an ice bath. Solutions were immediately prepared after cooling. The quantity of solute used was 
measured with high accuracy. Measuring electrodes were calibrated twice before each synthesis. To avoid premature nucleation, all 
chemical glassware was washed and dried under laminar flow hood (Skanair®, Scan AG). After crystallization, the precipitated solids 
were recovered by washing and vacuum filtration. For each 200 mL aliquot, an equal amount of ultra-pure water mixed with ethanol 
(50:50 v:v), followed by pure ethanol, was used for the wash. Vacuum filtration was done on 20 nm filter paper (WhatmanTM, GE 
health care, ø 50 mm) to recover the washed C-S-H. The precipitated gel was carefully taken off the filter paper and stored in an 
airtight container. For characterization by TGA and XRD, drying of the filtered solid was necessary. This was performed under nitrogen 
flow at 70°C for 3 hours or 6 hours. All other characterizations were carried out in the native gel form. 

Synthesis and characterization 

For the current synthetic system, pH is a determining parameter for precipitation and ultimately controls the Ca:Si ratio and mor-
phology. This is a consequence of how pH determines the predominant type of silicate species available in solution for reaction. 
Orthosilicic acid (Si(OH)4) resists hydrolyzation even near neutral pH conditions owing to its small ionic radius (0.42 Å) and is therefore 
the predominant solution species below pH 7. In addition to pH, the silicate species which appear in an aqueous system is a sensitive 
function of cation type and concentration, such that the presence of small quantities of impurities can yield different synthetic results. 
In general, hydrolysis proceeds according to the following reaction to produce anionic species: 

Si(OH)x (aq) à SiOx(OH)4-xx- + xH+. 

(3-3) 

 

Figure 3-8. Predominant silicate species in aqueous solution as a function of pH according to different conditions and methods.341-342 

Sodium silicate solutions at high pH are likely to contain silicates such as SiO2(OH)22-. Gibbs energy minimization software312 (GEMS) 
predicts the same species in solution under these conditions. In conjunction with molecular dynamics (MD)343, we summarize the 
presumable possible silicate species in solution as a function of pH in Figure 3-8. As long as an appropriate target pH range (pH > 11) 
is maintained, a chemical equilibrium favoring the silicate species SiO2(OH)22- can be achieved under a wide variety of chemical con-
ditions even at high silicate concentrations. In other words, regardless of whether or not an initially high concentration (high super-
saturation) or low concentration (low supersaturation) of aqueous silicates is used, the pH can be used to favor high concentrations 
of the important silicate species SiO2(OH)22-, leading to the production of pure uniform product C-S-H, so long as the mixing is ade-
quate. 

We begin by setting a 2:1 ratio of calcium to silicon in the starting solution using equal volumes of 0.2 M and 0.1 M calcium nitrate 
to sodium silicate. GEMS311-312 was used to calculate the pH required to achieve different Ca:Si ratios, and this pH was achieved during 
synthesis by adding an appropriate amount of concentrated NaOH, which is given in Precipitation was allowed to occur for 24 hours 
before the product was collected and analyzed. The pH calculated according to GEMS agrees with the experimentally measured pH. 
We see the amount of OH- added in the system leads to a consistently increasing Ca:Si ratio in the solid precipitating phase. 
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Table 3-2. Amount of NaOH added to the reaction to achieve the pH necessary to produce the targeted Ca:Si ratio according to GEMS. The actual 
pH during the reaction is given in the final column. 

Target Ca:Si 
(GEMS) 

NaOH 
(GEMS) 

pH 
(GEMS) 

pH 
(Experiment) 

1.0 0.05 mL 10.87 11.1 
1.25 5.16 mL 11.47 12.5 
1.5 10.58 mL 12.05 12.6 

1.75 16.62 mL 12.55 12.7 
2 20.00 mL 12.81 12.8 

 

TEM analysis (Figure 3-9) shows that the morphology of the precipitated particles changes at pH 11 and a Ca:Si ratio of 1.25. The 
morphology resembles foils (nanofoils) for pH ≥ 11, Ca:Si ≥ 1.25; and globules (nanoglobules) for pH < 11, Ca:Si < 1.25. Repeat analysis 
confirms that these results can be easily replicated by our synthetic apparatus.  

The composition of C-S-H produced by the rapid precipitation method is summarized in Elemental analysis for calcium, silicon, and 
sodium by ICP-OES indicates that the rapid precipitation method described here succeeds in synthesizing C-S-H with the targeted 
Ca:Si ratios. Despite the low measured sodium concentration, we cannot completely exclude the possibility that inclusion of some 
sodium may affect the structure. Nevertheless, when KOH is used as the pH regulator, we observe the formation of C-S-H globules 
for the Ca:Si = 1.00 composition and C-S-H foils for the Ca:Si = 2.00 composition. These products have the same morphological prop-
erties as the product obtained when NaOH is used as the pH regulator, as shown in Figure 3-9. On the other hand, the presence of 
cations such as Mg2+ or Ba2+ leads to the formation of a heterogeneous mixture of products. This strongly suggests that alkali cations 
are not critical structure determining factors, and that they serve primarily as charge balancing spectators. 

Furthermore, our key structural insight is the necessity of the bridging calcium, CaB, which we propose is attendant to almost every 
defect site at high Ca:Si ratios. Considering sodium substitution of CaB, we calculate the Na:defect ratio,	2(𝑛TG/𝑛UL)/P4Q(1)8, where 
𝑛TG/𝑛UL is the Na:Si mole ratio by ICP-OES and P4Q(1)8 is the population of Q(1) sites determined by NMR. We find this ratio is between 
10 mol% and 30 mol% for each of the compositions with Ca:Si mole ratios at or above 1.25. This means that even in the worst-case 
scenario, in which every sodium atom substitutes a bridging calcium in a one-to-one fashion (for which we see no driving force), there 
is not enough sodium to accommodate every defect. In consideration of these matters, we remain confident that the key structural 
properties of our C-S-H systems can be analyzed in neglect of the small residual alkali content. 

 

Figure 3-9. TEM imagery showing the morphology of the C-S-H produced for the Ca:Si ratio extremes when different alkali cations are present in 
the reaction. (a) Globule morphology produced for the Ca:Si = 1.00 composition using NaOH as pH regulator. (b) Foil morphology produced in the 
NaOH regulated reaction for the Ca:Si = 2.00 composition. (c,d) Same as (a) and (b), respectively, but for the KOH regulated reactions. 

  

(a) (c)

(d)(b)



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

139 

Table 3-3. Mole ratios of important C-S-H components determined by various characterization methods. 

Nominal 
Ca:Si 

Ca:Si 
(XRF) 

Ca:Si 
(ICP-OES) 

Na:Ca 
(ICP-OES) 

Na:defect 
(ICP-OES/NMR) 

1.00 1.04 1.01 ± 0.03 0.13 ± 0.01 0.88 ± 0.13 

1.25 1.21 1.24 ± 0.01 0.05 ± 0.02 0.20 ± 0.07 

1.50 1.51 1.51 ± 0.03 0.02 ± 0.01 0.09 ± 0.06 

1.75 1.77 1.78 ± 0.04 0.07 ± 0.02 0.30 ± 0.08 

2.00 1.94 2.00 ± 0.07 0.05 ± 0.01 0.25 ± 0.04 

 

 

Figure 3-10. Characterization of freshly prepared C-S-H for Ca:Si ratio of 2. (a) SEM image showing foil morphology. (b) FTIR analysis.(c) XRD analysis. 
Resolved peaks corresponding to C-S-H are indicated with stars. Minor peaks correspond to calcium carbonate, which also contributes to the major 
peak at 29° where it overlaps a C-S-H peak. (d) TGA analysis. A calcium hydroxide phase is never observed, but XRD and TGA reveal that C-S-H is 
susceptible to the formation of calcium carbonate after prolonged air exposure. 

These results confirm that our synthetic procedure yields particles of C-S-H with the targeted Ca:Si ratios. Importantly, the formation 
of Ca(OH)2 is never observed, as illustrated by the FTIR, TGA and XRD analyses of the Ca:Si = 2.00 sample shown in Figure 3-10. It is 
worth noting, however, that long exposure of fresh C-S-H samples in open air (for example in TGA or XRD analysis) does eventually 
lead to the formation of CaCO3. 

  

(a)

(c) (d)

(b)
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Sample uniformity  

Determination by non-invasive Raman microscopy. We demonstrated compositional uniformity on pellet of C-S-H with a smoothed 
surface. The spot analysis (1 µm2) analyzed more than 30 points on the particle surface. At depths of 4 µm and 8 µm the characteristic 
peaks positions in the C-S-H do not change, indicating the chemical environment uniformity of the sample at the micron level. A visual 
overview of the sampling and the results are given in Figure 3-11. 

 

Figure 3-11. Raman microscopic analysis: (a) Sample pellet preparation, (b) Spot size used for analysis, (c) intensity plot comparing Raman spectra 
of all 30 spots, (d) stacked plot comparing Raman spectra of all 30 spots. 

Determination by STEM-EDX. To prove the uniformity and consistency of the C-S-H samples to an even greater degree of spatial 
resolution, EDX in STEM mode was performed on the predefined grids. Once STEM micrographs are obtained, post-processing is 
performed using Bruker Esprit 1.8 software to obtain the corresponding chemical maps for the samples. The exported STEM image 
is processed for several parameters like detector effect corrections, Bremsstrahlung background, and Cliff-Lorimer quantification. 
The major constituents of our C-S-H system are defined for elemental identification. The maps are binned after defining the evalua-
tion methods. As shown in Figure 3-11, about 50 – 60 points are analyzed individually from the chemical maps. Each spot corresponds 
to one pixel whose size is 2.34 nm x 2.34 nm. The signal obtained from each spot is processed to arrive at the final Ca:Si ratio at these 
points. A large background contribution to the signal is removed throughout the signal range spectra deconvolution is to be per-
formed to address overlapped lines in the spectrum. The final quantification results of Ca:Si for each of these spots are recorded. For 
each sample, the standard deviation of the Ca:Si ratios measurements is less than 1%. EDX analysis provides us with useful infor-
mation on the consistency of the Ca:Si ratio within the structure but due to the difficulty of accurately calibrating the instrument the 
actual Ca:Si determined ratio systematically less than that obtained from the XRF and ICP methods.  

 

Figure 3-12. C-S-H chemical map revealing the spots used for the EDX analysis. 

(a)

(c) (d)

(b)
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DNP enhanced NMR experiments 

Sample preparation. Table 3-4 describes the formulation of the samples, which were prepared as described in the Methods section. 
The C-S-H gels do not have an indefinite shelf life and are observed to harden over several weeks to months even in airtight contain-
ers. Driving off supernatant water from the gels accelerates this process. By drying the gels on a watch glass for about half an hour, 
very high DNP enhancements approaching 100 could be obtained, but the line shape would exhibit comparatively large Q(2) signals. 
Occasionally, signals from Q(3) and Q(4) species were observed, confirming that silicate polymerization accompanied the drying pro-
cess. 

Table 3-4. Formulation of samples used for DNP experiments. mgel gives the mass of gel mixed with magent amount of DNP polarization agent. min is 
the amount of DNP ready C-S-H slurry that was put into in the rotor. tprep is the estimated out of time between release of the C-S-H from storage in 
a saturated atmosphere to insertion of the sample into the DNP probe at 100 K. 

Sample mgel / mg magent / mg min / mg tprep / min 
Ca:Si = 1.00 124.1 25 - 60 
Ca:Si = 1.25 133.3 33.3 26.6 75 
Ca:Si = 1.50 119.3 31.8 23.8 15 
Ca:Si = 1.75 114.1 27.0 23.4 15 
Ca:Si = 2.00 121.0 30.6 25.4 15 

 

NMR parameters. Table 3-5 gives the list of experimental parameters common to all NMR experiments, unless otherwise noted. All 
processing for the spectra presented here was performed using RMN.344 Line shape analysis was performed using gnuplot. 1D CP 
MAS shifted echo experiments were performed using the sequence shown in Figure 3-12. In the presence of significant inhomoge-
neous broadening, advantages of the shifted echo experiment over conventional CP-detect are an improvement in sensitivity and 
improved accuracy of phase correction procedures. 

Table 3-5. Parameters common to all NMR experiments. 

MAS rate 12.5 kHz 
1H contact rf 60 kHz 

1H pulse/dec rf 100 kHz 
1H ramp profile 0.9 ® 1.0 

X contact RF 46 kHz 
X pulse rf 66 kHz 

Recycle delaya 3.0 s 
aRecycle delay of 1.5 s used for 2D experiments on the Ca:Si = 1.00 sample. 

 

Figure 3-13. DNP enhanced CP MAS shifted echo pulse sequence used in this work. 

For each sample, t = 9.6 ms, tCP = 7 ms, and 32 transients were collected for a total experiment time of 1.6 min each. Gaussian 
apodization with a s of 4.243 ms was applied to the t2 signal envelope.  
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This experiment formed the basis of the variable contact time experiments, which nonuniformly sampled 49 different values of tCP: 
200 µs to 2 ms (200 µs increment), 2.5 ms to 12 ms (500 µs increment), 14 ms to 30 ms (2 ms increment), and 35 ms to 80 ms (5 ms 
increment). 2D CP MAS refocused whole echo INADEQUATE experiments331 were performed using the sequence shown in Figure 
3-14. In addition to the use of hyper complex acquisition345 to collect echo and anti-echo pathways, acquisition was initiated after 
the final π pulse in order to collect the entire signal envelope. This improves the sensitivity of the experiment and minimizes phasing 
artifacts during processing. 

 

Figure 3-14. DNP enhanced CP MAS refocused whole echo INADEQUATE pulse sequence used in this work. The two pI symmetry pathways (dashed 
and solid green) and anti-pathways (dashed and solid magenta) were collected and processed using hypercomplex acquisition. Whole signal enve-
lopes were acquired during t2 for path and anti-pathways. 

For each sample, tJ = 36 ms, tCP = 7 ms. The t1 increment used was 240 µs. 16 complex t1 points were collected. Other acquisition 
parameters are given in Table 3-6 below. 

Table 3-6. Acquisition parameters for 2D refocused INADEQUATE experiments. 

Sample Transients Experiment Time 
Ca:Si = 1.00a 640 9.6 h 
Ca:Si = 1.25 320 9.0 h 
Ca:Si = 1.50 320 9.0 h 
Ca:Si = 1.75 512 14.5 h 
Ca:Si = 2.00 512 14.5 h 

A gyrotron outage, lasting about an hour, occurred near the end of the experiment. The spectrum is qualitatively unaffected. 

A shearing transformation was used to create a representation of the 2D INADEQUATE data that correlates two independent single-
quantum dimensions.346 Gaussian apodization with s of 6 ms and 3 ms were applied to the t2 and t1 signal envelopes, respectively. 
The HETCOR echo sequence was performed using the sequence shown in Figure 3-15, utilizing the eDUMBO-22 homonuclear decou-
pling scheme347-348 to suppress the line broadening from 1H – 1H dipolar interactions. This also scales the chemical shift and introduces 
an additional offset into the spectrum which were determined by comparison to a reference HETCOR spectrum of L-alanine. These 
values were used to present a corrected 1H chemical shift dimension for the spectra shown in Figure 3-20 and Figure 3-21, as well as 
Figure 3-4. 
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Figure 3-15. DNP enhanced HETCOR echo sequences used in this work. Hypercomplex acquisition was used to collect path and anti-pathways for t1 
evolution. Homonuclear decoupling was applied during t1. Whole signal envelopes were acquired during t2 for path and anti-pathways. 

For each sample, t = 9.6 ms. The eDUMBO pulse length was 32 µs. Other acquisition parameters are given in Table 3-7 

Table 3-7. Acquisition parameters for HETCOR experiments. 

Sample  tCP Complex t1 points ∆t1 Transients Experiment Time 
Ca:Si = 1.00 0.7 ms 48 32 µs 24 61 min 

 7 ms 48 32 µs 8 20 min 
Ca:Si = 1.25 0.7 ms 48 32 µs 12 59 min 

 7 ms 48 32 µs 4 20 min 
Ca:Si = 1.50 0.7 ms 44 32 µs 12 55 min 

 7 ms 48 32 µs 4 20 min 
Ca:Si = 1.75 0.7 ms 20 64 µs 32 66 min 

 7 ms 20 64 µs 16 33 min 
Ca:Si = 2.00 0.7 ms 20 64 µs 32 66 min 

 7 ms 20 64 µs 16 33 min 
 

Gaussian apodization with decay constant of 4.243 ms and 1.2 ms were applied to the t2 and t1 signal envelopes, respectively. The 
apodization was applied to the t1 dimension prior to multiplying the sampling interval by the chemical shift correction factor lcs = 
0.57. 

Sensitivity of DNP 

For each sample, 1H spectra were acquired both in the presence and absence of microwaves to measure the DNP enhancement of 
the protons. The enhancement level could not be determined accurately on the basis of the 1H spectra alone due to a nonuniform 
enhancement of the broad line shape. The estimated proton enhancements eDNP(1H) are shown in Table 24 below. Whereas a non-
exponential recovery was observed for a 1H saturation recovery experiment with approximate TDNP(1H) = 1.3 s, a 29Si CP saturation 
recovery experiment revealed a nearly exponential buildup with TDNP(1H-29Si) = 2.4 s. This suggests polarization relay into C-S-H par-
ticles with a steady state polarization reached after about ten seconds.  

Table 3-8. Proton signal enhancements.  

Sample eDNP(1H) 
Ca:Si = 1.00 40 
Ca:Si = 1.25 70 
Ca:Si = 1.50 40 
Ca:Si = 1.75 45 
Ca:Si = 2.00 35 
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The sensitivity enhancement for DNP is called S† and can be written as the product of several factors,349  

ΣW = 𝜀¬)Í𝜃𝑑h°gIY¯J3b°K Z
𝑆:RRå
𝑆;[\å

]Ø
𝑇:
𝑇¬)Í

, 

(3-4) 

where q is the fraction of observable nuclei in the sample, which is less than unity due to depolarization and quenching by the radical. 
dformulation is a dilution factor related to the fact that additional of the polarization agent may reduce the amount of sample that can 
be placed into the rotor. The ratio S100K / S298K is generally accounts for the improvement in sensitivity gained by going to 100 K due 
to the ~2.8 improvement in the Boltzmann polarization as well as, e.g., an improvement in the probe quality factors. TDNP is the 
approximate polarization build up time of the protons under DNP, and is to be compared room temperature proton T1 values for C-
S-H measured to be around 0.2 s.52  

Equation 3-4 applies strictly only to signal from the polarizing agent and surface signals. Because the proton polarization is relayed 
into the C-S-H nanoparticles by proton spin diffusion, it is only of approximate validity. Nonetheless, taking q ≈ 1 (signal is dominated 
by bulk C-S-H), dformulation ≈ 0.8 (on the basis of Table 3-4), S100K / S298K ≈ 5, and (T1 / TDNP)½ ≈ 0.25, and the proton enhancements 
measured in Table 3-8, the sensitivity enhancement by DNP is generally the same as eDNP(1H), indicating reduction of corresponding 
cross-polarization experiment times by (eDNP(1H))2, or about three orders of magnitude. 

Quantification of Q species populations 

Relative signal intensities in DNP enhanced CP MAS experiments are not usually in proportion to the relative populations of the nuclei 
generating the signal as they often are in experiments using direct excitation without hyperpolarization. Nonetheless, we can still use 
these signals for site quantification provided we assume that: 

1. The length scale of hyperpolarization nonuniformity is larger than the unit cell of the particle, and 

2. Cross-polarization kinetics can be measured and used to adjust the signal intensities appropriately. 

The size of the C-S-H particles are sufficiently small (characteristic length ~100 nm) and have a proton density sufficient for nearly 
uniform polarization of the particles over the recycle period. To the second point, we performed cross-polarization measurements 
for different values of the cross-polarization contact time tCP, as shown in the first column of Figure 3-16. This data was fit to a simple 
IS model of CP kinetics for each site330. For our kinetic model, the signal intensities due to cross-polarization are given as a function 
of the cross-polarization contact time tCP by 

𝐼(𝜏«Í) = 𝐼R
𝑒
�_`a)bc − 𝑒�

_`a
)Ed

1 − 𝑇/�
𝑇:»

, 

(3-5) 

where T1r is the spin-lattice relaxation constant during rf irradiation and TIS is the cross-relaxation time. I0 is the base intensity, pro-
portional to the equilibrium magnetization and hence number of nuclei generating the NMR signal for the given site. The 1D CP echo 
line shape was used in an initial unconstrained fit to three independent Gaussian functions, each representing the Q(1), Q(2b), and Q(2p) 
contributions. From this a set of mean Gaussian shift (d) and widths (s) for the frequency spectrum was determined and used to 
constrain the fit to the variable contact time data for the cross-polarization kinetic parameters. Stack plots representing the best fit 
and residual plots to this data are shown as the second and third columns of Figure 3-16. The cross-polarization kinetic parameters 
we determine from this analysis is given in Table 3-9. 
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Table 3-9. Cross-polarization kinetic parameters determined by the variable contact time experiments. 

Sample Q(1) Q(2b) Q(2p) 
T1r / ms TIS / ms T1r / ms TIS / ms T1r / ms TIS / ms 

Ca:Si = 1.00 32.5 ± 0.6 1.81 ± 0.04 25.6 ± 0.8 1.09 ± 0.04 44.4 ± 0.6 4.07 ± 0.06 
Ca:Si = 1.25 27.1 ± 0.3 2.31 ± 0.02 26.1 ± 0.9 1.41 ± 0.05 38.2 ± 0.9 5.14 ± 0.13 
Ca:Si = 1.50 33.8 ± 0.3 2.19 ± 0.02 34.6 ± 2.1 1.24 ± 0.09 45.6 ± 1.7 4.78 ± 0.18 
Ca:Si = 1.75 25.9 ± 0.2 2.22 ± 0.02 28.6 ± 1.9 1.49 ± 0.12 38.1 ± 1.9 4.62 ± 0.24 
Ca:Si = 2.00 28.0 ± 0.2 2.40 ± 0.02 30.9 ± 2.7 1.29 ± 0.14 40.3 ± 2.5 4.91 ± 0.32 

 

To complete the quantification, the 1D CP echo data was refit using Equation 3-5 for the base intensities as well as new Gaussian 
shift parameters. The previously determined T1r, TIS, and Gaussian width parameters, averaged across the compositions with Ca:Si ≥ 
1.25 for each site, were used for determination of the base intensities. The exception was the Ca:Si = 1.00 composition, where its 
own T1r and TIS parameters were used. In accordance with the dreierketten model, the additional constraint I0(Q(2p)) = 2 I0(Q(2b)) was 
enforced. The 1D CP echo spectra, best fit to this constrained 1D model, and best fit residuals are shown in Figure 3-16. Associated 
Gaussian shift and width parameters are given in Table 3-10. 

Table 3-10. Shift (d) and width (s) parameters determined by the three Gaussian fit to the 1D CP MAS shifted echo data. The d parameters were 
found in a fit subject to the constraint I0(Q(2p)) = 2 I0(Q(2b)); s parameters were carried over from a prior unconstrained fit. 

Sample Q(1) Q(2b) Q(2p) 
d / ppm s / ppm d / ppm s / ppm d / ppm s / ppm 

Ca:Si = 1.00 -79.71 ± 0.08 1.34 ± 0.05 -82.72 ± 0.08 1.08 ± 0.11 -85.77 ± 0.04 1.29 ± 0.03 
Ca:Si = 1.25 -79.17 ± 0.02 1.25 ± 0.03 -81.85 ± 0.08 1.42 ± 0.31 -85.33 ± 0.03 1.25 ± 0.04 
Ca:Si = 1.50 -79.10 ± 0.01 1.31 ± 0.02 -81.64 ± 0.07 1.03 ± 0.21 -85.17 ± 0.03 1.27 ± 0.06 
Ca:Si = 1.75 -78.90 ± 0.01 1.27 ± 0.01 -81.54 ± 0.07 1.20 ± 0.19 -84.90 ± 0.03 1.24 ± 0.05 
Ca:Si = 2.00 -78.87 ± 0.01 1.27 ± 0.01 -81.53 ± 0.08 1.11 ± 0.15 -84.81 ± 0.03 1.30 ± 0.05 

 

By normalizing the sum of the base intensities to unity, we determine the Q species populations, reported in Table 3-11. As the 
residuals in Figure 3-17 indicate, the analysis is not valid for the Ca:Si = 1.00 composition.  

Table 3-11. Q species populations, subject to the constraint P(Q(2p)) = 2 P(Q(2b)).  

Sample P(Q(1)) P(Q(2b)) P(Q(2p)) 
Ca:Si = 1.00 0.290 ± 0.027 0.237 ± 0.009 0.473 ± 0.018 
Ca:Si = 1.25 0.597 ± 0.107 0.134 ± 0.036 0.269 ± 0.071 
Ca:Si = 1.50 0.700 ± 0.051 0.100 ± 0.017 0.200 ± 0.034 
Ca:Si = 1.75 0.783 ± 0.053 0.072 ± 0.018 0.145 ± 0.035 
Ca:Si = 2.00 0.830 ± 0.036 0.057 ± 0.012 0.113 ± 0.024 
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Figure 3-16. Stacked plots for the variable contact time spectra, best fit using the kinetic model, and the best fit residuals. 
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Figure 3-17. Deconvolution of the line shapes obtained in the DNP enhanced 1D CP MAS shifted echo experiments using the three Gaussian model 
described in the main text. The intensities are subject to the constraint I0(Q(2p)) = 2 I0(Q(2b)). 

Quantification of chain distributions 

Each peak in the A-B chemical shift correlation line shapes presented by the INADEQUATE spectra in the first column of Figure 3-18 
were modeled by a 2D Gaussian function with zero correlation between independent A and B chemical shift dimensions. The shifts 
of the Gaussian functions along each dimension was constrained to the values shown in . The Gaussian width parameters were fixed 
to the same values for each fit, which were obtained by fitting the 1D projection onto the A chemical shift axis to three independent 
1D Gaussian functions for the Ca:Si ≥ 1.25 compositions and taking the mean for each corresponding Q site. The 2D line shape model 
permits up to nine independent 2D Gaussian functions to be used; however, the functions corresponding to the Q(1)-Q(2b), Q(2b)-Q(1), 
and Q(2b)-Q(2b) correlation peaks were omitted on the basis of the dreierketten model and validated by the absence of significant 
signal in the corresponding regions of the INADEQUATE spectra. The 2D experimental line was then fit for the intensities of the six 
constituent 2D Gaussian functions. The second and third columns of Figure 3-18 shows the best fit results and residuals. Table 3-12 
gives the unnormalized peak intensities. 
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Figure 3-18. Experimental A-B correlated 2D refocused INADEQUATE spectra, best fit to the 2D Gaussian model, and best fit residuals for the C-S-H 
compositions with Ca:Si ≤ 1.25. Contours are drawn in 10% intervals beginning at 5% of the maximum signal intensity; the residual plots are relative 
to the experimental maximum and both positive (blue) and negative (green) contours are shown. 

Table 3-12. Unnormalized best fit intensities of the A-B correlation peaks of the 2D refocused INADEQUATE spectra to the 2D Gaussian line shape 
model. 

Sample I(Q(1)|Q(2p)) I(Q(2b)|Q(2p)) I(Q(2p)|Q(2p)) I(Q(2p)|Q(2b)) I(Q(1)|Q(1)) I(Q(2p)|Q(1)) 
Ca:Si = 1.25 78.95 59.84 86.91 58.78 153.31 94.12 
Ca:Si = 1.50 135.28 72.49 83.05 113.60 347.60 122.16 
Ca:Si = 1.75 64.82 34.32 36.35 40.77 247.07 59.04 
Ca:Si = 2.00 94.99 44.51 44.13 60.77 498.70 95.04 
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The intensity of an A-B correlation peak, denoted I(B|A), is given by, 

𝐼(𝐵|𝐴) = 𝑓(𝐵|𝐴)𝑃(𝐵|𝐴)𝑃e(𝐴). 

(3-6) 

We solve for the conditional probability P(B|A): the probability that a 29Si nucleus of species B was detected given that it evolved 
with partner 29Si nucleus of species A. They are normalized, 

�𝑃(𝐵|𝐴)
f

= 1, 

(3-7) 

and Baye’s theorem relates P(B|A) to P(A|B): 

𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵)𝑃e(𝐵)

𝑃e(𝐴)
. 

(3-8) 

Pw(A) is the population of species A weighted for pair participation. At the sparse 4.7% natural abundance of 29Si, the Q(2) sites are 
nearly twice as likely to have a 29Si partner; therefore, Pw(Q(2b)) and Pw(Q(2p)) are obtained from the populations measured in the 1D 
experiments by doubling the population measured from the 1D experiments and renormalizing. Note that the sparse labeling simpli-
fies the weighting analysis since the entire NMR signal is assumed to be derived only from isolated pairs and not triplets, etc. Finally, 
f(B|A) is an amplitude transfer factor that accounts for Q site differences in e.g. CP efficiency, T2’ relaxation, and J-coupling distribu-
tions, and were assumed not to change as a function of Ca:Si ratio. 

The experimental intensities were normalized for each composition by dividing out I(Q(1)|Q(1)). Through the laws given above and the 
constraints imposed by the dreierketten model, any other conditional probability can be determined once P(Q(1)|Q(1)) is known. Upon 
substitution of Equation 3-6 for each composition and using Pw(A) values determined from the 1D quantitative analysis, the five 
transfer factor ratios (Table 3-13) and P(Q(1)|Q(1)) for each composition were determined through a simultaneous fit of the twenty 
intensity ratios (five for each composition).  

Table 3-13. Transfer factors determined for each type of correlation peak. 

f(Q(1)|Q(2p)) f(Q(2b)|Q(2p)) f(Q(2p)|Q(2p)) f(Q(2p)|Q(2b)) f(Q(1)|Q(1)) f(Q(2p)|Q(1)) 
1.64 0.64 2.09 0.72 1 (defined) 1.74 
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The conditional probabilities are related to the distribution of chain species by 

𝑃4Q(:)±Q(:)8 = 𝑥R,  

(3-9) 

𝑃4Q(:)±Q(;p)8 =
∑ 𝑥KK�:

∑ 𝑥K(2𝑛)K�:
, 

(3-10) 

𝑃4Q(;b)±Q(;p)8 =
1
2, 

(3-11) 

𝑃4Q(;p)±Q(;p)8 = ∑ 2gghb (K�:)
∑ 2g(;K)ghb

 , 

(3-12) 

where the mole fractions of chains with repeat index n is denoted xn. Application of the laws of conditional probability lead to the 
constraints reported in above. The parameters determined by our analysis are given in Table 3-1. 

Recalling that previous studies have generally focused on Ca:Si < 1.50, which are not relevant to industrial formulations, we highlight 
that the Ca:Si = 1.00 composition is remarkable in that silicate dimers appear to be completely absent (x0 = 0), as noted by the lack 
of a prominent Q(1)-Q(1) correlation peak observed for all of the other C-S-H compositions. This is shown in Figure 3-19. 

 

Figure 3-19. Experimental A-B correlated 2D refocused INADEQUATE spectrum for Ca:Si = 1.00. A gyrotron outage, lasting about an hour, occurred 
near the end of the experiment. The spectrum is qualitatively unaffected. 
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Heteronuclear 1H-29Si correlation 

For each composition, a 2D HETCOR experiment using the pulse sequence described in Figure 3-15 was performed for both a short 
(0.7 ms) and long (7 ms) values of tCP. The use of a short contact time biases the contribution to the NMR signal from those protons 
that are close to the correlating 29Si nuclei, though without significant proton density fewer than three bonds away from the Si nuclei, 
the notion of a well-defined cutoff distance for the signals which appear in the correlation spectrum loses significance.330 

 

Figure 3-20. Complete series of DNP enhanced HETCOR spectra at both short and long contact times for all compositions studied.  
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Figure 3-21. 29Si site correlated 1H spectra taken as cross sections from the full 2D HETCOR spectra at the appropriate 29Si chemical shifts. 

Structural model 

It is known that C-S-H resembles a defective tobermorite.319, 333 To create a structure based on defective tobermorite that possesses 
high Ca:Si ratios, we build substructures of C-S-H according to the following procedure:  

§ Deprotonate silanol in the bridging tetrahedrons and replace it with a CaOH+ ion in the interlayer. 

§ Remove a bridging silicate tetrahedron, performing charge compensation by adding two protons or a proton and a CaOH+ 

ion or addition of a Ca2+ to coordinate the bridging site (CaB site in Figure 3-22).  

§ Add Ca(OH)2 units in the interlayer space (CaI and CaA) to obtain higher Ca:Si ratios. 

We study the effect of these different defect units (Figure 3-22a) on the 1H chemical shifts. Reduced unit cells are constructed by 
connecting the defect units through an aqueous interlayer or an aqueous interlayer with a CaI and additional OH- for charge balance 
(Figure 3-22b). In order to study medium range effects, we also consider different ways to combine the reduced unit cells, resulting 
in chain, dimer, and pentamer motifs (Figure 3-22c).  
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All the structures are first partially relaxed with energy minimization using METADISE350 with a force field potential previously used 
for cementitious materials.314 If the atomic bond distances, calcium coordination and local charge neutrality are satisfactory then 
they are relaxed using density function theory (DFT). For the former two criteria, we require specifically that Ca-O bonds are between 
2.2 Å and 2.9 Å and that calcium coordination numbers are near six. The condition of local charge neutrality is implemented as 
systems with large distances between charged species consistently exhibit higher energies than systems for which this is not the case. 
Additional water molecules can be added to the interlayer to help satisfy these criteria. Depending on the initial atomic coordinates, 
especially those that specify the positioning of the interlayer water, the reduced unit cells may relax into different structures with 
the same defect classification. 

These structures are again checked for the calcium coordination, lack of disruption of the main layer calcium-silicate backbone chain, 
and local charge neutrality. Once all the criteria are met, 1H and 29Si chemical shift calculations are performed on the candidates. The 
chemical shielding 𝜎¨J¯¨ was calculated using the generalized gradient approximation (GGA) functional PBE205 within the Quantum 
Espresso code188 and the GIPAW method.63 For each calculation a plane-wave maximum cutoff energy of 80 Ry, and a Monkhorst-
Pack grid of k-points220 corresponding to 0.033 Å-1 in reciprocal space was employed. These values were tested for convergence of 
calculated energy and chemical shielding. 

The convergence criteria for force, energy and pressure for structural relaxation were set to 10-3 Eh/a0, 10-4 Eh, and 500 bar respec-
tively. The final pressure of each relaxed structure was less than 150 bar. For structures which contain CaI, the final pressure was 
usually below 50 bar. To ensure this 500 bar threshold was sufficient, we performed an additional DFT relaxation of the structure 
based upon the ACcaV2 motif, setting a cell pressure threshold of 0.01 bar. Because of this stricter convergence criteria, O – O dis-
tances throughout the structure change by 0.05 - 0.1 Å, resulting in a 1H chemical shift RMSD of 0.59 ppm and a 29Si chemical shift 
RMSD of 0.34 ppm relative to the structure calculated with the higher convergence threshold for pressure. The higher 1H chemical 
shift RMSD corresponds to the fact that proton chemical shifts are more sensitive to changes in the hydrogen bonding network than 
29Si. In NMR crystallography, two systems are considered identical if the 1H chemical shift RMSD is below 0.5 ppm.18 We justify a 
slightly higher limit for the C-S-H considering that most of the protons of weakly bonded interlayer species have lower barriers to 
conformational rearrangement relative to crystals of small organic molecules. Indeed, there is a correlation between the largest 1H 
chemical shift changes occur for species near 0 ppm, as shown in Figure 3-23. If the proton chemical shifts corresponding to these 
non-hydrogen bonded H2O are excluded from the comparison, we calculate a 1H chemical shift RMSD of 0.38 ppm, which is well 
below the cutoff of 0.5 ppm. Therefore, a stricter convergence criterion for the DFT relaxation does not affect our interpretation of 
the 1H chemical shifts nor the conclusions drawn from them. 
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Figure 3-22. Defect classification. (A) Simple defect units. (B) Simple defect units are combined with added interlayer water to form reduced unit 
cells. 1H chemical shifts are calculated for structurally viable reduced unit cells. (C) Two possible ways of combining two reduced unit cells, showing 
how infinite chain, dimer, and pentamer motifs can be generated. The water in the aqueous interlayer and the hydrogen atoms are not shown. 

 

Figure 3-23. Calculated chemical shift correlations between DFT structures of C-S-H based upon the ACcaV2 motif at 500 bar and 0.001 bar. 
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Using the constraints from 1D 29Si NMR and INADEQUATE experiments, we have calculated the number of dimers and the mean 
repeat index of the distribution. These two values are then used to fit a chain distribution, which was determined using the following 
Monte Carlo procedure: 

1. We define a cutoff of n = 10 for the repeat index (xn = 0 for n ≥ 11).  

2. For n ≥ 2, the mole fractions are generated by a random number that is uniformly distributed between 0 to its theoretical 

maximum value given by the contribution to the Q(2p)-Q(2p) correlation for that Ca:Si ratio: 

𝑥KF; = 𝑟 where 0 ≤ 𝑟 ≤ :�2j
K�:

 

3. Pentamers constitute the remaining fraction. 

4. A chain distribution is accepted only if the difference between mean repeat index (	∑ 𝑥K𝑛K 	) obtained from the distribution 

and that calculated from the NMR constraints is less than 0.0005. 

5. This procedure is iterated and the average fractions are stored.  

6. The iteration is continued until the average values of the distribution converge to a unique distribution.  

The random chain distributions calculated for each Ca:Si ratio are shown in Figure 3-25. For constructing our representative C-S-H 
structures, the longest chain used is a tetradecamer (n = 4), as indicated in Figure 3-25c. 

The reduced unit cells deemed likely structural elements (see above) are permuted and stacked in the directions of the crystal axes 
in order to build a three-dimensional crystal structure satisfying all of our experimental NMR constraints. The proposed structures 
are shown in Figure 3-24 and their silicate species distributions are compared with the experimental values in Figure 3-25a-b. 

 
Figure 3-24. Proposed structures satisfying the NMR constraints for Ca:Si = 1.25 (a), Ca:Si = 1.75 (b) and Ca:Si = 2.00 (c) viewed along the [100] 
direction. The relative positions of hydroxyls and water molecules have been relaxed with energy minimization at 0 K. Corresponding relaxed struc-
tures using MD are shown in Figure 3-26. 

 

(a) (b)(b) (c)
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Figure 3-25. Distribution of silicate species determined by NMR compared to those predicted by the random distribution model. (a) Comparison 
between Q(1) populations and (b) Q(2) populations. The experimental values are shown in unfilled markers connected by solid lines whereas the 
corresponding values in our proposed structures are shown in filled markers connected by dashed lines. (c) Distribution of silicate chains according 
to the random distribution model. The mole fractions (up to n = 4) used in our representative C-S-H structures are shown as markers.  

 

Structural Relaxation  

Initial structural relaxation was performed with classical molecular dynamics using force field potentials. The force field parameters 
used are known to describe well cementitious material systems.314 Simulations were done using a constant pressure ensemble at 300 
K and a time step of 0.7 fs using Velocity Verlet integration algorithms implemented in DLPOLY.315 Ewald summation was used to take 
into account the long range forces above a cutoff distance of 8.5 Å. Snapshots after 2 ns of molecular dynamics simulation of each 
structure are shown in Figure 3-26 and are found to be structurally stable. Stoichiometry of the structures, bond distances and aver-
age calcium coordination numbers of bulk structures minimized after 2 ns are presented in Table 3-14. The bond distances from MD 
simulations are realistic. Histograms showing the distribution of coordination numbers for main phase calcium, interlayer calcium, 
and grand total of all calcium in these bulk C-S-H representations are shown in Figure 3-27. A systematic shift of the coordination 
number toward lower values is inevitable due to anharmonic vibrational motion of the atoms with respect to their proper equilibrium 
positions, an effect which is a function of the choice of force field used for the simulations. To estimate the magnitude of this shift 
for these systems, we carried out MD simulations on the known structure of 14 Å tobermorite for which 20% of the calcium are six 
coordinate and 80% are seven coordinate. The 2 ns MD snapshot of 14 Å tobermorite indicates roughly 30% fivefold coordination 
and 70% six fold coordination. Therefore, we expect the results in Figure 3-27 to systematically underestimate a proper coordination 
number by nearly one. 

 

(a)

(b)

(c)
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Figure 3-26. Snapshots of bulk structures relaxed for 2 ns using classical MD simulations. The structures shown are (a) Ca:Si = 1.25, (b) Ca:Si = 1.5, 
(c) Ca:Si = 1.75 and (d) Ca:Si = 2.0 respectively viewed along the [100] axes. All simulations produced structurally stable defective tobermorite 
features. 

 

Table 3-14. Structural characteristics of the representative C-S-H structures. These values are given for MD structures relaxed for 2 ns. These values 
show that the chemical and physical environment in the structures are realistic. Ca-OH/Ca indicates the percentage of Ca atoms charge compen-
sated by hydroxyl ions. The errors on the force field were estimated to be around 5% on distances.314 

Ca:Si Chemical formula 𝑪𝒂− 𝑶𝑯/𝑪𝒂 
 [%] 

𝑪𝒂 − 𝑶 
[Å] 

𝑺𝒊− 𝑶 
[Å] 

𝑪𝑵 
(Ca-O) 

1.25 Ca1.25 Si O3.2 (OH)0.1(H2O) 1.82 0 2.3 ± 0.12 1.55 ± 0.08 5.9 

1.50 Ca1.5 Si O3.35 (OH)0.30(H2O) 1.91 10 2.3 ± 0.12 1.55 ± 0.08 5.9 

1.75 Ca1.75 Si O3.39 (OH)0.71(H2O) 1.72 20.1 2.3 ± 0.12 1.55 ± 0.08 5.8 

2.00 Ca2 Si O3.41 (OH)1.18(H2O) 1.31 29.4 2.3 ± 0.12 1.55 ± 0.08 5.8 

(a)

(b)

(c)

(d)
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Figure 3-27. Histograms showing populations of coordination numbers for each of the representative C-S-H structures. These values are given for 
MD structures relaxed for 2 ns. Orange and green bars indicate coordination of main phase and all other calcium, defined as CaM and CaOther. The 
black markers indicate the coordination over all calcium in the structure (CaTotal). Owing to positional bias in the MD simulated structures, the 
populations are systematically shifted toward lower coordination number by nearly one. 

We also find that in the Ca:Si = 1.75 structure 20% of Ca atoms are charge compensated by hydroxyl ions. Thomas et al.137 calculated 
this value to be 23% in C-S-H with Ca:Si = 1.7 in hydrated cement samples and argued that such a bonding is possible only if a structural 
motif resembling jennite is present. Our results show that the jennite structural motif is not required to give this hydroxyl charge 
compensation – a highly defective tobermorite is sufficient. We have not considered any structures with a defective jennite motif, in 
which a missing dimer is replaced by two OH- groups. Pentamers, octamers, undecamers and tetradecamers are the only non-dimers 
in our proposed structures limited by the box size considered. Generally, the interlayer separation distance shrinks up to 2 Å (down 
from 14 Å) upon structural relaxation for Ca:Si ≤ 1.5, affirming our choice of 14 Å tobermorite as a reasonable base structure. Clino-
tobermorite or other orthotobermorites can also be treated as the base structure satisfying the 29Si and 1H NMR constraints but 
without additional information describing the calcium environment in C-S-H it is difficult to evaluate which form of tobermorite would 
serve as the best base structure. 

Proton chemical shift calculations 

The 1H chemical shift calculations are performed on the set of reduced unit cells displayed in Figure 3-28. These reduced unit cells 
are selected to ensure a wide variety of different local defect environments, classified according to Figure 3-22a, are captured. We 
also probe the influence of CaI in the aqueous interlayer and perform a test of the influence of medium range interactions by studying 
the containing pentamers rather than infinitely long silicate chains and dimers, which are the only types of chains possible without 
juxtaposition of different reduced unit cells. Calculated proton chemical shift spectra for each of these structural candidates are 
shown in Figure 3-29. Structures that are not distinguishable on the basis of defect classification may have different arrangements of 
water molecules in the interlayer, representing viable structures with different local energy minima and indicated as different “ver-
sions” in Figure 3-29. 
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Figure 3-28. Reduced unit cells used in 1H and 29Si chemical shift calculations. Interlayer water molecules are not shown. 

 

Figure 3-29. Calculated spectra of 1H GIPAW isotropic magnetic shifts for the investigated reduced unit cells of C-S-H. The line-shapes 𝑺(𝜹) are 

extrapolated from the calculated chemical shifts 𝜹𝒄𝒂𝒍𝒄 as 𝑺(𝜹) = 	 𝟏
Ô𝟐	𝝅𝑹𝟐

𝐞𝐱𝐩 {	− 𝟏
𝟐
æ𝜹�𝜹𝒄𝒂𝒍𝒄

𝑹
ê
𝟐
|	with R = 1.5 ppm. In general, structures with CaB at the 

bridging site (types AC, AH, CC, CG) better reproduce the characteristic tail in the 1H line shape above 10 ppm. Structures that are identical according 
to our defect classification scheme but possess different arrangements of water molecules in the interlayer are distinguished by V1 or V2. 

  

0
1H chemical shift / ppm

05101520
1H chemical shift / ppm

05101520 20 51015
1H chemical shift / ppm

ABcaV1

AHca

ABcaV2

AGca

ACcaV2

ACcaV1

ACcaCAca

CC

CG

CCca

AC

H2O–OSi 

H2O–OH2

H2O––OH

SiOH–OSi

SiOH–OH2

SiOH-–OH

H2O

–OH

SiOH



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

160 

29Si chemical shift calculations 

In addition to the 1H chemical shift calculations, we also calculate 29Si chemical shift parameters (Figure 3-30) for all structures used 
in Figure 3-29. The calculated 29Si chemical shifts are compared to previous calculations109 and to our experimental results. To the 
level of intrinsic accuracy of 29Si chemical shift calculations,62-63, 70, 107 there is good agreement between the three datasets, allowing 
us to conclude that the C-S-H models proposed here are a good approximation of the studied systems.  

 

Figure 3-30. Overlap of calculated 29Si GIPAW isotropic magnetic shift spectra for each different Si site in the calculated structures shown in Figure 

3-29. The line-shapes 𝑺(𝜹) are extrapolated from the calculated chemical shifts 𝜹𝒄𝒂𝒍𝒄 as 𝑺(𝜹) = 	 𝟏
Ô𝟐	𝝅𝑹𝟐

𝐞𝐱𝐩 {	− 𝟏
𝟐
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3.3 Conclusion	and	Outlook		
In conclusion, we determine the atomic-level structure of amorphous C-S-H using an approach that combines the abundant electronic 
structure information contained in the 1H and 29Si chemical shifts with constraints extracted from multidimensional 1H and 29Si NMR 
experiments and various other spectroscopic methods. The developed computational approach first uses experimental constraints 
to restrict the structural search space. From within this constrained space, local structural motifs are then explored and combined in 
a manner satisfying 1H and 29Si chemical shift constraints in order to build a full 3D structure, which provides an accurate represen-
tation of structural and chemical environments in C-S-H. 

Note, that the inherently disordered nature of amorphous materials makes their structural characterization much less straightfor-
ward than for microcrystalline powders, as demonstrated in Chapter 2. For microcrystalline powders it is mainly the size of the crys-
tallites that hinders their characterization by X-ray or other diffraction methods. However, the structures still exhibit a high degree 
of long-range order, which can be characterized through CSP-NMRX structure determination methods. Amorphous materials, on the 
other hand, are characterized through a lack of such high degree of long-range order. Here, we characterize C-S-H based on an en-
semble of structural defect motifs assembled in a large structural model. However, the approach we present here possesses a few 
limitations which must be addressed to allow for widespread adoption as has been seen for NMRX of microcrystalline powders. 

In the presented approach, we use structural motifs in agreement with the experimental constraints as building blocks to generate 
an atomic-level structural model of amorphous C-S-H. Note, that while the energetic stability of the combined model was evaluated 
using MD simulations on a structure containing several hundreds of atoms, the NMR chemical shifts were only evaluated for struc-
tures consisting of up to two of the local structural motifs. Further, for the DFT chemical shift calculations the local structural motifs 
were embedded in a fully periodic structure, which might further influence their calculated chemical shifts. Here, we propose two 
methods to overcome this limitation.  

Hartmann et al.83-84, 111, 351-352 have recently presented and benchmarked a fragment based DFT method to accurately calculate chem-
ical shifts in molecular solids. The method is based on the calculation of pairwise interactions using a locally dense basis and embed-
ded charges to model the extended chemical environments within a solid. We propose to use this method to calculate chemical shifts 
of structural motifs extracted directly from snapshots of large MD simulations. 

Another method to overcome the limits of periodic DFT calculations, would be to extend the machine learning method presented in 
Chapter 2.3. Based on the work presented in Chapter 2.2, Cuny et al.101 and Chaker et al.102 have very recently demonstrated that it 
is possible to accurately and efficiently predict 17O and 29Si chemical shifts of glassy solids. Here, both methodologies can easily be 
adapted to various classes of amorphous materials by the choice of an appropriate training set. After the ML model has been trained, 
it could be used to directly calculate the chemical shifts of snapshots extracted from large MD simulations. Note, that the ML method 
could be combined with the fragment-based approach described above. The speed and efficiency of the ML method would allow for 
a large-scale screening of various MD simulations, while the fragment-based approach could then be used to more accurately calcu-
late the chemical shifts of interesting structural motifs identified by the ML chemical shift calculations. 

Note that, for C-S-H we constrained the search space of the local structural motifs through the use of multidimensional 1H and 29Si 
NMR experiments in combination with various other spectroscopic methods. However, for C-S-H, the initial structural search space 
is tremendous and we were only able to interpret the constraints due to the extensive prior chemical knowledge (e.g tobermorite 
being the base structure of amorphous C-S-H) available for these systems. Thus, the presented method needs to be extended and 
generalized to be applicable for other systems, where such prior knowledge might not exist or not be readily available and / or 
interpretable. A possible approach to extend and generalize the presented method would be to use ab-initio random structure 
searching (AIRSS)353 to systematically and automatically screen the possible structural space. Candidate structures could then be 
selected based on their energetic properties as well as the evaluation of their calculated chemical shifts, either by DFT or ML. Also 
note that, prior information on the investigated structure could be incorporated into the AIRSS approach at many different levels. 
For example, for C-S-H, the AIRSS approach could be constrained to the known calcium-silicate backbone chain in combination with 
random Ca+, Si+, HO– and H2O defects. 
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 Defective	and	doped	solids	
4.1 Introduction	
Doping is a key technology for tuning electrical and structural properties in industrial materials such as organic and silicon-based 
semiconductors,354-356 oxide materials,357-358 diamonds,359-361 graphene362 and perovskites.135, 363-379 Doping has been reported to im-
prove crystallinity,375-376 enhance stability,374 affect the optical and electric properties354, 356, 358-361, 375-378 and improve the photocata-
lytic357 and photovoltaic135, 363-373, 375-376 performance. However, while several hypotheses have been put forward to explain these 
results, there often exists no full atomic-level characterization of the defective and doped materials. This is because diffraction-based 
methods, such as powder XRD which is currently the method of choice to investigate extended solids, lack information about the 
non-crystalline and disordered regions of the sample. In contrast, solid-state NMR can directly probe the local atomic environment 
around a dopant or defect site and is capable of detecting all species of a given spin-active nucleus that are present in the sample, 
regardless of the degree of crystallinity or the extent of phase segregation. 

Here, we investigate the doping mechanism for a set of photovoltaic lead halide perovskite materials. For these materials different 
doping mechanisms resulting from interstitial defects,375, 379 replacement of A-site cations,374 or phase separation and passivation of 
grain boundaries376 were suggested. In analogy to the procedure for microcrystalline solids (see Chapter 2) and amorphous materials 
(see Chapter 3) we evaluate different structural hypotheses by creating structural models for which we calculate the chemical shifts 
of different probe nuclei and compare the results to experiment. However, contrary to the procedure for microcrystalline solids (see 
Chapter 2) and amorphous materials (see Chapter 3), where NMRX provides a full and detailed atomic-level structure, here we only 
need to compare well defined reference structures, since the overall possible inorganic structures are well known. 

The main computational challenge for the investigated systems is the presence of heavy atoms (e.g. 127I, 133Cs and 207Pb) within the 
lead-halide perovskite structure. The heavy atomic cores significantly affect the electronic structure in the very vicinity of the nuclei. 
Therefore, molecular and structural properties depending on the electronic structure around the core often require full relativistic 
treatment.380 For heavy nuclei of the 6th row of the periodic table it has been demonstrated that a full relativistic treatment, including 
scalar relativistic effects and spin-orbit coupling, significantly improves the calculated chemical shift accuracy.123-125 For heavy nuclei 
of the 5th row of the periodic table the spin-orbit contribution is less pronounced and depends on the oxidation state and the stere-
ochemistry of the atomic site.122, 125-127 Additionally, the presence of the heavy atoms (HA) does not only influence their own shielding 
through the HAHA effect381 but can also influence the shielding of neighboring light atoms (LA) through the HALA effect.127, 382 Note, 
that for systems containing heavy atoms the use of hybrid Hartree-Fock-DFT functionals has also been shown to improve the calcu-
lated chemical shift accuracy.122-127 However, in the investigated systems this effect is less pronounced compared to the full relativ-
istic correction and mainly improves the slope of the correlation between calculated magnetic shielding and experimental chemical 
shift. To further investigate the required level of theory for the chemical shift calculation of these lead halide perovskite materials 
we calculate the 1H, 13C, 15N, 39K, 87Rb and 133Cs chemical shifts of organic molecules within the lead halide cage at different levels of 
theory (see Chapter 4.2).  

Note that, the requirement of full relativistic calculations leads to a drastic increase in computational resources and thus strongly 
limits the system size and the number of possible local defects which can be evaluated computationally. Also note that, neither the 
full relativistic calculation of chemical shifts nor the use of hybrid functionals is currently available for periodic systems. As a conse-
quence, the chemical shift calculations are generally performed using a cluster-based approach. However, for small dopant concen-
trations the number of atoms required to quantitatively model the defect site typically extends over multiple unit-cells and is thus 
often prohibitive for full relativistic DFT approaches. Here, we propose a divide and conquer approach, where we selectively investi-
gate possible doping mechanisms (e.g. interstitial defects, replacement of A-site cations or phase separation and passivation of grain 
boundaries) by approximating the NMR parameters through computationally accessible limit cases. As an example, for the structural 
hypothesis of defect incorporation we investigate the limit case of an isolated defect not affecting the perovskite packing and the 
limit case of a dense defect area, where a dopant is incorporated into every 2nd to 3rd unit-cell. 



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

164 

In Chapters 4.3 and 4.4 we use NMRX together with a set of other characterization methods to investigate the doping mechanism of 
a set of hybrid organic-inorganic multi-cation lead halide perovskites using different cation dopants (39K, 133Cs and 87Rb). For this, we 
propose a set of structural hypotheses (interstitial defects, replacement of A-site cations and phase separation) for which we then 
calculate chemical shifts shift of different probe nuclei and compare the results to experiment. 
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4.2 Methods	
 As starting structures, we used the crystal structures of black and yellow formamidinium lead iodide (FAPbI3), black methylammo-
nium lead iodide (MAPbI3) and cubic and tetragonal guanidinium lead iodide (GUAPbI3). For all structures we optimized the hydrogen 
positions using Quantum Espresso (QE)188 with the same parametrization as in Chapters 4.3.5 and 4.4.5. For the chemical shift cal-
culations, we extracted small clusters from the crystal structures containing one XPbI3 motif (X=MA, FA, GUA, K, Rb or Cs). Example 
clusters are shown in Figure 4-1. We then calculated the 1H, 13C, 15N, 39K, 87Rb and 133Cs chemical shifts using the Amsterdam Density 
Functional (ADF) 383-384 at the scalar-relativistic level and the same parametrization as in Chapters 4.3.2 and 4.4.2, unless otherwise 
specified.  

 

Figure 4-1. Example clusters used in DFT chemical shift evaluation. 

 

Figure 4-2. Chemical shift convergence with respect to the used basis-set for 1H (a), 13C (b),15N (c), 39K (d), 87Rb (e) and 133Cs (f). The chemical 
shift RMSE is calculated with respect to the chemical shifts calculated with the largest basis -set used here (QZ4P). 

For the 1H, 13C, 15N, 39K, 87Rb and 133Cs chemical shifts we investigated the size of the used basis-set (single zeta (SZ), double zeta (DZ), 
double zeta polarized (DZP), triple zeta polarized (TZP), triple zeta with two polarization functions (TZ2P) and quadruple zeta with 
four set of polarization functions (QZ4P)) and the used DFT functional, where we looked at a set of GGA functionals (PW91, PBE, BP86 
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and BLYP) and two Hybrid (B3LYP and PBE0) functionals with different amount of Hartree-Fock exchange (20% - 50%). Finally, we also 
investigated the use of the relativistic corrections (non-relativistic, scalar-relativistic and full relativistic, including spin-orbit coupling).  

 

Figure 4-3. Magnetic shielding correlation with respect to the used DFT functional for 1H (a), 13C (b),15N (c), 39K (d), 87Rb (e) and 133Cs (f). The 
magnetic shielding is plotted against the magnetic shieldings calculated with the hybrid B3LYP functional including 40% Hartree-Fock. The grey 
diagonal line shows a perfect linear correlation. 

For the investigated basis sets we find that the 1H, 13C and 15N chemical shifts start to converge at the TZP level. The 39K chemical 
shifts seem reasonably converged at the DZ level. However, at the TZP level we obtain a slope closer to unity for the linear regression. 
For the 87Rb we find a good convergence already at the SZ level, while for the 133Cs chemical shifts the TZ2P level is needed for a good 
convergence (see Figure 4-2 and Table 4-1).  
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Table 4-1. Chemical shift convergence with respect to the used basis-set. The correlation is calculated with respect to the chemical shifts calculated 
with the largest basis -set used here (QZ4P). 

 RMSE / ppm offset (a) / ppm slope (b) / ppm 

1H     

 SZ 0.460 15.2 0.469 

 DZ 0.381 13.0 0.579 

 DZP 0.207 0.20 1.01 

 TZP 0.135 0.43 0.998 

 TZ2P 0.148 -1.05 1.04 

13C     

 SZ 6.67 105.2 0.55 

 DZ 4.11 31.3 1.00 

 DZP 1.17 26.6 0.95 

 TZP 0.48 7.2 0.995 

 TZ2P 0.48 7.5 0.988 

15N     

 SZ 2.93 161.6 0.48 

 DZ 2.88 44.7 0.93 

 DZP 1.28 37.5 0.92 

 TZP 0.54 8.97 0.97 

 TZ2P 0.44 4.9 1.00 

39K     

 SZ 5.12 1144.8 0.13 

 DZ 0.39 116.1 0.91 

 DZP 0.42 94.7 0.93 

 TZP 0.44 44.7 0.97 

 TZ2P 0.24 58.3 0.96 

87Rb     

 SZ 0.07 -69.4 1.02 

 DZ 0.07 -69.4 1.02 

 DZP 0.23 37.1 0.99 

 TZP 0.23 37.1 0.99 

 TZ2P 0.14 97.7 0.97 

133Cs     

 SZ 1.32 145.23 0.98 

 DZ 1.32 145.23 0.98 

 DZP 2.31 -7.86 1.00 

 TZP 2.31 -7.86 1.00 

 TZ2P 0.34 -0.11 1.00 
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Figure 4-4. Magnetic shielding correlation with respect to the used relativistic correction for 1H (a), 13C (b),15N (c), 39K (d), 87Rb (e) and 133Cs (f). 
The magnetic shielding is plotted against the magnetic shieldings calculated at the full relativistic level, including scalar relativistic and spin-orbit 
coupling effects. The grey diagonal line shows a perfect linear correlation. 

For the investigated DFT functionals we find that the 1H and 15N chemical shifts are nearly identical within a given family of functionals 
(GGA and Hybrid functionals) and that the amount of Hartree-Fock included does not lead to a systematic change in the chemical 
shifts (Figure 4-3 and Table 4-2). Note that also the difference between the two families of functionals is below the expected DFT 
chemical shift accuracy for 1H (0.33-0.43 ppm) and 15N (5.4 ppm). 18, 83 For 13C the GGA functionals perform very similar to the Hybrid 
functionals and the chemical shifts appear to depend mostly on the DFT contribution (BLYP), see Figure 4-3 and Table 4-2. Note that 
also for 13C the differences are below the expected DFT chemical shift accuracy (1.9-2.2 ppm). 18, 83 For the 39K chemical shifts we find 
that the GGA and Hybrid functionals give a similar RMSE, with the exception of the BP86 and BLYP functional which give a slightly 
higher RMSE. We also note, that the reference value (here the offset (a)) steadily increases with the amount of Hartee-Fock (Table 
4-2). For the 87Rb and 133Cs chemical shifts we observe that the RMSE is about half as low for the Hybrid functionals. However, also 
for the GGA functionals the RMSE is still very low (around 1-2%) compared to the full chemical shift range investigated here (around 
75 ppm for 87Rb and around 167 ppm for 133Cs). Similar to the 39K chemical shifts we note that the reference value (here the offset 
(a)) steadily increases with the amount of Hartee-Fock (Figure 4-3 and Table 4-2). 
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Table 4-2. Chemical shift convergence with respect to the used DFT functional. The correlation is calculated with respect to the chemical shifts 
calculated with the hybrid B3LYP functional including 40% Hartree-Fock. 

 RMSE / ppm offset (a) / ppm slope (b) / ppm 

1H     

 PW91 0.27 -0.88 1.01 

 PBE 0.27 -0.92 1.02 

 BP86 0.28 -1.12 1.02 

 BLYP 0.26 -0.53 1.01 

 B3LYP HF=0.2 0.05 -0.83 1.03 

 PBE0 HF=0.25 0.05 -1.04 1.03 

 PBE0 HF=0.5 0.09 -0.45 1.03 

13C     

 PW91 1.60 8.35 0.93 

 PBE 1.75 9.88 0.93 

 BP86 1.57 9.75 0.93 

 BLYP 0.73 3.71 0.94 

 B3LYP HF=0.2 0.58 1.18 0.98 

 PBE0 HF=0.25 1.61 6.83 0.97 

 PBE0 HF=0.5 1.70 5.16 1.01 

15N     

 PW91 3.42 -9.38 1.03 

 PBE 3.36 -7.03 1.03 

 BP86 3.04 -6.26 1.02 

 BLYP 3.51 -10.00 1.02 

 B3LYP HF=0.2 1.28 -9.44 1.03 

 PBE0 HF=0.25 1.09 -4.25 1.03 

 PBE0 HF=0.5 1.18 1.38 1.03 

39K     

 PW91 0.14 -189.6 1.14 

 PBE 0.13 -182.5 1.13 

 BP86 0.30 -185.8 1.14 

 BLYP 0.41 -218.5 1.16 

 B3LYP HF=0.2 0.11 -134.2 1.10 

 PBE0 HF=0.25 0.11 -58.8 1.04 

 PBE0 HF=0.5 0.14 -68.6 0.95 
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87Rb     

 PW91 0.97 -310.0 1.09 

 PBE 0.95 -247.7 1.07 

 BP86 1.10 -401.5 1.12 

 BLYP 1.23 -506.1 1.15 

 B3LYP HF=0.2 0.45 -290.0 1.09 

 PBE0 HF=0.25 0.25 28.7 0.99 

 PBE0 HF=0.5 0.03 310.8 0.91 

133Cs     

 PW91 2.68 -706.3 1.12 

 PBE 2.45 -712.6 1.12 

 BP86 2.15 -788.6 1.13 

 BLYP 1.75 -749.8 1.12 

 B3LYP HF=0.2 0.82 -447.9 1.07 

 PBE0 HF=0.25 1.45 -269.9 1.05 

 PBE0 HF=0.5 1.00 156.6 0.97 

 

We find that for the 1H and 13C chemical shifts the inclusion of relativistic corrections (both at the scalar relativistic and spin-orbit 
coupling level) does not have a significant effect and is well below the expected DFT accuracy. However, for 15N chemical shifts we 
observe that full relativistic corrections at the spin-orbit coupling level must be considered to reach the expected DFT accuracy of 
around 5.4 ppm.18, 83 Note that, inclusion of only scalar relativistic corrections does not significantly affect the 15N chemical shifts 
(Figure 4-4 and Table 4-3). For the 39K, 87Rb and 133Cs chemical shifts we find that the exclusion of the full relativistic correction leads 
to the largest observed RMSE for the individual species. For these species we also do not observe a significant improvement upon 
inclusion of only the scalar relativistic correction. We also note that, for the 39K, 87Rb and 133Cs chemical shifts, without the full rela-
tivistic correction, we find a relatively large offset (a) and a slope (b) relatively far from unity (Figure 4-4 and Table 4-3). This agrees 
very well with the previous studies on similar systems122-127, 380-382 and we expect the observed trend to increase for even “heavier” 
nuclei. 
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Table 4-3. Chemical shift convergence with respect to the used relativistic correction. The correlation is calculated with respect to the chemical 
shifts calculated at the full relativistic level, including scalar relativistic and spin-orbit coupling effects. 

 RMSE / ppm offset (a) / ppm slope (b) / ppm 

1H     

 Non-relativistic 0.07 -0.42 1.02 

 
Scalar  
relativistic 

0.07 -0.39 
1.02 

13C     

 Non-relativistic 0.23 -1.89 1.02 

 
Scalar  
relativistic 

0.23 -1.91 
1.02 

15N     

 Non-relativistic 5.79 21.57 0.84 

 
Scalar  
relativistic 

5.79 22.76 
0.84 

39K     

 Non-relativistic 1.56 174.9 0.83 

 
Scalar  
relativistic 

1.33 151.6 
0.85 

87Rb     

 Non-relativistic 5.13 459.6 0.79 

 
Scalar  
relativistic 

4.12 293.8 
0.84 

133Cs     

 Non-relativistic 10.83 242.9 0.81 

 
Scalar  
relativistic 

9.71 266.9 
0.83 
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4.3 Phase	Segregation	in	Cs-,	Rb-	and	K-Doped	Mixed-Cation	(MA)x(FA)1−xPbI3	
Hybrid	Perovskites	

This chapter has been adapted with permission from: Kubicki, D. J.; Prochowicz, D.; Hofstetter, A.; Zakeeruddin, S. M.; Grätzel, M.; 
Emsley, L., “Phase Segregation in Cs-, Rb-and K-Doped Mixed-Cation (MA)x (FA)1–x PbI3 Hybrid Perovskites from Solid-State NMR”. 
Journal of the American Chemical Society 2017, 139 (40), 14173-14180. (post-print) 

4.3.1 Introduction	
Hybrid organic-inorganic multi-cation lead halide perovskites (HOPs) have taken the field of photovoltaics by storm since their first 
successful application as sensitizers for solar cells.385 They generate intense interest as a conceivable alternative to traditional silicon 
solar cells, as they can be processed using various vapor386- and solution-based387-389, techniques. Since the first report, power con-
version efficiencies (PCE) have increased from 3.8% to about 22%.371 Key to this remarkable progress was the notion of alloying 
structurally similar perovskites into multi-cation and multi-anion lead HOPs.371 

A generic HOP can be represented by an ABX3 formula, in which A stands for a monovalent cation such as methylammonium, 
(CH3NH3+, MA), formamidinium (CH3(NH2)2+, FA), cesium or rubidium. A cations are confined within a cubo-octahedral cage formed 
by [BX3]- octahedra. B is typically a divalent metal such as Pb2+, Sn2+ or Ge2+ and X is a halide: I-, Br- or Cl-. Current champion HOP 
materials, in terms of their photovoltaic performance and light/moisture stability, are double- (MA/FA363-364, 366, Cs/FA135, 365, 367-368, 
Rb/FA372, K/MA375), triple- (Cs/MA/FA369, Rb/MA/FA370, 373) and quadruple-cation (Rb/Cs/MA/FA)371 lead halide solid alloys with one 
(I) or two (I, Br) halides. They are all based on FA as the majority cation owing to the fact that the black α-FAPbI3 phase has a bandgap 
of 1.40 eV, which is close to the Shockley–Queisser limit (1.34 eV), a factor crucial in the design of efficient PV materials.390 However, 
the α phase of FAPbI3 is thermodynamically unstable under ambient conditions and it spontaneously transforms into photo-inactive 
yellow δ-FAPbI3. Incorporation of MA, Cs and Rb was found to alleviate the problem of phase stability, but the consequences reach 
well beyond that, since devices based on mixed-cation phases consistently exhibit higher open-circuit voltage (VOC), short-circuit 
current (JSC), fill factor (FF), PCE and long-term stability towards light and moisture. 

While several hypotheses have been put forward to explain these results, there is still no satisfactory understanding of the micro-
scopic structure in these mixed-cation systems. For example, powder X-Ray diffraction is currently the method of choice to assess 
whether the incorporation of an ancillary cation was successful. This is typically inferred from a shift (on the order of 0.05°) of the 
main reflection of the α-FAPbI3 phase (14.00°) to higher angles, indicative of a decrease in lattice constant, and accompanied by a 
shift in photoluminescence (PL) spectra.365, 369 However, diffraction-based methods lack information about the non-crystalline and 
disordered regions of the sample, and they are not quantitative. When we started this work, solid-state NMR, on the other hand, 
seemed to be perfectly suited for the task. It had been used in several recent examples to probe perovskites. 391-396 Not only does it 
provide quantitative information but it is also capable of detecting all species of a given nucleus that are present in the sample, 
regardless of the degree of crystallinity. For instance, recently Rossini et al.393 had shown that 207Pb NMR chemical shifts and line 
shapes are a sensitive probe of the halogen coordination in pure and mixed-halogen HOPs. Our group had very recently used solid-
state NMR to elucidate microscopic phase composition and segregation in MA/FA HOPs.397  

Here we show that in Cs/FA solid alloys, cesium is incorporated into the perovskite lattice as Cs+, and can take up to 15 mol% of the 
A site. Above this ratio, it separates into a mixture of disordered CsPbI3, and free CsPbI3. Similarly, we confirm incorporation of Cs+ 
into the state-of-the-art triple- (Cs/MA/FA) and quadruple-cation (Rb/Cs/MA/FA) PV perovskites. In contrast, we find that Rb+ is not 
incorporated into the 3D perovskite lattice at any composition studied here. Rather, it separates into RbPbI3 (in Rb-doped systems 
with only iodine), mixed cesium-rubidium lead iodide (in Cs- and Rb-doped systems with only iodine) or a mixture of rubidium halides, 
mixed cesium-rubidium lead iodide and various rubidium lead bromides (in Rb/Cs/MA/FA systems with bromine and iodine). The 
improved performance of the Rb containing materials is thus not due to incorporation into the main perovskite lattice. We suggest 
that the performance is improved since the Rb compounds present can potentially act as a passivation layer. In the case of K/MA, 
pure MAPbI3 is formed, accompanied by unreacted KI. 

All above results were obtained for samples prepared by mechanochemistry which has emerged as an appealing method for synthe-
sizing large quantities of high-quality perovskites for PV applications.398-401 We thus address the question of whether bulk mechano-
chemically synthesized perovskites are a good representation of the thin films used in PV devices. Comparison of NMR spectra be-
tween a bulk mechanochemical triple-cation Cs/MA/FA perovskite and a thin film prepared by spin-coating388 shows no significant 
differences between the two materials, validating that bulk mechanochemical perovskites can be used to obtain structural infor-
mation about newly developed HOP systems. 
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4.3.2 Methods	

Perovskite synthesis and sample preparation. 

We focus on the following perovskite materials of practical importance: CsxFA1-xPbI3 (x=0.10, 0.15, 0.20, 0.30, abbreviated as “CsxFA1-

x”); Cs0.10(MA0.17FA0.83)0.9Pb(I0.83Br0.17)3 (“CsMAFA”, prepared according to Saliba et al.369); RbxFA1-xPbI3 (x=0.1, 0.2, abbreviated as 
“RbxFA”); a Rb/Cs/MA/FA/Pb/Br/I material prepared according to Saliba et al. (“RbCsMAFA(Br,I)”)371, and K0.10MA0.90PbI3.375 We also 
prepared the following materials with only iodine as counterion: Rb0.05Cs0.10FA0.85PbI3, Rb0.05MA0.25FA0.70PbI3, 
Rb0.05Cs0.10MA0.25FA0.60PbI3, abbreviated respectively as RbCsFA(I), RbMAFA(I) and RbCsMAFA(I). Further, we made the following com-
pounds to use as references: δ-CsPbI3 (yellow), δ-RbPbI3 (yellow); Cs0.5Rb0.5PbI3 (pale yellow) and RbPb2Br5 (white). We attempted to 
prepare Rb4PbBr6402 but instead we obtained a mixture of RbBr and an unknown rubidium lead bromide whose pXRD pattern did not 
correspond to any known Rb/Pb/Br phase in the ICDD database. We designate this composition as “phase X” and report its pXRD 
pattern and NMR parameters (single Rb site with CQ=3.4 MHz) in the SI. pXRD patterns of all the materials are given in Appendix V. 

All materials were prepared by mechanochemistry, as described previously by Prochowicz et al., and annealed at 140 ℃ for 10 
minutes to reproduce the thin-film synthetic procedure.398, 403 The thin film of CsMAFA was prepared according to the procedure 
described previously, except an uncoated glass substrate was used instead of FTO-coated glass.369 Samples were packed into 3.2 mm 
rotors under inert dry nitrogen atmosphere. 

Thin film preparation. 

The CsMAFA(Br,I) perovskite precursor solution was prepared according to the previously published recipe.369 The solution was de-
posited onto a glass substrate (3.5 cm2) by spin coating in a two-step program at 1000 and 6000 rpm for 10 and 20 s, respectively. 
During the second step, 100 μL of chlorobenzene was dripped onto the spinning substrate 10 s prior to the end of the program. The 
substrates were then annealed at 100 °C for 30 min in a dry box. The films were then scratched off the glass substrates using a razor. 
12 glass substrates were used in total (42 cm2) yielding about 1.5 mg of a solid perovskite which was then immediately transferred 
into an NMR rotor. 

NMR measurements.  

Variable-temperature 133Cs (65.6 MHz), 87Rb (163.6 MHz), 14N (32.1 MHz), 39K (23.4 MHz), 13C (125.7 MHz) and 1H (500.0 MHz) NMR 
spectra were recorded on a Bruker Avance III 11.7 T spectrometer equipped with a 3.2 mm low-temperature CPMAS probe. 133Cs, 
87Rb and 39K shifts were referenced to 1 M aqueous solutions of the respective alkali metal chlorides, using solid CsI (δ=271.05 ppm), 
RbI (δ=177.08 ppm) and KI (δ=59.3 ppm) as secondary references.404 

133Cs and 87Rb chemical shift calculations.  

The perovskite (Cs/Rb/FA)PbI3 clusters and the reference (Rb/Cs)I clusters were generated as described in Appendix V. Chemical shift 
calculations were performed at DFT level using the GGA BP86405-406 functional with all-electron TZ2P basis functions (triple-ζ in the 
valence with two polarization functions) including relativistic effects (up to spin-orbit coupling) with the ZORA407-409 approximation 
and the Grimme206 dispersion correction implemented within the Amsterdam Density Functional (ADF)383-384 suite.  

The calculated chemical shieldings were converted to chemical shifts by a linear correlation.  

𝛿12I = 𝜎g1h + 𝑏	𝜎¨J¯¨. 

(4-1) 

For the linear correlation only the experimental and calculated chemical shifts of the reference (Cs/Rb)I and the hexagonal (yellow) 
(Cs/Rb)PbI3 structures were used, leading to a reference shielding and a slope of σref = 2653 , b = -0.79 for Rb and σref = 3490, b = -
0.54 for Cs. In both cases, we ignored second-order quadrupolar contributions to the shift since they are zero in the cubic compounds 
(CsI, RbI) and negligible in CsPbI3 (calculated CQ of 0.4 MHz leading to a shift of <1 ppm) and RbPbI3 (at most 4 ppm given the fitted 
CQ of around 2 MHz). 
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4.3.3 Results	and	Discussion	
Figure 4-5 shows a schematic representation of the crystal structures of the studied materials. The starting point for all solid-alloys 
investigated in this study is the perfect cubic perovskite structure of α-FAPbI3 (Figure 4-5a).390 Solid alloys can be formed by replacing 
some FA cations inside the cubo-octahedral cages by MA and conceivably Cs and Rb (Figure 4-5b), accompanied by gradual departure 
from cubic symmetry. Excess Cs+ and Rb+ ions can separate into a thermodynamically stable, yellow, non-perovskite (orthorhombic, 
Pnma space group) phase: δ-CsPbI3 or δ-RbPbI3, respectively (Figure 4-5c). We note that to date there is only two single-crystal 
studies reported on mixed-cation (MA/FA)410 and (Cs/FA)411 systems. 

 

Figure 4-5. Schematic representation of structural motifs investigated in this study: (a) black single-cation α-FAPbI3, (b) black double- (CsFA, RbFA), 
triple- (CsMAFA) or quadruple-cation (RbCsMAFA) compositions (X=I, Br), (c) yellow non-perovskite δ-FAPbI3, 

 

Cesium phases from 133Cs MAS NMR. 

In order to determine cesium incorporation into PV perovskites, we performed 133Cs MAS NMR on the most prominent cesium-
containing materials recently reported in the literature (Figure 4-6). The spectrum of δ-CsPbI3, (Figure 4-6a) contains one relatively 
narrow (FWHM : ~350 Hz) peak centered at 240 ppm, accompanied by a manifold of spinning sidebands (SSB), spaced by the MAS 
frequency. The longitudinal relaxation time (T1) of this species is about 100 s.  

 

Figure 4-6. Quantitative 133Cs echo-detected MAS spectra of various (Cs/Rb/MA/FA)Pb(Br/I)3 systems at 298 K and a) 10 kHz MAS, b-j) 20 kHz MAS 
acquired within 1 hour after annealing. Asterisks indicate spinning sidebands and † is a transmitter artefact. 
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Moving on to the CsxFA1-x solid alloys (Figure 4-6b-e) one sees a new, much broader peak whose position and linewidth depend on 
cesium content (shifts: 13, 18, 26 and 37 ppm, FWHM: 1169±21, 858±15, 1477±51 and 2261±51 Hz for Cs mole ratio x=0.10, 0.15, 
0.20 and 0.30, respectively). This new species is peculiar in that its 133Cs signal position and relaxation time are a strong function of 
temperature. 

Figure 4-7 shows the temperature dependence of the 133Cs shift and line shapes in Cs0.20FA0.80 between 100 and 330 K. The corre-
sponding smooth change in the 133Cs shift in this temperature range covers about 100 ppm, and is accompanied by a change in 
relaxation time from 26 s (at 298 K) to 3 s (at 103 K). This behavior is consistent with the Cs+ cation being incorporated into the cubo-
octahedral space and interacting strongly with the [PbI3]- lattice. The change in relaxation time is caused by the change dynamics of 
the nearby nuclei, and/or a change in the 133Cs quadrupolar coupling as the lattice changes with temperature. Indeed, upon cooling 
the lattice undergoes successive first- and second-order displacive phase transitions attributed to gradual freezing of phonon modes 
associated with the rotational movement of the [PbI3]- octahedra.412-413 The reason for the progressive broadening of the resonances 
is most likely caused by a distribution of sites with slightly different chemical environments that is created upon the freezing of [PbI4]- 
liberations. Conversely, no such behavior is present in pure δ-CsPbI3 (or CsI) which preserve sharp lines across the whole temperature 
range, indicating no phase transitions (Figure 4-19). 

 

Figure 4-7. (a) Variable-temperature solid-state 133Cs MAS NMR spectra of Cs0.20FA0.80PbI3. (b) Temperature dependence of the 133Cs shift (measured 
at the maximum of the most intense peak). Spinning sidebands are marked with asterisks (*). 

In attempt to elucidate the change in shifts, we carried out fully-relativistic DFT 133Cs chemical shift calculations for two FAPbI3 lattices 
in which one FA was replaced by Cs in (a) a perfectly cubic and (b) a tetragonal perovskite lattice arrangement. We have found that 
distorting the lattice from cubic to tetragonal leads to an increase in 133Cs shift of around the same magnitude as that observed 
experimentally (Table 4-9). That said, this result is only qualitative since the Cs0.20FA0.80 lattice, unlike that of FAPbI3, is not perfectly 
cubic. This comes about because incorporation of cesium leads to lattice distortions, and in turn to reduction in symmetry of the 
environment in which the FA cation is reorienting. We have previously shown that 14N MAS NMR is very sensitive to such distortions 
owing to the interaction of its quadrupole moment with the electric field gradient created by the distorted lattice, with higher asym-
metry leading to broader 14N spectral envelopes.397 Cs-induced lattice distortion is indeed clearly evidenced by 14N MAS spectra of 
the two materials, with cesium incorporation leading to a spectral envelope nearly 4 times broader than that of the pure FAPbI3 
phase (Figure 4-20).  

To corroborate that the signal close to 30 ppm at 298 K originates from Cs+ incorporated inside the perovskite lattice, we carried out 
a through-space heteronuclear correlation experiment (HETCOR), which maps all cesium chemical environments that are in the im-
mediate spatial vicinity of any protons (Figure 4-8). The experiment was carried out at 100 K to take advantage of the faster proton 
relaxation at low temperature.397 The cross-peak can be easily assigned, since there is only one source of protons in the sample, to 
Cs+ dipolar coupled to FA. It is thus Cs+ inside the 3D perovskite lattice, and which correlates with the nearby FA protons.397 
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Figure 4-8. A 1H-133Cs heteronuclear through-space correlation experiment (HETCOR) of Cs0.20FA0.80 at 100 K and 12 kHz MAS. 

Another characteristic feature of the spectra in Figure 4-6b-e is the resonance around 240 ppm corresponding to the δ-CsPbI3 phase. 
In Cs0.10FA0.90 and Cs0.15FA0.85 it is absent, whereas in Cs0.20FA0.80 and Cs0.30FA0.70 it is clearly present, confirming phase separation 
taking place in these systems above 10% doping. Note that this resonance has a slightly broader component shifted to higher values, 
visible in Figure 4-6d. This broadened signal can tentatively be assigned to a disordered interface region between the CsFA alloy and 
pure δ-CsPbI3.  

A comment is in order regarding the stability of CsxFA1-x compositions. Photovoltaic parameters measured on devices fabricated using 
Cs0.15FA0.85PbI3 have been monitored over the course of 14 days and found stable during that period.135 Nazarenko et al. have re-
ported that single crystals of CsxFA1-xPbI3 compositions are stable up to 20 days after which time the presence of hexagonal δ-FAPbI3 

can be detected.411 Here we find that mechanochemically prepared CsxFA1-x compositions are thermodynamically unstable and give 
off δ-CsPbI3 over time. For example, the composition denoted Cs0.10FA0.90 is, based on the quantitative 133Cs spectrum acquired im-
mediately after annealing, a phase pure perovskite but separates into a mixture of Cs0.07FA0.93PbI3 and CsPbI3 after 24 hours. Similarly, 
Cs0.20FA0.80 after annealing is a mixture of Cs0.16FA0.84PbI3 and CsPbI3 but the same preparation after 5 days contains Cs0.14FA0.86PbI3 
and a correspondingly larger amount of CsPbI3. The Cs0.30FA0.70 composition is particularly unstable reproducibly yielding a transitory 
Cs0.23FA0.77PbI3 perovskite (within 30 minutes from annealing) which quickly loses the incorporated cesium in favor of CsPbI3 and 
becomes Cs0.15FA0.85PbI3 (after 1h), Cs0.08FA0.92PbI3 (after 2h) finally stabilizing as Cs0.03FA0.97PbI3 after 5h. Note that the shortest quan-
titative spectrum takes 30 minutes to acquire so it possible that in this sample more cesium is transiently incorporated during an-
nealing, leading to lattice instability and, as a consequence, rapid cesium release. We did not further investigate the reasons behind 
this instability. The fact that its timescale is much faster than that observed in single crystals suggests it may be related to grain 
boundaries, with smaller crystallites promoting cesium loss from the 3D perovskite lattice. Notably, this process stops at 100 K which 
indicates its reliance on the lattice phonon modes. 

The performance of Cs containing materials continues to increase as loadings increase to 15%, consistent with full cesium incorpora-
tion in the Cs0.15FA0.85 composition (Figure 4-6c).135 Lee et al. have reported enhanced photo- and moisture stability of CsxFA1-x solid 
alloys, which they attributed to stronger interaction between FA and I- in the perovskite.365 Other studies have confirmed increased 
stability both experimentally and theoretically, by rationalizing through entropic stabilization of the cubic α-FAPbI3 structure.135, 368 
Poor stability of the pristine α-FAPbI3 phase at ambient conditions towards humidity, as well as against elevated temperature, has 
been explained by its propensity to decompose into ammonia and sym-triazine.413 Further, the presence of excess CsPbI3 explains 
the consistently poorer photovoltaic parameters measured on CsxFA1-x devices with x>0.15.135 It is noteworthy that an opposite effect 
has been reported for excess PbI2 which typically led to improved photovoltaic parameters but has been shown to be detrimental to 
device stability.414 

Cesium has been shown to improve PV parameters and stability in triple and quadruple-cation compositions in a similar way. Figures 
4-6f and 4-6j show 133Cs spectra of two of the currently best performing solid alloys, CsMAFA(Br,I) and RbCsMAFA(Br,I), respectively. 
In both cases a broad peak of Cs+ incorporated into the perovskite lattice is present. RbCsMAFA(Br,I) exhibits an additional broad 
peak (δ=255.4±0.3 ppm, FWHM=2662±55 Hz) making up 47% of the whole amount of cesium in this sample, markedly different in 
appearance from that of δ-CsPbI3 (δ=239.32±0.03 ppm, FWHM=367±7 Hz). Given the similarity between the hexagonal lattices of δ-
CsPbI3 and δ-RbPbI3 we suggest it might belong to a mixed cesium-rubidium lead iodide phase.  
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This was confirmed by preparing pure Cs0.5Rb0.5PbI3 (Figure 4-6i) which yielded a very similar signal (δ=253.2±0.2 ppm, 
FWHM=2034±27 Hz). We note that the exact shift and linewidth are expected to vary depending on the exact Rb/Cs ratio in such 1D 
mixed-cation hexagonal phase. To exclude the possibility of this peak being due to a bromine-containing species, we prepared two 
more Cs/Rb compositions (Figures 4-6g and 4-6h) featuring only iodine as counterion, both of which gave the same resonance 
(RbCsFA(I): δ=247.3±0.3 ppm, FWHM=1468±66 Hz, RbCsMAFA(I): δ=248.4±0.3 ppm, FWHM=1592±63 Hz), confirming the assignment 
to Cs0.5Rb0.5PbI3. This finding implies that rubidium competes with cesium incorporation into the perovskite lattice by forming a stable 
hexagonal mixed Cs/Rb phase. In fact, in the case of pure iodides (RbCsFA(I) and RbCsMAFA(I)) there is more cesium bound in the 
mixed cesium-rubidium hexagonal lead iodide (92 and 84%, respectively) than there is cesium incorporated into the perovskite (8 
and 16%, respectively) (Figure 4-6g, h). The addition of bromine (in RbCsMAFA(Br,I)) alleviates this effect to certain extent (Figure 
4-6j). 

Rubidium phases from 87Rb MAS NMR  

We now investigate the fate of rubidium in rubidium-doped multi-cation perovskites. Figure 4-9 shows solid-state 87Rb MAS NMR 
spectra of ten compositions studied here. The spectra of RbxFA1-x and RbMAFA(I) perfectly match that of RbPbI3, indicating that the 
only form in which Rb+ exists in these systems is a separate RbPbI3 phase. Rb is not incorporated into the MAFA perovskite lattice. 
This finding challenges previous reports on rubidium incorporation into the perovskite lattice which were based on shifts observed 
in pXRD diffractograms and photoluminescence spectra.370, 372-373 A very recent work by Hu et al. explains these shifts using EDX in 
terms of rubidium-induced bromide extraction, which is in excellent agreement with our findings described in the next paragraph.415 
Similarly to the Cs-doped HOPs, Rb-doped materials also exhibit improved long-term stability under high humidity conditions and 
light irradiation.370, 372-373 We suggest that this can be explained by passivation of the perovskite phase by a fully inorganic RbPbI3 
layer, less prone to decomposition.  

 

Figure 4-9. 11.7 T Solid-state 87Rb echo-detected MAS (20 kHz, 298 K) spectra of various (Cs/Rb/MA/FA)Pb(Br/I)3 systems. The corresponding 100 K 
13C CP MAS spectra of a-c, e-f and j show only one FA signal corresponding to its being in a 3D perovskite environment (Figure 4-21). 
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As mentioned above, we find that cesium tends to form a stable Cs0.5Rb0.5PbI3 phase in the presence of rubidium. This is confirmed 
here, as the 87Rb spectra of RbCsFA(I) and RbCsMAFA(I) both match that of Cs0.5Rb0.5PbI3 (Figure 4-9e-g). To ensure this is not simply 
a sheer coincidence, we measured the same spectrum at 100 K. If this rubidium species were to be incorporated inside the perovskite 
lattice one should expect their shift to be strongly temperature dependent, as was the case for cesium (Figure 4-7). On the contrary, 
we observed only a small shift of ~6 ppm, consistent with ordinary lattice shrinkage at low temperatures (Figure 4-19b,d).416 In 
addition, we carried out a fully-relativistic DFT calculation of the 87Rb shift expected for a rubidium cation incorporated into the α-
FAPbI3 lattice, using the known RbI and δ-RbPbI3 shifts as a reference (see the Appendix V for details). We obtained a value of -110 
ppm (Table 4-10), which is very different from the shift observed experimentally (Figure 4-9e,f,j). 

Figure 4-9j shows a 87Rb MAS spectrum of the state-of-the-art quadruple-cation composition developed by Saliba et al.371 Again, 
there is no evidence for incorporation of the Rb into the CsMAFA perovskite lattice. In this case, since this composition also contains 
bromide anions, rubidium can be expected to form both iodide- and bromide-containing species. The spectrum in Figure 4-9 exhibits 
a relatively sharp peak at 150 ppm which corresponds to a pure RbBr phase.404 Pure RbI is expected at 177 ppm404 and in this sample 
is not present. That said, rubidium is known to form a continuum of mixed RbI1-xBrx phases,417 which explains the distribution of shifts 
in the region, delimited by the values of pure RbI and RbBr (150-177 ppm). The mixed RbI1-xBrx phases make up 38% of rubidium 
content in this sample and are responsible for bromide depletion from the perovskite, the reason behind the previously observed 
XRD and PL shifts, at the time ascribed to rubidium incorporation into the perovskite lattice.415 The other, much broader peak cen-
tered around 50 ppm can be attributed to a mixture of rubidium lead halides. Its breadth is consistent with the presence of RbPbI3, 
Cs0.5Rb0.5PbI3 (Figure 4-9d and g) and “phase X” (Figure 4-9i). The presence of RbPb2Br5 cannot be excluded as its sharp signal is 
overlapping with the broad peak of RbCsMAFA(Br,I). The only other known rubidium lead bromide is Rb4PbBr6402, and since we did 
not succeed in synthesizing it by mechanochemistry, its presence in this composition is unlikely. As before, also in this case, the two 
87Rb signals in RbCsMAFA(Br,I) do not broaden or shift significantly between 298 and 100 K (Figure 4-19), which provides further 
evidence that these rubidium species are not involved in the displacive phase transition of the perovskite lattice, as was the case for 
incorporated Cs+ ions.  

The hypothesis that rubidium-rich phases may act as a passivation layer is supported by a recent XPS study which has found unex-
pectedly high (with respect to a theoretical homogeneous distribution) concentration of Cs and Rb in the 18 nm surface layer of a 
RbCsMAFA(Br,I) thin film.418 Taken with the NMR result suggesting the formation of δ-Cs0.5Rb0.5PbI3 it indicates that the mixed rubid-
ium/cesium hexagonal phase has a propensity to form at the top of the perovskite film during solution processing, thereby isolating 
it from ambient humidity. 

In summary, Table 4-4 rounds up the capacity for incorporation of Cs+ and Rb+ into perovskite lattices found here.  

Table 4-4. Incorporation capacity of Cs+ and Rb+ into FAPbI3-based perovskite lattices. 

perovskite 

incorpora-
tion into lat-
tice separate phases 

Cs Rb 

CsxFA1-x(I) ✓  δ-CsPbI3 (for >10% Cs) 

CsMAFA(Br,I) ✓  - 

RbFA(I)  ✗ δ-RbPbI3 

RbMAFA(I)  ✗ δ-CsPbI3 

RbCsFA(I) ✓ ✗ δ-Cs0.5Rb0.5PbI3 

RbCsMAFA(I) ✓ ✗ δ-Cs0.5Rb0.5PbI3 

RbCsMAFA(Br,I) ✓ ✗ 

RbIxBr1-x 
δ-Cs0.5Rb0.5PbI3 
 RbxPbyBrz 
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Potassium has an atomic radius similar to that of rubidium, and its incorporation has recently attracted attention as a means of 
improving PV performance of perovskite materials.374-375 Here we investigate the simplest case of K0.10MA0.90PbI3. Figure 4-10a-b 
show a comparison between 13C and 14N spectra of MAPbI3 and K0.10MA0.90PbI3. The spectra are, to within error, identical, and indicate 
that no potassium incorporation into the MAPbI3 lattice takes place. Further, the 39K spectrum of K0.10MA0.90PbI3 acquired over 12 
hours shows only the presence of unreacted potassium iodide used as a precursor. Given the similarity of the atomic radii of Rb and 
K and in light of the above discussion, it is not surprising that no potassium incorporation takes place. 

 

Figure 4-10. (a) Low-temperature (100 K) 13C CP MAS spectra, (b) echo-detected 14N MAS spectra at 300 K and 5 kHz MAS of MAPbI3 (top) and 
K0.10MA0.90PbI3 (bottom), (c) echo-detected 39K spectrum of K0.10MA0.90PbI3 at 300 K and 20 kHz MAS (20 s recycle delay, 12 h total acquisition time). 

Bulk microstructure matches that of thin films. The bulk perovskites synthesized by means of mechanochemistry studied here are 
also potentially a convenient source of material for scaling up the production of PV perovskites.398, 403 However, so far it has been 
unclear whether their microscopic structure corresponds to that of thin films prepared by solution processing. In order to address 
this, we prepared a mechanochemical bulk sample of CsMAFA(Br,I) and compared it with a spin-coated CsMAFA(Br,I) thin film.369  

Figure 4-11 shows solid-state 133Cs, 13C CP and 14N MAS NMR spectra of the two samples. The low-temperature 133Cs spectra are 
essentially identical and contain one broad peak corresponding to Cs+ incorporated into the perovskite lattice, analogous to the one 
observed for Cs0.20FA0.80 (Figure 4-7a, 103 K). The experiment was carried out at 100 K to take advantage of the shorter recycle delay 
and improve the overall sensitivity. The low-temperature 13C CP spectra (Figure 4-11b) indicate that only the black phase of FA is 
present in both cases.397 The two spectra have no significant differences and their appearance corresponds to that of the MAFA 
system, given for reference at the top of fig. Figure 4-11b.  

 

Figure 4-11. Solid-state MAS NMR spectra of CsMAFA(Br,I) in bulk (blue) and prepared as thin film on glass (red). (a) Echo-detected 133Cs spectra at 
100 K and 12 kHz MAS (Figure 4-6f is the corresponding 298 K spectrum of the bulk material), (b) 13C CP at 100 K and 12 kHz MAS and (c) 14N echo-
detected spectra at 298 K and 20 kHz MAS (acquisition times: bulk 20 h, thin film 60 h). The isotropic signal marked “†” most likely comes from 
traces of DMF used during spin-coating. 
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We have previously shown that 14N MAS spectra of mixed-cation phases are a sensitive probe of the cation reorientation dynamics 
which is encoded in the spectral envelope and linewidths.397 Here, the two 14N spectra (Figure 4-11c) again have very similar enve-
lopes and linewidths. However, the observed linewidths are in this case determined by inhomogeneous effects (disorder), as evi-
denced by the fact that they are not Lorentzian in shape and do not change with increasing the temperature, thus preventing us from 
extracting quantitative information on cation reorientation. On the other hand, the similarity of the two spectral envelopes indicates 
that the two cations in both cases reorient in a potential of similar symmetry, pointing to a similar extent of lattice distortion in the 
two materials.  

4.3.4 Conclusion	
In summary, we have shown that 133Cs and 87Rb solid-state NMR offers a robust way of identifying cesium and rubidium species in 
multi-cation perovskite materials relevant to photovoltaics. 

In particular, we have found that cesium is readily incorporated into the perovskite lattice of FA-based materials up to around 15 
mol%. Above 15 mol% a second CsPbI3 phase is observed. Rubidium, on the other hand, does not form a solid alloy with FA in any of 
the studied compositions. Rather, it separates into a mixture of rubidium-rich phases (RbPbI3 mixed cesium-rubidium lead iodides, 
mixture of rubidium halides, various rubidium lead bromides, depending on the exact composition). All these rubidium-rich phases 
potentially act as a passivation layer for the perovskite material. We have also found that potassium, which has a size similar to 
rubidium, is not incorporated into the MAPbI3 lattice. 

Further, we have shown that the microscopic composition, as probed by 1D 133Cs, 13C and 14N MAS NMR, of a bulk mechanochemical 
perovskite preparation, here CsMAFA(Br,I), is indistinguishable from that of a thin film prepared using the two-step solution process.  

4.3.5 Appendix	V	

Perovskite synthesis 

Perovskite powders were synthesized by grinding the substrates in an electric ball mill (Retsch Ball Mill MM-200, a grinding jar (10 
ml) and a ball with ⌀10 mm) for 30 min at 30 Hz. Substrates were packed into the jar inside a glove box under argon. The resulting 
perovskite powders were annealed at 140 °C for 10 minutes to reproduce the thin-film synthetic procedure.403 

Table 4-5. Synthesis of mixed-cation and mixed-halide lead perovskites. 

Mixed-cation and mixed-halide lead perovskites 
 
MAFA(Br,I) perovskite 

The double cation mixed-halide perovskite was fabricated according to the previously published procedure.403 0.172 g of FAI (1 
mmol), 0.507 g of PbI2 (1.1 mmol), 0.022 g of MABr (0.2 mmol) and 0.073 g of PbBr2 (0.2 mmol) were milled to prepare the 
MAFA_(Br,I) black powder. 

CsMAFA(Br,I) perovskite 

The triple cation perovskite was fabricated according to the previously published recipe.369 0.172 g of FAI (1 mmol), 0.507 g of PbI2 
(1.1 mmol), 0.022 g of MABr (0.2 mmol), 0.080 g of PbBr2 (0.22 mmol) and 0.014 g of CsI (0.055 mmol) were milled to prepare the 
CsMAFA black powder. 

RbCsMAFA(Br,I) perovskite 

The quadruple cation perovskite was fabricated according to the previously published recipe.371 0.172 g of FAI (1 mmol), 0.507 g 
of PbI2 (1.1 mmol), 0.022 g of MABr (0.2 mmol), 0.080 g of PbBr2 (0.22 mmol), 0.014 g of CsI (0.055 mmol) and 0.011 g of RbI (0.055 
mmol) were milled to prepare the RbCsMAFA black powder. 
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Table 4-6. Synthesis of mixed-cation lead iodide perovskites 

Mixed-cation lead iodide perovskites 
FA/Cs perovskite 

0.154 g of FAI (0.90 mmol), 0.026 g of CsI (0.10 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed to prepare the (FA)0.90(Cs)0.10PbI3 
black powder.  

0.137 g of FAI (0.80 mmol), 0.052 g of CsI (0.20 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed to prepare the (FA)0.80(Cs)0.20PbI3 
black powder.  

0.120 g of FAI (0.70 mmol), 0.078 g of CsI (0.30 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed to prepare the (FA)0.70(Cs)0.30PbI3 
black powder.  

FA/Rb perovskite 

0.154 g of FAI (0.90 mmol), 0.021 g of RbI (0.30 mmol) and 0.461 g (1.00 mmol) of PbI2 were mixed to prepare the (FA)0.90(Rb)0.10PbI3 
black powder.  

RbMAFA(I) perovskite 

0.039 g of MAI (0.25 mmol), 0.120 g of FAI (0.70 mmol), 0.010 g of RbI (0.05 mmol) and 0.461 g of PbI2 (1 mmol) were mixed to 
prepare the (Rb)0.05(MA)0.25(FA)0.70PbI3 black powder.  

RbCsFA(I) perovskite 

0.146 g of FAI (0.85 mmol), 0.010 g of RbI (0.05 mmol), 0.026 g of CsI (0.10 mmol) and 0.461 g of PbI2 (1 mmol) were mixed to 
prepare the (Rb)0.05(Cs)0.10(FA)0.85PbI3 black powder.  

RbCsMAFA(I) perovskite 

0.039 g of MAI (0.25 mmol), 0.103 g of FAI (0.60 mmol), 0.010 g of RbI (0.05 mmol), 0.026 g of CsI (0.10 mmol) and 0.461 g of PbI2 
(1 mmol) were mixed to prepare the (Rb)0.05(Cs)0.10(MA)0.25(FA)0.60PbI3 black powder.  

K0.10MA0.90PbI3 perovskite 

0.016 g of KI (0.10 mmol), 0.143 g of MA (0.90 mmol) and 0.461 g (1.00 mmol) of PbI2 were mixed to prepare 
the (K)0.10(MA)0.90PbI3 black powder.  

 

Table 4-7. Synthesis of rubidium lead bromides. 

Rubidium lead bromides 
 
RbPb2Br5 

0.082 g of RbBr (0.5 mmol) and 0.367 g of PbBr2 (1 mmol) were mixed and annealed at 150°C for 15 min to prepare the RbPb2Br5 
white powder.  

Rb4PbBr6 

0.165 g of RbBr (1 mmol) and 0.091 g of PbBr2 (0.25 mmol) were mixed and annealed at 150°C for 15 min.  

Cs0.50Rb0.50PbI3 

0.128 g of CsI (0.50 mmol), 0.106 g of RbI (0.50 mmol) and 0.461 g of PbI2 (1 mmol) were mixed to prepare the Cs0.50Rb0.50PbI3 
alloy.  
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Powder X-ray Diffraction 

Diffractograms were recorded on an X’Pert MPD PRO (Panalytical) diffractometer equipped with a ceramic tube (Cu anode, λ = 
1.54060 Å), a secondary graphite (002) monochromator and an RTMS X’Celerator (Panalytical) in an angle range of 2θ = 5° to 40°, by 
step scanning with a step of 0.02 degree. 

 

Figure 4-12. pXRD pattern for the CsxFA1-x compositions. Asterisks (*) indicate the primary phases. Deltas (δ) indicate the phase separated δ-CsPbI3. 

 

Figure 4-13. pXRD pattern for the CsFAMA(Br,I) and RbCsMAFA(Br,I) compositions. 
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Figure 4-14. pXRD pattern for the RbMAFA(I), RbCsFA(I) and RbCsMAFA(I) compositions. Asterisks (*) indicate the primary phases. Hashes (#) indi-
cate the mixed Cs0.5Rb0.5PbI3 phase. 

 

Figure 4-15. pXRD pattern for the RbPbI3 and Rb0.10FA0.90 compositions. Asterisks (*) indicate the primary phase, hashes (#) indicate the phase 
separated RbPbI3. 

 

Figure 4-16. pXRD pattern for the rubidium lead bromides. Asterisks (*) indicate RbBr, hashes (#) indicate “phase X”. 
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Figure 4-17. pXRD data for Cs0.50Rb0.50PbI3. 

 

Figure 4-18. pXRD data for K0.10MA0.90PbI3. Asterisks (*) indicate the primary MAPbI3 phase. 

NMR measurements 

 

Figure 4-19. A comparison between 298 K and 100 K MAS spectra of (a) CsI, (b) RbI, (c) δ-CsPbI3, (d) RbCsMAFA(I), (e) RbCsMAFA(Br,I). 
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Figure 4-20. 14N MAS spectra of α-FAPbI3 and Cs0.20FA. 

 

Figure 4-21.. Low-temperature (100 K) 13C CP MAS spectra of the materials studied in this work. 
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Details of DFT calculations of 133Cs and 87Rb shifts 

The crystal structures of CsI,419 RbI,420 cubic (black) and hexagonal (yellow) FAPbI3390, tetragonal (black) MAPbI3421 , hexagonal (yellow) 
CsPbI3422 and hexagonal (yellow) RbPbI3422 were used as a starting point for the clusters. The remaining crystal structures (cubic 
RbPbI3, cubic CsPbI3 and tetragonal CsPbI3) were generated by replacing the FA/MA cations of the corresponding cubic/tetragonal 
crystal structure by Cs/Rb cations.  

Next, the proton positions in the periodic black FAPbI3 structure as well as the Cs/Rb positions in the substituted periodic structures 
were optimized using density functional theory (DFT) at the generalized gradient approximation (GGA) level with the PBE205 functional 
including relativistic effects (with spin-orbit coupling) and the Grimme206 dispersion correction within the Quantum Espresso suite.188 
In every calculation a plane-wave maximum cutoff energy of 90 Ry and a 3x3x3 Monkhorst-Pack423 grid of k-points was employed. 
Note, that we assume the doping doesn’t lead to a change in the Perovskite lattice. 

The final clusters were generated as a central cation surrounded by a PbI3 cage representing the asymmetric unit of the periodic 
crystal structure. To ensure charge compensation and to represent the solid state, additional cations surrounding the PbI3 cage were 
included, resulting in symmetry-adapted clusters110 containing the non-translational-symmetry elements from the perspective of the 
central molecule. Generic models of the generated clusters are depicted in Figure 4-22. The procedure described above leads to the 
cluster Cs32I32, Rb14I14, cubic and tetragonal Cs20Pb8I36, cubic XFA19Pb8I36 and hexagonal X18Pb6I30 (with X = Rb/Cs), see Table 36. For 
the hexagonal RbPbI3 structure the chemical shifts were also calculated with a larger cluster (Rb20Pb8I36). They were within 1 ppm 
agreement of the shifts calculated for the smaller cluster (Rb18Pb6I30). In general, the setup of the clusters, with respect to level of 
theory, charge compensation and cluster symmetry, was done according to recent studies on calculations of electronic and magnetic 
properties of heavy atoms.123-124, 424-427 All the calculated NMR and EFG parameters are given in Tables 4-9 and 4-10. 

Table 4-8. Source and modifications of the cluster structures used in the DFT calculations. 

Structure name Original structure Modifications in periodic sys-
tem (with Quantum Es-
presso)188  

Modifications of cluster (with 
ADF)383-384 

Rb32I32 

 
RbI420 - - 

Cs32I32 

 
CsI419 - - 

Cs18Pb6I30 (hexago-
nal) 
 

hexagonal (yellow) CsPbI3422 - - 

Rb18Pb6I30 (hexago-
nal) 
 

hexagonal (yellow) 
RbPbI3422 

- - 

Cs20Pb8I36 (cubic) cubic (black) FAPbI3390 Optimization of 133Cs positions Symmetric Replacement of all FA+ to 
Cs+ 

Cs20Pb8I36 (tetrago-
nal) 
 

tetragonal (black) MAPbI3 
421 

Optimization of 87Cs positions Symmetric Replacement of all MA+ 

to Cs+ 

CsFA19Pb8I36 (cubic) 
 

cubic (black) FAPbI3390 Optimization of 1H and 133Cs po-
sitions 

Symmetric Replacement of central 
FA+ to Cs+ 

Rb 20Pb8I36 (cubic) cubic (black) FAPbI3390 Optimization of 1H and 87Rb po-
sitions 

Symmetric Replacement of central 
FA+ to Rb+ 
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Figure 4-22. Example clusters used in DFT chemical shift calculations. 

Table 4-9. 133Cs DFT calculated and experimental magnetic shieldings, chemical shifts and EFG tensor parameters. 

Structure DFT chemi-
cal shield-
ing [ppm] 

Experimental 
shifts [ppm] 

DFT shifts 
(sref=3490, 
b=0.54) 
[ppm] 

DFT shifts 
(sref=6225, 
b=1.0) 
[ppm] 
(RMSE = 
24.13 ppm) 

CQ  

[MHz] 
𝜼 

 
Vzz  
1021 [Vm-2] 

Cs32I32 

 
5940.4 271.05 282.48 284.6 1.4E-3 2.0E-1 -5.1E-3 

Cs18Pb6I30 (hex-
agonal) 
 

5997.7 240.0 251.24 227.3 -4.0E-1 5.0E-1 3.0E-1 

Cs20Pb8I36 (cu-
bic) 

6468.5  -2.99 -243.5 -2.1E-2 1.3E-3 2.5E-2 

Cs20Pb8I36 (te-
tragonal) 
 

6093.9  199.3 131.1 -4.4E-1 2.4E-1 5.5E-1 

CsFA19Pb8I36 
(cubic) 
 

6456.7  3.38 231.7 
 

-5.2E-2 7.4E-1 6.5E-2 

 

Table 4-10. 87Rb DFT calculated and experimental magnetic shieldings, chemical shifts and EFG tensor parameters. 

Structure DFT chemi-
cal shield-
ing [ppm] 

Experimental 
shifts [ppm] 

DFT shifts 
(sref=2653, 
b=0.79) 
[ppm] 

DFT shifts 
(sref=3335, 
b=1.0) 
[ppm] 
(RMSE = 
18.56) 

CQ  

[MHz] 
𝜼 

 
Vzz  
1021 [Vm-2] 

Rb32I32 

 
3140.8 177.08 171.8 194.2 -1.9E-2 1.5E-2 -3.0E-4 

Rb18Pb6I30 (hex-
agonal) 
 

3302.0 50.0 44.42 33.0 13.0 7.7E-1 2.0E-1 

Rb FA19Pb8I36 
(cubic) 

3497.6  -110.1 -162.6 2.2 7.4E-1 3.4E-2 
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4.4 Phase	Segregation	in	Potassium-Doped	Lead	Halide	Perovskites		
This chapter has been adapted with permission from: Kubicki, D. J.; Prochowicz, D.; Hofstetter, A.; Zakeeruddin, S. M.; Grätzel, M.; 
Emsley, L., “Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K solid-state NMR at 21.1 T”. Journal of the Amer-
ican Chemical Society 2018, 140 (23), 7232-7238. (post-print) 

4.4.1 Introduction	
The field of photovoltaics based on organic-inorganic lead halide perovskites is thriving (see Chapter 4.3.1), owing to their long charge 
carrier lifetimes and mobilities and the ease with which they can be processed and with which their properties can be tuned.428-429 
The key photovoltaic metrics include open-circuit voltage (VOC), short-circuit current (JSC), fill factor (FF) and power conversion effi-
ciency (PCE). PCE is determined experimentally by measuring photocurrent as a function of the applied bias, and typically plotted in 
the form of a J-V curve. However, the shape of the J-V curve is often significantly different depending on the scanning direction of 
the voltage. This effect, known as J-V hysteresis, makes it difficult to determine the correct value for the PCE and to compare intrinsic 
efficiencies of different perovskite light absorbers, hence it has recently been a subject of intense investigation.430 The microscopic 
origins of hysteresis are still a subject of a debate, and include polarization of the perovskite layer caused by ion migration under 
illumination431-434 and capacitive charging effects due to carrier trapping in surface states.435  

Several strategies have been proposed to eliminate hysteresis based on modification of the electron transport layer (ETL) or the 
perovskite itself. The use of chlorine-capped TiO2 or SnO2 nanocrystals,436-437 and lithium-doped mesoporous TiO2438 as an ETL has 
been shown to significantly reduce hysteresis. Very recently, potassium doping of the perovskite layer has been reported as a straight-
forward and universal way of alleviating hysteresis, although the reports by Tang et al. and Son et al. differed in the optimal dopant 
concentration (5 and 1 mol% relative to Pb, respectively, in a double-cation (FA/MA) mixed-halide (I/Br) material).379, 439 Shortly after, 
these findings were contradicted in a study by Jacobsson et al., who showed that potassium doping leads to anomalously large hys-
teresis (for 6 mol% K+ in double-cation (FA/MA) and 3 mol% K+ in triple cation(FA/MA/Cs) mixed-halide (I/Br) materials), compared 
to the undoped perovskites.377 Considering these discrepancies, and the current effort put into understanding of the root causes of 
hysteresis, there is a need to subject new protocols to reduce hysteresis to atomic-level scrutiny.  

Further, potassium doping has been reported to improve crystallinity,375-376 enhance stability,374 lead to longer charge carrier life-
times,375-377 and modify the band gap.375, 377-378 In these works potassium was suggested to either form interstitial defects,375, 379 
replace A-site cations,374 or passivate grain boundaries376. These conclusions were drawn based on XRD and XPS measurements of 
perovskite thin films. However, we note that XPS is not a phase-specific method, while XRD can suffer from specimen displacement 
errors (see Chapter 4.3.1). The latter problem occurs when the thin film is not aligned precisely on the focusing circle of the diffrac-
tometer, and leads to 2θ errors on the order of 0.04° for displacements as small as 70 μm, which is larger than the XRD shifts typically 
given as evidence for potassium incorporation.440 

Solid-state NMR, on the other hand, has become the primary tool to study the atomic-level microstructure and phase composition 
of lead halide perovskites.391-393, 395-396, 441-442 In particular, we have shown (see Chapter 4.3) that cesium and rubidium incorporation, 
phase separation phenomena and cation dynamics can be easily studied by solid-state NMR using local 13C, 14N, 2H 133Cs and 87Rb 
nuclear probes.397, 443-444 We note that 207Pb is a sensitive probe of the halide environment but is far less sensitive to the A-site cation: 
e.g. with shifts of 1423 ppm in MAPbI3 and 1495 ppm in α-FAPbI3 which given the fwhm of ~250 ppm makes them essentially indis-
tinguishable.393, 442, 445 

39K (I=3/2, 93.3% abundant) solid-state NMR has been used to characterize a wide range of inorganic materials including potassium 
salts,446 oxides, fulleride superconductors,447 potassium-containing clays,448 glasses449 and microporous solids,450 and a variety of bi-
ological,451-452 organic453-455 and organometallic11 systems. Even though the receptivity of 39K is 2.8 times higher than that of 13C, 
sensitivity is the key challenge in 39K solid-state NMR as the quadrupolar coupling constants can reach up to 5 MHz, leading to central 
transitions (CT, -½⟷+½) spanning hundreds of ppm.446 One of the most efficient strategies to reduce the effect of second-order 
quadrupolar broadening on the CT is to use high magnetic field strength, B0, to which the broadening is inversely proportional. Magic 
angle spinning (MAS) provides another factor of 3 reduction in the CT linewidth. 
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In terms of structure, higher asymmetry of the potassium site translates to larger quadrupolar coupling constant (CQ) and thus to 
broader CT. There exist two experimental regimes that allow one to optimize sensitivity when dealing with quadrupolar nuclei, and 
they are distinguished based on the relative strengths of CQ and the radiofrequency (RF) excitation. If the RF strength is much larger 
(e.g. for symmetric K sites in KI or KBr with CQ≈0 kHz and a typical RF strength of 30 kHz) the excitation is called nonselective. If applied 
to a K site with a large CQ, it would lead to complex interactions between the different transitions and in turn to an intractable pattern 
of overlapping sidebands. In the case when CQ dominates significantly (e.g. for asymmetric K sites in KMnO4 with CQ=1190 kHz), CT-
selective excitation can be used to overcome this problem and selectively manipulate the ½⟷+½ transition leading to optimal sen-
sitivity and clean spectra. The results we present here are based on regimes that experimentally proved best on a case-by-case basis. 

 

Figure 4-23. Schematic representation of hypothetical scenarios for potassium incorporation into the perovskite lattice: (a) parent APbI3 lattice 
(A=MA, FA, Cs+), (b) A-site replacement, (c) interstitial K + A-site vacancy, (d) B-site replacement + X-site vacancy. 

Figure 4-23. shows three hypothetical ways in which potassium could dope lead halide perovskite lattices. An A-site cation (MA, FA 
or Cs+) of the parent lattice (Figure 4-23a) could be replaced by K+ either with preserving its original crystallographic position (Figure 
4-23b) or by assuming a normally unoccupied site in the perovskite structure and forming an interstitial defect along with an A-site 
vacancy (Figure 4-23c). Potassium could also conceivably replace a B-site cation leading to an X-site vacancy (Figure 4-23d). The latter 
scenario is very unlikely owing to the large difference in electronegativity between potassium (0.8) and lead (1.9) which would lead 
to ionic rather than coordinate covalent bonds with the iodides and in turn to a collapse of the octahedron.  

Here we apply 39K solid-state NMR at 21.1. T to characterize the atomic-level microstructure of phases that are formed when bulk 
mechanochemical lead halide perovskites 400, 403 are doped with KI. We show that under typical annealing conditions KI partly reacts 
with the perovskite components to form non-perovskite KPbI3 (for iodide-based materials), a mixture of KI and KBr (in mixed iodide-
bromide perovskites) or a non-perovskite mixed-K/Cs lead iodide phase (in compositions containing Cs). We find no evidence of 
potassium incorporation into the perovskite lattice in any of these compositions, nor in any of the modes shown in Figure 4-23, which 
suggests that the root causes of potassium-induced reduction of J-V hysteresis should be sought elsewhere. These results also explain 
the XRD and PL peak shifts observed upon doping with KI, which were previously interpreted as evidence for potassium incorporation 
into lead-halide perovskite phases. 
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4.4.2 Methods	

Materials. 

The following materials were used: methylammonium iodide (DyeSol), formamidinium iodide (DyeSol), PbI2 (TCI, 99.99%), PbBr2 (TCI), 
KI (abcr, 99.998%), KBr (Sigma, 99.999%), CsI (Sigma, 99.999%). 

Perovskite mechanosynthesis. 

Starting materials were stored inside a glove box under argon. Perovskite powders were synthesized by grinding the reactants in an 
electric ball mill (Retsch Ball Mill MM-200 using a grinding jar (10 ml) and a ball (⌀10 mm) for 30 min at 25 Hz. The resulting perovskite 
powders were annealed at 140 °C (280 °C in the case of K0.075Cs0.925PbI2Br and CsPbI2Br) for 10 minutes to reproduce the thin-film 
synthetic procedure. The amounts of reagents taken into the synthesis are given in Appendix VI. 

NMR measurements. 

Solid-state MAS NMR spectra of 39K (23.4 MHz at 11.7 T and 42 MHz at 21.1 T) and 133Cs (52.5 MHz at 9.4 T), were recorded on Bruker 
Avance III 9.4 T and 11.7 T and Avance IV 21.1 T spectrometers equipped with 3.2 mm CPMAS probes. 133Cs and 39K shifts were 
referenced to 1 M aqueous solutions of the respective alkali metal chlorides, using solid CsI (δ=271.05 ppm) and KI (δ=59.3 ppm) as 
secondary references.404 Typically recycle delays between 3 and 12 seconds were used, based on the measured T1 values of KI (~9 s), 
KBr (~8 s) and KPbI3 (~1.4 s). Further experimental details are given in Appendix VI. 

EFG tensor and NMR chemical shift calculations 

The Amsterdam Density Functional (ADF) suite383-384 was used to perform the EFG tensor and NMR chemical shift calculations within 
the DFT framework. For the calculations the GGA BP86405-406 functional including the Grimme dispersion correction206 and relativistic 
effects up to spin-orbit couplings within the ZORA408-409, 456 approximation were used. All-electron triple-ζ basis sets with two polari-
zation functions (TZ2P) were used in the calculations. Both the cluster generation and the EFG tensor calculation are set up analogue 
to the previous paper by Kubicki et al.443 (see Appendix VI) and in accordance with recent computational studies of systems including 
heavy atoms.123, 424-426, 457-458 

4.4.3 Results	and	discussion	
In order to estimate whether non-selective or central-transition selective excitation270 should be optimal to detect potassium inside 
the perovskite lattice, we carried out fully-relativistic DFT calculations of NMR and EFG parameters for potassium incorporated on 
the A-site or in the interstitial site (details in Appendix VI). The calculations suggest that K+ sites inside a perovskite lattice should 
have CQ values between 68 and 243 kHz, which given the experimental RF strength of 29 kHz (2-8 smaller than the calculated CQ), 
points to an intermediate nutation regime where either nonselective and CT-selective excitation might prove more efficient. We thus 
carried out the measurements using both regimes. 

Figure 4-24 shows experimental (a-l) and calculated (m-n) 39K NMR spectra at 21.1 T and 20 kHz MAS of reference (blue) and KI-
doped perovskite phases (black). KI (Figure 4-24a) exhibits one narrow (fwhm 45 Hz) peak at 59.3 ppm, consistent with a single 
symmetric potassium site in a cubic lattice and a CQ close to 0 kHz (the non-zero CQ value is due to the presence of defects and finite 
crystallite sizes which lead to breaking of the perfect cubic point symmetry). Fitting of the KI signal leads to a CQ of at most 230 kHz 
for η=0.6 (or less for η<0.6 or η>0.6). An equimolar mixture of KI and PbI2 yields a single narrow peak at 5.6 ppm (Figure 4-24b) and 
a CQ of at most 230 kHz for η=0.6, or less for η<0.6 or η>0.6 (the line width might be dominated by inhomogeneous broadening), 
corresponding to a single potassium site in a highly symmetrical environment. The XRD pattern of this phase (Figure 4-29) does not 
correspond to any of the KPbI3 or K2PbI4 patterns deposited in the ICDD database, which suggests it might be a different polymorph 
than those previously reported. Notably, the available ICDD reference patterns are annotated with low-precision quality marks. We 
have so far not been able to solve the structure of this phase from powder-XRD, and, and we therefore report the fitted peak positions 
and the corresponding d-spacings in Table 4-15. Since the quantitative 39K spectrum (Figure 4-39) as well as XRD data (Figure 4-30) 
indicate there is no unreacted KI or PbI2 in this phase, it seems reasonable to assume that its stoichiometry corresponds to KPbI3. In 
what follows we therefore refer to it as KPbI3. 
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Figure 4-24c shows a single-cation (MA) lead iodide doped with KI, a material reported by P. Zhao et al. to exhibit full potassium 
incorporation into the perovskite lattice based on XRD and PL shifts.375 W. Zhao et al., on the other hand, suggested that K+ passivates 
grain boundaries of the perovskite in KI-doped MAPbI3, unfortunately these authors did not specify the doping level used.376 The 39K 
spectrum clearly shows that potassium exists in this material as a mixture of unreacted KI and KPbI3, consistent with our previous 
preliminary report.443 This is also the case for a the FA-based (Figure 4-24d) and double-cation (MA/FA) lead iodide doped with KI 
(Figure 4-24e). The corresponding XRD patterns are given in Figures 4-28 and 4-30. 

Figure 4-24g shows a double-cation (MA/FA) mixed-halide (I/Br) perovskite doped with KI, similar to those reported by Tang et al.378, 

439 and Son et al.379 as exhibiting potassium incorporation based on XRD, PL and UPS. In this case, KI does partially react with the 
perovskite components, yielding KBr (Figure 4-24f), thus changing the iodide-to-bromide ratio in the final perovskite composition, 
and in turn the band gap and lattice parameters, relative to the parent material. The change in the I/Br ratio will lead to XRD shifts 
significantly larger than those observed for purported cation incorporation. For instance, the main perovskite peak shifts from about 
14° (2θ) in MAPbI3 to about 15° in MAPbBr3 and takes on intermediate values in mixed-halide MAPb(I,Br)3 compositions, roughly 0.1° 
per every +10% change in the halide ratio.459 This effect is even more pronounced for higher order reflections (e.g. 40.4° and 43.2° in 
MAPbI3 and MAPbBr3, respectively (0.28° per every +10% change in the halide ratio). Interestingly, no potassium-rich lead bromide 
or mixed bromide-iodide phases are formed (Figure 4-24h and i) in this case, suggesting higher thermodynamical stability of simple 
potassium halides under these experimental conditions. There is no incorporation of potassium into the perovskite phase. The cor-
responding XRD pattern is given in Figure 4-28f and only shows the main perovskite phase. 

 

Figure 4-24. 39K solid-state NMR spectra at 21.1 T and 20 kHz MAS and 298 K of reference (blue) and perovskite (black) compositions. The excitation 
regime used is given in parentheses. (a) KI (nonselective), (b) KPbI3 (CT selective), (c) K0.10MA0.90PbI3 (nonselective), (d) K0.10FA0.90PbI3 (nonselective), 
(e) K0.05MA0.10FA0.85PbI3 (nonselective), (f) KBr (nonselective), (g) “KMAFAPb(I,Br)” (nonselective, see the Appendix VI for the exact stoichiometry), 
(h) KBr + 2PbBr2 (CT selective), (i) KBr + PbI2 (CT selective), (j) K0.05Cs0.10FA0.85PbI3 (solid line: nonselective, dashed line: CT-selective) (k) K0.50Cs0.50PbI3 
(CT selective), (l) K0.075Cs0.925PbI2Br (CT selective). Spectra simulated using parameters from DFT: (m) for K+ in an interstitial position (structure “h” 
in Table 4-20), (n) for K+ at A-site (structure “g” in Table 4-20). The CT-selective spectra for compositions in panels c, e and g are given in Figure 
4-36. Apodization parameters (leading to slightly different apparent fwhm for KI signals in different spectra) are given in Table 4-17. 
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Phase segregation in potassium and cesium doped perovskites.  

Mixed-cation perovskites containing Cs and FA doped with KI have also been reported.379, 460 We illustrate this case using a double-
cation (Cs/FA) lead iodide doped with 5 mol% of KI (Figure 4-24j). The 39K spectrum of this material shows two peaks, one corre-
sponding to unreacted KI (its larger apparent width in this case is only due to apodization applied during processing) and another 
one, significantly broader (δ=-2 ppm, fwhm about 700 Hz) and shifted to high-field. In a CT-selective spectrum the position and shape 
of this peak change slightly (δ=-4 ppm, fwhm about 500 Hz) suggesting it has several components with different CQ values. We hy-
pothesize it might correspond to a mixed Cs/K non-perovskite lead iodide, since similar mixed K/Rb and Cs/Rb phases are known.443, 

461 We confirm this hypothesis by preparing a series of KxCs1-xPbI3 (x=0, 0.1, 0.5, 0.9, 1.0) phases (Figure 4-25). The 39K spectra of these 
phases (Figure 4-25a-d) strongly depend on the K/Cs ratio with the signal broadening and shifting to the right for decreasing K/Cs 
ratios. An analogous trend is observed in the 133Cs spectra (Figure 4-25g-j) as well as XRD patterns (Figure 123) of this series of mixed 
K/Cs phases. The broad component in the 39K spectrum of K0.05Cs0.10FA0.85PbI3 (Figure 4-24j and Figure 4-25e) matches well the shift 
exhibited by these mixed Cs/K-rich phases. For instance, the spectrum of K0.50Cs0.50PbI3 (Figure 4-24k and Figure 4-25c) exhibits a very 
similar signal (δ=-2 ppm, fwhm about 700 Hz).  

The hypothesis of phase segregation into secondary Cs/K-rich phases was further confirmed by acquiring a 133Cs spectrum of this 
perovskite material, which shows a peak from Cs+ inside the perovskite lattice (Figure 4-25k, dashed box) and a second, broader peak 
from a non-perovskite Cs-rich δ phase.443 We have recently shown that at 10 mol% Cs+ is fully incorporated into the α-FAPbI3 lattice 
(Figure 4-25 ).443 The presence of these secondary phases itself for 10 mol% Cs+ doping, as well as the resemblance of their resonance 
to those of the KxCs1-xPbI3 phases (Figure 4-25g-j) corroborates the formation of non-perovskite Cs/K-rich lead iodide δ phases. This 
in turn decreases the amount of Cs incorporated into the perovskite lattice relative to the perovskite undoped with KI. This, again, is 
expected to change XRD and PL shifts. Quantification of the 133Cs spectrum of K0.05Cs0.10FA0.85PbI3 indicates that 32% of the Cs+ is 
incorporated into the perovskite while 68% forms separate Cs/K-rich lead iodide phases. The XRD pattern of K0.05Cs0.10FA0.85PbI3 is 
given in Figure 4-28d. 

Figure 4-24l shows an all-inorganic K0.075Cs0.925PbI2Br composition reported by Nam et al. to feature potassium incorporation into the 
perovskite lattice based on XRD and XPS.374 The 39K spectrum shows that this is not the case. As previously, mostly a mixed-Cs/K lead 
halide phase (δ=-9 ppm, fwhm about 900 Hz) is formed along with other potassium-rich lead iodide-bromide phases. The 133Cs spec-
trum of this material (Figure 4-25m, solid line) contains a component corresponding to the parent CsPbI2Br perovskite (Figure 4-25m, 
dashed line) as well as a second broad component similar to K0.50Cs0.50PbI3. In this case the secondary phase can also conceivably 
contain bromine. The XRD patterns of these two materials are given in Figure 4-32d-e. We note that phase segregation into potas-
sium- and cesium-rich lead iodide phases could not be studied by 207Pb NMR owing to insufficient resolution (Figure 4-37). 

Finally, the DFT results suggest a shift in the range between -119 and -143 ppm and fwhm of at most 110 Hz (if limited by the CQ) for 
potassium incorporated into the perovskite lattice (Figure 4-24m and n, details in the Appendix VI). No such signals were found in 
the experimental spectra.  

Estimation of the 39K detection limit. 

In order to ensure that the experiments are capable of detecting the small amounts of potassium present in the materials, we carried 
out a measurement on KHCO3, a compound with a relatively large, well-defined CQ value of 1490 kHz (Figure 4-26a) and a T1 compa-
rable to that of KPbI3 (Table 4-16). Its CQ is between 3.9 to 213 times larger than the CQ values predicted by DFT for K+ incorporated 
into the perovskite lattice (Table 4-20).The measurement was performed using 1.2 mg (12 μmol) of KHCO3 which is comparable to 
the amount of potassium present in the K0.10MA0.90PbI3 and K0.10FA0.90PbI3 samples in fig. Figure 4-24c and d (~12 μmoles of K+ inside 
a rotor, total sample mass ~75 mg) and using the same recycle delay of 3 s. The resulting spectrum had a signal-to-noise ratio of 6 
(higher resolution, visible quadrupolar pattern, Figure 4-26b) or 11 (processed with a matched filter of 1 kHz, Figure 4-26c) after 20 
hours, confirming that any potassium environment with a CQ comparable or lower should also be readily detected. 
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Figure 4-25. 39K (at 21.1 T, a-f) and 133Cs (at 11.7 T, g-m) solid-state NMR spectra at 20 kHz MAS and 298 K of KxCs1-xPbI3 phases: (a) x=1 (nonselective), 
(b,g) x=0.9 (39K nonselective), (c,h) x=0.5 (39K CT selective), (d,i) x=0.1 (39K CT selective), (j) x=0, and perovskite compositions: (e,k) K0.05Cs0.10FA0.85PbI3 
(solid line: 39K nonselective, dashed line: 39K CT-selective), (f,m) K0.075Cs0.925PbI2Br (39K CT selective), dashed line: CsPbI2Br, (l) Cs0.10FA0.90PbI3. Asterisks 
indicate spinning sidebands. The dashed box indicates signals from Cs+ inside the perovskite lattice. 

 

Figure 4-26. 39K solid-state NMR spectra at 21.1 T, 20 kHz MAS and 298 K of (a) bulk sample of KHCO3 (45 mg, 450 μmol), recycle delay: 1 s, 
acquisition time: 17 min., Lorentzian apodization of 50 Hz (b) 1.2 mg (12 μmol) of KHCO3, topped with 30 mg of TiO2 to ensure stable spinning, 
recycle delay: 3 s, acquisition time: 20 h., Lorentzian apodization of 50 Hz, (c) as (b) but with Lorentzian apodization of 1 kHz (matched filter) to 
maximize the SNR. 
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Comparison between the mechanochemical and solution synthetic route. 

We have previously shown that 13C, 14N and 133Cs NMR spectra of mechanoperovskites are essentially indistinguishable from those 
prepared as thin films by spin-coating from solution.443-444 In the case of 39K NMR the amount that could be recovered from thin films 
(~1 mg/15 films) would not be sufficient to achieve satisfactory sensitivity (typical perovskite sample masses in our study are about 
75 mg). That said, we have prepared bulk K0.10MA0.90PbI3 and K0.05Cs0.10FA0.85PbI3 perovskites using well-established solution pro-
cessing (dissolution of precursors in a 4:1 v/v mixture of DMF:DMSO, followed by solvent evaporation and vacuum drying, details in 
the Appendix VI).462 We have found no major differences in XRD patterns (Figures 4-30d,e and 4-31d,e) and 133Cs and 39K spectra 
(Figure 4-27) between the samples prepared using the solution- and solid-state synthetic route. The main difference is visible in the 
39K spectra whereby the signals in the solution-prepared materials are significantly broadened but not shifted (Figure 4-27b,d) com-
pared to those from the mechanoperovskites (Figure 4-27a,d). This is likely due to the remaining strongly coordinated solvent forming 
Lewis base adducts463-464 with the [PbI6]4- sublattice, which we found impossible to remove using vacuum drying at 120 °C. The quan-
titative 1H MAS NMR spectrum of the solution-prepared K0.05Cs0.10FA0.85PbI3 material indicates that after drying the solvent amounts 
to about 4% of protons in the sample (Figure 4-38). The approximate shift of these broad 39K signals spans a range similar to that 
observed in the mechanochemical analogues. The quantitative 133Cs spectrum of the solution-processed K0.05Cs0.10FA0.85PbI3 (Figure 
4-27f) exhibits signals from the analogous potassium-rich K/Cs lead iodide phases as in the mechanochemical sample, (Figure 4-27e) 
although the relative amounts of the secondary phases to the Cs+ incorporated into the perovskite are different (mechanochemical: 
68% as secondary phases, 32% incorporated, solution-processed: 25% as secondary phases, 75% incorporated).  

This highlights that the solution-based and mechanochemical routes qualitatively lead to similar phases although the local atomic 
environment and the resulting spectral appearance can be complicated by the presence of residual solvents and their coordination 
to the secondary phases. For comparison, this effect was not appreciable in the case of pure-phase perovskites with cesium443 and 
guanidinium444 incorporation on thin films. As regards particle size, morphology and crystallinity, there are no significant differences 
between mechanoperovskites, perovskites made using solution processing (present study) and perovskite thin films (typical XRD 
fwhm <0.3° 2θ for the main perovskite reflections, apparent particle size between 200 and 500 nm, as measured by SEM).398 

 

Figure 4-27. 39K (at 21.1 T, a-d) and 133Cs (at 11.7 T, e-f) solid-state NMR spectra at 20 kHz MAS and 298 K of (a) K0.10MA0.90PbI3 (nonselective, 
mechanochemical), (b) K0.10MA0.90PbI3 (nonselective, solution-processed), solid and dashed lines: Lorentzian apodization of 50 Hz and 300 Hz, re-
spectively, (c) K0.05Cs0.10FA0.85PbI3 (mechanochemical, solid line: nonselective, dashed line: CT-selective), (d) K0.05Cs0.10FA0.85PbI3 (CT-selective, solu-
tion-processed). Quantitative (recycle delay of 450 s) 133Cs spectra of K0.05Cs0.10FA0.85PbI3 prepared by (e) mechanosynthesis and (f) in solution. 
Asterisks indicate spinning sidebands. 
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Other possible reasons for the effect of potassium on hysteresis. 

Suppression of J-V hysteresis could conceivably originate from K-doping of the mesoporous TiO2 scaffold in a full PV device, similar 
to the effect observed upon Li-doping.438 To verify this hypothesis we mechanochemically prepared samples of TiO2 activated at 300 
°C mixed with anhydrous KI in a 10:1 molar ratio. The CT-selective 39K MAS NMR spectrum of this mixture acquired at 11.7 T and 20 
kHz MAS over the course of 117 hours exhibits only a peak from the unreacted KI (Figure 4-35) indicating that no reaction took place. 
A study by Abdi-Jalebi et al. appeared when our manuscript was under review that corroborated our conclusion of no potassium 
incorporation.465 The authors suggested that potassium preferentially occupies surface sites on perovskite grains. Since the concen-
tration of surface atoms in typical microcrystalline solids is on the order of 10 μmol/g327 and only a small fraction of these (surface 
defects) is suggested to be passivated with K+, it can easily be estimated that the amount of such K+ sites in a typical NMR sample 
would be on the order of nanomoles, three orders of magnitude below the detection limit in the present study. Dynamic Nuclear 
Polarization (DNP) studies are underway to increase sensitivity and lower the detection limit of 39K to further explore the microscopic 
effect of potassium addition to different components of perovskite-based photovoltaic devices. 

4.4.4 Conclusion	
In conclusion, we have investigated a number of perovskite materials that have been recently reported to exhibit superior photovol-
taic performance after doping with potassium iodide. 39K solid-state NMR shows that K+ is not incorporated into the perovskite lattice 
of these materials. Rather, it exists as a mixture of unreacted KI and KPbI3 (in MA and MA/FA lead iodides), KBr (in MA/FA mixed 
iodide/bromide perovskites) or non-perovskite mixed-Cs/K lead iodide phases (in cesium-containing perovskites). We have found no 
qualitative differences between materials prepared by solid-state and solution-based synthetic routes. The formation of these sec-
ondary non-perovskite phases leads to changes in the composition of the parent perovskite material, and in turn to shifts in diffraction 
patterns and PL, XPS and UPS spectra. This highlights the essential need for atomic-level characterization of photovoltaic perovskite 
materials developed through new doping strategies. 

4.4.5 Appendix	VI	

Perovskite synthesis 

Table 4-11. Perovskites prepared by the solution route. 

Perovskites prepared by the solution route 
 
Polycrystalline powder of the K10MA90PbI3 compositions was synthesized as follows. 0.016 g of KI (0.10 mmol), 0.143 g of MA·ΗΙ 
(0.90 mmol) and 0.461 g of PbI2 (1.00 mmol) were dissolved in 1 ml of DMF/DMSO mixture (4:1, v:v), and then drop-cast on a petri 
dish and heated at 120°C in air. The resulting powder was scratched from the glass and dried under vacuum at 120°C for 12 h. For 
the synthesis of K0.05Cs0.1FA0.85PbI3 powder, the same procedure was followed using 0.008 g of KI (0.05 mmol), 0.026 g of CsI (0.10 
mmol), 0.146 g of FAI (0.85 mmol) and 0.461 g (1.00 mmol) of PbI2.  
 

 

Table 4-12. Mixed-cation and mixed-halide lead perovskites. 

Mixed-cation and mixed-halide lead perovskites 
 
CsPbI2Br 

0.106 g of CsBr (0.50 mmol) and 0.23 g of PbI2 (0.50 mmol) were mixed to prepare the CsPbI2Br powder. 
 
K0.075Cs0.925PbI2Br 

0.012 g of KI (0.075 mmol), 0.239 g of CsI (0.925 mmol), 0.183 g of PbBr2 (0.50 mmol) and 0.23 g of PbI2 (0.50 mmol) were mixed 
to prepare the K0.075Cs0.925PbI2Br powder 
 
KMAFA(Br,I) 

The triple cation perovskite was fabricated according to the previously published recipe using KI instead of CsI.443 0.172 g of FA·ΗΙ 
(1 mmol), 0.507 g of PbI2 (1.1 mmol), 0.022 g of MA·ΗBr (0.2 mmol), 0.080 g of PbBr2 (0.22 mmol) and 0.009 g of KI (0.055 mmol) 
were milled to prepare the KMAFA black powder. 
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Table 4-13. Synthesis of mixed-cation lead iodide perovskites. 

Mixed-cation lead iodide perovskites 
 
K0.10MA0.90PbI3  

0.016 g of KI (0.10 mmol), 0.143 g of MA·ΗΙ (0.90 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed to prepare 
the K0.10MA0.90PbI3 powder.  

K0.10FA0.90PbI3  

0.016 g of KI (0.10 mmol), 0.154 g of FA·ΗΙ (0.90 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed to prepare 
the K0.10FA0.90PbI3 powder.  

K0.05MA0.1FA0.85PbI3  

0.008 g of KI (0.05 mmol), 0.016 g of MA·ΗΙ (0.10 mmol), 0.146 g of FAI (0.85 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed 
to prepare the K0.05MA0.1FA0.85PbI3 powder.  

K0.05Cs0.1FA0.85PbI3  

0.008 g of KI (0.05 mmol), 0.026 g of CsI (0.10 mmol), 0.146 g of FA·ΗΙ (0.85 mmol) and 0.461 g (1.00 mmol) of PbI2 were mixed to 
prepare the K0.05Cs0.1FA0.85PbI3 powder.  

K0.1Cs0.9PbI3  

0.017 g of KI (0.10 mmol), 0.232 g of CsI (0.90 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed to prepare the K0.1Cs0.9PbI3 alloy.  

K0.5Cs0.5PbI3  

0.083 g of KI (0.50 mmol), 0.129 g of CsI (0.50 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed to prepare the K0.5Cs0.5PbI3 alloy.  

 
K0.9Cs0.1PbI3  

0.148 g of KI (0.90 mmol), 0.026 g of CsI (0.10 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed to prepare the K0.9Cs0.1PbI3 alloy.  

 

Table 4-14. Synthesis of potassium and cesium lead iodides and bromides. 

Potassium and cesium lead iodides and bromides 
 
KPbI3 perovskite 

0.083 g of KI (0.50 mmol) and 0.23 g (0.50 mmol) of PbI2 were mixed to prepare the KPbI3 powder.  

KPb2Br5  

0.059 g of KBr (0.50 mmol) and 0.367 g of PbBr2 (1.00 mmol) were mixed to prepare the KPb2Br5 powder.  

KPbI2Br  

0.059 g of KI (1.00 mmol), 0.23 g of PbI2 (0.50 mmol) and 0.183 g of PbBr2 (0.50 mmol) were mixed to prepare the KPbI2Br powder.  

CsPbI3  

0.260 g of CsI (1.00 mmol) and 0.461 g of PbI2 (1.00 mmol) were mixed to prepare CsPbI3. 
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XRD patterns 

Diffractograms were recorded on an X’Pert MPD PRO (Panalytical) diffractometer equipped with a ceramic tube (Cu anode, λ = 
1.54060 Å), a secondary graphite (002) monochromator and an RTMS X’Celerator (Panalytical) in an angle range of 2θ = 5° to 40°, by 
step scanning with a step of 0.02 degree. 

 

Figure 4-28. XRD patterns of the materials reported above. Simulated patterns: (a) α-FAPbI3 (black 3D perovskite) (b) γ-FAPbI3, (yellow, hexagonal 
non-perovskite phase). Experimental patterns of mechanochemical perovskite preparations: (c) K0.10FA0.90PbI3, (d) K0.05Cs0.10FA0.90PbI3, (e) 
K0.05MA0.10FA0.85PbI3, (f) KMAFA(I,Br)3. •, △,	□ and indicate the main perovskite phase, PbI2 and KI peaks, respectively. For K0.10FA0.90PbI3 there is no 
measurable shift of the main perovskite peaks with respect to the undoped α-FAPbI3. 

 

Figure 4-29. Experimental XRD pattern of the (a) mechanochemical annealed KI:PbI2 (1:1 mol/mol) material (“KPbI3”), (b) KI. ICDD database refer-
ence patterns (the numbers are ICDD database reference codes): (c) 00-022-0831, KPbI3 (ICDD quality mark: low precision), (d) 04-007-6715, KPbI3 

(ICDD quality mark: prototype), 00-046-0967, K2PbI4 (e) (ICDD quality mark: low precision). 



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

199 

 

Figure 4-30. Experimental XRD patterns of (a) mechanochemical MAPbI3,398 (b) mechanochemical, annealed KI:PbI2 (1:1 mol/mol) material (“KPbI3”), 
(c) KI, (d) mechanochemical (“M”) K0.10MA0.90PbI3, (e) K0.10MA0.90PbI3 prepared by the solution (“S”) route, (f) PbI2. • and △ indicate the main perov-
skite phase and PbI2 peaks, respectively. For K0.10MA0.90PbI3 there is no measurable shift of the main perovskite peaks with respect to the undoped 
MAPbI3. 

 

Figure 4-31. (a) Simulated XRD pattern of α-FAPbI3 (black 3D perovskite). Experimental XRD patterns of (b) PbI2, (c) KI, (d) mechanochemical (“M”) 
K0.05Cs0.10FA0.90PbI3, (e) K0.05Cs0.10FA0.90PbI3 prepared by the solution (“S”) route, (f) mechanochemical K0.50Cs0.50PbI3. •, △,	□ and κ indicate the main 
perovskite phase, PbI2, KI and a K-rich non-perovskite phase peaks, respectively.  
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Figure 4-32. ICDD database reference patterns (the numbers are ICDD database reference codes): (a) 00-054-0752 - CsPbBr3, (b) 01-080-4039 - 
CsPbI3 (black, high-temperature phase), (c) 04-016-2300 - CsPbI3 (yellow, room-temperature phase). Experimental XRD patterns of mechanochem-
ical perovskite preparations (d) CsPbBrI2Br, (e) K0.075Cs0.975PbBrI2Br, (f) KPbI3, (g) K0.50Cs0.50PbI3. • and κ indicate the main perovskite phase and a K-
rich non-perovskite phase peaks, respectively. In the case of K0.075Cs0.925PbI2Br there is no appreciable shift with respect to CsPbI2Br either (beside a 
shift of +0.05° 2θ for the 29.2° peak after K+ doping which can be caused by (a) a change in I/Br ratio, (b) specimen displacement errors, as discussed 
in the manuscript) 

 

Figure 4-33. Experimental XRD patterns of mechanochemical (a) CsPbI3 (yellow, room-temperature phase), (b) KPbI3, (c) K0.10Cs0.90PbI3, (d) 
K0.50Cs0.50PbI3, (e) K0.90Cs0.10PbI3, (f) KI. 
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Figure 4-34. (a) Experimental XRD pattern of mechanochemical KPbI3 (red) and its best fit (blue). The fit residual is given in (b). The weighted-profile 
R-factor Rwp = 6.6566.  
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Table 4-15. Numerical results of the fit in Figure 4-34a. 

No. Pos. [°2θ] d-spacing [Å] Height [cts] 

1 9.587(8) 9.21827 466.11 

2 10.047(6) 8.79655 1056.87 

3 12.812(9) 6.90392 661.66 

4 13.255(9) 6.67429 479.45 

5 16.67(2) 5.31339 127.19 

6 17.43(4) 5.08493 89.46 

7 19.984(9) 4.43944 194.89 

8 21.71(1) 4.08959 442.13 

9 22.01(2) 4.03519 223.62 

10 22.90(3) 3.88 47.78 

11 23.46(2) 3.7889 87.47 

12 25.06(2) 3.55056 207.06 

13 25.53(2) 3.48561 1529.39 

14 25.65(3) 3.47009 1325.42 

15 26.01(4) 3.42237 1043.88 

16 26.24(3) 3.393 297.38 

17 26.80(2) 3.32417 524.04 

18 27.29(1) 3.26487 598.39 

19 27.68(4) 3.22029 1145.79 

20 27.80(3) 3.20708 910.57 

21 28.49(2) 3.13027 143.93 
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22 29.73(3) 3.00285 159.47 

23 30.08(1) 2.96818 283.45 

24 30.92(8) 2.88998 367.09 

25 31.791(3) 2.8125 940.07 

26 33.09(1) 2.70537 313.5 

27 33.68(2) 2.65867 192.68 

28 34.77(4) 2.57771 75.97 

29 35.47(5) 2.52905 136.41 

30 36.07(4) 2.48833 245.68 

31 36.48(5) 2.46099 224.9 

32 36.82(3) 2.43896 139.1 

33 37.29(3) 2.40961 162.83 

34 38.35(1) 2.345 471.69 

35 39.02(5) 2.30667 859.03 

36 39.12(5) 2.30061 859.42 

37 39.68(3) 2.26977 176.9 

38 40.29(1) 2.23654 333.14 

39 41.41(2) 2.1789 361.58 

40 41.80(5) 2.15936 192.92 

41 43.04(5) 2.10012 176.68 

42 43.52(3) 2.07805 123.91 

43 44.84(7) 2.01978 135.25 

44 45.25(3) 2.00248 132.06 
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45 46.48(3) 1.95224 104.46 

46 47.15(4) 1.92618 263.64 

47 47.25(5) 1.92213 247.33 

48 47.93(2) 1.89646 399.8 

49 48.35(4) 1.88101 98.34 

50 49.71(2) 1.83254 100.5 

51 50.61(4) 1.80198 67.49 

52 51.10(4) 1.78594 94.08 

53 51.56(3) 1.77112 107.52 

54 52.47(3) 1.74256 76.7 

55 53.70(8) 1.70557 110.99 

56 54.24(5) 1.6897 138.23 

57 55.12(4) 1.66488 107.42 

58 55.71(9) 1.64857 60.16 

59 57.21(3) 1.60896 102.07 

60 58.56(3) 1.57495 70.91 

61 59.41(5) 1.55438 148.58 

62 60.1(1) 1.53937 61.51 

63 60.90(5) 1.52002 108.06 

64 61.70(9) 1.50212 54.95 

65 62.4(2) 1.48697 125.86 

66 62.8(1) 1.47872 247.05 

67 63.89(2) 1.45593 162.21 
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68 64.64(6) 1.44079 80.65 

69 66.15(2) 1.41152 153.11 

70 66.83(7) 1.39873 170.02 

71 67.53(4) 1.38602 191.3 

72 68.7(1) 1.36588 155.43 

73 69.4(2) 1.35381 104.9 

74 70.14(3) 1.34069 107.16 

75 71.75(5) 1.31452 81 

76 72.28(5) 1.30606 52.92 

77 73.63(6) 1.28545 44.71 

78 74.94(6) 1.26624 28.32 

79 76.93(3) 1.23833 63.16 

80 79.66(2) 1.20268 33.49 
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Details of NMR measurements 

Table 4-16. Nuclear 39K T1 values measured using a saturation-recovery sequence and fitted using a monoexponential function (unless otherwise 
stated). The uncertainties of fits given are one standard deviation. 

compound 39K T1 [s] 
KI 9.03 ± 0.02 

KBr 7.73 ± 0.06 
KPbI3 1.44 ± 0.03 

KHCO3 0.115 ± 0.007 
0.607 ± 0.007 

(biexponential) 
 

Table 4-17. Acquisition and processing parameters used for the 39K spectra in Figures 115-118. 

39K spectra 

composition recycle de-
lay [s] 

number of 
scans 

acquisition 
time [h] 

Lorentzian 
apodization 

[Hz] 
KI 10 4 0.01 20 

KPbI3 3 256 0.2 0 
K0.10MA0.90PbI3 60 1053 17.6 50 
K0.10FA0.90PbI3 3 2607 2.2 100 

K0.05MA0.10FA0.85PbI3 3 19922 16.6 50 
KBr 10 4 0.01 50 

KMAFAPb(I,Br) 12 7765 25.9 50 
KBr + 2PbBr2 3 1125 0.9 50 

KBr + PbI2 3 256 0.2 50 
K0.05Cs0.10FA0.85PbI3 (CT se-

lective) 
3 22875 19.1 100 

K0.05Cs0.10FA0.85PbI3 (non-
selective) 

3 50840 42.4 200 

K0.10Cs0.90PbI3 1 19892 5.5 200 
K0.50Cs0.50PbI3 1 5120 1.4 200 
K0.90Cs0.10PbI3 1 1024 0.3 20 

K0.075Cs0.925PbI2Br 3 47541 39.6 200 
 

Table 4-18. Acquisition and processing parameters used for the 133Cs spectra in Figures 116 and 118. 

133Cs spectra 

composition recycle de-
lay [s] 

number of 
scans 

acquisition 
time [h] 

Lorentzian 
apodization 

[Hz] 
CsPbI3 450 4 0.5 50 

K0.10Cs0.90PbI3 450 4 0.5 50 
K0.50Cs0.50PbI3 450 4 0.5 400 
K0.90Cs0.10PbI3 450 120 15 500 

K0.05Cs0.10FA0.85PbI3 

(mechanosynthesis) 
450 24 3 250 

K0.05Cs0.10FA0.85PbI3 

(solution synthesis) 
450 128 16 250 

Cs0.10FA0.90PbI3 450 4 0.5 200 
K0.075Cs0.925PbI2Br  450 8 1 300 

CsPbI2Br 56 8 0.1 300 
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Figure 4-35. CT-selective 39K MAS NMR spectrum of TiO2-KI, at 11.7 T at 20 kHz MAS and 300 K (recycle delay: 10 s, acquisition time: 117 h). TiO2 
was activated at 300 °C and mechanochemically ground with anhydrous KI in a 10:1 molar ratio. Asterisks indicate spinning sidebands. The † symbol 
indicates a quadrature detection artefact. 

 

Figure 4-36. CT-selective spectra for compositions in Figure 4-24c, e and g in the main text. Acquisition parameters: (a) number of scans: 4096, 
recycle delay: 12 s, acquisition time: ~13.7 h (b) number of scans: 10240, recycle delay: 1 s, acquisition time: ~3 h, (c) number of scans: 23604, 
recycle delay: 3 s, acquisition time: ~20 h.  
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Figure 4-37. 207Pb MAS NMR spectra at 11.7 T, 298 K and 20 kHz MAS of (a) MAPbI3, number of scans: 27280, recycle delay: 0.1 s, acquisition time: 
45 min., processed with 1 kHz Lorentzian apodization, (b) δ-CsPbI3, number of scans: 30364, recycle delay: 0.1 s, acquisition time: 51 min., processed 
with 10 kHz Lorentzian apodization, (c) KPbI3, number of scans: 102400, recycle delay: 0.02 s, acquisition time: 34 min, processed with 10 kHz 
Lorentzian apodization. 207Pb chemical shifts were referenced to Pb(CH3)4 using solid Pb(NO3)2 as a secondary reference (-2961 ± 1) ppm.457 

 

Figure 4-38. 1H MAS NMR spectra at 21.1 T, 298 K and 20 kHz MAS of (a) mechanochemical K0.05Cs0.10FA0.85PbI3 (proton-containing impurities origi-
nating from the supplied PbI2 and amounting to ~1% of protons in the sample are indicated). K0.05Cs0.10FA0.85PbI3 prepared by the solution route: (b) 
after initial annealing in air, (c) after 12 h of vacuum drying. 
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Figure 4-39. Quantitative 39K MAS NMR spectrum at 21.1 T, 298 K and 20 kHz MAS of the mechanochemical KPbI3 preparation. The spectrum was 
acquired using a recycle delay of 45 s, hence it is quantitative with respect to KI (T1=9 s) and confirms there is no unreacted KI (δ=59.3 ppm) in the 
KPbI3 phase. Number of scans: 32. Acquisition time: 24 minutes. 

 

  



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

210 

Details of DFT calculations 

Cluster generation. We start from the assumption, that K is incorporated into the FAPbI3 lattice, replacing the FA cation, without 
significantly changing the perovskite lattice formed by the [PbI6]4- octahedra. Thus, in a first step we replace the FA ions of the cubic 
(black) FAPbI3 crystal structures by K+ cations. For the pure FAPbI3 phase the 1H positions inside the [PbI6]4- cage were optimized using 
a periodic system within the density functional theory (DFT) framework and the generalized gradient approximation (GGA) functional 
PBE205 within the Quantum Espresso suite.188 The DFT optimization includes the Grimme dispersion correction206 and relativistic ef-
fects up to spin-orbit couplings. For every calculation we use a plane-wave maximum cut-off energy of 100 Ry and a 2x2x2 Monkhorst-
Pack grid of k-points.423 The K+ cations are either positioned at the geometrical center of the replaced FA ion, leading to a slightly 
interstitial K+, or at the center of the surrounding [PbI6]4- cage. 

We assemble the final clusters from the relaxed structures as one central [PbI6]4- cage with surrounding A+ ions as KA19Pb8I36 analogue 
to the ones used in the previous paper by Kubicki et al.443, ensuring charge compensation and representing the solid-state by using 
symmetry-adapted clusters110 containing the non-translational-symmetry elements from the perspective of the central molecule. 
The effect of the surrounding A+ ions is investigated by either using FA+ or Cs+ as A+ ions.  

Additionally we investigate the 39K chemical shift and EFG tensor in the perovskite structures given in a recent by work by Kubicki et 
al.443 where we replace the central A+ ion by K+.  

Table 4-19. Source and modifications of the cluster structures used in the DFT calculations. 

Structure	

name	

Original	structure	 Modifications	 in	 periodic	 sys-
tem	 (with	 Quantum	 Es-
presso)188		

Modifications	 of	 cluster	 (with	
ADF)383-384	

KFA19Pb8I36		

(A-site	replacement)	

Cubic FAPbI3390 Optimization of 1H positions Symmetric Replacement of central 
FA+ to K+ 

KFA19Pb8I36	(intersti-
tial	K+)	

Cubic FAPbI3390 Optimization of 1H positions Asymmetric Replacement of central 
FA+ to K+ 

KCs19Pb8I36	

(A-site	replacement)		

Cubic FAPbI3390 Optimization of 1H positions Symmetric Replacement of central 
FA+ to K+ and replacement of sur-
rounding FA ions with Cs ions 

KCs19Pb8I36	 (intersti-
tial	K+)	

Cubic FAPbI3390 Optimization of 1H positions Asymmetric Replacement of central 
FA+ to K+ and replacement of sur-
rounding FA ions with Cs ions 

KCs19Pb8I36	

(from	cubic	FAPbI3	)	

Cubic FAPbI3390 Optimization of all atomic posi-
tions after replacement of FA ions 
with Cs ions 

Symmetric Replacement of central 
Cs+ to K+ 

KCs19Pb8I36	

(from	 tetragonal	
MAPbI3	)	

Tetragonal MAPbI3413 Optimization of Cs position after 
replacement of MA ions with Cs 
ions 

Symmetric Replacement of central 
Cs+ to K+ 

KCs19Pb8I36		

(from	 hexagonal	
CsPbI3	)	

Hexagonal CsPbI3413 None Symmetric Replacement of central 
Cs+ to K+ 

KFA19Pb8I36		

(from	 hexagonal	
FAPbI3	)	

Hexagonal FAPbI3413 Optimization of 1H positions Symmetric Replacement of central 
FA+ to K+ 
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NMR shift calculation. The chemical shieldings (𝜎¬())	are transformed to chemical shifts (𝛿¬())	using the linear relation 𝛿12I =
	𝜎g1h − 𝑏𝜎¬() , where 𝜎g1h  and 𝑏 are fit using calculated chemical shieldings from known reference compounds (KI, KBr, KCN and 
KF). The slope 𝑏 was either fixed at 1 or used as a fit parameter, resulting in 𝑏 = 1.248.  

We use KCN, KI, KBr, and KF as reference compounds with the experimental chemical shifts obtained from the work by Moudrakov-
ski and Ripmeester.446 The crystal structures of KCN, KI, KF and KBr were obtained from the works by Price et al.466, Van Den Bosch 
et al.420, Broch et al.467 and Ott.468  

The DFT accuracy for 39K chemical shift calculations has been investigated by Wu et al.452 and Shimoda et al.469, where they report a 
39K chemical shift root-mean-square deviation between experiment and calculation of around 4-8 ppm.  

To estimate the goodness of the fit parameters, we calculate the root-mean-square-deviation (RMSD) between the experimental 
and DFT calculated chemical shifts. Note, that in the KCN cluster we have two distinct 39K sites depending on the relative orienta-
tion of the CN ion. If we calculate the average of the two 39K shifts, assuming motional averaging due to CN rotations, we obtain a 
RMSD of 1.46 ppm and 3.63 ppm, for either a variable or fixed slope, between the experimental and DFT calculated chemical shifts. 
The reference chemical shifts and the linear regression models are shown in Figure 130.  

 

Figure 4-40. Scatterplot showing 39K experimental shifts against DFT calculated chemical shielding. The solid lines show the different linear models 
used to convert chemical shielding to shifts (green: fixed slope (b=1), red: variable slope (b=1.248)). 
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Table 4-20. DFT calculated and experimental magnetic shieldings, chemical shifts and EFG tensor parameters. 

Structure DFT chemi-
cal shielding 
[ppm] 

Experimental 
shifts [ppm] 

DFT shifts 
(sref=1220, 

b=1.0) [ppm] 

DFT shifts 
(sref=1512, 

b=1.248) 
[ppm] 

CQ  

[MHz] 

𝜼 

 

Vzz  

1021 [Vm-2] 

(a) KF 1193.38 22.4 26.62 22.66 -0.518 0.0004 -0.037 

(b) KBr 1168.35 55.4 51.65 53.90 -0.002 0.011 -0.00015 

(c) KI 1163.16 59 56.84 60. 38 0.005 0.0065 0.0004 

(d) KCN (site 1) 1120.18    0.33 0.397 0.024 

(e) KCN (site 2) 1246.19    0.94 0.530 0.069 

(f) KCN (avg.) 1183.19 35.1 36.8 35.39    

(g) KFA19Pb8I36  

(A-site replace-
ment) 

1321.45  -101.45 -137.17 -0.137 0.77 0.097 

(h) KFA19Pb8I36  

(interstitial K+) 

1311.41  -91.41 -124.64 -0.242 0.81 -0.17 

(i) KCs19Pb8I36 

(A-site replace-
ment) 

1316.6  -96.6 -131.12 -0.068 0.19 0.048 

(k) KCs19Pb8I36  

(interstitial K+) 

1307.1  -87.1 -119.26 -0.243 0.55 -0.17 

(l) KCs19Pb8I36 

 (from cubic FAPbI3 
) 

1326.12  -106.1 -143.0 0.007 0.00012 0.0005 

(m) KCs19Pb8I36  

(from tetragonal 
MAPbI3) 

1309.25  -89.25 -121.94 0.38 0.179 0.028 

(n) KCs19Pb8I36  

(from hexagonal 
CsPbI3 ) 

1324.3  -91.23 -124.42 0.43 0.804 -0.53 

(o) KFA19Pb8I36  

(from hexagonal 
FAPbI3 ) 

1324.3  -104.3 -140.73 -0.37 0.519 -0.027 
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4.5 Conclusion	and	Outlook	
In conclusion, we have demonstrated how the calculation of solid-state NMR and EFG parameters can aid the atomic-level charac-
terization of doped and disordered materials. For this set of materials diffraction-based methods lack information about the non-
crystalline and disordered regions of the sample. However, solid-state NMR can directly probe the local atomic environment around 
a defect and thus allow for structural characterization. For a set of doped photovoltaic lead-halide perovskite materials we have 
demonstrated how computational methods can be used to aid the parametrization and interpretation of solid-state NMR experi-
ments using different probe nuclei (here 39K, 87Rb, 133Cs and 207Pb). Thus, providing strong evidence for or against a given structural 
hypothesis.  

Note, that this particular set of materials still poses a big challenge to computational methods for NMR crystallography and that the 
results have to be evaluated very critically. For the structural characterization of microcrystalline solids and amorphous powders 
described in Chapters 2 and 3 the calculation of NMR parameters is reasonably accurate and has become fairly standard. However, 
for the doped perovskite materials described in Chapter 4 the presence of heavy atoms (e.g. 127I, 133Cs and 207Pb) has been shown to 
require fully relativistic DFT calculations. including spin-orbit coupling ,and hybrid-functionals if possible.122-125, 425 These requirements 
lead to a drastic increase in computational resources and thus strongly limit the cluster size and the number of possible defect envi-
ronments which can be evaluated computationally. Thus, due the expected accuracy of the DFT based NMR calculations and the non-
extensiveness of the structural screening, the NMRX method used here is not sufficient to fully characterize the investigated materi-
als. Instead NMRX is used in combination with other structural characterization methods, in order to provide evidence for or against 
a given structural hypothesis (e.g. incorporation vs. passivation or phase separation). Note that in many cases this information is 
already sufficient and complements the information that can be extracted from other characterization methods. Also note, that for 
disordered and doped materials containing no heavy atoms the approach outlined in Chapter 3 can be easily adapted to fully char-
acterize the atomic-level structure. Also note that, following the early work described here, NMR characterization has become a key 
part of the perovskite research, and has been used in many recent studies.391-397, 441-442, 444-445, 470-481 

Moving forward, the chemical shift driven NMRX approach for disordered and doped materials containing heavy atoms could be 
improved in two main directions in order to be generally and routinely applicable.  

First, the chemical shift calculations have to be extended such as to allow the calculation of larger and / or extended systems. The 
idea is that larger and / or extended systems will better model the electronic structure around the local defect environments and 
thus lead to a more reliable chemical shift prediction. In general, the same arguments concerning the system size as for amorphous 
systems (Chapter 3) are applicable. In order to extend the system size amendable to NMR calculations, three main ideas can be 
investigated. Periodic DFT in combination with a correction term calculated at higher level of theory for an isolated molecule or 
cluster could be used to extend the full relativistic and hybrid functional chemical shift calculations to periodic system.112 Another 
possibility would be to use a fragment based DFT method with locally dense basis sets as demonstrated by Hartmann et al.83-84, 111, 

351-352 Such an approach would allow the calculation of larger clusters, since for atoms further away from the defect site only two 
body interactions are considered and smaller basis sets are used. Note, that for this method the use of the bond-valence method 
should be investigated in order to achieve convergence in the DFT calculations.124 A third method to overcome the limits of DFT 
calculations would be to extend the ML method presented in Chapter 2.3 to organo-metallic systems containing heavy atoms. How-
ever, the size of the required ML training-set might limit this approach. We propose to overcome this limitation by a combined DFT-
ML delta-learning approach. It has been shown, that learning only the correction term between two different levels of theory requires 
significantly smaller training-sets than learning entire properties.155, 482 It thus might be feasible to learn only the DFT spin-orbit cou-
pling correction to the chemical shift term, which can then be used to improve the accuracy of scalar relativistic periodic DFT calcu-
lations for doped systems containing heavy atoms.  

Second, the structural screening method used here should be extended in order to extensively sample the possible structural space. 
Here, we propose to generate an extensive ensemble of possible defect motifs by a step wise approach, conceptually similar to the 
CSP approach used for molecular crystals. In a first step classical or semi-empirical MD simulations can be used to screen a large 
ensemble of possible defect structures. Mixed techniques, such as ONIOM,483-484 would allow for relatively large MD simulations 
while retaining high accuracy (possibly at quantum-mechanical level) around the defect site. Note, that it is also possible to para-
metrize the force-field using ML methods trained on comparable structures.485-486 As a next step, the energetically most stable struc-
tures can be selected and evaluated using non-relativistic DFT. Next, the energetically most stable structures can again be selected 
and now evaluated using fully-relativistic DFT to generate an ensemble of the most probable defect structures. This ensemble can 
then finally be compared to experiment using fully-relativistic DFT chemical shift calculations. 
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 Conclusion	
5.1 Achieved	results	
In summary, we have shown how chemical shift information extracted from solid-state NMR experiments in combination with ad-
vanced computational methods can be translated into information on the crystal structure. We have demonstrated the approach for 
microcrystalline powders, amorphous materials and disordered and doped solids, all of which are not amenable to resolution with 
diffraction methods.  

Additionally, we have shown how the investigated material dictates the applicable computational method and the information con-
tent which can be extracted from this combined approach.  

For molecular solids, an approach combining periodic DFT chemical shift calculations, or chemical shifts predicted using ML, combined 
with a constrained CSP search has been demonstrated. This approach allows for a full characterization and determination of a given 
crystal structure, even including a well-defined determination confidence as well as positional uncertainties on the individual atoms. 
Furthermore, we demonstrated a direct mapping, using a ML approach, between the structural information and the chemical shifts 
of a molecular solid, without the need to calculate the electronic structure.  

For amorphous, disordered and doped materials, a cluster or fragment-based approach must be selected, which can be comparable 
in accuracy with the periodic calculations. However, the nature of these materials often does not allow for the full determination of 
the crystal structure. Instead the structure is characterized by a set of determined structural motifs. This information can then often 
be combined with other structure elucidation methods to fully characterize the given material.  

For materials containing heavy elements the methods described above do not offer sufficient accuracy. Here, fully relativistic DFT 
chemical shift calculations, which are currently only accessible in a cluster-based approach, must be employed. This restriction cur-
rently limits the complexity of the structures which can be investigated. Additionally, even for the fully relativistic DFT approach, the 
calculated chemical shifts are still below the accuracy that is achievable for other systems. However, we have demonstrated that the 
information extracted from the chemical shift calculations can be used in combination with other experimental and computational 
methods to answer key-questions and deliver important new insight into such materials.  



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

216 

  



Advanced Computational Methods for NMR Crystallography, PhD Thesis, A. Hofstetter 

217 

5.2 Future	development.	
Possible future developments for the structural characterization and determination based on solid-state NMR experiments in com-
bination with advanced computational methods for the different materials and degrees of disorder has already been described in 
the previous chapters. 

A point which has not yet been discussed in detail here is the temperature dependence of solid-state NMR parameters, especially of 
the chemical shift. Note, that the methods discussed above can be used to probe phase transitions and structural changes caused by 
a change in temperature. However, they only consider static snapshots of the investigated structures and local dynamics due to an 
effective temperature are not considered. In reality, the local dynamics due to an effective temperature within an experimental 
structure results in each atom sampling an ensemble of different local environments, and thus, experiencing an ensemble of corre-
sponding chemical shifts. If the motion is sufficiently slow, compared to the chemical shift difference within the sampled environ-
ments, we experimentally observe a set of distinguishable chemical shifts, which can be mapped computationally to a discreet set of 
structures. However, for fast motions we experimentally observe an average chemical shift, which is usually compared to the calcu-
lated chemical shift of a static snapshot. Note, that this is only correct if the average dynamic structure indeed corresponds to the 
static snapshot and if the chemical shift is affected isotropically by the local dynamics. Additionally, the DFT optimized structures 
used in the CSP-NMRX approaches described in this thesis correspond to the 0° K structure, whereas the experimental chemical shifts 
are measured at a finite temperature. This is most commonly observed as a difference in lattice parameters and bond-lengths be-
tween the XRD and NMRX determined crystal structures (see Chapter 2.6).487  

For more general cases, the NMR parameters including nuclear motion have been studied using a variety of quantum-mechanical 
methods.64, 223, 280, 487-493 In these studies the dynamical effect on the NMR parameters was investigated either by molecular dynam-
ics,280, 487, 489-492 path-integral molecular dynamics,64 perturbation theory223, 493 or Monte-Carlo sampling.488, 490 However, all of these 
approaches depend on the ab-initio calculation of chemical shifts for a set of perturbed structures and their computational expense 
prohibits their routine use in many applications. Here, we propose the use of ML predicted chemical shifts in combination with the 
above-mentioned sampling approaches to accurately describe the effects of nuclear motion on the chemical shifts. Note, that after 
the ML model has been trained, the computational expense to calculate the chemical shifts of a given structure is negligible compared 
to the other involved calculations and thus a large ensemble of motional snapshots can be sampled.  

Additionally, we would like to briefly mention another research area, where the combination of solid-state NMR experiments with 
advanced computational methods seems very promising. Note, that the chemical shift of a structure is uniquely determined by its 
electronic structure, which is in turn uniquely determined by the crystal structure. In Chapter 2.3 we have demonstrated how we can 
use ML methods to circumvent the calculation of the electronic structure and directly map the chemical shift information onto the 
crystal structure. Also note, that it is the strong and direct correlation between the chemical shifts and the electronic structure as 
well as between the electronic structure and the crystal structure, which allows for this direct mapping. Thus, as there exist other 
structural properties which are strongly correlated to and dependent on the electronic structure, we hypothesize that it should also 
be possible to directly map them on to the chemical shifts using machine learning methods. In other words, we propose that chemical 
shift information can be used to extract / infer information on structural properties and chemical activity, such as activity in ferroe-
lectrics, which are not as easily accessible experimentally or computationally.  

As an example, Corperet and co-workers have demonstrated a strong correlation between the chemical shielding tensor and the 
reactivity and polymerization ability of different materials.494-495 We thus propose the usage of machine learning methods to exploit 
this correlation and to possibly use calculated and / or experimental chemical shift information to predict reactivity, polymerization 
effects and crystal structure formation.398 
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