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Abstract

Floods are responsible for one third of the economic losses induced by natural hazards through-
out the world. To better protect the population and infrastructures, flood forecasting systems
make us of weather forecasts to foresee floods several days in advance, providing more lead
time for preventive measures. In the canton of Valais (Switzerland), an operational flood
forecasting and management system is operational since 2013, as a result of the MINERVE
project initiated in 1999. The present thesis aims at answering some of the challenges faced by
this system.

First, a new methodology for spatial interpolation of precipitation is implemented based on
regression co-kriging using rain gauge and weather radar data. Two rain gauge networks
equipped with instruments of different quality are considered. Compared to other precipi-
tation interpolation methods, the quantitative precipitation estimates (QPE) obtained from
the regression co-kriging provides the best performance over the studied area using cross-
validation. The analysis highlights the need for further pre-processing of radar data, in partic-
ular to account for beam shielding by the complex topography.

Integration of the above-mentioned QPE product in a snow model revealed a clear precip-
itation underestimation. A methodology to account for solid precipitation undercatch in
QPE computation is therefore proposed. Four different QPE products are compared: the
operational QPE product CombiPrecip of MeteoSwiss, the regression co-kriging QPE and two
variants of it considering a correction factor for solid precipitation undercatch of 1.2 and 1.3,
applied before the interpolation. The snow model is calibrated using satellite-based data from
the MODIS spectroradiometer and validated using snow water equivalent measurements 11
snow monitoring sites. The best performance is obtained using the QPE product including a
correction factor of 1.2.

To evaluate the performance of the developed QPE products from a hydrological perspective,
three sub-catchments of the MINERVE system were calibrated considering 5 different input.
The GSM and SOCONT hydrological models are used to model respectively the glacial and
non-glacial parts. A two-phase calibration of the model is explored, applying the MODIS-
based calibration of snow-melt degree-day factors, before calibrating the other parameters
using discharge data. Results suggest that the developed QPE product accounting for solid
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Abstract

precipitation undercatch (factor 1.2) leads to the best performance over the catchment with
a good radar visibility. In case of lower radar visibility, using station data provides equal or
better performances. With the current implementation, the two-phase calibration did not
allow to outperform the conventional calibration.

Finally, an ensemble Kalman filter (EnKF) is implemented to improve initial conditions used
for hydrological forecasts. Results are compared, for two high flow events, to the scenario
without assimilation and to the simple assimilation scheme currently implemented in the
MINERVE system, updating the soil saturation based on a discharge volume comparison
over the preceding 24 hours. The Ensemble Kalman filter (EnKF) shows good performance
during these events but also highlights difficulties over base flow, strengthened in presence of
hydropower perturbations.

Keywords: flood forecasting, rain gauge-radar merging, quantitative precipitation estimate, re-
gression co-kriging, rain gauge undercatch, snow cover, hydrological modelling, semi-distributed
model, data assimilation, ensemble Kalman filter.
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Résumé

Les crues géneérent un tiers des cofits liés aux dommages naturels au niveau mondial. Afin de
protéger la population et les infrastructures, des systémes de prévisions de crues utilisent les
prévisions météorologiques pour anticiper avec plusieurs jours les crues, offrant plus de temps
pour se préparer. Dans le canton du Valais (Suisse), un systeme de prévision et de gestion des
crues est opérationnel depuis 2013, résultat du projet MINERVE initié en 1999. La présente
thése a pour objectif de répondre a certains défis posés par ce systeme.

Une nouvelle méthode de spatialisation des précipitations basée sur un co-krigeage avec
régression de données de pluviomeétres et de radar météorologique est présentée. Deux ré-
seaux de mesure équipés de pluviometres de qualité différente sont considérés. En comparant
les précipitations estimées avec d’autres méthodes d’interpolation, I’évaluation quantitative
des précipitations (EQP) obtenue avec le co-krigeage avec régression fournit la meilleure
performance sur le bassin d’étude. L'analyse suggére le besoin de plus de prétraitement de la
donnée radar, notamment en lien avec les zones d’'ombre dii a la topographie complexe.

Lintégration du nouveau produit d’EQP dans un modéle de neige a révélé une claire sous-
estimation des précipitations. Une méthodologie est proposée afin de corriger la sous-estimation
des précipitations solides dans le calcul de produits d’EQP. Quatre produits différents sont
considérés : le produit ’EQP opérationnel CombiPrecip de MétéoSuisse, le co-krigeage avec ré-
gression et deux variantes de ce dernier incluant un facteur correcteur pour la sous-estimation
des précipitations solides de 1.2 et 1.3. Le modele de neige est calé avec des données satelli-
taires du spectroradiométre MODIS et validé avec I'équivalent en eau de la neige a 11 stations
de mesure. La meilleure performance est obtenue avec le produit d’EQP incluant un facteur
correcteur de 1.2.

Pour évaluer d'un point de vue hydrologique la performance de ces produits d'EQBP trois sous-
bassins du systeme MINERVE sont calés avec 5 jeux de données de précipitation différents en
entrée. Les modeéles hydrologiques GSM et SOCONT sont utilisés pour les parties glaciaires et
non-glaciaires. Un calage du modeéle en deux phases est exploré, en appliquant la méthode
de calage des facteurs degré-jour de fonte nivale basée sur MODIS, avant de caler les autres
parametres a I'aide des données de débit. Les résultats suggerent qu’en présence d'une bonne
visibilité du radar, le produit d’EQP intégrant un facteur correcteur de 1.2 fournit les meilleurs
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Abstract

résultats. Pour les deux bassins avec une moins bonne visibilité, I'utilisation de données de
pluviometres mene a des résultats équivalents ou meilleurs. Avec 'implémentation actuelle,
le calage en deux phases n’a pas permis de surpasser le calage conventionnel.

Finalement, un filtre de Kalman d’ensemble (EnKF) est implémenté pour améliorer les condi-
tions initiales utilisées pour les prévisions hydrologiques. Les résultats sont comparés, pour
deux événements de fortes précipitations, au scénario sans mise a jour et a I'assimilation de
données actuelle du systeme MINERVE, mettant a jour la saturation du sol sur la base d'une
comparaison des volumes de débit sur les 24 dernieres heures. Le filtre de Kalman d’ensemble
(EnKF) montre de bonnes performances sur les 2 événements mais également des difficultés
lors des faibles débits, notamment en présence de perturbations hydroélectriques.

Mots-clés : prévision de crue, couplage pluviomeétres-radar, évaluation quantitative des précipi-
tations, co-krigeage avec régression, sous-estimation de pluie, couverture neigeuse, modélisation
hydrologique, modele semi-distribué, assimilation de données, filtre de Kalman d’ensemble.
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|§ Introduction

Without water, life on earth would not exist. Source of life, water is also source of energy, with
hydropower representing 60% of the electricity production in Switzerland. Rivers and lakes are
appreciated areas for recreation and can be used as means of transportation. However, water
can also be source of fear, death and destruction. When severe precipitation hits a region, soils,
rivers and lakes might not be able to store and evacuate the large volume of water, resulting
in floods. These natural phenomena shaped the landscape in which we are living today and
deposited nutrient-rich sediments that enriched the soil for agriculture. But floods also result
in life losses and damages to infrastructures. Flood damage thus represents about one third of
the economic losses induced by natural hazards worldwide [Bosello et al., 2018].

In Switzerland, 124 people died due to floods over the period 1946-2015, representing 12%
of deaths linked to natural hazards in the country, whereas 37% died in avalanches and 16%
due to lightning [Andres et al., 2017]. In terms of damage, floods represent 88% of the damage
resulting from natural hazards when considering flood, landslide, debris flows and rockfall
over the period 1972-2018 [WSL, 2019]. The yearly average damage linked to flood is estimated
to CHF 306 million over the last four decades (Figure 1.1) [Andres and Badoux, 2019b]. Most of
this damage is associated to particular events. Among them, it is worth mentioning two events.
In October 2000, heavy precipitation coming from the South affected Switzerland. The Canton
of Valais was particularly impacted, with 16 fatalities and a damage cost estimated to CHF 470
million in the Canton (CHF 670 million for the entire Switzerland) [OFEG, 2002]. In August
2005, another high flow event affected central Switzerland and resulted in damage estimated
to CHF 2 billion, thereby the most expensive flood Switzerland has experienced [OFEG, 2005].

With climate change, the socio-economic impacts of river floods are expected to increase
considerably [Alfieri et al., 2015]. Castellarin and Pistocchi [2012] already showed evidence of
variations in the frequency regime of annual maximum floods in the last five decades in the
Swiss Alps.
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Figure 1.1 — Annual distribution of damage due to floods in Switzerland over the period
1972-2018. Source: Andres and Badoux [2019a]. Image courtesy: WSL.

To protect themselves against floods, humans have developed different strategies. One of
them has been the construction of river embankments, to better control rivers. By limiting the
extent of river channels, large surfaces have also been gained for agriculture and construction.
In the case of the Upper Rhone River upstream of Lake Geneva in Switzerland, two important
correction projects have been achieved, the first one over the period 1863-1894 and the
second one over the period 1930-1960. The second correction mainly aimed at reinforcing
the structures built during the first one. Unfortunately, floods continued to affect the Upper
Rhone River basin and hydrological studies have shown that the current capacity is insufficient
and has to be increased. This undercapacity motivated the Canton of Valais to start a third
correction of the Rhone River, based mainly on an enlargement of the river bed and further
reinforcement of the embankments.

1.1 Need for reliable hydrological forecasts

Another protection method against flood has been the development of flood forecasting
systems. By foreseeing major flood events up to several days in advance, emergency measures
can be taken with more lead time to protect the population and to reduce economic losses.
This is particularly true in catchments like the Upper Rhone River basin, with large hydropower
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1.2. The Upper Rhone River basin

reservoirs that can be operated to efficiently control the downstream discharges. To do so,
operational flood forecasting systems have been implemented in many parts of the world.
Adams and Pagano [2016] enumerates current flood forecast systems and operations around
the world.

In 1999, the research project MINERVE (acronym in French of " Modélisation des Intempéries de
Nature Extréme du Rhone Valaisan et de leurs Effets" [Jordan et al., 2008], meaning "Modelling
of extreme events in the Rhone of Valais and their effects") was initiated by the Swiss cantons of
Valais and Vaud with the objective of developing such a flood forecasting and management
system for the Upper Rhone River basin upstream of Lake Geneva. After the major flood of
October 2000 in the Canton of Valais, the need for such a system became even more evident.

1.2 The Upper Rhone River basin

The studied area corresponds to the Upper Rhéne River (URR) basin, defined as the hydro-
logical basin between the Rhéne Glacier (on the east) and Lake Geneva (on the west). The
catchment area is 5’351 km? (Figure 1.2) and the elevation range goes from 372 m a.s.l. at the
outlet to 4’634 m a.s.l. on the top of the Dufourspitze, with a mean elevation of 2’158 m a.s.l.
(Figure 1.3 shows the hypsometric curve (i.e. the cumulative distribution function) and the
histogram of elevations in the basin). The area above 3’000 m a.s.l. represents 13.0% of the total
area, whereas the part above 4000 m a.s.l. only covers 0.3% of the total area. The glacierized
area has been estimated to 569.2 km? in 2010 [Fischer et al., 2015], which corresponds to about
10.6% of the total area.

Precipitation is spatially variable over the basin. The yearly average over the period 1981-2010
is 603 mm for the station Sion (SIO in Figure 1.2), at 482 m a.s.l. and located near the centre
of the basin, whereas the station at Col du Grand St-Bernard (GSB), on the south-western
border and situated at 2’472 m a.s.l,, reported an average of 2’368 mm per year over the same
period [MeteoSwiss, 2017]. Precipitation is observed all year long, with a monthly average
minimum/maximum of 35 mm (April) and 64 mm (December) for SIO and 135 mm (July)
respectively 248 mm (November) for GSB. Depending on the elevation, the solid precipitation
fraction can represent a significant proportion of the annual precipitation. The available
precipitation monitoring networks are presented in detail in Chapter 2.

Looking at the station Porte du Scex (abbreviated PDS in Figure 1.2), located 6 km upstream
of Lake Geneva, the Upper Rhone River yearly average discharge is 182 m3/s and the average
yearly peak discharge is 645 m3/s. The highest measured discharge occurred during the flood
of October 2000 with 1363 m3/s, representing a return period higher than 150 years [FOEN,
2017b].
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® Weather radar
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Figure 1.2 - Map of the Upper Rhone River basin with location of the MeteoSwiss, MeteoGroup
and surrounding meteorological networks, as well as the Pointe de la Plaine Morte weather
radar and a selection of hydrological stations. Abbreviations indicate the MeteoSwiss stations
Sion (SIO), Col du Grand St-Bernard (GSB), Bex (BEX) and Ulrichen (ULR), later used in
Chapter 2, as well as the hydrological stations Sion (SIO) and Porte du Scex (PDS). Glaciers
and major rivers are also shown. (Topographic data source: Swisstopo [2017b] for rivers and
lakes, Swisstopo [2013] for the glaciers (with modifications), Swisstopo [2005] for the digital
height model (DHM), Swisstopo [2012] for the relief and Swisstopo [2017a] for the national
boundary line).

The hydrology of the URR basin is strongly altered by many hydropower schemes. The
cumulative operational discharge capacity is more than 500 m®/s and the total storage capacity
of the reservoirs is estimated to 1’195 million m® [Garcia Herndndez et al., 2014].

1.3 The MINERVE operational forecasting system

One of the primary objective of the MINERVE project (1999-2011) was to develop a hydrological-
hydraulic model for the entire catchment [Jordan, 2007a,b, Hingray et al., 2010, Jordan et al.,
2010, 2012, Tobin, 2012]. The model has been implemented in the Routing System modelling
tool (RS II) developed within the MINERVE project by the Laboratory of Hydraulic Construc-
tions (LCH) of the Ecole Polytechnique Fédérale de Lausanne (EPFL) [Garcia Herndndez et al.,
2007, Bérod, 2013]. A decision-support system has also been developed to simulate different
management scenarios [Garcia Herndndez et al., 2009a,b, Garcia Herndndez, 2011a,b].
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Figure 1.3 — Hypsometric curve (left axis) and histogram of elevations (right axis) of the URR
basin. DHM data (spatial resolution of 25 m) are taken from Swisstopo [2005].

The hydrological model is based on a semi-distributed approach, which implies a division of
the basin into sub-basins. During this step, hydraulic components such as reservoirs, gauging
stations and hydropower plants are considered in addition to the hydrographic network. To
account for meteorological processes induced by topography (e.g. temperature lapse-rate,
rain-snow transition, orographic precipitation, etc.), the sub-basins are further divided into
smaller entities, called elevation bands, each of them covering an elevation range of 300 to
400 m. Over the entire MINERVE basin, this leads to 269 sub-basins further divided into more
than 1400 elevation bands.

In 2011, the Canton of Valais has given the mandate of developing and maintaining the
MINERVE operational system to the Centre de recherche surl'environnement alpin (CREALP),
located in Sion. In that frame, the Routing System modelling tool has been further developed
and completely recoded in C# to give place to the RS MINERVE software [Garcia Herndndez
etal., 2019, Foehn et al., 2019a]. All the functionalities of the RS MINERVE software can be
executed through Visual Basic Scripts (VBScripts), enabling complete automatization of the
computation. Five different conceptual hydrological models, based on a simplified description
of the physical components of a catchment, are implemented in RS MINERVE: GSM (Glacier
and SnowMelt) and SOCONT (Soil CONTribution) [Schaefli et al., 2005, Hamdi et al., 2005],
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HBV (Hydrologiska Byrdns Vattenbalansavdelning) [Bergstrom, 1976], GR4] (Modele du Génie
Rural a 4 parametres Journalier) [Perrin et al., 2003] and SAC-SMA (Sacramento Soil Moisture
Accounting) [Burnash et al., 1973].

Since 2013, the forecasting system is operational for the entire URR basin and used as a tool for
decision-making support [Garcia Herndndez et al., 2014]. To generate hydrological forecasts,
the system uses the temperature and precipitation forecasts provided by the Swiss Federal
Office of Meteorology and Climatology (MeteoSwiss). Two different forecast products are used
operationally : COSMO-1 and COSMO-E. The COSMO-1 deterministic product, with a spatial
resolution of 1.1 km, provides a short range weather forecast every three hours with a lead
time of 33 hours (except one of 45 hours). The COSMO-E probabilistic product, with a spatial
resolution of 2.2 km, provides a forecast with a horizon of 5 days and is generated twice a day.

The operational system is composed of three main components. First, two databases store
all the required meteorological and hydrological input data. One database stores all the data
from the ground stations. The second database has been set up to store the increasing number
of spatial products used in the system, going from weather radar data to weather forecast and
satellite images. Since 2018, a new database has been created to combine all these data in
a unique database. The second component of the system is the computation process. The
entire computation chain including data acquisition, management of RS MINERVE compu-
tations and storing results in the database is coded with the R language and environment
for statistical computing [R Core Team, 2018]. Third, all the results including meteorological
and hydrological observations and forecast are displayed on a web platform available to the
stakeholders. Automatic email alerts and text messages are also sent in case of thresholds
exceedance.

1.4 Research questions and organization of the thesis

The goal of this dissertation is to propose methodological improvements applicable to the
above mentioned flood forecasting system in combination with a better representation of the
meteorological data [Foehn et al., 2016a]. The thesis addresses three main scientific questions:

* How can precipitation data from different sources and of different types (from stations
and weather radar) be combined to generate quantitative precipitation estimates for
hydrological modelling ?

* How, and how much, can snow modelling in a hydrological model be improved by
integrating snow-related data ?

* How can observed hydro-meteorological data be assimilated in real-time to increase
the hydrological forecast performance in Alpine catchments ?
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The present thesis addresses these questions in four chapters and is organized as follows:

* Chapter 2 explores the combination of rain gauge data with weather radar data to
propose an improved product of precipitation over the Upper Rhone River basin. The
installation of the new weather radar of Pointe de la Plaine Morte, in June 2014, half
a year before the start of the present project, represents an excellent new source of
information and offers a terrain for exploration. The developed solution differs in several
aspects from the operational methodology implemented by MeteoSwiss, described in
Sideris et al. [2014a]. First, it considers not only the automatic monitoring network
(SwissMetNet) of MeteoSwiss for the rain gauges data, but also the data from the private
company MeteoGroup Switzerland AG. Thereby, the number of ground stations is
increased. However, differences in terms of quality between the two networks imply a
number of challenges discussed and illustrated in this chapter. Second, the methodology
is not applied over entire Switzerland but only over the studied basin. This implies a
more local computation but also brings new challenges such as having sufficient data
for the interpolation methodology.

* Chapter 3 proposes a methodology to define a global correction factor to be applied to
hourly solid precipitation values before computing quantitative precipitation estimates
(QPE). It builds on the previous chapter and exploits data of ground-based Snow Water
Equivalent (SWE) to investigate measurement undercatch by rain gauges during winter.
Using a temperature-index model, snow accumulation and melting is simulated at 11
SWE observation sites. The model is calibrated using snow-covered area fraction pro-
vided by satellite-based data from the Moderate-Resolution Imaging Spectroradiometer
(MODIS). The performance is then evaluated by comparing the simulated SWE with the
ground SWE measurements.

* In Chapter 4, the performance of the model considering different inputs and different
calibration approaches is assessed from a hydrological point of view. The different
products of precipitation presented in Chapters 2 and 3 are used as input data and
performances are compared. In terms of calibration, two approaches are explored. First,
a conventional calibration of all model parameters based exclusively on discharge data
is performed. Second, a decoupling of the calibration is tested, with first a calibration
of the degree-day factors based on MODIS data using the methodology developed at
the pixel scale in Chapter 3 and second the other parameters are adjusted based on
discharge data.

* Chapter 5 presents the implementation of an Ensemble Kalman filter (EnKF) to improve
the initial conditions of the state variables of the RS MINERVE model using observed
discharge data. The proposed data assimilation scheme is based on an ensemble of
model trajectories analysed to update the initial conditions before each hydrological
forecast. The performance is compared to a scenario without data assimilation and
to a simple data assimilation approach used operationally since 2017 in the MINERVE



Chapter 1. Introduction

system, based on a volume comparison over the last 24 hours preceding the forecast.
The application is done over two sub-catchments of the URR basin.

* Finally, the Conclusions summarize the main findings of the thesis and present some
outlook for future research in the different investigated fields.



4 Radar-rain gauge merging for spatial
interpolation of precipitation

2.1 Introduction

Since the beginning of the forecasting system development (Section 1.3), enhancing the
estimation of the spatial precipitation distribution has been identified as essential [Jordan,
2007a, Garcia Hernéndez, 2011b, Tobin, 2012]. Indeed, to accurately predict flooding induced
by heavy precipitation, it is crucial to estimate with good accuracy the causative precipitation
[Sikorska and Seibert, 2018]. Two main data sources are usually considered: rain gauges (point
observations) and weather radars (spatial information). Combining these two data types has
been shown to produce improved precipitation estimates [Foehn et al., 2016b, Sideris et al.,
2014a, Goudenhoofdt and Delobbe, 2009, Jewell and Gaussiat, 2015] for flood forecasting and
hydrological modelling in general.

Rain gauges provide direct precipitation measurements which can be fairly accurate; but
point observations are heterogeneously distributed over the domain and typically do not
cover the entire elevation range of Alpine basins. They are also subject to various sources
of error and uncertainty [Villarini and Krajewski, 2010, Cecinati et al., 2017a], such as wind-
induced measurement errors [NeSpor and Sevruk, 1999], evaporation and wetting errors
[Upton and Rahimi, 2003] or heating-related losses for heated tipping-buckets [Savina et al.,
2012]. In addition, rain gauge values have to be considered to be spatially representative of
their surrounding area, which is a strong hypothesis, in particular for short-time scales [Ciach
and Krajewski, 1999, Villarini et al., 2008].

Weather radars, alternatively, provide a better spatial coverage but require a relatively sophisti-
cated post-treatment of the signal back-scattered by the precipitation particles and are subject
to significant bias and many sources of error [Germann et al., 2006, 2009, Berne and Krajewski,

This chapter is based on the scientific article “Spatial interpolation of precipitation from multiple rain gauge
networks and weather radar data for operational applications in Alpine catchments” by Foehn A., Garcia Herndndez
J., Schaefli B., De Cesare G. (2018). Journal of Hydrology. DOI: 10.1016/j.jhydrol.2018.05.027.
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2013]. Radar estimates are in general well correlated both in space and time with rain gauge
data, particularly for long accumulation periods but this correlation tends to decrease for
sub-hourly accumulation periods [Sideris et al., 2014a].

A wide range of precipitation interpolation methods has been proposed in the literature for
rain gauge data interpolation or radar-gauge combination, from rather simplistic methods
such as Thiessen polygons [Thiessen, 1911] or Inverse distance weighting [Shepard, 1968] to
more sophisticated methods such as simple and multiple linear regressions [Di Piazza et al.,
2011], copulas [Vogl et al., 2012], ensemble spatial analysis [Frei and Isotta, 2019] and the wide
range of geostatistical methods [Creutin et al., 1988]. Univariate geostatistical methods (e.g.
simple or ordinary kriging) generally tend to smooth the interpolated variable and therefore
struggle to accurately reproduce spatial variability. Multivariate geostatistical methods use
additional spatial information from either static (e.g. elevation) or dynamic (e.g. weather
radar) covariates to improve the interpolation performance [Wagner et al., 2012]. Different
approaches of multivariate geostatistics applied to precipitations have been explored in the
literature, including Kriging with external drift (KED) [Cantet, 2017], Co-kriging [Goovaerts,
2000], Conditional merging [Ehret, 2003] or Bayesian kriging [Verdin et al., 2015]. Ly et al.
[2013] propose a methods review for spatial interpolation of daily rainfall data for hydrological
modelling at the catchment scale.

Regarding possible covariates (additional information), only few studies focused on multi-
variate interpolation of hourly precipitation over Alpine catchments. Schiemann et al. [2011]
showed that applying KED to hourly rain gauges and radar data over entire Switzerland per-
forms better than interpolated rain gauge data or radar data alone. For flatter areas, Haberlandt
[2007] has shown over the Elbe basin, in Germany, that for hourly precipitation, the most
important additional information was the radar, followed by daily precipitation observations
of a denser network with lower temporal resolution, and finally the elevation, which was
considered “to play only a secondary role” in the studied case. Goovaerts [2000] reported that
incorporating elevation can improve spatial interpolation of monthly and yearly rainfall when
applied to a basin in Southern Portugal. Ly et al. [2011] analysed the integration of elevation
in KED and Ordinary Co-kriging and concluded that it did not improve the interpolation
accuracy for daily rainfall over a basin in Belgium. These observations tend to agree with Bar-
dossy and Pegram [2013], who found over three regions in Germany that “correlation between
precipitation and topography increases with the length of time interval”. Sikorska and Seibert
[2018] showed that radar-based daily precipitation estimates, adjusted to precipitation rates
from ground stations, provided better flood predictions as compared to using only rain gauges
observations.

Sideris et al. [2014a] proposed a methodology applied in Switzerland in which rain gauges
were combined with weather radar data using data from the time step of interpolation as
well as from the preceding time step (as secondary co-kriged variable) in a co-kriging with
external drift (CED) approach. Comparing their spatio-temporal method with a classical KED
approach, they concluded that the skill scores were similar when considering an aggregation
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time of 60 min. However, for shorter aggregation periods (10-30 min.), CED resulted in
higher performance values than KED. This methodology is used for the computation of the
CombiPrecip product [MeteoSwiss, 2014b], the operational hourly spatialized precipitation
product of the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss).

Numerical weather forecasts can also represent an alternative covariate. Tobin et al. [2011]
have applied KED for interpolation of precipitation and temperature in Switzerland using
(i) elevation and (ii) the COSMO-7 weather forecast product of MeteoSwiss [MeteoSwiss,
2017]. Whereas temperature measurements were found to be “strongly correlated with the
closest COSMO-7 grid point” at an hourly time step, good correlation between measurements
and COSMO-7 estimates was observed for precipitation only for “cumulative data over the
event”. Tobin et al. [2011] thus proposed to use an event averaged linear drift for precipitation
interpolation. Compared to Inverse distance weighting (IDW) and Ordinary kriging (OK), KED
with elevation tended to produce the least biased estimation in their study. In terms of error,
OK and both KED methods using elevation and the COSMO-7 data had similar scores and
outperformed IDW. However, when looking only at stations above 1500 m a.s.l., KED with
COSMO-7 showed the highest error for their case study in Switzerland.

Covariates can also be processed before being used in combination with rain gauge data.
Berndt et al. [2014] showed that smoothing radar data both spatially with the adjacent cells
or/and temporally over several time steps improved the performance of merging rain gauges
and radar data. Instead of always using the radar pixel containing a rain gauge, Sideris et al.
[2014b] incorporated in the CombiPrecip product a convection control routine, in which the
coefficient of dispersion over the 25 pixels around the rain gauge pixel is computed. When a
certain threshold is exceeded, the value of the pixel with the closest value to the rain gauge
within the 25 pixels is used for the merging.

Commercial microwave link networks have also been explored over the last decade as a
supplementary source of data [Messer et al., 2006]. Hydrological applications show a great
potential of this approach, in particular in poorly equipped areas [Smiatek et al., 2017].

Besides providing a reliable radar-rain gauge combination for the target region, the objective
of this chapter is to assess in detail what gain can be expected from combining the most
recent radar data for precipitation interpolation with rain gauge data from two ground-based
networks of different data quality. This includes a comparison to the commonly used deter-
ministic Inverse distance weighting method applied to rain gauge data as baseline scenario.
Another key question is the quality of the radar-gauge combination methodology if applied
to the data situation prevailing before the installation of a new weather radar covering the
studied basin in 2014. Using the data from the already existing other Swiss weather radars,
such an application allows computing series over a longer time period which is required for
hydrological modelling purposes. Finally, the chapter also aims at analysing the effect of
incorporating additional station networks located within and around the target region in the
interpolation computation.

11
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2.2 Input data and events description

2.2.1 Rain gauges data within the basin

Several networks of rain gauges are available within the studied basin, but only the two
networks with heated rain gauges have been considered for this study, in order to make
the methodology applicable all year round. The first one is the SwissMetNet [MeteoSwiss,
2016a] network of MeteoSwiss, hereafter refereed as SMN. The SMN data are based on reliable
equipment and subject to a serious quality control [Musa et al., 2003]. On July 1°¢, 2013, 40
SMN stations were operational within the basin. This number had increased to 58 on March
1%%, 2017, which represents an average area per station of 92 km?, which makes it a particularly
dense network. As a comparison, on the same date, the Swiss average was 168 km? per station
and values reported by other authors tend to be higher: about 571 km? per station in Germany
[Berndt et al., 2014] or 135 km? in the Wallon region, where Goudenhoofdt and Delobbe [2009]
described the network as “dense”. A complete list of used SMN stations is given in Appendix B,
Tables B.1 and B.2.

For the analysis, all available stations have been considered in each event, regardless whether
the station was available or not for the other events. This implies that the number of stations
considered for the computation increases over the events between 2012 and 2017. Table 2.1
lists the equipment used in the different networks [MeteoSwiss, 2015] and the number of
stations.

The second network is composed of 23 stations of the private company MeteoGroup Switzer-
land AG, hereafter refereed as MG. More stations of this network are available within the basin,
but data from only 23 stations were available for the present study, which have been selected
to supplement SMN stations over uncovered areas. A complete list of used MG stations is
given in Table B.3.

Combined with the SMN stations, the average area per station over the basin drops to 66 km?.
The elevation range is 381 to 2472 m a.s.l. for the SMN stations and 460 to 2347 m a.s.| for the
MG stations, with median elevations of respectively 1537 and 1365 m a.s.l. The analysis of the
data has shown a tendency of MG stations to report less precipitation than the SMN stations,
with differences largely exceeding 20% for some hourly time steps. Similar observations had
been made by MeteoSwiss when comparing their manual daily precipitation measurements
with automatic observations from MeteoGroup stations (J. Fisler, MeteoSwiss, personal com-
munication, January 9, 2017). In the field intercomparison of rain intensity gauges realized
by Vuerich et al. [2009] for the account of the World Meteorological Organization (WMO), all
three concerned station types, or their predecessor (for the OTT equipment), had been tested
[Lanza and Vuerich, 2009]. The stations used by MeteoSwiss were evaluated as “satisfactory”
(Lambrecht) and “very good” (OTT), whereas the stations installed by MeteoGroup (Davis)
were evaluated as “insufficient”. Based on these conclusions, the SMN stations have been
defined for this study as being the “primary” network and the MG stations as the “secondary”
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network. This distinction will be considered when using data from both networks. It is worth
mentioning here that neither the MeteoSwiss nor the MeteoGroup station data are corrected
for undercatch of solid precipitation, which is known to have an effect on solid precipitation
intensity estimation in mountainous regions [Egli et al., 2009].

2.2.2 Rain gauges data around the basin

In addition to the presented two networks located within the basin (81 stations) and their
12 stations located around the basin (Table 2.1), 62 stations of networks located around the
basin and equipped with heated rain gauges have been considered (Table 2.1). This additional
information is expected to allow a better estimation at the border of the basin as well as a more
correct estimation of the precipitation fields for example in the southern neighbouring area.
This is important as more than half of the meteorological situations having produced more
than 110 mm/d of precipitation over 3 days in the Upper Valais since 1975 have originated
from south according to Attinger and Fallot [2003], as cited in Tobin et al. [2011].

Table 2.1 — List of considered rain gauge networks and respective characteristics. Number of
stations for MeteoSwiss refers to March 1%/, 2017.

N f
Network un.lber ° Location Sensor model Period
stations
1518 H3 and 15188
SwissMetNet Basi igh-
WissVIeENe 17 (+9) asin  (+ melgh-1 0y o mbrecht (tip- | 2012-2017
(SMN) bouring cantons) :
ping bucket)
. . . _ . 2
SwissMetNet 41 (+2) Basu'l (+ neigh Pluf/lo. by . Ott 92012-2017
(SMN) bouring cantons) (weighing principle)
Rain Collector II
MeteoGroup (MG) 23 (+1) Basin (+ France) by Davis (tipping | 2012-2017
bucket)
Kanton Bern 11 Bern (Switzerland) Unknown (heated) 2012-2017
MeteoFrance 5 France Unknown (heated) | 2012-2017
EDF 10 France Unknown (heated) 2012-2016
Regione Aosta 25 Italy Unknown (heated) | 2012-2017
ARPA Piemonte 11 Italy Unknown (heated) 2012-2015

2.2.3 Weather radar data

MeteoSwiss has operated since 1995 three weather radars (La Dole, Albis, Monte Lema)
covering the entire national territory of Switzerland [MeteoSwiss, 2016c], modernized in 2011
and 2012 with new technologies [MeteoSwiss, 2012]. In May 2014, a fourth installation has been
inaugurated at the Pointe de la Plaine Morte (see Figure 2.1), within the basin studied in here
[MeteoSwiss, 2014a], followed two years later by a fifth radar (Weissfluhgipfel) in the Eastern
part of Switzerland [MeteoSwiss, 2016] (Figure 2.1). The radar of Pointe de la Plaine Morte is
officially operational since June 2014. The two additional radars contributed to a better radar
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coverage of Alpine regions [Germann et al., 2015]. The back-scattered signal measured by
the five dual-polarization Doppler C-band radars [Gabella et al., 2017] is transformed into
rain rate estimates through several procedures, described in Germann et al. [2006]. Radar
precipitation estimates are generated every 5 minutes over a 1-km resolution raster based on
a combination of the data of the available radars over Switzerland. For the present study, the
hourly aggregated radar precipitation estimates product of MeteoSwiss is used, classified into
256 rain estimates categories. The computation routine of the product had been optimized
by MeteoSwiss for the configuration with 3 weather radars in Switzerland. A new radar
precipitation estimates product is generated by MeteoSwiss since February 2018, but no
historical data are yet available (MeteoSwiss, personal communication, March 7, 2018).

Albis
[ ]
Weissfluhgipfel
([ ]
A Pointe de la
La Dole Plaine Morte
e [ ]
Monte Lema
o

©2004 swissiopo

Figure 2.1 — Location of the five weather radars of MeteoSwiss. Image reproduced with permis-
sion of the rights holder, MeteoSwiss. (Background: Swisstopo)

It is worth pointing out that the highly mountainous aspect of the studied basin implies an
accuracy loss of the radar estimate as compared to flatlands [Erdin et al., 2012]. Beam shielding
by mountain ranges is certainly one of the major issues, as discussed later in Section 2.5. To
reduce this effect, a fixed adjustment map computed based on a long term comparison
between weather radar estimation and rain gauge measurements is used by MeteoSwiss
in the computation of their radar precipitation estimates product [Germann et al., 2006].
However, this long-term comparison-based correction does not consider the data of the two
newly installed radars. Positive effect on the basin of interest is therefore probably lower than
for some other regions of Switzerland. Ground echoes elimination also requires a proper
pre-treatment of the data. In addition, radar data suffer of bias issue, by over- or under-
shooting the precipitation. This is why they are combined with rain gauges to properly
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adjust the precipitation field. In addition, solid precipitation estimation is known to be more
challenging than the liquid phase, resulting in better detection performance in summer than
in winter [Speirs et al., 2017], whereas melting snow tends to enhance the back-scattered
signal [Germann et al., 2006].

2.2.4 Events description

The main analysis is carried out on four events (identified as 1 to 4) that occurred over the
period of data availability for the meteorological radar of Pointe de la Plaine Morte (2014-2017).
Additionally, two events identified as A and B in 2012 and 2013, corresponding to the highest
peak flow in the basin over the 2008-2017 period, as well as an event identified as C in July
2014 during which the radar of Pointe de la Plaine Morte was temporary not operating, are
also considered to discuss the performance of the methodology before the installation of the
radar of Pointe de la Plaine Morte. This is important as data over several years are necessary
when using the interpolated data for hydrological model calibration.

The four events considered for the main analysis cover different seasons and were chosen
for their high precipitation accumulation over the events. The period for each event has
been defined such as to start two hours before the first hour with at least four SMN stations
reporting at least 1.5 mm/h, and to stop two hours after the last hour respecting this condition;
interruptions of less than 12 h of the above mentioned condition were considered to be part of
the same event.

The characteristics of the events are given in Table 2.2 and presented hereafter, listed in
chronological order. The median and maximum accumulation values are computed from the
rain gauge values. The snow line elevation has been estimated from archives of short term
weather forecasts of MeteoSwiss. In fact, even if recent developments enable hydrometeor type
analysis from radar data [Grazioli et al., 2015], snow line elevations cannot yet be estimated
directly from the radar data. Return periods are provided by MeteoSwiss [2016b] from which
only statistically robust results were considered. Peak discharges (Qmax) and corresponding
return periods of the events at the hydrometric stations [FOEN, 2017a] in Sion and in Porte
du Sceg, at the outlet of the basin (Figure 1.2), are also indicated in Table 2.2 and discussed
hereafter where relevant. All times are given in UTC+1.
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Table 2.2 - Characteristics of the seven analysed events.

Event identifier A B C 1 2 3 4
Year 2012 2013 2014 2014 2015 2016 2017
Start [day.month Time] 1.712:00 28.721:00 28.711:00 | 4.1108:00 30.422:00 10.107:00 5.315:00
End [day.month Time] 2.716:00 29.717:00 29.715:00 | 6.1104:00 4.510:00 13.104:00 7.313:00
Duration [h] 28 20 28 44 84 69 46
Season Summer Summer  Summer | Fall Spring Winter Winter

. . 3200- 2500- 1800-
Approx. snow line elevation [m a.s.l.] 3400 2600 3100 800-2000 2600 800-1400  700-1400
Plaine Morte radar data No No No Yes Yes Yes Yes
Median accumulation at stations [mm] 24.3 39.3 45.5 37.5 96.2 41.2 34
Maximum_ accumulation at a station | ¢ 5 69.7 62.7 179.5 375.7 158 150.7
(mm]
SMN stations (number) 28 40 52 52 52 55 58
MG stations (number) 20 22 23 23 23 23 23
Qmax at Sion [m3/s] 703 708 394 146 231 64 53
Qmax at Porte du Scex [m>/s] 864 901 537 272 606 191 139

uonelddaid jo uonejodidur feneds 10y Suidrow agnes urer-repey ‘g 11dey)
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Events without Pointe de la Plaine Morte data

Event A: 1.7.2012 12:00 to 2.7.2012 16:00

The event of July 2012 mostly concerned the eastern part of the basin. The overall precipitation
was not particularly intense, with a median accumulation over all the stations of 24.3 mm,
but with a snow line elevation reaching 3400 m a.s.l., most of the precipitation fell as rain.
This resulted in a peak discharge in the Rhone at Sion of 703 m3/son2 July [FOEN, 2017a],
corresponding to an estimated return period of 20 years according to FOEN [2017b].

Event B: 28.7.2013 21:00 to 29.7.2013 17:00

The event of July 2013 touched the entire basin with locally intense storms (median accumula-
tion of 39.3 mm). The high snow line elevation, situated at about 2600 m a.s.l., resulted in a
high proportion of rainfall, which led to a peak discharges of 708 m3/s in Sion and 901 m3/s
in Porte du Scex on 29 July [FOEN, 2017a]. The return period of the discharge in Sion was
estimated to 21 years [FOEN, 2017b].

Event C: 28.7.2014 11:00 to 29.7.2014 15:00

A westerly depression affected the entire basin and particularly its western part. The median
accumulation reached 45.5 mm over the event. The snow line elevation varied between around
2500 and 3100 m a.s.l. Compared to the events in 2012 and 2013, the intense precipitation was
less concentrated in time, probably partially explaining why the resulting flow in downstream
rivers did not reach values as high as in 2012 and 2013 (see Table 2.2). The event has the
particularity of having taken place after the entry into service of the radar of Pointe de la
Plaine Morte, but with the mentioned radar not being in operation over the event (temporary
interruption). This offers a station density close to the maximum density of 2017 with a radar
data configuration corresponding to the one of before 2014 (without the radar of Pointe de la
Plaine Morte), which is interesting for analysis purposes.

Events including Pointe de la Plaine Morte data

Event 1: 4.11.2014 08:00 to 6.11.2014 04:00

An active westerly disturbance with polar air resulted in heavy precipitation mostly in the
Eastern part of the basin. The median accumulation over the 44 hours was 37.5 mm but
station Ulrichen (Figure 1.2) reported for example 96.2 mm over 16 hours, corresponding to a
return period of 18 years according to MeteoSwiss [2016b]. The snow limit varied between 800
and 2000 m a.s.l.

Event 2: 30.04.2015 22:00 to 4.5.2015 10:00

A heavy precipitation event coming from the west with air relatively mild and very humid
reached Switzerland, with successive precipitation episodes. The snow limit varied between
1800 and 2600 m a.s.l. The median accumulation was 96.2 mm for a maximum accumulation
over the 84 hours of 375.7 mm (in station Clusanfe). In terms of return period, the station
Bex (Figure 1.2), in the western part of the basin, reported a rainfall accumulation of 100.9
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mm over 3 days, corresponding to a return period of 58 years. Other stations within the basin
reported accumulation with return periods exceeding 10 years.

Event 3: 10.1.2016 07:00 to 13.1.2016 04:00

A series of disturbances reached Switzerland from the west with heavy snowfalls on the Alps,
exceeding in some places 100 cm of fresh snow over the 3 days. The snow limit varied between
800 and 1400 m a.s.l. and the median liquid-equivalent precipitation was 41.2 mm.

Event 4: 5.3.2017 15:00 to 7.3.2017 13:00

Strong westerly winds resulted in successive rainy episodes towards the Swiss Alps, with a
median precipitation of 34 mm. The snow limit varied between 700 and 1400 m a.s.l. over the
event, thus a large fraction of the precipitation fell as snow.

2.3 Methodology

The high spatial variability of precipitation implies the use of methods capable of analysing
and reproducing as reliably as possible the spatial pattern of the precipitation fields. On one
side, the interpolation method should be efficient in combining the available rain gauge and
radar data, considering different networks of ground stations. On the other side, for being used
operationally, it should not imply long computational time and must work on an automatic
basis.

2.3.1 Estimation methods

Five different estimation methods are compared within this work, ranging from commonly
used methods to the newly proposed one handling with two non-collocated rain gauge net-
works of different quality. The first method is the so-called Inverse distance weighting method
[Shepard, 1968], hereafter referred to as IDW, currently used within the MINERVE forecasting
system and therefore considered as the baseline scenario. This method only uses the rain
gauge data. The second method considers directly the radar value over the entire basin. The
three other methods combine rain gauge and radar data by applying a multiplying coeffi-
cient to the radar raster, based on a linear regression of the radar data on the rain gauge
data, to obtain a trend (“corrected radar”). Residuals, defined as the difference between the
value observed at a rain gauge and the value of the containing pixel of the trend, are then
computed at each gauge location before being interpolated. The way this interpolation is
carried out differentiates the three last methods. The first one is applying IDW to the residuals,
whereas the two others are based on a kriging approach [Webster and Oliver, 2007, Delhomme,
1978]. Finally, interpolated residuals are added to the trend to get the final product. Table 2.3
summarizes the five methods.
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Table 2.3 — Estimation methods.

Name Short name | Rain gauges | Radar | Remark
iI;l\g/erse distance weight- IDW Yes No Reference
Radar value Radar No Yes Radar data
R . . .
egresspn 1‘nverse dis RIDW Yes Yes IDW on residuals
tance weighting
imple kriei
Regression kriging RK Yes Yes Sm,lp ¢ Ktiging on
residuals
) o Co-kriging on
Regression co-kriging RCK Yes Yes residuals

The implementation has been done on the R language and environment for statistical comput-
ing [R Core Team, 2018]. For the three regression methods, the methodology and nomenclature
is partly based on Sideris et al. [2014a].

Inverse distance weighting (IDW)

The Inverse distance weighting method [Shepard, 1968] is a deterministic interpolation
method [Ly et al., 2013], in the sense that it does not exploit the statistical properties of
the observations sample, thus not providing a prediction errors assessment. In general, the
aim of interpolation is to estimate the precipitation depth p at an unsampled spatial location
sp with coordinates (xp,p) using the available observation data at rain gauges (see Table 2.7
for all variables of the chapter). IDW applies a linear combination of the observations within
a research radius p, with a decreasing influence with increasing distance. The rain gauge
measurements vector over a period ¢ is given by:

g(1) =1[g(s1,1),8(s2,0),...,8(sN, )] (2.1)

where N is the number of available rain gauge measurements over the period ¢ and s = (x, )
the spatial-coordinate vector of a given point.

The estimated precipitation p(sy, t), at a given location sy, is then given by:

S50 0 g(si, 1) if3i:d(sg,s;)=0 R 2.2)
plSo, 1) = N 1.0(s; . So€D & .
’:ii’gf“” elseVi:0>d(sy,si)<p
i=17"1
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where

1
1= (2.3)
" d(so, )P
with d being the distance between the location of interpolation and the location of observation
i, B a power coefficient, p the research radius and D the spatial domain ; R is the set of real
numbers. The normalization allows the sum of the weights to equal 1.

Radar value (Radar)

The Radar value method consists in using directly the radar data provided by MeteoSwiss as
the precipitation estimation over the basin. The quality of the radar product can thereby be
investigated.

Regression inverse distance weighting (RIDW)

In the three remaining methods, the radar information is used to compute a trend of the
precipitation field with a multiplicative coefficient. It is worth noting here that merging rain
gauge and radar data implies several hypotheses [Sideris et al., 2014a]. Firstly, it is assumed
that for both the rain gauges and the radar estimates, the measured physical quantity is the
precipitation depth over spatial blocks of a size equal to the spatial resolution of the radar (1
km?). This ignores the difference in spatial resolution. In complex topographies like in the
context of this study, this can have implications due to the limited spatial representativeness
of rain gauges. Secondly, the precipitation estimates of the radar over a spatial block of 1 km?
is assumed to reflect the precipitation depth falling on the surface of the same block. This
presumes perfect vertical precipitation fluxes and no exchange with adjacent blocks, which
is not the case in reality. In addition, it must be noted that the precipitation depth estimates
given by the radar can be affected by areas of invisibility due to shielding of the radar beam by
mountain ranges. This obviously also impacts the performance of the interpolation.

In addition to the rain gauge measurements vector g(f) defined in the IDW method, the radar
precipitation estimates at rain gauge locations over the period ¢ are considered:

r(t) = [r(SI, t)) 7'(32, t)w--) r(SN) t)] (2~4)

During the interpolation, radar precipitation estimates at each interpolation point are also
used.

In geostatistics, a random process Z(s, ) can be modelled as the sum of a deterministic
part mz(s, t), corresponding to the average or trend component, and a stochastic residual
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component €(s, t), which corresponds to local fluctuations of the trend, so that:

Z(s,t)=mg(s, 1) +e(s,t) VseDc R2;t€T§[R (2.5)

where s is the vector of spatial coordinates of a given point and T the temporal domain.

In the context of the present work, Eq.(2.5) can be rewritten for the precipitation depth p over
the entire domain as:

p(s, 1) =mp(s, 1) +€(s, 1) (2.6)

The trend m, (s, 1) for a spatial coordinates vector s is commonly modelled as a linear function
of a smoothly varying external variable [Goovaerts, 1997] . In our case, this external variable is
the radar r (s, £):

mp(s,t) = a()r(s,1) 2.7

where a(?) is a regression coefficient and (s, f) is the radar values vector at time ¢. The
coefficient a(f) is computed as the slope of a linear regression of all pairs of points composed
of the gauge values on the y-axis and the values of the containing radar pixel on the x-axis. a(t)
is assumed to be constant spatially in the interest of robustness.

In other methods, such as Kriging with external drift (KED), the trend is computed using
two regression parameters (thereby adding also an intercept) and often evaluated within the
kriging estimation process itself (e.g. in KED). The choice of a unique parameter has been
motivated by the wish of maintaining zero precipitation in the trend where there was no
precipitation reported by the radar estimates.

To compute the residuals e(s, ), the trend m, (s, £) is subtracted from the observed value at
the station locations:

e(s, 1) =g(s, 1) —mp(s, 1) =g(s, ) —al®)r(s,1) (2.8)

The residuals e(s, t) are then interpolated using the inverse distance weighting method to
obtain the interpolated residuals éripw(So, t) at location sg. The final estimate is obtained by
adding the trend my, (so, f) to the interpolated residual :

Priow (S0, ) = M,y (S0, 1) + Erpw (S0, ) VsoeD < R? 2.9)

Figure 2.2 illustrates the different steps of the RIDW method.
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Figure 2.2 — Illustration of the different steps in RIDW: i) Radar data ; ii) Trend obtained by
multiplying the radar data by the regression coefficient (Eq.2.7); iii) Residuals computed
for each station and interpolated ; iv) Final product obtained by adding the trend (ii) and
the interpolated residuals (iii). Circles represent rain gauge locations and filling colour the
precipitation intensity observed at the station. Note that the colour classes division is not
linear. The black triangle represents the radar of Pointe de la Plaine Morte. (Time step: 01-05-
20152200 GMT+1).

Regression kriging (RK)

Kriging is a family of interpolation methods in which the covariance between observations is
used to define a linear combination of the observations for interpolation. Practically, kriging
methods consider the increasing dissimilarity between observations to characterize the spatial
structure of the data. One of the conditions to apply the elementary methods of kriging,
Simple and Ordinary kriging, is to assume the random variable to be first-order stationary: the
expected value is constant over the domain of interpolation. This condition is hardly satisfied
when working directly with rain gauge data, as it might rain for example only in one part of the
basin. This non-stationarity of the precipitation fields is here addressed by removing the same
trend based on the radar data as in RIDW so that Simple or Ordinary kriging can be applied
to the computed residuals. This is however an approximation as the non-stationarity of the
precipitation statistical properties cannot be fully captured by the radar data.
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This approach is called Regression kriging (RK) in the present study, according to the nomen-
clature in Odeh et al. [1995]. Other names have been proposed for similar approaches in the
literature: kriging combined with linear regression [Ahmed and De Marsily, 1987], kriging
detrended data [Phillips et al., 1992], kriging with a trend model [Goovaerts, 1997] or residual
kriging [Alsamamra et al., 2009]. Hengl et al. [2007] discussed the characteristics of regression-
kriging and applied the approach to three case studies. RK is somewhat similar to Kriging
with external drift (KED), the difference being that the linear regression and the kriging inter-
polation is done in successive steps in RK and all-at-once in KED. This choice of successive
steps allows us to define different subsets of stations for (a) the linear regression step, (b) the
variogram computation for the spatial interpolation of the residuals and (c) the interpolation
of the residuals, to explore for example a larger number of stations in the last step.

Equations 2.5 to 2.8 about trend and residuals computation remain valid for RK. The covari-
ance of the residuals at the locations of observation is given by the NxN covariance matrix
Caa:

02, Cp - Cin
Ca 0% - Con

Caa = . . . . (2.10)
Cnz Cnz -+ 0%

where each element C; ; of the matrix is given by the covariance between the observation
locations i and j and (TZZ is the variance of the observations. Assuming a gaussian distribution
of the residuals (discussed later in Subsection 2.3.3) and considering a constant zero mean
and known variance, Simple kriging is used to spatialize the residuals. Considering the two
conditions imposed by the kriging approach which are (i) an unbiased estimator and (ii) a
minimal estimation variance, the following equation is obtained [Webster and Oliver, 2007]:

Caad=ca (2.11)
where c, is the covariance vector between the locations of interpolation and the observation
locations.

Resolution of the system given in Eq.(2.11) provides the weights for the linear kriging pre-
dictor used to compute residual values at the interpolation location sy, given by the linear
combination of the observations:

N
erk(so, 1) = Y_ Ai€(s, 1) 2.12)
i=1
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which is then added to the trend m, (so, t) to get the expected value of the precipitation depth:
Pri (S0, 1) = My (50, 1) + Erk (S0, 1) VsoeD < R? (2.13)

Interpolation of the residual is done using a global neighbourhood, that means all the points
are used for the interpolation.

Regression co-kriging (RCK)

Based on the comparative analysis between the MeteoSwiss and MeteoGroup networks (see
Subsection 2.2.1), the choice was made to explore a variant of Regression-kriging using co-
kriging and hereafter referred to as Regression co-kriging (RCK). Co-kriging has the advantage
of offering the possibility of considering more than one variable in the kriging interpolation.

Thus, the multivariate RCK variant allows considering different vectors of rain gauges. Instead
of having only one vector of observations, vector g(¢) of Eq.(2.1) is replaced by two vectors:

ga(t) = [g(sa,lr t)»g(sa,zy t)y ceey g(sa,Na; t)] (214)

8p(t) = [8(sp1, 1), 8(sp2, 1), ..., 8(Sp, N, 1)] (2.15)

where the subscripts a and b refer to the primary (a) and secondary (b) networks and N, and
Ny, are the number of available rain gauges in the primary and in the secondary network over
the period ¢.

Similarly, the radar precipitation estimates’ vector of Eq.(2.4) is replaced by two vectors:

Fa(t) = [1r(Sq1,8),7(Sa2, ), ... 7 (Sg,N,, D)] (2.16)

rb(t) = [r(sb,ly t)’ r(sb,Z) t)’ veey r(sb,Nh’ t)] (2~17)

Statements about the trend (based on radar data with a regression on station data) and
residuals computation of Equations 2.5 to 2.8 remain valid. The residuals are computed with
the two equations:

€a(Sa,t) = 8a(Sq,t) — aura(Sa, t) (2.18)
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€p(Sp, 1) = gp(Sp, 1) — aprp(sp, ) (2.19)

where a, and ay, are the multiplicative coefficients for the primary and secondary variables
computed with a linear regression of the radar data on the rain gauge data. These two terms
are the result of a linear regression computed for each of the corresponding subsets of data
with respect to the corresponding radar data.

The consideration of two variables in RCK instead of one modifies Eq.(2.11) as follows [Myers,
1982]:

Caa Cab| (A4 _ Ca (2.20)
Cha Cpp) (A b '

where ¢, and ¢y, are the covariance vectors of residuals between the unmonitored locations
and the locations with observations and C,}, (respectively Cyp,) the cross-covariance matrix
between the primary and secondary variable (respectively the secondary and primary variable).
Consequently, the estimator equation is given by:

N, Np
Erck (80, 1) =) Aa,i€a(Sa, )+ D Ap,i€p(Sp, 1) (2.21)
i=1 i=1

before being added to the trend m, (so, 1):

Prek (S0, ) = My (0, 1) +Erck (S0, 1) VsoeD < R? (2.22)

2.3.2 Variogram fitting for non-collocated networks

Computation of the weights vector A of Eq.(2.11) and 1, and A, of Eq.(2.20) requires an
estimate of the covariance matrices. Instead of computing the covariance, which is sensitive
to sampling effects, kriging generally uses the concept of semivariogram [Matheron, 1971],
which represents how the dissimilarity between pairs of points increases with increasing
separation distance. The semivariogram, or simply variogram as called from now, is defined
for the univariate case and expressed in terms of precipitation residuals by:

N(h)

) . 2
SN UD izzl(e(sl) e(si + hy)) (2.23)

Ya(h) =

Y(s;,s;i+h)eD< R*> | hie[h—bl2,h+Db/2],

where h is the distance lag between pairs of locations, y,(h) the variogram value for distance
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lag h, b the bin size (the width of the distance interval up to which point pairs are grouped for
variogram computation), h; the distance separating a given pair of points, N (k) the number of
considered pairs of observations separated by distance £, €,(s;) the residual value at location
s; and e(s; + h;) the residual value at location s; + h; [Pebesma, 2014].

In the case of Regression kriging, one variogram is computed with Eq.(2.23) for each time
step of computation. For the Regression co-kriging, two direct variogams (one for each
variable) and one cross-variogram must be computed to define the so-called linear model of
coregionalization [Webster and Oliver, 2007]. For the computation of the cross-variogram,
Eq.(2.23) must be generalized to two variables, identified by the subscripts a and b:

N(h)

SN ; (ea(si) —€alsi + i) (ep(si) —e€p(si + hy)) (2.24)

Yab(h) =

V(s;,si+hi)eD< R?> | hie[h—bl2,h+Db/2]

where ¢}, (s;) is the residual value at location s; and €, (s; + h;) the residual value at location s; +
h;.

However, Eq.(2.24) can be used only in case of collocated variables (i.e. observations are
available for both variables in sufficient locations). This is not the case for SMN and MG
stations since they are situated in different locations. Accordingly, one needs to work with so-
called pseudo cross-variograms in which pairs of both variables are considered, as proposed
by Pebesma [2014]:

N(h)

Yab® (h) = Y (ealsi) —ep(si + hi)* (2.25)
i=1

2N(h)
Y(s;,s;i+hj)eD< R | hje[h—Dbl2,h+b/2]

where y?, (h) is the pseudo cross-variogram value for distance lag h considering variables a
and b.

The equivalence between variogram and covariance is defined for second-order stationary
processes (for which the variogram is always bounded), as follows [Webster and Oliver, 2007]:

y(h) = C(0) - C(h) (2.26)

where y(h) is the variogram value for a distance h, C(0) is the covariance at h=0 and C(h) the
covariance at distance h. If the variogram is bounded by a sill, the value of C(0) is equal to the
total sill value.

In the present study, the variogram models have been fitted using the package 'gstat’ [Pebesma
and Graeler, 2017], within the R language and environment for statistical computing [R Core
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Team, 2018]. The empirical variogram has been fitted with a spherical variogram model
[Schuurmans et al., 2007]:

0 ith=0,
Y =3 Ko+K(3L-J%5) ifo<hs<a, (2.27)
Ko+ K ifh>a.

in which Kj is the nugget value, K the partial sill, a the range (distance within which measure-
ments are considered correlated).

The implemented code explores different values of bin size until a valid variogram model can
be fitted. The routine also tries to obtain a low nugget-to-sill ratio by gradually increasing a
success threshold: 100 iterations are first attempted with a threshold value of 0.1. If none of
the obtained valid models has a nugget-to-sill ratio lower than the threshold, the threshold
is increased by 0.1 until 0.9 with each time 100 iterations. In case of failure with the highest
threshold value, the last valid variogram of previous time steps is considered.

Anisotropy of the variogram (different spatial variability in different directions) has not been
explored in this work. This choice is justified by the use of the radar data, in which spatial
variability of the precipitation fields is assumed to be contained and therefore considered in
the interpolation process.

2.3.3 Transformation

Precipitation is inherently heteroscedastic (the variance is not constant over the domain)
and has a skewed distribution, which is in contradiction with basic assumptions of classical
geostatistics which assumes a gaussian distribution and stationarity of the mean and spatial
covariance [Erdin et al., 2012]. Therefore, several methods have been explored in the literature
to transform the data before their interpolation [Sideris et al., 2014a, Erdin et al., 2012, Schu-
urmans et al., 2007] and it has been shown that quantitative improvement is dependent on
temporal and spatial variability [Cecinati et al., 2017b]. The process of applying kriging to data
transformed into a more gaussian distribution is generally called trans-gaussian kriging.

In the case of the two methods employing kriging in this chapter, namely regression kriging
(RK) and regression co-kriging (RCK), interpolation is not done directly on the precipitation
observations but on the residuals (see Subsection 2.3.1), to which the gaussianity issue there-
fore applies. A transformation is applied to both the rain gauge and the radar data to translate
them into a more gaussian distribution, with the objective of getting better gaussianity in the
residuals. In this chapter, a square-root transformation of the data [Sideris et al., 2014a] is used
for both RK and RCK methods (Subsection 2.3.1). Analysis of the residuals distribution has
shown that this transformation tends to increase overall the gaussianity of the residuals, even
though the effect is somewhat limited and for few time steps even negative. In analysing the
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effect of such data transformation on precipitation interpolation, Erdin et al. [2012] reported
“only small effects of transformation for the point estimates” but mentioned that “transforma-
tion improved the reliability of the probabilistic estimates substantially”. The corresponding
gain of introducing such transformation scheme is discussed in Subsection 2.4.2.

The advantage of the square-root transformation is the possibility of analytical back-transformation
of the mean and the variance [Sideris et al., 2014a], given by:

E[Y? =5 +0% (2.28)
and,

Var[Y?] = 4u? 0% +207% (2.29)

where py is the mean and oy the standard deviation of the square-root-transformed kriging
prediction at a certain location, whereas E[Y?] represents the expected value of the back-
transformed random variable, or, in other words, the final prediction, and Var[Y?] the related
variance. However, Eq.(2.28) is composed of two positive terms (both are squared values)
with the variance (U%,) being positive and reaching the sample variance of the (transformed)
residuals at estimation locations situated at a distance from the nearest observation higher
than the variogram model range (Eq.2.27). Thereby, the back-transformed estimation would
never provide zero precipitation estimates apart from rain gauge locations (where estimation
variance is minimum). In the work of Sideris et al. [2014a], this problem is addressed by
correcting the interpolated field and assigning zero precipitation to locations where the radar
does not show any precipitation (I. Sideris, personal communication, May 30, 2017). The
methodology proposed here overcomes this issue by weighting the variance term of Eq.(2.28)
with the predicted precipitation:

oy =—0Yy (2.30)

where 7 is a precipitation intensity threshold below which the variance is weighted and 0*{,2 is
the variance effectively added in Eq.(2.28) instead of a%,, which gives:
E[Y?)* =2 +0}° (2.31)

where E[Y?]* represents the expected value of the back-transformed random variable con-
sidering the modified estimation variance. The value for 7 has been fixed to 0.5 mm/h after
initial tests. The impact of applying the transformation or not is discussed in Subsection 2.4.2.
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2.3.4 Skill scores and cross-validation

The performance analysis is based on the leave-one-out approach: the precipitation is esti-
mated at a rain gauge location using all observations except the one corresponding to the
interpolation location. The procedure is undertaken on an hourly basis for each location and
for each of the methods. The quality of the point estimates is then assessed over all locations
for each time step using the following skill scores:

1. The Bias is used to assess systematic errors:

Zé\i] gi(t)

(2.32)
Zé\i] 8i (1)

Bias(#) := 10log;,

where g; (1) refers to the estimated value for a given location and a given time step, g;(?)
to the observed value and N to the number of considered locations. As a result of the
logarithmic scale used in Eq.2.32, the bias is expressed in decibel (dB). For each event,
the overall bias is averaged over the entire period and the entire spatial extent. The bias
has been computed only for hourly time steps during which the mean precipitation over
the SMN stations was higher than 0.5 mm/h. This avoids values at the denominator
close to 0, resulting in exaggeratedly high bias values.

2. The median absolute deviation (MAD) provides the median of the absolute value of the
difference between estimated and observed values [Sideris et al., 2014a]:

MAD(¢) := median(|g; (t) — g; (t)]) (2.33)

3. The Root mean square error (RMSE) is the most common parameter used in verifica-
tion [Goudenhoofdt and Delobbe, 2009]. It represents the standard deviation of the
differences between predicted and observed values:

N (&0 - gi(0)?
RMSE(?) := ¢z’:1(g (1\)1 8i(1) (2.34)

4. The mean-root-transformed error (MRTE, Erdin et al. [2012]), mitigates the dominant
influence of errors at large precipitation amounts as compared to RMSE:

1 X 2
MRTE(1) = 3 (1/8i(0) - Vi (D) (2.35)
i=1

5. The scatter is a measure of the spread of the ratio between estimated and measured
values. Itis based on the cumulative error distribution function of these ratios, expressed
in decibel [Germann et al., 2006, Schiemann et al., 2011]:

1
Scatter:= 5(684 —&16) (2.36)
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where {15 and {g4 represent the 16% and the 84% percentiles of the cumulative error
distribution function. Only pairs of points for which both estimated and observed values
where higher than 0.5 mm/h were considered for the computation of the scatter.

Table 2.4 - Summary of the performance indicators

Indicator | Min. value | Max. value | Optimal value
Bias —00 fo’s] 0
MAD 0 0o 0
RMSE 0 00 0
MRTE 0 oS} 0
Scatter 0 00 0

2.3.5 Methodology application

For the IDW method, a value of 2 (common default value) is given to the power coefficient
(Eq.2.3) and the research radius fixed to 50 km. For the methods including a regression of the
radar data, the regression has been computed only on stations located within the basin.

For the methods considering a single rain gauge network (IDW, RIDW and RK), the primary
variable data (SMN) are considered. For the RCK method, both primary (SMN) and secondary
(MGQG) variables data are used.

Variogram fitting with an insufficient number of points can lead to ill-defined variograms.
For the RK method, a minimum of 5 stations with a precipitation of at least 0.5 mm/h is
set as condition. For the RCK method, the condition is set to 5 stations exceeding the same
precipitation threshold value for each variable. When the condition is not satisfied, the last
previously computed valid variogram is used. The condition being generally not satisfied at
the beginning of an event, an initial variogram must preliminarily be computed over a time
step during the event with sufficient stations exceeding the threshold.

In addition, for both the RK and RCK methods, the model fitting has been constrained to a
maximum range of 50 km. This value has been defined based on visual variogram analysis
and allows to constrain the model for experimental variograms that do not show a clear upper
bound.

2.4 Results

The five methods presented in Section 2.3 and listed in Table 2.5 have been applied to the four
events including the Pointe de la Plaine Morte radar data (Subsection 2.2.4). For all the five
methods, the interpolation has been computed over a grid with a resolution corresponding to
the one of the radar data (1 km? per pixel).
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Table 2.5 — Analysed methods and corresponding used data. For methods abbreviations, see
Table 2.3.

Application Radar | Primary variable Secondary variable
Radar Yes - -
IDW(SMN) No SMN -
RIDW(SMN) Yes SMN -
RK(SMN) Yes SMN -
RCK(SMN,MQG) | Yes SMN MG

For the cross-validation, the computation was based on the locations of the SMN rain gauges
within the basin, even if more stations such as MG stations were used for the interpolation,
to ensure a constant comparison basis for all methods. It is worth noting here that no direct
comparison has been possible within this study with the CombiPrecip product of MeteoSwiss,
as no leave-one-out computation was possible on the delivered CombiPrecip product.

The performance of the different methods is first discussed based on the cross-validation
approach, including a discussion of the performance before the installation of the new weather
radar in 2014. Results of the variogram fitting and the effect of data transformation are then
presented. The last section discusses the effect of additional networks.

2.4.1 Methods performance analysis

In order to assess the performance of the different methods, the presented performance
indicators have been computed for the main analysis over the four events 1 to 4 (Table 2.2).
For each performance indicator (Table 2.4), hourly values were averaged over each event.
Results are given in Figure 2.3. The cumulative volume over the events, considering all the
pixels located within the basin, is also presented (dashed line border).

The estimation method considering only radar data (Radar) clearly shows the weakest per-
formance. Particularly in terms of bias, which confirms the need of bias correction of the
radar data with a regression using rain gauges. This observation is strengthened by the total
volume that differs substantially from the other methods for part of the events. Overall, the
RCK method provides the best performance. This is the case for the MRTE indicator for which
the RCK method provides the best value over all four events. In terms of absolute bias, RCK
outperforms for all the events the RK method but for some events, other methods such as
IDW perform better than RCK. Furthermore, the results are not clear for all the indicators. For
example for event 1, RMSE and Scatter values are comparable for RCK and IDW. It is worth
to recall here that the station density within the basin is particularly high, which allows IDW
to reach already good performances. It must also be pointed out that IDW has been applied
with the default value of 2 for the exponent  of Eq.(2.2). Adjustment of this parameter could
improve the performance of the IDW method.
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Figure 2.3 — Event-averaged performance indicator values and cumulative volume over the
entire basin (dashed line border) over the 4 events.

For a finer analysis, Figure 2.4 presents hourly values for the four performance indicators
computed at each time step, for the reference IDW method and the RCK method. Scatter is not
shown in Figure 2.4 as it has been computed only over each event. Results for the bias show
how reactive the indicator can be, with a strong negative value for the RCK method on 2 May
2015 at 16:00. However, this corresponds to the beginning of the second episode and only few
stations already observed precipitation, in which case one single large cross-validation error
can strongly affect the hourly indicator value. It must also be noted that such single negative
(respectively positive) values can compensate for an overall positive (respectively negative)
bias value and lead to an improvement in the overall value. This is one of the limitation of the
bias indicator.

Regarding the three other indicators, all strictly positive by definition, it is interesting to note
the varying difference between the two methods over the three episodes: whereas there is
only a small gain of RCK over IDW over the first episode, it increases over the second and
third episodes, in particular for the MRTE indicator. When analysing the different episodes,
it appears that over the third one, only the north-western part of the basin is covered by the
precipitation (Figure 2.5). The gain of integrating the radar information is here clearly visible,
with the IDW method being not able to reproduce the sharp gradient cutting the basin in two
parts. Figures C.1 to C.6 in Appendix C show the same indicators for the 6 other events.
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Figure 2.4 — Hourly values of performance indicators for IDW(SMN) and RCK(SMN,MG) over
event 2 (May 2015).
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Figure 2.5 - Hourly interpolated precipitation using a) IDW(SMN) and b) RCK(SMN,MG) on 04-
05-2015 0100 GMT+1. Circles represent rain gauges’ locations and filling colour the intensity
observed at the station. The black triangle represents the radar of Pointe de la Plaine Morte.

When analysing the cross-validation errors of event 1, it appeared that the station Col du Grand
St-Bernard (GSB) resulted almost systematically (over the entire event) in high cross-validation
errors, with both IDW and RCK methods not being able to correctly reproduce the observed
precipitation, despite using the radar information in the RCK method. When looking at the
total precipitation over the event for both methods, the GSB station is also very well visible at
the south-western corner of the basin (Figure 2.6). The high difference between the rain gauge
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values and the bias-corrected radar data only at this station suggested to further investigate
this particularity. Interestingly, this station, located at an elevation of 2472 m a.s.l,, had already
been pointed out in precedent analyses [Gabella et al., 2011b, Erdin et al., 2012], in which
the station was reported to suffer of “several known measurement problems (shielding, wind
exposure, and drifting snow)” [Erdin et al., 2012]. And with a snow limit varying between 1000
and 2000 m a.s.l. over the event, the GSB station only measured solid precipitation.

[mm] b)

>200
150-200
120-150
100-120
80-100

| 7080
60-70
50-60
40-50

3040
25-30
20-25
15-20
10-15
5-10
25

12
0.5-1
0.1-0.5
<04

Figure 2.6 — Comparison of total precipitation over event 1 (04-11-2014 0800 to 06-11-2014
0400 GMT+1) for a) IDW(SMN) and b) RCK(SMN,MG). Note that the colour classes division
is not linear. The black points represent the locations of the considered rain gauges. The
black triangle represents the radar of Pointe de la Plaine Morte. The grey back-ground on the
bottom-right corner of a) results from the absence of data within the research radius (50 km)
of these pixels.

To investigate the impact of the station over the global performance over the event, the
interpolation has been recomputed by totally excluding the GSB station. Figure 2.7 shows the
result for the two methods, both with and without considering the GSB station. Results show
that all indicators are improved when removing the station. In particular for RMSE and MRTE,
the difference is non-negligible. This example shows well how considering as truth the data
from the rain gauges can lead to incoherence or errors in the interpolation result.
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Figure 2.7 - Performance indicators over event 1 with exclusion of Col du Grand St-Bernard
(GSB) station.
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The analysis carried out over events 1 to 4 considered radar data including the new radar of
Pointe de la Plaine Morte. In order to assess the quality of the Swiss-wide radar product over
the studied basin before the installation of this new radar, performances over the three events
A, B and C are presented in Figure 2.8. The performance gain of RCK over IDW for the three
events is higher than for events 1 to 4. This is probably partly explained by the number of
rain gauges available over the three events: only 28 and 40 SMN stations for 2012 (event A)
and 2013 (event B) whereas at least 52 stations were available for the events 1 to 4. The lower
station density reduces the performance of IDW and thereby increases the relative gain of
RCK over IDW. The performance of the RCK method over the three analysed events excluding
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Figure 2.8 — Performance indicators for the method IDW using SMN data and the RCK method
using SMN (primary) and MG (secondary) data over the 3 events without data of the radar of
Pointe de la Plaine Morte.

Pointe de la Plaine Morte radar data suggests that this method provides clearly better results
than IDW for the studied basin even before the installation of the new weather radar. This
is an important result in the perspective of computing precipitation fields for hydrological
modelling with data requirement over relatively long time periods, as it shows that even with
an Alpine topography like the one in the studied basin, radar data seem to be usable even
without a weather radar located within the basin.

2.4.2 Variogram and data transformation analysis

Performance of the variogram model fitting for the results presented in Subsection 2.4.1 are
presented hereafter, before analysing the effect of data transformation looking at the RCK
method.

Variogram fitting results

Good fitting of the variogram is essential to obtain a reliable interpolation. The implemented
solution resulted in few time steps (0.5%) without valid variogram fitting. This considers
only the time steps with enough stations reporting sufficient precipitation as defined in
Subsection 2.3.5. The percentage of time steps with insufficient stations is considerably high:
7.4% for the RK method and 31.7% for the RCK method of the time steps over the four events 1
to 4. These time steps generally correspond to the lower intensity phase of the events. For all
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these time steps (both failure and insufficient stations), the previously computed last valid
variogram was used instead.

Figure 2.9 shows four direct variograms for the RK method over event 3. The differences in
bin size are well visible: the fewer points are visible on the sample variogram, the more points
were grouped together and averaged to compute each point of the experimental variogram.
Figure 2.10 gives an example of the linear model of coregionalization, composed of two direct
variograms (SMN and MG) and one pseudo cross-variogram (SMN vs. MG), all three fitted
simultaneously. The higher variability observed in the MG direct variogram tends to be
a common behaviour within this study. This difference cannot be directly attributed to a
difference in the quality of the MG sensors, as these stations are also much less numerous,
with only 23 MG stations for 52 SMN stations over the chosen event, enhancing the issue of
limited number of wet stations for the MG network.

In addition, if most of the fitted models describe well the experimental variogram, for some
time steps, a manual fitting would probably have led to more appropriate fittings.
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Figure 2.9 — Sample of the variogram and automatically fitted models for the first four hours of
event 3 (January 2016).
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Figure 2.10 — Example of linear model of coregionalization composed of two direct variograms
and one pseudo cross-variogram (bottom left) using SMN as primary variable and MG as
secondary variable (01-05-2015 2200 GMT+1).

Effect of data transformation

The RCK method has been applied to events 1 to 4, both with and without transformation
(Figure 2.11). The bias is considerably improved for two of the four considered events when
applying the discussed square-root transformation (Eq.2.31). For the MRTE, a gain is observed
for all events. For the other indicators, the difference is less important and more variable,
for example for the MAD, for which loss and gain are observed; for the Scatter, the tendency
is slightly negative, probably due to the back-transformation process. These results are co-
herent with the conclusions of Erdin et al. [2012], who reported only “small effects of the
transformation” on the point estimates, but reported a higher reliability of the estimates when
comparing “each gauge measurement against the probability function of the corresponding
cross-validation probabilistic estimate”. Further improvements in the transformation could
be explored, not only on the power coefficient of the transformation, but also on the back-
transformation process. Based on the obtained results, applying the proposed transformation
is recommended.

2.4.3 Effect of additional networks

In the results presented in Subsection 2.4.1, the MG data have been used only in the RCK
method as secondary variable. Combination of SMN and MG data as a unique set of data is
discussed hereafter. Figure 2.12 presents the performance indicators for the IDW, RIDW and
RK methods, each time considering first SMN data only and then combining SMN and MG
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Figure 2.11 — Assessment of transforming or not the data when using the RCK(SMN,MG)
method.

Table 2.6 — List of methods and data used for analysing the combination of SMN and MG data
as a unique variable. For methods abbreviations, see Table 2.3.

Application Radar | Primaryvariable Secondary variable
IDW(SMN) No SMN -
IDW(SMN&MG) | No SMN+MG -
RIDW(SMN) Yes SMN -
RIDW(SMN&MG) | Yes SMN+MG -
RK(SMN) Yes SMN -
RK(SMN&MG) Yes SMN+MG -
RCK(SMN,MG) Yes SMN MG

data, considering them together as one single variable (Table 2.6). Results of RCK using SMN

data as primary variable and MG as secondary variable are also presented. For all indicators

except the bias, considering MG data directly with SMN data as one single variable tended to

improve the performance of the methods as compared to use only SMN data, which can be

explained by the additional local information introduced by the MG stations. Performances

were in some cases even slightly better than for RCK in which both variables are considered
separately. However, and as expected from the data analysis presented in Section 2.2 (Data
and events description), this joint use of SMN and MG data resulted in negative biases. This
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Figure 2.12 — Performance indicators over the 4 events, exploring combination of SMN and
MG as primary variable for IDW, RIDW and RK methods.

effect is well visible in particular for events 3 and 4 (Figure 2.12), where values exceeded -0.6
dB corresponding to a negative bias of about -13%. Consequently, this bias issue suggests to
consider both variables only with methods accounting for this deviation, that means in the
present case the RCK method.

The present study also aimed at providing a preliminary analysis of integrating stations from
surrounding areas. This is justified by the need for accurate information in terms of precipi-
tation estimates for real-time hydro-meteorological monitoring and forecasting. Figure 2.13
shows for a time step of event 2 the interpolation results of RCK, using only SMN and MG data
compared to the results obtained with integrating the data from all surroundings additional
networks. With the additional stations, precipitation estimates are for example increased over
the Aosta region south of the studied basin (see Figure 2.13c).

For a more quantitative assessment, Figure 2.14 gives the corresponding performance indica-
tors, including different combinations of primary and secondary variables for the precipitation
interpolation. The additional data have however not been used for the linear regression com-
putation nor for the variogram fitting. This was motivated respectively to ensure an optimal
radar regression over the studied basin and to reduce the risk of inconsistencies in the vari-
ogram model fitting, sensitive to discrepancies in even only one or two stations, potentially
affecting the entire interpolation of a given time step.
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Figure 2.13 — Hourly precipitation interpolated using RCK(SMN,MG) a) considering all station
networks around the basin (see Table 2.1) together with the SMN stations as a single (primary)
variable (time step: 01-05-2015 2200 GMT+1) ; b) as a) but without surroundings station
networks ; c) difference between a) and b). On a) and b), the circles represent the primary
stations. On c), the filled circles represent primary stations, the empty circles the secondary
stations. The triangle represents the location of the radar of Pointe de la Plaine Morte.

The results show that adding additional networks has a limited effect. Bias tends to be the
most reactive indicator, even though differences are small. For the other indicators, as well as
for the total precipitated volume, differences can be considered as limited, and it is difficult to
define if it is rather a gain or a loss in terms of performance.

For some time steps, some stations of the additional networks reported no precipitation
whereas the radar reported heavy precipitation, suggesting some possible quality issues. For
operational purposes, the quality of these additional networks should be further investigated.

2.5 Discussion

The performance analysis used in this chapter, based on leave-one-out cross-validation,
did not allow a direct comparison with outputs of previous works, for example with the
CombiPrecip product as described in Sideris et al. [2014a]. In fact, the stations used in the
cross-validation evaluation are used in the computation of the product, thus no comparison
was possible. However, visual analysis of the interpolated precipitation fields revealed that
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Figure 2.14 - Performance indicators comparison for RCK(SMN,MG) including or not the
neighbouring networks, and using them as primary, respectively secondary network.

the spatial patterns were very similar for a very large fraction of the time steps. Integration
of the discussed interpolated precipitation fields into a hydrological model could allow a
quantitative comparison between the products from a hydrological point of view. This will be
explored in Chapter 4. Furthermore, the analysis was carried out over the set of recent most
heavy precipitation events, which were not evenly spread through all seasons, with events 1 to
4 (period 2014-2017) occurring from fall to spring and with events A to C (period 2012-2014)
only in summer. This could have an impact on the analysis but should not modify the general
conclusions from the comparison between methods.

The choice of performance indicators can also slightly modify the results of the analysis. For
example, a bias indicator based on a ratio between estimated and observed values [Germann
et al., 2006, Gabella et al., 2011a] is used here, indicator also used by several other authors
[Sideris et al., 2014a, Goudenhoofdt and Delobbe, 2009]. However, alternative versions ex-
ist, based for example on a differential bias [Cecinati et al., 2017b], less sensitive to small
denominators.

Two aspects of the presented precipitation interpolation deserve further discussion, namely
the integration of different rain gauge networks and remaining challenges, due mainly to radar
visibility.
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Regarding the integration of the data from the private MeteoGroup (MG) rain gauges, it is
important to point out here that their added value is probably somewhat underestimated in
the presented results. In fact, their contribution to the overall interpolation quality is analysed
only via cross-validation applied to the MeteoSwiss (SMN) stations. This cross-validation does
probably not show a complete picture of the contribution brought by the MG stations as (i) the
MG stations have been selected to complete the SMN network in areas without SMN stations
and (ii) the MG stations contribute to the final interpolated precipitation field mostly in their
immediate vicinity.

As expected, including the radar data as external drift improved the precipitation interpolation
considerably for all tested methods. However, any radar data set in a comparably complex area
is highly likely to suffer from several quality issues such as radar beam shielding by mountain
peaks located in close vicinity of the radars. For our case study, the Mont Bonvin (2994 m a.s.L),
located two kilometres south-east of the radar of Pointe de la Plaine Morte (2926 m a.s.l.),
creates such a blind zone due to radar shielding in south-eastern direction from the radar
location (visible in Figure 2.15). In this area, precipitation is highly likely to be underestimated
by the radar. This effect remains visible in the final estimation method retained here (RCK on
the radar residuals with SMN as primary and MG as secondary variable) and is also well visible
on Figure 2.13. A similar effect can be seen on Figure 2.6 (b) for a second radar, the Monte
Lema radar (south-east of the case study basin, see Figure 2.1). In fact, before the installation
of the new radar at Pointe de la Plaine Morte, such shielding beams were already common as
illustrated in Figures 2.16 and 2.17.

The radar network configuration in terms of installed devices is supposed to not evolve in the
near future. The most promising directions to further improve precipitation interpolation
under the current configuration are, thus, the following:

i) Better accounting for radar shielding effects; the replacement by MeteoSwiss of their radar
precipitation estimates product, used for the present study, by a new version, optimized for
the new network configuration with 5 weather radars, will certainly contribute positively to
this issue. Further investigations could e.g. consist in developing a raster of radar data quality
based on the visibility of the weather radars or by analysing the annual radar precipitation
estimates. Such a method to account for radar quality should also consider temporal variations
of the radar network configuration resulting from temporary inactivity of individual weather
radars (due e.g. to technical failures or scheduled maintenance);

ii) Improvement of the regression of the radar data on the rain gauge data, e.g. by including
a second coefficient in the linear regression (Eq.2.7), by developing a more local regression
method that could account explicitly for summer convective precipitation or by integrating
other covariates (e.g. topography).
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Figure 2.15 — Example of radar data with the blind zone in south-east direction of the radar of
Pointe de la Plaine Morte (time step: 01-05-2015 2200 GMT+1). The black triangle represents
the weather radar. The dashed-line indicates the blind zone direction.
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Figure 2.16 — Total precipitation accumulation over the four events: 1 (November 2014), 2
(May 2015), 3 (January 2016) and 4 (March 2017), based on the SMN(MCH,MG) method.
Points indicate SMN and MG stations within and around the basin. The triangle indicates the
location of the radar of Pointe de La Plaine Morte.
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Figure 2.17 — Total precipitation accumulation over the three events A (July 2012), B (July
2013) and C (July 2014), based on the SMN(MCH,MG) method. Points indicate SMN and MG
stations within and around the basin. Shielding beams corresponding to areas of low visibility
for the two nearest weather radars (Monte Lema and La Déle) and which were common before
the installation of the new radar at Pointe de la Plaine Morte are well visible for the three
events.

In addition, latest developments in the field of hydrometeor type classification from radar data
[Grazioli et al., 2015], might open up new perspectives on precipitation-radar data integration
for mixed snow and rain events in the near future, as well as higher quality radar precipitation
estimates during snow fall.

A final point worth mentioning is the potential integration of secondary rain gauge networks
composed of non-heated stations that can only observe liquid precipitation, such as the
Agrometeo network [Agroscope, 2017] or the IMIS network [SLF, 2017] to further increase the
density of rain observation stations. This is readily possible with the retained interpolation
methodology and could potentially reduce the precipitation estimation error during rainfall
events. However, 75.1 percent of the studied area lies above 1500 m a.s.l., where precipitation
occurs regularly in the form of snow between November and March [Marty, 2008]. In addition,
with the high density of higher quality data already available, it is not sure that this would
improve the performance.
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2.6 Conclusion

This chapter proposes a new method named Regression co-kriging for spatial interpolation
of observed precipitation from two non-collocated rain gauge networks of different quality
with radar data. Compared to the precipitation fields routinely produced in real-time by
the Swiss national meteorological service MeteoSwiss [Sideris et al., 2014a] based on the
observed precipitation data from their SwissMetNet (SMN) network, the final interpolation
method retained here, additionally integrates data from the network of the private company
MeteoGroup Switzerland AG (MG).

The performance of the interpolated precipitation fields is assessed for four events over a Swiss
Alpine region, the Upper Rhone River basin, using inverse distance weighting applied directly
to the rain gauge observations as baseline scenario. A series of well-established precipitation
interpolation methods are tested, including methods that use (i) the radar data as an external
drift to compute an overall precipitation trend and (ii) the rain gauge data to form local
residuals that are spatially interpolated and added to the trend. Since the locations of the
two network stations do not coincide, the concept of pseudo cross-variogram is employed to
compute the linear model of coregionalization used for the co-kriging interpolation.

The completed detailed tests demonstrated that regression co-kriging using the SMN data
as primary variable and MG data as secondary variable to interpolate the local precipitation
residuals provides the best performance for the study area. The method even proved to
outperform clearly the Inverse distance weighting method for historical data availability
scenarios, before the radar network was completed and with lower rain gauge station density.
This result is important for hydrological applications where data over many years are required.
The gain introduced by the co-kriging approach is demonstrated by showing a bias issue when
considering both networks jointly linked to a difference in the networks quality. Regardless
of the spatial scale, data combination must therefore consider with care the quality of the
sensors providing the data when elaborating a combination methodology. The results of the
analysis also showed that even with up-to-date modern weather radar equipment, radar-gauge
combination in a complex topography such as the Swiss Alps requires a high-level treatment
of the data. This is particularly true for reducing the artefacts due to beam shielding by the
topography.

An interesting side-result of this study is the fact that if a single rain gauge network (SMN
stations) is combined with radar data, a kriging-based residual interpolation does not clearly
outperform a simple inverse distance weighting of the residuals. This is probably explained, at
least partly, by the relatively low number of rain gauges that report precipitation for some time
steps over the considered domain, which is often near the limit or even below the minimum
required number to obtain robust variograms (which is particularly limiting for RCK where
two variables need to meet this criterion).

Overall, the presented results underline the importance of analysing in detail the evolving
data situation to propose robust precipitation interpolation methods. This not only holds
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for regions where the rain gauge and radar network is evolving; any existing network might
indeed suffer from device failures and ensuing missing data.

In general, the detailed analysis of different rain gauge networks provided here (including
networks of neighbouring regions, networks of different quality), illustrates that integration
of several networks for operational interpolation purposes is not straightforward. Since the
available meteorological data (quantity and quality) is permanently increasing, there is ample
room for further studies on improving quantitative precipitation estimates for complex Alpine
environments. Based on our analysis, the most promising research direction is certainly the
pre-processing of the radar data in particular to account for known beam shielding effects and
to take advantage of recent progress in the field of hydrometeor type classification for radar
data.
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Table of variables

Table 2.7 — Table of variables for Chapter 2.

Variable
a
b

Description

Regression coefficient for trend computation

Bin size for variogram computation

Covariance vector between the location of interpolation and the moni-
tored locations

Covariance matrix between the residuals of variable A
Covariance matrix between the residuals of variable B
Cross-covariance matrix between the residuals of variable A to the
residuals of variable B

Cross-covariance matrix between the residuals of variable B to the
residuals of variable A

Covariance between the residuals at locations i and j
Distance separating two locations

Spatial domain

Rain gauge observation

Distance lag between pairs of locations

Nugget value

Partial sill

Trend component

Number of available rain gauge measurements
Precipitation depth

Radar estimate

Spatial coordinates

Spatial coordinates vector

Spatial coordinates of interpolation location

Period of time

Temporal domain

x coordinate

y coordinate

Square-root-transformed random variable
Back-transformed random variable

Random variable

Or(h)

Y(h)
Ya(h)
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Variogram model range

Power coefficient for the IDW method

Kronecker delta function

Residual component: observation - trend component
Variogram model

Univariate variogram
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Yap(h) Cross-variogram
Yab™ (h) Pseudo cross-variogram
A Interpolation weights
Uy Mean of the square-root-transformed kriging prediction
[y Research radius
oy Standard deviation of the square-root-transformed kriging prediction
072 Variance of the observations
Precipitation intensity threshold for computation of variance to add in
! the back-transformation
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8] Solid precipitation undercatch correc-
tion and snow modelling

3.1 Introduction

The Snow Water Equivalent (SWE), defined as the depth of the layer of liquid water that would
be produced if all the solid water in the snow pack was melted [Rees, 2006], is a major contribu-
tion to the hydrological cycle during the melting season in Alpine catchments [e.g. Jorg-Hess
etal., 2015]. Proper modelling of the processes leading to the relative transformations between
snow- and rainfall-originated drivers of the hydrologic response is therefore important for
flood forecasting, water supply assessment or optimization of hydropower production [Barnett
etal., 2005].

The temporal evolution of SWE is the combined outcome of a wide range of processes that
affect snow accumulation and redistribution, snow melt and sublimation. Accordingly, es-
timating accurately SWE over large and complex mountainous terrain can be complex, in
particular when the modelling is applied at catchment scale due, on the one hand, to the
topographic and land use characteristics of the catchment [Engel et al., 2017] and, on the
other, to the high spatial variability of meteorological conditions. In this context, a wide range
of snow-hydrological literature has focused on the question of how to improve SWE simulation
with the help of observed data and improved model parametrization [Clark et al., 2006, Parajka
and Bléschl, 2008b, Clark et al., 2011]. The role of the precipitation input field that enters the
SWE simulation has received much less attention and is the focus of the present chapter.

Most snow models used for hydrological applications use in general very similar methods
to simulate the snow accumulation phase, essentially based on air temperature thresholds
Jennings et al., 2018]. Few models include explicitly snow redistribution [Schulla and Jasper,
2007]. For the snow ablation part (sum of melt and sublimation), there are two fundamentally

This chapter is based on the scientific article “Accounting for solid precipitation gauge undercatch in quantita-
tive precipitation estimates for snow modelling in Alpine catchments” by Foehn A., Garcia Herndndez J., Schaefli
B., De Cesare G., Rinaldo A., under review in Journal of Hydrometeorology.
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different categories of models: energy balance models and temperature-index models [Rango
and Martinec, 1979, 1995, Kane et al., 1997, Fierz et al., 2003, Hock, 2003]. Temperature-
index models, also referred to as degree-day models, are based on an assumed relationship
between snow melt and air temperature [Ohmura, 2001]. The snowmelt depth over a period
is calculated by multiplying degree-day factors (DDF) with the difference between the air
temperature and a melt threshold, usually set to 0° C.

In this chapter, the role of precipitation estimates for SWE simulation is investigated using such
a temperature-index model, which are widely used at the catchment-scale due to four main
reasons [Hock, 2003]: (1) wide availability of air temperature data, (2) relatively easy interpola-
tion and forecasting possibilities of air temperature, (3) generally good model performance
despite its simplicity and (4) computational ease, which is key for real-time forecasting.

The key parameter of most melt models is the DDF parameter, which is commonly calibrated
simultaneously with all other parameters of the hydrological model based on streamflow
data [Klok et al., 2001, Jordan, 2007b, Luo et al., 2013, Tobin et al., 2013]. However, efforts
tend to increasingly integrate SWE-related data to calibrate snow models [Xu et al., 2014].
Point-measured SWE data can either be used alone [Kane et al., 1997] or in combination
with snow depth data combined with empirical relationships between DDF and snow density
developed by Rango and Martinec [1995] and later used for example by Bormann et al. [2014].
Such data-based methods to identify DDFs, however, require SWE observations with good
spatial and temporal coverage, limiting their use at large scales.

In absence of detailed SWE observations, so-called Snow-Covered Area (SCA) curves are often
used for parameter calibration. Such curves relate the area temporarily covered by snow to the
average catchment-scale SWE; they were initially developed as statistically distributed snow
simulation routines [Bergstrom, 1986] but can now be seen as transfer functions between
(e.g. remotely sensed) snow covered area and catchment-scale SWE. SCA curves are typically
used for model performance evaluation in combination with point-measured SWE data [Daly
et al., 2000], with ground-based snow depth data [He et al., 2014] or alone [Besic et al., 2014,
Pistocchi et al., 2017, Sohrabi et al., 2018]. Considering the hysteresis that exists between SCA
and the SWE during the accumulation and melt phases has shown to further improve SCA
simulation [Riboust et al., 2019].

The snow-covered area products of the Moderate-Resolution Imaging Spectroradiometer
(MODIS) [Hall et al., 2002] are widely used in snow hydrological modelling [Klein and Barnett,
2003, Andreadis and Lettenmaier, 2006] and for snowmelt models calibration and validation
[Déry et al., 2005, He et al., 2014, Parajka and Bloschl, 2008b]. The spatial resolution of
the MODIS SCA products is 500 m, but higher resolution products have been developed,
for example by Notarnicola et al. [2013a,b], who generated a SCA product of 250 m spatial
resolution based on 250 m resolution MODIS bands.

In climates fostering seasonal snowpacks (i.e. snowpacks that last several weeks to months), re-
liable simulation of temporal SWE evolution during the melt phase is strongly dependent on a
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correct estimation of the SWE during the accumulation phase. Quantifying solid precipitation,
however, is known to be notoriously difficult due to gauge undercatch by precipitation gauges
in snowy, windy conditions [Pollock et al., 2018]; in the frame of the World Meteorological
Organization (WMO) Solid Precipitation Intercomparison Experiment (SPICE), the average
undercatch for eight study sites across the globe with unshielded gauges was estimated to 34%
[Kochendorfer et al., 2017] in comparison to the values reported by an automated weighing
gauge within a Double Fence Intercomparison Reference (DFIR) shield.

Accordingly, without a correction of the solid precipitation input, simulations tend to underes-
timate observed SWE. Magnusson et al. [2014] reported that the snowfall amounts computed
from 29 snow depth observation stations in Switzerland were approximatively 20% higher than
the corresponding simulation results. Besic et al. [2014] reported correction factors ranging
from 0.96 to 1.43 when calibrating accumulation correction factors for a distributed SWE
model using in situ SWE measurements at four locations in a study case in France. Engel et al.
[2017] fixed the best snow correction factor for the GEOtop2.0 model in the Eastern Italian
Alps to 1.4 and identified this factor as a key parameter over the accumulation period.

To better understand the relationship between precipitation input and SWE simulation, a
modelling framework for the Swiss Alps is developed to compare different quantitative precip-
itation estimates (QPE) obtained from radar data and meteorological station data. The aim is
hereby to define a data- and simulation-based, transferable method to correct rain gauge un-
dercatch for solid precipitation. Four different QPEs are injected in a snow temperature-index
model and the simulations are compared to SWE data observed at snow monitoring stations.
Two of the QPEs are obtained by applying a multiplicative correction factor to solid observed
precipitation before computing the spatial interpolation. Thereby, the undercatch is corrected
at the gauge level and not when precipitation is already interpolated.

The hydrological model developed in the MINERVE project is known to underestimate the
discharge during the melting season for snow-dominated catchments with no or low glacier
cover [Jordan, 2007a], which is most likely due to a lack in the received snow quantity. The
objective of this chapter is thus to propose a methodology to define the best correction factor
for solid precipitation from a snow hydrological modelling perspective.

3.2 Inputdata

The study is carried out over the Upper Rhone River (URR), as defined in Chapter 1 (Figure
3.1). The different sources of data used in the present chapter are presented hereafter.

3.2.1 Precipitation data

The QPEs used in this chapter are based on a combination of composite radar images provided
by the Swiss Federal Office of meteorology and climatology (MeteoSwiss) and data from rain
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Figure 3.1 — Location of the SWE observation sites (with their short names) and the rain gauge
stations (SwissMetNet, MeteoGroup and other networks). (Topographic data source: Swis-
stopo [2017b] for rivers and lakes, Swisstopo [2013] for the glaciers (with modifications), Swis-
stopo [2005] for the DEM, Swisstopo [2012] for the relief and Swisstopo [2017a] for the national
boundary line).

gauges (see Subsection 3.3.3). The radar precipitation estimates are computed by MeteoSwiss
at a 1-km spatial resolution and a 5 minutes temporal resolution. The back-scattered signal
measured by the dual-polarization Doppler C-band weather radars in Switzerland is trans-
formed into rain estimates, hereafter referred to as radar data, through several adjustment
procedures [Germann and Joss, 2002, Germann et al., 2006, Gabella et al., 2017]. Initially com-
posed of 3 installations, the Swiss weather radar network has been modernized and enriched
with two new installations in 2014 and 2016 [MeteoSwiss, 2016]. The one installed in 2014, at
Pointe de la Plaine Morte (PPM), is located within the studied basin and is operational since
June 2014.
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The radar precipitation estimates have been provided since November 2011; the analysis is
thus carried out over the six hydrological years covering the period from 1 October 2012 to 30
September 2018.

3.2.2 Temperature data

Hourly temperature data from stations are interpolated at a 1 km grid resolution by applying a
kriging with external drift (KED) using elevation [Hudson and Wackernagel, 1994]. Elevation
data are aggregated from the digital height model (DHM) DHM25 [Swisstopo, 2005] from the
Swiss Federal Office of Topography (Swisstopo). A temperature vs. elevation relation (red lines
in Figure 3.2) is computed each hour with a moving window of 150 m elevation range and
applying a two passes, forward and reverse signal filter using Butterworth filter polynomial
coefficients. For elevation higher than 2500 m a.s.l,, a linear interpolation of the available
measurements is considered, as no temperature measurements are available in the highest
elevation range of the basin (highest station at 3345 m a.s.l.). The temperature-elevation
relation is used to adjust the elevation of temperature stations to the elevation of the DHM
before residual computation in the kriging process.

The vertical gradient of temperature is generally well observable when displaying temperature
vs elevation (Figure 3.2(i)). However, during some meteorological conditions, the relation
between temperature and elevation is much less evident, such as on Figure 3.2(ii), where the
lapse rate is visible only at highest elevation. The kriging with external drift applying a linear
regression between elevation and temperature to compute the temperature trend (the grid
of temperature used for residuals computation), conditions like the ones on Figure 3.2(ii)
inevitably result in less accurate interpolated temperature fields.

Temperature data used for the interpolation are taken from 161 stations located within the
URR basin and provided by 4 different networks. Table 3.1 provides the list of networks with the
number of stations and the corresponding elevation range. The stations have different periods
of data availability; in general, the coverage is increasing after 2012. There are only very few
stations above 3000 m a.s.l. (corresponding to 13.0% of the catchment area); correspondingly,
a higher uncertainty is associated to interpolated temperature at high elevation.

Table 3.1 - List of temperature station networks used for the interpolation.

Network name | Number of | Elevation range
stations [m a.s.L]
SwissMetNet 57 374-3129
MeteoGroup 24 460-2850
IMIS 56 950-3345
Agrometeo 24 376-1085
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Figure 3.2 — Example of two hourly temperature vs. elevation relations, each point corre-
sponding to a station: (i) one with a clear lapse rate of temperature (2013-09-26T10:00Z) and
(ii) one with a less evident temperature-elevation relation (2013-10-19T05:00Z). The red line
corresponds to the temperature-elevation relation computed on an hourly basis and used for
elevation correction in the KED computation.

3.2.3 Snow-covered area

Two snow-covered area products from the Moderate-Resolution Imaging Spectroradiometer
(MODIS) are used: MYD10A1 and MOD10AL1 (version 6), respectively produced by the satellites
Aqua and Terra [Hall et al., 2016a,b]. The data has been downloaded from the website of the
National Snow and Ice Center (NSIDC, www.nsidc.org).

The two products have a spatial resolution of 500 m and provide a daily value of the Normalized
Difference Snow Index (NDSI), related to the presence of snow in a pixel [Hall et al., 2002]. The
index varies from 0 (no snow) to 100 (complete snow cover).

The original Aqua and Terra data were merged on a daily basis to handle cloud cover. On
cloud-free days, the average of both satellite products is considered. On days with cloud cover
in one product, the other value is retained. For days without data over a pixel, the daily value
of the pixel is tagged as "NoData" (see Figure 3.3, in Appendix D). The merged data set is
hereafter referred to as NDSI data. The daily computed values are attributed to 12:00 (UTC).

3.2.4 SWE data

Ground-based SWE observations are provided by the Institute for Snow and Avalanche re-
search (SLF), Davos, at 11 observation sites located within the URR basin [SLF, 2019]. Coordi-

56



3.3. Methodology

Il no data
s ~ [ 80% — 100%
* ‘&[] 60% — 80%
[ 40% - 60%
Bl 20% — 40%

B 0% - 20%

Figure 3.3 — Example of a daily map of NDSI values, resulting from the merging of the Terra
and Aqua data.

nates are given in Table B.4, in Appendix D.

The SWE is measured by snow coring. Due to the destructive aspect of the method, the exact
location of the measurement changes between the different dates. For each measurement, the
average density is computed and the final SWE is estimated as the product of this density with
the snow depth measured at a reference fix-mounted snow depth pole. To ensure robust data,
the selected 11 sites only include locations with a slope lower than 20°.

Observations are generally performed every two weeks and more measurements are available
during the accumulation rather than the melting phase. Over the studied period (October
2012 - September 2018), 469 observations are available over the 11 sites (Table 3.2). For the
analysed period and over the 11 pixels containing the SWE observation sites, the percentage of
days with an available NDSI data (NDSI data coverage) varies from 37.0% to 50.5% (Table 3.2).

3.3 Methodology

This section is organized in five parts. In the first two parts, the snow model and its cali-
bration are presented. Third, the different QPE products are listed and detailed. Fourth,
the performance assessment of the QPE products is explained, followed by implementation
details.

3.3.1 The Snow-SD model

Snow modelling is done with the Snow-SD model (Snow model with a Seasonal Degree-day
factor) implemented in the RS MINERVE software [Foehn et al., 2019a, Garcia Hernandez et al.,
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Table 3.2 - SWE observation sites and NDSI data coverage.

Short Elevation Available . NDSI data
Full name Period
name [m a.s.L.] measures coverage [%]
1MI Morgins 1320 41 12.2012-04.2018 45.1
4pp | Bours 1670 40 11.2012-03.2018 49.4
St-Pierre
4cr | Maréeottes |5, 44 12.2012-04.2018 42.7
La Creusaz
4EG Egginer 2645 69 12.2012-04.2018 51.0
4FY Fionnay 1500 43 12.2012-04.2018 46.2
Fiescheralp-
4KU Kuhboden 2210 55 12.2012-04.2018 37.0
4MS Miinster 1410 36 12.2012-04.2018 42.7
4SF Saas-Fee 1791-1795 21 02.2013-04.2018 44.3
4UL Ulrichen 1350 42 01.2013-04.2018 46.6
4WI Wiler 1450 37 12.2012-04.2018 46.3
47E Zermatt 1600 41 11.2012-04.2018 50.5

2019] at an hourly time step. The Snow-SD model is an improved version of the snow model
proposed by Schaefli et al. [2005] and Hamdi et al. [2005], composed of two reservoirs, one
for the solid fraction and one the liquid fraction of the snow pack to simulate the evolution of
the snow pack and the melt water outflow as a function of snow pack saturation [e.g. Schaefli
etal., 2014].

In a first step, the precipitation is divided into liquid and solid precipitation as a function of air
temperature, using a linear increase of the liquid fraction between a minimum and maximum
critical temperature for phase change [e.g. Jennings and Molotch, 2019].

To account for seasonal variation of the melt factor [Rango and Martinec, 1995], a temporal
evolution of the degree-day factor S is considered [Slater and Clark, 2006, Griessinger et al.,
2016, Magnusson et al., 2014] :

$(£) = max Smin;8r+ésin(2nn_sph)) (3.1)
2 365

where S(7) is the time-varying degree-day factor, S;,;, is the minimal time-varying degree-day

factor value, S, is the reference (mean) degree-day factor, A is the degree-day factor variation

interval, n is the day of the year since January 1°* and S, is the horizontal phase shift of the

sinusoidal function with respect to the first day of the year. See Table 3.6 for all variables of the

chapter.

The variation of the water equivalent of the solid fraction of snow, H(t), is given by:

dH(t)
dat

= Pg() - M(1) 3.2)
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where t is the time step, P() is the solid precipitation rate and M(t) is the melting or freezing
rate of snow, given by:

(3.3)

M) =S(O(1+b,Pi(0)(T() - Tep) if T()> Ty
M(1) = S(0) (T (1) - Tey) if T()<T.y

where b, is the melting coefficient due to precipitation, P,(¢) is the liquid precipitation rate
and T, is the critical snow melt temperature. The initial condition of the water equivalent of
the solid fraction of the snow pack H(0) is given by the model value at the first time step.

The variation of the water dept