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Abstract. Semidefinite programming (SDP) is a powerful framework from convex optimization that has striking
potential for data science applications. This paper develops a provably correct algorithm for solving
large SDP problems by economizing on both the storage and the arithmetic costs. Numerical evidence
shows that the method is effective for a range of applications, including relaxations of MaxCut,
abstract phase retrieval, and quadratic assignment. Running on a laptop, the algorithm can handle
SDP instances where the matrix variable has over 1013 entries.
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1. Motivation. For a spectrum of challenges in data science, methodologies based on
semidefinite programming offer remarkable performance both in theory and for small problem
instances. Even so, practitioners often critique this approach by asserting that it is impossible
to solve semidefinite programs (SDPs) at the scale demanded by real-world applications. We
would like to argue against this article of conventional wisdom.

This paper proposes a new algorithm, called SketchyCGAL, that can solve very large SDPs
to moderate accuracy. The algorithm marries a primal–dual optimization technique to a
randomized sketch for low-rank matrix approximation. For every standard-form SDP that
satisfies strong duality, SketchyCGAL provably finds a near-optimal low-rank approximation
of a solution using limited storage and arithmetic. In contrast, given the same computational
resources, other methods for large-scale SDP may fail where SketchyCGAL succeeds. In partic-
ular, SketchyCGAL needs dramatically less storage than Burer–Monteiro factorization [27, 22]
for difficult problem instances [105].

In addition to the strong theoretical guarantees, we offer extensive evidence that Sketchy-
CGAL is a practical optimization algorithm. For example, on a laptop, we can solve the
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MaxCut SDP for a sparse graph with almost 8 million vertices, where the matrix variable
has about 1013 entries. We also tackle large phase retrieval problems arising from Fourier
ptychography [55], as well as relaxations [117, 26] of the quadratic assignment problem.

We will first explain how our approach applies to the MaxCut SDP, and then we will
enlarge our scope to include all standard-form SDPs.

1.1. Example: The maximum cut in a graph. To begin, we derive a fundamental
SDP [37, 38, 47] that arises in combinatorial optimization. This example shows how SDPs
arise from matrix optimization problems with rank constraints. It highlights why large SDPs
are computationally challenging, and it allows us to illustrate the potential of our approach.

1.1.1. MaxCut. Consider an undirected graph G = (V,E) composed of the vertex set
V = {1, . . . , n} and a set E that lists the m edges. The combinatorial Laplacian of the graph
is the real positive-semidefinite (psd) matrix

(1.1) L :=
∑
{i,j}∈E

(ei − ej)(ei − ej)
∗ ∈ Rn×n,

where ei ∈ Rn denotes the ith standard basis vector and ∗ refers to the (conjugate) transpose
of a matrix or vector. The Laplacian L has at most 2m+ n nonzero entries.

A cut is a subset S of the vertex set V, and the signed indicator of the cut is the vector

χS ∈ Rn where χS(i) =

{
+1, i ∈ S;

−1, i ∈ V \ S.

Define weight(S) to be the number of edges with one vertex in S and the other in V \ S. We
can compute the weight of a cut algebraically: 4 weight(S) = χS

∗LχS. As a consequence, we
can search for the maximum-weight cut in the graph via the discrete optimization problem

(1.2) maximize χ∗Lχ subject to χ ∈ {±1}n.

The formulation (1.2) is NP-hard [63]. One remedy is to relax it to an SDP.
Consider the matrix X = χχ∗ where χ ∈ {±1}n. The matrix X is psd; its diagonal

entries equal one; and it has rank one. We can express the MaxCut problem (1.2) in terms of
the matrix X by rewriting the objective as a trace. Bringing forward the implicit constraints
on X and dropping the rank constraint, we arrive at the MaxCut SDP:

(1.3) maximize tr(LX) subject to diag(X) = 1, X is psd.

As usual, diag extracts the diagonal of a matrix, and 1 ∈ Rn is the vector of ones.
The matrix solutionX? of (1.3) does not immediately yield a cut. Let x?x

∗
? be a best rank-

one approximation of X? with respect to the Frobenius norm. Then the vector χ? = sgn(x?)
is the signed indicator of a cut S?. In many cases, the cut S? yields an excellent solution to the
MaxCut problem (1.2). We can also use X? to compute a cut that is provably near-optimal
via a more involved randomized rounding procedure [47].
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1.1.2. What’s the issue? We specify an instance of the MaxCut SDP (1.3) by means of
the Laplacian L of the graph, which has O (m+ n) nonzero entries. Our goal is to compute a
best rank-one approximation of a solution to the SDP, which has O (n) degrees of freedom. In
other words, the total cost of representing the input and output of the problem is O (m+ n).
Sadly, the matrix variable in (1.3) seems to require storage O (n2). For example, a graph G
with two million vertices leads to an SDP (1.3) with almost two trillion real variables!

Storage is one of the main reasons that it has been challenging to solve large instances of
the MaxCut SDP reliably. Undeterred, we raise a question:

Can we provably find a best rank-one approximation of a solution to the MaxCut
SDP (1.3) with working storage O (m+ n)? Can we achieve storage O (n)?

We are not aware of any correct algorithm that can solve an arbitrary instance of (1.3) with
a working storage guarantee better than Θ(min{m,n3/2}); see section 8.

In addition to the limit on storage, a good algorithm should interact with the Laplacian
L only through noninvasive, low-cost operations, such as matrix–vector multiplication.

1.1.3. A storage-optimal algorithm for the MaxCut SDP. Surprisingly, it is possible to
achieve all the goals announced in the last paragraph.

Informal Theorem 1.1 (MaxCut via SketchyCGAL). For any ε, ζ > 0 and any Laplacian L,
the SketchyCGAL algorithm computes a (1+ζ)-optimal rank-one approximation of an ε-optimal
point of (1.3); see subsection 2.2. The working storage is O (n/ζ). The algorithm performs at
most Õ (ε−3) matrix–vector multiplies with the Laplacian L, plus lower-order arithmetic. The
algorithm is randomized; it succeeds with high probability over its random choices.

Informal Theorem 1.1 follows from Theorem 6.3. As usual, Õ suppresses constants and
logarithmic factors. In our experience, SketchyCGAL works better than the theorem suggests:
we find that SketchyCGAL succeeds using only Õ (ε−5/4) matrix–vector multiplies with L,
provided the slightly larger storage budget Õ ((ε−1/4+ζ−1)n). See subsection 7.2 for numerical
examples on sparse graphs with almost 107 vertices.

Remark 1.2 (Prior work). In contrast to Burer–Monteiro methods [105] and to the approx-
imate complementarity paradigm [39], SketchyCGAL succeeds for every instance of MaxCut.
At present, the fastest theoretical algorithm [69] for finding an ε-optimal solution to (1.3)
requires O (m) working storage and Õ (ε−3.5) matrix–vector multiplies with L.

1.2. A model problem. SketchyCGAL can solve all standard-form SDPs. To simplify some
aspects of the presentation, we will focus on a model problem that includes an extra trace
constraint. Appendix D explains how to extend SketchyCGAL to a more expressive problem
template that includes standard-form SDPs with additional (conic) inequality constraints.

1.2.1. The trace-constrained SDP. We work over the field F = R or F = C. For each
n ∈ N, define the set Sn := Sn(F) of (conjugate) symmetric n× n matrices with entries in F.

Introduce the set of psd matrices with trace one:

(1.4) ∆n := {X ∈ Sn : trX = 1 and X is psd}.
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Our model problem is the following trace-constrained SDP:

(1.5)
minimize tr(CX)

subject to tr(AiX) = bi for i = 1, . . . , d and X ∈ α∆n.

The trace parameter α > 0, each matrix C,A1, . . . ,Ad ∈ Sn, and b1, . . . , bd ∈ R. We always
assume that (1.5) satisfies strong duality with its standard-form dual problem.

Remark 1.3 (Standard-form SDPs). To solve a standard-form SDP, we replace the inclusion
X ∈ α∆n with the constraints that X is psd and trX ≤ α for a large enough parameter α.

1.2.2. Applications. The model problem (1.5) has diverse applications in statistics, signal
processing, quantum information theory, combinatorics, and beyond. Evidently, the MaxCut
SDP (1.3) is a special case of the model problem (1.5). The template (1.5) also covers align-
ment problems that appear in biological imaging [17] and in robotics [92]. It includes SDPs
that arise from phase retrieval problems in imaging sciences [33, 104, 55] and in segmentation
problems from computer vision [56]. It also supports contemporary machine learning tasks,
such as certifying robustness of neural networks [90]. The possibilities are endless.

1.3. Complexity of SDP formulations and solutions. This section describes some special
features that commonly appear in large, real-world SDPs. Our algorithm will exploit these
features in an essential way, even as it provides guarantees for every instance of (1.5).

1.3.1. Structure of the problem data. The matrices C and Ai that appear in (1.5) are
often highly structured, or sparse, or have low-rank. As such, we can specify the SDP using a
small amount of information. In our work, we exploit this property by treating the problem
data for the SDP (1.5) as a collection of black boxes that support specific linear algebraic
operations. The algorithm for solving the SDP only needs to access the data via these black
boxes, and we can make sure that these subroutines are implemented efficiently.

1.3.2. Low-rank solutions of SDPs. We will also capitalize on the fact that SDPs fre-
quently have low-rank solutions, or the solutions are approximated well by low-rank matrices.
There are several reasons why we can make this surmise.

Weakly-constrained SDPs. First, many SDPs have low-rank solutions just because they
are weakly constrained. That is, the number d of linear inequalities in (1.5) is much smaller
than the Θ(n2) number of entries in the matrix variable. This situation often occurs in signal
processing and statistics problems, where d reflects the amount of measured data.

Weakly constrained SDPs provably have low-rank solutions because of the geometry of
the set of psd matrices; see [18, Prop. II(13.4) and Prob. II.14.5] and [87].

Fact 1.4 (Barvinok–Pataki). When F = R, the SDP (1.5) has a solution with rank r ≤√
2(d+ 1). When F = C, there is a solution with rank r ≤

√
d+ 1.

For example, the MaxCut SDP (1.3) admits a solution with rank
√

2(n+ 1).
Although a weakly-constrained SDP can have solutions with high rank, a generic weakly-

constrained SDP only admits a low-rank solution [5].

Fact 1.5 (Alizadeh et al.). Let F = R. Except for a set of matrices {C,A1, . . . ,Ad} with
measure zero, the solution set of the SDP (1.5) is a unique matrix with rank r ≤

√
2(d+ 1).

Our algorithm targets weakly constrained SDPs, but it works for all instances of (1.5).
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Matrix rank minimization. Second, some SDPs are designed to produce a low-rank matrix
that satisfies a system of linear matrix equations. This idea goes back to the control litera-
ture [76, 86], and it was explored thoroughly in Fazel’s thesis [40]. Early applications include
Euclidean distance matrix completion [2] and collaborative filtering [96]. Extensive empirical
work indicates that these SDPs often produce low-rank solutions.

Structural properties. There are other reasons that an SDP must have a low-rank solution.
For instance, consider the optimal power flow SDPs developed by Lavaei and Low [68], where
the rank of the solution is controlled by the geometry of the power grid.

1.3.3. Algorithms? To summarize, many realistic SDPs have structured data, and they
admit solutions that are (close to) low rank. Are there algorithms that can exploit these
features? Although there are a number of methods that attempt to do so, none can provably
solve every SDP while controlling storage and arithmetic costs. See section 8 for related work.

1.3.4. Finding low-rank solutions? Why has it been so difficult to develop provably cor-
rect algorithms for finding low-rank solutions to structured SDPs? Most approaches that
try to control the rank run headlong into a computational complexity barrier: For any fixed
rank parameter r, it is NP-hard to solve the model problem (1.5) if the variable X is also
constrained to be a rank-r matrix [40, p. 7].

To escape this sticky fact, we revise the computational goal, following [115]. The key
insight is to seek a rank-r matrix that approximates a solution to (1.5). See subsection 2.2
for a detailed explanation. This shift in perspective opens up new algorithmic prospects.

1.4. Contributions. This paper explains how to harness the favorable properties that are
common in large SDPs. The SketchyCGAL algorithm solves the SDP using a primal–dual
optimization method [110] developed by a subset of the authors. Instead of storing the psd
matrix variable, we maintain a compressed representation by means of a matrix sketching
technique [100]. After the optimization algorithm terminates, we extract from the sketch a
low-rank approximation of the solution of the SDP. This idea leads to a practical, provably
correct SDP solver that economizes on storage and arithmetic.

Informal Theorem 1.6 (The model problem via SketchyCGAL). Assume that the model prob-
lem (1.5) satisfies strong duality. For any ε, ζ > 0 and any rank parameter r, the SketchyCGAL
algorithm computes a (1 + ζ)-optimal rank-r approximation of an ε-optimal point of (1.5);
see subsection 2.2. The storage cost is O (d+rn/ζ). Most of the arithmetic consists of Õ (ε−3)
matrix–vector products with each matrix C,A1, . . . ,Ad from the problem data. The algorithm
succeeds with high probability.

Theorem 6.3 contains full theoretical details. Note that the storage O (d + rn) is the
minimum for any primal–dual algorithm that returns a rank-r solution to (1.5). The arithmetic
requirements can be reduced at the expense of additional storage. Computational evidence
indicates that the true arithmetic costs are much lower than we can prove; see section 7. We
believe SketchyCGAL is the first SDP solver with these guarantees. And it actually works!

1.5. Roadmap. Section 2 presents an abstract framework for studying SDPs that high-
lights the challenges associated with large problems. Section 3 outlines a primal–dual algo-
rithm, called CGAL, for solving the model problem (1.5). Sections 4 and 5 introduce some
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methods from randomized linear algebra that we use to control storage and arithmetic costs.
Section 6 develops the SketchyCGAL algorithm, its convergence theory, and its resource us-
age guarantees. Appendix D describes some extensions of the model problem. We present a
numerical study of SketchyCGAL in section 7. Section 8 discusses related work.

1.6. Notation. The symbol ‖ · ‖F denotes the Frobenius norm, while ‖ · ‖∗ is the nuclear
norm (i.e., Schatten-1). The unadorned norm ‖·‖ refers to the `2 norm of a vector, the spectral
norm of a matrix, or the operator norm of a linear map from (Sn, ‖ · ‖F) to (Rd, ‖ · ‖). We
write 〈·, ·〉 for both the `2 inner product on vectors and the trace inner product on matrices.

The map JMKr returns an r-truncated singular-value decomposition of the matrix M ,
which is a best rank-r approximation with respect to every unitarily invariant norm [77].

We use the standard computer science interpretation of the asymptotic notation O ,Õ ,Θ.

2. Scalable semidefinite programming. To solve the model problem (1.5) efficiently, we
need to exploit structure inherent in the problem data. This section outlines an abstract
approach that directs our attention to the core computational difficulties.

2.1. Abstract form of the model problem. Let us instate compact notation for the linear
constraints in the model problem (1.5). Define a linear map A and its adjoint A ∗ via

(2.1)
A : Sn → Rd where AX =

[
〈A1, X〉 . . . 〈Ad, X〉

]
;

A ∗ : Rd → Sn where A ∗z =
∑d

i=1
ziAi.

We equip the linear map with the operator norm ‖A ‖ := ‖A ‖F→`2 . Form the vector b :=
(b1, . . . , bd) ∈ Rd of constraint values. In this notation, (1.5) becomes

(2.2) minimize 〈C, X〉 subject to AX = b, X ∈ α∆n.

Problem instances are parameterized by the tuple (C,A , b, α).

2.2. Approximate solutions. Let X? be a solution to the model problem (2.2). For ε ≥ 0,
we say that a matrix X is ε-optimal for (2.2) when

‖AX − b‖ ≤ ε and 〈C, X〉 − 〈C, X?〉 ≤ ε.

Many optimization algorithms aim to produce ε-optimal points.
As we saw in subsection 1.3.2, there are many situations where the solutions to (2.2) have

low rank, or they admit accurate low-rank approximations. The ε-optimal points inherit these
properties for sufficiently small ε. This insight suggests a new computational goal.

For a rank parameter r, we will seek a rank-r matrix X̂ that approximates an ε-optimal
point X. More precisely, for a fixed suboptimality parameter ζ > 0, we want

(2.3) ‖X − X̂‖∗ ≤ (1 + ζ) · ‖X − JXKr‖∗ where rank X̂ ≤ r and X is ε-optimal.

Given (2.3), if the ε-optimal point X is close to any rank-r matrix, then the rank-r approx-

imate solution X̂ is also close to the ε-optimal point X. This formulation is advantageous
because it is easier to compute and to store the low-rank matrix X̂.
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2.3. Black-box presentation of problem data. To develop scalable algorithms for (2.2), it
is productive to hide the internal complexity of the problem instance from the algorithm [115].
To do so, we treat C and A as black boxes that support three primitive computations:

(2.4)
Ê u 7→ Cu

Rn → Rn
Ë (u, z) 7→ (A ∗z)u

Rn × Rd → Rn
Ì u 7→ A (uu∗)

Rn → Rd

The vectors u ∈ Rn and z ∈ Rd are arbitrary. Although these functions may seem abstract,
they are often quite natural and easy to implement well. For example, see subsection 2.5.

We will formulate algorithms for (2.2) that interact with the problem data only through
the operations (2.4). We tacitly assume that the primitives require minimal storage and
arithmetic; otherwise, it may be impossible to develop a truly efficient algorithm.

Remark 2.1 (Inexact oracles). We assume the primitives (2.4) are implemented exactly.
An interesting future direction is to study approximate or stochastic versions.

2.4. Resource usage. Our goal is to develop a scalable algorithm for the template (2.2)
by computing a rank-r approximate solution that satisfies (2.3). Running time is less of an
issue than storage because modern computers have fast processors but limited memory.

So what can we hope to achieve in terms of storage? First, observe that we need to specify
the constraint vector b ∈ Rd to determine an arbitrary instance of the model problem (2.2).
Second, observe that a rank-r matrix with dimension n has Θ(rn) degrees of freedom. There-
fore, we must be prepared to spend Θ(d+ rn) numbers just to express the input and output
of an SDP solver. The working storage of SketchyCGAL achieves this bound. This cost should
be viewed in contrast to the Θ(n2) degrees of freedom in the matrix variable in (2.2).

We tabulate the arithmetic costs of an algorithm by counting the number of times we
apply each primitive, plus the total amount of extra arithmetic. For lower bounds on the
arithmetic operations needed to solve an SDP to moderate accuracy, see [44, Thm. 2].

Remark 2.2 (Communication). Data transfer is the dominant expense in most large-scale
applications. We do not control communication costs directly, but limiting the storage and
arithmetic has the ancillary benefit of reducing data transfer.

2.5. Example: The MaxCut SDP. To provide a concrete example, let us summarize the
meaning of the primitives and the desired storage costs for solving the MaxCut SDP (1.3).

• The primitive Ê : u 7→ −Lu. In the typical case that the Laplacian L is sparse, this
amounts to a sparse matrix–vector multiply.
• The primitive Ë : (u, z) 7→ (diag∗ z)u = (z1u1, . . . , znun).
• The primitive Ì : u 7→ diag(uu∗) = (|u1|2, . . . , |un|2).
• The MaxCut SDP has n linear constraints, and we seek a rank-one approximation of

the solution. Thus, we desire an algorithm that operates with Θ(n) working storage.

Note that we still need Θ(m) numbers to store the Laplacian L of a generic graph with m
edges. But we do not charge the optimization algorithm for this storage because the algorithm
only interacts with L through the primitives (2.4).
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3. An algorithm for the model problem. We will develop a scalable method for the model
problem (2.2) by enhancing an existing algorithm, called CGAL [110], developed by a subset
of the authors. This method works well but lacks strong storage and arithmetic guarantees.
This section summarizes the CGAL method and its convergence properties. Subsequent sec-
tions introduce additional ideas that we need to control resource usage, culminating with the
SketchyCGAL algorithm in section 6.

3.1. The augmented problem. For a parameter β > 0, we revise the problem (2.2) by
introducing an extra term in the objective:

(3.1) minimize 〈C, X〉+
β

2
‖AX − b‖2 subject to AX = b, X ∈ α∆n.

The original problem (2.2) and the augmented problem (3.1) share the same optimal value and
optimal set. But the new formulation has several benefits: the augmented objective cooperates
with the affine constraint to penalize infeasible points, and the dual of the augmented problem
is smoother than the dual of the original problem. See [20, Ch. 2] for background.

3.2. The augmented Lagrangian. We construct the Lagrangian Lβ of the augmented
problem (3.1) by introducing a dual variable y ∈ Rd and promoting the affine constraint:

(3.2) Lβ(X;y) := 〈C, X〉+ 〈y, AX − b〉+
β

2
‖AX − b‖2 for X ∈ α∆n and y ∈ Rd.

For reference, note that the partial derivatives of the augmented Lagrangian Lβ satisfy

(3.3)
∂XLβ(X;y) = C + A ∗y + βA ∗(AX − b)
∂yLβ(X;y) = AX − b.

We attempt to minimize the augmented Lagrangian Lβ with respect to the primal variable
X, while we attempt to maximize with respect to the dual variable y.

3.3. The augmented Lagrangian strategy. The form of the augmented Lagrangian sug-
gests an algorithm. We generate a sequence {(Xt;yt)} of primal–dual pairs by alternately
minimizing over the primal variable X and taking a gradient step in the dual variable y.

1. Initialize: Choose X0 ∈ α∆n and y0 ∈ Rd.
2. Primal step: Xt+1 ∈ arg min{Lβ(X;yt) : X ∈ α∆n}.
3. Dual step: yt+1 = yt + β(AX − b).

As we proceed, we can also increase the smoothing parameter β to make violations of the
affine constraint in (3.1) more and more intolerable.

The augmented Lagrangian strategy is powerful, but it is hard to apply in this setting
because of the cost of implementing the primal step, even approximately.

3.4. The CGAL iteration. The CGAL iteration [110] is related to the augmented La-
grangian (AL) paradigm, but the primal steps are inspired by the conditional gradient method
(CGM). CGAL identifies an update direction for the primal variable by minimizing a linear
proxy for the augmented Lagrangian. We take a small primal step in the update direction,
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and we improve the dual variable by taking a small gradient step. At each iteration, the
smoothing parameter increases according to a fixed schedule.

This subsection outlines the steps in the CGAL iteration. Afterward, we give a priori
guarantees on the convergence rate. Pseudocode for CGAL appears in Algorithm A.1.

3.4.1. Initialization. Let β0 > 0 be an initial smoothing parameter, and fix a (large)
bound K > 0 on the maximum allowable size of the dual variable. We also assume that we
have access to the norm ‖A ‖ of the constraint matrix, or—failing that—a lower bound.

Begin with an arbitrary choice X1 ∈ Sn for the primal matrix variable, and set the initial
dual vector variable y1 = 0.

3.4.2. Primal updates via linear minimization. At iteration t = 1, 2, 3, . . . , we increase
the smoothing parameter to βt := β0

√
t+ 1, and we form the partial derivative of the aug-

mented Lagrangian with respect to the primal variable at the current pair of iterates:

(3.4) Dt := ∂XLβt(Xt;yt) = C + A ∗(yt + βt(AXt − b)).

Then we compute an update Ht ∈ α∆t by finding the feasible point that is most correlated
with the negative gradient −Dt. This amounts to a linear minimization problem:

(3.5)
Ht ∈ arg min{〈Dt, H〉 : H ∈ α∆n}

= convex hull{αvv∗ : v is a unit-norm minimum eigenvector of Dt}.
In particular, we may take Ht = αvtv

∗
t for a minimum eigenvector vt of the gradient Dt.

Next, update the matrix primal variable by taking a small step in the direction Ht:

(3.6) Xt+1 := (1− ηt)Xt + ηtHt ∈ α∆n where ηt :=
2

t+ 1
.

The appeal of this approach is that it only requires a single eigenvector computation (3.5).
Moreover, we need not compute the eigenvector accurately; see subsection 3.4.4 for details.

3.4.3. Dual updates via gradient ascent. Next, we update the dual variable by taking a
small gradient step on the dual variable in the augmented Lagrangian:

(3.7) yt+1 = yt + γt ∂yLβt(Xt+1;yt) = yt + γt(AXt+1 − b).

The dual step size γt is the largest number that satisfies the conditions

(3.8) γt‖AXt+1 − b‖2 ≤
4α2β0

(t+ 1)3/2
‖A ‖2 and 0 ≤ γt ≤ β0.

We omit the dual step if it makes the dual variable too large. More precisely, if (3.7) and
(3.8) result in ‖yt+1‖ > K, then we set yt+1 = yt instead. This is the CGAL iteration.

3.4.4. Approximate eigenvector computations. It is crucial that the CGAL strategy
provably works if we replace (3.5) with an approximate minimum eigenvector computation.
At step t, suppose that we find an update direction

(3.9) Ht := αvtv
∗
t where v∗tDtvt ≤ λmin(Dt) +

1√
t+ 1

‖Dt‖

for a unit vector vt. As usual, λmin is the minimum eigenvalue. The matrix Ht from (3.9)
serves in place of a solution to (3.5). We explain how to solve the subproblem (3.9) in section 4.
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3.4.5. Solution quality. Given a primal–dual pair (Xt;yt), we can assess the quality of
the primal solution to the model problem (2.2) and decide when to halt. See Appendix A.4.

3.5. Convergence guarantees for CGAL. The following result describes the convergence
of the CGAL iteration. The analysis is adapted from [110, Thm. 3.1]; see Appendix A for
details and a recapitulation of the proof.

Fact 3.1 (CGAL: Convergence). Assume problem (2.2) satisfies strong duality. The CGAL
iteration (subsection 3.4) with approximate eigenvector computations (3.9) yields a sequence
{Xt : t = 1, 2, 3, . . . } ⊂ α∆n that satisfies

‖AXt − b‖ ≤
Const√

t
and |〈C, Xt〉 − 〈C, X?〉| ≤

Const√
t
.(3.10)

The matrix X? solves (2.2). The constant depends on the problem data (C,A , b, α), the
minimum Euclidean norm of a dual solution, and the algorithm parameters β0 and K,

In view of (3.10), CGAL produces a primal iterate XT that is ε-optimal after T = O (ε−2)
iterations. The numerical work in [110, Sec. 5] shows that CGAL usually achieves an ε-optimal
point after T = O (ε−1) iterations.

The analysis behind Fact 3.1 indicates that CGAL converges more quickly if we pre-
condition the problem data by rescaling; see subsection 7.1.2. This step is critical in practice.

3.6. Distributed computation. Since CGAL builds on the augmented Lagrangian frame-
work, we can apply it even when the problem is too large to solve on one computational node.
In particular, when d is large, it may be advantageous to partition the constraint matrices Ai

and the associated dual variables yi among several workers. Distributed CGAL has a structure
similar to the alternating directions method of multipliers (ADMM) [24].

4. Approximate eigenvectors. Most of the computation in CGAL occurs in the approxi-
mate eigenvector step (3.9). Here, we encounter a tradeoff between arithmetic and storage.

4.1. Krylov methods. The approximate minimum eigenvector computation (3.9) involves
a matrix of the form Dt = C + A ∗wt. Observe that we can multiply the matrix Dt by any
vector using the primitives (2.4)ÊË. Krylov methods compute eigenvectors of Dt by repeated
matrix–vector multiplication with Dt, so they are obvious tools for the subproblem (3.9).

Unfortunately, CGAL tends to generate matricesDt that have clustered eigenvalues. These
matrices challenge standard eigenvector software, such as ARPACK [70], the engine behind the
Matlab command eigs. Instead, we retreat to more classical techniques.

4.2. A randomized shifted power method. First, let us consider the situation where
storage is the overriding concern. In this case, we run the shifted power method with a
random starting vector; see Algorithm 4.1. Kuczyński & Woźniakowski [65, Thm. 4.1(a)]
have obtained error bounds for this type of algorithm.

Fact 4.1 (Randomized shifted power method). Let M ∈ Sn. For ε ∈ (0, 1] and δ ∈ (0, 1],
the shifted power method, Algorithm 4.1, computes a unit vector u ∈ Fn that satisfies

u∗Mu ≤ λmin(M) +
3ε

2
‖M‖ with probability at least 1− δ
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Algorithm 4.1 ApproxMinEvec via randomized shifted power method (subsection 4.2).

Input: Input matrix M ∈ Sn and maximum number q of iterations
Output: Approximate minimum eigenpair (ξ,v) ∈ R× Fn of the matrix M

1 function ApproxMinEvec(M ; q)
2 σ ← 2 ‖M‖ . Use normest to estimate shift
3 v ← randn(n, 1)/

√
n . Random initial vector

4 for i← 1, 2, 3, . . . , q do
5 v ← σv −Mv . Power method for σI−M
6 v ← v/‖v‖ . Approx. minimum eigenvector of M

7 ξ ← v∗(Mv) . Approx. minimum eigenvalue of M

after q ≥ 1
2 + ε−1 log(n/δ2) iterations.1 The arithmetic cost is O (q) matrix–vector multiplies

with M and O (qn) extra operations. The working storage is about 2n numbers.

With constant probability, we solve the eigenvector problem (3.9) successfully in every
iteration t of CGAL if we use qt = O (t1/2 log(tn)) iterations of Algorithm 4.1. In practice, we
implement CGAL with the concrete choice qt = 8t1/2 log n, which behaves well empirically.

4.3. A randomized Lanczos method. Suppose we are willing to allocate a moderate
amount of storage to perform the approximate eigenvector computation. In this case, we can
run the Lanczos iteration with a random starting vector [48, Sec. 10.1]. See Algorithm 4.2 for
pseudocode. Kuczyński & Woźniakowski [65, Thm. 4.2(a)] have obtained error bounds.

Fact 4.2 (Randomized Lanczos method). Let M ∈ Sn. For ε ∈ (0, 1] and δ ∈ (0, 0.5], the
randomized Lanczos method, Algorithm 4.2, computes a unit vector u ∈ Fn that satisfies

u∗Mu ≤ λmin(M) +
ε

8
‖M‖ with probability at least 1− 2δ

after q ≥ 1
2 + ε−1/2 log(n/δ2) iterations. The arithmetic cost is at most q matrix–vector

multiplies with M and O (qn+ q2) extra operations. The working storage is O (qn).

With constant probability, we solve the eigenvector problem (3.9) successfully in every
iteration t of CGAL if we use qt = O (t1/4 log(tn)) iterations of Algorithm 4.2. In practice, we
implement CGAL with the explicit choice qt = t1/4 log n.

5. Sketching and reconstruction of a psd matrix. The CGAL iteration generates a psd
matrix that solves the model problem (2.2) via a sequence (3.6) of rank-one linear updates.
To control storage costs, SketchyCGAL will retain only a summary of the psd matrix variable.
This section outlines the Nyström sketch, an established method [49, 46, 72, 100] that can
track the evolving psd matrix and then report a provably accurate low-rank approximation.

5.1. Sketching and updates. Consider a psd input matrixX ∈ Sn. Let R be a parameter
that modulates the storage cost of the sketch and the quality of the matrix approximation.

1All logarithms are base-e.
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Algorithm 4.2 ApproxMinEvec via randomized Lanczos method (subsection 4.3).

Input: Input matrix M ∈ Sn and maximum number q of iterations
Output: Approximate minimum eigenpair (ξ,v) ∈ R× Fn of the matrix M

1 function ApproxMinEvec(M ; q)
2 v1 ← randn(n, 1) . Aggregate vi as columns of V
3 v1 ← v1/‖v1‖
4 for i← 1, 2, 3, . . . ,min{q, n− 1} do
5 αi ← Re(v∗i (Mvi))
6 vi+1 ←Mvi − αivi − βi−1vi−1 . Lanczos iteration; β0v0 = 0
7 if βi = 0 then break . Found an invariant subspace!

8 vi+1 ← vi+1/βi

9 T ← tridiag(β1:(i−1),α1:i,β1:(i−1)) . Form tridiagonal matrix
10 [U ,D]← eig(T )
11 [ξ, ind]← min(diag(D)) . Approx. minimum eigenvalue
12 v ← V1:iU(:, ind(1)) . Approx. minimum eigenvector

To construct the Nyström sketch, we draw and fix a standard normal2 test matrix Ω ∈
Fn×R. Our summary, or sketch, of the matrix X takes the form

(5.1) S = XΩ ∈ Fn×R.

The sketch supports linear rank-one updates to X. Indeed, we can track the evolution

(5.2)
X ← (1− η)X + η vv∗ for η ∈ [0, 1] and v ∈ Fn

via S ← (1− η)S + η v(v∗Ω).

The test matrix Ω and the sketch S require storage of 2Rn numbers in F. The arithmetic
cost of the linear update (5.2) to the sketch is Θ(Rn) numerical operations.

Remark 5.1 (Structured random matrices). We can reduce storage costs by a factor of two
by using a structured random matrix in place of Ω. For example, see [102, Sec. 3] or [98].

5.2. The reconstruction process. Given the test matrix Ω and the sketch S = XΩ, we
form a rank-R approximation X̂ of the sketched matrix X. The approximation is defined by

(5.3) X̂ := S(Ω∗S)†S∗ = (XΩ)(Ω∗XΩ)†(XΩ)∗,

where † is the pseudoinverse. This reconstruction is called a Nyström approximation. We
often truncate X̂ by replacing it with its best rank-r approximation JX̂Kr for some r ≤ R.

See Algorithm 5.1 for a numerically stable implementation of the Nyström approxima-
tion (5.3). The algorithm takes Θ(R2n) numerical operations and Θ(Rn) storage.

2Each entry of the matrix is an independent Gaussian random variable with mean zero and variance one.
In the complex setting, the real and imaginary parts of each entry are independent standard normal variables.
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Algorithm 5.1 NystromSketch implementation (see section 5)

Input: Dimension n of input matrix, size R of sketch
Output: Rank-R approximation X̂ of sketched matrix in factored form X̂ = UΛU∗, where

U ∈ Fn×R has orthonormal columns and Λ ∈ RR×R is nonnegative diagonal
Recommendation: Choose R as large as possible, given storage and arithmetic constraints

1 function NystromSketch.Init(n, R)
2 Ω← randn(n,R) . Draw and fix random test matrix
3 S ← zeros(n,R) . Form sketch of zero matrix

4 function NystromSketch.RankOneUpdate(v, η) . Implements (5.2)
5 S ← (1− η)S + η v(v∗Ω) . Update sketch of matrix

6 function NystromSketch.Reconstruct()
7 σ ←

√
n eps(norm(S)) . Compute a shift parameter

8 Sσ ← S + σΩ . Implicitly form sketch of X + σ I
9 C ← chol(Ω∗Sσ)

10 (U ,Σ,∼)← svd(Sσ/C) . Dense SVD
11 Λ← max{0,Σ2 − σ I} . Remove shift

5.3. A priori error bounds. The Nyström approximation X̂ yields a provably good esti-
mate for the matrix X contained in the sketch [100, Thm. 4.1].

Fact 5.2 (Nyström sketch: Error bound). Fix a psd matrix X ∈ Sn. Let S = XΩ where
Ω ∈ Fn×R is standard normal. For each r < R, the Nyström approximation (5.3) satisfies

(5.4) EΩ ‖X − X̂‖∗ ≤
(

1 +
r

R− r − 1

)
‖X − JXKr‖∗,

where EΩ is the expectation with respect to Ω. If we replace X̂ with its rank-r truncation
JX̂Kr, the error bound (5.4) remains valid. Similar results hold with high probability.

There is a lot more to say about the implementation and behavior of low-rank matrix
approximation from streaming data. See Appendix B and our papers [100, 101, 102].

6. Scalable semidefinite programming via SketchyCGAL. We may now present an ex-
tension of CGAL that solves the model problem (2.2) with controlled storage and computation.

6.1. The opportunity. Our new algorithm SketchyCGAL augments the CGAL iteration
from subsection 3.4. Instead of storing the matrix Xt in the CGAL iteration. . .

1. We drive the iteration with the d-dimensional primal state variable zt := AXt.
2. We maintain a Nyström sketch of the primal iterate Xt using storage Θ(Rn).
3. When the iteration is halted, say at step T , we use the sketch to construct a rank-R

approximation X̂T of the implicitly computed solution XT of the model problem.

As we will see, the resulting method exhibits almost the same convergence behavior as the
CGAL algorithm, but it also enjoys a strong storage guarantee.
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6.2. The SketchyCGAL iteration. To develop the SketchyCGAL iteration, we begin with
the CGAL iteration. Then make the substitutions zt = AXt and ht = AHt to eliminate
the matrix variables. Let us summarize what happens; see subsection 6.3 for additional
explanation. Algorithm 6.1 contains pseudocode with implementation recommendations.

6.2.1. Initialization. First, we choose the size R of the Nyström sketch. Then draw and
fix the random test matrix Ω ∈ Fn×R. Select an initial smoothing parameter β0 and a bound
K on the dual variable. Define the smoothing and step size parameters:

(6.1) βt := β0

√
t+ 1 and ηt :=

2

t+ 1
.

Initialize the primal state variable, the sketch, and the dual variable:

(6.2) z1 := 0 ∈ Rd and S1 := 0 ∈ Fn×R and y1 := 0 ∈ Rd.

These choices correspond to the simplest initial iterate X1 := 0.

6.2.2. Primal updates. At iteration t = 1, 2, 3, . . . , we compute a unit-norm vector vt
that is an approximate minimum eigenvector of the gradient Dt of the smoothed objective:

(6.3) v∗tDtvt ≤ λmin(Dt) +
‖Dt‖√
t+ 1

where Dt := C + A ∗(yt + βt(zt − b)).

This calculation corresponds with (3.9). Form the primal update direction ht = A (αvtv
∗
t ),

and then update the primal state variable zt and the sketch St:

zt+1 := (1− ηt)zt + ηtht and St+1 := (1− ηt)St + ηtαvt(v
∗
tΩ).(6.4)

We obtain the update rule for the primal state variable zt by applying the linear map A to
the primal update rule (3.6). The update rule for the sketch St follows from (5.2).

6.2.3. Dual updates. The update to the dual variable takes the form

(6.5) yt+1 = yt + γt(zt+1 − b)

where we choose the largest γt that satisfies the conditions

(6.6) γt‖zt+1 − b‖2 ≤
4α2β0

(t+ 1)3/2
‖A ‖2 and 0 ≤ γt ≤ β0.

If needed, we set γt = 0 to prevent ‖yt+1‖ > K. This is the SketchyCGAL iteration.

6.3. Connection with CGAL. There is a tight connection between the iterates of Sketchy-
CGAL and CGAL. Let X1 := 0. Using the vectors vt computed in (6.3), define matrices

(6.7) Ht := αvtv
∗
t and Xt+1 := (1− ηt)Xt + ηtHt.

With these definitions, the following loop invariants are in force:

(6.8) ht = AHt and zt = AXt and St = XtΩ.

By comparing subsections 3.4 and 6.2, we see that the trajectory {(Xt,Ht,yt) : t = 1, 2, 3, . . . }
could also have been generated by running the CGAL iteration. In other words, the variables
in SketchyCGAL track the variables of some invocation of CGAL and inherit their behavior.
We refer to the matrices Xt as the implicit CGAL iterates.
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Algorithm 6.1 SketchyCGAL for the model problem (2.2)

Input: Problem data for (2.2) implemented via the primitives (2.4), sketch size R, number
T of iterations

Output: Rank-R approximate solution to (2.2) in factored form X̂T = UΛU∗ where U ∈
Fn×R has orthonormal columns and Λ ∈ RR×R is nonnegative diagonal

Recommendation: To achieve (2.3), set R as large as possible, and set T ≈ ε−1

1 function SketchyCGAL(R; T )
2 Scale problem data (subsection 7.1.2) . [opt] Recommended!
3 β0 ← 1 and K ← +∞ . Default parameters
4 NystromSketch.Init(n, R)
5 z ← 0d and y ← 0d
6 for t← 1, 2, 3, . . . , T do
7 β ← β0

√
t+ 1 and η ← 2/(t+ 1)

8 (ξ,v)← ApproxMinEvec(C + A ∗(y + β(z − b)); qt) . Use primitives (2.4)ÊË

. With Algorithm 4.1, set qt = 8t1/2 log n.
. With Algorithm 4.2, set qt = t1/4 log n

9 z ← (1− η) z + ηA (αvv∗) . Use primitive (2.4)Ì
10 y ← y + γ(z − b) . γ is the largest solution to (6.6)
11 NystromSketch.RankOneUpdate(

√
αv, η)

12 (U ,Λ)← NystromSketch.Reconstruct
13 Λ← Λ + (α− tr(Λ))IR/R . [opt] Enforce trace constraint in (2.2)

6.3.1. Approximating the CGAL iterates. We do not have access to the implicit CGAL
iterates described above. Nevertheless, the sketch permits us to approximate them! After
iteration t of SketchyCGAL, we can form a rank-R approximation X̂t of the implicit iterate
Xt by invoking the formula (5.3) with S = St. According to Fact 5.2, for each r < R,

(6.9) EΩ ‖Xt − X̂t‖∗ ≤
(

1 +
r

R− r − 1

)
‖Xt − JXtKr‖∗.

In other words, the computed approximation X̂t is a good proxy for the implicit iterate Xt

whenever the latter matrix is well-approximated by a low-rank matrix. The same bound (6.9)

holds if we replace X̂t by the truncated rank-r matrix JX̂tKr.

Remark 6.1 (Trace constraint). The model problem (2.2) requires the trace of the ma-

trix variable to equal α, but the computed solution X̂t rarely satisfies this constraint. Algo-
rithm 6.1 includes an optional step that corrects the trace of the computed solution. Although
this step is principled and justifiable, our theoretical analysis does not include its effects.

6.3.2. Solution quality. Given the quantities computed by SketchyCGAL, we can assess
how well the implicit iterate Xt solves the model problem (2.2). See Appendix C.1.

6.4. Convergence of SketchyCGAL. The implicit iterates XT converge to a solution of
the model problem (2.2) at the same rate as the iterates of CGAL would. On average, the
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rank-R iterates X̂T track the implicit iterates. The discrepancy between them depends on how
well the implicit iterates are approximated by low-rank matrices. Here is a simple convergence
result that reflects this intuition; see Appendix C.2 for the proof and further results.

Theorem 6.2 (SketchyCGAL: Convergence). Assume problem (2.2) satisfies strong duality,

and let Ψ? be its solution set. For each r < R, the iterates X̂t computed by SketchyCGAL
(subsections 6.2 and 6.3) satisfy

lim sup
t→∞

EΩ dist∗(X̂t,Ψ?) ≤
(

1 +
r

R− r − 1

)
· max
X∈Ψ?

‖X − JXKr‖∗.

The same bound holds if we replace X̂t with the truncated approximation JX̂tKr. Here, dist∗
is the nuclear-norm distance between a matrix and a set of matrices.

6.5. Resource usage. We may now account for the resources required by SketchyCGAL.

6.5.1. Working storage. The main working variables in the SketchyCGAL iteration are
the primal state zt ∈ Rd, the computed eigenvector vt ∈ Rn, the update direction ht ∈ Rd,
the test matrix Ω ∈ Rn×R, the sketch St ∈ Rn×R, and the dual variable yt ∈ Rd. The total
cost for storing these variables is Θ(d+Rn).

6.5.2. Approximate eigenvectors. The bottleneck in SketchyCGAL is the approximate
eigenvector computation (6.3). For the subproblem in iteration t, we have two options:

1. Shifted power. Perform qt = O (t1/2 log(tn)) steps of Algorithm 4.1, expending O (qt)
applications of primitives (2.4)ÊË, plus O (qtn) arithmetic and O (n) storage.

2. Randomized Lanczos. Do qt = O (t1/4 log(tn)) steps of Algorithm 4.2, using O (qt)
applications of primitives (2.4)ÊË, plus O (qtn+ q2

t ) arithmetic and O (qtn) storage.

These choices ensure that, with constant probability, the eigenvector computation succeeds
in every iteration t of SketchyCGAL. In a practical implementation, we undertake somewhat
fewer steps in the eigenvector algorithms; see subsections 4.2 and 4.3.

6.5.3. Variable updates. The remaining computation takes place in the variable updates.
To form the primal update direction ht, we invoke the primitive (2.4)Ì. To update the primal
state variable zt and the sketch St in (6.4), we need O (d + Rn) arithmetic operations. No
further storage is required at this stage.

6.5.4. Overview of costs. Table 1 documents the cost of performing T iterations of the
SketchyCGAL method. The first column summarizes the resources consumed in the outer
iteration. The second column lists the additional resource usage if we invoke the shifted
power method (Algorithm 4.1) to solve the approximate eigenvalue problem (6.3). The third
column lists the extra resources if instead we invoke the Lanczos method (Algorithm 4.2).

In light of Fact 3.1 and subsection 6.3, we can be confident that the implicit iterate XT is
ε-optimal within T = O (ε−2) iterations. The formula (6.9) gives a priori guarantees on the

quality of the approximation X̂T .

6.6. Theoretical performance of SketchyCGAL. We can package up this discussion in a
theorem that describes the theoretical performance of the SketchyCGAL method.
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Table 1
Resource usage for T iterations of SketchyCGAL with sketch size R using two different eigensolvers. The

algorithm returns a rank-R approximation to an ε-optimal solution (subsection 2.2) to the model problem (2.2).
In theory, T ∼ ε−2. In practice, T ∼ ε−1. Constants and logarithms are omitted. See subsection 6.5.4.

SketchyCGAL w/shifted power or w/Lanczos
Algorithm 6.1 Algorithm 4.1 Algorithm 4.2

Storage (floats) d+Rn n T 1/4n

Arithmetic (flops) T (d+Rn) T 3/2n T 5/4n+ T 3/2

Primitives (calls)

(2.4)ÊË — T 3/2 T 5/4

(2.4)Ì T — —

Theorem 6.3 (SketchyCGAL). Assume the model problem (2.2) satisfies strong duality. Fix
a rank r, and set the sketch size R ≥ ζ−1r + 1. After T = O (ε−2) iterations, SketchyCGAL

(subsections 6.2 and 6.3) returns a rank-r approximation X̂ = JX̂T Kr to an ε-optimal point
of (2.2) that satisfies (2.3) with constant probability.

1. Shifted power. Suppose we use Algorithm 4.1 for the subproblem (6.3). The storage
cost is O (d+ Rn) floats. Arithmetic costs are O (ε−2(d+ Rn) + ε−3n log(n/ε)) flops,
O (ε−3 log(n/ε)) invocations of primitives (2.4)ÊË, and O (ε−2) applications of (2.4)Ì.

2. Lanczos. Suppose we use Algorithm 4.2 to solve (6.3). Then the storage cost is
O (d+Rn+ ε−1/2n log(n/ε)) floats. The arithmetic requirements are O (ε−2(d+Rn) +
(ε−3/2n+ε−3) log(n/ε)) flops, O (ε−5/2 log(n/ε)) invocations of the primitives (2.4)ÊË,
and O (ε−2) applications of the primitive (2.4)Ì.

In practice, SketchyCGAL performs substantially better than Theorem 6.3 suggests: em-
pirically, we find that T = O (ε−1). See section 7 for numerical evidence.

6.7. Comparison with CGAL. Like CGAL, SketchyCGAL is a general SDP solver with
strong guarantees. Yet our changes lead to a new method with a better computational profile.

We motivated sketching as a mechanism to control storage. This improvement is vis-
ible when we compare the Θ(n2) storage cost of CGAL to the Θ(d + Rn) storage cost of
SketchyCGAL. But sketching also reduces arithmetic and communication. Indeed, Sketchy-
CGAL works with state vectors of length d, and it updates the Θ(Rn) entries of the sketch St
at each iteration. Meanwhile, CGAL must update all Θ(n2) entries of the matrix iterate Xt.

As a consequence of these improvements, SketchyCGAL scales to problems that are orders
of magnitude larger than CGAL can handle. See section 7.

7. Numerical examples. This section showcases computational experiments that estab-
lish that SketchyCGAL is a practical method for solving large SDPs. We show that the al-
gorithm is flexible by applying it to several classes of SDPs, and we show it is reliable by
solving a large number of instances of each type. We give empirical evidence that the (im-
plicit) iterates are converging to optimality much faster than Theorem 6.3 suggests. Explicit
comparisons with other general SDP solvers demonstrate that SketchyCGAL is competitive
for small SDPs, while it scales to problems that standard methods cannot handle.
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7.1. Setup. We begin with an overview of the experimental regimen.

7.1.1. Computational environment. All experiments are performed in Matlab R2018a
with double-precision arithmetic (8 bytes per real float). Source code is included with the
supplementary material. To simulate the processing power of a personal computer, we use a
single Intel Xeon CPU E5-2630 v3, clocked at 2.40 GHz, with RAM usage capped at 16 GB.

Arithmetic costs are measured in terms of actual CPU time. Matlab does not currently
offer a memory profiler, so we externally monitor the total memory allocated. We approximate
the storage cost by reporting the peak value minus the storage at Matlab’s idle state.

7.1.2. Problem scaling. The bounds in the convergence theorem Fact 3.1 for the implicit
iterates of SketchyCGAL depend on problem scaling. Our analysis motivates us to set

(7.1) ‖C‖F = ‖A ‖ = α = 1 and ‖A1‖F = ‖A2‖F = · · · = ‖Ad‖F.

In our experiments, we enforce the scalings (7.1), except where noted.

7.1.3. Quality of solutions. Given a prospective solution X of (2.2), we compute the
relative suboptimality and feasibility as

objective residual =
|〈C, X〉 − 〈C, X?〉|
max{1, |〈C, X?〉|}

and infeasibility =
‖AX − b‖

max{1, ‖b‖}
.

It is standard to place the maximum in each denominator to handle small values gracefully.
These quantities are evaluated with respect to the original (not rescaled) problem data.

7.1.4. Implementation. Our experiments require a variant of SketchyCGAL that can han-
dle inequality constraints; see Appendix D. We implement the algorithm with the default pa-
rameters (β0 = 1 and K = +∞), and the sketch uses a Gaussian test matrix. The eigenvalue
subproblem is solved via randomized Lanczos (Algorithm 4.2). We include the optional trace
normalization (line 13 in Algorithm 6.1) whenever appropriate. No further tuning is done.

7.2. The MaxCut SDP. We begin with MaxCut SDPs (1.3). Our goal is to assess the stor-
age and arithmetic costs of SketchyCGAL for a standard testbed. We compare with provable
solvers for general SDPs: SEDUMI [97], SDPT3 [99], MOSEK [78], and SDPNAL+ [108].

7.2.1. Rounding. To extract a cut from an approximate solution to (1.3), we apply a

simple rounding procedure. SketchyCGAL returns a matrix X̂ = UΛU∗, where U ∈ Rn×R
has orthonormal columns. The columns of the entrywise signum, sgn(U), are the signed
indicators of R cuts. We compute the weights of all R cuts and select the largest. The other
solvers return a full-dimensional solution X̂; we compute the top R eigenvectors of X̂ using
the Matlab command eigs and invoke the same rounding procedure.

7.2.2. Datasets. We consider datasets from two different benchmark groups:

1. Gset: 67 binary-valued matrices generated by an autonomous random graph genera-
tor and published online [109]. The dimension n varies from 800 to 10 000.

2. Dimacs10: This benchmark consists of 152 symmetric matrices (with n varying from
39 to 50 912 018) chosen for the 10th Dimacs Implementation Challenge [13]. We
consider the 138 datasets with dimension n ≤ 8 000 000.
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Figure 7.1. MaxCut SDP: Scalability. Storage cost [left] and runtime [right] of SketchyCGAL with sketch
size R = 10 as compared with four standard SDP solvers. Each marker is one dataset. See subsection 7.2.3.

Figure 7.2. MaxCut SDP: Convergence. We solve the MaxCut SDP for the G67 dataset (n = 10 000) with
SketchyCGAL. The subplots show the suboptimality [left], infeasibility [center], and cut value [right] of the im-
plicit iterates and low-rank approximations for sketch size R ∈ {10, 25, 100} as a function of iteration [top] and
CPU time [bottom]. The dashed line is the cut value of a high-accuracy SDPT3 solution. See subsection 7.2.4.

7.2.3. Storage and arithmetic comparisons. We run each solver for each dataset and
measure the storage cost and the runtime. We invoke SketchyCGAL with rank parameter
R = 10, and we stop the algorithm when the error bound described in Appendix C.1 guarantees
that the implicit iterates have both suboptimality and feasibility below 10−4. We use other
solvers with their default parameter settings and stopping criteria.

Figure 7.1 displays the results of this experiment. The conventional convex solvers do
not scale beyond n = 104 due to their high storage costs. In contrast, SketchyCGAL handles
problems with n ≈ 8 · 106. Further results appear in Appendix F.1.

7.2.4. Empirical convergence rates. Next, we investigate the empirical convergence of
SketchyCGAL and the effect of the sketch size parameter R. We consider the MaxCut SDP (1.3)
for the G67 dataset (n = 10 000), the largest instance in Gset, and we use a high-accuracy
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solution from SDPT3 to approximate the optimal point. We run 106 iterations of SketchyCGAL
for each R ∈ {10, 25, 100}.

Figure 7.2 illustrates the convergence of SketchyCGAL for this problem. After t iterations,
the residual and infeasibility decline as O (t−1), which is far better than the O (t−1/2) bound
in Theorem 6.3. Similar behavior is manifest for other datasets and other problems.

Figure 7.2 also displays the weight of the cut obtained after rounding, compared with the
weight of the cut obtained from the SDPT3 solution. Observe that sketch size R = 10 is
sufficient, and the SketchyCGAL solutions yield excellent cuts after a few hundred iterations.

7.2.5. Hard MaxCut instances. Waldspurger & Waters [105] construct instances of the
MaxCut SDP (1.3) that are challenging for algorithms based on the Burer–Monteiro [27]
factorization method (subsection 8.6). Each instance has a unique solution and the solution
has rank 1, but Burer–Monteiro methods require factorization rank R = Θ(

√
n), resulting in

storage cost Θ(n3/2). In Appendix F.2, we give numerical evidence that SketchyCGAL solves
these instances with sketch size R = 2, achieving the optimal storage Θ(n).

7.3. Abstract phase retrieval. Phase retrieval is the problem of reconstructing a complex-
valued signal from intensity-only measurements. It arises in interferometry [41], speech pro-
cessing [16], array imaging [33], microscopy [55], and many other applications. We will outline
a standard method [33, 55] for performing phase retrieval by means of an SDP.

This section uses synthetic instances of a phase retrieval SDP to compare the scaling
behavior of SketchyCGAL and CGAL. We also consider a third algorithm ThinCGAL, inspired
by [112], that maintains a thin SVD of the matrix variable via rank-one updates [25].

7.3.1. Phase retrieval SDPs. Let χ\ ∈ Cn be an unknown (discrete) signal. For known
vectors ai ∈ Cn, we acquire measurements of the form

(7.2) bi = |〈ai, χ\〉|2 for i = 1, 2, 3, . . . , d.

Abstract phase retrieval is the challenging problem of recovering χ\ from b.
Let us summarize a lifting approach introduced by Balan et al. [15]. The key idea is to

replace the signal vector x\ by the matrix X\ = χ\χ
∗
\ . Then rewrite (7.2) as

(7.3) bi = a∗iX\ai = 〈Ai, X\〉 where Ai = aia
∗
i for i = 1, 2, 3, . . . , d.

Promoting the implicit constraints on X\ and forming the Ai into a linear map A , we can
express the problem of finding X\ as a feasibility problem with a matrix variable:

find X ∈ Sn subject to AX = b, X is psd, rank(X) = 1.

To reach a tractable convex formulation, we pass to a trace minimization SDP [40]:

(7.4) minimize trX subject to AX = b, X is psd, trX ≤ α.

The parameter α is an upper bound on the signal energy ‖χ\‖2, which can be estimated from
the observed data b; see [112] for the details. We can solve the SDP (7.4) via SketchyCGAL.
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Figure 7.3. Phase retrieval SDP: Scalability. Storage cost [left] and runtime [right] to solve random
instances with algorithms CGAL, ThinCGAL, and SketchyCGAL. Height of the bar is the mean and the interval
marks are the min/max over 20 trials. Missing bars indicate the failure. See subsection 7.3.4.

7.3.2. Rounding. Suppose that we have obtained an approximate solution X to (7.4).
To estimate the signal χ\, we form the vector χ =

√
λu where (λ,u) is a maximum eigenpair

of X. Both SketchyCGAL and ThinCGAL return eigenvalue decompositions, so this step is
trivial. For CGAL, we use the Matlab function eigs to perform this computation.

7.3.3. Dataset and evaluation. We consider synthetic phase retrieval instances. For
each n ∈ {102, 103, . . . , 106}, we generate 20 independent datasets as follows. First, draw
χ\ ∈ Cn from the complex standard normal distribution. Then acquire d = 10n phaseless
measurements (7.2) using the coded diffraction pattern model [31]; see Appendix E.1. The
induced linear maps A and A ∗ can be applied via the fast Fourier transform (FFT).

The relative error in a signal reconstruction χ is given by minφ∈R ‖eiφχ − χ\‖/‖χ\‖. In
the SDP (7.4), we set α = 3n to demonstrate insensitivity of the algorithm to the parameter.

7.3.4. Storage and arithmetic comparisons. For each algorithm, we report the storage
cost and runtime required to produce a signal estimate χ with (exact) relative error below
10−2. We invoke SketchyCGAL with sketch size parameter R = 5.

Figure 7.3 displays the outcome. We witness the benefit of sketching for both storage
and arithmetic. CGAL fails for all large-scale instances (n = 105 and 106) due to storage
allocation. For the same reason, ThinCGAL solves 19 of 20 instances for n = 105; it always
fails for n = 106. SketchyCGAL successfully solves all problem instances to the target accuracy.

7.4. Phase retrieval in microscopy. Next, we study a more realistic phase retrieval prob-
lem that arises from a type of microscopy system [119] called Fourier ptychography (FP).
Phase retrieval SDPs offer a potential approach to FP imaging [55]. This section shows that
SketchyCGAL can successfully solve the difficult phase retrieval SDPs that arise from FP.

7.4.1. Fourier ptychography. FP microscopes circumvent the physical limits of a sim-
ple lens to achieve high-resolution and wide field-of-view simultaneously [119]. To do so,
an FP microscope illuminates a sample from many angles and uses a simple lens to collect
low-resolution intensity-only images. The measurements are low-pass filters, whose transfer
functions depend on the lens and the angle of illumination [55]. From the data, we form a
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(a) t = 10 (30 sec) (b) t = 100 (415 sec)

(c) t = 1 000 (6 714 sec) (d) t = 10 000 (101 358 sec) (e) original

Figure 7.4. Phase retrieval SDP: Imaging. Reconstruction of an n = 3202 pixel image from Fourier
ptychography data. We solve an n×n phase retrieval SDP via SketchyCGAL with rank parameter R = 5 and show
the images obtained at iterations t = 10, 102, 103, 104. The last subfigure is the original. See subsection 7.4.3.

high-resolution image by solving a phase retrieval problem; e.g., via the SDP (7.4).
The high-resolution image of the sample is represented by a Fourier-domain vector χ\ ∈

Cn. We acquire d intensity-only measurements of the form (7.2), where d is the total number of
pixels in the low-resolution illuminations. The low-pass measurements are encoded in vectors
ai. The operators A and A ∗, built from the matrices Ai = aia

∗
i , can be applied via the FFT.

7.4.2. Dataset and evaluation. The authors of [55] provided transmission matrices Ai

of a working FP system. We simulate this system in the computer environment to acquire
noiseless intensity-only measurements of a high-resolution target image [36]. In this setup,
χ\ ∈ Cn corresponds to the Fourier transform of an n = 3202 = 102 400 pixel grayscale image.
We normalize χ\ so that ‖χ\‖ = 1. We acquire 225 low-resolution illuminations of the original
image, each with 642 = 4 096 pixels. The total number of measurements is d = 921 600.

We evaluate the error of an estimate χ as in subsection 7.3.3. Although we know that the
signal energy equals 1, it is more realistic to approximate the signal energy by setting α = 1.5
in the SDP (7.4).
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7.4.3. FP imaging. We solve the phase retrieval SDP (7.4) by performing 10 000 iterations
of SketchyCGAL with rank parameter R = 5. The top eigenvector of the output gives an
approximation χ ∈ Cn of the signal. The inverse Fourier transform of χ is the desired image.

Figure 7.4 displays the image reconstruction after t ∈ {10, 102, 103, 104} iterations. We
obtain a good-quality result in 2 hours after 1 000 iterations; a sharper image emerges in 28
hours after 10 000 iterations are complete. We believe the computational time can be reduced
substantially with a parallel or GPU implementation. Nevertheless, it is gratifying that we
have solved an SDP whose matrix variable has over 1010 entries! See Appendix E.2 for a
larger FP instance with n = 6402 pixels.

7.5. The quadratic assignment problem. The quadratic assignment problem (QAP) is a
very difficult combinatorial optimization problem that includes the traveling salesman, max-
clique, bandwidth problems, and many others as special cases [74]. SDP relaxations offer a
powerful approach for obtaining good solutions to large QAP problems [117]. In this section,
we demonstrate that SketchyCGAL can solve these challenging SDPs.

7.5.1. QAP. We begin with the simplest form of the QAP. Fix symmetric n× n matrices
A,B ∈ Sn where n is a natural number. We wish to “align” the matrices by solving

(7.5) minimize tr(AΠBΠ∗) subject to Π is an n× n permutation matrix.

Recall that a permutation matrix Π has precisely one nonzero entry in each row and column,
and that nonzero entry equals one. A brute force search over the n! permutation matrices
of size n quickly becomes intractable as n grows. Unsurprisingly, the QAP problem (7.5)
is NP-hard [94]. Instances with n > 30 usually cannot be solved in reasonable time.

7.5.2. Relaxations. There is an extensive literature on SDP relaxations for QAP, begin-
ning with the work [117] of Zhao et al. We consider a weaker relaxation inspired by [56, 26]:

(7.6)

minimize tr[(B ⊗A)Y]

subject to tr1(Y) = I, tr2(Y) = I, G (Y) ≥ 0,

vec(P ) = diag(Y), P1 = 1, 1∗P = 1∗, P ≥ 0,[
1 vec(P )∗

vec(P ) Y

]
< 0, tr Y = n.

We have written ⊗ for the Kronecker product.
The constraint G (Y) ≥ 0 enforces nonnegativity of a subset of the entries in Y. In the

Zhao et al. relaxation, G is the identity map, so it yields O (n4) constraints. We reduce the
complexity by choosing G more carefully. In our formulation, G extracts precisely the nonzero
entries of B⊗ 11∗. This is beneficial because B is sparse in many applications. For example,
in traveling salesman and bandwidth problems, B has O (n) nonzero entries, so the map G
produces only O (n3) constraints.

The main variable Y in (7.6) has dimension n2 × n2. As a consequence, the problem has
O (n4) degrees of freedom, together with O (n3) to O (n4) constraints (depending on G ). The
explosive growth of this relaxation scuttles most algorithms by the time n > 50. To solve
larger instances, many researchers resort to even weaker relaxations.
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In contrast, we can solve the relaxation (7.6) directly using SketchyCGAL, up to n = 150.
By limiting the number of inequality constraints, via the operator G , we achieve substantial
reductions in resource usage. We validate our algorithm on QAPs where the exact solution is
known, and we compare the performance with algorithms [116, 26] for other relaxations.

7.5.3. Rounding. Given an approximate solution to (7.6), we use a rounding method to

construct a permutation. SketchyCGAL returns a matrix X̂ = UΛU∗ where U has dimension
(n2 + 1) × R. We extract the first column of U , discard its first entry and reshape the
remaining part into an n×n matrix. Then we project this matrix onto the set of permutation
matrices via the Hungarian method [66, 79, 59]. This yields a feasible point Π for the problem
(7.5). We repeat this procedure for all R columns of U , and we pick the one that minimizes
tr(AΠBΠ∗). This permutation gives an upper bound on the optimal value of (7.5).

7.5.4. Datasets and evaluation. We consider instances from QAPLIB [30] and TSPLIB
[91] that are used in [26]. The optimal values are known, and the permutation size n varies
between 12 and 150. (Recall that the SDP matrix dimension n = n2 + 1.) We report

(7.7) relative gap % =
upper bound obtained - optimum

optimum
× 100

7.5.5. Solving QAPs. To solve (7.6), we cannot use the scaling (7.1) because ‖A ‖ is
not available; see the source code for our approach. We apply SketchyCGAL with sketch
size R = n, using total storage Θ(n3). After rounding, a low- or medium-accuracy solution of
(7.6) often provides a better permutation than a high-accuracy solution. Therefore, we applied
the rounding step at iterations 2, 4, 8, 16, . . . and tracked the quality of the best permutation
attained on the solution path. We stopped after (the first of) 106 iterations or 48 hours.

The results of this experiment appear in Figure 7.5. We compare against the best value
reported by Bravo Ferreira et al. in [26, Tables 4 and 6] for their CSDP method with clique
size k ∈ {2, 3, 4}. We also include the results that [26] lists for the PATH method [116].

SketchyCGAL allows us to solve a tighter SDP relaxation of QAP than the other methods
(CSDP, PATH). As a consequence, we obtain significantly smaller gaps for most instances. In
fact, SketchyCGAL even recovers the exact solution for some of the instances in QAPLIB!

8. Related work. There is a large body of literature on numerical methods for solving
SDPs. Most of these algorithms adopt standard techniques from optimization. This section
describes the major approaches, but an exhaustive discussion is beyond the scope of this work.
See [75] for a recent survey.

8.1. Interior point method (IPM). The first practical IPM algorithms for linear pro-
gramming were developed in 1984 by Karmarkar [62]. Soon after, they were extended to
SDPs independently by Nesterov & Nemirovski [83, 84], Alizadeh [3, 4], and Kamath & Kar-
markar [60, 61]. IPMs are still widely used for solving SDPs to high precision. Software
packages include SeDuMi [97], MoSeK [78], and SDPT3 [99].

Unfortunately, IPMs do not scale to large problems. Indeed, an IPM formulates a sequence
of unconstrained barrier problems, which are solved via Newton’s method or its variants. This
step requires storing and factoring large, dense matrices. As a result, a typical IPM for the
SDP (2.2) requires Θ(n3 + d2n2 + d3) arithmetic operations per iteration and Θ(n2 + dn+ d2)
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Figure 7.5. QAP relaxation: Solution quality. Using SketchyCGAL, the CSDP method [26], and the PATH
method [116], we solve SDP relaxations of QAP instances from QAPLIB [top] and TSPLIB [bottom]. The bars
compare the cost of the computed solution, against the optimal value; shorter is better. See subsection 7.5.5.

memory [6]. As d and n grow, time and storage costs become prohibitive, even for moderately
sized problems, such as n, d ' 10 000. For more details, see [64, 9, 81, 19].

8.2. Augmented Lagrangian methods. Several effective SDP solvers are based on the
augmented Lagrangian (AL) paradigm. These methods differ in the ways that the constraints
are formulated and the subproblems are solved. See [29, 106, 118, 107] for examples.

Although AL techniques are often called “first-order methods,” some of these algorithms
use second-order information. In particular, Zhao et al. [118] employ a semi-smooth New-
ton method and the conjugate gradient method to solve the subproblems. Their method is
enhanced and implemented in the software package SDPNAL+ [108].

Classical AL methods for SDPs typically require storage Ω(n2). To address this weakness,
researchers have combined the AL framework with CGM [45, 73, 95, 110] and with nonconvex
matrix factorization [27, 28, 67, 93]. We explain some of these ideas below.

8.3. First-order methods. Next, we summarize the first-order methods for large SDPs.
We focus on projection-free algorithms, which do not require full SVD computations.

8.3.1. Bundle methods. One of the earliest first-order SDP algorithms is the spectral
bundle method developed by Helmberg and coauthors [53, 52, 51]. These algorithms build
a piecewise affine model for the optimization problem using eigenvectors of the dual slack
matrix C −Ay∗. At present, these methods lack a complete theoretical analysis.
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8.3.2. Conditional gradient method (CGM) and friends. CGM solves a smooth con-
vex minimization problem by repeatedly optimizing a linear approximation for the objective
function over the constraint set. This approach was introduced by Frank & Wolfe [42] for op-
timization on polytopes; see also [71, 58]. Much later, Clarkson [35] developed a new analysis
for optimization on the probability simplex ∆n, and Hazan [50] studied optimization on the
spectahedron ∆n. Jaggi [57] generalized CGM to all compact, convex constraint sets.

The standard CGM algorithm does not apply to the model problem (2.2) because of
the affine constraint AX = b. Several variants [45, 73, 95, 111] of CGM can handle affine
constraints. In particular, CGAL [110] does so by applying CGM to an AL formulation. We
have chosen to extend CGAL because of its strong empirical performance; see [110, Sec. 4-5].

8.3.3. Primal-dual subgradient methods. Several authors have developed primal-dual
subgradient algorithms [82, 113] that can be applied to SDPs. These methods perform sub-
gradient ascent on the dual problem; the cost of each iteration is dominated by an eigenvector
computation. Nesterov [82] constructs primal iterates by proximal mapping. The algorithm
in Yurtsever et al. [113] constructs primal iterates by an averaging technique, similar to the
updates in CGM. Bach [12] has described a relationship between CGM and dual subgradient
ascent. In fact, CGAL and related methods are types of primal-dual averaging [114, 110].

8.4. Primal-dual games and online learning methods. Motivated by applications in the-
oretical computer science, researchers in this field have also devised SDP algorithms.

This approach first reduces SDP optimization to a sequence of feasibility problems. By
standard duality techniques, each feasibility problem admits a saddle-point formulation:

(8.1) max
X∈α∆n

min
p∈∆d

〈p, AX − b〉,

where ∆d denotes the (d− 1)-dimensional probability simplex. The dual of (8.1) is an eigen-
value optimization problem, which is important in its own right.

Most theoretical approaches to (8.1) are based on the matrix multiplicative weight (MMW)
method [103, 10], which is nothing but the mirror-prox algorithm with the entropy mirror
map [80]. The basic idea is to perform gradient descent in a dual space, using the matrix
exponential map to transfer information back to the primal space. To make this approach
more scalable, researchers have proposed linearization, random projection, and sparsification
techniques to approximate the matrix exponential; see [11, 7, 88, 43, 44, 8, 14, 69].

This line of work has culminated in a simple rank-one MMW method [32], which uses the
stochastic Lanczos method to approximate the matrix exponential. Even so, the reduction to
a sequence of feasibility problems makes this technique impractical for solving general SDPs.

We are aware of only one experimental evaluation of the MMW idea, which appears in
the randomized mirror-prox paper of Baes et al. [14].

8.5. Storage considerations. Almost all provably correct SDP algorithms store and op-
erate on a full-dimensional matrix variable, so they are not suitable for large-scale SDPs.

Some primal-dual subgradient methods and CGM variants build an approximate solution
as a convex combination of rank-one updates, so the rank of the solution does not exceed the
number of iterations. This fact has led researchers to call these methods “storage-efficient,”
but this claim is misleading because the algorithms require many iterations to converge.
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Recently, a subset of the authors has shown how to combine sketching with CGM to
design a storage-optimal algorithm, SketchyCGM, for a class of low-rank matrix optimization
problems [115]. We believe that SketchyCGM was the first provably correct storage-optimal
method for these problems. SketchyCGAL was inspired by SketchyCGM.

In concurrent work with Ding [39], we developed another storage-optimal algorithm for
standard-form SDPs. This method is based on a new approximate complementarity principle.
Roughly, we can use a suboptimal dual point to approximate the range of the primal solution
to the SDP. By compressing the primal problem to this subspace, we can solve the SDP with
limited storage. This method, however, may fail on a set of SDPs with measure zero, and it
has more limited guarantees than SketchyCGAL. A numerical evaluation is in process.

We have also noticed that the rank-one MMW method [32] can be combined with the
Nyström sketch (Algorithm 5.1) to obtain a simple, storage-optimal algorithm for (8.1).

8.6. Nonconvex Burer–Monteiro methods. The most famous approach to low-storage
semidefinite programming is the factorization heuristic proposed by Homer & Peinado [54]
and extended by Burer & Monteiro (BM) [27]. The main idea is to rewrite the psd matrix
variable X = FF ∗ in terms of a factor F ∈ Rn×R, where the rank parameter R� n. We can
reformulate the model problem (2.2) in terms of the new variable:

(8.2) minimize 〈C, FF ∗〉 subject to A (FF ∗) = b, FF ∗ ∈ α∆n.

This approach controls storage by sacrificing convexity and the associated guarantees. We
can apply various nonlinear programming methods to optimize (8.2). AL methods are most
commonly used [27, 28, 67, 93] because of their empirical success.

There has been an intense effort to establish theoretical guarantees for the BM factor-
ization approach. It is clear that every solution to the SDP (2.2) of rank R or less is also a
solution to the factorized problem (8.2). On the other hand, (8.2) may admit spurious local
minima. Furthermore, because the formulation is nonconvex, we can only expect a numerical
algorithm to locate a first- or second-order critical point.

Burer & Monteiro [28] developed the initial theory about (8.2): If F is a local minimum of
(8.2) and if R ≥

√
2(d+ 1), thenX is either a global minimum or it is contained in the relative

interior of a face of the feasible set of (2.2). Boumal et al. [23] obtained an improvement: If
the constraint set of (8.2) is a smooth manifold and R ≥

√
2(d+ 1) and C is generic, then

each second-order critical point of (8.2) is a global optimum. A second-order critical point
can be located using a Riemannian trust region method. See [21, 89, 34] for more extensions,
but this theory requires opaque technical conditions that may not hold in practice.

The storage and arithmetic costs of solving (8.2) depend on the factorization rank R, as
well as the optimization algorithm. Existing theoretical guarantees demand that R = Ω(

√
d).

In contrast, there are many applications where the SDP has a unique solution with constant
rank. Thus, it is natural to ask whether we can reduce the rank parameter in the factorization.
Waldspurger & Waters [105] resolved this question in the negative. Roughly, the BM formula-
tion (8.2) can have spurious solutions unless R = Ω(

√
d), and the bad problem instances form

a set of positive measure. As a consequence, the Burer–Monteiro approach cannot support
provably correct algorithms with storage costs better than Ω(n

√
d). See Appendix F.2 for

numerical evidence.
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The most popular research software based on BM factorization is Manopt [22]. Solvers
in Manopt implement manifold optimization algorithms, including Riemannian gradient and
Riemannian trust region methods [1]. Consequently, Manopt is limited to problems where the
factorized formulation (8.2) defines a smooth manifold.

8.7. Conclusion. We have presented a practical, new approach for solving standard-form
SDPs at scale. Our algorithm combines a primal-dual optimization method with randomized
linear algebra techniques to achieve unprecedented guarantees. We hope that our ideas lead
to further algorithmic advances and support new applications of semidefinite programming.

Appendix A. Analysis of the CGAL Algorithm.
This section contains a complete analysis of the convergence of the CGAL algorithm and

its arithmetic costs. For simplicity, we have specialized this presentation to the model problem
that is the focus of this paper; many extensions are possible. The convergence results here are
adapted from the initial paper [110] on the CGAL algorithm. The analysis of the arithmetic
cost for the model problem is new.

A.1. The model problem. We focus on solving the optimization template

(A.1) minimize 〈C, X〉 subject to AX = b, X ∈ α∆n.

The constraint set α∆n consists of n × n psd matrices with trace α. The objective function
depends on a matrix C ∈ Sn. The linear constraints are determined by the linear map
A : Sn → Rd and the right-hand side vector b ∈ Rd.

A.2. Elements of Lagrangian duality. Introduce the Lagrangian function

(A.2) L(X;y) := 〈C, X〉+ 〈y, AX − b〉 for X ∈ α∆n and y ∈ Rd.

We assume that the Lagrangian admits at least one saddle point (X?,y?) ∈ α∆n × Rd:

(A.3) L(X?,y) ≤ L(X?,y?) ≤ L(X;y?) for all X ∈ α∆n and y ∈ Rd.

This hypothesis is guaranteed under Slater’s condition. Write p? for the shared extremal value
of the dual and primal problems:

(A.4) max
y∈Rd

min
X∈α∆n

L(X,y) = p? = min
X∈α∆n

sup
y∈Rd

L(X,y).

In particular, note that p? = 〈C, X?〉.

A.3. The CGAL iteration. Let β0 > 0 be an initial smoothing parameter. Fix a schedule
for the step size parameter ηt and the smoothing parameter βt:

(A.5) ηt :=
2

t+ 1
and βt := β0

√
t+ 1 for t = 1, 2, 3, . . . .

Define the augmented Lagrangian Lt with smoothing parameter βt

(A.6) Lt(X;y) := 〈C, X〉+ 〈y, AX − b〉+
1

2
βt‖AX − b‖2.
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The CGAL algorithm solves the model problem (A.1) by alternating between primal and dual
update steps on (A.6), while increasing the smoothing parameter.

Fix the initial iterates

(A.7) X1 = 0 ∈ Sn and y1 = 0 ∈ Rd.

At each iteration t = 1, 2, 3, . . . , we implicitly compute the partial derivative

(A.8) Dt := ∂XLt(Xt;yt) = C + A ∗
(
yt + βt(AXt − b)

)
.

Then we identify a primal update direction Ht ∈ α∆n that satisfies

(A.9) 〈Dt, Ht〉 ≤ min
H∈α∆n

〈Dt, H〉+
αβ0

βt
‖Dt‖.

In other words, the smoothing parameter βt also controls the amount of inexactness we are
willing to tolerate in the linear minimization at iteration t. We construct the next primal
iterate via the rule

(A.10) Xt+1 = Xt + ηt(Ht −Xt) ∈ α∆n.

The dual update takes the form

(A.11) yt+1 = yt + γt(AXt+1 − b).

We select the largest dual step size parameter 0 ≤ γt ≤ β0 that satisfies the condition

(A.12) γt‖AXt+1 − b‖2 ≤ βtη2
tα

2‖A ‖2.

The latter inequality always holds when γt = 0. We will also choose the dual step size to
maintain a bounded travel condition:

(A.13) ‖yt‖ ≤ K.

If the bounded travel condition holds at iteration t− 1, then the choice γt = 0 ensures that it
holds at iteration t. In practice, it is not necessary to enforce (A.13). The iteration continues
until it reaches a maximum iteration count Tmax.

A.4. Solution quality. We can evaluate the quality of a given primal iterate Xt with the
information we have at hand. For simplicity, let us assume that we have solved the linear
minimization (A.9) exactly at iteration t. That is, there is no error depending on ‖Dt‖. We
can make this calculation periodically (say, for t = 2i for i ∈ N) to decide whether to stop.

First, note that we have instant access to the infeasibility: AXt − b. Second, we can
bound the suboptimality of the primal objective value. Introduce the surrogate duality gap

gt(X) := max
H∈α∆n

〈Dt, X −H〉.

The quantity gt(Xt) can be determined from the solution to (A.9). Then

〈C, Xt〉 − p? ≤ gt(Xt)− 〈yt, AXt − b〉.

See Appendix A.7 for discussion and a more refined estimate for the suboptimality.
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Algorithm A.1 CGAL for the model problem (A.1)

Input: Problem data for (A.1) implemented via the primitives (2.4); number T of iterations
Output: Approximate solution XT to (2.2)
Recommendation: Set T ≈ ε−1 to achieve ε-optimal solution (A.17)

1 function CGAL(T )
2 Scale problem data (subsection 7.1.2) . [opt] Recommended!
3 β0 ← 1 and K ← +∞ . Default parameters
4 X ← 0n×n and y ← 0d
5 for t← 1, 2, 3, . . . , T do
6 β ← β0

√
t+ 1 and η ← 2/(t+ 1)

7 (ξ,v)← ApproxMinEvec(C + A ∗(y + β(AX − b)); qt)
. Use primitives (2.4)ÊË!

. With Algorithm 4.1, set qt = 8t1/2 log n
. With Algorithm 4.2, set qt = t1/4 log n

8 X ← (1− η)X + η (α vv∗)
9 y ← y + γ(AX − b) . Step size γ satisfies (A.12) and (A.13)

A.5. Theoretical analysis of CGAL. We develop two results on the behavior of CGAL.
The first concerns its convergence to optimality, and the second concerns the computational
resource usage.

A.5.1. Convergence. The first result demonstrates that the CGAL algorithm always con-
verges to a primal optimal solution of the model problem (A.1). This result is adapted
from [110]; a complete proof appears below in Appendix A.6.

Theorem A.1 (CGAL: Convergence). Define

E := 6α2‖A ‖2 + α(‖C‖+K‖A ‖).

The primal iterates {Xt : t = 2, 3, 4, . . . } generated by the CGAL iteration satisfy the a priori
bounds

〈C, Xt〉 − p? ≤
2β0E√

t
+K · ‖AXt − b‖;(A.14)

−‖y?‖ · ‖AXt − b‖ ≤ 〈C, Xt〉 − p?;(A.15)

‖AXt − b‖ ≤
2β−1

0 (K + ‖y?‖) + 2
√
E√

t
.(A.16)

The a priori bounds ensure that

(A.17) ‖AXt − b‖ ≤ ε and |〈C, Xt〉 − p?| ≤ ε

within O (ε−2) iterations. The big-O suppresses constants that depend on the problem data
(α, ‖A ‖, ‖C‖) and the algorithm parameters β0 and K.
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A.5.2. Problem scaling. Theorem A.1 indicates that it is valuable to scale the model
problem (A.1) so that α = ‖C‖ = ‖A ‖ = 1. In this case, a good choice for the smoothing
parameter is β0 = 1. Nevertheless, the algorithm converges, regardless of the scaling and
regardless of the parameter choices β0 and K. We use a slightly different scaling in practice;
see subsection 7.1.2.

A.6. Proof of Theorem A.1. In this section, we establish the convergence guarantee
stated in Theorem A.1.

A.6.1. Analysis of the primal update. The first steps in the proof address the role of the
primal update rule (A.10). The arguments parallels the standard convergence analysis [57] of
CGM, applied to the function

(A.18) ft(X) := Lt(X;yt) = 〈C, X〉+ 〈yt, AX − b〉+
1

2
βt‖AX − b‖2.

Observe that the gradient ∇ft(Xt) coincides with the partial derivative (A.8).
To begin, we exploit the smoothness of ft to control the change in its value at adjacent

primal iterates. The function ft is convex on Sn, and its gradient has Lipschitz constant
βt‖A ‖2, so

ft(X+)− ft(X) ≤ 〈∇ft(X), X+ −X〉+
1

2
βt‖A ‖2‖X+ −X‖2F for X,X+ ∈ Sn.

In particular, with X+ = Xt+1 and X = Xt, we obtain

(A.19)

ft(Xt+1) ≤ ft(Xt) + 〈Dt, Xt+1 −Xt〉+
1

2
βt‖A ‖2‖Xt+1 −Xt‖2F

= ft(Xt) + ηt〈Dt, Ht −Xt〉+
1

2
βtη

2
t ‖A ‖2‖Ht −Xt‖2F

≤ ft(Xt) + ηt〈Dt, Ht −Xt〉+ βtη
2
tα

2‖A ‖2.

The second identity follows from the update rule (A.10). The bound on the last term depends
on the fact that the constraint set α∆n has Frobenius-norm diameter α

√
2.

Next, we use the construction of the primal update to control the linear term in the last
display. The update direction Ht satisfies the inequality (A.9), so

(A.20)

〈Dt, Ht −Xt〉 ≤ min
H∈α∆n

〈Dt, H −Xt〉+
αβ0

βt
‖Dt‖

≤ 〈Dt, X? −Xt〉+
αβ0

βt
‖Dt‖.

The second inequality depends on the fact that X? ∈ α∆n.
We can use the explicit formula (A.8) for the derivative Dt to control the two terms

in (A.20). First,

(A.21)

〈Dt, X? −Xt〉 = 〈C + A ∗
(
yt + βt(AXt − b)

)
, X? −Xt〉

= 〈C, X? −Xt〉 − 〈yt, AXt − b〉 − βt‖AXt − b‖2

= 〈C, X?〉 − ft(Xt)−
1

2
βt‖AXt − b‖2.
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We have invoked the definition of the adjoint A ∗ and the fact that AX? = b. Last, we used
the definition (A.18) to identify the quantity ft(Xt). Second,

(A.22)
‖Dt‖ = ‖C + A ∗

(
yt + βt(AXt − b)

)
‖

≤ ‖C‖+K‖A ‖+ βt‖A ‖‖AXt − b‖.

We have used the assumption that yt satisfies the bounded travel condition (A.13).
Combine the last three displays to obtain the estimate

(A.23) 〈Dt, Ht −Xt〉 ≤ 〈C, X?〉 − ft(Xt)

+
(
αβ0‖A ‖‖AXt − b‖ −

1

2
βt‖AXt − b‖2

)
+
αβ0

βt
(‖C‖+K‖A ‖).

We can now control the decrease in the function ft between adjacent primal iterates.
Combine the displays (A.19) and (A.23) to arrive at the bound

ft(Xt+1) ≤ (1− ηt)ft(Xt) + ηt〈C, X?〉

+
(
ηtαβ0‖A ‖‖AXt − b‖ −

1

2
βtηt‖AXt − b‖2

)
+
(
βtη

2
tα

2‖A ‖2 +
ηtαβ0

βt
(‖C‖+K‖A ‖)

)
.

Subtract p? = 〈C, X?〉 from both sides to arrive at

ft(Xt+1)− p? ≤ (1− ηt)
(
ft(Xt)− p?

)
+
(
ηtαβ0‖A ‖‖AXt − b‖ −

1

2
βtηt‖AXt − b‖2

)
+
(
βtη

2
tα

2‖A ‖2 +
ηtαβ0

βt
(‖C‖+K‖A ‖)

)
.

Finally, use the definition (A.18) again to pass back to the augmented Lagrangian:

(A.24) Lt(Xt+1;yt)− p? ≤ (1− ηt)
(
Lt(Xt;yt)− p?

)
+
(
ηtαβ0‖A ‖‖AXt − b‖ −

1

2
βtηt‖AXt − b‖2

)
+
(
βtη

2
tα

2‖A ‖2 +
ηtαβ0

βt
(‖C‖+K‖A ‖)

)
.

This bound describes the evolution of the augmented Lagrangian as the primal iterate ad-
vances. But we still need to include the effects of increasing the smoothing parameter and
updating the dual variable.

A.6.2. Analysis of the smoothing update. To continue, observe that updates to the
smoothing parameter have a controlled impact on the augmented Lagrangian (A.6):

Lt(Xt;yt)− Lt−1(Xt;yt) =
1

2

(
βt − βt−1

)
‖AXt − b‖2.
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Add and subtract Lt−1(Xt;yt) in the large parenthesis in the first line of (A.24) and invoke
the last identity to obtain

(A.25) Lt(Xt+1;yt)− p? ≤ (1− ηt)
(
Lt−1(Xt;yt)− p?

)
+
(
ηtαβ0‖A ‖‖AXt − b‖+

1

2
[(1− ηt)(βt − βt−1)− βtηt] ‖AXt − b‖2

)
+
(
βtη

2
tα

2‖A ‖2 +
ηtαβ0

βt
(‖C‖+K‖A ‖)

)
.

The next step is to develop a uniform bound on the terms in the second line so that
we can ignore the role of the feasibility gap ‖AXt − b‖ in the subsequent calculations. The
choice (A.5) of the parameters ensures that

(1− ηt)(βt − βt−1)− βtηt <
−β2

0

βt
.

Introduce this bound into the second line of (A.25) and maximize the resulting concave qua-
dratic function to reach

ηtαβ0‖A ‖‖AXt − b‖+
1

2
[(1− ηt)(βt − βt−1)− βtηt] ‖AXt − b‖2

≤ ηtαβ0‖A ‖‖AXt − b‖ −
β2

0

2βt
‖AXt − b‖2 ≤ βtη2

tα
2‖A ‖2.

Substitute the last display into (A.25) to determine that

(A.26) Lt(Xt+1;yt)− p? ≤ (1− ηt)
(
Lt−1(Xt;yt)− p?

)
+
(

2βtη
2
tα

2‖A ‖2 +
ηtαβ0

βt
(‖C‖+K‖A ‖)

)
.

To develop a recursion, we need to assess how the left-hand side changes when we update the
dual variable.

A.6.3. Analysis of the dual update. To incorporate the dual update, observe that

Lt(Xt+1;yt+1) = Lt(Xt+1;yt) + 〈yt+1 − yt, AXt+1 − b〉
= Lt(Xt+1;yt) + γt‖AXt+1 − b‖2

≤ Lt(Xt+1;yt) + βtη
2
tα

2‖A ‖2.
The first relation is simply the definition (A.6) of the augmented Lagrangian, while the second
relation depends on the dual update rule (A.11). The last step follows from the selection
rule (A.12) for the dual step size parameter.

Introduce the latter display into (A.25) to discover that

(A.27) Lt(Xt+1;yt+1)− p? ≤ (1− ηt)
(
Lt−1(Xt;yt)− p?

)
+
(

3βtη
2
tα

2‖A ‖2 +
ηtαβ0

βt
(‖C‖+K‖A ‖)

)
.

We have developed a recursion for the value of the augmented Lagrangian as the iterates and
the smoothing parameter evolve.
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A.6.4. Solving the recursion. Next, we solve the recursion (A.27). We assert that

(A.28)

Lt(Xt+1;yt+1)− p? <
2β0√
t+ 1

[
6α2‖A ‖2 + α(‖C‖+K‖A ‖)

]
=:

2β0E√
t+ 1

for t = 1, 2, 3, . . . .

For the case t = 1, the definition (A.5) ensures that η1 = 1 and β1 = β0

√
2, so the bound (A.28)

follows instantly from (A.27). When t > 1, an inductive argument using the recursion (A.27)
and the bound (A.28) for t− 1 ensures that

Lt(Xt+1;yt+1)− p? ≤
[
t− 1

t+ 1
· 2β0√

t
+

2β0

(t+ 1)3/2

] [
6α2‖A ‖2 + α(‖C‖+K‖A ‖)

]
<

2β0√
t+ 1

[
6α2‖A ‖2 + α(‖C‖+K‖A ‖)

]
.

We have introduced the stated values (A.5) of the step size and smoothing parameters. The
induction proceeds, and we conclude that (A.28) is valid.

A.6.5. Bound for the suboptimality of the objective. We are prepared to develop an
upper bound on the suboptimality of the objective of the model problem (A.1). The defini-
tion (A.6) of the augmented Lagrangian directly implies that

(A.29) 〈C, Xt+1〉 − p? = Lt(Xt+1;yt+1)− p? − 〈yt+1, AXt+1 − b〉

− 1

2
βt‖AXt+1 − b‖2.

Continuing from here,

〈C, Xt+1〉 − p? ≤
2β0E√
t+ 1

+K · ‖AXt+1 − b‖.

The first identity follows from definition (A.6) of the augmented Lagrangian. The bound
relies on (A.28) and the Cauchy–Schwarz inequality. We have also used the bounded travel
condition (A.13). This establishes (A.14).

A.6.6. Bound for the superoptimality of the objective. The CGAL iterates Xt are gen-
erally infeasible for (A.1), so they can be superoptimal. Nevertheless, we can easily control
the superoptimality. By the saddle-point properties (A.3) and (A.4), the Lagrangian (A.2)
satisfies

(A.30) p? = max
y

min
X∈α∆n

L(X;y) ≤ L(Xt+1;y?) = 〈C, Xt+1〉+ 〈y?, AXt+1 − b〉.

Invoke the Cauchy–Schwarz inequality and rearrange to determine that

−‖y?‖ · ‖AXt+1 − b‖ ≤ 〈C, Xt+1〉 − p?.

This establishes (A.15).
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A.6.7. Bound for the infeasibility of the iterates. Next, we demonstrate that the iterates
converge toward the feasible set of (A.1). Combine (A.29) and (A.30) and rearrange to see
that

〈yt+1 − y?, AXt+1 − b〉 ≤ Lt(Xt+1;yt+1)− p? −
1

2
βt‖AXt+1 − b‖2.

Bound the left-hand side below using Cauchy–Schwarz and the right-hand side above us-
ing (A.28):

−‖yt+1 − y?‖ · ‖AXt+1 − b‖ ≤
2β0E√
t+ 1

− 1

2
βt‖AXt+1 − b‖2.

Solve this quadratic inequality to obtain the bound

‖AXt+1 − b‖ ≤ β−1
t

(
‖yt+1 − y?‖+

√
‖yt+1 − y?‖2 +

4βtβ0E√
t+ 1

)
≤ β−1

t

(
2‖yt+1 − y?‖+

√
4β2

0E
)

=
2β−1

0 ‖yt+1 − y?‖+ 2
√
E√

t+ 1
.

The second inequality depends on the definition (A.5) of the smoothing parameter βt and the
subadditivity of the square root.

Finally, we control the dual error using the bounded travel condition (A.13):

‖yt+1 − y?‖ ≤ ‖yt+1‖+ ‖y?‖ ≤ K + ‖y?‖.

The last two displays yield

‖AXt+1 − b‖ ≤
2β−1

0 (K + ‖y?‖) + 2
√
E√

t+ 1
.

This confirms (A.16).

A.7. Computable bounds for suboptimality. In this section, we assume that the linear
minimization (A.9) is performed exactly at iteration t. Introduce the duality gap surrogate

(A.31) gt(X) := max
H∈α∆n

〈∇ft(X), X −H〉.

The function ft is defined in (A.18). Note that the gap g(Xt) can be evaluated with the
information we have at hand:

(A.32)
gt(Xt) = 〈Dt, Xt〉 − 〈Dt, Ht〉

= 〈C, Xt〉+ 〈yt + βt(AXt − b), AXt〉 − 〈Dt, Ht〉.

The last term is just the value of the linear minimization (A.9)
The gap gives us computable bounds on the suboptimality of the current iterate Xt.

Indeed, the convexity of ft implies that

ft(Xt)− ft(X?) ≤ 〈∇ft(Xt), Xt −X?〉 ≤ gt(Xt).
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Using the definition (A.18) and the fact that X? is feasible for (A.1), we find that

ft(Xt)− p? ≤ ft(Xt)− ft(X?) ≤ gt(Xt).

Invoking the definition (A.18) again and rearranging, we find that

(A.33)
〈C, Xt〉 − p? ≤ gt(Xt)− 〈yt, AXt − b〉 −

1

2
βt‖AXt − b‖2

≤ gt(Xt)− 〈yt, AXt − b〉.

In other words, the suboptimality of the primal iterate Xt is bounded in terms of the dual
gap gt(Xt), the feasibility gap AXt − b, and the dual variable yt.

Appendix B. Sketching and reconstruction of a positive-semidefinite matrix.
This section reviews and gives additional details about the Nyström sketch [49, 46, 72, 100].

This sketch tracks an evolving psd matrix and then reports a provably accurate low-rank
approximation. The material on error estimation is new.

B.1. Sketching and updates. Consider a psd input matrixX ∈ Sn. Let R be a parameter
that modulates the storage cost of the sketch and the quality of the matrix approximation.

To construct the sketch, we draw and fix a standard normal test matrix Ω ∈ Fn×R. The
sketch of the matrix X takes the form

(B.1) S = XΩ ∈ Fn×R and τ = tr(X) ∈ R.

The sketch supports linear rank-one updates to X. Indeed, we can track the evolution

(B.2)

X ← (1− η)X + η vv∗ for η ∈ [0, 1] and v ∈ Fn

via S ← (1− η)S + η v(v∗Ω)

and τ ← (1− η) τ + η ‖v‖2.

The test matrix Ω and the sketch (S, τ) require storage of 2Rn + 1 numbers in F. The
arithmetic cost of the linear update (5.2) to the sketch is Θ(Rn) numerical operations.

Remark B.1 (Structured random matrices). We can reduce storage costs by a factor of two
by using a structured random matrix in place of Ω. For example, see [102, Sec. 3] or [98]. This
modification requires additional care with implementation (e.g., use of sparse arithmetic or
fast trigonometric transforms), but the improvement can be significant for very large problems.

B.2. The reconstruction process. Given the test matrix Ω and the sketch S = XΩ,
we can form a rank-R approximation X̂ of the matrix X contained in the sketch. This
approximation is defined by the formula

(B.3) X̂ := S(Ω∗S)†S∗ = (XΩ)(Ω∗XΩ)†(XΩ)∗.

This reconstruction is called a Nyström approximation. We often truncate X̂ by replacing it
with its best rank-r approximation JX̂Kr for some r ≤ R.

See Algorithm B.1 for a numerically stable implementation of the Nyström reconstruc-
tion process (5.3), including error estimation steps. The algorithm takes O (R2n) numerical
operations and Θ(Rn) storage.
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Algorithm B.1 NystromSketch implementation (see Appendix B)

Input: Dimension n of input matrix, size R of sketch
Output: Rank-R approximation X̂ of sketched matrix in factored form X̂ = UΛU∗, where

U ∈ Rn×R has orthonormal columns and Λ ∈ RR×R is nonnegative diagonal, and the
Schatten 1-norm approximation errors err(JX̂Kr) for 1 ≤ r ≤ R, as defined in (B.4)

Recommendation: Choose R as large as possible

1 function NystromSketch.Init(n, R)
2 Ω← randn(n,R) . Draw and fix random test matrix
3 S ← zeros(n,R) and τ ← 0 . Form sketch of zero matrix

4 function NystromSketch.RankOneUpdate(v, η) . Implements (5.2)
5 S ← (1− η)S + η v(v∗Ω) . Update sketch of matrix
6 τ ← (1− η) τ + η ‖v‖2 . Update the trace

7 function NystromSketch.Reconstruct
8 σ ←

√
n eps(norm(S)) . Compute a shift parameter

9 S ← S + σΩ . Implicitly form sketch of X + σ I
10 C ← chol(Ω∗S)
11 (U ,Σ,∼)← svd(S/C) . Dense SVD
12 Λ← max{0,Σ2 − σ I} . Remove shift
13 err← τ − cumsum(diag(Λ)) . Compute approximation errors

B.3. The approximation error. We can easily determine the exact Schatten 1-norm error
in the truncated Nyström approximation:

(B.4) err(JX̂Kr) := ‖X − JX̂Kr‖∗ = τ − tr(JX̂Kr) for each r ≤ R.

Furthermore, we can use (B.4) to ascertain whether the unknown input matrix X is (almost)
low-rank. Indeed, the best rank-r approximation of X satisfies

(B.5) ‖X − JXKr‖∗ ≤ err(JX̂Kr) for each r ≤ R.

Thus, large drops in the function r 7→ err(JX̂Kr) signal large drops in the eigenvalues of X.
See Appendix B.8 for the details.

B.4. Statistical properties of the Nyström sketch. The truncated Nyström approxima-
tion has a number of attractive statistical properties. For a fixed input matrixX, the expected
approximation error EΩ ‖X − JX̂Kr‖ is monotone decreasing in both the sketch size R and

the truncation rank r. Furthermore, if rank(X) = r for r ≤ R, then ‖X − JX̂Kr‖∗ = 0 with
probability one. We establish these results below in Appendix B.9.

B.5. A priori error bounds. The Nyström approximation X̂ yields a provably good esti-
mate for the matrix X contained in the sketch [100, Thms. 4.1].
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Fact B.2 (Nyström sketch: Error bound). Fix a psd matrix X ∈ Sn. Let S = XΩ where
Ω ∈ Fn×R is standard normal. For each r < R, the Nyström approximation (B.3) satisfies

(B.6) EΩ ‖X − X̂‖∗ ≤
(

1 +
r

R− r − 1

)
‖X − JXKr‖∗.

If we replace X̂ with the rank-r truncation JX̂Kr, the error bound (B.6) remains valid. Similar
results hold with high probability.

The truncated Nyström approximations satisfy a stronger error bound when the input
matrix X exhibits spectral decay.

Fact B.3 (Nyström sketch: Error bound II). Fix a psd matrix X ∈ Sn. Let S = XΩ where
Ω ∈ Fn×R is standard normal. For each r < R, the Nyström approximation (B.3) satisfies

(B.7) EΩ ‖X − JX̂Kr‖∗ ≤ ‖X − JXKr‖∗ +

(
1 +

r

R− r − 1

)
‖X − JXKr‖∗.

If we replace X̂ with the rank-r truncation JX̂Kr, the error bound (B.7) remains valid. Similar
results hold with high probability.

Proof. Combine the proofs of [100, Thm. 4.2] and [49, Thm. 9.3].

B.6. Discussion. In practice, it is best to minimize the error attributable to sketching.
To that end, we recommend choosing the sketch size parameter R as large as possible, given
resource constraints, so that we can obtain the highest-quality Nyström approximation.

In some problems, e.g., MaxCut with eigenvector rounding, the desired rank r of the
truncation is known in advance. In this case, Fact 5.2 offers guidance about how to select
R to achieve a specific error tolerance (1 + ζ) in (2.3). For example, when 5r + 1 ≤ R, the

expected Schatten 1-norm error in the rank-r approximation JX̂Kr is at most 1.25× the error
in the best rank-r approximation of X.

When the input matrix X has decaying eigenvalues, the error in the truncated approxi-
mation may be far smaller than Fact 5.2 predicts; see [100, Thm. 4.2]. This happy situation
is typical when X is generated by the CGAL iteration.

B.7. Representation of the truncated Nyström approximation. The key tool in the
analysis is a simple representation for the truncated approximation. These facts are extracted
from [100, Supp.].

Let X ∈ Sn be a fixed psd matrix, and let Ω ∈ Rn×R be an arbitrary test matrix. Let
P ∈ Sn be the orthoprojector onto the range of X1/2Ω. Then we can write the Nyström
approximation (B.3) as

X̂ = X1/2PX1/2.

For each r ≤ R, define Pr to be the orthoprojector onto the co-range of the matrix JX1/2P Kr.
By construction, JX1/2P Kr = X1/2Pr. As a consequence,

JX̂Kr = (JX1/2P Kr)(JX1/2P Kr)∗ = X1/2PrX
1/2.

These results allow us to relate the truncated approximations to each other:
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B.8. Approximation errors: Analysis. We may now obtain explicit formulas for the error
in each Nyström approximation. For r ≤ R, note that

X − JX̂Kr = X1/2(I− Pr)X1/2 < 0.

It follows immediately that

err(JX̂Kr) = ‖X − JX̂Kr‖∗ = tr(X − JX̂Kr) = tr(X)− tr(JX̂Kr).

This is the relation (B.4).

Assume that r ≤ r′. Since tr(JX̂Kr) ≤ tr(JX̂Kr′), we have the bound

err(JX̂Kr) ≥ err(JX̂Kr′) for r ≤ r′.

In other words, for fixed sketch size R, the error in the truncated Nyström approximation is
monotone decreasing in the approximation rank.

To obtain (B.5), observe that

‖X − JXKr‖∗ ≤ ‖X − JX̂Kr‖∗ = err(JX̂Kr).

The inequality holds because JXKr is a best rank-r approximation of X in Schatten 1-norm,

while JX̂Kr is another rank-r matrix.

B.9. Statistical properties: Analysis. Next, let us verify the statistical properties of the
error. In this section, the test matrix Ω ∈ Fn×R is standard normal.

Assuming that rank(X) = r ≤ R, let us prove that ‖X − JXKr‖∗ = 0 with probability
one. To that end, we observe

range(P ) = range(X1/2Ω) = range(X1/2) with probability one.

It follows that

X̂ = X1/2PX1/2 = X with probability one.

Moreover, rank(X1/2P ) = r with probability one. Conditional on this event,

JX̂Kr = X1/2PrX
1/2 = (JX1/2P Kr)(JX1/2P Kr)∗ = (X1/2P )(X1/2P )∗ = X.

This is the stated result.
Next, we show that the expected error in the truncated Nyström approximation is mono-

tone decreasing with respect to the sketch size R. Fix the truncation rank r. Let Ω+ =[
Ω ω

]
, where ω ∈ Fn is a standard normal vector independent from Ω. Define P+ ∈ Sn to

be the orthoprojector onto range(X1/2Ω+). It is clear that range(P ) ⊆ range(P+), and so

X1/2PX1/2 4X1/2P+X
1/2.

As a consequence,

tr(JX1/2PX1/2Kr) ≤ tr(JX1/2P+X
1/2Kr).
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Equivalently,

‖X − JX1/2PX1/2Kr‖∗ ≥ ‖X − JX1/2P+X
1/2Kr‖∗.

Take the expectation with respect to Ω+. The left-hand side is the average error in the r-
truncated Nyström approximation with a standard normal sketch of size R. The right-hand
side is the same thing, except the sketch has size R+ 1. This is the required result.

Appendix C. SketchyCGAL: Additional results. This section contains some additional
material about the SketchyCGAL algorithm.

C.1. Solution quality. We can develop estimates for the quality of the SketchyCGAL so-
lution by adapted the approach that we used for CGAL.

To do so, we need to track the primal objective value at the current iterate:

pt = 〈C, Xt〉.

At each iteration, we can easily update this estimate using the computed approximate eigen-
vector vt:

pt+1 = (1− ηt)pt + ηtα〈vt, Cvt〉.

This update rule is applied with the help of the primitive (2.4)Ê.
When we wish to estimate the error, say in iteration t, we solve the eigenvalue subproblem

to very high accuracy:

ξt = v∗tDtvt = min
‖v‖=1

v∗Dtv.

Then, we can compute the surrogate duality gap:

gt(Xt) = pt + 〈yt + βt(zt − b), zt〉 − ξt.

This expression follows directly from the formula (A.32) using the loop invariant that zt =
AXt. We arrive at a computable error estimate:

pt − p? ≤ gt(Xt)− 〈yt, zt − b〉.

This bound follows directly from (A.33).

C.2. Convergence theory. In this section, we establish two simple results on the conver-
gence properties of the SketchyCGAL algorithm.

Theorem C.1 (SketchyCGAL: Convergence I). Let Ψ? be the solution set of the model prob-

lem (2.2). For each r < R, the iterates X̂t computed by SketchyCGAL (subsections 6.2 and 6.3)
satisfy

lim sup
t→∞

EΩ dist∗(X̂t,Ψ?) ≤
(

1 +
r

R− r − 1

)
· max
X∈Ψ?

‖X − JXKr‖∗.

The same bound holds for the truncated approximations JX̂tKr. Here, dist∗ is the nuclear-norm
distance between a matrix and a set of matrices.
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Proof. The implicit iteratesXt satisfy the conclusions of Fact 3.1, so they converge toward
the compact set Ψ?. Therefore, we can choose a sequence {Xt?} ⊂ Ψ? with the property that
‖Xt −Xt?‖∗ → 0. By the triangle inequality and (6.9),

EΩ dist∗(X̂t,Ψ?) ≤ EΩ ‖X̂t −Xt‖∗ + dist∗(Xt,Ψ?)

≤
(

1 +
r

R− r − 1

)
· ‖Xt − JXtKr‖∗ + ‖Xt −Xt?‖∗.

The rank-r approximation error in Schatten 1-norm is 1-Lipschitz with respect to the Schatten
1-norm (cf. [102, Sec. SM2.2]), so

‖Xt − JXtKr‖∗ ≤ ‖Xt? − JXt?Kr‖∗ + ‖Xt −Xt?‖∗ ≤ max
X∈Ψ?

‖X − JXKr‖∗ + ‖Xt −Xt?‖∗.

Combine the last two displays, and extract the superior limit.

If the implicit iterates generated by SketchyCGAL happen to converge to a limit, we have
a more precise result.

Theorem C.2 (SketchyCGAL: Convergence II). Assume the implicit iterates Xt induced by
SketchyCGAL (subsections 6.2 and 6.3) converge to a matrix Xcgal. For each r < R, the

computed iterates X̂t satisfy

lim sup
t→∞

EΩ ‖A X̂t − b‖ ≤
(

1 +
r

R− r − 1

)
· ‖A ‖ · ‖Xcgal − JXcgalKr‖∗;

lim sup
t→∞

EΩ |〈C, X̂t〉 − 〈C, X?〉| ≤
(

1 +
r

R− r − 1

)
· ‖C‖ · ‖Xcgal − JXcgalKr‖∗.

The same bound holds for the truncated approximations JX̂tKr. If rank(Xcgal) ≤ R, then the

computed iterates X̂t converge to the solution set of (2.2).

Proof. The implicit iterates Xt satisfy the conclusions of Fact 3.1, so the limit Xcgal

solves (2.2). Using the triangle inequality, the operator norm bound, and (6.9), we obtain
nonasymptotic error bounds

EΩ ‖A X̂t − b‖ ≤
Const√

t
+

(
1 +

r

R− r − 1

)
· ‖A ‖ · ‖Xt − JXtKr‖∗;

EΩ |〈C, X̂t〉 − 〈C, X?〉| ≤
Const√

t
+

(
1 +

r

R− r − 1

)
· ‖C‖ · ‖Xt − JXtKr‖∗.

Extract the limit as t → ∞. The last conclusion follows from the facts outlined in Appen-
dix B.5.

Appendix D. Beyond the model problem.
The CGAL algorithm [110] applies to a more general problem template than (2.2). Like-

wise, the SketchyCGAL algorithm can solve a wider class of problems in a scalable fashion.
This section outlines some of the opportunities.
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D.1. A more general template. Consider the optimization problem

(D.1) minimize 〈C, X〉 subject to AX ∈ K and X ∈ X, X is psd.

In this expression, K ⊂ Rd is a closed, convex set and X ⊂ Sn(F) is a compact, convex
set of matrices. The rest of this section describes some problems that fall within the com-
pass of (D.1), as well as new computational challenges that appear. Algorithm D.1 contains
pseudocode for a version of SketchyCGAL tailored to (D.1).

Remark D.1 (Other matrix optimization problems). We can also extend SketchyCGAL to
optimization problems involving matrices that are symmetric (but not psd) or that are rec-
tangular. For example, matrix completion via nuclear-norm minimization [96] falls in this
framework. In this case, we need to replace the Nyström sketch with a more general tech-
nique, such as [101, 102]. Further extensions are also possible; see [110]. We omit these
developments.

D.2. The convex constraint set. To handle the convex constraint X that appears in (D.1),
we must develop a subroutine for the linear minimization problem

(D.2) minimize
H∈Sn

〈Dt, H〉 subject to H ∈ X, H is psd.

To implement SketchyCGAL efficiently, we need the problem (D.2) to admit a structured (e.g.,
low-rank) approximate solution. Here are some situations where this is possible.

1. Trace-bounded psd matrices. X := {X ∈ Sn : trX ≤ α and X is psd}. For
solving a standard-form SDP, this constraint is more natural than X = α∆n. Given
an (approximate) minimum eigenpair (ξt,vt) of Dt, the solution of (D.2) is

Ht =

{
αvtv

∗
t , ξt < 0,

0, ξt ≥ 0.

As before, we can solve the eigenvector problem with Algorithms 4.1 and 4.2.
2. Relaxed orthoprojectors. X := {X ∈ Sn : trX = α and 0 4X 4 I}. This is the

best convex relaxation of the set of orthogonal projectors with rank α; see [85]. When
α is small, we can provably solve the linear minimization with randomized subspace
iteration [49] or randomized block Lanczos methods [48, Sec. 10.3.6].

D.3. Convex inclusions. To handle the inclusion in K that appears in (D.1), we need an
efficient algorithm to perform the Euclidean projection onto K. That is,

projK(w) := arg min{‖w − u‖ : u ∈ K} for w ∈ Rd.

Here are some important examples:

1. Inequality constraints. K := {u ∈ Rd : u ≤ b}. In this case, the projection takes
the form projK(w) = (w − b)−, where (·)− reports the negative part of a vector.

2. Norm constraints. K := {u ∈ Rd : |||u−b||| ≤ δ}, where |||·||| is a norm. The projector
can be computed easily for many norms, including the `p norm for p ∈ {1, 2,∞}.
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D.4. The CGAL iteration for the general template. To extend the description of the
CGAL iteration in Appendix A.3 for the general template (D.1), we consider the following
augmented Lagrangian formulation with the slack variable w ∈ K instead of (A.6):

Lt(X;y) := 〈C, X〉+ min
w∈K

{
〈y, AX −w〉+

1

2
βt‖AX −w‖2

}
.

Accordingly, the partial derivative (A.8) becomes

Dt := ∂XLt(Xt;yt) = C + A ∗
(
yt + βt(AXt −wt)

)
where wt := projK(AXt + β−1

t yt).

We replace the linear minimization subroutine (A.9) with (D.2). We can still use an inexact
variant of (D.2) with additive error. We also modify the dual update scheme by modifying
(A.11) as

yt+1 = yt + γt(AXt+1 −wt) where wt := projK(AXt+1 + β−1
t+1yt).

Finally, we replace the dual step size parameter selection rule (A.12) with

(D.3) γt‖AXt+1 −wt‖2 ≤ βtη2
tα

2‖A ‖2.

The bounded travel condition (A.13) remains the same.
To obtain the extension of SketchyCGAL to the general template, we simply pursue the

same program outlined in section 6 to augment CGAL with sketching.

Appendix E. Details of phase retrieval experiments. This section presents further details
about the phase retrieval experiments presented in section 7.

E.1. Synthetic phase retrieval data. This section provides additional details on the con-
struction of synthetic datasets for the abstract phase retrieval SDP.

For each n ∈ {102, 103, . . . , 106}, we generate 20 independent datasets as follows. First,
draw χ\ ∈ Cn from the complex standard normal distribution. We acquire d = 12n phaseless
measurements (7.2) using the coded diffraction pattern model [31].

To do so, we randomly draw 12 independent modulating waveforms ψj for j = 1, 2, . . . , 12.
Each entry of ψj is drawn as the product of two independent random variables, one chosen
uniformly from {1, i,−1,−i}, and the other from {

√
2/2,
√

3} with probabilities 0.8 and 0.2
respectively. Then, we modulate χ\ with these waveforms and take its Fourier transform.
Each ai corresponds to computing a single entry of this Fourier transform:

a(j−1)n+` = Wn(`, : ) diag∗(ψj), 1 ≤ j ≤ 12 and 1 ≤ ` ≤ n,

where Wn(`, :) is the `th row of the n× n discrete Fourier transform matrix. We use the fast
Fourier transform to implement the measurement operator.

E.2. Fourier ptychography. We study a more realistic measurement setup, Fourier pty-
chography (FP), for the phase retrieval problem. In this setup, χ\ ∈ Cn corresponds to an
unknown high resolution image (vectorized) from a microscopic sample in the Fourier domain.
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Algorithm D.1 SketchyCGAL for the general template (D.1)

Input: Problem data for (D.1) implemented via the primitives (2.4), sketch size R, number
T of iterations

Output: Rank-R approximate solution to (D.1) in factored form X̂T = UΛU∗ where U ∈
Rn×R has orthonormal columns and Λ ∈ RR×R is nonnegative diagonal, and the Schatten
1-norm approximation errors err(JX̂Kr) for 1 ≤ r ≤ R, as defined in (B.4)

Recommendation: To achieve (2.3), set R as large as possible, and set T ≈ ε−1

1 function SketchyCGAL(R; T )
2 Scale problem data (subsection 7.1.2) . [opt] Recommended!
3 β0 ← 1 and K ← +∞ . Default parameters
4 NystromSketch.Init(n, R)
5 z ← 0d and y ← 0d
6 for t← 1, 2, 3, . . . , T do
7 β ← β0

√
t+ 1 and η ← 2/(t+ 1)

8 w ← projK(z + β−1y)
9 D ← C + A ∗(y + β(z −w)) . Represent via primitives (2.4)ÊË

10 H is a (low-rank) matrix that solves (D.2)
11 z ← (1− η) z + ηA (H) . Use primitive (2.4)Ì
12 β+ ← β0

√
t+ 2

13 w ← projK(z + β−1
+ y)

14 y ← y + γ(z −w) . Step size γ satisfies (A.13) and (D.3)
15 NystromSketch.RankOneUpdate(

√
αv, η)

16 (U ,Λ, err)← NystromSketch.Reconstruct

One cannot directly acquire a high resolution image from this sample because of the physical
limitations of optical systems. Any measurement is subject to a filter caused by the lens aper-
ture. We can represent this filter by a sparse matrix Φ ∈ Cm×n with m ≤ n, each row of which
has only one non-zero coefficient. Because of this filter, we can acquire only low-resolution
images, through m-dimensional Fourier transform.

FP enlightens the sample from L different angles using a LED grid. This lets us to to obtain
L different aperture matrices Φj , j = 1, 2, . . . , L. Then, we acquire phaseless measurements
from the sample using the following transmission matrices:

a(j−1)m+` = W ∗
m(`, :) Φj , 1 ≤ j ≤ L and 1 ≤ ` ≤ m.

Here, W ∗
m(`, :) is the `th row of the conjugate transpose of discrete Fourier transform matrix.

The aim in FP is to reconstruct complex valued χ\ from these phaseless measurements.
Once we construct χ\, we can generate a high resolution image by taking its inverse Fourier
transform.

Appendix F. Additional numerical results.
This section contains quantitative results from the MaxCut and QAP experiments.



SCALABLE SEMIDEFINITE PROGRAMMING 45

F.1. The MaxCut SDP. This section gives further information about the MaxCut ex-
periments summarized in subsection 7.2. Table 3 presents numerical data from the MaxCut
SDP experiment with Gset benchmark. We compare the methods in terms of the cut weight,
objective value, primal and dual infeasibility, and the storage cost and computation time. The
storage cost is approximated by monitoring the virtual memory size of the process, hence it
includes the memory that is swapped out and it can go beyond 16 GB.

F.2. Failure of the Burer–Monteiro heuristic. This section presents empirical evidence
that Burer–Monteiro factorization methods cannot support storage costs better than Ω(n

√
d).

Our approach is based on the paper of Waldspurger & Waters [105], which proves that the
BM heuristic (8.2) can produce incorrect results unless R = Ω(n

√
d).

Waldspurger provided us code that generates a random symmetric C ∈ Sn(R). The
MaxCut SDP (1.3) with objective C has a unique solution, and the solution has rank 1. If the
factorization rank R satisfies R(R+ 3) ≤ 2n, then the BM formulation (8.2) has second-order
critical points that are not optimal points of the original SDP (1.3). As a consequence, the
Burer–Monteiro approach is reliable only if the storage budget is Θ(n3/2). In contrast, for
the same problem instances, our analysis (Theorem Theorem 6.3) shows that SketchyCGAL
succeeds with factorization rank R = 2 and storage budget Θ(n).

We will demonstrate numerically that Waldspurger & Waters [105] have identified a serious
obstruction to using the Burer–Monteiro approach. Moreover, we will see that SketchyCGAL
resolves the issue. See the code supplement for scripts to reproduce these experiments.

We use the Manopt software [22] to solve the Burer–Monteiro formulation of the MaxCut
SDP. For n = 100, we drew 10 random matrices C1, . . . ,C10 using Waldspurger’s code. For
each instance, we sweep the factorization rank R = 2, 3, 4, . . . , 13. (For R ≥ 13, we anticipate
that each second-order critical point of the Burer–Monteiro problem is a solution to the original
SDP, owing to the analysis in [23].) In each experiment, we ran Manopt with 100 random
initializations, and we counted the number of times the algorithm failed. We declared failure
if Manopt converged to a second-order stationary point whose objective value is 10−3 larger
than the true optimal value. See Table 2 for the statistics.

In contrast, SketchyCGAL can solve all of these instances, even when the sketch size R = 2.
For these problems, we use the default parameter choices for SketchyCGAL, but we do not
pre-scale the data or perform tuning. Figure F.1 compares the convergence trajectory of
SketchyCGAL and Manopt for one problem instance. The difference is evident.

F.3. The quadratic assignment problem. This section gives further information about
the QAP experiments summarized in subsection 7.5. Tables 5 and 7 display the performance of
SketchyCGAL, by presenting the upper bound after rounding (subsection 7.5.3), the objective
value 〈B⊗A, X〉, the feasibility gap distK(AX), the total number of iterations, the memory
usage, and the computation time.

Tables 4 and 6 compare the relative gap (7.7) obtained by SketchyCGAL with the values
for the CSDP method [26] with clique size k = {2, 3, 4} and the PATH method [116] reported
in [26, Tab. 6]. These results appeared also in Figure 7.5.

Acknowledgments. We would like to thank Irène Waldspurger for providing code that
generates instances of the MaxCut SDP that are difficult for the Burer–Monteiro heuristic.
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Figure F.1. MaxCut SDP: Failure of the Burer–Monteiro heuristic. We apply Manopt and Sketchy-
CGAL for solving the MaxCut SDP with the dataset C1. The subplots show the gradient norm and suboptimality
for Manopt [left] and the suboptimality and infeasibility for SketchyCGAL [right]. Manopt with R = 2 con-
verges to a spurious solution, whereas SketchyCGAL successfully computes a rank-1 approximation of the global
optimum. The dashed line describes the convergence of the SketchyCGAL implicit iterates. For details, see Ap-
pendix F.2.

Table 2
We run Manopt for solving hard instances of the MaxCut SDP. We consider 10 datasets C1, . . . ,C10.

For each dataset, we run Manopt with 100 random initializations and report the number of failures. We
declare failure when Manopt converges to second-order critical point that is not a global optimum. For details,
see Appendix F.2.

Dataset / R R = 2 3 4 5 6 7 8 9 10 11 12 13

C1 82 69 63 53 35 32 24 12 11 1 4 0
C2 77 56 56 36 19 17 12 2 0 0 0 0
C3 89 65 54 47 44 46 23 11 5 0 3 0
C4 84 69 50 40 27 23 18 17 1 0 9 0
C5 85 68 52 51 43 30 31 20 14 3 4 0
C6 81 68 53 41 23 22 10 10 2 0 1 0
C7 83 76 60 39 19 19 19 3 0 0 1 0
C8 81 73 44 34 41 25 8 12 5 4 10 0
C9 84 64 46 35 25 17 1 10 0 2 4 0
C10 83 71 54 50 31 25 24 16 13 0 8 0
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Table 3: Numerical outcomes from the MaxCut SDP experiment with Gset Benchmark.

SketchyCGAL MoSeK SDPT3 SDPNAL+ Sedumi

Data Name
Size (n)

cut weight
〈C, X〉

‖AX − b‖/max{‖b‖, 1}
|min{λmin(X), 0}|

storage (MB)
cpu time (hh:mm:ss)

G1
800

11382
-1.2072e+04
2.7955e-03

0
7

00:00:00:03

11414
-1.2083e+04
3.0760e-08

0
225

00:00:00:15

11414
-1.2083e+04
9.3301e-13

0
180

00:00:00:15

11414
-1.2083e+04
8.6224e-15

0
258

00:00:01:35

11414
-1.2083e+04
3.6902e-09

0
354

00:00:00:43

G2
800

11361
-1.2082e+04
2.8124e-03

0
7

00:00:00:03

11329
-1.2089e+04
3.4843e-08

0
225

00:00:00:16

11329
-1.2089e+04
9.5745e-13

0
180

00:00:00:12

11339
-1.2089e+04
3.3489e-15

0
275

00:00:01:43

11329
-1.2089e+04
2.9720e-09

0
352

00:00:00:41

G3
800

11388
-1.2076e+04
2.5103e-03

0
7

00:00:00:03

11392
-1.2084e+04
5.9077e-08

0
225

00:00:00:19

11392
-1.2084e+04
1.7491e-11

0
180

00:00:00:13

11392
-1.2084e+04
3.4555e-07

0
219

00:00:01:15

11392
-1.2084e+04
3.9665e-09

0
356

00:00:00:51

G4
800

11387
-1.2103e+04
2.6474e-03

0
7

00:00:00:05

11366
-1.2111e+04
4.2044e-08

0
225

00:00:00:14

11366
-1.2111e+04
1.8551e-13

0
180

00:00:00:11

11368
-1.2111e+04
3.3027e-07

0
277

00:00:01:16

11366
-1.2111e+04
3.3830e-09

0
354

00:00:00:52

G5
800

11356
-1.2092e+04
2.6573e-03

0
7

00:00:00:03

11432
-1.2100e+04
4.2128e-08

0
225

00:00:00:14

11432
-1.2100e+04
3.1188e-13

0
180

00:00:00:12

11432
-1.2100e+04
6.3811e-09

0
270

00:00:01:50

11432
-1.2100e+04
3.2630e-09

0
352

00:00:00:45

G6
800

1899
-2.6534e+03
2.7480e-03

0
7

00:00:00:06

1950
-2.6562e+03
2.8773e-08

0
225

00:00:00:15

1950
-2.6562e+03
3.2757e-12

0
180

00:00:00:16

1950
-2.6562e+03
1.0055e-07

0
273

00:00:01:17

1950
-2.6562e+03
1.7342e-09

0
354

00:00:00:43

G7
800

1779
-2.4873e+03
2.7858e-03

0
7

00:00:00:04

1749
-2.4893e+03
2.3310e-08

0
225

00:00:00:22

1749
-2.4893e+03
2.5344e-12

0
180

00:00:00:16

1749
-2.4893e+03
1.2441e-07

0
268

00:00:01:14

1749
-2.4893e+03
1.6999e-09

0
352

00:00:01:06

Continue on the next page
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Table 3: MaxCut Benchmark with GSet (cont.).

SketchyCGAL MoSeK SDPT3 SDPNAL+ Sedumi

G8
800

1784
-2.5056e+03
2.7816e-03

0
7

00:00:00:04

1765
-2.5069e+03
4.2417e-08

0
225

00:00:00:15

1765
-2.5069e+03
3.4138e-13

0
180

00:00:00:15

1765
-2.5069e+03
8.5771e-07

0
277

00:00:01:25

1765
-2.5069e+03
1.7960e-09

0
289

00:00:00:45

G9
800

1776
-2.5262e+03
2.7310e-03

0
7

00:00:00:06

1800
-2.5287e+03
2.9469e-08

0
225

00:00:00:14

1800
-2.5287e+03
8.2962e-12

0
180

00:00:00:12

1800
-2.5287e+03
2.4830e-07

0
277

00:00:01:08

1800
-2.5287e+03
3.9707e-10

0
352

00:00:00:46

G10
800

1790
-2.4840e+03
2.7810e-03

0
7

00:00:00:04

1766
-2.4851e+03
3.7738e-08

0
225

00:00:00:15

1766
-2.4851e+03
5.7206e-13

0
180

00:00:00:12

1766
-2.4851e+03
7.4784e-07

0
277

00:00:01:21

1766
-2.4851e+03
2.9698e-10

0
352

00:00:01:04

G11
800

524
-6.2814e+02
2.6719e-03

0
7

00:00:00:04

512
-6.2916e+02
1.7634e-13

0
225

00:00:00:19

512
-6.2916e+02
1.4007e-12

0
186

00:00:00:09

522
-6.2914e+02
1.0682e-10

0
277

00:00:01:52

512
-6.2916e+02
1.8847e-09

0
352

00:00:00:39

G12
800

524
-6.2279e+02
2.6153e-03

0
7

00:00:00:03

512
-6.2387e+02
1.8468e-13

0
225

00:00:00:14

512
-6.2387e+02
5.3073e-13

0
186

00:00:00:07

514
-6.2387e+02
1.8087e-11

0
278

00:00:02:20

512
-6.2387e+02
1.1260e-09

0
352

00:00:00:46

G13
800

554
-6.4594e+02
2.6652e-03

0
7

00:00:00:03

534
-6.4714e+02
1.6420e-13

0
225

00:00:00:14

534
-6.4714e+02
8.3034e-12

0
186

00:00:00:08

534
-6.4713e+02
3.4895e-15

0
278

00:00:01:47

534
-6.4714e+02
7.7471e-10

0
354

00:00:00:41

G14
800

2953
-3.1821e+03
2.4329e-03

0
7

00:00:00:05

2967
-3.1916e+03
3.4503e-08

0
225

00:00:00:16

2967
-3.1916e+03
4.1785e-13

0
180

00:00:00:09

2963
-3.1916e+03
7.3214e-09

0
284

00:00:01:47

2967
-3.1916e+03
1.1476e-09

0
352

00:00:00:49

G15
800

2948
-3.1611e+03
2.1250e-03

0
7

00:00:00:04

2971
-3.1716e+03
5.9551e-08

0
225

00:00:00:15

2971
-3.1716e+03
9.9206e-14

0
186

00:00:00:13

2971
-3.1716e+03
3.8762e-07

0
278

00:00:02:23

2971
-3.1716e+03
1.6534e-09

0
352

00:00:00:45
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Table 3: MaxCut Benchmark with GSet (cont.).

SketchyCGAL MoSeK SDPT3 SDPNAL+ Sedumi

G16
800

2967
-3.1658e+03
2.3354e-03

0
7

00:00:00:04

2958
-3.1750e+03
8.1927e-08

0
225

00:00:00:20

2958
-3.1750e+03
4.7805e-13

0
180

00:00:00:10

2956
-3.1750e+03
9.3060e-15

0
279

00:00:02:00

2958
-3.1750e+03
3.1805e-10

0
352

00:00:00:46

G17
800

2938
-3.1621e+03
2.4028e-03

0
7

00:00:00:04

2957
-3.1713e+03
1.3790e-08

0
225

00:00:00:17

2957
-3.1713e+03
1.2021e-12

0
186

00:00:00:10

2960
-3.1713e+03
9.2606e-07

0
280

00:00:02:17

2957
-3.1713e+03
7.2377e-10

0
352

00:00:00:49

G18
800

898
-1.1643e+03
2.8264e-03

0
7

00:00:00:06

893
-1.1660e+03
1.0695e-08

0
225

00:00:00:17

893
-1.1660e+03
1.2377e-11

0
186

00:00:00:09

893
-1.1660e+03
9.8235e-07

0
278

00:00:01:37

893
-1.1660e+03
1.2709e-09

0
352

00:00:01:06

G19
800

792
-1.0790e+03
2.7808e-03

0
7

00:00:00:06

797
-1.0820e+03
1.4813e-08

0
225

00:00:00:16

797
-1.0820e+03
5.5509e-12

0
186

00:00:00:12

797
-1.0820e+03
3.8521e-08

0
273

00:00:01:38

797
-1.0820e+03
1.3036e-09

0
352

00:00:00:58

G20
800

846
-1.1086e+03
2.7607e-03

0
7

00:00:00:06

837
-1.1114e+03
1.6650e-08

0
225

00:00:00:17

837
-1.1114e+03
8.3457e-13

0
186

00:00:00:10

837
-1.1114e+03
6.6975e-07

0
285

00:00:01:34

837
-1.1114e+03
7.4903e-10

0
354

00:00:01:02

G21
800

811
-1.1019e+03
2.6359e-03

0
7

00:00:00:05

841
-1.1043e+03
9.8852e-09

0
225

00:00:00:17

841
-1.1043e+03
5.5307e-13

0
186

00:00:00:13

841
-1.1043e+03
4.8156e-07

0
268

00:00:01:33

841
-1.1043e+03
2.0021e-10

0
357

00:00:00:54

G22
2000

12974
-1.4125e+04
4.3829e-03

0
8

00:00:00:09

12956
-1.4136e+04
1.0335e-08

0
1049

00:00:06:17

12956
-1.4136e+04
7.0113e-13

0
735

00:00:01:35

12955
-1.4136e+04
1.9644e-07

0
994

00:00:49:50

12956
-1.4136e+04
2.7849e-09

0
1498

00:00:17:38

G23
2000

12918
-1.4133e+04
4.3010e-03

0
8

00:00:00:04

12987
-1.4142e+04
1.6980e-08

0
1049

00:00:04:12

12987
-1.4142e+04
1.6925e-14

0
705

00:00:02:36

12996
-1.4142e+04
1.6469e-09

0
865

00:00:46:53

12987
-1.4142e+04
8.3706e-10

0
1401

00:00:14:02
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Table 3: MaxCut Benchmark with GSet (cont.).

SketchyCGAL MoSeK SDPT3 SDPNAL+ Sedumi

G24
2000

12885
-1.4135e+04
4.4016e-03

0
8

00:00:00:10

12979
-1.4141e+04
1.0315e-08

0
1049

00:00:04:07

12979
-1.4141e+04
1.1767e-12

0
670

00:00:02:03

12978
-1.4141e+04
2.8584e-09

0
962

00:00:46:51

12979
-1.4141e+04
7.7807e-10

0
1498

00:00:14:26

G25
2000

12913
-1.4139e+04
4.3776e-03

0
8

00:00:00:17

12885
-1.4144e+04
1.7277e-08

0
1049

00:00:06:31

12885
-1.4144e+04
5.8895e-13

0
705

00:00:01:31

12897
-1.4144e+04
7.4190e-08

0
993

00:00:46:09

12885
-1.4144e+04
1.1674e-09

0
1401

00:00:16:08

G26
2000

12847
-1.4122e+04
4.3789e-03

0
8

00:00:00:06

12866
-1.4133e+04
1.0479e-08

0
1049

00:00:03:57

12866
-1.4133e+04
5.0789e-14

0
705

00:00:01:48

12866
-1.4133e+04
4.6882e-08

0
993

00:00:47:04

12866
-1.4133e+04
1.0125e-09

0
1466

00:00:26:36

G27
2000

2863
-4.1378e+03
4.4638e-03

0
8

00:00:00:19

2888
-4.1417e+03
1.5899e-08

0
1049

00:00:04:12

2888
-4.1417e+03
5.9893e-12

0
768

00:00:03:03

2888
-4.1417e+03
2.5844e-07

0
1001

00:00:27:23

2888
-4.1417e+03
1.2743e-09

0
1466

00:00:29:58

G28
2000

2856
-4.0971e+03
4.4429e-03

0
8

00:00:00:14

2843
-4.1008e+03
9.6101e-09

0
1049

00:00:04:10

2843
-4.1008e+03
3.6450e-12

0
734

00:00:01:45

2843
-4.1008e+03
8.0676e-08

0
1001

00:00:50:35

2843
-4.1008e+03
1.0742e-09

0
1432

00:00:16:56

G29
2000

2999
-4.2056e+03
4.4590e-03

0
8

00:00:00:13

2978
-4.2089e+03
4.7152e-08

0
1049

00:00:04:32

2978
-4.2089e+03
6.4617e-12

0
705

00:00:01:49

2978
-4.2089e+03
2.6237e-07

0
973

00:00:46:07

2978
-4.2089e+03
1.2095e-09

0
1465

00:00:26:32

G30
2000

2993
-4.2107e+03
4.3487e-03

0
8

00:00:00:07

3007
-4.2154e+03
2.8211e-08

0
1049

00:00:07:03

3007
-4.2154e+03
1.1262e-11

0
714

00:00:02:54

3007
-4.2154e+03
3.6633e-07

0
1033

00:00:29:38

3007
-4.2154e+03
1.3249e-09

0
1465

00:00:27:07

G31
2000

2840
-4.1139e+03
4.4544e-03

0
8

00:00:00:09

2876
-4.1167e+03
1.3367e-08

0
1049

00:00:04:01

2876
-4.1167e+03
4.0493e-11

0
768

00:00:02:27

2876
-4.1167e+03
9.9629e-07

0
1040

00:00:52:58

2876
-4.1167e+03
1.4877e-09

0
1432

00:00:20:18
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Table 3: MaxCut Benchmark with GSet (cont.).

SketchyCGAL MoSeK SDPT3 SDPNAL+ Sedumi

G32
2000

1286
-1.5645e+03
4.4160e-03

0
8

00:00:00:05

1268
-1.5676e+03
2.1823e-13

0
1049

00:00:03:57

1268
-1.5676e+03
3.5478e-11

0
589

00:00:00:58

1288
-1.5675e+03
2.9972e-14

0
974

00:01:13:59

1268
-1.5676e+03
8.8110e-10

0
1466

00:00:23:45

G33
2000

1262
-1.5410e+03
4.4238e-03

0
8

00:00:00:05

1276
-1.5443e+03
1.8467e-13

0
1049

00:00:03:36

1276
-1.5443e+03
2.1554e-11

0
595

00:00:01:02

1282
-1.5442e+03
5.0275e-15

0
1036

00:01:20:22

1276
-1.5443e+03
2.4434e-09

0
1432

00:00:12:44

G34
2000

1266
-1.5435e+03
4.4154e-03

0
8

00:00:00:05

1250
-1.5467e+03
2.9281e-13

0
1049

00:00:04:06

1254
-1.5467e+03
1.1258e-12

0
595

00:00:00:56

1258
-1.5466e+03
9.1706e-15

0
1005

00:01:26:33

1256
-1.5467e+03
3.4482e-10

0
1466

00:00:13:43

G35
2000

7418
-8.0057e+03
4.4657e-03

0
8

00:00:00:18

7411
-8.0147e+03
2.3327e-08

0
1049

00:00:04:36

7411
-8.0147e+03
1.3377e-11

0
654

00:00:01:46

7411
-8.0147e+03
5.6863e-09

0
993

00:00:57:44

7411
-8.0147e+03
6.6740e-10

0
1494

00:00:21:25

G36
2000

7371
-7.9941e+03
4.4700e-03

0
8

00:00:00:17

7399
-8.0060e+03
3.5444e-08

0
1049

00:00:06:47

7399
-8.0060e+03
2.6518e-14

0
590

00:00:01:55

7396
-8.0060e+03
2.2431e-09

0
994

00:00:58:12

7399
-8.0060e+03
4.4800e-10

0
1498

00:00:16:56

G37
2000

7374
-8.0007e+03
4.4645e-03

0
8

00:00:00:19

7443
-8.0186e+03
3.7915e-08

0
1049

00:00:04:24

7443
-8.0186e+03
8.6663e-12

0
724

00:00:01:21

7437
-8.0186e+03
7.5503e-09

0
993

00:00:48:17

7443
-8.0186e+03
2.0343e-09

0
1401

00:00:18:56

G38
2000

7370
-7.9999e+03
4.4400e-03

0
8

00:00:00:19

7402
-8.0150e+03
2.7416e-08

0
1049

00:00:06:27

7402
-8.0150e+03
4.4579e-13

0
590

00:00:02:25

7400
-8.0150e+03
8.8096e-09

0
888

00:00:48:12

7402
-8.0150e+03
2.0761e-10

0
1431

00:00:19:18

G39
2000

2143
-2.8700e+03
4.4570e-03

0
8

00:00:00:15

2176
-2.8776e+03
1.0983e-08

0
1049

00:00:04:37

2176
-2.8776e+03
1.7938e-12

0
621

00:00:01:49

2171
-2.8776e+03
1.7759e-09

0
1067

00:00:47:07

2176
-2.8776e+03
5.1775e-10

0
1563

00:00:32:23
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Table 3: MaxCut Benchmark with GSet (cont.).

SketchyCGAL MoSeK SDPT3 SDPNAL+ Sedumi

G40
2000

2071
-2.8611e+03
4.4469e-03

0
8

00:00:00:22

2153
-2.8648e+03
3.9814e-08

0
1049

00:00:05:05

2153
-2.8648e+03
2.8335e-11

0
723

00:00:01:31

2151
-2.8648e+03
3.3046e-07

0
1067

00:00:29:13

2153
-2.8648e+03
1.6695e-09

0
1532

00:00:32:19

G41
2000

2087
-2.8602e+03
4.4599e-03

0
8

00:00:00:15

2114
-2.8652e+03
4.6842e-08

0
1049

00:00:06:12

2114
-2.8652e+03
1.5034e-12

0
641

00:00:01:31

2114
-2.8652e+03
6.0544e-09

0
1067

00:00:50:39

2114
-2.8652e+03
7.0174e-10

0
1498

00:00:31:37

G42
2000

2186
-2.9392e+03
4.4565e-03

0
8

00:00:00:12

2172
-2.9463e+03
1.7392e-08

0
1049

00:00:06:28

2172
-2.9463e+03
4.3777e-12

0
671

00:00:01:28

2178
-2.9463e+03
1.8720e-15

0
936

00:00:25:19

2172
-2.9463e+03
1.1033e-09

0
1468

00:00:21:00

G43
1000

6524
-7.0268e+03
3.0606e-03

0
7

00:00:00:02

6518
-7.0322e+03
4.4803e-08

0
298

00:00:00:28

6518
-7.0322e+03
1.1908e-13

0
246

00:00:00:18

6518
-7.0322e+03
6.6168e-07

0
347

00:00:02:23

6518
-7.0322e+03
1.3780e-09

0
483

00:00:02:08

G44
1000

6491
-7.0241e+03
3.0788e-03

0
7

00:00:00:02

6461
-7.0279e+03
7.0255e-09

0
298

00:00:00:28

6461
-7.0279e+03
1.0885e-11

0
246

00:00:00:22

6461
-7.0279e+03
9.6232e-07

0
340

00:00:02:26

6461
-7.0279e+03
4.9394e-10

0
420

00:00:01:28

G45
1000

6449
-7.0208e+03
3.0408e-03

0
7

00:00:00:04

6447
-7.0248e+03
1.0257e-08

0
298

00:00:00:41

6447
-7.0248e+03
9.2987e-12

0
246

00:00:00:20

6447
-7.0248e+03
9.7518e-07

0
348

00:00:03:02

6447
-7.0248e+03
6.2000e-10

0
420

00:00:01:29

G46
1000

6458
-7.0250e+03
3.1575e-03

0
7

00:00:00:04

6416
-7.0299e+03
1.4069e-08

0
298

00:00:00:32

6416
-7.0299e+03
7.8291e-13

0
246

00:00:00:18

6416
-7.0299e+03
7.3592e-07

0
344

00:00:02:23

6416
-7.0299e+03
1.6385e-09

0
483

00:00:01:45

G47
1000

6461
-7.0324e+03
3.0751e-03

0
7

00:00:00:02

6452
-7.0367e+03
4.6358e-09

0
298

00:00:00:29

6452
-7.0367e+03
5.9188e-12

0
246

00:00:00:18

6454
-7.0367e+03
6.8425e-15

0
348

00:00:03:01

6452
-7.0367e+03
1.1436e-09

0
482

00:00:01:38
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Table 3: MaxCut Benchmark with GSet (cont.).

SketchyCGAL MoSeK SDPT3 SDPNAL+ Sedumi

G48
3000

6000
-5.9870e+03
5.2439e-03

0
9

00:00:00:03

6000
-6.0000e+03
2.1863e-14

0
2086

00:00:07:24

6000
-6.0000e+03
2.5288e-13

0
959

00:00:02:13

6000
-6.0812e+03
2.1707e-13

0
1390

00:02:52:47

6000
-6.0000e+03
2.0368e-12

0
2621

00:00:32:41

G49
3000

6000
-5.9871e+03
5.4493e-03

0
9

00:00:00:02

6000
-6.0000e+03
1.4375e-13

0
2086

00:00:07:44

6000
-6.0000e+03
3.3753e-14

0
959

00:00:01:49

6000
-6.0026e+03
3.9549e-13

0
1424

00:01:53:02

6000
-6.0000e+03
4.4770e-10

0
2621

00:00:43:07

G50
3000

5868
-5.9796e+03
5.4017e-03

0
9

00:00:00:02

5880
-5.9882e+03
5.4964e-14

0
2152

00:00:08:45

5880
-5.9882e+03
3.4115e-14

0
959

00:00:02:20

5880
-5.9915e+03
9.6276e-14

0
1400

00:02:46:35

5880
-5.9882e+03
2.0697e-13

0
2621

00:00:29:42

G51
1000

3687
-3.9918e+03
2.2432e-03

0
7

00:00:00:06

3738
-4.0063e+03
6.5908e-08

0
298

00:00:00:28

3738
-4.0063e+03
4.7342e-13

0
246

00:00:00:18

3737
-4.0063e+03
9.3109e-07

0
348

00:00:03:40

3738
-4.0063e+03
1.4928e-09

0
483

00:00:02:29

G52
1000

3727
-3.9956e+03
2.3113e-03

0
7

00:00:00:06

3711
-4.0096e+03
1.1607e-08

0
298

00:00:00:30

3711
-4.0096e+03
1.1565e-12

0
246

00:00:00:23

3708
-4.0096e+03
1.0138e-06

0
347

00:00:03:51

3711
-4.0096e+03
2.1532e-09

0
418

00:00:01:27

G53
1000

3714
-3.9972e+03
1.9289e-03

0
7

00:00:00:06

3712
-4.0097e+03
6.2655e-08

0
298

00:00:00:28

3712
-4.0097e+03
6.4444e-14

0
246

00:00:00:17

3712
-4.0097e+03
1.0682e-14

0
355

00:00:03:31

3712
-4.0097e+03
4.4861e-10

0
483

00:00:02:11

G54
1000

3700
-3.9934e+03
1.9950e-03

0
7

00:00:00:07

3716
-4.0062e+03
1.4837e-08

0
298

00:00:00:43

3716
-4.0062e+03
1.4319e-12

0
311

00:00:00:14

3718
-4.0062e+03
1.5096e-14

0
347

00:00:03:35

3716
-4.0062e+03
1.5897e-09

0
482

00:00:01:47

G55
5000

9884
-1.1036e+04
4.0738e-03

0
11

00:00:02:42

9866
-1.1039e+04
6.5842e-09

0
6541

00:01:08:53

9866
-1.1039e+04
1.0881e-12

0
2646

00:00:13:54

9865
-1.1039e+04
2.1875e-07

0
3701

00:08:41:41

9866
-1.1039e+04
1.9760e-09

0
7448

00:04:30:44

Continue on the next page
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Table 3: MaxCut Benchmark with GSet (cont.).

SketchyCGAL MoSeK SDPT3 SDPNAL+ Sedumi

G56
5000

3584
-4.7569e+03
7.0679e-03

0
11

00:00:01:49

3595
-4.7600e+03
3.2421e-08

0
6541

00:01:05:47

3595
-4.7600e+03
4.2710e-14

0
2735

00:00:19:58

3596
-4.7600e+03
1.1317e-11

0
3700

00:13:19:39

3595
-4.7600e+03
7.1008e-10

0
6862

00:04:12:45

G57
5000

3150
-3.8791e+03
7.0600e-03

0
11

00:00:00:16

3152
-3.8855e+03
1.6506e-13

0
6541

00:00:55:50

3156
-3.8855e+03
2.7378e-13

0
2652

00:00:13:39

3192
-3.8853e+03
4.6605e-14

0
3700

00:20:51:45

3158
-3.8855e+03
1.7408e-09

0
6861

00:03:49:29

G58
5000

18470
-2.0135e+04
7.0648e-03

0
11

00:00:02:52

18561
-2.0136e+04
1.4230e-08

0
6541

00:01:17:25

18561
-2.0136e+04
2.4310e-12

0
2748

00:00:18:26

18559
-2.0136e+04
4.5090e-15

0
3724

00:14:15:52

18561
-2.0136e+04
9.3470e-10

0
6862

00:04:40:20

G59
5000

5321
-7.2866e+03
7.0688e-03

0
11

00:00:01:46

5325
-7.3123e+03
1.0705e-08

0
6541

00:01:14:29

5325
-7.3123e+03
4.5632e-12

0
2802

00:00:19:02

5316
-7.3123e+03
4.1272e-15

0
3734

00:18:10:33

5325
-7.3123e+03
1.3622e-09

0
6862

00:09:19:12

G60
7000

13617
-1.5219e+04
7.0468e-03

0
20

00:00:04:04

13610
-1.5222e+04
1.0901e-08

0
12681

00:02:27:21

13610
-1.5222e+04
1.1320e-12

0
5017

00:00:53:31

13623
-1.5222e+04
5.4916e-14

0
7074

01:10:39:19

13610
-1.5222e+04
8.9220e-10

0
13237

00:11:31:27

G61
7000

5208
-6.8239e+03
8.3648e-03

0
20

00:00:02:09

5218
-6.8281e+03
1.7210e-08

0
12681

00:02:37:09

5218
-6.8281e+03
5.3273e-13

0
5395

00:00:41:19

5194
-6.8281e+03
2.8846e-15

0
7137

01:08:33:11

5218
-6.8281e+03
1.3178e-09

0
13237

00:17:32:16

G62
7000

4406
-5.4258e+03
8.3568e-03

0
16

00:00:00:56

4384
-5.4309e+03
1.6462e-13

0
12681

00:02:04:21

4384
-5.4309e+03
6.5021e-13

0
5089

00:00:35:16

4404
-5.4306e+03
3.2675e-14

0
7071

01:13:44:46

4384
-5.4309e+03
2.3616e-09

0
13236

00:09:23:00

G63
7000

25890
-2.8218e+04
8.3635e-03

0
16

00:00:06:04

25988
-2.8244e+04
4.4392e-08

0
12681

00:02:48:34

25988
-2.8244e+04
1.6210e-11

0
5235

00:00:52:03

26000
-2.8244e+04
6.7982e-15

0
7077

01:17:16:18

25988
-2.8244e+04
1.4974e-09

0
13237

00:12:58:10

Continue on the next page
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Table 3: MaxCut Benchmark with GSet (cont.).

SketchyCGAL MoSeK SDPT3 SDPNAL+ Sedumi

G64
7000

7645
-1.0438e+04
8.3622e-03

0
20

00:00:02:10

7746
-1.0466e+04
4.9100e-08

0
12681

00:02:51:13

7746
-1.0466e+04
2.5557e-11

0
5649

00:00:50:25

7745
-1.0466e+04
1.7486e-14

0
7076

01:14:32:37

7746
-1.0466e+04
1.5548e-09

0
13237

00:14:01:50

G65
8000

5062
-6.1967e+03
8.9344e-03

0
16

00:00:00:36

5008
-6.2055e+03
4.0923e-13

0
15495

00:03:37:10

5010
-6.2055e+03
2.4743e-11

0
6613

00:00:52:36

5026
-6.2051e+03
1.7440e-14

0
9177

02:17:39:55

–
–
–
–
–
–

G66
9000

5750
-7.0624e+03
9.4618e-03

0
18

00:00:00:31

5764
-7.0772e+03
6.4942e-13

0
21969

00:04:51:33

5766
-7.0772e+03
2.3288e-12

0
8405

00:01:14:52

5782
-7.0768e+03
1.4708e-14

0
11565

03:07:36:48

–
–
–
–
–
–

G67
10000

6266
-7.7367e+03
9.9992e-03

0
16

00:00:02:13

–
–
–
–
–
–

6224
-7.7444e+03
1.6629e-14

0
10335

00:01:38:47

6278
-7.7441e+03
1.6371e-08

0
14231

05:21:16:12

–
–
–
–
–
–
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(a) t = 10 (154 sec) (b) t = 100 (2085 sec)

(c) t = 1000 (38’712 sec) (d) t = 10′000 (460’110 sec)

(e) original

Figure F.2. Phase retrieval SDP: Imaging. Reconstruction of an n = 6402 pixel image from Fourier
ptychography data. We solve an n×n phase retrieval SDP via SketchyCGAL with rank parameter R = 5 and show
the images obtained at iterations t = 10, 102, 103, 104. The last subfigure is the original. See subsection 7.4.3.
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Table 4
We solve SDP relaxations of QAP instances from QAPLIB using SketchyCGAL. We compute the relative

gap and compare it with the values for the CSDP method [26] with clique size k = {2, 3, 4} and the PATH method
[116] reported in [26, Tab. 4]. Smaller is better. See subsection 7.5.

Dataset Optimum SketchyCGAL CSDP2 CSDP3 CSDP4 PATH

chr12a 9552 0 34.5 6 0 42.7
chr12b 9742 0 38.9 25.4 11.9 38.1
chr12c 11156 0 5.8 2.3 2.3 18.6
chr15a 9896 0.4 2.1 2.1 2.1 52
chr15b 7990 0 26.3 34.5 29.2 158.6
chr15c 9504 0 0 0 0 63.3
chr18a 11098 1.5 69.8 0.2 0.2 76.3
chr18b 1534 8.7 8.9 22.9 29.5 99.3
chr20a 2192 6.6 122.5 76.1 43.8 95.4
chr20b 2298 0 62.9 9.3 9.3 82.2
chr20c 14142 17.1 173 100.1 111.5 88.9
chr22a 6156 0 17.2 7.6 3 38.3
chr22b 6194 4.7 7.3 2.3 1 40.4
chr25a 3796 21.8 107 49.2 25.2 69.9
esc16a 68 2.9 8.8 11.8 11.8 11.8
esc16b 292 0 0 0.7 0 2.7
esc16c 160 3.8 5 7.5 8.7 6.3
esc16d 16 12.5 12.5 50 25 75
esc16e 28 14.3 14.3 7.1 14.3 21.4
esc16g 26 0 7.7 0 15.4 15.4
esc16h 996 0 1.6 0 1.6 16.9
esc16i 14 0 0 0 0 57.1
esc16j 8 0 0 0 0 75
esc32a 130 52.3 115.4 124.6 113.8 93.8
esc32b 168 64.3 109.5 114.3 111.9 88.1
esc32c 642 2.2 12.8 15.9 13.7 7.8
esc32d 200 14 38 36 39 21
esc32e 2 0 0 0 0 600
esc32g 6 0 0 0 0 366.7
esc32h 438 5 24.7 26.9 22.8 18.3
esc64a 116 6.9 60.3 53.4 60.3 106.9
esc128 64 28.1 250 206.3 175 221.9
ste36a 9526 15.1 70.2 74.7 74.2 76.3
ste36b 15852 15.7 188.8 204.3 211.9 158.6
ste36c 8239110 9.7 66 62.8 63.7 83.2
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Table 5
We run SketchyCGAL for (the first of) 106 iterations or 48 hours of runtime, for solving SDP relaxations

of QAP instances from QAPLIB. We report the upper bound after rounding (subsection 7.5.3), the objective
value, the feasibility gap, the number of iterations, the memory usage (in MB), and the cpu time (‘hh:mm:ss’).
See subsection 7.5.

Dataset Optimum Upper bnd. Objective Feas. gap Iteration Memory Time

chr12a 9552 9552 9 576,06 5.02e−5 1000000 69 02 : 58 : 40
chr12b 9742 9742 9 759,43 2.43e−5 1000000 69 02 : 57 : 36
chr12c 11156 11156 11 021,43 2.05e−4 1000000 69 02 : 58 : 09
chr15a 9896 9936 9 519,70 1.91e−4 1000000 82 04 : 43 : 27
chr15b 7990 7990 7 469,99 1.72e−4 1000000 82 04 : 43 : 35
chr15c 9504 9504 9 517,70 3.70e−5 1000000 82 04 : 43 : 29
chr18a 11098 11262 10 700,38 2.39e−4 1000000 82 07 : 05 : 36
chr18b 1534 1668 1 534,30 8.08e−5 1000000 82 07 : 42 : 28
chr20a 2192 2336 2 183,67 1.11e−4 1000000 69 10 : 10 : 16
chr20b 2298 2298 2 289,02 9.43e−5 1000000 69 10 : 12 : 48
chr20c 14142 16554 13 316,80 1.89e−4 1000000 69 10 : 14 : 18
chr22a 6156 6156 6 152,78 1.06e−4 1000000 65 13 : 01 : 58
chr22b 6194 6486 6 198,40 9.91e−5 1000000 65 13 : 05 : 36
chr25a 3796 4624 3 692,54 2.06e−4 1000000 65 24 : 57 : 56
esc16a 68 70 60,36 5.36e−5 1000000 69 07 : 52 : 29
esc16b 292 292 287,64 9.63e−4 1000000 65 12 : 22 : 31
esc16c 160 166 145,01 5.59e−5 1000000 65 09 : 11 : 47
esc16d 16 18 13,00 6.37e−5 1000000 69 06 : 12 : 40
esc16e 28 32 25,41 6.89e−5 1000000 69 06 : 15 : 12
esc16g 26 26 22,46 7.05e−5 1000000 69 06 : 23 : 49
esc16h 996 996 975,41 2.06e−4 1000000 65 12 : 34 : 09
esc16i 14 14 11,37 8.25e−5 1000000 69 05 : 45 : 60
esc16j 8 8 7,11 8.49e−5 1000000 69 05 : 22 : 29
esc32a 130 198 99,60 3.65e−4 799533 208 48 : 00 : 00
esc32b 168 276 118,36 2.12e−4 634813 130 48 : 00 : 00
esc32c 642 656 610,85 7.33e−4 496050 65 48 : 00 : 00
esc32d 200 228 187,33 2.95e−4 609878 130 48 : 00 : 00
esc32e 2 2 1,90 4.67e−4 1000000 65 32 : 39 : 09
esc32g 6 6 5,83 4.48e−4 1000000 65 35 : 43 : 20
esc32h 438 460 417,78 3.79e−4 468726 65 48 : 00 : 00
esc64a 116 124 97,78 7.00e−3 163634 162 48 : 00 : 00
esc128 64 82 52,32 2.21e−2 30566 556 48 : 00 : 00
ste36a 9526 10966 8 992,22 9.72e−4 301900 130 48 : 00 : 00
ste36b 15852 18336 15 315,13 7.97e−4 301660 130 48 : 00 : 00
ste36c 8239110 9035686 7 980 802,09 8.86e−4 301558 130 48 : 00 : 00
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Table 6
We solve SDP relaxations of QAP instances from TSPLIB using SketchyCGAL. We compute the relative

gap and compare it with the values for the CSDP method [26] with clique size k = {2, 3, 4} and the PATH method
[116] reported in [26, Tab. 6]. Smaller is better.

Dataset Optimum CGAL CSDP2 CSDP3 CSDP4 PATH

att48 10628 73.8 213 236.5 233.6 329.8
bayg29 1610 34.8 114.3 115.8 114.3 210.1
bays29 2020 55.7 107.6 118.3 115.4 164.8
berlin52 7542 52 175 127.2 127.2 280.6
bier127 118282 60.4 216.4 193.8 193.8 234.2
brazil58 25395 86.5 248 200.8 200.8 337
burma14 3323 10.8 24.6 28.4 32.3 95.5
ch130 6110 127.7 352.4 380.6 380.6 621.3
ch150 6528 121.1 346.9 318.2 318.2 689.3

dantzig42 699 73.5 193.1 174 174 82
eil101 629 70.6 227.3 235.3 235.3 437.7
eil51 426 57.3 203.6 205.4 205.5 244.4
eil76 538 65.4 282.9 183 183 328.2
fri26 937 32.7 91.6 39.4 39.4 41.6
gr120 6942 126.7 445.2 261.6 261.6 617.6
gr137 69853 147.5 264.6 220.3 220.3 38.9
gr17 2085 13.4 46.8 32.4 44.9 86.9
gr21 2707 27.2 94.5 69.7 66.3 185.7
gr24 1272 31.4 89.2 86.2 73.9 129.4
gr48 5046 59.7 210.2 187.4 187.4 270.4
gr96 55209 117.5 228.9 201.7 201.7 46
hk48 11461 43.9 222.4 207.7 207.7 281.6

kroA100 21282 125 469.6 469 469 720.2
kroA150 26524 184 411 467.4 467.4 945.8
kroB100 22141 156.8 411.9 313.6 313.6 624.2
kroB150 26130 151.9 417.3 353.7 353.7 844.7
kroC100 20749 169.5 507.4 445.1 445.1 763
kroD100 21294 118.5 504.2 349.8 349.8 654.4
kroE100 22068 152.3 489.5 346.3 346.3 684.2
lin105 14379 167.2 303.1 234.8 234.8 248.4
pr107 44303 190.5 181.5 207.9 207.9 41.6
pr124 59030 166.6 293.8 180.2 180.2 67.6
pr136 96772 144.5 325.5 164.7 164.7 196.6
pr144 58537 264.6 255 283.7 283.7 59.8
pr76 108159 81 192.2 194 194 39.4
rat99 1211 95.3 236.4 161.5 161.5 444.1
rd100 7910 88.8 438.4 375.3 375.3 506.5
st70 675 70.8 300.9 320 317.9 387.9

swiss42 1273 35.5 163.2 190.4 190.8 194
ulysses16 6859 11.1 23.6 20.2 23.2 82.7
ulysses22 7013 26.4 64.5 57 59.7 126.3
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Table 7
We run SketchyCGAL for (the first of) 106 iterations or 48 hours of runtime, for solving SDP relaxations

of QAP instances from TSPLIB. We report the upper bound after rounding (subsection 7.5.3), the objective
value, the feasibility gap, the number of iterations, the memory usage (in MB), and the cpu time (‘hh:mm:ss’).
See subsection 7.5.

Dataset Optimum Upper bnd. Objective Feas. gap Iteration Memory Time

att48 10628 18474 9 072,72 6.92e−4 311240 74 48 : 00 : 00
bayg29 1610 2170 1 498,60 5.40e−4 1000000 195 42 : 12 : 27
bays29 2020 3145 1 855,27 6.46e−4 1000000 195 42 : 19 : 21

berlin52 7542 11463 6 658,47 1.74e−3 266403 134 48 : 00 : 00
bier127 118282 189679 111 408,10 4.76e−2 23283 941 48 : 00 : 00
brazil58 25395 47362 18 336,86 1.70e−3 202400 129 48 : 00 : 00
burma14 3323 3682 3 153,63 5.14e−4 1000000 86 04 : 45 : 13
ch130 6110 13911 6 829,52 5.15e−2 20672 1077 48 : 00 : 00
ch150 6528 14432 11 021,38 1.39e−1 13925 1605 48 : 00 : 00

dantzig42 699 1213 589,35 5.11e−4 457221 129 48 : 00 : 00
eil101 629 1073 606,08 1.47e−2 46919 494 48 : 00 : 00
eil51 426 670 406,02 1.72e−3 286697 200 48 : 00 : 00
eil76 538 890 515,78 6.18e−3 103354 286 48 : 00 : 00
fri26 937 1243 858,28 6.57e−4 1000000 64 25 : 41 : 33
gr120 6942 15740 7 246,27 2.79e−2 27503 783 48 : 00 : 00
gr137 69853 172902 96 228,89 5.61e−2 19503 1206 48 : 00 : 00
gr17 2085 2365 1 800,49 3.83e−4 1000000 81 07 : 05 : 05
gr21 2707 3444 2 570,04 5.56e−4 1000000 64 12 : 12 : 17
gr24 1272 1672 1 136,65 3.53e−4 1000000 64 17 : 51 : 17
gr48 5046 8058 4 453,05 1.63e−3 357067 64 48 : 00 : 00
gr96 55209 120060 51 189,66 8.00e−3 58132 346 48 : 00 : 00
hk48 11461 16491 10 485,32 8.89e−4 357176 69 48 : 00 : 00

kroA100 21282 47891 19 953,20 8.72e−3 53552 462 48 : 00 : 00
kroA150 26524 75326 57 289,34 1.85e−1 11901 1605 48 : 00 : 00
kroB100 22141 56865 20 531,08 1.13e−2 43381 527 48 : 00 : 00
kroB150 26130 65832 57 292,86 2.02e−1 11722 1605 48 : 00 : 00
kroC100 20749 55920 19 831,30 1.08e−2 43352 509 48 : 00 : 00
kroD100 21294 46518 19 710,13 1.19e−2 43415 527 48 : 00 : 00
kroE100 22068 55680 20 463,81 1.06e−2 43352 557 48 : 00 : 00
lin105 14379 38417 12 640,70 1.13e−2 39662 440 48 : 00 : 00
pr107 44303 128712 36 333,09 1.32e−2 35009 651 48 : 00 : 00
pr124 59030 157381 74 152,15 3.76e−2 22049 900 48 : 00 : 00
pr136 96772 236593 135 053,09 6.06e−2 17446 1163 48 : 00 : 00
pr144 58537 213397 122 144,46 1.43e−1 14698 1383 48 : 00 : 00
pr76 108159 195718 91 294,27 2.50e−2 92634 287 48 : 00 : 00
rat99 1211 2365 1 206,81 9.76e−3 46602 462 48 : 00 : 00
rd100 7910 14935 7 459,54 9.89e−3 44863 527 48 : 00 : 00
st70 675 1153 586,71 2.92e−3 153971 134 48 : 00 : 00

swiss42 1273 1725 1 115,15 5.88e−4 599689 129 48 : 00 : 00
ulysses16 6859 7622 5 968,53 8.00e−4 1000000 73 05 : 16 : 03
ulysses22 7013 8865 5 999,82 1.03e−3 1000000 69 12 : 04 : 24
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