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Abstract 13 

Train wheel flats are formed when wheels slip on rails. Crucial for passenger comfort and 14 
the safe operation of train systems, early detection and quantification of wheel-flat severity 15 
without interrupting railway operations is a desirable and challenging goal. Our method 16 
involves identifying the wheel-flat size by using a model updating strategy based on dynamic 17 
measurements. Although measurement and modeling uncertainties influence the identification 18 
results, they are rarely taken into account in most wheel-flat detection methods. Another 19 
challenge is the interpretation of time series data from multiple sensors. In this paper, the size 20 
of the wheel flat is identified using a model falsification approach that explicitly includes 21 
uncertainties in both measurement and modeling. A two-step important-point-selection method 22 
is proposed to interpret high-dimensional time series in the context of inverse identification. 23 
Perceptually important points, which are consistent with the human visual identification process, 24 
are extracted and further selected using joint entropy as an information-gain metric. The 25 
proposed model-based methodology is applied to a field train-track test in Singapore. The 26 
results show that the wheel flat size identified using the proposed methodology is within the 27 
range of true observations. Additionally, it is also shown that the inclusion of measurement and 28 
modeling uncertainties is essential to accurately evaluate the wheel-flat size because 29 
identification without uncertainties may lead to an underestimation of the wheel-flat size. 30 
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1. Introduction 35 

"Wheel flat" occurs when a wheel “locks up” while the train is moving, for example, due 36 
to emergency braking. Early detection of wheel flat is important to not only reduce high 37 
vibrations due to impact force but also to reduce the operational risks of railway operations. 38 
However, it is challenging to quantify the wheel-flat size without interrupting railway 39 
operations. Over the past two decades, various monitoring systems have been proposed which 40 
use the measured responses of the train-track system to detect the occurrence of wheel flats 1,2. 41 
As it is difficult to detect wheel flats directly, indirect methods are based on strain 3,4, 42 
acceleration 5,6, rail deflection 7 and rail-seat force 8. 43 

A significant amount of research has focused on the determination of unknown wheel-44 
condition properties using model-based data-interpretation techniques and field measurements. 45 
It is inevitable that uncertainties exist in measurement and modeling, especially in train-track 46 
system modelling which involves rather complicated wheel-rail interaction9.  47 

Residual minimization is the most widely used method for parameter identification, where 48 
an optimal set of model-parameter values is obtained by minimizing the discrepancy between 49 
model predictions and measurements 10,11.The main drawback of this method is that 50 
uncertainties are assumed to be either negligible or zero mean. This leads to parameter values 51 
that are consistent only with the measurements used in the identification process. They may fail 52 
to predict measurements under other loads or at other locations. Instead of obtaining such a 53 
solution, Bayesian model updating 12–14, which has been proposed and developed since 1990’s, 54 
is able to provide statistical descriptions of predictions. However, the accuracy of the 55 
predictions depends on the knowledge of uncertainty dependency, which is usually not 56 
available when there is a combination of correlated and systematic errors as is often the case in 57 
civil engineering practice. 58 

Compared to model-free interpretation, model-based interpretation is able to provide a 59 
physical insight into the causes of observed (measured) behavior, thus providing better 60 
quantitative information of wheel-flat sizes instead of merely providing an alert without 61 
knowing the wheel flat severity. Furthermore, model-based interpretation provides support for 62 
obtaining optimal maintenance strategies. 63 

Recently, Goulet and Smith 15 proposed a population-based method called error-domain 64 
model falsification (EDMF), where several model instances having a unique set of plausible 65 
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parameter values are generated. EDMF involves falsifying model instances from a set of 66 
plausible model instances based on measurement and modeling uncertainties. Specifically, a 67 
model instance is falsified if the difference between its predictions and measurements is greater 68 
than the threshold derived from combining modelling and measurement uncertainties. This 69 
application has already been successfully applied to performance monitoring of bridges 16–18, 70 
wind engineering 19, water supply networks 20and post-earthquake assessments 21. This method 71 
outperforms residual minimization and Bayesian model updating by correctly identifying 72 
parameter values in the presence of systematic errors without the need to consider correlations 73 
between errors 15.  74 

In wheel-flat detection, dynamic responses of interest are recorded when a railway train 75 
is running along a track. Measured values for each sensor are time series data of large size and 76 
high dimension when the data is denoted as a vector 22. Traditional approaches usually employ 77 
the whole time series for the purpose of matching, resulting in expensive computation. However, 78 
in order to perform real-time wheel profile identification in the context of high-frequency train 79 
service, the data-interpretation process must be carried out rapidly. 80 

Reducing the number of data points helps reduce the computational time. Resampling 23 81 
is one of the traditional methods but its main drawback is that resampling may distort the shape 82 
of the time series if the dimensional reduction is significant. Another approach involves 83 
dividing the time series into segments and using some scalar metric (e.g. mean value) of each 84 
segment to reconstruct the time series using a fixed segment length 24 or an adapted segment 85 
length 25. The disadvantage of this approach is that data points are no longer accurate after 86 
reconstruction, thereby adding additional uncertainty into the system identification framework. 87 
Additionally, they may smoothen out salient data points which contain important information. 88 
Other approaches map time series into another domain using discrete Fourier transform (DFT) 89 
26, discrete wavelet transform (DWT) 27 or singular value decomposition (SVD) 28. However, 90 
these approaches often lose important data points (e.g. peak values) and fail to capture the shape 91 
of the time series. 92 

Chung et al. 29 introduced perceptually important point (PIP) identification to extract 93 
important points in the human visual identification process. The importance of each point of 94 
the time series is evaluated by its contribution to the overall shape of the series. This method is 95 
used for pattern matching of technical patterns in financial applications. Similar ideas could be 96 
found in other works 30,31. As an extension of this idea, Fu et al. 32 proposed a tree structure to 97 
support incremental updating. 98 

In the context of system identification, Papadimitriou 33 and Robert-Nicoud et al. 34 99 
introduced information entropy (also called Shannon entropy 35) as an information-gain metric 100 
to evaluate the expected performance of potential sensor locations. These methodologies do not 101 
account for mutual information between sensor locations. The joint-entropy metric was thus 102 
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introduced to accommodate mutual information and it was successfully applied within the 103 
model-falsification framework 36,37. Despite the potential of these methods to select important 104 
points for wheel-flat detection, the joint-entropy metric has not yet been proposed. 105 

The goal of this work is twofold: (1) perform wheel-flat detection considering both 106 
measurement and modeling uncertainties through the model-falsification framework, and (2) 107 
propose an approach to accept high-dimensional time series data as input into identification 108 
with reasonable computational times. 109 

This paper is organized as follows. First, the framework of the error-domain model 110 
falsification and the difficulties when applied to time series data are presented in Section 2. 111 
Then, the proposed framework is explained in Section 3. Section 4 presents a case study in 112 
Singapore train system, and conclusions are summarized in Section 5. 113 

2. Error-domain model falsification 114 

In this study, a model falsification approach is adopted to provide a robust and rigorous 115 
framework for wheel-flat identification that explicitly includes both modeling and measurement 116 
uncertainties. Error-domain model falsification is a population-based identification 117 
methodology. The task can be described as identifying unknown model-parameter values 𝜽 =118 
[𝜃%, 𝜃', … , 𝜃)] , using measurement data 𝒚 = [𝑦%, 𝑦', … , 𝑦-]  where 𝑛  is the number of the 119 
parameters and 𝑚 is the number of measurements. 𝑔1(𝜽) predicts 𝑖th structural response; 𝜽∗ 120 
denotes the true values of parameters. The true prediction should be equal to the difference 121 
between 𝑔1(𝜽) and modeling uncertainty 𝜖1,-789:. It is also equal to the difference between 122 
measurement 𝑦1 and measurement uncertainty 𝜖1,-9;< (shown in Equation 1). By rearranging 123 
both uncertainties on the right-hand-side, Equation (2) is obtained. 124 

𝑔1(𝜽) − 𝜖1,-789: = 𝑦1 − 𝜖1,-9;<	 (1)	

𝑔1(𝜽) − 𝑦1 = 𝜖-789: − 𝜖-9;< = 𝑈A	 (2)	

The combination of both modeling and measurement uncertainties is treated as a random 125 
variable 𝑈A described by a probability density function 𝑓DE(𝜖) 

38. In this paper, 𝑈A is called the 126 
combined error. For candidate models (CMS), the discrepancy between its prediction and the 127 
corresponding measurement must fall inside the threshold bounds. Otherwise, the model 128 
instance is falsified.  129 

𝑇1,:7G ≤ 𝑔1(𝜽) − 𝑦1, ≤ 𝑇1,I1JI	∀𝑖 ∈ {1,… ,𝑚}	 (3)	

Threshold boundaries are defined using Šídák correction to maintain the same reliability 130 
of identification for all numbers of sensors. Threshold bounds represent the narrowest interval 131 
in which the integral of 𝑓DE,P(𝜖) is 𝜙%/- and are given in Equations (4) and (5). The confidence 132 
level 𝜙 is usually taken as 0.95 in civil engineering 15.  133 
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𝑇-1),1 = 𝐹DE,P
T% U

1
2
V1 − 𝜙%/-WX	 (4)	

𝑇-;Z,1 = 𝐹DE,P
T% U1 −

1
2
V1 − 𝜙%/-WX	 (5)	

where 𝐹DE,P
T% (∙) is the inverse cumulative distribution function of 𝑈A,1.    134 

It is challenging to deal with time series data using EDMF. First, each time series typically 135 
contains thousands of values. The point-to-point comparison between two time series is 136 
computationally demanding. Additionally, EDMF is a population-based method. The initial 137 
model set is usually very large, requiring thousands and even millions of model instances to 138 
represent the possible combinations of model-parameter values. As shown in Equations (4) and 139 
(5), the threshold boundaries become larger with the increase in comparison points. For 140 
example, when 𝑚 changes from 1 to 1000, 𝜙 = 0.95, 𝜙%/- changes from 0.95 to 0.99995. In 141 
this regard, Vernay et al. 39 computed the moving-average time series of measurements by 142 
replacing the measured value with the average value of its neighboring steps for the assessment 143 
of airflow in urban areas. The optimal averaging window is calculated to be short enough to be 144 
able to assume constant mean wind conditions and being long enough to avoid fluctuations of 145 
flow variables associated with turbulence. However, this approach is not applicable in the 146 
wheel-flat quantification. Additional averaging uncertainty would be relatively large compared 147 
with other uncertainties and this would adversely influence the accuracy of identified wheel-148 
flat size.  149 

3. Methodology 150 

The overall goal of the methodology is to quantify the wheel-flat size using model class 151 
𝑔(∙) and measured data time series 𝑷 = (𝑃%, 𝑃', … , 𝑃-) with trains running on rail track. The 152 
simulation model includes modeling of train-track interaction system and modeling of wheel 153 
flats. The model of the train-track interaction system is assumed to be calibrated and validated 154 
before being adopted in the wheel-flat quantification. The unknown parameter set 𝜽 =155 
[𝜃%, 𝜃',⋯ , 𝜃`] involves the unknown geometric information of the wheel flats, the location of 156 
wheel when wheel flat hits the rail etc. Modeling and measurement uncertainties 𝑼𝒈, 	𝑼c are 157 
quantified based on sensor knowledge, previously estimated uncertainties in the modeling 158 
method and engineering judgement.  159 

Instead of carrying out EDMF at every data point and seeking solutions of the whole time 160 
series matching, a data-point-selection method is proposed to reduce the data size and improve 161 
the falsification efficiency. The task can be expressed as follows: 162 
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Given the p-dimensional variable 𝑷 = (𝑃%, 𝑃', … , 𝑃-) , find a lower dimensional 163 
representation of it, 𝑺 = (𝑆%, 𝑆', … , 𝑆f) with 𝑘 ≤ 𝑚 , that captures the most important 164 
information in the original data. 165 

As will be explained in Section 4, the identification of wheel flat in this paper uses rail 166 
pad sensors (RPS) which measure forces due to the moving wheels on the rail pads. An example 167 
of RPS forces due to three good wheels (i.e. without wheel flat) and one bad wheel (i.e. with 168 
wheel flat) is shown in Figure 1. The force is positive if it is compression. Bogie 1 and Bogie 169 
2 are traveling from the left to the right. In Bogie 1 (Figure 1 a-b-c) which has two good wheels 170 
(A and B), the rail force reaches twice the maximum values (I and II) when Wheel A and Wheel 171 
B cross the sleeper which is installed with a rail-pad sensor. In Bogie 2 (Figure 1 d-e-f) which 172 
has a good wheel (C) and a bad wheel (D), it is easily observed that there is a significant 173 
difference in the shape of the rail-force time history. The impact force induced by a wheel flat 174 
is dramatically greater than the force induced by a good wheel. Therefore, the shape of the time 175 
series is important for wheel flat detection.  176 

 177 

  
(a): Rail-pad force time history for Bogie 1 (d): Rail-pad force time history for Bogie 2 

  
(b): I: Wheel A is crossing the sensor position (e): III: Wheel C is crossing the sensor position 

  

(c): II: Wheel B is crossing the sensor position (f): IV: Wheel D is crossing the sensor position  

Figure 1: Sensor responses for a wheel in good condition (a-b-c) and a wheel flat (d-e-f). 178 

Time series IV records the dynamic impact force when the wheel flat is crossing the sensor 179 
position. An enlarged view of IV is shown in Figure 2, where the process is separated into 180 
several phases. Phase 1: the wheel flat surface is not interacting with the rail and the induced 181 

Rail-pad sensorSleeper

Bogie 1
Wheel AWheel B

I:

Rail-pad sensorSleeper

Bogie 2
Wheel CWheel D (flat)

III:

Rail-pad sensorSleeper

Bogie 1
Wheel AWheel B

II:

Rail-pad sensorSleeper

Bogie 2
Wheel D (flat) Wheel C

IV:
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dynamic force is the same as the good wheel response; Phase 2: the wheel starts to separate 182 
from the rail due to the existence of wheel flat and the wheel impacts on the top of the rail, 183 
resulting in two peak forces (referred to as P1 force and P2 force). The P1 force is a high-184 
amplitude impact followed by a lower amplitude P2 force 40. Phase 3: the wheel-flat surface 185 
leaves the contact area and does not interact with the rail again. It is clear that the shape and 186 
amplitude of the time series are important to describe the contact between the wheel flat and 187 
the rail track reflecting the presence and size of the wheel flat.  188 

 189 
Figure 2: Rail-force time history of IV 190 

From the model prediction perspective, the quality of information provided by several 191 
points is reflected in their capacity to distinguish between the models. A population of model 192 
instances is generated with the initial ranges defined by users based on engineering judgement 193 
and experience. These models generated using the finite element method predict (or simulate) 194 
the responses of train running on rail track. The responses are time series consisting of 195 
thousands of data points. To measure the ability of selecting data points to discriminate between 196 
model instances, the joint-entropy framework is adopted. Entropy values at each data point are 197 
calculated using the distribution of predicted model-instances responses. The initial population 198 
of model instances is used to investigate the expected information gain provided by each data 199 
point using the joint-entropy framework. Points with large entropy values indicate high disorder 200 
in predictions. 201 

In summary, data points are defined as important when two requirements are satisfied. 202 
First, they contribute significantly to the overall shape of the time series. Second, they have 203 
great potential to identify unknown parameter values. 204 

Accordingly, the proposed important-point selection contains two steps. First, perceptual 205 
important points (PIP) 	PIP = (𝑄%, 𝑄', … , 𝑄k), 𝑗 ≤ 𝑚  are selected based on measured data. 206 
Second, entropy-based important points EIP = (𝑆%, 𝑆', … , 𝑆f), 𝑘 ≤ 𝑗  are selected based on 207 

𝑡

Phase 1 Phase 2 Phase 3

RPS Force

0
𝑡1

P1

P2
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initial-model-set predictions among PIP. The selection process stops when the joint-entropy 208 
evaluation of the important-point set reaches its maximum values. 209 

 210 

 211 
Figure 3: Schematic of the proposed important point selection 212 

3.1 Perceptual-important point selection 213 

The aim of this procedure is to obtain the time-series pattern without sacrificing the 214 
accuracy of the selected-data-point values. Usually, the time series pattern is characterized by 215 
the first point, the last point and some salient points such as peak values. It is consistent with 216 
the human visual identification process. However, only obvious and salient points can be 217 
captured by human visual identification. To reduce the time series to different levels of detail, 218 
the contribution of each data point to the overall shape is quantified and evaluated. The data 219 
point selected based on perceptual importance is named perceptual important data point (PIP). 220 
The concept was first introduced in the application of tracking stock performance in finance 29. 221 

There are three ways to evaluate the importance of the PIP in a time series: Euclidean 222 
distance, perpendicular distance and vertical distance (Figure 3). Perpendicular distance and 223 
vertical distance calculate the perpendicular and vertical distances respectively between the test 224 
points and the line connecting the two adjacent PIPs. Euclidean distance is the sum of the 225 
distances between the test point and its adjacent points. Fu et al. 41 shows that Euclidean distance 226 
has the worst performance in efficiency and effectiveness compared to the other two distances. 227 
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As a result, in this paper, only perpendicular-distance and vertical-distance calculations are 228 
performed. 229 

 230 
Figure 4: Distance-based data importance evaluation 231 

The PIP selection procedure can be summarized as follows: 232 
1. Given the p-dimensional variable 𝑷 = (𝑃%, 𝑃', … , 𝑃-), the first two PIPs are the first 233 

and last data point 𝑄% = 𝑃%, 𝑄' = 𝑃-.  234 
2. 𝑄n  is the data point that has the largest distance (perpendicular distance/vertical 235 

distance) to the line joining 𝑄%and 𝑄' . Then the data series is divided into two 236 
segments, i.e. [𝑄%, 𝑄n] and [𝑄n, 𝑄']. 237 

3.  𝑄o is in either of these two segments, and it is the data point providing the largest 238 
distance to its adjacent points.  239 

4. The process continues until all required 𝑗 data points are collected. The selected points 240 
are PIP = (𝑄%, 𝑄', … , 𝑄k). The number of 𝑗 is fixed by engineering judgement.  241 

3.2 Entropy-based important-point selection 242 

Information entropy, originally proposed in the field of information theory, is a metric to 243 
evaluate the information content in a set of predictions. In EDMF, 𝑛 initial model instances are 244 
sampled by taking the unique values of the unknown model parameters. In the present study, 245 
time series responses (each time series has been reduced from 𝑚 data points to 𝑗 data points 246 
after the first step selection) are calculated based on the model class selected. 247 

For each data point (e.g. data point No. 𝑡 ), there is a discrete variable vector 𝑋r =248 
[𝑥%,r, 𝑥',r, … , 𝑥),r] generated by 𝑛 initial model instances, representing the range of model-249 
instance predictions at data point 𝑡. To account for uncertainties, the width of intervals is equal 250 
to the sum of measurement and modeling uncertainties, following the EDMF framework 251 
(Section 2). The frequency count in each interval corresponds to the number of model 252 
predictions that lie within threshold bounds and thus could not be differentiated from the 253 
measured value. The width of the interval is a constant at each comparison point. The 254 
probability 𝑝1	of a model instance falls inside the 𝑖th interval is calculated as (𝑚1/𝑛), where 255 
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𝑚1	is the number of model instances that lie within 𝑖th interval and 𝑛 is the total number of 256 
initial model instances. Information entropy of data point 𝑡 is calculated as: 257 

𝐻(𝑋r) = 	−v𝑝1

:w

1x%

𝑙𝑜𝑔'(𝑝1) , 𝑖 ∈ {1, … , 𝑙r}	 (6)	

where the range of predictions of data point 𝑋r is divided into 𝑙r intervals with their respective 258 
probability [𝑝%, 𝑝', … , 𝑝:]. The information entropy 𝐻(𝑋r) reaches its maximum value when 259 
model-instance predictions are uniformly distributed into intervals, and its minimum value 260 
when all model instances fall into a single interval, meaning that model-instance predictions of 261 
this particular data point could not be differentiated.  262 

When several data points are involved in a set, the redundant information gain between 263 
them arises due to the mutual information data points may provide. Papadopoulou et al. 37 264 
introduced the joint-entropy metric to account for the mutual information, in the information 265 
entropy of a set of data points. The joint entropy assesses the information entropy between sets 266 
of predictions. For a set of two data points (e.g. data points 𝑡 and 𝑡+1), the joint entropy is 267 
defined as: 268 

𝐻V𝑋r,r{%W = 	−vv
:w|}

Jx%

𝑝1,J

:w

1x%

log'V𝑝1,JW , 𝑖 ∈ {1, … , 𝑙r}, 𝑔 ∈ {1,… , 𝑙r{%} (7) 

where 𝑝1,J is the joint probability of predictions falling into the 𝑖th interval of data point 𝑡 and 269 
the 𝑔th interval for data point 𝑡 + 1. 270 

From the information perspective, the joint entropy 𝐻V𝑋r,r{%W  follows the union 271 
calculation, i.e. the information provided by data point 𝑡  and 𝑡 +1 can be calculated by 272 
subtracting the mutual information 𝐼V𝑋r,r{%W from the sum of information provided by each 273 
data point. 274 

𝐻V𝑋r,r{%W = 𝐻(𝑋r) + 𝐻(𝑋r{%) − 𝐼V𝑋r,r{%W (8) 

Important data points are selected to achieve the maximum joint entropy which corresponds 275 
to the maximum expected information gain. High entropy indicates high sensitivity to the 276 
parameter inputs and high potential to discriminate between the model predictions using field 277 
measurements. Nevertheless, there is no guarantee of direct connection between the high joint-278 
entropy value with the smaller candidate model set. This is because the entropy framework 279 
provides only a statistical advantage in terms of optimal data-point selection as the true value 280 
of the model parameters is unknown. 281 

The methodology presented in Figure 5 is adopted. Important points are selected from PIP 282 
to EIP, one at a time. In the starting state, EIP is a null set and the PIP set contains all the 283 
perceptually important data points identified in the first step. First, the entropy of each data 284 
point is calculated with their respective prediction distribution. The data point with the highest 285 
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information entropy is selected and is added into the EIP set. In the second selection, each time, 286 
the data point with the largest information gain is selected from the remaining PIP set into the 287 
EIP set. If the difference between the joint entropy 𝐇' (the superscript is the number of entropy-288 
calculation iterations) and the joint entropy obtained with the previous data-point set 𝐇% is 289 
smaller than a stop criterion 𝛼, this means that sufficient data points have been added to the set 290 
IP. Otherwise, the data-point selection process is repeated until the criterion is met. The 291 
criterion 𝛼 is set to stop searching for redundant data points when new data points provide little 292 
new information and increase the computational time. The value of 𝛼  is set as 𝛼 =293 
1% × log'(1/𝑛), 𝑛  is the total number of simulations, where log'(1/𝑛)  is the maximum 294 
entropy that can be achieved. 295 

 296 

Figure 5: The flowchart of entropy-based important-point selection 297 

After using the proposed important-point-selection approach, the lower dimensional time 298 
series 𝑺 = (𝑆%, 𝑆', … , 𝑆f) replaces the high-dimensional time series 𝑷 = (𝑃%, 𝑃', … , 𝑃-). The 299 
new measurement and initial model sets at the selected data points are denoted as 𝒚� and  𝛀� =300 
[𝜽, 𝒈�]. The corresponding modeling and measurement uncertainties at selected data points are 301 
denoted as 𝐔𝒈�, 	𝐔𝒚�. Candidate models (CMS) with identified parameter values are found after 302 
carrying out EDMF. The general flowchart is shown in Figure 6.  303 
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 304 
Figure 6: General flowchart of flat-size quantification 305 

4. Case study 306 

4.1 System description and field test 307 

A field test was carried out at a test track in a train depot in Singapore. The test track is a 308 
ballasted track with timber sleepers spacing of 0.7 m. This test adopts a monitory system based 309 
on rail-pad-force measurement 42. Zhang et al. 43 have invented a multilayered sensing device 310 
(herein referred to as the “rail pad sensor”) which converts the rail pad into a load sensor by 311 
attaching the multilayered sensing device to the surface of the rail pad. Ten rail pads were 312 
replaced with rail pad sensors on five consecutive sleepers (shown in Figure 7 and Figure 8). A 313 
train with 12 bogies ran on the track at 50 km/h. The impact force due to the wheel flat takes 314 
place within the instrumented length between Sleeper 1 and Sleeper 5. A laser sensor was 315 
placed at the side of rail track 1, 0.9 m ahead of rail pad sensor 1 (RPS1) (shown in Figure 7) 316 
to record the time corresponding to each wheel passing the laser sensor.  317 
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 318 

Figure 7: Sensor placement in the test 319 

 320 

(a)                                                  (b) 321 

Figure 8: (a): Photograph of the tested rail track; (b): Installation of rail pad sensor 322 

4.2 System modeling 323 

Train-track dynamics involves three parts, i.e. railway track, train and wheel-rail 324 
interaction (including the effect of wheel flat). This study adopts the Timoshenko-Rayleigh 325 
beam model to simulate the rail and standard Kelvin contact-point model (a spring and viscous 326 
dashpot in parallel connecting two points) to simulate the rail fastening system (𝐾�, 𝐶�) and the 327 
sleeper support (𝐾�, 𝐶�). A discretized mass-spring-damper system is employed to model the 328 
train. A pitch plane 4-DOF a quarter coach model is used 44. Interaction between the leading 329 
and trailing bogies and their wheelsets in a train body is considered to be negligible. The bogie 330 
frame mass (𝑀�) is connected to the wheel unsprung mass (𝑀G) through the primary suspension 331 
springs and dampers (𝐾%, 𝐶%	). The quarter train body weight is simplified as a constant load 332 

0.9 m4     x     0.7 m

Rail pad sensor 
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(𝑀A𝑔) acting on the bogie. A single Nonlinear Hertzian spring (𝐾�%, 𝐾�') is used to model the 333 
wheel-rail interaction. Figure 9 shows schematically the train-track interaction model. 334 

A total of 34 sleeper bays are included in the track model to reach a condition that at mid-335 
region of the track model, the reflected waves from the clamped-end boundary are negligible. 336 
In this case study, half the bogie and one rail are modelled as the loading is assumed to be 337 
evenly distributed between the two rails. The train-track model has already been validated by 338 
repeating two well-known experiments 45,46 in previous work 47 where the simulated force using 339 
this model agrees well with measured data 47.  340 

The tested train is an empty train carrying no goods and customers. The parameter values 341 
of the train system are provided by the train operator. However, the parameter values of the 342 
track system vary from site to site. Their values have been calibrated  using an independent 343 
field test with only good wheels running on the rail 47. Also, modeling half the bogie is justified 344 
in this field test. The impact force generated by the wheel flat at one side of the rail has a 345 
negligible effect on the response of rail-pad sensor on the opposite side 47. Moreover, in the 346 
field test, when each bogie passed over, the response of the rail pad sensor immediately went 347 
back to a very low level (within environmental noise). This indicates that the effect of other 348 
wheels is negligible small 47. 349 

 350 
Figure 9: Structural model of the train-track interaction system 351 

This study focuses on the completely worn flat (see Figure 10) which is the most common 352 
type of wheel flat 48,49. The dynamic train-track interaction results in a high-frequency impact 353 
load on the crossing nose as the downward motion of the vertical wheel trajectory is reversed 354 
and the wheel is accelerated upwards. A mathematical expression of the wheel center trajectory 355 
𝑧r�(𝑥) is given in Equation (9). It is a superposition of two harmonic shapes with 𝑐 as the 356 
control parameter of curvature. 357 

𝑧r�(𝑥) ≈
𝑑
2 �
1 − 𝑐𝑜𝑠 �

2𝜋𝑥
𝐿 �� −

𝑐
4 �
1 − 𝑐𝑜𝑠 �

4𝜋𝑥
𝐿 �� , 0 ≤ 𝑥 ≤ 𝐿	 (9)	

where L is the length of wheel flat, 𝑥 is the longitudinal position of wheel center.  358 
 359 
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 360 
Figure 10: Schematic drawing of wheel flat 361 

Two key parameters to describe the geometry of wheel flat are its length (L) and depth 362 
(d). Another parameter c is a second-order term to capture the trajectory curvature. Because 𝑧r� 363 
is a non-negative value, it can be deduced that 𝑐 < 𝑑/2. The impact position 𝑋� is introduced 364 
as another model parameter to identify the location where wheel flat hits the rail (and hence 365 
which wheel has the flat). The origin of the x-axis is 10.5 m on the left from the position of 366 
RPS5. The initial ranges of these four parameters, which are large enough to include all possible 367 
sizes of wheel flats based on engineering knowledge, are listed in Table 1.  368 

Table 1: Initial ranges of parameters 369 

 L (mm) d (mm) c (mm) 𝑿𝒑 (m) 

Initial ranges  [10, 200] [0.1, 1] [0, 0.5] [12, 13] 

 370 
Sources of modeling and measurement uncertainties are given in Table 2. Uncertainties 371 

are described using uniform distributions and are generally expressed as ratios of the 372 
predictions/measured values, except for sensor resolution and environment noise which are 373 
taken as the absolute values. The rail pad sensors used in this study have been tested both in the 374 
laboratory and in field tests 42,47. The sensor accuracy is taken from those tests. The 375 
environmental noise is measured in the field when no train is running on the rail track.  376 

Uncertainties are inherent in modeling, with various assumptions made about the behavior 377 
of the track, vehicle and wheel flats. Consequently, the model is only able to represent 378 
approximately the real behavior. For parameter values in the train system, a sensitivity study is 379 
carried out to quantify their effects on the force estimation.  The ranges of the investigated 380 
properties are listed in Table 3. 100 samples based on Latin hypercube sampling are generated. 381 
Variations of those parameters lead to [-15%, 5%] error of the force estimation.  382 

As mentioned above, the track system has already been calibrated before applied in wheel-383 
flat detection. The parameter values in the track system have been updated using the responses 384 
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of rail pad sensor with good wheels running on the rail. After calibration, the simulated 385 
responses is [-5%, 5%] error of the measured responses 47. 386 

Mesh uncertainty is estimated based on a mesh refinement study 50. Uncertainty of finite 387 
element models is referenced from previous work 16,51. Additional uncertainty accounts for all 388 
other sources that individually have negligible influence e.g. round off of numbers 17.  All 389 
sources of uncertainties are summarized in Table 2.  390 

Table 2: Uncertainty sources for wheel flat detection 391 

Uncertainty sources Force 

Min Max 

Modeling 
uncertainties 

Train system -15% 5% 

Finite element model -8% 5% 

Mesh refinement -3% 3% 

Additional uncertainties -1% 1% 

Model calibration 
accuracy (track system) 

-5% 5% 

Measurement 
uncertainties 

Sensor accuracy  -5% 5% 

Environment noise -1 kN 1 kN 

Sensor resolution -50 N 50 N 

 Additional uncertainty -2% 2% 

 392 

Table 3: Ranges of parameter values in the train system  393 
Properties Ranges   Properties Ranges  

Wheel mass (𝑀G) [95%, 105%] Suspension stiffness (𝐾%)  [-90%, 110%] 

Bogie mass (𝑀�) [95%, 105%] Suspension Damping (𝐷%) [-90%, 110%] 

Train body mass (𝑀A) [95%, 105%]   

 394 

4.3 Results 395 

In this study, the wheel with flat is on one side of the track which was instrumented with 396 
five rail pad sensors RPS1 to RPS5. Unfortunately, RPS3, RPS4 and RPS5 did not work 397 
properly due to installation problem. Only the measurement signals of RPS1 and RPS2 are used 398 
for wheel flat detection. The flowchart of time series processing is shown in Figure 11. First, 399 
according to the relative position of the laser sensor to the rail pad sensors (Figure 7), the signals 400 
of RPS1 and RPS2 are extracted. Based on the knowledge of good wheels and wheels with flats 401 
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presented in Figure 1, the signals related to possible wheel flats are extracted to test the 402 
proposed methodology. Important data points are selected based on the proposed two-step 403 
approach (Section 3). Finally, the selected data points will be used to carry out the model-based 404 
flat-size quantification following the flowchart in Figure 6. 405 

 406 
Figure 11: Time series processing for flat-size quantification 407 

4.3.1 First step 408 

Adopting the PIP selection strategy as explained above, 𝑗 = 30 data points are selected for 409 
each time series, hence there are 60 points in total for the two RPS. Both vertical distance and 410 
perpendicular distance are compared. The identified PIP and identified order are shown in 411 
Figure 12 and Figure 13 which use vertical distance and perpendicular distance, respectively, 412 
as the importance measurement. The identified order is consistent with the importance of the 413 
data point. The earlier the point is identified, the more important it is. 414 

Force

Time Step

Time Step

Force

RPS output

Signal extraction
(wheel with flats)

RPS1

RPS2

Force Force

RPS1 No. of points RPS2

Important 
point 
selection
(Section 3) 

PIP selection 
(Section 3.1) 

EIP selection
(Section 3.2) 

Flat-size 
quantification 

(Flowchart: Figure 6)) 

No. of points
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 415 

(a)                                                                   (b) 416 
Figure 12: Identified PIP using perpendicular distance for (a) RPS1 time series and (b) RPS2 time 417 

series 418 

 419 

(a)                                                                                (b) 420 
Figure 13: Identified PIP using vertical distance for (a) RPS1 time series and (b) RPS2 time series 421 

While the identification order is not the same, there is little difference in the points 422 
identified in Figure 12 and Figure 13. This observation is consistent with the time series 423 
application in finance 32. 424 

4.3.2 Second step 425 

Since there is little difference in the identified points using vertical distance and 426 
perpendicular distance, here, the vertical distance is selected to be used in the next step. In this 427 
case study, 50,000 samples are generated. For each data point, the information entropy at each 428 
PIP is calculated based on the distribution of model-instance predictions. The results are shown 429 
in Figure 14. A dozen PIPs have an information-entropy value equal to zero. This is because 430 

No. of points

Rail Force (kN)

No. of points

Rail Force (kN)

No. of points
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No. of points

Rail Force (kN)
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the initial condition of the train-track system is set as the same for each simulation and 431 
corresponds to first points in the time series that have very low signal-to-noise ratio. During the 432 
first seconds, for each simulation, before the wheel flat hits the rail, the rail pad forces are the 433 
same. Among all PIPs in Figure 14, data point 58 (which is data point 28 in the second time 434 
series) is selected as the first EIP due to the large information entropy.  435 

 436 

 437 

Figure 14: Information entropy at each PIP 438 

Following the entropy-based selection, one data point is selected each time. Figure 15 439 
shows the results of selected points and the order of selection. It is observed that EIP are 440 
distributed mostly after the first peak is achieved. This shows that before the wheel flat hits the 441 
rail, the responses are similar. Therefore, these data points have a low possibility to discriminate 442 
between model-instance predictions. It is after the wheel flat hits the rail track that the response 443 
force begins to take effect to distinguish model predictions. 444 

 445 

Figure 15: Identified EIP for (a): RPS1 time series and (b): RPS2 time series 446 

In Figure 15, only four points are chosen from RPS1 time series while 14 points are 447 
selected from RPS2 time series. To investigate the effects of these two sensors, the entropy-448 
based point-selection process is carried out for (a) RPS1, (b) RPS2 and (c) RPS1+RPS2. In this 449 
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process, the joint entropy is calculated until all possible measurement points are selected and 450 
results are presented in Figure 16. 451 

 452 

Figure 16: Joint-entropy of the selected PIPs using only RPS1 response, only RPS2 response, and 453 

both RPS1 response and RPS2 response 454 

The joint-entropy of two sensors is larger than the value obtained when only one sensor 455 
is involved. This result shows that each sensor provides unique information. In Figure 16, the 456 
maximum joint entropy values are 7.68, 11.24, 12.17 when using RPS1, RPS2, and both 457 
respectively. Consistent with the selected EIP in Figure 15, Figure 16 shows that the 458 
information provided by RPS1 is less than the information provided by RPS2.  459 

 460 

4.3.3 Identification results 461 

Using the selected EIP, identification using the model-falsification method is carried out. 462 
The initial model set includes 50,000 model instances generated by Hammersley sampling 52. 463 
Modeling and measurement uncertainties are shown in Table 2. After using 18 selected EIP, 464 
49,985 models are falsified leading to 15 candidate models (0.04% of all model instances). The 465 
results are shown in Figure 17. The first four vertical axes represent the model-parameter values. 466 
Each grey line represents a candidate model instance. To validate the parameter identification 467 
result presented in this study, 𝐿  was measured on site with a measuring tape. Because it was 468 
not a newly formed flat, there was no clear boundary of 𝐿  in the measurement. The measured 469 
𝐿  is estimated to be in the range of [30 mm, 60 mm]. Using the identified values of 𝑑,  𝐿  is 470 
calculated by 𝐿  = ¡8𝑑𝑅G , where the wheel radius 𝑅G =400mm in this case study. The 471 
identified 𝐿   is in the range of [41 mm, 54 mm]. This value range is consistent with the 472 
measurement, as shown in the last vertical axis in Figure 17. 473 
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 474 

 475 
Figure 17: Identified parameter results 476 

According to Railway Group Standard GM/RT2466 53, for passenger vehicles (wheel 477 
radius 𝑅G> 330 mm, speed v ≤ 125 mile/h), the wheelset should be (and was) removed from 478 
service within 24 hours of the fault being found. 479 

 480 

4.4 Comparison with no uncertainty considered 481 

In this section, no uncertainty is considered for comparison purpose. Among 50,000 482 
model instances, the optimal model instance is obtained when the objective function is to 483 
minimize the residual between the model prediction and the in-situ measurement using: 𝜽∗ =484 

	min
𝜽
¨∑ (𝑔1(𝜽) − 𝑦1)'f

% . The optimal parameter values are highlighted via a dashed line in 485 

Figure 17. The obtained value of 𝐿  (43 mm) is near the lower bound of the values obtained 486 
considering uncertainties. This result shows that, without considering uncertainties, the wheel-487 
flat size may be underestimated, and it thus shows the importance of considering uncertainties. 488 

 489 

4.5 Comparison with random data point selection 490 

As previously mentioned, the entropy framework provides a statistical advantage in terms 491 
of optimal data-point selection. Using EIP, 15 candidate models are obtained. To investigate 492 
the performance of the entropy framework, the number of candidate models is compared with 493 
the ones in which random data points are selected as comparison data points. First, 2,000 cases 494 
of 18 data points out of 60 PIPs are generated randomly. Then the candidate models are 495 
calculated based on EDMF. The distribution of the number of candidate models (CMS) is 496 
shown in Figure 18. The mean value of numbers of CMS using random data points is 180. As 497 
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mentioned in Section 4.3.3, using the proposed point selection approach, the number of CMS 498 
is only 15. This result shows that EIP statistically outperforms random selection for the same 499 
number of data points. 500 

  501 

Figure 18: The distribution of CMS numbers using random comparison points. 502 

4.6 Comparison with equidistant data-point selection 503 

As demonstrated in Section 4.3.2, 18 data points are selected based on the proposed 504 
approach. In this section, for comparison purposes, we also choose 18 data points from the 505 
responses of RPS1 and RPS2 in total, where one point is selected every 128 data points. The 506 
modeling uncertainties and measurement uncertainties adopted are the same as in Table 2. After 507 
carrying out EDMF, the identified range of 𝐿  is found to be [26 mm, 56 mm]. This range is 508 
twice that of the one obtained using the proposed approach in Section 4.3.3. Thus, the proposed 509 
two-step approach of important-point selection is able to narrow down the range of wheel flat 510 
length more efficiently than equidistant data-point selection.  511 

5. Conclusions 512 

This study focuses on the identification of wheel-flat size using dynamic signals of rail 513 
pad sensors. Both modeling and measurement uncertainties are explicitly included by adapting 514 
the model-falsification framework to this task. The paper also presents a two-step important-515 
point selection method to accommodate high-dimensional time series. 516 

The specific conclusions are: 517 
• To accurately assess the wheel-flat size, it is essential to include both modeling 518 

and measurement uncertainties. As shown in the case study, without including 519 
them, the wheel-flat size is potentially underestimated. This may increase the risk 520 
of not taking early action to rectify the bad wheel.  521 
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• The proposed two-step approach of important-point selection has been applied 522 
successfully to deal with the time series data. In the case study, it helps reduce the 523 
number of comparison points from 2,046 to only 18, thereby significantly 524 
reducing computational time. It is also verified that the proposed approach 525 
statistically outperforms the random data selection approach and  526 

Beyond the rail-pad-force-based monitoring system in the case study, the proposed 527 
approach is applicable to other monitoring systems that compare measured time series data with 528 
model simulations.  529 

 530 
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