Abstract

In this paper, we describe a systematic low-power design methodology for technologies that offer a strong body factor. Specifically, we explore both the body bias voltage and the supply voltage knobs in order to find the MEP (minimum energy point) for a constant target frequency. Our methodology accounts for process and temperature (PT) variations while charting the design space for a simple reference design. We then show how to scale the energy data of this reference design to any arbitrary design. A case study of a 32 bit RISC microprocessor achieves an energy estimation match of our significantly less complex estimation methodology within 1% of traditional signoff results.

Details

Actions