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Abstract—With the surge in complexity of edge workloads,
it appeared in the scientific community that such workloads
cannot be anymore overflown to the cloud due to the huge
edge device to server communication energy cost and the high
energy consumption induced in high end server infrastructure.
In this context, edge devices must be able to efficiently process
complex data-intensive workloads bringing in the concept of Edge
AI. However, current architectures show poor energy efficiency
while running data intensive workloads. While the community
looks toward the integration of new memory architectures using
emerging resistive memories and new specific accelerators, we
propose a new concept to boost the energy efficiency of Edge
systems running data intensive workloads : Functionality En-
hanced Memories (FEM). FEM consist on a memory architecture
with new functionalities at a decent area overhead cost. In this
work, we demonstrate the feasibility of native transpose access
for 1Transistor-1RRAM bitcells leveraging three independent
gates transistors. Based on that, we thereby propose a concept
of FEM-enabled Edge system embedding the proposed native
transpose access RRAM-based memory architecture and an in-
SRAM computing architecture (the BLADE).

Index Terms—RRAM, 1T1R, TIGFET, Functionality En-
hanced Devices, Functionality Enhanced Memories.

I. INTRODUCTION

With the foreseen arrival of edge computing devices that
utilize complex machine learning algorithms in the con-
sumer market, requirements for embedded devices in terms of
memory capacity, processing capability and energy efficiency
are skyrocketing. In this context, industry and academia are
looking for new computing and memory technologies and
architectures that can enable both dense and energy efficient
architectures. On one hand, Functionality Enhanced Devices
(FED) such as Three Independent Gate Field Effect Transistors
(TIGFET) [1] are perceived as a promising opportunity as they
(i) are a direct evolution from FinFET technology and (ii)
enable dense digital design thanks to their various functionali-
ties such as polarity, sub-threshold slope and threshold voltage
control [2]. On the other hand, emerging resistive memory
technologies (RRAM) such as filamentary-based RRAM are
already penetrating the market as they provide easy technology
co-integration with MOS technologies, middle programming
voltage and fast switching capabilities [3], [4]. Finally, new
breakthrough in-SRAM computing architectures [5], [6], [7]
enable new opportunities in computing data-centric workloads
in a highly efficient way.

In this work, we propose to extend the concept of FED to the
concept of Functionality Enhanced Memories (FEM), which

we define as a memory array that provides new functionalities
thanks to new technology or architectural innovations. The
main motivation comes from the fact that direct scaling does
not solve issues associated to data-centric Edge AI workloads
and does comes at the cost of increased technology and design
costs. We thereby propose to reach a ”dense enough”-low cost
memory integration density, and then to add it functionalities,
making it a FEM and enabling it strong performance and
energy efficiency gains. In this context, as presented Figure 1,
Edge systems energy efficiency can be improved towards two
directions : (i) The introduction of non-volatile memories in
the cache hierarchy to mitigate the static leakage during both
sleep and active periods. (ii) The implementation of workload
specific accelerators (such as in-cache computing) to im-
prove the computing efficiency during active periods. Overall,
these enhancements move the compute/store and Volatile/Non-
Volatile (VM/NVM) memories limits and makes them closer to
each other, opening new perspective for architecture and circuit
designers but also opening new questions (reliability for e.g.).
The main focus of this paper is to give circuit perspectives for
embedded systems Edge AI towards embedding FEM in the
two following research directions :

• The functionality enhancement of NVM memories by the
integration of transpose access capabilities. We thereby
propose a native transposed access memory array en-
abling both horizontal and vertical data access leveraging
TIGFET technology. This new functionality is enabled
by the independent use of TIGFET’s polarity gates and
can be used to enable (i) direct (LSB/MSB) comparisons
or (ii) transposed access in the case of 1 word per
bitcell (i.e., binarized data or Multiple Level Cells, MLC,
RRAM). Finally, SiNWFET-based RRAM array enable
strong energy gains [8] and we propose to explore macro-
level consideration regarding sense and write amplifiers
overhead.

• The functionality enhancement of caches. We thereby
highlight the BLADE architecture [5], [6] as a func-
tionality enhanced cache architecture enabling in-memory
computing while featuring high density SRAM bitcell,
reliable operation and wide voltage range functionality.

The remainder of the paper is organized as follows. Section II
presents the background of the paper, presenting the context
RRAM technologies, and functionality enhanced devices. Sec-
tion III presents the concept of transpose access, introduces



Fig. 1. Edge Devices workload representation with associated circuit and
architectural innovations effect.
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Fig. 2. Transpose access array concept for (a) binarized data and (b) multiple-
bit data.

the proposed TIGFET-based architecture and highlights its
potential. Section IV discusses the concept of Functionality
Enhanced Memories (FEM) for Edge AI system. Finally,
Section V concludes the paper.

II. BACKGROUND

A. RRAM technologies

In order to achieve high density, low cost, high granularity
embedded Non-Volatile Memory (eMVM) integration, the
scientific community have been rushing into back-End-of-Line
(BEoL) integration for eNVM technologies in the last 5 to
10 years. In this context, Resistive Random Access Memory
(RRAM) technologies are seen as a future enabler for low-
power embedded systems as they could be integrated inside
the memory hierarchy, thereby enabling high density and near-
zero leakage caches [4], [3]. Furthermore, the introduction of
Edge AI triggers the need for high quantities of non-volatile
memory to enable local and low energy weight storing. How-
ever, RRAM technologies suffer from limited endurance, for-
bidding their use as computation memories, thereby calling for
reasonable usage as program, data or last level cache memory.
Popular technologies such as Spin-Transfer Torque Magnetic
RRAM (MRAM) [9], Phase Change Memories (PCM) [10]
or filamentary-based RRAM (ReRAM) [3] are under intense
exploration by the scientific community and some (PCM,
ReRAM) are currently being integrated in commercial micro-
controllers as a replacement for eflash technologies [11], [12],
[13]. However, the jump towards intensive usage has not been
achieved yet, and RRAM technologies are still considered
as a regular eFlash replacement. From an electrical point of
view, RRAM memories technologies can be programmed by
applying a voltage across their two electrodes (top and bottom)
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Fig. 3. use of a tigfets for high efficiently programming operations in bipolar
rram technology-based arrays.

and controlling the current going through the device (slight
different from technologies to technologies can be noted here).
The achieved resistance state is non-volatile (it’s endurance
and retention is highly correlated to the programming en-
ergy) [14], [15]. Hence, targeting a RRAM technology for
storage forbids its use as a computation element (and vice
versa).

B. Polarity Controllable Transistors

While fabrication costs of deeply scaled transistors tech-
nologies (sub-10nm) becomes hard to sustain for most of
historical foundries, the scientific community tends to look
toward other kind of devices that could enable to continue per-
formance scaling without making the fabrication bill too big.
In this context, new families of transistors called Functionality
Enhanced Devices (FED) came in [16]. The principal interest
of FED resides in the fact that while being larger than regular
CMOS devices, they enable denser logic [1]. In this paper,
we focus in Three Independent Gate (All-Around) Field Effect
Transistor (TIGFET) which enable several functionalities such
as polarity control, sub-threshold steep slope and threshold
voltage control. We focus on the TIGFET polarity control
capability in the rest of the paper. In [8], we explored the
opportunities opened by polarity control to design 1Transistor-
1RRAM bitcell enabling low voltage reset operation in the
context of 2-terminal bipolar RRAM technologies (i.e., fila-
mentary RRAM or STT-MRAM). In [8], both polarity gates
were connected together, enabling the transistor to be con-
figured in n-type during a set operation and p-type during a
reset operation, thereby enabling a gate-overdrive-free reset
operation. In this work, we propose to couple the polarity
control with breakthrough array organization schemes.

III. NATIVE TRANSPOSE ACCESS RRAM ARRAY

A. Transpose Access

The main motivation for using transpose access comes
from the fact that while computing Edge-level applications,
convolutions or matrix multiplications are counting for most
of the computation [17]. In this context, the data coming
from the data memory (in this case the non-volatile memory)
may need to be pre-processed before computing (transpose
operation for e.g.). Thereby, being able to perform both regular



and transpose access at the sub-array level enables substantial
performance gains [18], [19].

Figure 2 presents the concept of transpose read for both
binarized and word level data. In a binarized approach,
each physical bitcell correspond to the actual data stored
in memory. In that context, transpose access is achieved by
simply performing a vertical read (as shown Figure 2-a).
On the other hand, performing transpose access in regular
word level access is not straightforward as regular word
access are usually performed along the WordLine. In this
context, transpose access would lead to a MSB or LSB read
operation on the data stored in memory. While such access
could be used to accelerate some parts of a CNN execution
(for e.g. rectification or pooling), it does not enable as-is
transpose word access. Figure 2-b presents a turnaround as
it is proposed in [18]. Bitwise structure is considered and
the words are interleaved across several arrays. For each
access (for e.g. 32bits word), 32 arrays are accessed and the
number of accessed words depends on the array throughput.
In [19], the authors explored the usage of the transpose access
from an architectural point of view, but the authors assume
crosspoint memories and only marginally discuss actual
circuit or technology considerations. In [20], the authors
propose a local BitLine-based architecture to enable transpose
access. However, in this implementation, the periphery area
is doubled. Also, the use of local BitLines strengthen data
placement constraints from the programmer side as not all
the data can be transposed.

B. Proposed Architecture

In this work, we propose to use the previously introduced
polarity control TIGFET transistors to enable native transpose
access. Thanks to their three gates, a polarity control can be
enabled as introduced section II-B. In that sense, we propose
here to use the mechanism demonstrated in [8] to perform
bidirectional read operations. horizontal real operations are
performed by setting up the TIGFET in n-type, and vertical
accesses are performed by setting up the TIGFETs in p-type.
In that sense, the read margin is kept high in both regular
and transpose access, as the transistor Vgs is always precisely
controlled. Figure 4 presents the architecture proposed in this
work. regular and transposed access are always used to share
the peripheral circuitry. In the presented example, during a
regular access (in red), two arrays are accessed in transpose
mode and two arrays in regular access mode. On the other
hand, during a transpose access (in green) the opposite is done.
This scheme enables to reuse all the peripheral circuitry for
both regular and transpose access.

Figure 5 presents the schematic of the proposed array
organization. Two WordLines (WL) are integrated: the Vertical
WL (VWL) and the Horizontal WL (HWL). Finally, the
Polarity Line (PL) is biased either to vdd or gnd to trigger
the TIGFET polarity switch. Peripheral circuitry also relies
on single TIGFET transmission gate to optimize the area
efficiency. During a regular access, the current flowing though
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Fig. 4. Proposed Native transpose array organization featuring periphery
sharing.
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the bitcells is read on the BL periphery while it is read
on the SL periphery during a transpose access. The Sense
Amplifiers (SA) are connected to the neighboring SLs or BLs
and depending on the requested operation, one or the other is
selected.

C. Performance evaluation and validation

Figure 6 presents a transient simulation of operation of a
2x2 proposed native transpose memory. Two read operations
are performed from each sides. First, a regular horizontal read
operation is done. Then, a vertical read operation is performed.
As introduced previously, in order to achieve an horizontal
operation, the access TIGFETs transistors are setup in n-
type configuration. While on the other hand, for the vertical
transpose read operation, the access TIGFETs are setup in p-
type configuration. Finally the two SA outputs shows a ”11”
for the horizontal read (DataOutH) and ”01” for the vertical
read (DataOutV), corresponding to the data actually stored in
the memory.

IV. FEM FOR EDGE AI

In this paper, we explored the vision proposed Figure 7.
The proposed Edge device architecture optimized for data-
centric workloads relies on two Functionality Enhanced Mem-
ory (FEM) concepts : (i) a native transpose access RRAM-
based memory enabling in-situ data pre-shaping. (ii) a SIMD
in-SRAM computing architecture, the BLADE which can
efficiently perform multiplications on the pre-shaped data. By
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Fig. 7. Proposed vision featuring Functionality Enhanced Memories. Trans-
pose access RRAM and in-SRAM computing architecture are leveraged to
improve the energy efficiency of Edge Systems.

doing so, we do not target the most dense possible memory
architecture, but we make it worth the price by improving
the performances (i.e, in a previous work, we demonstrated 3
to 6x of performances improvements depending on the data-
intensive workload thanks to the BLADE in-cache computing
architecture in [6]; the authors of [19] demonstrated up to
14.5x performances gains; the authors from [18] showed a
4.7x more efficient use of their SRAM while running AI and
filtering workloads thanks to the transpose access). Finally, the
integration of non-volatile RRAM technologies in an Edge sys-
tem is also expected to strongly improve the energy efficiency.
As a perspective, in a parallel research path, to compensate for
highly unbalanced read/write energy and time cost of RRAM
technologies, new circuits [21] and control architectures [22]
are under intense investigation and are expected to bring-in 2
to 10x of energy and performances improvements depending
on the applications compared to simple SRAM replacement.
The rationale behind this work, as primarily discussed in
Figure 1, consists in bringing up the non-volatility in the
memory hierarchy while bringing down more computing capa-
bilities among the memory. However, for reliability and energy
efficiency reasons, it is clear that these two limits may not want
to be crossed, or at least not with the current state of RRAM
technology developments and understanding.

V. CONCLUSION

In this work, we have proposed a new concept that we
called Functionality Enhanced Memories (FEM) in order to
improve the energy efficiency of embedded systems running
Edge-level AI applications. In that sense, we proposed a new
native transpose access memory using TIGFET transistors and
validated its functionality through circuit simulations. Finally,
we discussed the integration of FEM memories in order to
answer the new questions opened by data intensive Edge AI
workloads.
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