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Abstract

The dramatic evidence of climate change is making the transition to more renewable energy sys-
tems an urgent global priority. As energy planners normally look 20-50 years ahead, it is crucial
to consider the key uncertainties stemming from inaccurate forecasts (e.g. of fuel prices, invest-
ment costs, etc.) in energy models to ensure making robust investment decisions. Nonetheless,
uncertainty is to date seldom accounted for in energy planning models.

In this paper, we challenge the general perception that the transition to a more renewable energy
system always comes at a higher price; to do this, we analyze the impact of uncertainty on the cost
of this transition for a real-world national energy system. Concretely, we first generate a set of
energy planning scenarios with increasing renewable energy penetration (REP); in a second stage,
we perform an uncertainty analysis to compare the cost of these scenarios and thus to determine
the significance of the difference in their total cost in presence of uncertainty. Our results show
that increasing the amount of renewable energy in a national energy system is not necessarily as-
sociated to a higher cost, and can even lead to a cost reduction for some specific realizations of the
uncertain parameters.
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1. Introduction

The Earth is warming up at an alarming pace. Most countries have agreed on ambitious goals for
reducing the human impact on the climate (Rogelj et al., 2016) and have started to make plans
for a transition towards more sustainable systems (Kern and Rogge, 2016). A major part of this
energy transition is related to an increased use of renewable energy sources (RESs). Many authors
have thus used energy models to evaluate the impact of an increased share of RESs in energy
systems planning. Jacobson et al. (2015) investigated the feasibility and cost of a fully renewable-
powered system for the United States and concluded that, when externalities are accounted for,
such system would be less expensive than a traditional energy system; Schill (2014) performed a
similar analysis for the German energy system with the objective of achieving 86% REP by 2050,
showing that this can be done with a relatively limited investment in energy storage capacity as
long as a higher flexibility in the operation of fossil power plants is allowed.

Despite these results, and despite the fact that today there are several technological options for a
cost-competitive generation of renewable energy, the public opinion often still perceives RESs as
being far more expensive than fossil fuels. As an example, Ntanos et al. (2018) report the results
of a recent survey in Greece, in which the respondents identified in the “high installation costs”
the main reason for not using RESs. In this paper, we challenge this general perception. The main
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Figure 1: Modeling flowchart

contribution of our work compared to the literature is the consideration of multiple sources of
uncertainty in the analysis. In fact, the main shortcoming of most works proposed in the literature
lies in the use of “deterministic”” models, which do not consider uncertainty and assume that long-
term forecasts for the key parameters (e.g. fuel prices) are correct. However, long-term forecasts
are inevitably inaccurate (Moret et al., 2017), and thus it is crucial to consider uncertainties in
long-term energy modeling (DeCarolis et al., 2017; Mavromatidis et al., 2018).

In this paper, we propose an analysis of the cost and investment decisions for different degrees
of REP in an energy system, with a particular focus on the impact of uncertainty in the process,
taking the national energy system of Switzerland as a real-world case study. The methodological
approach is shown in Figure 1. First, we model the Swiss energy system using the Swiss En-
ergyScope (SES) framework (Moret et al., 2014; Codina Girones et al., 2015). SES, which we
describe in Section 2, is a mixed-integer linear programming (MILP) model, which identifies the
optimal investment and operation strategy to minimize the total annual cost of the energy system.
In a second phase, the model is used deterministically (i.e. with all parameters at nominal values)
to determine the optimal energy planning scenarios under increasing shares (&;) of RESs (Section
3). Third, the impact of uncertainty is evaluated: for each of the previously obtained scenarios, the
investment strategy is fixed and the total cost of the system is evaluated with a Monte-Carlo based
approach, considering as uncertain parameters all the costs, the discount rates and the lifetime of
technologies. This allows to perform an uncertainty analysis of the solution (Section 4).

2. The energy model

The paper is based on the SES model, a framework for the strategic energy planning of the Swiss
energy system. In particular, in this paper we use the open-source MILP version of the model by
Moret (2017)!. Tt is a representative model of an energy system, including electricity, heating and
mobility: given the end-use energy demand, the efficiency and cost of energy conversion technolo-
gies, the availability and cost of energy resources, the model identifies the optimal investment (F)
and operation (Fy) strategies to meet the demand and minimize the total annual cost of the energy
system. In comparison to other energy models, which often consider hourly timesteps and multi-
stage investment plans, it has a lower level of detail, but it offers a reasonable trade-off between
CPU time and accuracy; in particular, its multiperiod monthly formulation allows accounting for
the main dynamics of concern in energy systems planning, such as seasonal variations, long-term
energy storage management, and uncertainties in loads and renewable production.

The objective of the SES model is to minimize the annual total cost Cyy expressed by the sum
of the annualized investment cost (Ciny), of the annual operational costs (Cop) and of the annual
maintenance cost (Cpaint) (1).

min Ctot = min ( Z Cinv(J) + Z Crnaint (/) + Z Z Cop(rat)top(t)) (D

JjeE Jje& re#te T

'Model available at https://github. com/stefanomoret/SES_MILP and fully documented in (Moret, 2017)
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where the sets &, # and .7 represent the technologies, the resources (renewables and non-
renewables as well as electricity import) and the time periods (months) respectively. 7,,(r) de-
notes the duration of the period ¢. The main constraints are the energy and resource balance in
each period; the limited availability of resources; the capacity factor of different energy conver-
sion technologies; the limits to the maximum installed capacity of different technologies; and the
limits to grid capacity (accounting for the additional investments linked to a higher penetration of
stochastic renewables).

In this paper, we modify the model presented by Moret (2017) as follows: i) we allow individual
technologies to cover the full share of the demand in their sector, e.g. electric vehicles can satisfy
all the private mobility demand (finin%(j) =0, fnax%(J) = 1 Vj € &); ii) we allow freight trans-
port to be fully satisfied by trains; iii) we impose the phase out of nuclear energy, in agreement
with the Swiss energy strategy.

3. Deterministic energy planning

In addition, in order to quantify and to constrain the impact of RESs, Eq. (2) is added to the model
formulation.

Y Y Funt)t,() =€) Y Fu(rt)top(1) )

r€Rrest€T re#te T

where the parameter € represents the minimal renewable penetration ratio in the energy system
and the set Zggs is a subset of Z composed of all renewable resources (solar, wind, wood, hydro,
geothermal, synthetic natural gas, bioethanol and biodiesel). In Eq. (2), F¢(r,¢) stands for the
utilization of resource r at period ¢. In this paper we analyze 11 scenarios with different values of
the € parameter, ranging from 0 % to 90 % with 10 % steps, plus the “maximum REP” scenario
with € =95 %.

The energy mixes of the resulting 11 scenarios are shown in Figure 2. It should be noted that
scenarios 1, 2 and 3 are equivalent, due to the fact that the REP in the unconstrained (i.e. with 0 %
minimum REP) case is approximately 20 %. Among the RESs, wind and (new) hydro-power are
the most competitive from a cost perspective and reach their maximum potential at a REP level of
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Figure 2: Renewable energy production and storage capacity in different REPs
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Figure 3: Sankey diagram for energy flows in 95 % REP scenario [TWh]

60 %. The use of solar energy emerges in the optimal solution only starting from a REP of 50 %,
and it is only used extensively for REP > 70 %. Wood is only used in very high REP scenarios, due
to its high assumed cost in the model. The results of the deterministic optimization also show that
the required storage capacity is relatively limited: hydro-electric storage reaches its peak in the
40 % REP scenario, at a value approximately 35 % higher than the base case, while power-to-gas
is only activated in the 95 % REP scenario, allowing to reach a total seasonal storage capacity of
approximately 4,000 GWh. Note that, due to the monthly resolution of the model, here dynamic
storage technologies for balancing in-time supply-demand at a daily or more fine time resolution
(such as batteries) are not considered. This choice is motivated by computational reasons.

How does an almost completely renewable-based energy system look like? This is shown in
Figure 3, where the energy flows in Scenario 11 are represented. As expected, the demand is
dominated by the use of electricity, with the exception of part of the high-temperature heat demand
(provided by biomass boilers) and of the low-temperature heat demand (provided by thermal solar
and by geothermal heat). The use of boilers and gas-driven heat pumps for low-temperature heat
is completely discontinued, substituted by electric heat pumps.

4. Uncertainty analysis

As highlighted in the Introduction, the problem of strategic energy planning is subject to a high
degree of uncertainty, which should not be neglected. In this article, we consider five main uncer-
tainty categories: interest rate, investment cost, maintenance cost, resource prices, and technology
lifetime. In the SES model, this translates to a total of 157 uncertain parameters. We assume that
all these uncertain parameters are uniformly distributed between their lower and upper bounds,
adopting the methodology and the uncertainty ranges defined by Moret et al. (2017).

In the uncertainty analysis, the decision variables related to the installed capacity of each technol-
ogy, and the energy utilization for each mobility technology in each period are fixed to the optimal
values calculated in the deterministic optimization for each scenario (F* and Fy", respectively).
Then, for each of the 11 scenarios, the SES model is run for different realizations of the uncertain
parameters with a Monte-Carlo approach. This corresponds to a situation where a decision for
the strategic energy planning has been taken, and we aim to analyze the cost of the application of
that specific strategy with different values for the uncertain parameters, corresponding to different
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possible future scenarios. A total of 3,000 Monte-Carlo simulations (based on an observed con-
vergence after 2,600 simulations) is run for each scenario.

In the Swiss energy system, a large share of the total annual cost (equal to 6,654 MCHF/y) derives
from fixed costs, i.e. costs which are equal for all the solutions (such as the investment cost of ex-
isting hydroelectric power plants, of the electricity grid and of energy efficiency measures). In the
simulation runs, we fix these costs to zero; this means that we do not consider them as uncertain
in the simulations, but we add them to the simulation results at their nominal values.

Figure 4 shows the results of the uncertainty analysis. It can be osberved that the mean total cost
values obtained by Monte-Carlo simulations are consistent with the deterministic results for each
scenario, as in both cases the total cost increases with €. However, the results also show that there
is a high uncertainty in the total cost of the system for all REP levels, leading to a relatively high
overlap between the different distributions (Figure 5). This can lead to the conclusion that, while
on average increasing the share of renewable energy beyond 20 % involves a higher cost for the
system, this is not necessarily true once uncertainty is accounted for.

A higher REP has also an impact on the variance of the total cost (Figure 6): given the high uncer-
tainty on the price of different fossil fuels, excluding them from the energy mix generates a clear
reduction in the uncertainty of operational costs. In contrast, the uncertainty on the investment
increases, partially balancing the previous effect, as a consequence of both the larger uncertainty
of the investment cost of technologies activated with higher REP, and of the overall higher invest-
ment cost of the system, which amplifies the uncertainty related to the interest rate. Overall, it can
be concluded that cost uncertainty decreases when the share of RES increases.

Penetration of renewable energy
30%  40%  50%  60% T0% 80% 90%  95%
0% 0.44 = 0.33

10% 0.62 0.43 = 0.30
20% 0.76  0.51 = 0.35 | 0.18
30% 0.75 0.55  0.39
40% 0.77  0.57
50% 0.78
60% 094
70%
80%
90%
100%

Cost increase
wrt to base scenario

Standard deviation of total cost{(MCHF/year)

0 0.2 0.4 0.6 0.8
Penetration of renewables
Figure 7: Probability of total cost increase for different REP sce-

Figure 6: Total cost standard deviation breakdown  narios



6 X. Lietal

Figure 7 shows the percentage of Monte-Carlo simulations where a given REP scenario was more
expensive than the base case by a certain amount. An energy system with 70 % REP was less than
20 % more expensive than the base case in 76 % of the simulations, and in 12 % of the simulations
it was actually less expensive than the base case. Even the 95 % REP case was, in most (78 %)
cases, no more than 50 % more expensive than the baseline case, while the less ambitious 50 %
REP scenario is at most 10 % more expensive than the baseline. These results are in accordance
with what previously published in the academic literature (e.g. Jacobson et al. (2015)), and the
cost difference is expected to be even lower if the external costs were included in the analysis.

5. Conclusions

Are renewable really that expensive? Based on the work that we present in this paper, the an-
swer is that yes, a renewable-based energy system will most likely be more expensive than one
where we apply no constraint on the share of renewable energy, but not always, and not by much.
Furthermore, a renewable-based energy system will be, overall, inherently more robust against
unexpected developments, particularly with respect to fluctuations in fuel prices.

The results of our uncertainty analysis, in fact, reveal that the variance in the total cost of the
system is high, and of the same order of magnitude of the average cost difference between different
scenarios. This suggests that, when considering uncertainty, increasing the amount of renewable
energy in a national energy system is not necessarily associated to a higher cost, and can even
lead to a cost reduction in some specific realizations of the uncertain parameters. These results
are of particular value to energy planners, as they challenge the common perception of a very
high cost related to the energy transition towards a renewable energy-based system. While these
conclusions are drawn based on a specific case study (the Swiss energy system), we consider that
they are sufficiently general to be applicable to other countries.
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