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Abstract We explore different aspects of the multi-stage fracturing process such
as stress interaction between growing hydraulic fractures, perforation friction, as
well as the wellbore flow dynamics using a specifically developed numerical solver.
In particular, great care is taken to appropriately solve for the fluid partition be-
tween the different growing fractures at any given time. We restrict the hydraulic
fractures to be fully contained in the reservoir (fractures of constant height) thus
reducing the problem to two dimensions. After discussions of the numerical al-
gorithm, a number of verification tests are presented. We then define via scaling
arguments the key dimensionless parameters controlling the growth of multiple hy-
draulic fractures during a single pumping stage. We perform a series of numerical
simulations spanning the practical range of parameters in order to quantify which
conditions promotes uniform versus non-uniform growth. Our results notably show
that, although large perforations friction helps to equalize the fluid partitioning
between fractures, the pressure drop in the well along the length of the stage has
a pronounced adverse effect on fluid partitioning and as a result on the uniformity
of growth of the different hydraulic fractures.
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— X Union of all fracture surfaces

— Nfrqe Number of fractures in the stage

— K" K™ K% K* Elastic fundamental influence function for normal and shear
components of tractions due to unit displacement discontinuities

— 07, 1° Normal and shear stress at x located on the fracture surface

— E,E', v Elastic Young’s modulus, plane-strain elastic modulus and Poisson’s
ratio

— H Fractures height

— p Fluid pressure

— w Fracture opening w = 6"

— s Curvilinear coordinate (along the fracture or along the wellbore)

— t Time

— ¢ Fluid flux

— ¢y Fluid compressibility

— p Fluid density

— u Fluid viscosity

— V Cross sectional average fluid velocity

— A Cross sectional area of the wellbore tubing

— a Wellbore tubing radius

— & Wellbore tubing roughness

— g Gravitational earth acceleration

— Re Reynolds number in the well

— 0 Wellbore local deviation

— Q, Surface pump fluid flow injection rate

— Q; Flow rate entering fracture #I

— Or = Qr/H Flow rate entering fracture #/ divided by fracture height

— 57 Curvilinear coordinate of the entrance to fracture #/ (along the fracture or
along the wellbore)

— pwy Fluid pressure in the wellbore in front of the enrance to fracture #/

— ping Fluid pressure inside the fracture at the enrance to fracture #1

— B Near-wellbore tortuosity exponent

— f; Near-wellbore tortuosity coefficient

— fp Perforation pressure drop coefficient

— n, number of perforations for a given fracture entry

— D, Diameter of perforations

— Kj. Rock fracture toughness

— K; Mode I stress intensity factor

— vip Local fracture velocity

— ¢ fracture half-length

— pi, 67, 7 fluid pressure, in-situ normal and shear stress in element i

— AN Displacement discontinuity methods influence matrices (k, [ =ns)

— h; Size of element i - fracture mesh

— gi—1/2: 9i+1/2 Left and right edge flux for element i

— Ci_1y2, Cit1/2 Left and right fluid conductivity for element i

— A Displacement discontinuity matrix

— T, Initial traction vector on all elements

— L Finite difference lubrication matrix

— I, Matrix related to fluid pressure increment

— Q Entry fluxes vector
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Propagation of multiple blade-like hydraulic fractures 3

— I, Matrix related to fracture volume increment

— I, Matrix related to fracture volume

— L Near-tip viscosity-toughness transition lengthscale

— iz,-il/z Size of element i - wellbore mesh

— Ai_12,Aiy1)2 Left and right cross sectional area of wellbore for element i of the
wellbore mesh

— @;_1/2, aiy1/2 Left and right wellbore radius value for element i of the wellbore
mesh

— Vi_12, Viy12 Left and right fluid velocity for element i of the wellbore mesh

— py Hydrostatic fluid pressure

— p Fluid pressure in excess of the hydrostatic pressure

— Re;_12, Rejy 1o Left and right Reynolds number for element i of the wellbore
mesh

- C:Wfl/z’ Civfkl/z

— L,, Finite difference matrix for the wellbore mesh

— I, Matrix for wellbore volume

— ./ Dimensionless viscosity for plane-strain hydraulic fracture

— #KGD Dimensionless viscosity for plane-strain hydraulic fracture

— S Spacing between fractures along the wellbore

— oy 0, Maximum and minimum principal horizontal stresses magnitude

— On = Q0/Nfrac Evenly divided surface flow rate

— I' Ratio between the characteristic stress interaction and characteristic pressure
drop through perforation

— L Fracture characteristic lengthscale

- I'IL(KGD) Expression of I' in the toughness dominated regime for plane-strain
fractures

- I, mKGD> Expression of I' in the viscosity dominated regime for plane-strain frac-
tures

— I, Expression of I' for a PKN fracture

— IT Ratio between the characteristic pressure drop in the wellbore along the
length of the stage and the characteristic pressure drop through perforation

— Il Expression of IT under the assumption of fully turbulent flow in the wellbore

Left and right fluid conductivity for element i of the wellbore mesh

1 Introduction

Multistage fracturing is the completion of choice of horizontal wells in unconven-
tional reservoirs. It consists in the stimulation of the horizontal portion of the well
from its end (i.e. the well toe) in sequences refereed to as stages. Each stage typi-
cally has several (typically from three to six or more) clusters of perforations, and
is hydraulically isolated from the previous stages by a bridge plug. The design of
a stage aims at propagating multiple hydraulic fractures during a single injection
often performed at a constant rate. The number of perforation clusters controls
the maximum number of hydraulic fractures that can initiate and simultaneously
propagate during a stage.

A number of contributions in the past years have investigated simultaneous
propagation of several hydraulic fractures during a pumping stage (see e.g. Bunger
and Lecampion (2017) for a review). These contributions have notably highlighted
the importance of the horizontal in-situ stress contrast (Kresse et al. 2013b), stress



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

4 D. Nikolskiy, B. Lecampion

\

/] -e50
f
/-1000
1050
T //-1100

N /1150
Ty /1200
200 —_}/-1250

Fig. 1 A schematic view of multiple blade-like hydraulic fractures growing simultaneously
from a horizontal well. Scales in meters.

interaction between the fractures (i.e. stress shadow) (Roussel and Sharma 2011;
Xu and Wong 2013; Wu and Olson 2015b), hydraulic fracture propagation regimes
(Bunger 2013; Kresse et al. 2013a; Bunger et al. 2014), as well as the importance
of the well perforation friction and near-wellbore friction (Desroches et al. 2014;
Lecampion and Desroches 2015¢, 2018). The key to ensure simultaneous growth
of all the fractures within one stage is to achieve equal fluid partitioning. In other
words, the rates entering all the hydraulic fractures should be equal throughout
the injection duration. From the previously mentioned contributions, it notably
appears that the coupling between wellbore hydraulic and hydraulic fracture me-
chanics is extremely important. Moreover, the local pressure drop at the hydraulic
fracture entrance - denoted as entry friction - is in most cases critical for stability
of the fluid partitioning. Notably, for the simple case of strictly axisymmetric hy-
draulic fractures, it appears that large entry friction - as typically used in practice
- is often sufficient to counteract the stress interaction between growing fractures,
thus promoting simultaneous growth (Lecampion and Desroches 2015¢,b).

In this contribution, we focus on the case of multiple blade-like hydraulic frac-
tures (constant height fractures) that may curve due to their stress interactions
(Figure 1). Such a geometry - like the case of solely axisymmetric fractures (Lecam-
pion and Desroches 2015¢) - is an end member. Whereas the hypothesis of ax-
isymmetric fractures is relevant at early time or within a reservoir of infinitely
homogeneous properties, a blade-like geometry will be encountered in a reservoir
of finite height bounded by layers with significantly larger in-situ confining stress
that restrict fracture growth to occur solely in the reservoir layer. As a result
fluid flow is uni-dimensional inside the fractures with a strictly horizontal velocity.
Such a model assuming constant height is not geared to explore the early time
of growth from a horizontal wellbore where the fractures typically have a axisym-
metric shape. It starts to be valid when the length of the fracture has reached the
height of the reservoir.
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Propagation of multiple blade-like hydraulic fractures 5

We explore different aspects of the multistage stimulation problem for blade-
like fractures using a specifically developed numerical model that solves, in a fully
coupled implicit manner, the propagation of multiple blade-like hydraulic fractures
(and their stress interactions), the fluid flow in the wellbore and the fractures as
well as the fluid partitioning between fractures.

Although in this model, the fractures are assumed to be of constant height, the
fractures are allowed to curve due to stress interactions or in-situ stress hetero-
geneities. We restrict our discussion here to the zero leak-off case for simplicity -
which corresponds to tight rocks for which the diffusion time-scale is smaller than
the injection duration. The wellbore-fracture entry connection is modeled using
engineering perforation friction and near-wellbore tortuosity terms which impose
a non-linear relationship between the flux entering the fracture and the fluid pres-
sure difference between the well and the fracture entry (Lagrone and Rasmussen
1963; Economides and Nolte 2000).

After presenting several verifications of the numerical model, we explore the
parameters controlling the stability of simultaneous propagation of hydraulic frac-
tures from a horizontal well drilled in the direction of the minimum horizontal in-
situ stress. In particular, we investigate through combined numerical simulations
and scaling arguments what controls the uniform growth of all fractures compared
to the growth of only a subset of the desired fractures. We quantify the impact
of the different competing physical processes: stress shadow/interactions between
fractures, perforation friction as well as pressure drop in the wellbore along the
stage length. We also highlight the numerical difficulties associated with the cou-
pling of the wellbore flow with the simultaneous propagation of multiple hydraulic
fractures - a problem that we may refer to as the fluid partitioning problem.

2 Problem Formulation

Under the assumption of blade like geometries of the different hydraulic fractures,
we account for the mechanical deformation of the rock, its coupling with fluid flow
in the different fractures, fracture propagation as well as fluid flow in the wellbore
and its partitioning between the different propagating fractures. We assume the
rock to be linearly elastic with uniform properties and restrict ourselves to the im-
permeable case (i.e. a rock hydraulic diffusion time-scale smaller than the injection
duration) for clarity.

2.1 Solid deformation

Restricting to an isotropic elastic homogeneous material, the quasi-static balance
of momentum allow for an integral representation. The normal ¢ and shear 7™
tractions induced at a point x (on the fracture surface with known orientation) by
displacement discontinuities (DD) distributed over the fracture surface S are given
by the following (Crouch and Starfield 1983):

"(x) =
n (X)

(K™ (x—x', H)6"(X') + K™ (x—x/, H)5*(x')) dx’
Jx (K" (x—x', H)0"(x') + K*(x —x', H)6°(x')) dx’ (1)

a 9
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6 D. Nikolskiy, B. Lecampion

where 6" is the normal DD (fracture opening) and &* the shear DD (shear slip).
Note that Eq. (1) directly extends to the case of multiple fractures (in that case
X denotes the union of the Ny fracture surfaces). It gives the interaction stress
induced by multiple fractures at a point x located on the crack surface (provided the
normal and shear components of tractions and DD are defined in the appropriate
local normal and tangent system of coordinates).

The elastic kernel Kkl(xfx’7 H), k,l =n,s used here corresponds to a simplified
2D approximation obtained from the full three dimensional kernel for a rectangu-
lar DD with appropriate corrections factors to account for a given fracture height
as suggested by Wu and Olson (2015a). It is chosen here as a computationally
effective alternative to the direct integration of the full 3D kernel over the height
of the fracture(s). Normal and shear displacement discontinuities 8", 6%, and the
corresponding tractions are taken in the horizontal mid-plane of the blade-like frac-
tures. The displacement discontinuity are thus uniform over the fracture height.
It is however important to keep in mind that such an approximate kernel leads to
erroneous stress predictions (about 10-15% difference compared to a full 3D solu-
tion) when the spacing between fractures are lower than 0.25 the fracture height
according to Wu and Olson (2015a). We believe it is a proper approximation only
for fracture spacing larger than half the fracture height. We will thus not report
simulations for lower spacing to height ratio in the following. Another possible
choice for blade-like fractures (constant height) is to assume an elliptical varia-
tion of DD in the vertical direction therefore allowing to also reduce the problem
from 3D to 2D - see Adachi and Peirce (2008); Protasov et al. (2018) for details.
We solely report here results using the approximated kernel described in Wu and
Olson (2015a).

Superposing the interaction stress with the in-situ stress field 6°(x), 7°(x) and
taking into account the balance of normal traction with the net fluid pressure
p(x) — 0°(x), we obtain the following set of boundary integral equations on all
fracture surface:

p(x) —0°(x) = [x (K" (x—x', H)0"(x') + K™ (x —x', H)6°(x')) dx/
—17(x) = [5 (K™"(x—x', H)6"(X') + K*(x —x', H)6*(x)) dx’ (2)

where p denotes the fluid pressure.

2.2 Fluid flow in the fractures

The mass conservation per unit of fracture height H averaged over the width of
fracture I (I =1,...,N) in the absence of leak-off reduces to the following one-
dimensional equation along the curvilinear coordinate system defined by the local
tangent to the fracture, we denote s the corresponding absciss:

aw dp dq ~

— 4 cw=—+=—=0/(t)0(s—s 3

e+ S = 010865 -1) 3)
where ¢y denotes the fluid compressibility, p is the fluid pressure, w =w, 4 §" is the
total hydraulic width of the fracture where w, is a small constant initial aperture
only active in the initial flaw, Q; = % is the entry volume rate per unit fracture
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Propagation of multiple blade-like hydraulic fractures 7

height H, s; denotes the coordinates of the intersection of the well with fracture I,
and 6(s) is the Kronecker delta.

Assuming laminar flow inside the fracture, the width averaged fluid balance of
momentum reduce to Poiseuille’s law. The local fluid flux g(s) is given as

wS dp
Q(S)——mg (4)

where u is the fracturing fluid viscosity.

2.2.1 Fluid flow in the wellbore

In order to solve for the simultaneous propagation of several hydraulic fractures
from a horizontal well, fluid flow inside the wellbore must be solved for. The
aim is to properly solve for the partitioning of the fluid injected from the well-
head into the different fractures. Neglecting fluid flow inertial effects that may be
associated with short transient pressure changes (water hammer etc.), the mass
and momentum balance in the wellbore after integration over the wellbore cross-
section reduces in the curvilinear coordinate s along the well trajectory to:

dp 0AV ap al
dp _ 2ma  f(Re;e) pVIV| :
e T><T><T—i—pgs1n6(s) (6)

where a is the wellbore radius and A the well pipe cross-section area (A = 7a?).
p denotes the fracturing fluid density, V the average fluid velocity. Q,(¢) is the
volumetric pump rate imposed at the well head (i.e. at s =0) whereas Qy(7) is the
flow rate entering the I-th fracture. f(Re,€) is the Darcy friction factor which is

2palV . .
2alVl g pipe relative surface roughness

function of the Reynolds number Re =
€. we use the Churchill (1977) approximation (fitting the experimental data of
Nikuradse (1950)) to estimate the friction factor f(Re,€). Churchill approximation
has the advantage of being explicit (thus does not require the solution of a non-
linear equation) at the expense of slight inaccuracies in the laminar-turbulent
transition region. Other models are possible (see e.g. (Lecampion and Desroches
2015¢; Zia and Lecampion 2017) for discussion) - the results being qualitatively

similar.

2.3 Fracture entry friction: coupling between wellbore and fracture flow

We account for a local pressure drop due to entry friction between the wellbore
and the fracture. Such a local pressure drop is related to the fluid going through
the perforations connecting the cased and cemented wellbore with the fracture.
An additional pressure drop is also usually related to the tortuosity of the fracture
geometry near the wellbore - see Bunger and Lecampion (2017) for discussions. We
use here an accepted relation for such entry friction (Lagrone and Rasmussen 1963;
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8 D. Nikolskiy, B. Lecampion

Economides and Nolte 2000). It relates the pressure drop between the wellbore and
the fracture I to the fluid flux entering the fracture I as follow:

Pt — Pinit = fo X Q3 + fi x OF (7)

where py,; = p(s7) is the fluid pressure inside the wellbore at the location of the
perforation clusters in front of fracture I and pj,; is the fluid pressure at the inlet
of fracture I (just inside the fracture). Q; is the total fluid flux entering fracture /
which is an unknown function of time resulting from the fluid partitioning between
the different propagating hydraulic fractures. The first quadratic term in Eq. (7)
corresponds to a classic turbulent pressure drop associated with the perforations
connecting the fracture to the well. The coefficient f), is function of the fluid density
p, diameter D, and number n, of the perforations. It can be estimated using an

empirical formula f, = 0.807249%46,2 (in ST units) (see e.g. Crump and Conway
pp

(1988); Economides and Nolte (2000) for details) where the dimensionless discharge
coeflicient C is typically between 0.5 and 0.9. Typical number of perforations and
diameters used provide values of f, in the range [10® —10!°] Pa/(m?/s)2. The second
term in Eq. (7) is added to account for additional pressure drop associated with
near-wellbore fracture tortuosity (see Bunger and Lecampion (2017); Lecampion
and Desroches (2015¢) for more details). The coefficient f; and B can be estimated
from step-down tests in-situ (Economides and Nolte 2000; Lecampion et al. 2015;
Desroches et al. 2014).

2.4 Fracture propagation criteria / tip asymptotic

Under the hypothesis of linear elastic fracture mechanics (lefm), the quasi-static
fracture propagation condition reduces for pure mode I fracture to

Vtip X (K] _ch) = 07 Ve Z 0 (8)

where Kj is the mode I stress intensity factor and Kj. is the rock fracture toughness.
viip denotes the local crack tip velocity. We account for the possibility of fracture
curving under mixed mode (I and II) loading. Mode II emerges from stress inter-
actions between fractures. We use here a maximum tensile stress direction criteria
to solve for the propagation direction. A maximum tensile stress criteria is known
to give similar predictions than the principle of local symmetry (minimum Kj;) -
see e.g. Pham et al. (2017).

Locally at the fracture tip, we thus assume condition of pure mode I, such
that the fracture width of a propagating fracture result in the well-known lefm
asymptote (Rice 1968):

Kic
W= 32/nf’,\/£—x (—x< ! (9)

This near-tip behavior may be visible only over a very small characteristic length
near the tip for a propagating hydraulic fracture where an outer viscous asymptote
may dominates (Desroches et al. 1994; Garagash et al. 2011). This renders the use
of a sole linear elastic fracture mechanics criteria extremely demanding computa-
tionally as the mesh size must then resolve the small lengthscale where the lefm
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Propagation of multiple blade-like hydraulic fractures 9

asymptote is valid (see Lecampion et al. (2013); Detournay and Peirce (2014);
Lecampion et al. (2018) for discussion). For this reason, we use the complete mul-
tiscale solution for a steadily propagating plane-strain hydraulic fracture as an
“universal” tip asymptote (Garagash et al. 2011; Dontsov and Peirce 2015) cov-
ering toughness-, viscosity-, and leakoff-dominated regimes near the fracture tip.
The use of such complete asymptotic solution is similar to previous contribution
e.g. (Lecampion and Desroches 2015¢; Peirce and Detournay 2008; Peirce 2015;
Dontsov and Peirce 2017). Further details on the fracture propagation scheme is
provided in subsection 3.1.1.

2.5 Initial / boundary conditions

Prior to the start of the injection, at time r = 0, the well is under hydrostatic
pressure: p(s,t =0) = pgz(s) and V(s,# =0) = 0. At the scale of this 2D model
which assumes a constant fracture height, the details of fracture initiation from
the perforations are obviously not properly captured. We thus assume a small
pre-existing fracture transverse to the well axis at the location of each perforation
clusters. In other words, each fracture is pre-initiated with an initial length (¢;(z =
0) =L,) and assumed initially closed at t = 0. The fluid flux at the end of stage (at
the location of the bridge plug) is assumed to be zero at all times V (s = Spye,1) =0,
while we assume that the surface pump rate is prescribed Q(s = 0,7). We notably
restrict here our discussion to the case of a constant pump rate.

3 Numerical scheme description

The numerical solution of the previously described model must couple the solution
of the propagation of multiple hydraulic fractures with the wellbore fluid flow in
order to notably solve for the rates Q;(f) entering the different fractures at any
given time. We have developed an implicit time discretization scheme. From a
known solution at time t*~!, we solve at time t* = t* ! + At for the increment
of displacement discontinuities, fluid pressure and increment of length of all the
fractures tips as well as fluid pressure increment and flow rates entering each
fracture during the time-step. For one time-step, we solve such a highly non-
linear problem iteratively using three nested loops. The most outer loop solves
iteratively for the fluid partitioning between fractures, i.e. for the flow rates Q;
entering the different fractures by minimizing the residuals of Eq. (7) describing
the relation of rates and the well-fracture entry pressure drop. For a given set of
rates Qy, the wellbore flow and multiple hydraulic fracture increment problems
can be solved separately. The solution of the propagation of the multiple hydraulic
fractures is achieved via two nested loops: the outer loop iterates on the fracture
length increment while the inner loop solves (for a given new trial position of the
fractures tip) the elasto-hydrodynamics system.

We describe below the numerical discretization of the different equations and
the steps of the different parts of the algorithm over one time-step.
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3.1 Elasto-hydrodynamics flow inside the fractures

For each time step, elasto-hydrodynamics equations are solved iteratively assuming
known the new fracture tips locations (these are iterated for in an external loop,
see 3.1.1). In other words, while iterating for 8"(x), 6*(x) and p(x) within a time
step, the fracture length is fixed. Yet, the opening 6" in the tip region may be
imposed to enforce mass conservation in line with the near-tip hydraulic fracture
solution, see 3.1.1.

After discretization using piece-wise constant displacement discontinuity ele-
ments Crouch and Starfield (1983); Wu and Olson (2015a), the elasticity equations
reduce to the following linear system

pi—0f = ZA;’;’Q” +A}; 6]
J
-1 = ZA‘;}’S}’ +Aj;6; (10)
J
where 5;’ = —d} is the fracture width in the middle of element j taken positive in
opening, 5;3 = —djf is the shear slip (+ minus -). o7 is the normal component of the

in-situ traction on the element i and 77 the shear component along the tangential
direction s (with the convention of in-situ stress positive in compression). The
coefficients Aff]]-, k,l =n,s are integrals of KX (z—7, H) over the element j - see Wu
and Olson (2015a) for the simplified 3D kernels for constant fracture height used
here.

The lubrication equation (3) is integrated over an element (cell) thus resulting
in a finite volume discretization. Restricting to the case of zero leak off case for
simplicity, one obtains:

Ap,' A(Sl-” ~
Ay T +Giv1)p = Gim1yy = Q1(t) iw, (11)

h,'Cf 5in

where h; is the size of the i-th element and w; is the index of the element of the
I-th fracture where the well is located. We discretize the fluid fluxes through the
left and right boundaries of the cell (element) via centered finite difference:

Pi+1 — Di
Givip = _Ci+1/2m (12)

where for the “right” edge conductivity Ci;/, (function of the edge width obtained
by harmonic mean) we have

1 Wi
Con =g P, A .

Similarly, for the “left” edge:

Pi— Di—1
gi-1ip=—Ciip (hithi1))2 (14)
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Finally, the discretized lubrication equation becomes

A8! Cioip
At (hithig)2P!
n < Citip n Ciip )pi
(hi+hiv1)/2  (hi+hio1)/2
Ci+l/2
- 7(hi+hi+l)/2pi+l

Ap;
hic¢8
1% A

+hy

= 01(1) i, (15)

36 for all elements i except for tip ones where giv1,=0 (or g;_ /» =0 depending on
s7 the tip orientation). For a tip element, e.g., the “right” one, we have
A AS" Ci—l/z Ci—l/z

Pi
hic ST B2l o =
A M Y e 2P b 2!

0 (16)

Finally, we can re-write the coupled elasto-hydrodynamics system in matrix-
vector format, using the increment of vector displacement discontinuities A§®) =

(5(") —5("’1)) and fluid pressures Ap%) = (p<k> —p“’”) over the time step ¥ =

t*~1 4 At as the primary unknowns:

A-A8® —1,.Ap® = —T, — A ¢ (17)
I,-A6® + (AﬂL,(5<’<)) +ch1€) -Ap®) = A1Q — AfL - pkD)

33 with the following matrices:

— elastic DDM influence matrix

AT AT A AT AR AT
ATAT A AT AT AT
AY, A A3 A%
AB; AZ: AL AT

A =
AN AV o ANy ARy
ns nn ns nn
LANT AN ANy A
339 — fluid pressure increment on elasticity
(00 0 ]
100
000
010
IL,=1000

o O
—_ O
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12 D. Nikolskiy, B. Lecampion

— initial tractions vector
0 0 0 0] 0 T
T,=[1 of 1% 6} ... o]

— Lubrication finite difference matrix (non-linearly dependent on the current
opening displacement discontinuities)

0
(k)Y _ _CGip (Ci+1/2 Ci—1/2) _CGiyip
]L(5 ) =10 b \ hizip + i1y hitiy
O Cn-ip2
|0 0 DRV

where A1, = % is the neighbouring element centroid distance.

— local volume increment

roh 00 O ]
000h O
00 0
I, =
0 h O
L 0 0 Ay
— the fracture local volume matrix
hé 0 0
0 mé} 0
Hc: . .
0 hnéy

— and the inlet flow rate vector (entering the different fractures)
~ ~ ~ T
Q= {0 0010...0050...0 0, 0... 0]

where Qu, = 0r = 0/H, I=1,...,Ntrac

The superscripts (k) and (k—1) correspond to the current and the previous
time steps. At each time step the mixed system is solved iteratively using fixed
point iterations, with back-substitution of the new estimate of §] into the matrices
I, and L via the conductivity coefficients Cj; 12 and C;_j/;. The matrices A, I,
and Iy do not change for a fixed fractures’ geometry. Convergence is achieved when
the relative difference of the solution for the increment of DDs and fluid pressure
between two subsequent iterations is below 107> to 10~°. Convergence of such
non-linear system typically takes between five to ten fixed point iterations.
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Propagation of multiple blade-like hydraulic fractures 13

8.1.1 Fracture propagation

Once a fracture is initiated, we assume quasi-static equilibrium K; = K, (yet, K;
can be less than Kj. for an arrested fracture). To solve for the advancement of
each hydraulic fracture tips, we use an approach combining an explicit scheme for
the propagation direction (updated at the end of every time-step) and an implicit
algorithm to obtained the increment of fracture length during the time-step.

We determine at the end of the time-step (i.e. when the solution has converged)
the new propagation direction for each fracture tips using the maximum tensile
stress direction. To do so, we minimize the dot product of the proposed direction
of propagation and the 1st principal stress direction at a finite distance from
the tip node (1.5 element size). This minimization is performed iteratively using a
classical quasi-Newton method with bracketing. Once determined, the propagation
direction (for all the different fracture tips) for the next time step is fixed.

Over one time-step (with a given propagation direction for each tip), the incre-
ment of fracture length is obtained implicitly using an one-dimensional approach
similar to the implicit level set algorithm (ILSA) originally developed in Peirce
and Detournay (2008). Such an implicit scheme relies on the use of a survey el-
ement located just behind the tip element (see figure 2). Knowing the width of
this survey element, we invert the hydraulic fracture tip asymptotic solution to
estimate the new distance from this survey element to the fracture tip. The width
in the tip element is then imposed according to the near-tip asymptote, and the
elasto-hydrodynamic system is resolved with this new trial position of the fracture
tips. This is repeated until convergence of the new position of the fracture tips in
relative term between two subsequent iterations. A tolerance of 1073 is used.

The determination of the new distance between the survey point (where width
is known) and the fracture tip relies on the inversion of the near-tip asymptote
(which provide width as funciton of distance to the fracture tip). Since the near-tip
behavior of a hydraulic fracture is intrinsically multi-scale (Garagash et al. 2011);
using the classical linear elastic fracture mechanics (lefm) square root asymptote
may lead to over-estimation of the distance from the ribbon element to the tip and,
subsequently, to non-physical oscillations in the solution (Lecampion et al. 2013).
In order to avoid these numerical effects, the fracture mesh should be sufficiently

fine to capture the region of validity of lefm asymptote (at least the cell size should
6

be less than the characteristic lefm-viscous transition scale £, o< 1;/4[‘(17[201,2 ). This

1
can considerably raise computational costs (Lecampion et al. 2013, 20}178). The
use of the complete tip asymptote (Garagash et al. 2011; Dontsov and Peirce
2015, 2017), which covers the different asymptotic regions (toughness-, viscosity-,
and leakoff-dominated regimes) as well as the transition between them, helps to
relieve requirements on the mesh. Since this tip asymptotic solution is given as
an implicit function of the current fracture velocity, its inversion (i.e. knowing the
opening and inverting for the corresponding distance to the tip) is performed via a
root finding scheme. We use here a Brent root-finding method (see e.g. Quarteroni
et al. (2000)). More details on the inversion of such tip asymptotic solution can be
found in Peirce and Detournay (2008); Peirce (2015); Lecampion and Desroches
(2015¢) notably.
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Fracture tip at the
previous time step New fracture tip

1 1

i-12 i+1/2 :
L ] 1 ] 1 | 4 ] ] |
I T r = A T = = 1 1 T T 1
1 2 i
‘ Y
Channel region Ribbon Tip region
element

Fig. 2 Schematic of the fracture mesh: tip region and ribbon element and evolution of the
fracture tip position over a time step. The ribbon element allows to couple the tip region
(where the solution follows the the near-tip hydraulic fracture asymptotes Garagash et al.
(2011)) with the rest of the fracture (e.g. channel region). The number of elements in the tip
region can increase during a propagation step.

3.2 Wellbore flow and fracture entry flow coupling
3.2.1 Wellbore flow solver

The wellbore fluid flow mass balance equation (5) is discretized using a classical fi-
nite volume approach with piece-wise approximation of fluid pressure similar to the
one described above for the lubrication in the fracture(s). One difference is that the
radius and the cross-section of the well are assumed to not change due to the well
pressurization thus no hydro-mechanical coupling is needed. Another difference is
the use of Darcy friction factor approach to determine the cross-sectional conduc-
tivities Ci11/, for laminar, turbulent, or transient flow regime (indeed, Poiseuille

64
model corresponds to laminar regime with f = R—) We obtain for element i along
e

the curvilinear 1D mesh of the well:

(k) _ (k=1)

N
AsiAicy X % +Giv1 = Gio1p = QoO(si)) — Y, Q18 (si —s1) (18)
=1
where
Gix1y = Apr1Viz1p (19)
4a, 0 (k)
Vierp = = il Pl (20)

pf(Re,&)Vipipl  (Asi+Asitr)/2
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Propagation of multiple blade-like hydraulic fractures 15

As; is the length of the i-th element and p denotes the fluid pressure in excess over
the hydrostatic pressure: p = p — py. The superscripts (k) and (k—1) correspond
to the current and the previous time steps. At each time step Eq. (18) is solved by
fixed-point iterations while back-substituting the average velocity V re-calculated
via Eq. (20) into (19). The friction factor f is also updated since it depends on
the Reynolds number. At each iteration one has to solve a linear system with a
3-band matrix constructed similarly to the lubrication matrix L (see above) with

the well over-pressure increment Af)gf ) — f)Ef ) _ f)sffj) as the primary unknowns
(cflow+ALy) - AP = A1Q — AfL,, -pis " (21)
with
fAsiA; 0 ... ]
0 0 Ajin+A
_ . . _ Aigip i—1/2
lw=1""%" 0asia4,0 = | Ai=— 5
0o . 0
L 0 As Ay, |
0
cv cv cv cv
Ly=|0 =372 (ﬁ% + fﬂ) a0
i—1/2 i+1/2 i-1/2 i+1/2
0 0 _f;‘;w*l/z E"‘:/,w*l/2
L My 12 Py, 12 |
where
G AsitAsiz W 4aip1pAivi)
i+12— 5 i - )
K2 2 H2T 0 pf(Reigiy, €) Vil

2pa; V;
Repiys = P 1i1ﬁ| k1]

We have used here Churchill (1977) approximation which provide an explicit
equation for the friction factor f(Re,€).

3.2.2 Wellbore fractures entry

In egs.(15) and (18), the volume rates Q; entering each fracture are assumed to
be known at each time step. In case of injection into multiple fractures via the
well, to close the system of equations one needs to relate these volume rates to
the entry pressures in each fracture, which are parts of the solution of the results
of the mixed elasto-hydrodynamics system, and the pressure in the corresponding
well locations. It is performed via introducing the pressure drop associated with
perforations and near-wellbore tortuosity of the fractures (entry friction):

Api(Q1) = pui(Q1) — prai(Qi) = f,107 JFft,iQ?Ia I=1,...,Nfrc (22)
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16 D. Nikolskiy, B. Lecampion

where f),; and f; ; can vary from perforation clusters to clusters. In all the examples
presented further, we assume zero near-wellbore tortuosity i.e. f;; =0.

The solutions of the elasto-hydrodynamics equations in the different fractures
the fluid flow in the wellbore and the coupling via fracture entry friction can be
represented schematically as the following system of residuals

% (Q)=ps, %w(Q) =pw, C(pw.pr)=Q (23)

This system of non-linear equations that solves for pressure (and DDs) in the
fracture, in the well as well as the flow rate entering the different fractures is
actually extremely stiff. Practically, fixed-point iterations on these equations do not
converge. We therefore use a quasi-Newton scheme, which involves finite difference
estimation of the Jacobian matrix. In order to reduce the time needed for re-
calculation of the Jacobian matrix (at the price of some reduction of convergence
rate), the latter is re-used in several (in our implementation, up to 4) iteration
steps.

4 Verifications

4.1 Toughness- and viscosity-dominated plane-strain benchmark (KGD
geometry)

First two verification tests spanning toughness and viscosity dominated propaga-
tion have been performed with two fractures of sufficiently large height (100 m)
located far enough from each other (1000 m) to ensure i) that any stress interac-
tion between them is negligible and ii) that the fracture geometry can be assumed
to be in state of plane strain. The flow rates entering both fractures were forced
to be equal (i.e. wellbore flow was not considered). We compare our results to the
known semi-analytical solutions for a plane-strain hydraulic fracture propagating
in both the viscosity (Garagash and Detournay 2005) and toughness dominated
regimes (Garagash 2006).

The parameters for the toughness-dominated case were as follows: E' = 10 GPa,
u = 0.01Pa.s, K; = 2MPa.m'/? | Q, (per unit height) = 0.0001m?/s (which corre-
sponds to a dimensionless viscosity .# = 12uQ,E"” /K’4 =0.0072 - see Detournay
(2004) for definition). As can be seen on figures 3 and 4, the accuracy of the scheme
is excellent with at most five percent error compared to the analytical solution.

For the viscosity-dominated example, the parameters were set as follows: E/ =
10GPa, u = 0.1Pa.s, K;o = 0.5MPa.m'/? | Q, = 0.0001m?/s (.# = 18.5). Except
for an early transient associated with the initial conditions set in the scheme, the
agreement between the numerical results and the semi-analytical solution is always
below 4 percent of relative error, both on inlet pressure, width and fracture length
as can be seen in figures 5 and 6.

4.2 Viscosity dominated KGD to PKN transition

This test was performed for a single fracture of constant height H = 10m and ini-
tial length Ly = 1 m ensuring the injection time is long enough for the fracture to
evolve to a final length much larger than its height. The aim is here to observe
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Fig. 3 Toughness-dominated fracture propagation of two far-apart hydraulic fractures (con-
stant equal rate): fracture length vs. time (for the 4 different tips); numerical vs. analytical

solution. Relative error in inset.
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Fig. 4 Toughness-dominated fracture propagation of two far-apart hydraulic fractures (con-
stant equal rate): a) inlet pressure vs. time, b) inlet width vs time; numerical vs. analytical

solution. Relative error in insets.
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Fig. 5 Viscosity-dominated fracture propagation of two far-apart hydraulic fractures (constant
equal rate): fracture length vs. time; numerical vs. analytical solution. Relative error in inset.
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Fig. 6 Viscosity-dominated fracture propagation of two far-apart hydraulic fractures (constant
equal rate): a) inlet pressure vs. time, b) inlet width vs time; numerical vs. analytical solution.
Relative error
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Winlet, M
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Fig. 7 KGD to PKN transition (viscosity-dominated regime), numerical vs. analytical solu-
tions: (a) fracture length vs. time; (b) fracture inlet opening vs. time.

the transition from an initially plane-strain (KGD) geometry where the fracture
height is much larger than its length to a blade-like (PKN) geometry at large time
/ for large length compared to height. The other parameters were set as follows:
rock properties E =25GPa, v= 0.3, K;. = IMPa.m]/z, zero leak-off, confining
stress o, = 10MPa, oy = 12MPa, injection fluid viscosity pu = 0.01Pa.s, entry
rate Q = 0.05m3/s (~20BPM). It is interesting to note that for such a choice
of parameters, the propagation of the hydraulic fracture is viscosity dominated
for the plane-strain geometry. We compare here the numerical results therefore to
the viscosity dominated KGD solution and the classical PKN / blade-like solu-
tion which does not account for toughness (and is thus restricted to the viscosity
dominated regime).

As can be seen on figure 7, the scheme properly capture the transition between
the KGD geometry solution (where the height of the fracture is much larger than
its length) and the PKN solution (solution for a constant height fracture).

5 Competition between stage length, entry friction and stress
interaction

We now turn to study the competing effects of the length of the stage, stress in-
teraction between fractures (stress shadowing) and entry friction on the uniform
versus non-uniform growth of multiple fractures during a stages. We focus our
numerical investigation to the case of three fractures and a wellbore aligned with

time, s

’ time, s
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the minimum principal horizontal stress for the sake of simplicity. We first dis-
cuss via scaling arguments the controlling dimensionless parameters governing the
simultaneous growth of multiple hydraulic fractures.

5.1 Scaling arguments

One can argue that, in case of a homogeneous medium and small / negligible
leak-off, 11 parameters define the problem:

E/,V, chaﬂ»fpasvHvarauGH_O-h:QmZ (24)

where S denotes the spacing between fractures along the wellbore, oy and o}, are
the maximum and minimum principal horizontal stress magnitude.

From the Buckingham-Pi theorem, we thus see that at most 7 dimensionless
parameters control the problem. Moreover focusing on viscosity-dominated regime,
only 6 dimensionless parameters define the parametric space. In other words the
dimensionless solution of the problem (represented as @) depends on the following
dimensionless parameters

difCIJ(v Npae, S, koo — K

= s 4V frac h7 - (E,3 Qo,u)l/4’

H — O /g Cint APy )

O —Ohyg p=— %M . Swdl 25
ch fp(Q()/Ivfrac)2 fp(Q()/Ivfrac)2 ( )

The I' parameter expresses the ratio of characteristic interaction stress oj, to
the pressure drop due to perforation friction (at the well - fracture connection) at
the time when the length of the fracture(s) L is of the same order as spacing S.

; E' <w>LH E'Q,t
1_, — Gmtz — ‘;’V . — 3Qn 5 ’ Qn — QU (26)
f0; 4n S’ f, 05 4n S’ f, 05 Ntrac

The time ¢t when the length of the fracture(s) L is of the same order as spac-
ing S can be estimated by order of magnitude from the system parameters using
the estimate of L for a specific geometry and regime of propagation (Detournay
2004; Garagash and Detournay 2005; Garagash 2006). Thus, for a KGD fracture
geometry (L < H) propagating in the toughness-dominated regime, we obtain the

following estimate for I" that we denote Fk(KGD)
2/3
Lo (EQ@/HNE s kony_ KH 27
~ ; s Ay = 2 §3/2 (27)
K 4n_fp QnS

For viscosity-dominated regime in KGD geometry (L < H), we obtain the following

estimate for I that we denote F,,SKGD)

/ 3\ 1/6 3E/3 H3 1/4
L~ (E (Qn/H) ) [2/3; F(KGD> _ ( H ) (28)

12u " o 2\/571'pr2/4§3/2
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For a PKN geometry (L > H) (see e.g. Kemp (1990); Economides and Nolte

(2000)), we have the following estimate for I' that we denote I; HSPKN)
1/5
N < ot ) P s, ey ___ESuH (29)
> m -
473 yu H* 2271/ f, 014 57/4

Note that in eqgs.(28) and (29) all power exponents are the same except those of
S and H. In the following, we use the PKN estimate dropping the factor 2y/2w!/*
(which is of order 1) to quantify such competition between stress interactions and
perforation friction, and thus choose:

F(PKN) - E/3/4[J,1/4H

The IT parameter expresses the ratio of the pressure drop between clusters in
the well to the pressure drop due to perforation friction. The order of magnitude
of the pressure drop along the well (in steady state conditions) can be estimated as
APY) ~ p92SRe™P /D> where B depends on the flow regime in the well (turbulent
vs laminar). The friction factor scales as f o< Re P. The pressure drop across the
perforation scales as APPerf) fp(Qo/mec)z. We can thus estimate IT as

_APUD pSQIRe P /DS pSNj ReP e

_ _ PO
B AP(perf) fp(Qn)2 D5 fp

ubD

(31)

In the following, we use 8 = 1/4 corresponding to the fully turbulent scaling of Bla-
sius (1913), valid for turbulent flow in a smooth pipe. This assumption is realistic
for industrial hydraulic fracturing conditions.

5.2 Numerical simulations

In these simulations, we considered 3 fractures initiated from the horizontal part
of the well at a depth of 1km; the height of the fractures was taken to H =20m and
the initial half-length of the fractures as Lo =2.5m. The following rock properties
were assumed: E =25GPa, v =0.2, K. = 1 Mpa.m'/?, negligible leak-off. The other
parameters are as follows: in-situ minimum and maximum compressive stresses
o, = 10MPa, and oy = 10.1-12MPa, injection fluid viscosity g = 0.01Pa.s, pump
rate Q = 0.15m>/s (0.05m?/s per fracture). The entry friction f, was the same
for all clusters. We varied its value between 10> and 10° Pa.(s/m?)? (from small
to large friction). The injection time was limited to 5 minutes for all cases. To
account for pressure drop between the clusters numerically, the mesh density for
the well flow solver was chosen to provide about 10 cells between the clusters in
all the considered cases of cluster spacing. The geometry of the well and location
of the clusters are sketched in Figure 1.

Here we provide detailed results on fracture growth and fluid partitioning for
some extreme cases: close (§ = 10m) and far (S =40m) cluster spacing, low (f, =
10? Pa.(s/m3)?) and high (f, = 10° Pa.(s/m3)?) perforation friction, low (oy/0; =
1.01) and high (og /0, = 1.2) in-situ stress contrast). Figures 8 - 11 illustrate the
case of initial fracture spacing of 10 meters (S/H = 0.5). Figure 12 illustrate the
case of initial fracture spacing of 40 meters (S/H =2).
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Fig. 8 Top view of fractures after 5 min. of injection; confining stress o, = 10 MPa, oy = 10.1
MPa, fracture height H =20 m, initial fracture spacing § = 10 m, perforation friction (a)
fp =10*Pa.(s/m*)? , (b) f, = 10° Pa.(s/m*)?. Scales in meters.
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Fig. 9 Fracture volume rates evolution during 5 min. of injection; confining stress o;, = 10
MPa, oy = 10.1 MPa, fracture height H = 20 m, initial fracture spacing § = 10 m, perforation
friction (a) f, = 10?Pa.(s/m3)? , (b) f, = 10° Pa.(s/m3)2.
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Fig. 10 Top view of fractures after 5 min. of injection; confining stress o, = 10 MPa, oy = 12
MPa, fracture height H =20 m, initial fracture spacing S = 10 m, perforation friction (a)
fp =10*Pa.(s/m?)? , (b) f, = 10° Pa.(s/m?). Scales in meters.
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Fig. 11 Fracture volume rates evolution during 5 min. of injection; confining stress o, = 10
MPa, oy = 12 MPa, fracture height H =20 m, initial fracture spacing S = 10 m, perforation
friction (a) f, = 10?Pa.(s/m3)? , (b) f, = 10° Pa.(s/m?)2.
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Fig. 12 Top view of fractures after 5 min. of injection; confining stress o, = 10 MPa, oy = 10.1
MPa, fracture height H = 20 m, initial fracture spacing S = 40 m, perforation friction (a)

f»=10*Pa.(s/m*)? , (b) f, =10°Pa.(s/m*)%. Scales in meters.
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Fig. 13 Fracture volume rates evolution during 5 min. of injection; confining stress o, = 10
MPa, oy = 10.1 MPa, fracture height H = 20 m, initial fracture spacing § =40 m, perforation

friction (a) f, = 10?Pa.(s/m3)? , (b) f, = 10° Pa.(s/m3)2.
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Fig. 14 Top view of fractures after 5 min. of injection; confining stress o, = 10MPa, oy =
12MPa, fracture height H = 20m, initial fracture spacing S =40m, perforation friction (a) f, =
102 Pa.(s/m?)? , (b) f, = 10° Pa.(s/m?)2. Scales in meters.

As seen in these figures, in general, high perforation friction promotes even
fluid partitioning and high in-situ stress contrast suppresses fracture curving due
to stress interaction. Note the change in localization pattern as the in-situ stress
contrast grows.

With increasing cluster spacing / stage length the moderating effect of perfo-
ration friction starts to concede to the effect of pressure gradient in the well.

5.3 Short summary

To summarize these results, let’s study the effect of the most important dimension-
less parameters (I, and ITg) on variation (relative standard deviation) of fractures’
length and injected volumes after given time of injection.

As one can see from Figures 16 - 17, in general, at values of I}, < | fracture
growth / fluid partitioning is equalized; localized growth / fluid partitioning occurs
at values of I, > 1; for larger I,, the values of 6L/ < L > and §Q/ < Q > stay around
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Fig. 16 Effect of parameter I, on localization of fracture growth (relative standard deviation
of length after 5 min. of injection).

25 - 30% showing some noticeable but minor effect of cluster spacing and in-situ
stress contrast. Yet, the parameter I;, does not fully account for the effect of cluster
spacing / stage length (and the corresponding pressure gradient in the well) on
fracture localization. For larger spacing, localization occurs at smaller values of I,.

Figures 18 and 19 show the variation of L and Q against the parameter Ilg
(scaled pressure drop between the clusters).

5.4 Neglecting stage length related effects

This configuration corresponds to the case of a relatively short stage length such
that the pressure gradient along the well can be neglected. To do so, we coarsen
the 1D wellbore mesh in order to fit all clusters in one element so the pressure in
all cluster entries (on the well side) is equal since a piece-wise approximation is
used for pressure in the well.

Quotal
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frac 2
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0.201 i
< 0.10F - 0y — 0}, =0.1Mpa, S/H =0.5 |
= I ]
o = oy — 0y =2Mpa, S/H =0.5

—+ oy —0), =10Mpa, S/H =0.5 |
0.05F H = O / |
- oy — 0y, =0.1Mpa, S/H =2.0 4
—~ 0y — 0}, =2Mpa, S/H =2.0
— 0, =10M =20
0.02} | | - UII‘ on pa, S/H‘ |
0.01 1 100 104

Fm

Fig. 17 Effect of parameter I;, on fluid partitioning (relative standard deviation of injected
volume after 5 min. of injection).
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Fig. 18 Effect of parameter ITg on localization of fracture growth (relative standard deviation
of length after 5 min. of injection).

The results on variation of injected volume between the clusters with and
without the effect of pressure gradient along the well are displayed in Figure 20.

It is clear from these results that when the pressure gradient along the well
is neglected, the variation of injected volume between fractures is under-predicted
even in case of relatively close cluster spacing. The larger the cluster spacing, the
larger the discrepancy.
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Fig. 19 Effect of parameter ITg on fluid partitioning (relative standard deviation of injected
volume after 5 min. of injection).

0.500 AP along the stage accounted for:
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Fig. 20 Effect of parameter I, on fluid partitioning (relative standard deviation of injected
volume after 5 min. of injection) with pressure gradient in the well neglected (dashed lines)
and accounted for (solid lines).

Here we should recall that in case of too small a ratio of fracture spacing to
fracture height (less than 0.25) the chosen elastic kernel fails to produce trustwor-
thy results for elasticity (see Wu and Olson (2015a)) making it hard to explore
the cases with shorter stage length. Yet, the above considered range of ratios of
cluster spacing and fracture / reservoir height were chosen to reflect typical val-
ues for industry applications, thus, the given example is a good demonstration of
importance of the wellbore- and stage length-related effects on fluid partitioning
and localization of the fracture growth.
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6 Conclusions

We have developed a fully coupled numerical solver for the simultaneous propaga-
tion of multiple blade-like hydraulic fractures due to fluid injection in a horizontal
well. The proposed scheme properly solves the fluid partitioning problem at any
given time by coupling wellbore flow and hydraulic fracture propagation.

Our results are in line with previous studies restricted to the growth of simul-
taneous radial hydraulic fractures (see Lecampion and Desroches (2015¢,b)) that
were intrinsically confined to the early stage of growth (axi-symmetric fractures).

Low entry friction (large I, dimensionless parameter defined in Eq. (30)) pro-
motes uneven fluid partitioning and fracture growth localization; generally, for
I, < 1 fluid partitioning and fracture growth are even, yet the boundary between
uniform and non-uniform growth depends on the stage length (the ITz dimension-
less parameter defined in Eq. (31)). On the other hand, the effect of parameter
I1g on fluid partitioning and fracture length shows little to no dependence on I,.
For low in-situ stress differential (oy ~ 0},), fracture curving helps balancing the
flow rate between the fractures, as stress interactions between the growing frac-
tures decrease as they move away from one another. Yet, the effect of in-situ stress
/ fracture curving on variation of fluid entry rates and fractures length is minor
compared to the first two. However, as expected, the pattern of fracture growth
is highly sensitive to the in-situ stress contrast and entry friction. Notably, large
entry friction appears to always counteract the adverse effect of stress interaction
between the fractures, yet the pressure drop along the stage (i.e. the length of the
stage) can have a more pronounced negative effect than the stress interaction on
fluid partitioning. As a result, one cannot disregard it in order to obtain a proper
picture of fluid partitioning and growth of multiple fractures during a pumping
stage.

In this contribution, we restricted our numerical investigations to the case
of even (spatially homogeneous) entry friction. However, the fluid partitioning
and the consequent fractures’ propagation rates will most likely be highly sen-
sitive to spatial variations of the entry friction, especially the term associated
with near-wellbore fracture tortuosity. Such variations are likely to happen and
hard to control (see the examples reported in Desroches et al. (2014); Lecampion
and Desroches (2015a)). Investigation of the effect of heterogeneous entry friction
should be investigated further.

We should also highlight the importance of accurate coupling of the fractures
propagation with the wellbore fluid flow: being a nonlinear process that directly
controls the fluid partitioning it is particularly hard to handle numerically: preci-
sion is crucial to handle such a stiff non-linearity. On one hand, simple fixed-point
iteration schemes for such nonlinear coupling are typically unstable. On the other
hand, evaluation of the partial derivatives of pressure vs. entry rates (in order to
implement a quasi-Newton or higher order iteration scheme) is necessarily numer-
ical (and therefore costly) due to the non-local nature of the fracture propagation
process. We believe that more work is required to speed up the solution of such
highly non-linear problems (e.g. a typical simulation reported in section 5.2 run
for about 5 hours on a 10 cores desktop) while keeping the robustness of the solver
presented here.
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