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Abstract

Mountain regions are considered to be the natural “water towers” of the world due to their
importance as sources of many rivers. Reliable tools to estimate the availability and variability
of streamflows in such regions are still rare. In this context, the present Thesis proposes to
extend an existing Flow Duration Curve (FDC) modelling framework to Alpine environment.
Such curves show the percentage of time a streamflow value is equaled or exceeded during a
reference period and thereby give a representation of the probabilistic distribution of daily
streamflows.

FDCs can be obtained empirically or based on models. Process-based FDC models have
the advantage of incorporating hydrological process knowledge and thereby allowing the
prediction of FDCs under changing conditions. This Thesis studies a simple process-based
model that describes daily streamflow distributions as the result of subsurface flow pulses
triggered by stochastic rainfall and censored by the soil moisture dynamics. The resulting
streamflow distribution is characterized by only a few parameters: the mean rainfall depth
and the frequency of rainfall events that produce streamflow and recession parameters.

The objective of this Thesis is the extension of the existing framework, originally developed
by Botter et al. (2007c) for pluvial streamflow regimes to Alpine environments where the
accumulation of water in the form of snow and ice influences the streamflow regime. The
selected study region is Switzerland, a small Alpine country with a wide range of hydro-
climatologic conditions.

The key of the extension of the model framework is a seasonal approach, i.e., a model set up
for each of the up to three distinct seasons encountered in Alpine environments: i) pluvial
season, ii) accumulation season (during winter), and iii) melting season (spring and summer).
The pluvial season occurs between the end of the melting season and the beginning of a new
accumulation season and the streamflows are rainfall driven. It can be modelled by the original
model framework, but required the definition of more robust parameter estimation methods
in the context of this Thesis, particularly for the linear and nonlinear recession parameters.
The extension to the melting season is newly developed in this Thesis, incorporating the earlier
extension to the snow accumulation season by Schaefli et al. (2013).

A key result of all completed parameter estimation tests for pluvial regimes is the very good
performance of an inverse approach based on maximum likelihood estimation (MLE). MLE
shows outstanding results even for short series of observations and can be retained as the
recommended method to be used for the model framework studied in this Thesis.

The extension to the ablation (melt) season is achieved by the incorporation of the melting
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Abstract

contribution as equivalent precipitation (sum of rainfall and snowmelt) and an ensuing in-
crease of the streamflow producing frequency as compared to the one resulting from rainfall
input alone. The amount of equivalent precipitation is calculated based on the snow accumu-
lation from the existing model extension to winter low flows, combined with a process-based
definition of seasons rather than calendar dates. A detailed analysis for all seasons for 10
selected case studies shows that the new seasonal approach yields good results for Alpine
streamflow distributions, including for glacier-influenced catchments.

The improved parameter estimation methods developed in this thesis for all dominant hydro-
logic seasons establish a new reference approach for regionalization, opening new perspectives
for flow duration curve estimation in ungauged catchments. Other promising results are the
consistency of estimated model parameters with underlying physical processes and namely
the observed correlation between model parameters and mean catchment elevation. This will
allow the study of land use and climate changes in future model applications.
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Resumo

Montanhas sdo consideradas as “caixas d’dgua” naturais do mundo por serem o local onde
diversos rios nascem. Ferramentas confidveis que nos permitam avaliar a disponibilidade
e a variabilidade destes recursos ainda sdo raras. Neste contexto, esta Tese busca estender
um modelo existente para o cdlculo de curvas de permanéncia para ambientes Alpinos. Estas
curvas mostram a porcentagem de tempo em que um valor de vazao € igualado ou excedido
durante um periodo, tratando-se de uma representacdo probabilistica da distribuicao de
escoamentos didrios.

Curvas de permanéncia podem ser obtidas empiricamente ou com base em modelos. As
curvas obtidas por meio de modelos de base fisica tém a vantagem de permitir uma boa
compreensao de processos hidrolégicos e a predicdo de comportamentos de varidveis sujeitas
a alteragoes. Esta Tese estuda um modelo simples, baseado em processos fisicos que descreve
a distribuicdo probabilistica de escoamentos didrios como sendo o resultado de pulsos subsu-
perficiais de d4gua gerados por eventos de precipitacado estocdstica e limitados pela dindmica
da umidade no solo. A distribuicao resultante é caracterizada por poucos parametros: a altura
meédia de precipitacdo, a frequéncia média de eventos de precipitacdo que geram escoamento
e parametros de recessao.

O objetivo desta Tese é estender o modelo existente, desenvolvido originalmente por Botter
et al. (2007c) para regimes hidrolégicos pluviais para ambientes Alpinos onde a acumulacdo
de dgua na forma de neve e gelo influencia o regime hidrolégico. A regido selecionada para
o estudo foi a Sui¢a, um pequeno pais Alpino com uma grande variedade de condicoes
hidro-climéticas.

A chave para a extensao do modelo é uma abordagem sazonal, ou seja, uma configuracao
diferente para cada uma das até trés estacdes distintas encontradas em ambientes Alpinos:
i) estacdo pluvial, ii) estacdo de acumulacao (durante o inverno), iii) e estagdo de desgelo
(primavera e verdo). A estacao pluvial acontece entre o fim do desgelo e o inicio de uma nova
acumulacao e o escoamento é gerado por eventos de chuva. Ela pode ser tratada pelo modelo
original, mas demandava métodos mais robustos para a estimativa de pardmetros no contexto
da Tese, em particular para os parametros de recessao lineares ou ndo lineares. No contexto
desta Tese, foi desenvolvida uma nova extensao para a estacdao de desgelo, incorporando a
extensao existente para o acimulo de neve proposta por Schaefli et al. (2013).

Outro resultado fundamental de todos os testes desenvolvidos para regimes pluviais envol-
vendo a estimativa de pardmetros € a 6tima performance de uma abordagem inversa baseada
no método da maxima verossimilhanca (MMV). O MMV apresentou resultados excepcionais
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inclusive para séries de observacdes curtas e pode ser considerado o método recomendado
para ser usado com o modelo estudado nesta Tese.

A extensdo para o periodo de ablacao (desgelo) foi feita baseada na incorporagéo da contri-
buicdo do desgelo para o escoamento como precipitagdo equivalente (que soma a chuva e o
desgelo) e pela consideracao de um aumento na frequéncia de geracdo de escoamento em
comparacao com a frequéncia dos eventos de chuva. A precipitacdo equivalente é calculada
com base na estimativa da neve acumulada obtida pela aplicacdo do modelo para baixas
vazdes no inverno, combinado a uma nova definicdo de estacoes, fundamentada em processos
hidrolégicos ao invés de datas padronizadas. Foi feita uma andlise detalhada de cada estacao
para 10 estudos de caso e esta abordagem sazonal levou a bons resultados para as curvas de
permanéncia Alpinas, inclusive em bacias com regime glaciar.

A melhoria dos métodos de estimativa de parametros desenvolvida nesta tese para todas as
estacdes hidrolégicas dominantes estabelece novas referéncias para a regionalizacao, e abre
perspectivas para a estimativa de curvas de permanéncia em bacias ndo monitoradas. Outros
resultados promissores sao relacionados a consisténcia dos resultados com processos fisicos,
mais especificamente a correlacdo observada entre os parametros do modelo e a altura média
das bacias. Estas observagdes vao permitir estudos sobre alteracdes no uso de solo e no clima
em aplicac¢des futuras do modelo.



Résumé

Les montagnes sont considérées comme les « chateaux d’eau » naturelles du monde en raison
de leur importance en tant que source de plusieurs rivieres. Des outils fiables permettant
d’évaluer la disponibilité et la variabilité de ces fonctionnalités sont encore rares. Dans ce
contexte, cette Thése vise a étendre un modele existant pour le calcul de courbes de débits
classés pour des milieux Alpins. Ces courbes montrent le pourcentage de temps pendant lequel
un débit est égalisé ou dépassé sur une période donnée, ce qui constitue une représentation
de la distribution probabiliste des débits journaliers.

Les courbes de débits classés peuvent étre obtenues de maniere empirique ou a partir de
modeles. Les courbes obtenues a ’aide de modéles de base physiques présentent I'avantage
de permettre une bonne compréhension des processus hydrologiques et la prédiction du
comportement de variables sujettes a des changements. Cette These étudie un modele simple,
basé sur des processus physiques, décrivant la distribution probabiliste des écoulements
journaliers comme étant le résultat de pulses d’eau souterraine générées par les précipitations
stochastiques et limitées par la dynamique de I’humidité du sol. La distribution résultante
est caractérisée par quelques parametres : hauteur moyenne des précipitations, fréquence
moyenne des événements de précipitation qui génerent des écoulements et des parametres
de récession.

L'objectif de cette Theése est d’étendre le modeéle existant, développé originalement par Botter
et al. (2007c) pour des régimes pluviaux, aux les environnements Alpins o1 'accumulation
d’eau sous forme de neige et de glace influence le régime hydrologique. La région choisie
pour I'étude est la Suisse, un petit pays alpin avec une grande variété de conditions hydro-
climatiques.

Lextension du modéle est basé sur une approche saisonniére, c’est-a-dire une configuration
différente pour chacune des jusqu’a trois saisons distinctes que on trouve dans des milieux
Alpins : (i) saison de pluie, (ii) saison d’accumulation (en hiver), (iii) et saison de fonte
(printemps et été). La saison des pluies se produit entre la fin de la fonte et le début d'une
nouvelle accumulation et le ruissellement est généré par les événements pluvieux. Elle peut
étre traité selon le modele original, mais il demandait des méthodes plus robustes pour
I'estimation des parameétres dans le contexte de cette Theése, en particulier pour les parametres
de récession linéaire ou non linéaire. Dans le cadre de cette These, une nouvelle extension a
été développée pour la saison de fonte, incorporant |'extension existante pour 'accumulation
de neige proposée par Schaefli et al. (2013).

Un autre résultat clé de tous les tests développés pour les régimes pluviaux sur I'estimation de
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parametres est la bonne performance d'une approche inverse basée sur la méthode du maxi-
mum de vraisemblance (MMV). La MMV a présenté des résultats exceptionnels méme pour
des séries d’observations courtes et peut étre considéré comme la méthode recommandée
pour étre utilisé avec le modele étudié dans cette These.

Lextension pour la période d’ablation est basée sur I'incorporation de la contribution de la
fonte de neige pour I'écoulement en tant que précipitation équivalente (la somme des précipi-
tations et de la fonte de neige) et a la prise en compte d'une augmentation de la fréquence de
génération d’écoulement par rapport a fréquence des pluies. Les précipitations équivalentes
sont calculées en fonction de la quantité de neige accumulée estimée par I'application du
modele pour les débits d’hiver, combinée a une nouvelle définition des saisons, basée sur
des processus hydrologiques plutot que sur des dates standard. Une analyse détaillée de
chaque saison a été réalisée pour 10 cas d’études et cette approche saisonniere a donné de
bons résultats pour les courbes de débits classés Alpines, y compris dans les bassins glaciaires.
Lamélioration des méthodes d’estimation de parametres développée dans cette These pour
toutes les saisons hydrologiques dominantes établit de nouvelles références pour la région-
alisation et ouvre des perspectives pour I’estimation des courbes de débits classés dans des
bassins non surveillés. D’autres résultats prometteurs sont liés a la cohérence des résul-
tats avec les processus physiques, plus spécifiquement a la corrélation observée entre les
parameétres du modele et la hauteur moyenne des bassins. Ces observations permettront
d’étudier le changement de I'usage des sols et du climat dans les applications futures du
modele.
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|§ Introduction

Flow duration curves (FDCs) show the percentage of time a streamflow value is equaled or
exceeded during a period and provide information about the availability and variability of
water resources (Foster, 1934; Searcy, 1959; Vogel and Fennessey, 1994). Their many uses
include, for example, the design of water supply systems and run-of-river hydropower plants
and ecological studies (Ceola et al., 2010; Vogel and Fennessey, 1995; Wagner and Mathur,
2011).

Besides being a tool for managing water resources management, FDCs are also used in more
theoretical studies about catchments. Because they result from the complex interactions
between the climate and geomorphological characteristics of a catchment (Vogel and Fen-
nessey, 1995), they are sensitive to changes in these conditions, and can be used to investigate
impacts on water resources (Botter et al., 2010; Mejia et al., 2014). Furthermore, FDCs can
provide insights on the hydrological resilience of river regimes (Botter et al., 2013), low flows
(Smakhtin, 2001) and the ecological integrity of a stream (Poff et al., 1997).

Switzerland is an Alpine country well-supplied by surface waters. Its mountains are the
source to some of the most important rivers of Europe, such as the The Rhine and the Rhéne
(Spreafico and Weingartner, 2005; Viviroli and Weingartner, 2004). Despite its small size, with
only around 41- 10 km?, it shows diverse hydrological conditions. The hydrological regimes
in Switzerland range from exclusively pluvial, to glacier, passing by snow-dominated. This
variability happens as a consequence of the elevation gradient (Weingartner and Aschwan-
den, 1992). The country relies strongly on hydropower production - it currently accounts
for around 50% of its electricity supply — and is expected to increase this dependence as
a result of the Energy Strategy 2050 (FOEN, 2018), in which one of the goals is to increase
hydropower production (Schaefli et al., 2019). In the Swiss context, FDCs are an essential tool
for hydropower design and to establish environmental flows. This importance motivates the
search for better methods to obtain FDCs for Alpine catchments.

There are empirical or model-based methods to calculate FDCs (Bloschl and Sivapalan, 2013).
One of the latter is the model proposed by Botter et al. (2007c), who derived a process-based
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analytical description of streamflow distributions as the result of subsurface flow pulses
triggered by stochastic rainfall and censored by the soil moisture dynamics. The resulting
streamflow distribution, analogous to a FDC, is characterized by only a few parameters: the
mean rainfall depth and the frequency of rainfall events that produce streamflow and recession
parameters. According to Miiller and Thompson (2016), this model has advantages when
compared to purely statistical or empirical methods: i) it provides an explicit link between
the FDC shape, rainfall characteristics, and catchment recession characteristics rather than
an empirical or statistical link to regional FDC shapes; and ii) it is applicable to periods
characterized by different meteorological conditions, thanks due to the explicit treatment of
rainfall and evapotranspiration characteristics. This model has been successfully applied to
different regions with some adaptations for different hydrological conditions but has not yet
been extended to fully describing Alpine streamflow regimes influenced by snow accumulation
and melt.

1.1 Objectives

Motivated by the advantages of the analytical streamflow distribution model derived by Botter
et al. (2007c¢), by the hydrological variety in Switzerland and by the importance of assessing
the availability and variability of water resources in this country and mountainous regions,
the objectives of this Thesis are:

¢ The adaptation of the model framework proposed by Schaefli et al. (2013) to the different
Alpine hydrological regimes, namely: pluvial, snow-dominated, and glacier. Originally,
the analytical model for streamflow distributions developed by Botter et al. (2007c)
assumed that only rainfall events drive streamflow production. Later, Schaefli et al.
(2013) extended the framework to consider periods of snow accumulation, but there was
no previous development related to snow and glacier melt, typical in mountain areas.

¢ The definition of the most suitable methods to calculate model parameters (particularly
of the recession parameters) based on a detailed analysis of Swiss case studies as a
reference. There is a wide variety of recession analysis methods that yield different
results, and specific methods can be more or less suitable for particular applications.

These objectives emerged from the needs identified in the state-of-the-art presented in Chap-
ter 2.

1.2 Organization of the Thesis

This document is structured in three parts: Introduction, Scientific developments, and Con-
clusion. It is a thesis by publications, so each of the scientific developments, presented
in Chapters 3 to 6, correspond to four articles that have been prepared for publication in
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international peer-reviewed scientific journals.

The scientific developments are organized as follows:

* Chapter 3: This Chapter studies the behavior of the analytical streamflow distribution
model in 25 Swiss catchments with different regimes, including catchments with snow-
dominated and glacier regimes. Since the original model assumes a pluvial regime, it
was applied to the meteorological summer, when snow-melt is supposed to be finished
in the snow-driven catchments, but there is still glacier melting. The pluvial model was
tested with assumptions of linear and nonlinear recessions. Recession parameters were
obtained by a conventional recession analysis method (Brutsaert and Nieber, 1977) and
by an inverse method, the maximum likelihood estimation (MLE). The application of
the model raised two main issues: i) the need of better recession parameters estimation
methods, and ii) the need of an extension of the model to make it suitable also for
periods when streamflow production is affected by snow or glacier melt. Accordingly,
the study showed that this increase in the streamflow can be incorporated into the
model by an increase in the streamflow producing frequency.

e Chapter 4: The use of MLE to calculate recession parameters in Chapter 3 yield out-
standing model performances and this Chapter investigates the possibility of applying
it to the nonlinear model to obtain recession parameters systematically. The MLE and a
selection of recession analysis methods (RAM) were applied to five case studies with a
pluvial regime for a civil year considering different lengths of streamflow time series (1
year, 2 years, 5 years and 40 years). The selection of RAMs included combinations of
diverse recession extraction and parameter estimation methods. The key findings of this
study were: i) the combination of a strict recession selection method with a parameter
estimation per event leads to recession parameters that suit the model and ii) the best
RAM combination and MLE work well even for short series of data.

e Chapter 5: The study about recession parameters estimation was complemented by
the examination of conventional RAMs applied to linear and nonlinear, seasonal and
annual recession parameters for pluvial Swiss catchments. Again, different recession
extraction and parameter estimation methods were tested, and the results obtained
were evaluated in terms of parameters values and model performances. Parameters
obtained by MLE were adopted as a reference for the comparisons. Different RAMs yield
different parameters and model performances, and no RAM systematically reaches the
model performances obtained with MLE, particularly for the linear model.

* Chapter 6: The second point raised in the first study was the need of an extension of the
model to make it suitable for periods of snow and glacier melt, allowing the description
of annual streamflow distributions for glacier and snow-dominated catchments. The
Chapter builds on the idea of incorporating the additional water source as an increase
in the frequency of streamflow production. To allow this, the seasons of application
of the model were redefined by the identification of periods of snow accumulation

5
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and melt and a pluvial period, if it exists. Then, the volume of stored water (and the
additional glacier melting contribution, when it exists) is estimated, and the frequency
of streamflow producing events is recalculated based on a water balance.



4 State-of-the-art

This chapter presents the state-of-the-art relevant to this Thesis. It begins with a presen-
tation of concepts related to flow duration curves (Sec. 2.1) and their modelling (Sec.
2.2). Section 2.4 presents the analytic streamflow distribution model that was variously
extended in this Thesis. Section 2.5 is about mountain hydrology, particularly relevant in
Switzerland, where the case studies used in comparative analysis were selected. Finally,
Section 2.6 summarizes the main research gaps found in the literature review.

2.1 Flow duration curves

Flow duration curves (FDCs) are a basic tool for water resources management. They rep-
resent graphically the percentage of time (that can also be understood as the frequency)
a given streamflow is equaled or exceeded in a given stream (Foster, 1934; Searcy, 1959;
Vogel and Fennessey, 1994).

If the sample of daily streamflow observations is large enough, a FDC can be interpreted
as a probabilistic representation of this variable and carries the same information as
a probability density function (pdf) and the cumulative distribution function (cdf), as
shown in Figure 2.1.

Vogel and Fennessey (1995) listed many uses for FDCs, such as in hydropower engineer-
ing, in water management in terms of quantity and quality (e.g. Von Sperling, 2007),
in studies about water allocation (e.g. Petts, 1996) and sediment transport (e.g. Basso
et al.,, 2015a), in ecohydrological studies (e.g. Botter et al., 2008) and even as an input to
hydrological modelling (e.g. Archfield and Vogel, 2010).

In hydropower design, FDCs are adopted for many purposes, for example, as a tool
to evaluate the water availability for run-of-river schemes (Mays, 2010; Penche, 1998;
Wagner and Mathur, 2011) or, coupled with the available head, for turbine selection
(Montanari, 2003; Basso and Botter, 2012; Santolin et al., 2011).

There exist a general agreement that FDCs are an excellent tool to study low flows
(Smakhtin, 2001; Vogel and Fennessey, 1995; Westerberg et al., 2011). Because of that,
an essential use of FDCs in water management is as a tool to assess the minimum
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Figure 2.1 — Representation of a probabilistic distribution of daily streamflows in terms of FDC,
pdf and cdf

streamflow environmentally viable, which is the flow rate that must remain in a stream
after one or several water withdrawals. In Switzerland, for example, it is a function
of the Q347 (or Qos9, if the FDC’s abscissa is presented as frequency), “the flow rate
which, averaged over ten years, is reached or exceeded on an average of 347 days per
year” (LEaux, 1991). Estoppey et al. (2000) provide guidelines on how to estimate those
streamflow values for gauged and ungauged sites in Switzerland.

The streamflow regime is fundamental to sustain the ecological integrity of rivers (Poff
etal., 1997) and FDCs are also useful to evaluate regimes in this sense. Some previous
applications on FDCs regarding ecological studies are the one by Ceola et al. (2013),
who showed that altering the streamflow distribution changes the nature of the stream
ecosystem using FDCs to asses those changes and Fabris et al. (2018) who studies the
effect of regime variability on fish habitat.

The most straightforward method to calculate an FDC is empirical, based on a series
of observed daily streamflows. This is done by assigning empirical frequencies, f, to
sorted observed data. Then, the values of streamflows are plotted against the values of
probabilities of exceedance, 1 — f. Based on this, they can be considered a complement
of a cumulative relative frequency diagram.

There are two essential approaches to construct empirical FDCs. The first one is the long-
term FDC, based on a single curve for all the available data. The other is the annually
based FDC, for which one classifies yearly data individually, and obtains a final curve by
averaging the individual yearly curves. Both approaches are useful in water resources
management, but long-term FDCs incorporate more information, especially about
extremes, and annual FDCs have the advantage of allowing the study of variabilities
in the streamflows and are less sensitive to the data acquisition period, despite losing
some information in the averaging step (Vogel and Fennessey, 1994).
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2.2 Flow duration curves modelling

Flow duration curve models can be used to asses the values of unknown variables, to
better understand hydrological processes and to predict the values of variables in a
changing environment. If FDCs are to be used to make predictions, a major preoccu-
pation is to understand the underlying hydrological processes that drive streamflow
production.

FDCs result from many processes and agents that include climatic forcing, catchments
characteristics, and environmental factors. To be able to model FDCs it is necessary
to understand and describe the relationships between the attributes of the FDCs and
appropriate climatic and landscape characteristics.

An FDC can be divided into three zones: high flows, intermediate flows, and low flows.
In pluvial regimes, the dominant driver for high flows is precipitation, and rainfall and
streamflow statistics should be similar. For intermediate flows, the dominant controls
are the soil water storage and the evapotranspiration processes and finally, for low flows,
the competition between deep groundwater and riparian evaporation drive streamflow
generation (Bloschl and Sivapalan, 2013). In glacier and snow dominated catchments
there are additional storage and streamflow release processes, as snow accumulation
and melting that should be considered.

Bloschl and Sivapalan (2013) reviewed statistical methods and physically based models
for FDC modelling in ungauged catchments. Statistical methods generate FDCs based
on FDCs in neighbouring catchments and catchment or climate characteristics. They
can be categorized in:

— Regression methods: estimate each flow quantile separately from the catchment
and climate characteristics (e.g. Nag and Biswal, 2019; Nathan and McMahon,
1992; Swain, 2017) ;

— Index methods: i) parametric methods, which regionalize the parameters of a
distribution function that represent an FDC (e.g. Castellarin et al., 2004b) or ii)
index flow methods, which scale FDCs with an index flow of all catchments in a
region having the same shape. The index flow is frequently the annual runoff or
the medium daily runoff (e.g. Ganora et al., 2009);

- Geostatistical: methods that apply geostatistical criteria, mostly some type of
spatial interpolation, to the regionalization of hydrological information (e.g. Cas-
tiglioni et al., 2009);

— Methods that use streamflow records: short series of data (with less than five years)
can be used to improve the quality of FDCs calculated with other techniques (e.g.
Castellarin et al., 2004a).

Physically based models or process-based models are the ones that try to understand
and describe the effects of climate processes and catchment characteristics on the shape
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of the FDCs, linking drivers of processes to the conditions of a system and its responses.
There are two main types of physically based models: i) Continuous models and ii)
Derived distribution models (Bloschl and Sivapalan, 2013).

Continuous models are the ones that use long-term simulations of the water balance
coupled with routing models to reproduce the movement of water in soil and streams
(e.g. Biswal, 2016; Nag and Biswal, 2019; Wagener and Wheater, 2006). They provide a
detailed description of the system and driving processes, but they tend to be complex,
with a large number of parameters and costly in terms of simulation time. The increased
complexity can constrain the transferability of the model to other catchments (i.e.,
prevent reliable regionalization).

In the derived distribution models, FDCs are derived from precipitation analytically,
considering some simplifications. An example of this type of model is the one proposed
by Botter et al. (2007c), in which a probability density function (pdf) for seasonal daily
streamflows is described as being triggered by subsurface flow induced by subsurface
forcings. This model and its extensions will be described in more detail in section 2.4.

According to Bloschl and Sivapalan (2013), process-based methods are not widely used
for predicting FDCs in ungauged basins but have good potential because they provide
a good understanding of processes. Besides, the derived distribution models have the
advantage of possessing a reduced number of parameters, that avoids an overcomplexity.
The authors also mention that treating the curves seasonally could bring an additional
understanding of the underlying processes.

Few methods exist for FDC estimation at ungauged sites specifically in Switzerland. A
simple approach to obtain FDCs was proposed by Weingartner and Aschwanden (1994)
and is a case of what Booker and Snelder (2012) would classify as “parametrization of
curves and then regionalization”. The parametrization is done using Pardé coefficients
for some characteristic catchments, and they can be regionalized and used for ungauged
sites. However, the reliability of the method is not reported for average flow. For low
flows, errors are reported to be high.

2.3 Representation of flow duration curve models

Besides FDCs, there are other graphical representations of the distribution of daily
streamflows along with the range of values contained in a sample. A typical represen-
tation is a histogram, that is a bar chart with class intervals on the horizontal axis and
the frequencies of values in each class in the vertical axis. Frequency polygons have the
same basis; they are formed by joining the midpoints of the topsides of the histogram
bars, after adding one bin on both sides of the diagram. There are simple rules to obtain
the number of interval classes that allow good visualization of the sample distribution
without too many fluctuations in the shape of the distribution. A common approxima-
tion of this number is by v/N, being N the size of the sample and the number of classes
between 5 and 25 (Kottegoda and Rosso, 1997). Sturges (1926) also proposed a rule that
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the number of classes should be approximated by 1 +3.3log;, (V).

Both histograms and frequency polygons are comparable to pdfs, but both depend on
the choice of class intervals that can vary and bias the visualization of results. Cumulative
relative frequency diagrams, on the other hand, can be obtained by ranking the data
and assigning frequencies to each value, which eliminates the uncertainties related to
the choice of classes (Naghettini, 2016). Since neither, FDCs and cdfs, depend on classes
selection, it is preferable to represent empiric data using one of them.

2.4 Analytical streamflow distribution model

2.4.1 Model framework

A stochastic model for rainfall can be combined with a deterministic recession to get an
analytical modelling framework for probabilistic characterization of rainfall-driven daily
streamflows. Botter et al. (2007c) proposed this framework based in a point-scale soil
moisture model originally proposed by Rodriguez-Iturbe et al. (1999). It represents the
dynamics of soil moisture as the result of a deterministic, state-dependent loss function,
combined with stochastic increments triggered by rainfall events. Rodriguez-Iturbe
et al. (1999) showed that the corresponding spatially averaged soil moisture s(¢) can be
obtained from the water balance equation as follows:

ds(t)
;t = —pls(O]+&4, @1

where —p[s(#)] is the loss function, due to evapotranspiration, surface runoff and deep

percolation, and where ¢, represents the stochastic instantaneous increments due to
infiltration from rainfall.

Botter et al. (2007c) described the dynamics of daily streamflow with a similar stochastic
differential equation, supposing that rainfall acts as a stochastic forcing for streamflow
production and that, at the catchment-scale, the water is released following a linear
decay:

aQ(r)
dt
where Q is the daily streamflow, k is the inverse of the time constant associated with

= —kQD) +&,", 2.2)

the loss function (i.e., the linear recession coefficient) and ;" is the stochastic process
associated to streamflow-producing precipitation events (i.e. the sequence of events
that trigger a flow response in the river).

The streamflow Q is assumed to be the result of a series of rainfall inputs that deliver
enough water to fill the water deficit in the soil (;"), i.e. that deliver enough water
to raise the soil moisture level above its retention capacity, which is valid for pluvial
regimes. The excess of water is removed from the soil as subsurface run-off and becomes
streamflow. This implies in a dunnian mechanism of streamflow production, for which

11
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streamflows are produced as a consequence of soil saturation and not by infiltration
capacity exceedance as in a hortonian flow.

The rainfall forcing ¢; is modelled as a marked Poisson process with frequency 1, and
exponentially distributed rainfall depths with average a (average rainfall on raindays).
Not all the rainfall events trigger a streamflow response, i.e. the frequency of streamflow-
producing events corresponds to A < A,, where A is influenced by the soil storage
capacity and soil drying time and can be written as (Botter et al., 2007a; Cox and Miller,
1987):

Ap

exp(=y)y "
Py < 8 2.3)
T, my)

where I'(a, b) is a lower incomplete Gamma function with parameters a and b, n =
El(nZy(s1—sw)), Y = YphZr(s1—sy) and yp = 1/a. E is the maximum evapotranspi-
ration rate and nZ,(s; — s,) synthesizes the soil volume liable to be filled by water
before drainage starts; n is the porosity of the soil, Z; is the effective soil depth, s; is the
retention capacity and s,, the permanent wilting point.

As discussed in detail by Botter et al. (2007c), this framework results in the following
probability distribution of daily streamflows at the catchment-scale:

pQ,t—o00) = %é (a_(ISA)k exp (_a_(IEA)’ (2.4)
r(z)

where A is the catchment area. This corresponds to a Gamma distribution with shape
parameter A/k and a scale parameter ¢k A. The corresponding expected mean stream-
flow equals 6 = Aa. The model is suitable for steady state conditions, at the annual or
seasonal scale, depending on the temporal variability of the model parameters (Botter
etal., 2007a).

Nonlinear storage-streamflow relations at the catchment-scale are commonly observed
(Botter et al., 2009; Brutsaert and Nieber, 1977; Mutzner et al., 2013). Accordingly, Botter
et al. (2009) proposed an extension of the above modelling framework assuming that:

dQ(n)
dt

= —kn Q) +&,", (2.5)

where k;,, and a are the constants of the nonlinear recession. As for the linear model, it
is possible to obtain an equation for the pdf of the daily streamflows:

(Q , )_C{L _ Q2—a .\ Ql_a/l
PrAT= o= 10 ®P | " ek —a) | k(- a)

where C is a normalizing constant (Botter et al., 2009).

} ) (2.6)

In practice, the assumptions necessary to the validity of the model framework are:
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The study catchment is smaller than the correlation scale of rainfall events.

The study timescale is greater than the characteristic duration of single rainfall
events (e.g., daily timescale).

Inter-arrival times between streamflow producing events can be considered inde-
pendent and exponentially distributed.

Conditions to streamflow production can be considered steady.

Any direct surface flow is neglected.

Figure 2.2 summarizes the evolution of the key model developments. The most relevant
to this thesis are the incorporation of nonlinear storage-discharge relations (Botter et al.,
2009), the extension to winter in snow dominated regimes, proposed by Schaefli et al.
(2013) and the extension of model to seasonally dry climates (Miiller et al., 2014), that
considered the carry-over effect between seasons.

The different forms of the model were tested in different hydrological contexts and with
different assumptions. Table 2.1 summarizes characteristics of the previous applications
of the model.

13
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2007
2007

2007
2008
2009
2010
2010
2010
2010
2013
2013
2014
2014
2014

2015

2015

2015
2015

2017

2017

2018
2018

2018

Development of the analytical model framework (Botter et al., 2007c)

Study of cases with complex geomorphologies and heterogeneous soil and
vegetation properties (Botter et al., 2007b)

First observational validation (Botter et al., 2007a)

Extension to annual timescale to derive annual minima (Botter et al., 2008)
Incorporation of nonlinear storage-streamflow relations (Botter et al., 2009)
Incorporation of variability in storage streamflow relations as a noise (Suweis
et al., 2010)

Consideration the catchment response as a gamma pulse and incorporation
of high-flows (Muneepeerakul et al., 2010)

Link between the variability of stream stage (h) and the stochasticity in daily
streamflows and link to the nutrient loss rate (k,) (Botter, 2010)
Incorporation of random recession rates (Botter, 2010)

Extension to winter flow in snow dominated regimes (Schaefli et al., 2013)
Use to classify river regimes (erratic or persistent) (Botter et al., 2013)
Extension to urbanized basins (Mejia et al., 2014)

Extension to seasonally dry climates (Miiller et al., 2014)

Extension to describe the dynamics of inundation on a river section (Doulat-
yari et al., 2014)

Link of the ability of the model to capture the statistical features of high flows
to the degree of non-linearity of the catchment hydrologic response (Basso
et al., 2015b)

Coupling to water balance models and a geomorphological recession flow
model to apply the model to ungaged catchments (Doulatyari et al., 2015)
Coupling with sediment rating curves (Basso et al., 2015a)

Extension to develop an analytical model for the persistence time pdf (Dralle
et al., 2016)

Investigation of the spatial correlation of daily flows based on the model
(Betterle et al., 2017)

Proposition of a method to predict the variability of streamflows at seasonal
and annual time scale (Dralle et al., 2017a)

Extension to study long term fluvial erosion rates (Deal et al., 2018)

Study of the extension of Mejia et al. (2014) under nonstationary conditions
(Jovanovic et al., 2018)

Use to assess fish habitat quality (Fabris et al., 2018)

Figure 2.2 — Timeline of key model developments
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It is interesting to notice that, despite the gain in performance obtained with the in-
corporation of nonlinear storage-discharge relationships, the linear model remains
popular, particularly in works that extend the model to new conditions. This happens
because the resulting probabilistic streamflow distribution for the linear model is a
gamma distribution, which has well known properties and allows a better theoretical
treatment of results.

Another particularity of the previous case studies is that most of them are applications
to the meteorological seasons. This allows the assumption of steady state conditions
within each season with good model performances, but meteorological seasons may
not be suitable in cases with transference of water between seasons. The only study
to adopt case specific seasons was the one that dealt with carry-over effect between
a wet and a dry season (Miiller et al., 2014). Also, most of the studies avoid seasons
affected by glacier and/or snow processes deliberately because they have particular
streamflow producing conditions that were not studied in the model framework context.
The exception to this is the work of Schaefli et al. (2013) that extended the model to
snow accumulation conditions and applied it to a meteorological winter.

One more key application in this thesis context is the one by Ceola et al. (2010), who
tested different methods of estimation of the frequency of streamflow producing events
and of the recession parameters. They recommended that the frequency of streamflow
producing events is best estimated from a combination of streamflow and precipitation
data and could not conclude about any particular recession analysis method. Finally,
they propose to obtain recession methods using statistical inference methods, but they
do not test this systematically.

2.4.2 Maximum Likelihood Estimation

The model results in a parametric probabilistic curve, because of that, when observed
streamflow data are available, statistical inference methods can also be used to estimate
the model parameters. In parameter estimation, those methods associate a probabilistic
model for a random variable to a sample of observed data to infer information about
the population (Naghettini, 2016).

Ceola et al. (2010) were the first to attempt to use this group of methods to estimate
nonlinear recession parameters to be used with the analytical model. They tested two
methods: least squares (LS) and maximum likelihood estimation (MLE) and this second
yield the best results.

MLE is considered to be an efficient method for parameter estimation. It maximizes a
function of the distribution parameters, known as the likelihood function. The formu-
lation of the MLE for the estimation of nonlinear recession parameters based on the
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model is shown in Equation 2.7:

N
£(a,kn) =[] p(Qa kn), 2.7)
i=1
where Q is the observed streamflow, N is the number of available observations and
p(Q; a, ky) is the probability density. This likelihood function is obtained following
the general definition of a likelihood function, i.e. the joint probability of all observed
data points (Naghettini, 2016). For the model of Equation 2.6, this joint probability
corresponds to the product of p(Q) for all sample points.

2.5 Hydrological regimes and mountain hydrology

Mountainous regions are the source of important rivers, such as the Rhine, the Ganges,
and the Columbia. They produce more streamflow than lowlands and supply a great
part of the world population with water, being called natural “water towers” (Viviroli
and Weingartner, 2004).

In mountainous regions, where the weather is colder, precipitation can occur in the
form of snow, which accumulates until the temperature rises enough to melt it. When
the climate supports the prolonged presence of snow, the accumulation may happen
trough period long enough to become a perennial glacier.

It is possible to distinguish between three main types of streamflow regimes according
to its drivers (Musy and Higy, 2010; Hanggi and Weingartner, 2012):

— Pluvial or rainfall dominated: Streamflow production is driven mainly by rainfall
and evapotranspiration and, frequently, streamflows and rainfall patterns are
similar.

— Snow dominated: Precipitation can occur in the form of snow that accumulates
and melts completely intra-annually, and the greater streamflows generally occur
at the end of spring or beginning of summer, influenced by snow melt. Annual
streamflows tend to correlate positively with the annual precipitation, but there is
a delay between the moment when snow falls (i.e., winter) and the moment when
it becomes streamflow (i.e., spring).

- Glacier: In addition to snow, glacier melt also influences streamflows. The increase
of streamflows is not limited by the amount of snow available for melting, so
streamflows peak when temperature (i.e., energy) peaks and peak streamflows
tend to occur in the middle of summer. Additionally, flows are lower from the end of
autumn to the beginning of spring. Snow accumulates interannually, and the total
annual streamflows depend not only on precipitation but also on temperature.

Modelling processes of snow accumulation and melt is complex, it depends on the
knowledge of the characteristics of the snow packs and of energy fluxes, which can be

17
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rather complex in turn, specially because the monitoring networks in high mountains
can be sparse, so modelling those processes require simplifications. Some modelling
difficulties are particular from mountainous catchments namely (Musy et al., 2014):

— High spatial variability of meteorological variables (Hingray et al., 2012);

— High variability in space and time of the form of precipitation (Froidurot et al.,
2014);

— High spatial variability of hydrological processes that depends on the meteorology
on the topography and land uses (Kirnbauer, 1992; Tobin et al., 2013);

— Dependence of initial conditions in terms of soil saturation and snow conditions
(Schaefli et al., 2005);

— Sparse observations of hydro-climatic variables in high elevations (Magnusson
etal., 2014).

2.5.1 Swiss hydrology

Switzerland has an area of 41 285 km? mostly situated in mountainous regions. Its
elevations range from 372 m asl to 4634 m asl and it is crossed by the Alps in the east-
west direction. This geography results in varied hydrological regimes.

The streamflow regimes in Switzerland are usually classified in sixteen types (Haller et al.,
2004). First, the country is divided into three regions: Northern part of the Alps (and
Jura), Inner zone of the Alps and Southern zone of the Alps (Botter et al., 2019) then, for
each of those regions, some characteristic Pardé coefficients were calculated, and they
define the regimes. Pardé coefficients are the ratios between monthly streamflows and
the annual streamflow (Weingartner and Aschwanden, 1994; Spreafico and Weingartner,
2005). Figure 2.3 illustrates the streamflow regimes for Switzerland and Figure 2.4 shows
their spatial occurrence.

Figure 2.3 confirms that the Alpine regimes, that are mostly dominated by snow and
glaciers have their higher streamflows during the warmer seasons when snow-melt
occurs. Accordingly, during the colder seasons, the streamflows are very low. For
the glacier regimes, the peak occurs later, during summer, while for the purely snow
dominated regimes it happens before, during spring. Nivo-pluvial regimes tend to have
two peaks, one during spring, due to snow melt and a second one during the autumn,
due to high precipitation. The streamflows in the pluvial regimes tend to follow the
same trends of precipitation.

Such varied regimes must be studied in different catchments with different characteris-
tics, so 25 catchments were selected to be used as case studies in this thesis. Chapter 3
presents all those cases. The criteria for the selection were:

- Catchment with non-regulated streamflow, keeping approximately natural regimes
(catchment without dams and lakes or important withdraws);
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- Availability of long series of streamflow data;

- Representativeness of the different Swiss streamflow regimes.

The Swiss Federal Office for the Environment (FOEN) provided daily streamflow data
for each catchment (FOEN, 2017). Meteoswiss provided gridded daily precipitation
(MeteoSwiss, 2011) and gridded daily temperature data (MeteoSwiss, 2014). In 2018,
Meteoswiss updated the gridded daily precipitation databases, but at the time all the
calculations related to Chapters 3 to 4 were finished based on the old databases and
they were not updated. The time series obtained with both databasis were compared
and the differences do not affect the conclusions.

2.6 Research needs

The literature review revealed the following research gaps related to the application of
the probabilistic daily streamflow model to Alpine streamflow regimes:

— The model framework has few parameters and because of that, each one of them
can affect modelling results significantly. One can make different methodolog-
ical choices to estimate those parameters, but there is no consensus about the
best methods. The values of recession parameters are particularly susceptible to
methodological choices that affect the model performance strongly. The calcula-
tion of recession parameters using statistical inference methods (MLE) has been
proposed, but has not been tested systematically.

— Most of the previous applications of the model framework excluded case studies
impacted by snow dynamics. In snow dominated regions, the model is adapted
only for periods of snow accumulation. The model should be tested for snow
melting conditions and adapted to those conditions.

— The model has not being tested for glacier regimes, this should be done to identify
needs of developments and then to implement those developments.

The objectives presented in the Introduction of the thesis try to fill those gaps. Chapter
3 studies the model behaviour for cases with different hydrological regimes seeking to
define the gaps better, then, Chapters 4 and 5 are focused on the definition of better
recession analysis methods, and finally Chapter 6 applies the model to glacier and/or
snow dominated catchments all over the year defining the conditions of application
and the adaptations needed for both regimes.

21






Scientific developments

23






Analytical flow duration curves for

summer streamflow in Switzerland

This chapter proposes a systematic assessment of the performance of an analytical mod-
elling framework for streamflow probability distributions for a set of 25 Swiss catchments.
These catchments show a wide range of hydroclimatic regimes, including namely snow-
influenced streamflows. The model parameters are calculated from a spatially averaged
gridded daily precipitation data set and from observed daily streamflow time series, both
in a forward estimation mode (direct parameter calculation from observed data) and
in a inverse estimation mode (maximum likelihood estimation). The performance of
the linear and the nonlinear model versions is assessed in terms of reproducing observed
flow duration curves and their natural variability. Overall, the nonlinear model ver-
sion outperforms the linear model for all regimes, but the linear model shows a notable
performance increase with catchment elevation. More importantly, the obtained results
demonstrate that the analytical model performs well for summer streamflow for all ana-
lyzed streamflow regimes, ranging from rainfall-driven regimes with summer low flow to
snow and glacier regimes with summer high flow. These results suggest that the model’s
encoding of streamflow-generating events based on stochastic soil moisture dynamics is
more flexible than previously thought. As shown in this chapter, the presence of snow- or
icemelt is accommodated by a relative increase of the streamflow-generating frequency,
a key parameter of the model. Explicit quantification of this frequency increase as a
function of mean catchment meteorological conditions is left for future research. !

I This chapter is an adapted version of Santos et al. (2018)
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3.1 Introduction

Knowledge of the availability and variability of daily streamflows in a given stream
section proves useful for many engineering applications (e.g. the design of hydro-power
plants or water supply systems), as well as for studies about stream ecology alterations
and sediment transport or about water quality and allocation (Basso et al., 2015b; Ceola
et al., 2010; Searcy, 1959; Vogel and Fennessey, 1995). For many such applications,
knowledge of the probability distribution of daily streamflows rather than of their exact
temporal occurrence is sufficient.

In hydrology, the probability distribution of daily streamflows is traditionally not rep-
resented as a probability density function (pdf) but in terms of flow duration curves
(FDCs) that associate an exceedance probability to each streamflow value (Vogel and
Fennessey, 1994) and that correspond to the complement of the cumulative distribution
function (cdf).

Different methods exist to estimate FDCs (ie. to estimate their shape), the most straight-
forward method being the assignment of empirical probabilities to observed ranked data
(vielding empirical FDCs) (Vogel and Fennessey, 1994). FDCs can also be obtained from
statistical methods that relate the FDC shape to catchment characteristics (Castellarin
etal., 2013).

An important category of FDC models are process-based models that combine climate
controls and catchment characteristics to estimate the shape of FDCs. Such models
describe the shape of FDCs either based on long term simulations of the system behavior
or based on a direct parameterization of the FDC shape as a function of key hydrological
controls. One such model is the model developed by Botter et al. (2007c), who derived
an analytical description of streamflow distributions as the result of subsurface flow
pulses triggered by stochastic rainfall and censored by the soil moisture dynamics. The
resulting streamflow distribution is characterized by only a few parameters: the mean
rainfall depth and the frequency of rainfall events that produce streamflow, the area of
the catchment and the mean residence time of the catchment.

In the previous applications of the model, the focus was generally on the study of signa-
tures of streamflow regimes under different climates and landscape conditions (Botter
et al., 2007a, 2013), where the shape of the pdf was more important than the accuracy
of the predicted streamflow probabilities. Furthermore, all previous applications delib-
erately excluded all catchments or seasons that where snowmelt affected (Botter et al.,
2007a, 2013; Ceola et al., 2010; Doulatyari et al., 2015).

The objective of this research is to assess and compare the performance of the model in
its linear and nonlinear forms for summer streamflows for a range of Alpine streamflow
regimes. The selected set of case studies covers all Swiss catchments that have a natural
(unperturbed) streamflow regime and long term streamflow monitoring. Compared to
existing studies (eg. Basso et al., 2015b; Ceola et al., 2010; Doulatyari et al., 2017), this
chapter provides a systematic analysis of all model parameters and of their seasonality,



3.2. Methods

and a comprehensive analysis of a wide range of streamflow regimes, including namely
rainfall-driven and snowfall-influenced regimes. This allows a first detailed view on
the suitability of the modelling framework for Alpine summer streamflows (influenced
by rain and snow) and an assessment of the model performance as a function of the
streamflow regime.

The chapter is organized as follows: Section 3.2 provides a description of the methods
adopted in this chapter to estimate the model parameters and to assess the model perfor-
mance, followed by a presentation of the Swiss case studies (Section 3.3). The obtained
results for the linear and nonlinear model versions (Section 3.4) are discussed in Sec-
tion 3.5 with a particular focus on the model performance under different hydrological
regimes. The conclusions are summarized in Section 3.6.

3.2 Methods

Hereafter, we present the two different methods adopted for parameter estimation
and for model performance assessment. All methods are applied only to the summer
season (June 1% to August 31° ! see also Section 3.3). The model evaluation framework
adopted here is synthesized in Figure 3.1, starting from the empirical cdfs as references
for performance evaluation. Next, the precipitation frequency A, is estimated from
precipitation and the streamflow-producing frequency A from observed streamflow
(Equation 3.1, Section 3.2.1). The recession parameters are obtained in forward mode
(Section 3.2.1) or inverse mode (Section 3.2.2). Based on these parameters, the model
cdf is calculated from the linear model (Equation 2.4) or from the nonlinear model
(Equation 2.6). The model performance is evaluated based on two classical performance
indicators and by comparison to the natural variability of the observed cdfs (Section
3.2.3).

3.2.1 Parameter estimation 1: forward estimation

We use the term "forward parameter estimation" to emphasize that the parameters are
estimated directly from observed data, without calibration. This method is generally
used in the context of this modelling framework for the estimation of the parameters
related to the stochastic inputs (A, @, 1), and this method is always used for these
parameters in the present paper. However, the recession parameters (k, k, and a) are
either estimated in a forward mode (Botter et al., 2007c, 2009; Ceola et al., 2010; Schaefli
etal., 2013) or in an inverse mode (Ceola et al., 2010) (see Section 3.2.2).

The computation of the precipitation parameters first involves the computation of a
reference catchment-scale precipitation time series (here obtained from gridded data,
see Section 3.3). Then interception losses (/) are subtracted from the observed daily
precipitation depths. These losses are in fact evaporated (or sublimated in case of snow)
before participating to soil moisture dynamics. Following Rodriguez-Iturbe et al. (1999),
previous model applications generally assumed that these losses are accounted for
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Figure 3.1 - Sketch of the adopted workflow for model parameter estimation and performance
assessment.
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when the frequency of precipitation events is corrected to the frequency of streamflow-
producing events. In view of understanding how the model parameters vary in space, it
was decided here to treat interception losses explicitly with minimal assumptions about
this process: different maximum interception depths are attributed to four different land
covers: 4 mm for forests, 2 mm, for low vegetation, 1 mm for impervious areas, 0 mm
for water bodies (Gerrits, 2010). The catchment-scale maximum interception depth is
obtained as the land use-weighted average of these values, but a minimum interception
depth of 1 mm is imposed. This catchment-scale interception depth is subtracted from
daily precipitation depths, assuming that at a daily time step, all intercepted water
re-evaporates during the same time step.

Instead of correcting the frequency of precipitation events A, according to Equation 2.3,
the frequency of streamflow-producing events A is estimated directly from the theo-
retical relationship between the mean streamflow and the precipitation parameters,
Q = Aa (see Equation L 2.4). Replacing the mean modelled streamflow Q with the mean
observed streamflow Q, it follows that

A= (3.1

QJ’OI'

Estimating A from the above equation rather than directly from the soil properties as in



3.2. Methods

Equation 2.3, has been shown by Ceola et al. (2010) to provide much better results, and
this method was used by the majority of studies since then (e.g. Ceola et al., 2010; Botter
etal., 2013; Basso et al., 2015b).

The recession parameter for the linear model is calculated directly from observed daily
streamflow based on a classical Brutsaert-Nieber recession analysis (Brutsaert and
Nieber, 1977; Biswal and Marani, 2010; Biswal and Nagesh, 2014; Mutzner et al., 2013),
considering, however, only streamflows below a certain threshold, fixed to 95%. The
nonlinear recession parameters, k, and a are also obtained based from a recession
analysis, using the same streamflow threshold via linear regression of the logarithm of
(—dQ/dt) versus the logarithm of Q, where a is the slope and k,, the intercept.

3.2.2 Parameter estimation 2: inverse estimation

To objectively compare the potential of the linear and the nonlinear model formulations
to capture observed flow-duration curves, the recession parameters for the linear model
(k) and for the nonlinear model (k;,, a) are also estimated in a classical inverse estimation
mode where the model parameters are obtained by maximizing the likelihood function
formulated for the model (Equation 2.7).

3.2.3 Model evaluation criteria

To objectively compare different models, we propose to use the Kolmogorov-Smirnov
distance between the cdfs corresponding to different models (Ceola et al., 2010; Schaefli
etal., 2013), i.e. the maximum difference between the values of the empirical and the
modelled cumulative distributions:

S =sup|F(Q) - F(Q)|, (3.2)

where F (Q) corresponds to the empirical cumulative distribution of the streamflows
and F(Q) to the modelled cumulative distribution of the streamflows. A good model
should have a low cXS value.

Since the nonlinear model formulation has an additional parameter, the linear and
the nonlinear models are also compared based on the Akaike information criterion
(Burnham and Anderson, 2004; Laio et al., 2009; Ceola et al., 2010):

A€ =2n,, - In(P), (3.3)

where 7,, is the number of parameters of the model and In(%) is the logarithm of the
maximum likelihood function obtained by maximizing Equation 2.7. As for ¢*5, a good
model should have a low ¢*'C value.

Based on the above criterion, we measure the relative performance increase from the
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30

linear to the nonlinear model as follows:

IC IC
rAIC__(CIV} _c? ) (3.4)
IC ’ :
o
where ¢,IC is the Akaike criterion for the nonlinear model and C‘IMC for the linear model.

Taking the opposite of the relative difference between the Akaike criteria ensures that
a higher r*!€ value indicates a stronger performance increase (recall that the Akaike
criterion is to be minimized).

In addition to assess the performance difference between different models, the obtained
models are compared to the natural variability of the observed streamflow cdfs. There-
fore, an empirical long term cdfis constructed, obtained by ranking the observed data in
ascending order and dividing the rank numbers by the total sample size. Furthermore,
to assess the natural yearly variability, individual cdfs are constructed for each summer
season of each civil year (Vogel and Fennessey, 1994). From this collection of annual cdfs,
envelopes are obtained based on the maximum and minimum values of streamflow for
each probability class of the annual cdfs. A reliable model should yield a cdf contained
between these curves and should be as close as possible to the long term cdf.

3.3 Case studies

In this paper, we analyze 25 Swiss catchments with areas ranging from 1.05 km? to
377 km? and with mean elevations ranging from 615 m asl. (meters above sea level)
to 2945 m asl. (Table 3.1, Figure 3.2). These catchments correspond to all streamflow
gauging stations run by the Swiss Federal Office for the Environment (FOEN) (FOEN,
2017) that have unperturbed streamflows (i.e. minimal anthropogenic influence).
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Figure 3.2 — Location of the case study catchments in Switzerland. The six biogeographical
regions of Switzerland (FOEN, 2004) are summarized here into three main regions. Data
source: Digital elevation model (SwissTopo, 2005a), catchments: (Helbling, 2016).

31



Chapter 3. Analytical flow duration curves for summer streamflow in Switzerland

¥102-2I-T1€ 01 1961-20-7C  9E'T- €96 e 60ST 89€Z 697  0€8VLI / 0E6708 7OUIdZ - BZZON[D BP BAQ 61€C ST
#102-21-1€ 03 0L6T-10-T0 200  2IST Ge'o 0981 €82 TV 010THI /021208 BSQY T - OUIABIYISOJ 99€T 2
¥102-21-1€ 02 S66T-10-T0 6T SLEl € G6LT 9,22 961  0CYBIT/00S¥F9 uepRWSADY - YoRqUIWNDY $27 €T
$102-21-1€ 03 L961-10-10 ¥ 8161 0 068 9661 ¥Z  096SET / 026789 muoq ‘oudivae) - e133aureD Ip S[BN] 9567 2T
¥102-21-T€ 01 6861-60-T0 L% 1S0C 0 067 2291 981  0T622I/02ZH80L 1ordure)) ‘0zza)I0ART - BISBZIOA G092 1¢
¥102-21-1€ 02 S00Z-10-10 LY 91LT 0 6 6IFT  SO'T  OL9VIT/88692L (e1QQOIOIN 3[[BA) BIS[OIA - BIDBIN 9022 0T
¥102-21-1€ 01 6261-10-T0 626 TI8II 0 €8¢ 00. 1€C  09T¥ST / OVOZES stog so7T ‘sua[qnoy - 830UdA ZEFZ 61
¥102-2I-T1€ 01 1961-10-10  8I‘€-  €2The 6'59 aat G¥6C  S61  06ZLET / 00LEV9 SI9BN 19q UaNe[q - BSSBIN 19TC 8T
¥102-CI-T1€ 01 1961-10-T0  86C-  990C z'es 191 612 68E  002.ST/0T80.9 YoSI9LD - dUQUY 8927 LI
¥102-21-1€ 02 1661-20-LZ €¥'S  S00C 0 0v8 GGIT  ¥9%  020€2Z / 079869 upapatsurd - d[y 609z 91
$102-21-1€ 03 1961-10-10 e 1081 €6 192 0281 6'€F  0S096T / 005589 [BYIUSS] - YOBQ[ISSOID) 9227 ST
¥102-21-1€ 02 T96T-10-T0 890  S¥9T L1z 2201 0022 90  0TIS8T /095889 S1aquapog ‘ppstd - yoeqdiy 6622 ¥1
$102-21-1€ 01 0861-60-21 w8 oeel 0 IS 619 S0I  06281C/ 0£58S9 UOIP[USNaN - YOBQUAPOQUI[[AS 8092 €1
¥102-21-T€ 01 6861-70-T0 29 BILI 0 689 IS0T 88T 009861 / 02EL29 neugueT] - syl €092 21
¥102-21-1€ 02 1961-10-10 s 1€ST 0 24 0901 2§  OV666T/ 0SEVSS A1pnog - 9sna1y 08¢ 11
¥102-21-1€ 03 T96T-10-T0 629  6LYT 0 €66 8901  ¢S€  0Z0E6T / 0SEE6S NBWASUAS ‘SNBYSIIQU] - 9SUSS 6.1 0T
¥102-21-1€ 02 1961-60-T0 18 0161 0 Szl ¥SPT  S9T  06SOLT / 086185 819qAM1S ‘UsIOTed - YORQUANOY 1SZC 6
#102-21-1€ 03 1961-10-10 2L seel 0 2es 168 LIT 089261 /018709 newrm ‘djog - 99O 6517 8
¥102-21-1€ 01 Z661-10-T0 LT'L seel 0 £9¥ 68, 82,  0ST¥¥e /S8¥66S sanborp - 93Mayds 019z £
$102-21-1€ 03 1961-10-10 062 1S€1 0 99% 0S9 6'8.  02L19Z/SOTVIL Buem - SN 9212 9
¥102-21-1€ 03 T96T-10-T0 0T'S  ¥06T 80°0 692 2l TVL  02Che / OV06TL nezuaddy - 1011S ZITZ §
¥102-21-1€ 02 2261-10-10 V9 LLLT 0 909 656 288  062.FC/0L1LZL a3psyory ‘310qs[OS0IN - 1Y0AN ¥LEC ¥
¥102-21-1€ 01 7261-10-T0 6€L  9vvl 0 66€ €68  86F 065192/ 06IESL a1 ‘YOBP[OD) - YIBP[OD) 0ET €
P102-2I-1€ 01 1961-20-FC  ¢9°0- 1201 e 8991 2LE€C €€V 0LEE8T /07298L anews3a1nY ‘S0AR( - YoRqRWIYISI( LZEC ¢
¥102-21-1€ 03 L26T-60-ST  6T1‘T-  L0LI L9 0671 0S¥¢ 812 06991 /01881L suapreoug ‘Syauwing - yawng ep Y 0z 1
Do) (trar) (%) ('[se w) (Tsew) (Funp (€06THD)
Eoﬁum\wwﬁ@ QOEN.\VQ
pouad eyeq I d uonemnen uonel§ -[@ UBA]N  BAIY $9JBUIPIOOD) aweN (I
‘uonismboe

e1ep Jo porrad ay) ‘@rmjerodwa) [enuue ueaw oY) ‘uonelrdoald [enuue UBSW ) YUIWYIIELI ) JO 19A02-1310€[3 Jo aSeiuadiad ) ‘Uonead[d
uonels urdnesd ay) pue JUIWYIILD Y] JO UOIIBAI[D UBIUI 9Y} ‘©aIe ageurelip ay) ‘uonels 3uidnes ay) Jo S9IBUIPIOOD SSIMS 9} ‘QUIBU JUWIYIILD
9yl ‘(1) @pod uonedyNuapI NHOJ oY) :Surpnpur ‘Oseqeiep NAO. Y} UI USAIS St SJUSWIYDILd APNIS 9SeD SSIMS JO sonsLIaloeIey) — '€ 9[qeL

32



3.3. Case studies

The average precipitation at the country scale is around 1300 mm yr~! (Blanc and
Schédler, 2013). The complex topography leads to a high diversity of hydrologic regimes
(Weingartner and Aschwanden, 1992), which can be grouped into i) pluvial or rainfall-
driven regimes, ii) snow-dominated regimes and iii) glacier regimes (Table 3.2). Pluvial
regimes are rainfall-dominated with sporadic snowfall events during winter; these
regimes occur on the Swiss Plateau and in the Jura region (Figure 3.2). Snow-dominated
regimes result from a seasonal snow cover, roughly at elevations above 900 m asl. In
these catchments, solid precipitation accumulates during several weeks up to several
months during the cold season (winter) and is entirely released in the following spring
and early summer. Glacier regimes result from perennial snow and ice accumulation
at elevations roughly beyond 3000 m asl. Most snow-dominated and glacier regimes
are located in the Alps region (Figure 3.2), few of them are located in the South of Alps
region, which overall has a warmer climate and presents higher precipitation than the
other two regions.

Table 3.2 — Regrouping of the 16 regime classes of Weingartner and Aschwanden (1992) into
three classes (details are available in the Appendix A).

ID Name Regime 16 Regime 3
1 2430  Rein da Sumvitg - Sumvitg, Encardens  b-glacio nival glacier
2 2327  Dischmabach - Davos, Kriegsmatte b-glacio nival glacier
3 2308  Goldach - Goldach, Bleiche pluvial supérieur pluvial
4 2374  Necker - Mogelsberg, Aachsidge nivo-pluvial préalpin snow-dominated
5 2112 Sitter - Appenzell nival de transition snow-dominated
6 2126  Murg - Wéngi pluvial inférieur pluvial
7 2610  Scheulte - Vicques nivo-pluvial jurassien snow-dominated
8 2159  Glrbe - Belp, Miilimatt pluvial supérieur pluvial
9 2251  Rotenbach - Plaffeien, Schwyberg 4 nivo-pluvial préalpin snow-dominated
10 2179  Sense - Thorishaus, Sensematt nivo-pluvial préalpin snow-dominated
11 2480 Areuse - Boudry pluvial jurassien pluvial
12 2603 Ilfis - Langnau nivo-pluvial préalpin snow-dominated
13 2608 Sellenbodenbach - Neuenkirch pluvial inférieur pluvial
14 2299  Alpbach - Erstfeld, Bodenberg b-glaciaire glacier
15 2276  Grosstalbach - Isenthal nival alpin snow-dominated
16 2609  Alp - Einsiedeln nivo-pluvial préalpin snow-dominated
17 2268 Rhone - Gletsch a-glaciaire glacier
18 2161 Massa - Blatten bei Naters a-glaciaire glacier
19 2432  Venoge - Ecublens, Les Bois pluvial jurassien pluvial
20 2206 Melera - Melera (Valle Morobbia) nivo-pluvial méridional ~ snow-dominated
21 2605 Verzasca - Lavertezzo, Campioi nivo-pluvial méridional ~ snow-dominated
22 2356 Riale di Calneggia - Cavergno, Pontit nival méridional snow-dominated
23 2244  Krummbach - Klusmatten nival méridional snow-dominated
24 2366 Poschiavino - La Rosa nival méridional snow-dominated
25 2319 Ovada Cluozza - Zernez nivo glaciaire snow-dominated

Most Swiss streamflow regimes show a strong seasonality (Weingartner and Aschwan-
den, 1992), illustrated in Figure 3.3 for typical examples of the three regime main types;
air temperature is shown here as a proxy for snow and evapotranspiration processes. The
pluvial Goldach river (GOL) shows the typical summer low flow resulting from evapo-
transpiration; the Dischmabach shows a snow regime with high summer flows resulting
from the release of snowmelt stored in the subsurface during the main snowmelt period
(spring) and from residual snowmelt during summer. The Rhone river (RHG) with its
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Figure 3.3 — Annual cycle of streamflow and air temperature for three selected catchments
representing three different hydrologic regimes (pluvial, snow-dominated and glacier regime).
Shown are the mean monthly values computed over the entire observation period for each
catchment (see Table 3.1).

50% glacier cover shows a glacier regime, with significant ice melt during summer, and
with monthly streamflow peaking for the same month as air temperature (July).

Itis noteworthy that surface runoff processes can play a certain role for extreme events in
all regions of Switzerland (Bernet et al., 2017), but all hydrologic regimes are dominated
by subsurface runoff processes, a pre-condition for the application of the modelling
framework developed by Botter et al. (2007c).

Besides observed daily streamflow, the model requires catchment-scale daily precip-
itation as input. Most of the previous applications of the models used precipitation
from one or several meteorological stations as input (Botter et al., 2007c,a, 2013; Ceola
et al., 2010; Basso et al., 2015b; Schaefli et al., 2013), which is potentially limiting for
the model performance since good area-averaged input estimates are critical. Recent
progress in spaceborne precipitation observation, and in particular the Global Precipita-
tion Measurement (GPM) mission, potentially offers an interesting new data source for
area-averaged precipitation estimates, even in such complex terrain as the Swiss Alps
(Gabella et al., 2017), with the drawback of covering only short historical periods. Here,
we use the relatively new spatial precipitation data set of MeteoSwiss with a nominal
resolution of 2.2 km and an effective resolution between 15 km and 20 km and extending
back to 1961 (MeteoSwiss, 2011). This data set can be assumed to give relatively good
estimates of area-averaged precipitation (Paschalis et al., 2014; Addor and Fischer, 2015),
even in mountainous areas where there are only few meteorological stations.

Corresponding catchment-scale average precipitation time series per case study catch-
ment are obtained by averaging the daily precipitation time series of all pixels contained
in the catchment (a list of pixels per catchment is included in the Appendix A ). In addi-
tion, we also used the corresponding gridded temperature data set (MeteoSwiss, 2014) to
support the analysis of parameter seasonality. As for precipitation, the catchment-scale
average temperature data set is obtained by averaging the daily time series of all pixels.

Before estimating rainfall frequency (1,) and average rainfall depth on raindays (a),
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the catchment-scale precipitation time series are pre-processed to remove losses from
interception. This step requires information about land use. Of the retained 25 case
study catchments, 22 are part of what is called "hydrological study areas" and have an
associated extended data set, including land use (Aschwanden, 1996). For the other
catchments (i.e. the Areuse, Rhone-Gletsch and Venoge), land use is obtained from the
Swiss land use database (FOS, 2015). Details about the land use estimation are available
in the Appendix A).

3.4 Results

3.4.1 Discharge regimes and parameter seasonality

To gain further insights into the hydrological processes underlying the different regimes,
Figure 3.4 shows the within-year variability of the model parameters obtained by esti-
mating the parameters in forward mode for moving and overlapping 90-day windows.
The precipitation parameters a and 1, do not show strong seasonal patterns, except for
a few catchments such as the Goldach river (Figure 3.4a). For snow and glacier regimes,
the frequency of streamflow-producing events, A, increases strongly at the beginning of
spring (Figure 3.4b and c), which indicates the release of water from snow- or icemelt.

The inverse of the linear recession coefficient T = k! shows a coherent annual cycle
for all catchments, independent of the underlying streamflow regime (Figure 3.5). This
seasonal pattern with consistently low 7 values during summer for all catchments clearly
justifies the choice of a common summer season (June, July, August) for all regimes. The
amplitude of the annual cycle (the difference between high and low 7 values) is stronger
for snow or glacier regimes, which reflects the fact that in these regimes, parts of the
catchment are effectively dormant during the winter (Schaefli et al., 2013).

3.4.2 Linear model

All estimated parameters for both forward and inverse estimations are summarized in
Tables 3.3 and 3.4, together with the values of the performance indicator c*5. It can be
noted that for 11 catchments (i.e. Rein da Sumvitg, Dischmabach, Alpbach, Grosstal-
bach, Rhone a Gletsch, Massa, Verzasca, Riale di Calneggia, Krumbach, Poschiavino
and Ova da Cluozza), A exceeds A, contradicting the original description of the model
(Botter et al., 2007b), which states that the streamflow-producing frequency A is smaller
than the precipitation frequency A,. Such an exceedance of A over 1, should only
happen in catchments or seasons with an additional source of water (in addition to
rainfall), which in the present case is snow- or icemelt.
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Figure 3.5 — Temporal variation of the residence time (7 = k1) for the 25 catchments. The
temporal variation is obtained as in Figure 3.4.
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Table 3.3 — Parameter values for all the catchments for summer common to the linear and
nonlinear models. Q stands for the mean observed streamflow, P; the mean total precipitation
during summer, T the mean temperature during summer, [ for interception depth.

Name Q Py Ty a Ap I A
(mm/d) (mm) (°C) (mm/d) (1/d) (mm/d) (1/d)
Rein da Sumvitg - Sumvitg, Encardens 13,8 532 5,62 12,4 0,410 1,83 1,115
Dischmabach - Davos, Kriegsmatte 7,4 378 6,49 8,2 0,377 2,29 0,906
Goldach - Goldach, Bleiche 2,5 513 15,15 11,0 0,376 3,13 0,224
Necker - Mogelsberg, Aachsige 3,3 600 14,22 12,2 0,393 3,30 0,273
Sitter - Appenzell 5,4 648 12,30 12,5 0,433 3,06 0,427
Murg - Wéngi 1,7 432 16,07 9,6 0,348 3,13 0,174
Scheulte - Vicques 1,5 388 1510 9,1 0,312 3,46 0,162
Giirbe - Belp, Miilimatt 2,1 450 15,15 9,9 0,355 3,06 0,210
Rotenbach - Plaffeien, Schwyberg 4,3 616 13,29 14,0 0,378 3,16 0,309
Sense - Thorishaus, Sensematt 2,2 483 13,98 10,7 0,356 3,22 0,208
Areuse - Boudry 1,7 383 13,10 8,8 0,316 3,37 0,191
Ilfis - Langnau 2,7 567 13,79 12,4 0,373 3,40 0,220
Sellenbodenbach - Neuenkirch 2,0 431 16,86 9,7 0,357 2,99 0,207
Alpbach - Erstfeld, Bodenberg 16,5 457 7,29 8,9 0,477 1,28 1,858
Grosstalbach - Isenthal 6,0 598 8,97 11,8 0,444 2,35 0,504
Alp - Einsiedeln 4,7 687 13,03 14,1 0,415 3,40 0,335
Rhone - Gletsch 17,1 473 3,58 9,0 0,505 1,00 1,905
Massa - Blatten bei Naters 17,1 739 3,48 13,9 0,533 1,00 1,228
Venoge - Ecublens, Les Bois 0,7 298 17,39 7,9 0,268 3,14 0,090
Melera - Melera (Valle Morobbia) 3,1 562 12,64 18,1 0,273 3,87 0,174
Verzasca - Lavertezzo, Campioi 6,0 581 12,03 17,9 0,313 3,00 0,333
Riale di Calneggia - Cavergno, Pontit 8,9 482 9,96 13,5 0,332 2,04 0,655
Krummbach - Klusmatten 6,0 317 9,30 9,2 0,294 2,35 0,656
Poschiavino - La Rosa 54 424 7,83 11,1 0,323 2,49 0,490
Ova da Cluozza - Zernez 5,2 329 6,58 8,4 0,342 1,77 0,619
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Figure 3.6 - Difference between A and 1, as a function of mean catchment elevation.

The exceedance of A over 1, increases with mean catchment elevation (Figure 3.6), the
limit of A = 1), being at around 1500 m asl. This important result is further discussed in
Section 3.5.

The cdfs obtained from all estimated parameters are presented in Figure 3.7 for the
three example case studies. For the catchment with rainfall-driven streamflows (GOL),
it can be seen that the probabilities of occurrence of low flows are largely overestimated
with forward estimation (Figure 3.7a). This is a typical indication that the recession time
scale is underestimated. The model values even exceed the envelopes that represent
the natural variability of the streamflows. In the presence of snow, the linear model in
forward estimation mode tends to underestimate low flows, with satisfactory results for
some cases, such as the Dischmabach (Figure 3.7b).

Overall, there is a strong increasing trend of the linear model performance with mean
catchment elevation (Figure 3.9a). Despite of this, the results of the linear model are not
satisfactory for the forward estimation method for any of the regimes.

The inverse estimation of the model parameters improves the results significantly, but
the c*S performance indicator shows relatively high values and the curves are visually
not accurate, especially for pluvial regimes. This suggests that the model with a linear
streamflow decay is overall not suitable for the studied catchments.

3.4.3 Nonlinear models

The results obtained from inverse parameter estimation for the nonlinear model are
very good (Figure 3.8, Tables 3.3 and 3.4), and the nonlinear model outperforms the
linear model for all catchments, both in terms of the KS performance and in terms of
the Akaike criterion (Table 3.4). The relative model performance increase (as measured
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by rAI€) shows furthermore a strong inverse trend with mean catchment elevation
(Figure 3.10), which results from the increasing performance of the linear model with
increasing elevation (Figure 3.9b).
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Figure 3.8 — As Figure 3.7 but for the nonlinear model.

It is noteworthy that the two catchments for which the performance increase of the
nonlinear model over the linear models exceeds 20% are the two catchments that have
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a strongly karst-influenced regime (Scheulte at Vicques and Venoge at Ecublens).

As for the linear model, the forward estimation mode gives less good results than the
inverse estimation mode. For some catchments (i.e. Murg-Wingi, Giirbe, Sense, IIfis,
and Grosstalbach), the forward estimation mode gives nevertheless very good results
with ¢&S below 0.1. In general, for the catchments where the discrepancies between
modelled and observed cdfs are due to an underestimation of 7, the nonlinear model
yields a significant improvement. For catchments where the recession time scale is
overestimated with the linear model, the nonlinear model in forward model leads to a
performance decrease.

3.5 Discussion

Our results show that analytical modelling framework for streamflow distributions
proposed by Botter et al. (2007c) performs well for the 25 Swiss catchments across all
studied streamflow regimes. A detailed comparison between the performance of the
linear and the nonlinear models considering the optimized parameters obtained from
the inverse approach shows that the results for the nonlinear model are always better
than for the linear model. This underlines that the nonlinear recession suits better the
hydrological conditions of all studied catchments, which is inline with previous results
(Ceola et al., 2010; Basso et al., 2015b).

In forward estimation mode, the linear model outperforms the nonlinear model for
catchments with summer high flows; the nonlinear model outperforms the linear model
for catchments with rainfall-driven regimes (i.e. summer low flows). This results from
the fact that for regimes with summer high flow, the linear model overestimates the
recession time scale (resulting in a underestimation of the streamflow variance). For
regimes with summer low flow, the linear model in exchange underestimates the reces-
sion time scale. Given that the nonlinear model yields longer recessions, the nonlinear
model shows accordingly a better performance for regimes with summer low flow.

The comparison between the forward and inverse estimation methods shows a clear
underestimation of k,, for most of the catchments, which was already discussed by Dralle
et al. (2015) and which is inline with previous work that tried to improve the results of
the model in forward estimation mode, for the linear and the nonlinear formulation
(Ceola et al., 2010; Basso et al., 2015b). There is clearly a need to further improve the
methods to estimate the recession parameters. Our results pinpoint that a key hereby
might be the detailed investigation of recession analysis methods along elevational
gradients and related hydrologic regimes.

Overall, the good model performance in many different catchments with different
regimes indicates that the modelling framework is suitable for the prediction of FDCs in
Switzerland. A more detailed model temporal model validation (e.g. with a split sample
test, Klemes, 1986) is not possible for this framework since the model parameters are
obtained directly from observed data for each time period (i.e. they vary from period to
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period). The obtained model performances are comparable to the results obtained in
previous studies, e.g. in the work of Ceola et al. (2010). They obtained for different case
studies in Italy and the US c*® values varying between 0.030 and 0.409 for the nonlinear
model using different methods of forward estimation, and cXS values between 0.021
to 0.051 for inverse estimation. For the linear model, Ceola et al. (2010) obtained cXS
values between 0.054 and 0.567. Basso et al. (2015b) and Doulatyari et al. (2017) studied
some case studies that are included in the present paper (Sitter at Appenzell and Murg
at Wangi).

Recomputing their results with their model parameters yields slightly different ¢*S
values for the nonlinear model for the Sitter (0.12 compared to our 0.19) and for the
Murg (0.05 to 0.06 compared to our 0.06). These differences are small and can be
explained by different data periods and by the methodological choices in the calculation
of parameters.

The most remarkable result of the presented analysis is the fact that the modelling
framework is applicable in its original formulation to catchments where summer flow is
influenced by snow processes. The additional source of water from snow or icemelt is
accommodated by increasing the frequency A of streamflow-producing events. This is
inline with a common assumption in catchment-scale precipitation-runoff modelling
(e.g. Schaefli et al., 2005), which is that runoff from snowmelt can be modelled with
exactly the same functional relationships as for rainfall, by simply feeding so-called
equivalent precipitation (sum of rainfall and simulated snowmelt) into the runoff gener-
ation module.

The increase of the streamflow-producing frequency to account for snow or icemelt is
furthermore also coherent with the original description of the analytic modelling frame-
work, which incorporates losses as a decrease of the streamflow-producing frequency.
This type of behavior can be identified in previous studies. Basso et al. (2015b) obtained
for the Sitter at Appenzell A values that are close to the precipitation frequency 1, during
spring; for the Thur at Jonschwil they obtain A = A, for spring. Both catchments have
a mean elevation above 1000 m asl., which suggests the presence of snow processes.
Later on, Doulatyari et al. (2017) discussed that snow accumulation and melt could be
affecting the streamflow pdf estimation for the Sitter at Appenzell, without, however,
exploring the issue further.

As can be seen in Figure 3.6, the switch from A <1, to A, to A > A, is located at around
1500 m asl. This corresponds to a relatively low mean catchment elevation; for this
mean elevation, it can a priori not be assumed that significant snowmelt continues
throughout the summer. In fact, for most snow-influenced catchments, the majority of
snowmelt happens during spring. Summer flows are nevertheless directly influenced
by spring snowmelt since the summer streamflow results from a continuous release of
melt water stored in the catchment during the preceding snowmelt period. For high
elevation catchments, the exceedance of A over 1, is directly related to significant snow-
and icemelt inputs throughout the summer.
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KS s zero for a perfect model.

It should be kept in mind here, that for the present study, A is estimated directly from
the relation between streamflow and precipitation (see section 3.2.1 and Equation 3.1).
The question of how to estimate this parameter directly from catchment characteris-
tics based on long term snow cover statistics and data on glacier cover remains to be
answered in future work.

Besides the important result that the model is applicable to snow-influenced catch-
ments, additional insights can be obtained from the highlighted model performance
trends with mean catchment elevation (Figure 3.9 and 3.10). These performance trends
are explained by the evolution of the regimes with mean catchment elevation, from
rainfall-dominated (pluvial) regimes with summer low flow to snowfall-influenced (nival
and glacier) regimes with summer high flow. This result suggests that mean catchment
elevation is a good proxy for regime shifts, despite the fact that many other catchment
characteristics vary strongly across the set of studied catchments (area, hypsometric
curve, land use etc.). Given the strong link between mean catchment elevation, mean
catchment air temperature and snow accumulation, this opens interesting perspectives
for parameter regionalization.

3.6 Conclusions

This application of the analytic framework of Botter et al. (2007c) to estimate summer
streamflow probability distributions for 25 Swiss catchments shows that this framework
performs well without any further methodological adjustments across a wide range
of streamflow regimes, including rainfall-driven regimes with summer low flows, but
also regimes with snow- and glacier melt influenced summer high flows. Given that
the original framework was developed for purely rainfall-driven regimes, this result
is unexpected. For snow-influenced catchments, the model has been shown here to
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Figure 3.10 — Relative increase of the performance of the nonlinear model with respect to the
linear model (as measured by rAlCy as a function of mean catchment elevation. All model
parameters are estimated in inverse mode.

accommodate the additional source of water from snowmelt by a relative increase of
the streamflow-producing frequency, which is coherent with the underlying analytic
framework.

The detailed comparison between the performance of the linear and the nonlinear
model formulation shows that the description of Swiss summer flows strongly benefits
from using a nonlinear storage-streamflow relationship, in particular for catchments
with summer low flow and for the karst catchments. In general, the linear model
performance increases for increasing total summer flows or, equivalently, for catchments
with higher mean elevation. Future work will focus on improving the model parameter
estimation directly from observed data (without parameter optimization), which is a
pre-condition for parameter regionalization. Better insights into the physical grounds of
the different parameters will also open new perspectives for the extension of the model
framework to all four seasons for all Swiss streamflow regimes.
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Estimation of streamflow recession

parameters: new insights from an an-

alytic streamflow distribution model

Streamflow recession analysis characterizes the storage-outflow relationship in catch-

ments. This relationship, which typically follows a power law, summarizes all catchment-

scale subsurface hydrological processes and has long been known to be a key descriptor of

the hydrologic response. In this chapter, we tested a range of common recession analysis
methods (RAMs) and propose the use of an analytic streamflow distribution model as an

alternative method for recession parameter estimation and to objectively compare differ-

ent RAMs. The used analytical model assumes power law recessions, in combination with

a stochastic process for streamflow triggering rainfall events. This streamflow distribution

model is used in the present framework to establish reference values for the recession pa-

rameters via maximum likelihood estimation (MLE). The model-based method has two

main advantages: i) joint estimation of both power law recession parameters (coefficient

and exponent), which are known to be strongly correlated; ii) parameter estimation based

on all available streamflow data (no recession selection). The approach is applied to five
rainfall-dominated catchments in Switzerland with 40 years of continuous streamflow
observations. The results show that the estimated recession parameters are highly de-

pendent on methodological choices and that some RAMs lead to biased estimates. The

recession selection method is shown to be of prime importance for a reliable description of

catchment-scale recession behavior, in particular in presence of short streamflow records.

The newly proposed model-based RAM yields robust results, which supports the further

development of this method for comparative hydrology and opens new perspectives for

understanding the recession behavior of catchments. !

I This chapter is an adapted version of Santos et al. (2019)
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4.1 Introduction

Recession analysis is a classical tool in hydrology to understand subsurface storage -
outflow relationships in absence of water input at the catchment scale (Brutsaert and
Nieber, 1977). Many analytical expressions can be used to model a streamflow recession.
The one that is adopted in the present work as well as in most studies available in the
literature, is presented in Equation 4.1. This expression was derived by Brutsaert and
Nieber (1977) from the Boussinesq equation. Boussinesq (1904) proposed an exact
solution for this equation which was later refined by Polubarinova-Koch (2015), who
solved it for the beginning of the recession. According to this expression, recessions
can be described by two parameters that relate streamflow (Q) to its variation in time
(dQ/dt): ky, or the recession coefficient and a, or the recession exponent.

aQ _

—=—knQ". 4.1)

It is noteworthy that each recession event in a catchment might have a unique pair of
parameters. It has, in fact, long been known that the hydrologic recession behavior is
dynamic; each recession event reflects the antecedent moisture and recharge conditions
for that particular event (Biswal and Nagesh, 2014). Nevertheless, we need effective con-
stant parameters to describe the overall behavior of different catchments, to compare
those catchments across hydroclimatic gradients, to understand hydrologic similarity
among them or to build models. This necessarily raises the need for methods to define
a pair of constant recession parameters from streamflow records, which are known as
Recession Analysis Methods (RAMs) (Stoelzle et al., 2013). The many methods proposed
in the literature have usually specific purposes (Tallaksen, 1995), such as low flow studies
(Aksoy and Wittenberg, 2011; Bako and Hunt, 1988; Gottschalk et al., 1997; Sugiyama,
1996), rainfall-runoff modelling (Kirchner, 2009; Miiller et al., 2014; Rupp and Woods,
2008), the estimation of groundwater storage variations at catchment scale (Kirchner,
2009; Vogel and Kroll, 1992), or studies on the geomorphologic origin of streamflow
(Biswal and Marani, 2010; Biswal and Nagesh, 2014; Mutzner et al., 2013). Recession
analysis has also been used to study catchment similarity (Sawicz et al., 2011), hydro-
logical regimes (Botter et al., 2013) or to study how land use can affect the recession
behavior (Bogaart et al., 2016; Sawaske and Freyberg, 2014). In hydrologic modelling,
recession analysis has become widely used to derive hydrologic signatures to be used in
model calibration (e.g. McMillan et al., 2017). An early example is the work of Harlin
(1991). Recent work in this field focuses on the question of how to account for different
sources of uncertainties in hydrological signatures (Westerberg, 2015).

The application of a selected RAM implies a number of methodological choices. Any
RAM can be divided into two main steps: i) Recession extraction and ii) parameter
estimation. Recession extraction is the process of selecting a streamflow data portion
where recession is the only streamflow generation process. It can be based only on
streamflow data or include other types of data, such as precipitation. Parameter esti-
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mation, in turn, consists of fitting parametric curves to the selected data portions to
estimate the recession parameters. There exists a wide variety of methods to perform
both steps, leading to a large choice of possible combinations and accordingly, to a
considerable spread of corresponding results (Arciniega-Esparza et al., 2017; Chen and
Krajewski, 2016; Dralle et al., 2017b; Stoelzle et al., 2013). Some authors even propose
supplementary steps, such as filtering the noise of observed streamflow as suggested by
Roques et al. (2017).

One classical way to extract recessions is the graphical method consisting of inspecting
the hydrograph represented on a semi-logarithmic scale and searching for the long-
enough segments where the hydrograph fits a straight line (Horton, 1941; Rorabaugh,
1964). Given that this is not practical to automatize, different methods have been
proposed to mimic this process. Brutsaert and Nieber (1977) consider only series of
streamflows starting at least 5 days after a rainfall event, requiring not only streamflow
data, but also precipitation data. Vogel and Kroll (1992) proposed an algorithm based on
3-day moving averages of daily streamflows and a minimum length of 10 days of reces-
sion that also excludes the beginning of the recession (to exclude surface runoff). Later,
Brutsaert (2008) described new criteria to extract recessions based only on streamflow
data: decreasing streamflow portions are selected and the start and end points of an
event are eliminated. Dralle et al. (2017b) summarized all decisions involved in reces-
sion extraction in terms of: i) the minimum allowable length of events, ii) the definition
of the beginning and of the end of an event and iii) concavity. They furthermore showed
that results are significantly improved when concavity is considered in the recession
selection.

The range of parameter estimation methods proposed in the literature can be classified
into two types: i) based on a collection of individual events or ii) assuming that all events
come from a single master recession. Master recession curve methods fit the ensemble
of data at once in log-log scale but different fitting methods exist: the original method
of Brutsaert and Nieber (1977) suggested to estimate the recession parameters from
lower envelopes of all data points. Some authors apply a regression to all data points
(e.g Ceola et al., 2010). Kirchner (2009) proposed to bin the data.

Another approach is fitting parametric curves to individual recession events, called
“per event” approach hereafter. The methods based on individual events estimate the
parameters for each selected event and then take either the average (Ye et al., 2014) or
the median (Basso et al., 2015b; Biswal and Marani, 2010; Mutzner et al., 2013) of the
resulting parameter sets. Given that the parameters k, and a are always correlated to
some degree (Dralle et al., 2015), such an approach might induce biases. Dralle et al.
(2015) thus proposed a method to overcome this limitation.

Some authors, such as Chen and Krajewski (2016); Dralle et al. (2017b); Stoelzle et al.
(2013) studied the inherent uncertainties in the choice of a RAM and how methodologi-
cal choices can affect the values of parameters, with only partly conclusive results. The
recent paper by Dralle et al. (2017b) studies exclusively the per event recession methods
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and provides a clear recommendation about the best method to use in this case: non-
linear fitting in combination with a concavity criterion for recession selection. Stoelzle
et al. (2013) on the other hand, studied exclusively methods based on the regression of
master recession curves, concluding that each application of recession models (e.g. the
use of a particular model or for a particular climate) may require a different RAM and
must be studied individually.

A critical point for comparing different RAMs is the fact that all methods are approxima-
tions. An exception is the work of Roques et al. (2017) who used synthetic recessions
as areference. In the present chapter, we build on this existing work and extend it to
understand how well classical RAMs can capture the actual storage-discharge behavior
of catchments. To overcome the aforementioned limitation, we use a simple hydrologic
model to objectively compare the model parameters obtained with different RAMs. The
retained model is the analytic streamflow duration curve model developed by Botter
et al. (2007c, 2009), which derives an analytic expression for the probabilistic distribu-
tion of daily streamflows as a function of stochastic rainfall properties and the recession
parameters k; and a.

In this model context, the recession parameters have generally been estimated with
the master recession approach, with binning (Ceola et al., 2010) or, mostly without
binning (Ceola et al., 2010; Santos et al., 2018; Schaefli et al., 2013) or with an event-scale
recession analysis with a linear regression of data (Basso et al., 2015b; Botter et al., 2007a,
2009, 2013, 2008; Miiller et al., 2014).

A major advantage of using this analytic model for a systematic comparison of different
RAMs is the fact that we can obtain a reference recession parameter set via maximum
likelihood estimation (MLE). This was first attempted by Ceola et al. (2010) who assessed
the model performance for different recession parameter estimation methods, including
traditional RAMs and statistical curve-fitting methods. Since in their analysis, MLE
provided the best results, it was later used by Santos et al. (2018) to obtain linear and
nonlinear recession parameters and will build the basis for parameter comparison in
this chapter.

Recession parameters correspond to effective parameters that are used to describe
the storage-discharge relationship of a catchment. Even if they are estimated based
on physical considerations, e.g. from groundwater flow analysis, they can usually not
be related directly to actual catchment properties. Some authors, such as Biswal and
Marani (2010); Biswal and Nagesh (2014); Mutzner et al. (2013), tried to relate the
recession parameters to geomorphological features, in a first step to tie them firmly to
the physiographic characteristics of a catchment. However, the recession behavior at
the scale of an entire catchment results from the interplay of saturated and unsaturated
flow, which makes its description rather complex (Tallaksen, 1995).

In this context, the model-based approach proposed in the present chapter offers
two important advantages over traditional RAMs: i) It extracts information about the
recession behavior from all observed streamflow records collectively without prior
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recession selection. ii) The proposed framework estimates the two recession parameters
(a and kj,) jointly, which is crucially lacking in most existing methods. The method has
thus the potential to provide a more holistic view of the recession characteristics at the
catchment scale.

The overall objective of the chapter is twofold: i) assess the value of the model-based
approach for recession parameter comparison; and ii) understand the advantage of
using MLE in combination with the model of Botter et al. (2007c, 2009) over established
RAMs. An essential part of this analysis is a detailed assessment of the different parame-
ter estimation methods in the presence of short streamflow records. All methods are
tested for five Swiss case studies.

The chapter is organized as follows: Section 4.2 presents RAMs that are tested in this
work, Section 4.3 provides a description of the case studies, followed by the results (Sec-
tion 4.4) and discussion of results (Section 4.5). Our main conclusions are summarized
in Section 4.6.

4.2 Methods

4.2.1 Recession Analysis Methods

The different Recession Analysis Methods (RAMs) analyzed in this chapter are presented
in detail hereafter. The range of analyzed methods results from all possible combinations
of three recession extraction methods and three parameter estimation methods.

Recession extraction

Recessions are periods with decreasing streamflows, in absence of rainfall input (or
snow-melt input in snow-influenced areas), but many features of the measured stream-
flow series can be used to make a more refined selection of recession events. Therefore,
in general, additional criteria are adopted to guarantee the choice of representative
stretches of the streamflow series. As discussed above, the following additional criteria
are typically used: the definition of minimum length of recession periods, the number
of days before or after a positive jump in streamflows (Chen and Krajewski, 2016), the
concavity of the series of streamflow data, peak characteristics and differences between
successive values (Dralle et al., 2017b).

In this study we select three commonly used methods, ranging from a very permissive
method (E1), to an intermediate method, based on simple criteria (E2) to a more strict
method recommended recently in the literature (Dralle et al., 2017b) for recession
extraction (E3):

1. E1: Comprises all segments of streamflow series that decay for at least two consec-
utive days (Kirchner, 2009; Schaefli et al., 2013).
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2. E2: This method excludes 3 daily data points after a positive jump and 4 data
points before the next positive jump (Brutsaert, 2008).

3. E3: This method is based on the work of Dralle et al. (2017b), who proposed to
select only concave recessions with a minimum length of four days. Based on their
results, we also retain only recessions that begin with a streamflow higher than the
mean streamflow in the period of analysis. This type of criteria for peak selectivity
has been adopted previously by Biswal and Marani (2010); Mutzner et al. (2013).

Parameter estimation

The three analyzed parameter estimation methods are: the classical master recession
curve method of Brutsaert and Nieber (1977), called here method P1, an event-based
method (P2) and the method proposed by Dralle et al. (2015) that overcomes parameter
biases (P3):

1. P1: It consists of a linear regression of all values of log(Q) against log(—dQ/dt)
with the values of Q being the means of the values of two successive days, and
dQ/dt the decrease of Q between these days (Brutsaert and Nieber, 1977). We do
not calculate the parameters from the lower envelope, as suggested in the original
paper since it is known to bias k; to lower values (Dralle et al., 2015).

2. P2: This linear least-squares method is analogous to method P1 but it fits a reces-
sion parameter set (k,; and a;) to each selected recession event. The exponent a
is then taken as the median value of the fitted a; values, where j is an index for
individual recessions. Once a is fixed, the curves are fitted again to estimate k, as
the median of the recalculated k,; (Basso et al., 2015b; Mutzner et al., 2013).

3. P3: This is also an estimation per event, but with nonlinear curves fitted directly to
individual recessions according to Equation 4.1, without linearization in a log —log
space. Following Dralle et al. (2015), we use a decorrelation method to avoid biases
arising from the mathematical correlation between k, and a. The first step is to fit
curves for each of the selected recessions, obtaining a set of parameters ij and a?,
where d distinguishes the parameters from those obtained by other methods and
j identifies parameters for an individual recession. Then the streamflow values are
rescaled, by a constant gy (Eq. 4.2) so that a and k, become independent. Finally,
curves are fitted again and the parameters are obtained as the median values of
the new fitted parameters.

T (ad - ad)logkd, ~logks)
do = €Xp = 4.2)
ijl(a? - ad)z

where log k¢ is the mean of the logarithm of the set kz i and a4 is the mean of the

d
seta’.
J



4.2. Methods

The RAMs obtained from combining all parameter estimation methods with all recession
extraction methods are summarized in Table 4.1.

Table 4.1 — Synthesis of the adopted RAMs

Symbol  Description References

El Permissive recession extraction Kirchner (2009); Schaefli et al. (2013)

E2 Intermediate recession extraction Brutsaert (2008)

E3 Recession extraction with concavity criteria Dralle et al. (2017b)

P1 Parameter estimation based on master reces- Brutsaert and Nieber (1977)
sion curve

P2 Parameter estimation with linear least square ~ Basso et al. (2015b); Mutzner et al. (2013)
method per event

P3 Decorrelation parameter estimation per Dralle etal. (2015)

event

Maximum likelihood estimation of parameters

The values of k,, and a can be obtained by statistical inference as being the parameters
that provide the best fit of the probabilistic model (Eq. 2.6) to the observed data, i.e.
the parameters obtained via maximum likelihood estimation (MLE). The parameter
values obtained by MLE for the observed long term data sets are called reference values
hereafter.

The MLE is obtained by maximizing (numerically) the likelihood function (Equation 2.7)
that can be formulated for observed streamflow values.

A Matlab implementation of MLE for the model of Equation 2.6 is given in the Ap-
pendix B.

4.2.2 Comparison criteria

The recession parameter values obtained with different RAMs are analyzed in terms
of their joint effect on the analytic model (Eq. 2.6). In fact, since the parameters kj
and a are always correlated (Dralle et al., 2015), a direct comparison between their
values is not completely meaningful. Assessing their effect on the analytic model of
Equation 2.6 considers the joint effect of the pair of parameters. The performances
of the recession parameter sets obtained for the different RAMs is assessed adopting
the Kolmogorov-Smirnov distance (cX®). This indicator corresponds to the maximum
distance between the analytical cumulative distribution function (cdf) and the empirical
long term cdf, previously adopted as a measure of performance for this type of model
framework (Ceola et al., 2010; Santos et al., 2018; Schaefli et al., 2013).

We also assess the RAMs and MLE as a function of data availability, estimating the
values of k,, and a for different scenarios of short streamflow record lengths (i.e. time-
overlapping periods of 1 year, 2 years or 5 years). Such a short sample analysis shows
how the variability of the estimated parameters decreases with the record length for the
different methods. In addition, it gives a more complete picture of the parameter range
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Figure 4.1 — Localization of the 5 case studies in Switzerland over a topographic map

obtained for each method.

4.3 Case studies

The proposed framework for RAM inter-comparison is applied to five case studies in
Switzerland (Figure 5.1). The requirements for their selection were: gauged catchments
with unperturbed streamflows (i.e. minimal anthropogenic influence, including changes
in land-use and engineering works), with a rainfall-dominated regime, not strongly
karst-influenced and with a continuous series of measured daily streamflows from
1975 to 2014. These case studies do not show considerable snow influences and a
visual inspection of the precipitation and streamflow time series does not show strong
seasonalities (see Appendix B). Accordingly, the RAMs are applied without consideration
of seasons.

Daily streamflow data for each catchment have been provided by the Swiss Federal
Office for the Environment (FOEN, 2017). Daily precipitation data have been extracted
from the gridded database RhiresD (MeteoSwiss, 2011). The catchment scale average
precipitation time series are obtained by averaging the data from all grid cells contained
in a catchment (based on shape files available from MeteoSwiss (2011). The suitability
of the analytical model hypotheses for this data set was carefully checked (see Santos
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Table

4.2 — Characteristics of case studies in Switzerland as given in the FOEN database; P

stands for the mean annual precipitation, T is the mean annual temperature, A is the annual
frequency of streamflow producing events and a is the annual mean precipitation depth.

D Code Name Coordinates Area  Mean Station P T A a
(CH1903) (km?) elevation elevation (mm) (°C) day™! mm
(m asl) (m asl)

2308 GOL Goldach - Goldach, Ble- 753190 /261590 49.8 833 399 1446 7.39 0.27 8.63
iche

2374 NEC Necker - Mogelsberg, 727110 /247290 88.2 959 606 1777 6.47 0.32 10.04
Aachsige

2126 MUW Murg - Wéngi 714105/ 261720 78.9 650 466 1357 7.90 0.24 8.22

2159 GUR Giirbe - Belp, Miilimatt 604810 / 192680 117 837 522 1295 7.21 0.31 8.85

2179 SEN Sense - Thorishaus, 593350 / 193020 352 1068 553 1479 6.29 0.22 8.97
Sensematt

Table 4.3 — Reference values of the recession coefficient k, , the mean values obtained for

the three scenarios of short record length (k) ,, k@, k©® ). The coefficient of variation, CV
(mean divided by standard deviation) of the three scenarios is also indicated.

Ref. k'n k(l)n cVv 1) k(Z)n CV ) k(5]n CV. 5)
ky ky ky
GOL 0,161 0,148 0,239 0,156 0,205 0,161 0,147
NEC 0,170 0,159 0,243 0,165 0,156 0,171 0,107
MUW 0,094 0,084 0,289 0,088 0,207 0,095 0,171
GUR 0,070 0,056 0,452 0,063 0,321 0,065 0,204
SEN 0,087 0,079 0,320 0,084 0,223 0,087 0,134

etal., 2018, and Appendix B) .

Table 4.2 shows some key characteristics of the selected catchments, including the codes
that are used to refer to the catchments in the following tables and figures. Additional
data about the catchments including their land-use and karstic influence can be found
in the work of Aschwanden (1996).

4.4 Results

4.4.1 MLE parameter values

The reference parameter values obtained via MLE estimation (Eq. 2.7) for the full
streamflow record length (40 years) are presented in Tables 4.3 and 4.4. We consider
these values as a reference because they give the best results for the model used in this
study. The corresponding parameter ranges obtained for short streamflow records are
shown in Figure 4.2.

As expected, the shorter record lengths result in a higher variability of the estimated
parameter values (Figure 4.2 and Tables 4.3 and 4.4). Especially for the exponent of
the recession, a, the variability decreases strongly with the length of the observed
streamflow series. The reference values are all contained in the estimated interquartile
range for the different record lengths scenarios, but using very short data portions (1 or
2 years) clearly leads to a bias of the estimated median value compared to the reference
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Figure 4.2 — Box-plots of the MLE recession parameters k, and a for the three different
scenarios of short record lengths. The box-plots represent the interquartile range (box),
outliers are marked as crosses. The stars represent the reference MLE values (obtained for full
record length).
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Table 4.4 — Values of the recession exponent a and the mean values obtained for the three
scenarios of short record length (a;, a®;, a®;). The coefficient of variation of the three
scenarios is also indicated.

Reference a uE.U CV,m aEZ) CV, 0 a§5) CV, 5
GOL 1,77 1,86 0,098 1,81 0,086 1,77 0,055
NEC 1,69 1,76 0,081 1,72 0,049 1,70 0,033
MUW 1,94 2,09 0,091 2,04 0,087 1,98 0,079
GUR 1,88 2,21 0,193 2,07 0,160 2,03 0,110
SEN 1,92 2,04 0,160 1,98 0,128 1,93 0,089

2
15¢
*xC l
05¢
0 : : : 0 : : :
1 1.5 2 2.5 3 1 1.5 2 2.5 3
Mean streamflow (mm/day) Mean streamflow (mm/day)

Figure 4.3 — Scatter plot of the normalized MLE recession parameters k;, (left) and a* (right)
against observed mean daily streamflow for the three different scenarios of short record
lengths for the Sense catchment. The parameters are normalized by the mean value of each
scenario.

values (Figure 4.2). For records of 5 years, the median values are, in exchange, close
to the reference values (i.e. there is a low bias), except for the value of a for the Giirbe
catchment.

The variability of the values of a is smaller than the variability of k;, (see the coefficients
of variation in Tables 4.3 and 4.4), which might be expected. Some authors argue, in
fact, that k;, depends on soil moisture conditions and that a is more related to the (more
static) geomorphological characteristics of the catchment (Biswal and Marani, 2010;
Biswal and Nagesh, 2014; Brutsaert and Nieber, 1977; Dralle et al., 2017b); others, such
as Harman et al. (2009), argue that a differs from 1 as a consequence of catchment
heterogeneity and that it could also be sensitive to antecedent soil moisture conditions
in sufficiently heterogeneous catchments. This dependence on the soil moisture con-
ditions can also be seen when plotting the normalized parameter values against mean
daily streamflow (see Figure 4.3 for an example).

It is interesting to notice that there is a correlation between the model parameters that
seems to be approximately the same for all the catchments even if they are located in
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Table 4.5 — Value of k;, from the nine tested RAMs. The reference value obtained via MLE from
the full record length and the 95% range (R") obtained from MLE with a single year are also
indicated.The lowest and highest value for each catchment are highlighted in bold
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Ref. k, RO EIP1 EIP2 EIP3 E2P1 E2P2 E2P3 E3P1 E3P2 E3P3

GOL 0,161 0,099-0,240 0,114 0,107 0,148 0,075 0,095 0,101 0,141 0,151 0,152
NEC 0,170 0,087-0,227 0,098 0,077 0,118 0,076 0,099 0,104 0,128 0,139 0,142
MUW 0,094 0,047-0,137 0,064 0,054 0,068 0,045 0,039 0,049 0,088 0,063 0,067
GUR 0,070 0,020-0,123 0,049 0,030 0,050 0,036 0,036 0,034 0,070 0,053 0,055
SEN 0,087 0,041-0,137 0,063 0,050 0,090 0,045 0,054 0,079 0,089 0,099 0,104

different parts of the parameter space (Figure 4.4). This correlation between recession
parameters has been described before for individual recession events (Dralle et al.,
2015).

To gain further insights into the variability of the estimated parameter values for short
records, Figure 4.5 shows their temporal evolution for the Murg-Wangi catchment and
for the Goldach catchment. For the Murg-Wingi catchment, we see a strong pattern
for the short series values of k;; this might be related to interannual fluctuations of
average soil moisture, which is known to influence the value of k,, (Biswal and Marani,
2010; Biswal and Nagesh, 2014; Brutsaert and Nieber, 1977; Dralle et al., 2017b). The
corresponding values of a follow an anti cyclic pattern, which is to be expected given the
known correlation between the two parameters (e.g Dralle et al., 2017b). A special case is
the Goldach catchment, which shows a clear change in the pattern of k,, around the year
2000. According to the data provider (FOEN, 2017), there was a modification of a weir to
increase the minimum flow in 1999. The mean results concerning this catchment for
the full record length are, however, not strongly affected by this change.

As expected, the above results suggest that overall a considerable reduction of the
variability in the parameter values occurs for longer time periods. The effect is even
more apparent if considering the model performance corresponding to these parameter
values, i.e. the Kolmogorov-Smirnov distance cXS (Section 4.2.2, Figure 4.6), which
shows a much lower variability for two years of data than for one year.

4.4.2 Parameter values obtained from nine different RAMs

To compare the different RAMs, the recession parameters are calculated by adopting the
nine possible combinations of the three recession extraction methods (E1 to E3) with the
three parameter estimation methods (P1 to P3, Section 4.2.1). The results are presented
in Tables 4.5 and 4.6 together with the reference values obtained by MLE for the full
record (40 years) and the interquartile ranges obtained via MLE with a single year of
streamflow data. Figure 4.7 shows the variation observed in the recession parameters for
individual recession events for each catchment and each recession extraction method.

The direct comparison of the parameter values obtained with the different RAMs is not
meaningful since this cannot capture the joint effect of both parameters on a recession
model. We can nevertheless observe that the methods per event (P2 and P3) tend to
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Figure 4.4 — Scatter plots of the recession parameters (a and k;) obtained for the three sce-
narios of short record lengths and for all estimation methods (rows correspond to different
record lengths, columns to different estimation methods; methods based on P1 are excluded,
see text). One data point (a = 1.87 k,, = 0.37) for GOL is out of the domain in d.
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Figure 4.5 — Temporal evolution of the MLE parameters obtained by MLE for the three scenarios
of short record lengths for two case studies: Murg-Wiangi (MUR) (left) and Goldach (GOL)
(right).

Table 4.6 — Value of a from the nine tested RAMs. The reference value obtained via MLE from
the full record length and the 95% range (R"") obtained from MLE with a single year are also
indicated. The lowest and highest value for each catchment are highlighted in bold
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Ref.a RD EIP1 EIP2 E1P3 E2P1 E2P2 [E2P3 E3P1 E3P2 E3P3
GOL 1,77 1,53-220 1,57 2,29 228 166 191 191 164 1,74 1,74
NEC 1,69 1,50-2,08 165 2,33 231 1,57 19 19 168 1,76 1,76
MUW 1,94 1,73-245 180 2,85 278 1,74 260 2,60 179 222 222
GUR 1,88 1,34-299 1,91 3,68 363 196 282 282 201 249 249
SEN 1,92 1,37-271 1,99 3,24 319 224 314 313 201 213 213

give larger values for a than the master recession method P1. Additionally, for the less
selective extraction methods (E1 and E2), the values of k;, are smaller than for method
E3 considering also the concavity of events as a selection criterion.

The corresponding model performances are mostly poor compared to the ones obtained
with MLE parameters. The mean of all cX® values from all RAMs for all catchments is
around 0.12, compared to 0.02 for the MLE reference values. The extraction method
E3, recommended by Dralle et al. (2017b) has a distinguished better performance,

KS

with mean ¢**° around 0.08 over all catchments. Considering the different parameter

estimation methods, none of them yields noticeably better results.

To give a better view on how well the parameter sets obtained with the different RAMs are
able to describe the observed streamflow probability distributions, Figure 4.8 presents
the cdfs resulting from the worst and the best performing RAM along with the curve
resulting from observed data for all five catchments. While the best model fits the
observed curve closely, the model with the lowest performance yields a cdf that lies
outside the natural variability of annual cdfs.

We also assessed the variability of the RAM parameter values for different scenarios of
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Figure 4.6 — Box-plots representing the model performances cX S of the MLE parameters for
the three scenarios of short record lengths. The star represents the reference MLE values (full
record length).

short streamflow record lengths (1 year, 2 years or 5 years). The extraction method E2
is very strict and samples too few recessions for short series estimation. Therefore, we
tested only the short series scenarios for the RAMs based on the recession extraction
methods E1 and E3. Figure 4.4 shows the results for the three record length scenarios for
the six resulting combinations of methods.

Again, the parameters based on shorter record lengths vary more than the ones for
longer series; the variability of the recession exponent a decreases more than the one of
ky, with a particularly high variability for single year records for the flexible recession
extraction E1 and the parameter estimation methods ‘per event’ (P2 and P3).

Comparing these last to parameter estimation methods shows that Dralle’s (P3) estima-
tion method leads to a lower correlation between the parameters than the simpler ‘per
event’ estimation method P2). This confirms that Dralle’s method reduces the mathe-
matical correlation between parameters and suggests that the remaining correlation
has a hydrological origin. Another remarkable aspect is that the parameter estimation
method that considers the master curve (P1) gives precise results even for the shortest
series.

4.5 Discussion

We discuss hereafter the key question underlying the presented analyses, namely if
model-based recession parameter estimation presents an alternative to established
RAMs but also in as far this new method allows new insights into recession behavior at
catchment scale.
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Figure 4.7 — Box-plots representing the recession parameters k;, and a for the individual
recessions selected by the three different recession extraction methods. The star represents
the MLE reference values (full record length).
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4.5.1 Comparison of parameter ranges

The full record parameter values obtained for the 9 RAMs lie mostly within the 95% pa-
rameter intervals obtained with MLE for single year estimation (Tables 4.5 and 4.6), with
the exception of methods E1P2 and E1P3. In other words, most of the methods provide
parameter values that are similar to the MLE range; in particular RAMs selecting more
representative recessions, which exclude most fast flow events (E2P* and E3P*), yield
similar results as MLE. This important result is confirmed by the parameter domains
spanned by all single year parameter sets (Figure 4.4, top row), which underlines that
methods E1P2 and E1P3 are not compatible with the other methods.

Based on these results, it becomes clear that ‘per event’ parameter estimation (P2
and P3) should not be applied in combination with a permissive recession extraction
method (E1). The parameter range comparison also shows that all methods based on
the extraction method E3 proposed by Dralle et al. (2017b) show very similar ranges to
the MLE estimates. More importantly, the original recession parameter analysis method
proposed by Brutsaert and Nieber (1977) (E1P1) yields very robust and precise results
for short samples, and a values are in agreement with the parameter ranges obtained
with MLE. This finding agrees with Brutsaert and Nieber (1977) who stated that this
method reduces the uncertainties in recession parameters estimation; as our results
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Figure 4.8 - Comparison of observed and modelled cdfs: shown are the curves corresponding
to MLE parameters and to the best and the worst performing RAM parameters. The gray
shaded area represents the envelop of the annual cdfs. All parameters and the cdfs are
estimated over the full record lengths.
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show, the method tends however to give relatively low k;, values.

4.5.2 Insights of the model-based approach for RAM assessment

As discussed above, most of the RAMs yield parameter ranges that are similar to the
ranges obtained by MLE estimation. This suggests that the model-based approach is
well suited to further assess the behavior of the different RAMs.

From the model performance perspective, the methodological choice that has the
highest positive impact is the recession extraction method. The method proposed by
Dralle et al. (2017b), E3, gives the most reliable results. This underlines that choosing
representative streamflow portions that correspond to actual recession events is the key
for robust recession parameter estimation. This result is remarkable, in particular also in
the context of previous studies using the same analytical streamflow distribution model,
which focused on parameter estimation methods instead of on recession extraction
methods (Ceola et al., 2010; Basso et al., 2015b; Miiller et al., 2014).

Compared to the choice of the extraction method, selecting the parameter estimation
method only marginally impacts the results (Table 4.7). And for a given extraction
method, there is no parameter estimation method that systematically outperforms the
others across all case studies. This result is coherent with the conclusions of Stoelzle
et al. (2013) that recession characteristics correlate strongly for methods that use the
same recession extraction method. From a hydrological process view point this can be
interpreted as being related to the hydrological processes that are activated during the
selected recessions.

Table 4.7 - Model performance in terms of cX® for the nine tested RAMs; the lowest cX® values
(best model performance) are highlighted in bold. For the model performance evaluation, the
full record length is used.
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Reference (XS E1P1 EIP2 EIP3  E2P1 E2P2  E2P3 E3P1 E3P2  E3P3

GOL 0,019 0,121 0,078 0,118 0,201 0,117 0,105 0,061 0,027 0,024
NEC 0,016 0,166 0,137 0,131 0,227 0,121 0,110 0,100 0,071 0,065
MUW 0,019 0,130 0,107 0,115 0,208 0,172 0,131 0,057 0,096 0,084
GUR 0,012 0,140 0,250 0,369 0,187 0,097 0,078 0,125 0,131 0,141
SEN 0,029 0,111 0,181 0,254 0,163 0,176 0,226 0,042 0,080 0,087

4.5.3 Robustness of MLE estimation

Given that maximum likelihood estimation (MLE) is a parameter optimization method,
it necessarily outperforms all RAMs for the full streamflow record (Table 4.7). MLE
performance for short record remains in general higher than the performance of most
RAMs estimated over the full record length (compare the 95% quantile of the MLE
model performances for different record lengths of Table 4.8 to the performances of the
nine RAMs in Table 4.7). Even the MLE estimated parameters based on a single year
of data have comparable performances to the ones obtained with most of the RAMs
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(except those based on extraction method E3) over the entire record. The exception is
the Goldach catchment, for which the RAMs present remarkably good performances.

Table 4.8 — Values of the upper 95% quantile of the model performances (cX%) adopting MLE
parameters

Qs Qg Qu;
GOL 0,113 0,089 0,063
NEC 0,117 0,081 0,051
MUW 0,140 0,095 0,058
GUR 0,169 0,091 0,054
SEN 0,137 0,099 0,061

This analysis underlines that MLE estimation gives in general robust results in presence
of short data records.

4.5.4 MLE as an alternative to RAMs?

The MLE parameters obtained from the full records are close to the values obtained
from the best performing extraction method E3 (Dralle et al., 2017b) (compare Tables
4.3 and 4.4 and Tables 4.5 and 4.6) and the MLE estimates obtained from much shorter
records are close to these long term estimates. These results indeed suggest that the
MLE in combination with the model of Botter et al. (2007c, 2009) could become an
interesting alternative RAM for catchments that meet the underlying assumptions about
streamflow triggering mechanisms (exponentially distributed streamflow-triggering
pulses resulting from Poisson rainfall, combined to nonlinear recession behavior).

A more detailed inspection of the performance of the RAM parameters reveals that the
worst performances are obtained for RAMs that lead to high values of a. As Brutsaert
and Nieber (1977) already discussed, values of a > 3 are related to fast flows. And they
correspond to the exact solution of the Boussinesq equation for the beginning of the
recessions, when the aquifer is close to be fully saturated.

Given that the streamflow distribution model is based on slow flow generation mecha-
nisms, we repeated the ‘per event’ parameter estimations excluding recessions that show
values of a > 3 (see Table 4.9 and Figure 4.9). The new parameter sets are significantly
closer to the MLE parameters, both in terms of parameter values and in terms of model
performance. This reinforces that model-based parameter estimation is an interesting
alternative to existing RAMs.

Compared to existing RAMs, the model-based approach is computationally more de-
manding (maximization of a likelihood function) and it requires rainfall time series
to estimate the parameter a, the mean depth of rainfall events. The method does, in
exchange, involve limited arbitrary choices for parameter estimation (or for recession
extraction methods) because it uses all available streamflow records. In particular, this
also implies that the model-based parameter estimation approach includes all possible
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Table 4.9 — Recession parameters obtained from the six RAM per event (parameter estimation
methods P2 and P3 combined with all the recession extraction methods), excluding recession
events that characterize fast flows (a > 3)

E1P2 E1P3 E2P2 E2P3 E3P2 E3P3
kn a cKs kn a cks kn a cKs kn a cks kn a cKs kn a cks

GOL 0,130 1,88 0,043 0,140 1,84 0,031 0,096 1,85 0,121 0,101 1,85 0,109 0,154 1,73 0,024 0,148 1,73 0,033
NEC 0,108 1,99 0,101 0,118 1,94 0,086 0,100 1,87 0,127 0,104 1,87 0,120 0,142 1,74 0,067 0,136 1,74 0,078
MUW 0,074 2,12 0,068 0,068 2,01 0,096 0,049 2,28 0,146 0,047 2,28 0,153 0,071 2,13 0,076 0,076 2,13 0,063
GUR 0,067 2,05 0,121 0,067 1,76 0,122 0,041 2,43 0,063 0,034 2,42 0,092 0,079 2,16 0,169 0,077 2,16 0,163
SEN 0,091 2,11 0,064 0,104 2,02 0,067 0,065 2,01 0,102 0,071 1,94 0,086 0,118 2,02 0,090 0,106 2,02 0,068
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Figure 4.9 — Scatterplot of the recession parameters a against k;, obtained for MLE estimation
(stars) and for all RAMs using ‘per event’ estimation (six methods per catchment, squares). All
values are obtained over full record lengths. Recession events with a > 3 are excluded.
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hydrological processes that have been activated during the observation period. This is
argued to render our method robust for short-sample estimations.

Finally, it is noteworthy that this type of recession analysis framework could also be
extended to other hydrological models as long as they are simple enough to guarantee
unbiased parameter optimization.

4.5.5 Potential for new insights into recession behavior

The RAMs discussed in this chapter have been developed in the past to obtain insights
in the water storage-release behavior of catchments and remain a key tool to understand
low flows and water storage at catchment scale (e.g. Floriancic et al., 2018; Staudinger
et al., 2017). Recent studies try to understand how the storage-release relationship is
related to geomorphological and other physiographic catchment features (Biswal and
Marani, 2010; Mutzner et al., 2013; Patnaik et al., 2018), with the ultimate goal to predict
catchment-scale recession behavior from observable catchment characteristics. But the
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use of traditional RAMs for hydrological process analysis and comparative hydrology is
inherently limited by the non-trivial interactions between methodological choices and
resulting recession descriptors (estimated parameter values).

As shown in this chapter, the dominant source of parameter variability in traditional
RAMs is the selection of recession events from observed streamflow. In rainfall dom-
inated catchments, any decreasing event in observed streamflow either results from
an actual catchment-scale recession, i.e. release of water stored in the subsurface in
absence of rainfall input, or from the spatio-temporal evolution of non catchment-wide
rainfall, which activates only parts of the catchment and thus leads to a decrease in
streamflow. Accordingly, selecting actual representative recessions for entire catch-
ments will remain challenging in the future. The model-based RAM proposed in this
chapter overcomes this limitation by making assumptions about the stochastic nature
of incoming rainfall and how it is partioned into streamflow (censoring small rainfall
events). These assumptions have been shown to hold widely across the globe (Botter
et al., 2013; Ceola et al., 2010; Miiller et al., 2014; Santos et al., 2018). Accordingly, the
model-based RAM opens new perspectives for comparative hydrology and to under-
stand how recession behavior is linked to catchment characteristics under different
climates.

4.6 Conclusions

Streamflow recession parameters are highly dependent on the used estimation method.
Methodological choices involve two steps: the selection of recession events from ob-
served streamflow records and the parameter estimation procedure. In this chapter,
we compare the results of nine combinations of recession analysis methods (RAMs)
resulting from three methods for each step. We also introduced an alternative, model-
based estimation method involving maximum likelihood estimation (MLE) applied
to the analytic streamflow distribution model proposed by Botter et al. (2007c, 2009).
This model represents the probability distribution of daily streamflows assuming that
it results from a stochastic succession of runoff-triggering rainfall events and ensuing
linear or nonlinear recessions. Compared to traditional RAMs, this model-based method
does not require extracting recession events from the streamflow series. Rather, it uses
all available streamflow data to jointly estimate both recession parameters describing
the power-law water storage-release behavior.

Comparing the full range of methods (RAMs and model-based) for different scenarios
of streamflow record lengths for the selected five Swiss catchments reveals the following
conclusions:

1. ‘Per event’ parameter estimation should not be applied in combination with a per-
missive recession extraction method. This, in fact, results in too variable parameter
ranges, i.e. unreliable recession description.

2. The original method proposed by Brutsaert and Nieber (1977), estimating the
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recession properties from all events jointly, yields too narrow parameter ranges,
especially for the recession coefficient, k,. This suggests that the corresponding
parameter values are not representative of the actual recession behavior of a catch-
ment, a conclusion that is supported by the low model performances obtained for
this method.

3. The recession selection method is fundamental for reliable recession parameter
estimation; some combinations of RAMs bias the parameter values, with ensuing
low model performances for the model used in this chapter.

The restrictive extraction method, E3, provides parameters that are very similar to the
model-based MLE estimates. This underlines that for classical RAMs, the selection
of events and the hydrological processes activated during these events is crucial for
recession analysis. It also supports the potential of the new, model-based parameter
estimation approach as an interesting alternative to currently used RAMs; it represents
an effective way of including all available observed data in terms of streamflow and
rainfall, with potentially reduced sensitivity to observational errors typical occurring
during very low flows.

Extending the recession analysis approach into a fully Bayesian framework to estimate
posterior parameter distributions rather than single estimates would shed more light
on the role of observational errors for recession parameter variability. This would in
particular also bring new insights into which part of parameter variability stems from
actual parameter errors, i.e. from the fact that actual parameters are not constant as
assumed by the model.

Future work will also show if the recession parameters obtained from the model-based
approach can be directly transferred to more complex hydrological models that use
similar assumptions about streamflow recession and the potential of the approach for
other hydro-climatological regimes, such as snow dominated or to semi-arid regimes.
Finally, we would like to emphasize that the proposed method opens new perspectives
for catchment classification and similarity assessment, capitalizing on an explicit sepa-
ration between similarities in the rainfall forcing and similarities in recession behavior
and underlying dominant hydrological processes.



5] Seasonal recession parameters in

Switzerland

In this chapter we expand the analyses presented in the previous chapters to answer
the following questions: For pluvial regimes, how do the different recession analysis
methods (RAMs) perform with respect to the analytical streamflow distribution model
used in this thesis considering seasonal estimates? How variable are seasonal estimates of
linear and nonlinear recession parameter estimates as compared to estimates based on
annual data? And how do different recession estimation methods perform not only for
nonlinear recession, as in Chapter 4, but also for linear recessions? The analyses are based
on six Swiss case studies (including those from Chapter 4 and the Areuse catchment),
three recession extraction methods and five parameter estimation methods: two for linear
recessions and three for nonlinear recessions. The overall findings of these analyses are that
the seasonal parameters are as good as annual parameters, especially for the nonlinear
recessions, and they do not vary significantly along the year. For linear recessions, in
general the methods per event result in high parameter values while methods based on
a master recession curve result in low parameter values, but there is no methodological
choice that results systematically in better results. This establishes a better basis for the
estimation of recession parameters to be used with the model in broader contexts.
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5.1 Introduction

A hydrological recession is the gradual depletion of the streamflow in periods with
scarce or no precipitation (Tallaksen, 1995). The literature proposes a wide range of
recession analysis methods (RAM) to obtain recession parameters. Santos et al. (2019)
explored the subject from view point of a streamflow distribution model framework and
proposed a new approach to obtain recession parameters. The present chapter expands
the analyses and presents some important complementary results.

As in the previous chapters, we refer to the method developed by Botter et al. (2007c),
who described a simple physically-based model framework to estimate the probabilistic
distribution of daily streamflows in rainfall-dominated regimes considering a stochastic
rainfall forcing and a linear decay of streamflow due to the release of water from the
subsoil. Within the framework allowed by those assumptions, daily streamflows follow
a gamma distribution characterized by the mean depth of rainfall, the frequency of
the rainfall events that produce streamflow, the area of the catchment and the mean
residence time of the catchment (i.e. the inverse of the linear recession parameter).
Later, Botter et al. (2009) extended the same streamflow distribution model framework to
nonlinear recessions. This framework assumes steady state conditions, which generally
implies its application on a seasonal basis.

Chapter 4 applied the model framework by assuming nonlinear recessions to five pluvial
Swiss catchments with approximately analogous conditions around the entire year
and studied different combinations of recession extraction and parameter estimation
methods. It also investigated how the use of maximum likelihood estimates together
with the model framework compares with usual RAMs and how both methods behave for
short streamflow records. Two main gaps exist related to the original model assumptions:
i) a comparison of linear recessions obtained from different RAMs, and ii) an analysis of
seasonal recessions obtained from different RAMs The present chapter expand the work
from Chapter 4 to fill those gaps.

RAMs can be divided into two steps: i) recession extraction, and ii) parameter estimation.
We have chosen to test the combination of three recession extraction methods and
five parameter estimation methods: two for linear recessions and three for nonlinear
recessions, for seasonal and annual daily streamflow distribution curves. We tested
them for six pluvial Swiss case studies with long term streamflow records.

The chapter is organized in six sections. Section 5.2 shortly describes the new RAMs and
methods to assess the model performance. Section 5.3 presents the case studies. The
obtained results for the linear and nonlinear model versions are presented in Section 5.4
and are discussed in Section 5.5 and the conclusions are summarized in Section 5.6.
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5.2 Methods

5.2.1 Application time intervals

The model framework is suitable for steady-state conditions, at an annual or a sea-
sonal scale, depending on the temporal variability of the model parameters (Botter
et al,, 2007a). Because of that, it is mostly applied separately to meteorological seasons
(Basso et al., 2015b; Botter et al., 2013; Ceola et al., 2010; Miiller et al., 2014): winter
(01-December to 28-February), spring (01-March to 31-May), summer (01-June to 31-
August) and autumn (01-September to 30-November).

However, annual daily streamflow distributions are of practical value. If the variation of
model parameters (i.e. the recession parameters and the stochastic parameters) along
the year is negligible, we can assume that the conditions are steady state and annual
curves can also be obtained by the direct estimation of annual parameters, as done by
Santos et al. (2019). Another possible approach to calculate annual streamflow distri-
bution curves was proposed by Botter et al. (2008), who state that, for the linear model,
the annual curve should be obtained by weighting the parameters of the underlying
seasonal distributions. These authors used numerical investigations to show that for
catchments where the model parameters do not vary significantly along the year, the
temporal averaging of the seasonal model parameters leads to satisfactory estimates
of the annual curves. We tested both approaches to obtain annual curves for the linear
and nonlinear models. First, we tested the direct calculation of curves for the complete
year (called hereafter Year C), then the calculation based on the temporal averaging of
the seasonal model parameters (called hereafter Year S).

5.2.2 Stochastic inputs parameters

The model parameters related to the stochastic inputs are common to the linear and
the nonlinear model. They are: the mean precipitation depth, a, and the streamflow
producing frequency, A. Their estimation methods are the same as in Chapter 4.

Because here we adopt a seasonal basis, the values for maximum daily interception to
be discounted from precipitation before the calculation of parameters are different. For
summer it is obtained from land use and the maximum interception is set to 4 mm for
forests, 2 mm, for low vegetation, 1 mm for impervious areas and 0 mm for water bodies
(Gerrits, 2010; Santos et al., 2018). For winter, it is considered to be 1 mm. For spring
and autumn, we considered a mean between the values for summer and winter. The
maximum interception for any season is considered to be at least 1 mm.

5.2.3 Deterministic recession parameters

The recession parameters are obtained from streamflow observations adopting maxi-
mum likelihood estimation (MLE), that serves as a reference and by the aforementioned
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different RAMs. The combinations of methods result in six RAMs for linear recessions
and nine RAMs for nonlinear recessions.

Recession extraction

There is a variety of methods that can be used to identify recession periods and litera-
ture reports that the choice of the method can influence the parameter values (Dralle
et al., 2017b; Santos et al., 2019). Recessions comprise periods without precipitation
or overland flow and with decreasing streamflows, but many features can be used to
make a more refined selection of periods and to obtain representative recessions. We
have chosen three methods for recession extraction to be tested for both, linear and
nonlinear models. Two of those methods, E1 and E3, are the same as for Chapter 4, they
are the simplest permissive method and the one with the best results. Since the method
E2 was neither remarkably simple nor good, we have chosen to change it for another
method.

1. El: Includes all segments of observed streamflows that decay for at least two
consecutive days (Santos et al., 2019).

2. E2: Includes the segments of observed streamflows for which the 3-days moving
averages decrease for at least 10 consecutive days (Vogel and Kroll, 1992).

3. E3: Suggested by Dralle et al. (2017b), includes the segments of observed stream-
flows with a minimum length of four days, an upward concavity requirement and
a peak selectivity criterion, which is selecting only recessions that begin with a
streamflow observation higher than the mean streamflow in the period of analysis
(Biswal and Marani, 2010; Mutzner et al., 2013; Santos et al., 2019).

Parameter estimation methods

We tested methods based on the master curve and the per event approaches for linear
and nonlinear recessions. Two methods were tested for the linear model and three for
the nonlinear model. For the linear model, the methods were:

1. PL1: Linear regression of Q versus —dQ/d t of the master recession curve (Brutsaert
and Nieber, 1977). The values of Q are the means of the same values of daily
streamflows for two successive days used to calculate —dQ/d¢.

2. PL2: Estimates the recession parameter as the median of recession coefficients
from a linear regression of individual recessions.

For the nonlinear model, the methods were the same as the ones adopted by Chapter 4,
namely:

1. PN1: Linear regression of the master recession curve log(Q) against log(—dQ/d )
(Brutsaert and Nieber, 1977).
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2. PN2: Each recession event is linearized by adopting a log-log scale and fitted by
linear least squares. The exponent of the recession (a) is the median value of the
fitted a values, then, a is fixed and curves are fitted again to estimate k, as the
median of all recalculated k,, values (Mutzner et al., 2013; Basso et al., 2015b).

3. PN3: Is the per event “decorrelation method” (Dralle et al., 2015). The first step is
to fit curves to each of the j selected recessions, obtaining a set of parameters kj,
and a;. Then the streamflow values are rescaled by a constant go and the rescaled
recessions are fitted according to a coefficient (Equation 4.2), curves are fitted
again and the parameters are the medians of the new fitted parameters.

5.2.4 Evaluation criteria

We evaluated the results in two different ways: i) qualitatively by a comparison with
the reference MLE results and ii) quantitatively by their effect on model performances.
The evaluation based on the model performance has the advantage of considering the
joint effect of the pair of parameters. The performances of the model adopting the
different recession parameters were assessed in relation to the empirical long-term
cumulative distribution function (cdf) of daily streamflow adopting the Kolmogorov-
Smirnov distance (cX®). This indicator corresponds to the maximum distance between
the analytical cdf and the empirical cdf, (Ceola et al., 2010; Santos et al., 2018, 2019;
Schaefli et al., 2013).

5.3 Case studies

The methods for recession analysis and the probabilistic daily streamflow distribution
model were applied to six case studies in Switzerland, selected based on three main cri-
teria: i) gauged catchments with unperturbed streamflows (i.e. minimal anthropogenic
influence), ii) with a predominantly rainfall-dominated regime, and iii) with at least
40 years of streamflow and precipitation observations (from 1975 to 2014). We did not
apply a criteria of non-karsticity, so we added one more case to the cases in Chapter 4,
the Areuse. Figure 5.1 shows the location of all the case studies and Table 5.1 shows their
key characteristics.

Daily streamflow data for each catchment were provided by the Swiss Federal Office
for the Environment (FOEN) (FOEN, 2017) and daily precipitation data were extracted
from a gridded database (MeteoSwiss, 2011). Further description about the data can be
found in Santos et al. (2018, 2019).

5.4 Results

Each RAM is identified by the combination of the codes for the recession extraction
method and the parameter estimation method presented in Subsection 5.2.3. We present
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Figure 5.1 — Localization of the six Swiss case studies over a topographic map

Table 5.1 — Characteristics of case studies as given in the FOEN database, including the period
for which streamflow and gridded precipitation are available; P stands for the weighted mean
annual precipitation, and T for the weighted mean annual temperature

D Code Name Coordinates Area Mean Station P T
(CH1903) (km?) elevation elevation (mm/year) (°C)
(m) (m)
2308 GOL Goldach - Goldach, Bleiche 753190 / 261590 49.8 833 399 1446 7,39
2374 NEC Necker - Mogelsberg, Aachsége 727110 / 247290 88.2 959 606 1777 6,47
2126 MUW Murg - Wéngi 714105/ 261720 78.9 650 466 1357 7,90
2159 GUR Giirbe - Belp, Miilimatt 604810 / 192680 117.0 837 522 1295 7,21
2179 SEN Sense - Thorishaus, Sensematt 593350 / 193020 352.0 1068 553 1479 6,29
2480 ARE Areuse - Boudry 554350 / 199940 377.0 1060 444 1531 5,41

here only selected results; complete tables with all the calculated parameters and related
model performances can be found in Appendix C.

5.4.1 Variability of recession parameters over the year

The climate in the selected Swiss case studies is humid, with precipitation well dis-
tributed all over the year, as shown by the seasonal stochastic input parameters in
Figure 5.2 . Because of that, the recession parameters do also not vary strongly neither
(Figure 5.3).As we will see later on, the variation among the parameters for one catch-
ment adopting a specific RAM is smaller than the variation among the values obtained
from different RAMs for a single season in a catchment.
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Figure 5.2 — Evolution of the stochastic parameters (A, A, and «,) over the meteorological
seasons in each catchment. On the abscissas: 1 stands for spring (01-Mar-31-May) , 2 for
summer (01-Jun-31-Aug), 3 for autumn (01-Sep-30-Nov)), and 4 for winter (01-Dec-28-Feb)

5.4.2 Annual parameter values

This subsection presents only results for the annual time scale with parameters esti-
mated once for the complete year (Year C) as a consequence of the small variation
between the seasonal parameters shown in the previous subsection. Complete tables
with parameters values can be found in Appendix C.

Figure 5.4 shows a comparison between the annual parameters obtained by the selected
RAMs and MLE for the linear recession. The range of parameters for all the catchments
vary between the RAMs, but is narrow for each RAM, except for E3PL2. Comparing the
parameter estimation methods (i.e. the columns in Figure 5.4), the per event method
(PL2) tends to result in higher values, in terms of recession extraction. E3 also leads
to higher values, but overall the results from E3PL2 are much higher than the other
results and completely off the range of the other RAMs, but not of the MLE values. In
general, the parameter values are low for PL1, so it works better for catchments with low
recession parameters. They tend to become much higher for PL2, which consequently
works better for catchments with high recession parameters. There is no trend of general
improvement for any method.

The nonlinear recession parameters are presented in Figure 5.5. Both parameters for the
master curve estimation method PN1 are always more precise (i.e. less variable) than
those estimated using the methods per event, PN2 and PN3 (compare columns of Figure
5.5). The PN1 values are also closer to the MLE values in terms of the recession exponent
(a) but are mostly underestimated in terms of recession coefficient. On the other hand,
the decorrelation method for parameter estimation (PN3) results in higher recession
coefficients (even if still underestimated), but the values of recession exponent obtained
by this method are mostly overestimated. The simpler per event method, PN2, had the
worst results, overestimating a and underestimating k;. The choice of an extraction
method (i.e. the rows in Figure 5.5) has an important role in the results, especially for
the methods per event. As already pointed out by Santos et al. (2019), results for the
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Figure 5.3 — Evolution of the linear recession parameters over the meteorological seasons in
each catchment. On the abscissas: 1 stands for spring, 2 for summer, 3 for autumn, and 4 for
winter
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Figure 5.4 — Comparison between model parameters obtained by RAM and by MLE for each
RAM combination for linear recession applied to all case studies
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extraction method E3 are remarkably good; but the extraction method E2, that was not

studied by Santos et al. (2019), also improves the quality (i.e. parameter values closer to
MLE parameters) for the methods per event, albeit without yelding better results than

E3.
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Figure 5.5 — Comparison between model parameters obtained by RAM and by MLE for each
RAM combination for nonlinear recessions applied to all case studies.

5.4.3 Model performance

The model performance for all RAM parameters was measured by the Kolmogorov-

KS

Smirnov distance, ¢*°, according to which the best values are the lowest ones. The
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Figure 5.6 — Boxplots representing the comparison of the model performances for each RAM
for the linear and nonlinear model with results aggregated per extraction method (a and c)
and per parameter estimation method (b and d)

comparison between the extraction methods (Figure 5.6 a and c) shows that the linear
recession parameters are not strongly affected by the extraction method, with similar
median and variability. For the nonlinear recessions, the extraction method E3 gives bet-
ter model performances, in terms of median and variability. The parameter estimation
method (Figure 5.6 b and d) on the other hand, strongly affects the linear recessions and
the parameter estimation method per event (PL2) is the one with better performances,
but it is highly variable in comparison to PL1. For nonlinear recessions, the parameter
estimation methods PN1 and PN3 show better performances.

We can also analyze the combinations of methods, which was first done by counting
the number of times the performance for each RAM outperformed the performance for
other RAMs, as shown in Table 5.2. This analysis takes into account the performance
for each catchment for the four meteorological seasons and for Year C, resulting in 30
points of analysis for both, the linear and the nonlinear models. The annual results
for the weighted parameters (i.e. Year S) were excluded of this analysis to avoid a bias.
Table 5.2 shows that for the linear model, the best combination of methods was E3PL2,
closely followed by E1PL2 and E2PL1, then by E3PL1. For the nonlinear model, the
best combination was E3PN3, followed by E3PN1 and the results for every combination
based on E2 and on PN2 are remarkably bad (i.e. 0 or 1 counts).

Table 5.2 — Number of times each combination of methods outperformed the others (lowest
cX3) for each catchment and each season and the complete year (Year C).

Linear Nonlinear
PL1 PL2 | PN1 PN2 PN3
E1 2 6 5 1 2
E2 6 4 0 1 0
E3 5 7 9 0 12
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Figure 5.7 — Boxplots representing the variation of the model performances for each RAM for
the linear (a) and nonlinear model (b)
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Figure 5.7 brings more details about the model performances for each RAM and shows
the variability of cX® for each combination of methods for each meteorological season
and for Year C. For linear recessions, the combination E3PL2 has a very high variability
despite the number of times it outperforms the others, implying that it has very good
results for some cases and very bad results for others. E1PL2, E2PL1, and E3PL1, on the
other hand, are slightly worse in terms of the number of times they outperform the other
RAMs but they vary less and are better in general. The nonlinear results are coherent
with Table 5.2, with the combination E3PN3 also being the best in terms of median and
variability.

5.4.4 Seasonal model performance

The model performances can also be studied from a seasonal point of view. We present
the results for one combination of methods for each type of recession to exemplify
how the performances change from season to season. We have chosen the method
combination according to the results shown in Table 5.2 and Figure 5.7. For the nonlinear
model, the combination E3PL3 is remarkably good in both, Table 5.2 and Figure 5.7b.
This method thus clearly outperforms the others. For the linear model, the choice of
the best combination is not evident, but because E3PL1 shows good performances
according to both criteria, we have chosen this RAM to exemplify the seasonal linear
results. Figure 5.8 shows the seasonal model performances for all the catchments for
these chosen RAMs. The nonlinear model clearly outperforms the linear one, when
considering either best results for the Autumn or the worst ones for the Winter. On the
other hand, it is difficult to identify the season with best and worse results for the linear
model because model performances are highly variable for all the seasons.

5.4.5 Model framework on an annual basis

Comparing the results for annual estimations based on a single estimation of parameters
for the complete year and those based on the weighted seasonal values (i.e respectively
Year C and Year S), the calculation based on Year C yields better model performances
than Year S. Figure 5.9 presents that comparison for the nonlinear recession parameters
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obtained with recession extraction E3 and all the parameter estimation methods. That
confirms that the assumption of applying the model to the complete year made by
Santos et al. (2019) can be hold for those cases.
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Figure 5.9 — Comparison between the results obtained for E3 for a single annual application
and weighted seasonal parameters for all the catchments adopting the nonlinear model. The
reported values correspond to the cX$

5.5 Discussion

The recession parameters in the study catchments do not vary strongly along the year,
allowing the study of the RAM on an annual basis with the assumption of single pa-
rameters calculated based on all the data or based on the ponderation of the seasonal
parameters, as suggested by Botter et al. (2008). The calculation of single annual pa-
rameters, which was not tried before by other authors with the model framework, gives
better results than the seasonal application. The calculation of recession parameters for

81



Chapter 5. Seasonal recession parameters in Switzerland

82

the full year is novel just in the context of the model framework, Mutzner et al. (2013)
calculated nonlinear annual parameters for the same cases and the results are close
to ours in terms of ranges and also in terms of comparison between methods. Those
authors also found that the Brutsaert and Nieber (1977) method gives lower values for
the recession exponent (a) but did not study k,, which hinds a comparison with our
results.

For the linear recessions, the Brutsaert and Nieber (1977) method is good when the
recession parameters are low, but tends to underestimate the parameters when they are
higher. For those cases, the methods per event tend to work better because they tend to
result in higher parameter values. Higher parameters values obtained from methods
per events were also observed before for nonlinear recessions by Stoelzle et al. (2013).

Regarding the nonlinear recession parameters, one of the most used RAMs is the Brut-
saert and Nieber (1977) method for nonlinear recessions and its results are remarkably
good for a. This agrees with the argument of those authors that this method reduces
the uncertainties in recession parameters estimation. Different studies also say that
k, depends on soil moisture conditions and that a is more related to the (more static)
geomorphological characteristics of the catchment (Biswal and Marani, 2010; Biswal
and Nagesh, 2014; Brutsaert and Nieber, 1977; Dralle et al., 2017b) however, our results
varied more in relation to a than in relation to k,; seasonal results also confirm this
statement.

Regarding nonlinear seasonal results, it is worth to mention that the worst results
are the ones for winter (see Fig. 5.8). This season showed higher values of recession
exponent in general, which implies that recessions are faster and may be more difficult
to characterize.

5.6 Conclusions

Our results show that the model performances are strongly affected by the recession
parameters, which are themselves highly affected by methodological choices made
in their estimation. For the nonlinear model, between the two main methodological
choices, namely recession extraction method and parameter estimation method, the
one that affects overall results more strongly is the recession extraction method. Again,
the recession extraction method that gave the best results was the one proposed by
Dralle et al. (2017b) (E3), confirming the results from Santos et al. (2018). In terms of
parameter estimation, PN1 is remarkably good to estimate the recession exponent (a)
but underestimates the recession coefficients k;, which is unsuitable for the model.
Accordingly, the decorrelation parameter estimation method (PN3) works better, but
must be applied to recessions selected with a strict method.

Linear recession parameters vary even more according to the RAM. In this case our
results do not allow us to recommend a single combination of methods and it is better
to use MLE if possible. We can only observe that the method based on the master curve,
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PL1, results in lower values of recession parameters than those for the per event meth-
ods, PL2, and consequently PL1 performs better for catchments with lower recession
parameters and PL2 works better with catchments with higher parameters.

In terms of the estimation of annual flow duration curves, the quality of the annual
results does not differ significantly from the seasonal results. In general, the results
considering a full year are better than the ones obtained weighting seasonal parameters.

A study like this establishes a better basis for the estimation of recession parameters
to be used with the model in different contexts that include not only annual nonlinear
recession parameters, but also seasonal parameters and linear recession parameters,
which can be useful in model applications.
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‘Analytical annual streamflow distribu-
tion model for mountain catchments

This chapter proposes an extension to the analytical streamflow distribution model studies
in the previous Chapters to high flows in Alpine catchments in particular, in catchments
where snow and glacier hydrology plays a major role. This extension adds to previous
descriptions of daily streamflows for rainfall-driven regimes and of winter low flows and
allows a description of the streamflow distributions all over the year in snow-dominated
and glacier catchments, that have major relevance in water supply in many regions. We
build on the model proposed by Botter et al. (2007c) by redefining the seasons of model
application into an accumulation season and a melting season. Then we generalized
a previous approach to winter flows (Schaefli et al., 2013) to estimate the amount of
water accumulated as snow that is transferred to the melting season and incorporated
to the model as equivalent precipitation. We tested this approach for ten Swiss catch-
ments endowed with snow-dominated and glacier regimes. The novel framework yields
good model performances even for the glacier catchments, for which some assumptions
seem less viable. The proposed methodology may provide yet another perspective for the
management of water resources in Alpine regimes.
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6.1 Introduction

Streamflow generating processes vary temporally and spatially according to the under-
lying climate conditions. In pluvial regimes, streamflow is generated in response to
rainfall. In snow dominated regimes, typical for Alpine catchments with mean eleva-
tion higher than 1500 m asl. (Milano et al., 2015), streamflow is not only generated in
response to rainfall but also by the melt of snow accumulated during the cold season. In
glacier regimes, which are found in Switzerland in catchments with a significant part of
the contributiong area above above 3500 m asl. (FOEN, 2013; Weingartner and Aschwan-
den, 1992), there is also an inter-annual storage of water in form of ice, which results
in relatively constant streamflow production during the summer, when the melting
conditions are playing a significant hydrologic role.

In snow-influenced catchments, the triggers of streamflow production vary throughout
the year. In Alpine catchments, with often relatively low precipitation seasonality, the
main driver of streamflow variations is air temperature. When air temperature is below
some threshold, typically close to zero degree (Harpold et al., 2017), precipitation can
be assumed to occur in the form of snow that accumulates on the ground; streamflows
during this accumulation season are low (Schaefli et al., 2013). As air temperature
in the catchment raises above zero degree, snow melt starts occurring. Streamflow
resulting from snow melt and rainfall increases gradually throughout the melt period
before decreasing again when either all the snow accumulated during the accumulation
period is melted or, in catchments with permanent snow and ice, when air temperatures
start falling again. During this period of decrease of streamflow, streamflow generation
switches gradually from melt- and rainfall-driven to exclusively rainfall-driven, with the
highest catchment parts potentially experiencing already the first snowfall events of the
next accumulation season.

A typical way to represent the variability of streamflow in a river section is by flow
duration curves, which represent the probability of exceedance of streamflow as a
function of time. Botter et al. (2007c) developed an analytical description of such
streamflow probability distributions as the result of subsurface flow pulses triggered by
stochastic rainfall inputs that are censored by the soil moisture dynamics. The resulting
streamflow distribution is characterized by only a few parameters: the mean rainfall
depth on rain days, the frequency of rainfall events that produce streamflow and the
mean recession coefficient of the catchment.

In the past, this streamflow distribution model was applied to rainfall-driven regimes
across the globe (Botter et al., 2007c, 2009, 2013; Ceola et al., 2010; Santos et al., 2018),
generally excluding explicitly seasons potentially affected by snow accumulation or melt
processes (Botter et al., 2007a, 2013; Ceola et al., 2010; Doulatyari et al., 2015).

In this chapter, we propose an extension of the modelling framework of Botter et al.
(2007c¢) to describe high flows during warm seasons in snow-influenced catchments.
This adds to the extension proposed by Schaefli et al. (2013) for streamflow distributions
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during winter and yields streamflow distributions of snow-influenced catchments for
the entire year, i.e. including the cold seasons (i.e. winter) low flows and warm seasons
(i.e. spring and summer) high flows and incorporating the contributions of snow and
glacier melt. The work presented here builds upon the work of Santos et al. (2018) that
tested the model framework for summer flows in catchments with snow processes and
concluded that the melt-related increase in summer streamflow can be incorporated
in the stochastic modelling framework as an increase in the frequency of streamflow
producing events. Some of the developments in this chapter draw on the model frame-
work extension and numerical tests of Miiller et al. (2014), who successfully modelled
streamflow distributions in seasonally dry climates.

The presented developments are based on case studies from Switzerland, an Alpine
country with different climates and elevations ranging up to 4634 m asl., which covers a
wide range of mountainous hydrological regimes. The described model framework was
applied here successfully in the past (Basso et al., 2015b; Doulatyari et al., 2017; Santos
et al., 2018; Schaefli et al., 2013).

The chapter is organized as follows: Section 6.2 presents the methods used in this
chapter, Section 6.3 provides a description of the case studies. Results are presented in
Section 6.4, followed by their discussion (Section 6.5). The conclusions are summarized
in Section 6.6.

6.2 Methods

We hereafter present the extension proposed to periods when streamflow is affected by
glacier and/or snow melt and the criteria to identify the seasons of application of the
model (i.e. accumulation and melting season). Then, we present the methods used for
parameter estimation and the model performance assessment.

6.2.1 Model extension to snow-dominated catchments
Accumulation season

Schaefli et al. (2013) extended the analytical model in its linear version (Eq. 2.4) to
account for snow accumulation occurring during winter in Alpine catchments. The
extension is based on considering that low winter streamflows can be assimilated to a
slowing down of the hydrologic response, and therefore to a reduction of the effectively
contributing area. This which can be accounted for by an increase of the time scale
associated with the hydrologic response (the inverse of the recession coefficient) and
by a decrease of the responsive area of the catchment. The following relation has been
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derived for the streamflow pdf (Schaefli et al., 2013):

11 w
p(Q™) t — o0) = —= Q = exp [— Q —, 6.1

where A3}*” is the frequency of precipitation events during winter, k) = (1)1 is the
winter recession coefficient, &™) is the mean depth of precipitation on days with pre-
cipitation, A is the catchment area and A* is the non-responsive area of the catchment
during the winter. 7 is obtained as the sum of 7 + 7y, where 7 is the residence time
during periods without snow influence and 7, is the delay caused by the presence of
snow. In the original formulation of Schaefli et al. (2013), the winter was taken conven-
tionally as the yearly period ranging from December to February. In the following, we
adopt the more general term accumulation period and allow it to be of varying length
(see Section 6.2.2).

The above extension for the accumulation period has to be completed with a proper
model extension for the melting period. Based on the aforementioned assumptions, the
precipitation that falls on the non-responsive area of the catchment does not generate
streamflow; rather it is stored in the snowpack and produces streamflow later, in the
melting season. The stored (accumulated) water can be quantified as:

A*
(a) _ 4 (@) (a);(a)
S —Ap a®l e (6.2)

where /1;“) is the precipitation frequency in the accumulation period, a'® is the mean
depth of precipitation in the accumulation period, /'@ is the length of the accumulation
period and S? is the specific accumulated water volume, ie. the volume of accumulated
water divided by the catchment area.

Melting season

When air temperature raises above 0°C, the melting period starts, with a significant
increase in the streamflows due to the contribution from snow melt and rainfall and an
ensuing increase of streamflow production. As discussed by Santos et al. (2018), this
increased input from melt can be accounted for by an increase of the streamflow gener-
ating frequency during the melting period, A" beyond the actual rainfall frequency
/l(pm) during the same period, 1" > /1;,'") (where m stands for the melting period).

The sum of melt and rainfall (what we call equivalent rainfall input) during the melt
period cannot be unquestionably assumed to follow a marked Poisson. While the actual
input amounts follow an exponential distributionas in the original model assumptions,
a series of melt events typically comes clustered in time on days with melting conditions;
accordingly equivalent precipitation shows lag-1 autocorrelations of up to 0.5. The
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numerical analysis of Miiller et al. (2014) showed, however, that the model of Botter
et al. (2007c, 2009) is robust with respect to this type of departure from the original
assumptions about the Poissonian nature of the input process. We assume that the
same conditions apply in this case.

Based on the above and assuming that the effect of snowmelt can be accounted for by
A > A5 we discuss here how to obtain two different estimates of A", one directly
from observed mean streamflow and one based on water balance considerations.

Under the presented modelling framework (linear or nonlinear formulation), the average
amount of streamflow produced during the melting season can be written as:

W — AUm) g m) (6.3)

where 1™ is the streamflow generating frequency during the melting season and a"”?
the average amount of precipitation of the precipitation events during the melting
season. This yields a first estimate of A",

The average streamflow, Q™ can be split into a part, say Q\", originating from the
water stored during the accumulation period in the non-responsive area (i.e. from S'?)

and a part, say Qg”), due to precipitation input during the melt season over the entire

catchment area, i.e.

QUM = Q™ +Qp", (6.4)
where a stands for streamflow from winter accumulation and p for streamflow from
precipitation.

The part of streamflow related to winter storage, S'“, can be obtained as:

— g@ AWg@@ g

(m) _

a = m 1m A

) (6.5)

where 1™ is the length of melt season. The second equality comes from equation 6.2.

Snow-dominated catchments are typically saturated during the melting period, i.e. all
precipitation events lead to streamflow; under this assumption, the average streamflow
from precipitation during the melting period can be written as

QY =A™, (6.6)
where /lg,m) is the precipitation frequency during the melt season and a"™ the average
amount of precipitation events.

Combining above equations (6.3) to (6.6) and solving for 1™ yields:

@ @

(m) _ 4 (m) (a) 0
A = A+ A — s o

6.7)
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Thus the streamflow generating frequency during the melt period, A, equals the
precipitation frequency during the melt period, ]Lft,’”), plus a scaled version of the pre-
cipitation frequency during the accumulation season, /1;“). The scaling factor accounts
for the ratio between precipitation amounts during the accumulation and the melt sea-
son (a@/q'™), the ratio between the season lengths (I (@ /1(m)y and the ratio between
the accumulation area during the accumulation period and the total catchment area
(A*/A). In the limiting case of no accumulation season (1@ =0, A* =0), A = /lg,m). In
all other cases, /lg,m) is increased by an amount depending on the relative length of the
accumulation period, the size of the accumulation area and the seasonality of average
input amounts.

Following the above results, we can obtain two different estimates of A™. Upon appro-
priate season identification (section 6.2.2), we can estimate AU either directly from
observed average streamflow Q™ and average precipitation input a”? during the melt
season (Equation 6.3) or from the theoretical relationship of Equation 6.7 where A
al®, M 1@ 10 are calculated directly from observed data and A* is obtained from
parameter estimation during the accumulation period (see section 6.2.3).

Incorporating effect of glaciers

Alpine glaciers are currently undergoing significant retreat (Fischer et al., 2015); corre-
sponding mass loss represents a source of water for catchments with significant glacier
coverage. In the context of this work, this additional water input is quantified from
observed precipitation and streamflow data by closing the yearly water balance and the
streamflow producing frequency A""” of Equation 6.7 becomes:

a@ @ A A
(a) _
P gm m) 4 = [(m)g(m)

A = A0m 4 2 (6.8)
The average yearly streamflow surplus, A is assumed to come from glacier mass loss and
is added to carry-over from the accumulation season, S%.

Effect of increasing A due to melt

The above extension to melting seasons assumes that all the contribution of the glacier
and snow melt can be incorporated into the model by a proper increase of the stream-
flow producing frequency, A"?. Increased water input during melting could also be
split between both model parameters related to the water input, A" and a™, the
product of which has to be constant and equal to the equivalent precipitation (rainfall
plus melt). An analysis of the moments of the streamflow distribution in the linear
model case shows what would happen if ™ is increased (and consequently 1" de-
creased, to keep the equivalent precipitation constant). First, the expected value of the
streamflow distribution (1"” a"™) is not affected by changes in the ratio between the
two parameters. Given that A" decreases with an increase of ", the variance and
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the coefficient of skewness would both increase with an increase in ™. For the range
of values studied in this chapter, this effect on the second and third moment is low (
Section 6.4).

6.2.2 Season identification

To apply a seasonal process-based model, we need to identify the seasons corresponding
to the prevailing hydrological processes of snow accumulation and melt.

We assume that these processes are conditioned by the mean temperature over the
catchment. The accumulation season is the period when precipitation occurs in form of
snow and freezing conditions allow it to accumulate. It corresponds to the period when
the mean temperature in the catchment is negative.

To define this accumulation period, we use a temperature model that represents the an-
nual temperature cycles without daily fluctuations. Following the formulation proposed
by Woods (2009), annual temperature cycles can be modeled as a sine curve defined by
the time-averaged mean temperature, T, a dimensionless seasonal amplitude, A7, and
a phase shift, s7:

T() =T +Arsin@a(t—sp)/d), (6.9)

where ¢ is the time step, considered to be a day, and d is the duration of the seasonal
cycle, considered to be a year of 365 days. For the context of this study, we estimated the
parameters of this model for a high number of meteorological stations across Switzer-
land (see 6.3 to obtain a relation between the parameters and elevation and to interpo-
late this temperature model to the mean elevation of all catchments. The length of the
accumulation season can then be obtained analytically from the parameters T, A7 and
st (for details see Woods, 2009).

There are many methods to calculate of the length of the melting season, such as based
on water budgets or on snow melt models (e.g Woods, 2009). Although the melting
season is usually shorter than the accumulation season, for the sake of simplicity, we
decided to set the length of the melting season equal to the length of the accumulation
season. Extensive tests showed that this convenient choice gives the best results for the
analyzed case studies. If the accumulation and the melt seasons do not sum up to an
entire year, there is and additional season when the streamflow producing mechanism is
pluvial. To avoid too short seasons, we impose a minimum season length of 30 days. In
case the third pluvial season becomes shorter than this minimum length, the duration
of the melting season is increased accordingly. For catchments with significant glacier
coverage (more than 20% of the area), the melting season is supposed to cover the entire
year outside the accumulation season.
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6.2.3 Parameter estimation

The parameters of the full model are listed in Table 6.1.

Table 6.1 — Summary of the model parameters. Superscripts indicate the season (accumulation
a, melting m or pluvial p). Subscripts differentiate different parameters.

Parameter Description

)Lgf) frequency of precipitation events during the accumulation season
)L;,m) frequency of precipitation events during the melting season

)L;gp ) frequency of precipitation events during the pluvial season

a® mean depth of precipitation during the accumulation season

al™ mean depth of precipitation during the melting season

a'P) mean depth of precipitation during the pluvial season

1@ mean length of the accumulation season

10m mean length of the melting season

A* non-responsive area of the catchments during the accumulation season
D residence time delay due to snow during the accumulation season
k™ linear recession parameter of the melting season

kilp ) nonlinear recession coefficient of the pluvial season

a® nonlinear recession exponent of the pluvial season

AU frequency of streamflow producing events during the melting season
AP) frequency of streamflow producing events during the pluvial season
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The precipitation parameters, A, and «, are obtained from the series of precipitation
observations for each season after discounting interception, as explained in Section
3.2.1. Regarding /150“) and a9, for the accumulation season, interception losses are
considered to be 1 mm per rainfall event. For A", a'™), /1;,’7 ) and a'P, interception
losses are obtained from land use and the maximum interception is set to 4 mm for
forests, 2 mm, for low vegetation, 1 mm for impervious areas and 0 mm for water bodies
(Gerrits, 2010; Santos et al., 2018, 2019). The maximum interception for any season is
considered to be at least 1 mm. Then, A, is the frequency of the effective precipitation
events during a season and a the mean depth of precipitation when it occurs. The
frequency of streamflow producing events during the accumulation season is equal to
the frequency of precipitation events, considering that evapotranspiration is negligible
during this period. As discussed above, the frequency of streamflow producing events
during the melting seasons is calculated in two ways, first from observed streamflows,
A9 (Equation 6.3), and from the theoretical relationship of Equation 6.7 , A9,

The length of each season is defined by the seasons limits (see Subsection 6.2.2).

The non-responsive area is calculated by the optimization of the model performance
indicator (the Kolmogorov-Smirnov distance, see 6.2.5) as described by Schaefli et al.
(2013), but considering the accumulation season instead of the meteorological winter.

The linear recession parameter (k%) is calculated by maximum likelihood estimation
(MLE) for the melting season applied with the empiric 1" obtained from observed
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streamflows. The nonlinear recession parameters (a'”’ and k,(ip ) for the pluvial season
are also calculated using MLE as done by Ceola et al. (2010); Santos et al. (2018, 2019).

The delay due to snow accumulation is estimated as as the mean duration of temperature
excursion below freezing temperature, i.e. the mean duration of consecutive days
with air temperature below 0°C, considering daily temperature observations, as done
by (Schaefli et al., 2013). Here we use catchment-average temperature observations
obtained from gridded data (see 6.3).

6.2.4 Annual distributions of daily streamflows

For practical purposes, it is more useful to obtain the distribution of daily streamflows
for a complete year. This distribution is obtained by a weighted average of the underlying
seasonal distributions, as proposed by Botter et al. (2008) and tested by Miiller et al.
(2014) for seasonally dry climates:

Py (@) = 1P () + 1" PSP (@) + 1P P (), (6.10)

When there is no pluvial season, such as for the glacier catchments, I!” is zero and the
annual distribution is based only on the distributions for the accumulation and melting
seasons.

6.2.5 Evaluation criteria

We evaluate the quality of the results in two different ways: first comparing the values of
the frequency of streamflow producing events calculated analytically (1»9) with the
empirical values of 1™ . Then, we assess the model performance for each season and

for the year according to the Kolmogorov-Smirnov distance, cX°.

6.3 Case studies

In this chapter, we used 10 Swiss case studies affected by glacier and/or snow processes
to verify the validity of the extension proposed to melting periods in mountainous
catchments. The selected cases have areas ranging from 1.65 km? to 195 km? and
mean elevations from 1252 m asl. to 2945 m asl. (Table 6.2, Figure 6.1). The selected
streamflow gauging stations are run by the Swiss Federal Office for the Environment
(FOEN, 2017), have unperturbed streamflows (i.e. minimal anthropogenic influence)
and a single series of measured daily data from 1975 to 2014, the period used in our
studies. Because the Dischmabach catchment presented measuring issues in the last
decades, its data was considered only until the year 2000 (Schaefli et al., 2016).

Daily streamflow data for each catchment were provided by the Swiss Federal Office
for the Environment (FOEN). Catchment scale precipitation (MeteoSwiss, 2011) and
temperature (MeteoSwiss, 2014) are estimated as in the work of Santos et al. (2018) from
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Figure 6.1 — Map of Switzerland showing the location of the 10 case studies and of the 64
meteorological stations. Source of the digital elevation model:(SwissTopo, 2005b)
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gridded data. The same holds for the assessment of the land use characteristics used to
estimate interception. To account for general gauge undercatch for the observation of
solid precipitation, we adopted a catchment scale precipitation correction factor of 1.2
during the accumulation period (Magnusson et al., 2014).

Additionally, we used air temperature data from the 64 meteorological stations of to the
Swiss automatic measurement network (formerly called ANETZ, now integrated into
SwissMetNet) that have data since the 1980ies to develop the air temperature model
(Woods, 2009). They have elevations that range from 203 m asl. to 3305 m asl.

6.4 Results

6.4.1 Temperature model and season identification

We applied the temperature model of Equation 6.9 to daily data of the 64 meteorological
stations , resulting in 64 fitted sinusoidal curves. Figure 6.2 shows the values of the three
curve parameters and their relation to the elevation of the meteorological stations. Due
to the geographic characteristics of Switzerland, a relatively small country, with latitudes
that go from 45°49’N at Pedrinate to 47°48'N at Oberbargen, the air temperature regime
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Table 6.2 — Characteristics of the 10 case studies

1D Name Code Area Station el- Mean ele- Glaciation
evation vation
km? measl m asl
2327 Dischmabach - Davos, Kriegsmatte  DIS 43.3 1668 2372 2.1%
2112  Sitter - Appenzell SIT 74.2 769 1252 0.08 %
2251 Rotenbach - Plaffeien, Schwyberg ROT 1.65 1275 1454 0
2299 Alpbach - Erstfeld, Bodenberg APB  20.6 1022 2200 27.7%
2276  Grosstalbach - Isenthal GRO 439 767 1820 9.3%
2268 Rhone - Gletsch RHG 389 1761 2719 52.2 %
2161 Massa - Blatten bei Naters MAS 195 1446 2945 65.9 %
2356 Riale di Calneggia - Cavergno, Pontit RDC 24 890 1996 0
2366 Poschiavino - La Rosa POS 14.1 1860 2283 0.35%
2319 Ovada Cluozza - Zernez OVA 269 1509 2368 22%
.5 Mean temperature 5 Seasonal amplitude . Shift
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Figure 6.2 — Relation between the elevations of the meteorological stations and the temperature
model parameters

essentially depends on elevation.

We then use the linear regression for each of these three parameters to interpolate the
parameters to the mean elevation of each catchment and to obtain the accumulation
season length for each catchment (6.3).

6.4.2 Mass balance

Table 6.4 summarizes the mass balance for each catchment in terms of annual precipita-
tion (P_y), annual streamflow (Q_y) and losses due to interception and evapotranspiration
(L_y), obtained as the average over hydrological years (starting on 1 Oct in Switzerland).
The losses are calculated as the sum of due to evaporation (i.e. interception, E) and
transpiration. Transpiration is obtained as the value that brings the mass balance to zero
when P, —Q, —I,, > 0 or at least 50 mm. It can be seen that for seven catchments we have
that Py, < Qy +I,,. As discussed previously, for glacier catchments, this difference (A) can
a priori be assumed to come from glacier mass loss. For non glacier catchments, this
points towards underestimation of area-average precipitation input from the available
gridded precipitation product.
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Table 6.3 — Lengths of accumulation season 1%, melting season /™ and pluvial season [’ for
each case study. Differences between (Y and [ occur if the pluvial season is incorporated

into the melting season, see Section 6.2.2.

Code [@ [m [(»
DIS 180 185 O
SIT 94 94 177
ROT 110 110 145
APB 166 199 O
GRO 137 137 91
RHG 206 159 0
MAS 227 138 O
RDC 151 151 63
POS 173 192 0
OVA 178 187 0

Table 6.4 - Main components of the mass balance for each catchment

Code Q, P, Ly, A
(mm) (mm) (mm) (mm)
DIS 1.260 991 197 466
SIT 1.479 1.899 420 0
ROT 1.684 1.771 233 146
APB 2463 1.674 227 1.016
GRO 1.284 1.706 422 0
RHG 2319 2.011 230 539
MAS 2229 2360 225 94
RDC 1.873 1928 198 143
POS 1243 1.455 212 0
OVA 926 930 183 179
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Most of the values from out mass balance agree with those from Haller et al. (2004), but
an exception to this is the Massa catchment. Fischer et al. (2015) estimated an annual
mass loss around 700 mm to 800 mm for this catchment during the period from 1980 to
2010, which is not compatible with our budget (94 mm) and suggests that there is an
underestimation of streamflows and/or an overestimation of precipitation.

6.4.3 Estimated parameters

The model was implemented for the selected case studies using the linear model for the
accumulation and the melting season and, following the results of Santos et al. (2018)
the nonlinear model for the pluvial season. The corresponding parameter values are
given in Tables 6.5, 6.6 and 6.7 show the estimated parameters for the accumulation,
melting and pluvial seasons. Overall, the mass balance-based theoretical streamflow
producing frequency A" reproduces the empirical frequency A"»? very well (Figure
6.3).

For the estimation of recession parameters, we have chosen to calculate the recession
parameters adopting the empiric frequency of streamflow production, 4,,,,, to avoid
biases towards the theoretical frequency, A, ;.

Table 6.5 — Model parameters and performances for the accumulation season.

Code a@ /1;“) ™M 1p A¥IA 554
mm 1/day day day
DIS 6,1 0,32 4,3 24,5 0,50 0,06
SIT 10,0 0,45 3,8 6,4 0,58 0,15
ROT 10,6 0,42 1,7 6,1 0,58 0,12
APB 10,9 0,43 1,7 16,4 0,78 0,15
GRO 10,2 0,41 7,5 91 0,66 0,08
RHG 13,7 0,46 1,7 29,5 0,86 0,19
MAS 15,2 0,44 2,6 34,8 0,95 0,33
RDC 13,7 0,31 2,9 12,3 0,73 0,07
POS 12,1 0,29 5,0 24,77 0,62 0,07
OVA 7,3 0,26 4,6 51,5 0,61 0,10

Since many model parameters are related to catchment elevation (Santos et al. (2018);
Schaefli et al. (2013)), we checked the relation of the frequency of streamflow producing
events during the melting season with the mean catchment elevation (Figure 6.4). As
expected, the frequency strongly increases with elevation, with the exception of the
two case studies located in the Engadin region, POS and OVA; they have relatively low
frequencies despite their high elevations. This region is in fact known to have a distinct
climate and to be relatively dry (Begert et al., 2007).
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Table 6.6 —- Model parameters and performances for the melting season.

Code a™ A(p"ﬂ) 7m0 At Jc(m) KSm— KSy
mm 1/day 1/day 1/day 1/day
DIS 7,9 0,31 0,73 0,75 0,23 0,05 0,03
SIT 10,0 0,39 0,54 0,65 0,26 0,20 0,04
ROT 10,6 0,38 0,71 0,75 0,59 0,11 0,05
APB 9,5 0,44 1,20 1.30 0,58 0,07 0,07
GRO 10,9 0,42 0,53 0,67 0,13 0,23 0,08
RHG 9,9 0,49 1,34 1,54 0,59 0,10 0,11
MAS 13,0 0,53 1,14 1,40 0,38 0,13 0,20
RDC 15,1 0,34 0,57 0,61 0,35 0,10 0,04
POS 12,3 0,30 0,42 0,46 0,20 0,17 0,08
OVA 8,6 0,29 0,48 0,54 0,22 0,14 0,07

Table 6.7 - Model parameters and performances for the pluvial season

Code a® A;p) AP0 k;ﬁ’) a?  KSp
mm 1/day 1/day

SIT 11,8 0,40 0,34 0,13 1,82 0,03

ROT 12,1 0,34 0,30 0,18 1,88 0,04

GRO 11,0 0,35 0,28 0,04 197 0,03

RDC 21,1 0,31 0,28 0,06 1,99 0,04

1.6 .
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121
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Figure 6.3 — Comparison between the values of observed and theoretical A,,.

98



6.4. Results

* MY RHE
14} , MIAS
O A sre O
1.2 O 1
O
1 L
B I
= 08 oT WIS
36RO
06 el #Dc
0 o) ﬁVA
S
04+
02}

0 500 1000 1500 2000 2500 3000
Elevation (masl)

Figure 6.4 — Relation between the mean catchment elevation and the frequency of streamflow
production.

6.4.4 Model performance

The model performance was assessed quantitatively according to the Kolmogorov-
Smirnov distance: Tables 6.5, 6.6 and 6.7 show the values of this indicator for each
season, Table 6.6 also shows the model performances for the year. Additionally, Figure
6.5 shows the cdfs for all the seasons in a snow dominated catchment, with three seasons
(Riale di Calnegia) and in a glacier catchment with two seasons (Rhone). Figures for all
catchments and seasons and for the year can be found in the Appendix D.

The results for the pluvial season tend to be very good since it is the season for which
the model was initially developed and because of the use of MLE to obtain the recession
parameters. The results for the accumulation season are mostly good, but since they
are based on a linear model, they tend to be worse than the results for the nonlinear
model. For the cases more influenced by glaciers, the model performance was impaired
mostly by an overestimation of the recession timescale in a pattern observed by Santos
et al. (2018) that can be seen in Figure 6.5 (accumulation season in Rhone). Regarding
the melting season, the results are better if A0 s close to A9 When A1 g
overestimated, the entire cdf is overestimated, as it happens in the Rhone catchment
(see Figures 6.3 and 6.5).

Annual performances are coherent with the seasonal results. Low flows are generated
mostly in the accumulation season and high flows in the melting season and the annual
curves clearly mirror the characteristics of the seasonal curves in the corresponding
streamflow range of the annual cdf. For the illustrated glacier case, for example, the
accumulation curve has a small variability, which is repeated in the annual curve for low
flows, while the good results for the melting seasons are also repeated for the high flows.
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Figure 6.5 — Modeled cdfs for the two or three seasons and for the year for two selected
catchments: Riale di Calnegia (snow-dominated) and Rhone (glacier).

The shapes of the curves, even when they show a step in the curve, are well represented
by the model, in general. The annual performances of the model are mostly good, with
annual values of ¢* situated between the values for the seasonal curves (see Tables 6.5
10 6.7).

6.4.5 Effect of increasing precipitation frequency

We analysed numerically the effect of varying ratio between A and a"” on the model
results. For this, we fixed the equivalent precipitation (P.; = Aa), varied the ratio
between the parameters and calculated the pdfs for the different ratios. Here we present
the results for one case, the Riale di Calnegia, in Figure 6.6.

First, it is important to notice that the change in the ratio between AU and a™ also
affects the results for the accumulation season, because of the used recession parameter
estimation method, based on MLE. For this particular case, the linear recession parame-
ter did not vary significantly, ranging from 0.30 for accounting of melting effects fully
in @ to 0.35 for accounting of melting fully in A", which resulted in c*>¢ from 0.72
to 0.69 respectively. For this case, the best results for the melting season are the ones
obtained with incorporating the complete contribution due to the carry-over effect in
the value of A with the values of ¢X57
the best values are obtained for the case where melting is fully incorporated in A,

ranging from 0.24 to 0.07. Figure 6.6 confirms that
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Figure 6.6 — Analysis of the variation of the ratio between 1™ and a"™ for a fixed equivalent
precipitation for the catchment Riale di Calnegia

We also compared the coefficient of variation (CV) of the analytical distributions and
to the CVs of the observed streamflow time series, as done by Botter et al. (2013) to
verify the choice of how to account for melting effects. From a physical viewpoint,
the snow-melting process corresponds more to a frequent additional supply of water
(during melting conditions) than to an increase of the input pulse size (a). As shown
in Figure 6.7, the accommodation of the equivalent precipitation in a™ leads to a
considerable increase in the CV and to strong deviations from the sample CVs. It
would even lead to CVs higher than 1, which corresponds to exponential streamflow
distributions, i.e. erratic streamflow regimes Botter et al. (2013), which are not observed
in this hydroclimatic region. This analysis confirms that incorporating the effect of
melting in the streamflow producing frequency A" is more suitable in general in this
region.

6.5 Discussion

In this study we extended the analytical streamflow distribution model proposed by
Botter et al. (2007c) to periods of snow melt. The extension is based on three key previous
results related to the model framework: i) the extension for winter in snow-dominated
catchments (Schaefli et al., 2013) that allows the estimation of the amount of water
stored during the accumulation season, ii) the extension of the model to seasonally dry
catchments (Miiller et al., 2014) that showed the robustness of the modelling framework
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for autocorrelated inputs, the importance of a careful definition of seasons when dealing
with carry-over effects and iii) the finding of Santos et al. (2018) that the additional
water from snow melt can be incorporated into the model for summer streamflow
distributions by increasing the frequency of streamflow generating events, A The present
chapter argues that this increase of A can be extended to the entire melting season to
account for additional water input from melt and derives an analytical expression
based on water balance considerations. The comparison of the resulting analytical
coefficients of variation to the ones obtained from observed streamflow for the 10 case
studies underlines the robustness of the resulting model for modelling melt-influenced
streamflow distributions.

The good model performances show furthermore that the division of the year in two
or three seasons is suitable for the studied hydrological regimes, which are typical for
Alpine catchments.

The proposed season identification method based on a Swiss-wide elevation-dependent
air temperature model overcomes an important limitation identified in previous work,
where seasons were identified according to fixed calendar dates (Schaefli et al., 2013).
They studied some of the same case studies as in the present chapter but due to their
season identification, the results cannot be directly compared.

The model extension to snow-dominated catchments has an important limitation re-
lated to the strong dependence on reliable precipitation data for mountainous catch-
ments. This is notoriously difficult at high elevations where the availability and the
distribution of meteorological stations is generally insufficient and the precipitation
gauging suffers from solid precipitation undercatch. The quality of streamflow data
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might potentially also be lower in high elevation catchments, especially during the accu-
mulation season when streamflows may be very low and freezing can affect measuring
instruments.

6.6 Conclusions

This Chapter extends the analytic streamflow distribution model framework discussed
in Chapter 2 to warm seasons in catchments affected by significant glacier and snow
processes. The extension was tested in ten Swiss catchments characterized by different
elevations and climates, where streamflows present a strong seasonality due to the
mentioned processes. The model reproduces observed daily streamflow distributions
and coefficients of variation remarkably well.

The model extension is based on the definition of accumulation and melting seasons
based on the elevation-dependent air temperature regime, and the incorporation of
the increased water input during the melting season into the streamflow producing
frequency.

The proposed model extension is argued to make the analytic streamflow distribution
model suitable for annual streamflow in snow-dominated catchments.
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4 Conclusions and perspectives

The present Thesis has suggested that the analytical streamflow distribution model of
Botter et al. (2007c¢), originally developed for pluvial regimes, represents a reliable tool
for water resources assessment in Alpine environments, where the hydrologic regimes
show a spatial and seasonal transition from rainfall-dominated (pluvial), to snow- and
glacier melt dominated. The required key extensions studied in this Thesis are the
robust and transferable estimation of the model parameters and the incorporation of
the effect of snow- and glacier melt during the ablation period.

In view of a robust parameter estimation, Chapter 3 studied the performance of the
model framework for summer streamflow in 25 Swiss catchments representative of the
range of hydro-climatological conditions typically encountered in Alpine environments.
The chapter tested the pluvial model for a standard summer season between June
and August. This work investigated the use of linear and nonlinear recession models,
combined with different approaches to estimate recession parameters: the widely used
recession analysis method (RAM) proposed by Brutsaert and Nieber (1977) and an
inverse method based on maximum likelihood estimation (MLE). The detailed analysis
of this conventional method underlined the need to study a broader range of RAMs.

The application of the model to a standard summer season in Chapter 3 showed that
summer streamflow distributions in high elevation catchments can be explained by
streamflow generating frequencies that exceed the frequency of rainfall inputs. This
result underlined that high elevation summer streamflow is systematically influenced
by melt processes, even in absence of a glacier cover that sustains summer streamflow.

The model was tested by adopting an increased frequency for streamflow producing
events. Increasing the event generating frequency (with respect to rainfall input fre-
quency) leads to an increase of the total available water during the summer, which is
inline with the classical snow hydrology approach of estimating an equivalent precipita-
tion input from rainfall and snow- and glacier melt. Importantly, this model represents
a simple yet effective solution to incorporate snowmelt into the model framework dur-
ing summer. In addition, this chapter clarified the need for defining better recession
analysis methods. The detailed analysis for 25 catchments also allowed to find interest-
ing correlations between model parameters (in particular the stream flow producing
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frequency) and the model performances with mean catchment elevation. In general,
the nonlinear model performed better than the linear model, but the performance of
the linear model improved with the mean catchment elevation, with very good results
for catchments influenced by glacier and snow melt.

Because Chapter 3 strengthened the importance of robust recession parameter estima-
tion, Chapter 4 studied the performance of different RAMs for the model framework.
The focus was here on nonlinear recessions and annual streamflow distribution curves
in catchments with pluvial regimes. For these conditions, the most suitable method
resulted to be a combination of a strict recession extraction method and a ‘per event’
decorrelation parameter estimation method. The detailed analyses also showed that dif-
ferent RAMs can lead to very different parameter values and that in particular the choice
of a recession extraction method strongly affects the recession parameters, especially
for ‘per event’ parameter estimation.

The best RAMs had results very similar to the ones obtained by MLE, which raised
the question whether MLE could become a reference method to calculate recession
parameters. This approach was tested in detail and shown to be at least as performing as
existing RAMs, with the advantage of eliminating the critical step of recession extraction.

While Chapter 4 focused on the study of annual nonlinear recessions, this Thesis aimed
at more general situations. Accordingly, Chapter 4 presents additional results regarding
RAMs in combination with linear recessions, which are more frequently used for the
model framework. Again, results showed that the recession extraction method choice is
fundamental for parameter estimation and that linear recession parameters are even
more affected by methodological choices than nonlinear parameters. It was not possible
to recommend a single best RAM for linear recessions, but it was observed that master
curve methods yield lower parameter values, while ‘per event’ methods produce higher
parameter values. Finally, the MLE approach had satisfactory results and could be used
as a reference in future studies for ungauged catchments.

The extension of the model framework to the warm season in snow-dominated catch-
ments and glacier catchments was the topic of Chapter 6. It studied the model frame-
work under snow melting conditions, taking advantage of the extension to the snow
accumulation (winter) season previously introduced by Schaefli et al. (2013). The new
solution to account for snowmelt consisted of estimating the amount of water stored
during snow accumulation and of estimating the increased frequency of streamflow
producing events from the equivalent precipitation resulting from the sum of rainfall
and winter accumulation. The consideration of snowmelt as an increased streamflow
production frequency was a possibility raised by Chapter 3, but further testing was
required, as well as a formal link between winter accumulation and water release during
the melt period. In this context, the linear recession model was chosen because it allows
better theoretical treatment of the problem. It is noteworthy that this solution was only
possible after redefining the seasons and, instead of standard meteorological seasons,
adopting an air temperature-based accumulation period. The obtained results were



good for snow dominated and for glacier catchments, for seasonal as well as for ensuing
annual streamflow distribution curves. The new frequency of streamflow producing
events is strongly correlated with mean catchment elevation, which opens important
perspectives for parameter regionalization.

Other promising perspectives for future work are:

— The identified robust recession parameter estimation methods should be further
tested in view of applications of the model framework to ungauged catchments.
The correlation observed between the model parameters and catchment elevation
opens interesting perspectives for process-based parameter regionalization in
Alpine catchments.

- The good MLE results for short series of streamflow observations make the model
framework useful in situations with limited observed data. A parallel perspective is
the possible use of the MLE approach to obtain recession parameters in other con-
texts, for example, using MLE with other simple hydrological models to estimate
recession parameters or using the obtained parameters with other hydrological
models.

— The streamflow distribution model provides a link between the FDC shape and
climatic and geomorphological characteristics of a catchment and the results
obtained from this Thesis were physically meaningful. Also, the model param-
eters are correlated to the mean catchment elevation (and consequently to the
air temperatures in the catchment). The robustness of the model and the facility
to obtain its parameters open another interesting perspective is related to the
use of the model to predict the impact of climate change on the distribution of
daily streamflows in regions affected by snow processes. The values of most of
the model parameters could be estimated from climate change scenarios and
mean catchment elevations; the only parameter that needs further study is the
non-responsive area.

- This type of model is very simple, especially the nonlinear form that results in a
gamma distribution. This simplicity makes it useful to be used as a framework to
support comparative theoretical studies, such as the description of regimes done
by Botter et al. (2013) and the ecological studies done by Ceola et al. (2014). The
model extension based on the linear model provides new elements to support
future studies related to snow-dominated and glacier catchments.
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.\ Supplementary material to Chapter 3

The supplementary material contains 3 tables, 2 figures and graphics showing the
cdf model performance for all catchments including the linear and nonlinear model.
Additional shape files with the catchments contour can also be found attached. The
tables and figures show:

Table A.1: Percentage of land use per catchment.

Figure A.1: Interception per type of land use.

Table A.2: Spatial data classes associated to FOEN land use classes.

Figure A.2: Equivalence between the 16 discharge regimes from the Hydrological
Atlas of Switzerland and the 3 types of regimes adopted.

- Table A.3: Precipitation grid cells per catchment.

— Table A.4: Summary of data sources.
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Table A.1 — Percentage of land use per catchment. Data was obtained from the dataset associ-
ated to the “hydrological study area” (Aschwanden, 1996) except for the catchments: Areuse,
Rhoéne-Gletch and Venoge, for which data was obtained from spatial data (Statistics, 2001), see
Tab. A.2. Each column is identified by a letter that correspond to a type of land use, identified

on Fig. A.1.

Catchment A B C D E F G H I ] K L M N 0
Rein da Sumvitg 0,14 1,66 0,09 0,00 0,00 19,26 0,00 23,49 0,00 0,00 0,00 47,01 0,09 161 6,65
Dischmabach 2,38 1,87 023 000 046 37,80 0,00 20,89 0,05 0,00 028 33,50 0,13 035 2,06
Goldach 29,64 0,00 4,37 3,04 51,06 080 046 0,14 597 060 344 008 002 038 0,00
Necker 33,61 0,00 3,80 050 47,63 10,14 0,06 057 165 007 1,38 0114 000 045 0,00
Sitter 2513 0,13 2,94 0,05 24,08 31,84 0,04 4,99 130 003 1,16 724 019 080 0,08
Murg 30,58 0,00 2,87 3,83 51,62 082 026 000 464 071 407 024 013 023 0,00
Scheulte 47,75 0,00 3,97 1,00 26,59 17,81 0,07 0,14 1,31 0,00 1,17 007 000 012 0,00
Giirbe 21,95 028 255 2,69 53,84 7,75 0,11 200 3,69 028 240 143 028 075 0,00
Rotenbach 12,12 0,00 12,12 0,00 0,00 71,51 0,00 061 061 0,00 000 1,82 000 121 0,00
Sense 32,34 0,06 3,65 1,17 3638 17,94 0,07 207 184 0,10 151 1,56 0114 1,17 0,00
Areuse 44,02 0,00 4,04 0,14 26,51 20,15 0,16 025 0,67 207 017 017 1,53 0,13 0,00
Iifis 44,27 0,14 4,45 055 31,46 14,07 0,06 087 121 009 1,26 071 000 086 0,00
Sellenbodenbach 10,66 0,00 3,52 514 72,69 0,00 0,19 0,00 447 029 3,04 000 000 0,00 0,00
Alpbach 1,51 656 0,15 0,00 000 573 000 1020 0,00 0,00 0,00 4697 022 099 27,67
Grosstalbach 17,89 1,48 271 0,00 4,73 2526 0,00 955 023 005 009 2801 000 075 9,25
Alp 48,51 0,00 3,62 0,00 30,56 9,94 019 1,29 259 041 1,36 084 000 069 0,00
Rhone 0,00 2,81 0,13 0,00 000 879 000 051 942 003 000 2969 043 0,05 48,15
Massa 0,68 003 015 0,00 000 287 000 352 000 000 000 2674 001 007 6593
Venoge 31,04 0,00 1,88 1,74 5420 2,30 083 0,16 0,18 4,17 028 009 3,12 002 0,00
Melera 86,27 0,00 099 0,00 0,00 1078 0,00 1,96 000 000 000 0,00 000 000 0,00
Verzasca 28,78 12,67 3,31 0,00 0,80 802 0,02 2504 030 001 0,10 1895 0,06 1,94 0,00
Riale di Calneg- 6,87 6,71 3,94 000 005 893 000 1823 0,04 000 000 5251 1,40 1,32 0,00
gia

Krummbach 025 000 1,01 000 000 5589 000 1215 0,05 000 066 2525 050 121 3,03
Poschiavino 6,35 1,07 2,14 0,00 0,00 4850 0,00 1262 030 000 1,85 2518 0,10 154 0,35
Ova da Cluozza 507 12,78 0,60 0,00 0,00 0,00 0,00 12,07 000 000 000 6691 001 033 223
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A. Forét

B. Forét buissonnante Forest, [I=4mm

C. Autres surfaces boisées

D. Arboriculture fruitiére,
horticulture, viticulture

E. Prés et terres arables

F. Alpages Low vegetation, I=3mm

G. Espaces verts et lieux de détente

H. Végétation improductive

|. Aires de batiments

J. Aires industrielles

K. Surfaces de transport Buildings, I=1mm

L. Surfaces sans végétation

M. Surfaces lacustres

N. Cours d'eau, berges, biotopes humides Water bodies, I=0mm

O. Glaciers

Figure A.1 — Equivalence between the land use categories proposed by the FOEN and the ones
adopted to calculate interception, followed by the value of interception for each category.
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‘ a-glaciaire

‘ b-glaciaire

‘ a-glacio-nival

‘ b-glacio-nival

Alpine regimes

~
‘ nival alpin Glacier

,,,,,,,,,,,,,,,,,,,,, Y,
‘ nival de transition ~

‘ nivo-pluvial préalpin

Jura and Central Plateau regimes

Southern Alpine regimes

Snow-dominated

J
‘ pluvial supérieur
! )
‘ pluvial inférieur ‘ ‘IL Pluvial
‘ ‘ J

Figure A.2 — Equivalence between the 16 discharge regimes from the Hydrological Atlas of
Switzerland and the simplified classification in 3 types of regimes adopted in this work.
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Table A.2 — Spatial data classes (FSO, 2001) associated to FOEN land use classes (Aschwanden,
1996).

ID own FOEN land use hydrological Geostat1997 classes associated to this

study areas FOEN class
A Forét 9,10,11,12,13,14
B Forét buissonnante 15
C Autres surfaces boisées 17,18, 19
D Arboriculture fruitiere, horticul- 71, 72, 75, 76, 77, 78
ture, viticulture
E Prés et terres arables 73, 81, 82, 83, 84
F Alpages 85, 86, 87, 88, 89
G Végétation improductive 16, 95, 96, 97, 98
H Aires de batiments 25,26, 27, 28, 29, 45, 46, 47, 48, 49
I Aires industrielles 21,41
] Espaces verts et lieux de détente 23, 51, 52, 53, 54, 56, 59
K Surfaces de transport 31, 32, 33, 34, 35, 36, 37, 38, 68, 67
L Surfaces lacustres 91
M Cours d’eau, berges, biotopes 92,93, 69
humides
N Surfaces sans végétation 99
0 Glaciers 90
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Table A.3 — Selected precipitation grid cells of the MeteoSwiss RhiresD (MeteoSwiss, 2014a)
per catchment.

Catchment Cells

Rein da Sumvitg 15923; 16026; 16128; 16129; 16231; 16232; 16233

Dischmabach 20448; 20449; 20551; 20552; 20553; 20655; 20657; 20759; 20760

Goldach 18150; 18252; 18253; 18254; 18355; 18356; 18357; 18358; 18459; 18460; 18461; 18562; 18563; 18564;
18666

Necker 16712; 16713; 16816; 16817; 16818; 16919; 16920; 16921; 17022; 17023; 17024; 17025; 17125; 17126;
17127; 17128; 17228; 17229; 17230; 17231; 17331; 17333; 17334; 17437

Sitter 17745; 17746; 17848; 17849; 17850; 17951; 17952; 17953; 18054; 18055; 18156; 18157; 18158; 18258;
18259; 18260; 18361; 18362; 18363; 18465; 18466

Murg 15679; 15782; 15783; 15882; 15883; 15884; 15885; 15886; 15887; 15984; 15985; 15986; 15987; 15988;
15989; 16088; 16089; 16090; 16091; 16191; 16193; 16294; 16396

Scheulte 8370; 8371; 8472; 8473; 8474; 8575; 8576; 8577; 8678; 8679; 8680; 8681; 8781; 8782; 8783; 8885; 8886;
8988; 8989

Giirbe 8502; 8503; 8598; 8599; 8600; 8601; 8602; 8604; 8605; 8606; 8701; 8702; 8703; 8704; 8705; 8706; 8707;

8708; 8709; 8805; 8806; 8807; 8808; 8809; 8810; 8811; 8812; 8909; 8911; 8912; 8913; 8914; 8915

Rotenbach 7577

Sense 7475; 7T476; 7T477; 7574; 7575; 7576; 7577; 7578; 7579; 7676; 7677; 7678; 7679; 7680; 7681; 7682; 7776;
7777, 7778; 7779; 7780; 7781; 7782; 7783; 7784; 7877; 7878; 7879; 7880; 7881; 7882; 7883; 7884; 7885;
7886; 7887; 7980; 7981; 7982; 7983; 7984; 7985; 7986; 7987; 7988; 7989; 7990; 8082; 8083; 8084; 8085;
8086; 8087; 8088; 8089; 8090; 8091; 8092; 8185; 8186; 8187; 8188; 8189; 8190; 8191; 8192; 8193; 8194;
8195; 8391; 8392; 8393; 8394; 8395; 8396; 8397; 8398; 8399; 8400; 8495; 8496; 8497; 8498; 8499; 8500;
8501; 8603

Areuse 3346; 3348; 3445; 3451; 3452; 3451; 3452; 3453; 3454; 3455; 3651; 3652; 3653; 3657; 3753; 3754; 3757;
3758; 3856; 3857; 3858; 3859; 3860; 3861; 3959; 3960; 3961; 3962; 3963; 3964; 4061; 4062; 4063; 4064;
4065; 4066; 4164; 4165; 4166; 4167; 4168; 4169; 4267; 4268; 4269; 4270; 4271; 4272; 4369; 4370; 4371;
4372; 4373; 4374; 4471; 4472; 4473; 4474; 4475; 4476; 4477; 4574; 4575; 4576; 4577; 4578; 4579; 4677;
4678; 4679; 4680; 4681; 4681; 4780; 4781; 4782; 4783; 4784; 4883; 4884; 4885; 4886; 4887; 4986; 4987;
4988; 4989; 4990; 5089; 5090; 5091; 5092; 5191; 5192; 5195; 5294; 5298; 5396; 5397

Iifis 10241; 10242; 10243; 10244; 10343; 10344; 10345; 10346; 10347; 10348; 10447; 10448; 10449; 10450;
10451; 10549; 10550; 10551; 10552; 10553; 10554; 10555; 10556; 10557; 10652; 10653; 10654; 10655;
10656; 10657; 10658; 10659; 10660; 10755; 10756; 10757; 10758; 10759; 10760; 10761; 10762; 10763;
10858; 10859; 10863; 10864; 10865; 10866; 10966; 10967; 10968; 11070; 11071

Sellenbodenbach 12090; 12192; 12193

Alpbach 13854; 13855; 13957; 13958; 14060; 14061

Grosstalbach 13541; 13542; 13644; 13645; 13646; 13746; 13747; 13748; 13749; 13849; 13852

Alp 14564; 14664; 14665; 14666; 14667; 14766; 14767; 14768; 14769; 14770; 14868; 14869

Rhone 13039; 13040; 13041; 13042; 13141; 13142; 13143; 13144; 13145; 13244; 13245; 13248

Massa 10783; 10882; 10885; 10886; 10985; 10986; 10987; 10988; 10989; 11086; 11087; 11088; 11089; 11090;

11091; 11092; 11189; 11190; 11191; 11192; 11193; 11194; 11195; 11196; 11292; 11293; 11294; 11295;
11296; 11297; 11298; 11299; 11395; 11396; 11397; 11398; 11399; 11400; 11401; 11402; 11498; 11499;
11500; 11501; 11502; 11503; 11504; 11603; 11604; 11605; 11606; 1709

Venoge 2844; 2946; 2947; 2948; 3048; 3049; 3050; 3051; 3150; 3152; 3153; 3154; 3253; 3254; 3255; 3256; 3355;
3356; 3357; 3358; 3458; 3459; 3460; 3461; 3561; 3562; 3563; 3564; 3565; 3665; 3666; 3667; 3668; 3669;
3670; 3768; 3769; 3770; 3771; 3772; 3773; 3871; 3872; 3873; 3874; 3875; 3979; 3974; 3975; 3976; 3977;
3978; 3979; 4077; 4078; 4079; 4080; 4082

Melera 16562

Verzasca 14701; 14702; 14803; 14804; 14805; 14904; 14905; 14906; 14907; 14908; 14909; 15007; 15008; 15009;
15010; 15011; 15012; 15111; 15112; 15113; 15114; 15115; 15116; 15117; 15214; 15215; 15216; 15217;
15218; 15219; 15220; 15318; 15319; 15320; 15321; 15322; 15323; 15423; 15424; 15425; 15526; 15527;
15528; 15529; 15630; 15631; 15632; 15735

Riale di Calneggia  13566; 13567; 13669; 13670; 13773; 13876

Krummbach 11203; 11204; 11205; 11306; 11307

Poschiavino 21288; 21289; 21392

Ova da Cluozza 21586; 21587; 21588; 21689; 21690; 21691
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Table A.4 — Sources of the data used in this work.

Type of data All catchments Source

Daily discharge All catchments FOEN (on demand)

Daily precipitation All catchments MeteoSwiss (Rhires D)
(www.meteoswiss.admin.ch-
requires contract)

Daily temperature  All catchments MeteoSwiss (Tabs D)

Elevations of catch-
ments
Land use

Regimes

All catchments

Study areas
Other catchments
Study areas
Other catchments

(www.meteoswiss.admin.ch-
requires contract)

FOEN
(www.hydrodaten.admin.ch)
Aschwanden, 1996

FSO, 2001

Aschwanden, 1996

FOEN (map.geo.admin.ch)
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Results for all catchments for the linear model
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Results for all catchments for the nonlinear model
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Supplementary material to Chapter 4

The supplementary material contains 3 figures and a Matlab code with the implementa-
tion of the MLE parameter estimation. The figures show:

— Figure 1: Annual variation of model parameters .
- Figure 2: Histograms of the inter-arrival times of the streamflow generating events.

- Figure 3: Histograms of the recharge depths.
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B.1 Figures
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Figure B.1 — Annual variation of model parameters (mean precipitation depth, «, discharge

producing frequency, A, precipitation frequency, 1,, and recession parameters a and k;)

for each case study. The parameters presented in the figure were calculated for overlapping
intervals of three months centered on the dates of a civil year. Recession parameters are

obtained by MLE.
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B.1. Figures
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B.2 Matlab code

clear all; close all
4 prepare a daily discharge series in mm/day, format n = 1, call it §

4 for illustration purposes, we use a random process obtained by first
generating a marked Poisson process (to emulate the precipitation series)
and then simply filtering it to emulate a discharge series 0) set the
state of the random number generator

rng (123456); / can choose any value 1) generate a marked Poisson process

lambdaP=0.5; / frequency of the Poisson process

alpha=3; / mean precipitation on days with precipitation

N=3000; / number of precip events to generate

precip_times = cumsum(random(’Poisson’,1/lambdaP, [N,1]1));

precip_times (precip_times<1)=[]; / remove precipitation times smaller than 1

N=length(precip_times); / update the length of the series

precip_amounts = random(’Exp’,alpha,N,1);

precip=accumarray (precip_times, precip_amounts); / Matlab function to build
arrays of wvalues

/ check frequency of generated series: sum(precip>0)/length(precip)
/ compute actual mean precip on precip days
/ alphaObs=mean (precip(precip>0))

4 2) mow compute pseudo discharge § by simple linear filtering

windowSize=20;/ not too large window size, otherwise MLE cannot find a
solution

Q = filter(ones(1,windowSize)/windowSize ,1,precip); 4 § in mm/day

Q(Q==0)=0.1; / add a small value since zeros yield NalN values in pdf
evaluation

/ compute the discharge generating frequency lambda<lambdaP,
lambda=mean(Q)/alpha; / equation 6 of the paper

X 3) define the pdf function of equation 5 of the paper with input k and a

4 first define the not normalized part of the function

pdfNotNorm=@(Q,a,k) Q.~(-a).*xexp(-Q."(2-a)/(alpha*k*(2-a))+lambda*Q."~(1-a)/(
kx(1-2)));

B

We can now write the pdf as function of the normalization constant C
custompdf=0(g,a,k) C*pdfNotNorm(§,a,k);

where the normalizing constant is obtained as

C=1/integral (€(§) pdfNotNorm(§,a,k),0,inf,  AbsTol’,1e-5);

N

X for MLE, write above in a single function
custompdf=@(Q,a,k) 1/integral(@(Q) pdfNotNorm(Q,a,k),0,inf,’AbsTol’,le-5)x*
pdfNotNorm(Q,a,k) ;

4 4) MLE estimation

/ define lower and upper bounds for MLE estimation for parameter a and k
these bounds need to be adjusted to the problem at hand; depending on the
above random process realization, the used bounds might not work

lowerbd=[1.1,0.05]; / lower bounds a, k

upperbd=[2.5,5]1;/ upper bounds a, k

startval=[1.8,1]; / initial wvalue

/ find the optimal values of a and k with the Matlab function MLE or any
/ other optimisation function
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49
50
51
52
53
54
55
56

58
59
60
61
62
63
64

optimle=mle(Q,’pdf’,custompdf,’start’,startval,’lowerbound’,lowerbd,’
upperbound’,upperbd) ;

opta=optimle (1) ; /JMLE wvalue for k

optk=optimle (2); /JMLE walue for a

4 5) plot the results

4 first estimate the empirical distribution wvia histogram function
[freq,bins]=hist (Q,20);

/ estimate the mnormalization constant
binWidth=bins (2) -bins (1) ;
normalization=sum(freq)*binWidth;
figure (1)

plot (bins,freq/normalization,’o0?)
sQ=sort(Q); / sorted {§

hold on

plot (sQ,custompdf (sQ,opta,optk))
xlabel (’Discharge’)

ylabel (’pdf )
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8] Supplementary material to Chapter 5

The supplementary material contains 5 tables with the following results for each catch-
ment and time interval:

Linear recession parameter (k, Table C.2)

Linear model performance considering the estimated parameters (c{< S Table C.3)

Nonlinear recession exponent (a, Table C.4)

Nonlinear recession coefficient (k;;, Table C.5)

Nonlinear model performance considering the estimated parameters (cfs, Ta-
ble C.6)

The studied methods are summarized in Table C.1:

Table C.1 — Synthesis of the adopted RAMs

Symbol Description References
El Permissive recession extraction Santos et al. (2019); Schaefli et al. (2013)
E2 Intermediate recession extraction Vogel and Kroll (1992)
E3 Recession extraction with concavity criteria Dralle et al. (2017b)
PL1 Linear parameter estimation based on master re- Brutsaert and Nieber (1977)
cession curve
PL2 Linear parameter estimation per event
PN1 Nonlinear parameter estimation based on master ~ Brutsaert and Nieber (1977)
recession curve
PN2 Nonlinear parameter estimation with linear least Basso et al. (2015b); Mutzner et al. (2013)

square method per event
PN3 Decorrelation nonlinear parameter estimation Dralle et al. (2015)
per event
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Table C.2 — Linear recession parameters (k) for each case

El E2 E3
Case MLE PL1 PL2 PL1 PL2 PL1 PL2
GOL
Spring 043 0,11 0,19 010 022 0,12 0,37
Summer 0,40 0,15 0,28 0,09 020 0,116 0,57
Autumn 0,35 0,12 024 0,10 020 0,15 0,52
Winter 0,43 0,08 0,17 0,07 0,19 0,11 0,36
YearC 0,41 0,111 0,22 0,09 020 0,14 0,48
YearS 0,40 0,12 0,22 0,09 0,20 0,14 0,45
NEC
Spring 0,29 0,10 020 0,09 0,18 0,12 0,44
Summer 0,26 0,14 031 0,12 021 0,115 0,62
Autumn 023 0,10 0,25 0,09 020 0,12 0,54
Winter 0,28 0,08 0,18 0,07 0,18 0,10 0,47
YearC 027 0,110 023 0,09 019 0,13 0,53
YearS 027 0,10 0,23 0,09 0,19 0,12 0,52
MUW
Spring 0,17 0,06 0,13 0,05 0,15 0,07 0,25
Summer 0,11 0,09 0,16 0,06 0,18 0,111 0,35
Autumn 0,13 0,07 0,13 0,06 0,117 0,10 0,39
Winter 0,21 0,04 0,13 0,04 0,14 0,06 0,26
YearC 0,16 0,06 0,13 0,05 0,16 0,09 0,31
YearS 0,16 0,06 0,14 005 016 0,09 0,31
GUR
Spring 0,08 0,05 0,11 0,03 017 005 0,25
Summer 0,07 0,07 0,15 0,06 0,15 0,08 0,36
Autumn 0,07 0,05 0,10 0,05 0,12 0,08 0,36
Winter 0,10 0,04 0,09 003 0,12 0,06 0,26
YearC 0,09 0,05 0,11 0,04 0,14 0,07 0,32
YearS 0,08 005 0,11 004 014 0,07 031
SEN
Spring 0,04 0,05 0,15 0,04 0,09 0,06 0,36
Summer 0,03 0,08 0,19 0,06 0,115 0,09 0,52
Autumn 0,03 0,07 0,15 0,06 0,14 0,10 0,44
Winter 0,03 0,06 0,13 0,05 0,115 0,08 0,40
YearC 0,04 0,06 0,16 0,05 0,14 0,09 0,45
YearS 0,03 0,06 0,16 0,05 0,13 0,08 0,43
ARE
Spring 0,07 0,06 0,16 0,05 0,114 0,08 0,28
Summer 0,03 0,08 0,15 0,07 0,15 0,11 0,38
Autumn 0,04 0,07 0,20 0,06 0,15 0,10 0,39
Winter 0,06 0,05 0,20 0,05 0,117 0,07 0,33
YearC 0,06 0,07 0,18 0,06 0,15 0,09 0,35
YearS 0,05 0,07 0,18 0,06 0,15 0,09 0,34




Table C.3 — Linear model performances (cf $) for each case

El E2 E3

Case MLE PL1 PL2 PL1 PL2 PL1 PL2
GOL

Spring 0,09 031 021 032 019 0,29 0,11
Summer 0,13 0,30 0,19 0,38 025 0,29 0,16
Autumn 0,13 0,31 0,19 034 0,22 027 0,18
Winter 0,12 038 0,26 041 025 033 0,14
Year C 011 032 021 0,37 023 029 0,10
Year S 0,12 034 0,23 038 0,25 033 0,13
NEC

Spring 0,07 023 0,11 0,24 0,12 0,19 0,10
Summer 0,13 0,23 0,11 0,25 0,16 0,21 0,28
Autumn 0,10 0,25 0,09 027 0,12 0,21 0,28
Winter 0,12 031 0,17 033 0,17 0,27 0,18
Year C 0,09 026 0,12 029 0,14 0,21 0,20
Year S 0,10 0,26 0,12 025 0,16 027 0,19
MUW

Spring 0,10 026 0,14 028 0,12 0,22 0,14
Summer 0,12 0,16 0,15 021 0,19 0,12 0,33
Autumn 0,13 022 0,13 025 0,14 0,16 0,34
Winter 0,09 035 0,18 037 0,16 030 0,10
Year C 0,10 024 0,13 029 0,11 0,19 0,20
Year S 0,10 0,26 0,14 027 0,11 0,23 0,19
GUR

Spring 0,07 0,15 0,10 0,20 0,18 0,15 0,26
Summer 0,09 0,11 0,20 0,14 0,19 0,10 0,40
Autumn 0,12 0,17 0,15 0,18 0,20 0,12 0,44
Winter 0,11 0,27 0,14 028 0,13 0,20 0,28
Year C 0,08 0,16 0,11 0,18 0,14 0,11 0,33
Year S 009 0,16 0,09 0,21 0,15 0,19 0,30
SEN

Spring 0,056 0,10 0,32 0,05 020 0,14 0,51
Summer 0,10 0,27 0,49 0,21 042 0,29 0,70
Autumn 0,13 029 048 025 0,46 039 0,71
Winter 0,11 0,20 0,40 0,18 0,43 0,27 0,64
Year C 0,08 0,18 0,41 0,15 0,38 0,27 0,64
Year S 0,10 0,18 0,38 0,13 0,34 022 0,62
ARE

Spring 0,056 0,06 0,20 0,09 0,17 0,06 0,35
Summer 0,12 031 0,45 027 045 0,36 0,66
Autumn 0,12 0,20 0,45 0,17 0,38 0,27 0,62
Winter 0,11 0,13 0,33 0,14 0,29 0,09 0,46
Year C 0,09 0,09 032 0,09 0,28 0,16 0,50
Year S 0,09 0,09 0,31 008 0,27 0,14 0,49
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Table C.4 — Nonlinear recession exponent (a) for each case

El E2 E3
Case MLE PN1 PN2 PN3 PNl PN2 PN3 PNl PN2 PN3
GOL
Spring 1,67 1,52 232 221 1,59 1L.,77 1,78 163 202 1,73
Summer 1,81 1,55 2,30 2,19 155 230 232 162 189 1,68
Autumn 1,86 1,76 2,44 223 210 2,48 232 1,76 197 1,74
Winter 1,94 1,70 250 242 1,70 230 253 164 218 1,88
Year C 1,76 1,57 2,38 2,28 1,70 2,29 229 164 2,02 1,74
Year S 1,82 163 239 226 1,73 221 224 166 201 1,76
NEC
Spring 1,53 1,42 256 239 1,26 1,73 227 1,54 223 1,88
Summer 1,81 1,73 240 231 197 221 216 1,71 190 1,68
Autumn 1,75 1,84 243 228 199 232 225 1,83 202 1,78
Winter 1,87 1,76 238 227 1,77 1,87 239 180 204 1,77
Year C 1,68 165 2,44 231 1,64 2,17 227 168 201 1,76
Year S 1,74 169 244 231 1,74 203 227 1,72 205 1,78
MUW
Spring 204 182 2,78 262 1,95 253 239 188 249 230
Summer 2,00 1,86 3,17 3,03 201 289 250 1,79 221 1,94
Autumn 2,17 1,99 3,16 2,84 220 295 283 1,89 246 2,18
Winter 2,08 202 279 265 210 264 251 193 250 234
Year C 1,94 180 295 2,78 1,95 268 254 1,79 246 222
Year S 2,07 192 298 2,78 2,06 275 256 187 242 2,19
GUR
Spring 1,76 1,68 4,07 3,87 207 2,73 242 217 341 311
Summer 1,78 1,75 3,67 352 1,75 3,19 348 1,99 281 2,30
Autumn 2,26 2,13 4,19 3,57 2,12 3,38 3,14 2,10 2,88 242
Winter 241 231 3,79 3,65 2,40 3,05 3,14 213 294 249
Year C 1,89 191 396 3,63 2,04 3,15 3,14 201 29 249
Year S 205 197 393 3,65 2,09 3,09 304 210 3,01 258
SEN
Spring 165 1,78 3,78 3,38 2,09 283 262 201 305 243
Summer 1,93 2,02 3,64 3,27 2,02 3,17 283 2,10 251 2,05
Autumn 2,26 2,36 3,66 3,16 248 3,36 3,10 2,09 252 2,07
Winter 236 2,18 3,32 294 220 266 265 211 271 219
Year C 1,91 199 3,60 3,19 223 3,13 285 201 263 213
Year S 205 208 3,60 3,19 219 3,00 280 208 270 2,19
ARE
Spring 1,35 1,56 2,84 2,48 1,64 2,22 2,15 165 250 2,08
Summer 1,77 1,88 3,66 3,17 197 290 286 1,83 229 1,78
Autumn 1,85 194 291 255 199 286 259 1,81 220 1,87
Winter 1,77 191 267 250 1,90 2,40 246 181 225 1,89
Year C 162 1,72 294 264 1,80 249 248 1,71 231 1,88
Year S 1,68 182 3,02 267 1,87 259 251 1,78 231 190




Table C.5 — Nonlinear recession coefficient (k;,) for each case

El E2 E3

Case MLE PN1 PN2 PN3 PNl PN2 PN3 PN1I PN2 PN3
GOL

Spring 0,19 o,11 0,08 0,12 0,09 008 009 013 0,09 0,13
Summer 0,19 0,15 0,15 022 0,10 0,11 0,13 0,16 0,13 0,17
Autumn 0,17 0,12 0,12 0,17 0,09 0,11 015 0,15 0,13 0,17
Winter 0,17 0,08 0,07 0,09 0,07 0,07 007 011 0,07 0,11
Year C 0,19 o,11 0,10 0,15 0,08 0,08 0,11 0,14 0,11 0,15
Year S 0,18 0,12 0,10 0,15 0,09 0,09 0,11 0,14 0,10 0,15
NEC

Spring 0,17 009 0,03 0,08 0,09 0,08 0,13 0,12 0,05 0,12
Summer 0,15 0,13 0,11 0,17 0,12 0,13 0,16 015 0,13 0,15
Autumn 0,16 0,10 0,09 0,14 0,09 0,10 0,13 0,12 0,11 0,14
Winter 0,17 0,08 0,06 0,08 0,0/ 0,07 0,07 010 0,08 0,10
Year C 0,17 o,10 0,07 0,12 0,08 0,09 0,12 0,13 0,10 0,14
Year S 0,16 0,10 0,07 0,12 0,09 0,09 0,12 0,12 0,09 0,13
MUW

Spring 0,08 0,06 0,04 0,05 0,05 004 005 007 004 0,05
Summer 0,08 0,09 0,09 014 0,06 005 0,09 011 0,09 0,12
Autumn 0,09 0,07 0,06 0,08 0,06 0,05 006 0,10 007 0,09
Winter 0,10 0,04 0,03 0,04 0,04 0,03 0,04 006 003 0,04
Year C 0,10 0,06 0,05 0,07 0,05 0,04 0,05 009 005 0,07
Year S 0,08 006 005 0,08 0,05 0,04 0,06 009 006 0,08
GUR

Spring 0,06 005 0,01 0,02 0,03 002 003 005 001 0,03
Summer 0,06 0,07 0,04 007 005 003 0,04 008 0,04 0,07
Autumn 0,07 0,05 005 006 005 004 0,05 0,08 0,04 0,07
Winter 0,08 0,04 003 0,04 0,03 0,03 0,04 006 003 0,05
Year C 0,07 005 0,03 0,05 0,04 003 004 007 003 0,05
Year S 0,07 005 0,03 0,05 0,04 0,03 0,04 007 003 0,06
SEN

Spring 0,05 005 0,01 0,04 0,03 0,04 0,06 006 003 0,06
Summer 0,07 0,08 0,07 0,14 0,06 005 0,09 009 0,07 0,12
Autumn 0,11 0,07 0,07 0,13 005 0,06 0,11 0,10 0,08 0,12
Winter 0,14 0,06 0,05 0,07 0,05 005 006 008 0,04 0,09
Year C 0,08 0,06 004 009 0,05 0,05 0,08 009 006 010
Year S 0,08 0,06 005 0,09 0,05 0,05 0,08 008 006 010
ARE

Spring 0,08 0,06 0,02 0,06 0,05 0,04 0,07 008 003 0,06
Summer 0,09 0,08 0,12 0,16 0,07 008 013 0,11 0,07 0,13
Autumn 0,12 0,07 0,07 0,12 0,06 0,06 0,11 0,10 0,07 0,12
Winter 0,11 005 0,03 0,05 0,05 0,04 0,05 007 004 0,08
Year C 0,10 0,07 0,05 0,09 0,06 005 009 009 005 0,09
Year S 0,10 0,07 0,06 0,10 0,06 0,06 009 009 0,05 0,09
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Table C.6 — Nonlinear model performances (cX%) for each case

El E2 E3

Case MLE PN1 PN2 PN3 PNl PN2 PN3 PNl PN2 PN3
GOL

Spring 0,03 o019 0,10 0,13 0,21 0,19 0,16 013 0,12 0,10
Summer 0,02 0,16 0,13 0,16 0,25 0,08 0,11 0,12 0,10 0,09
Autumn 0,03 0,15 0,12 0,13 0,13 0,12 0,12 0,09 0,07 0,06
Winter 0,03 026 0,11 0,08 030 0,16 009 021 018 0,15
Year C 0,02 o019 o0,11 0,13 0,23 0,11 0,10 0,13 0,09 0,08
Year S 0,03 021 009 0,10 023 0,12 0,09 015 0,14 0,11
NEC

Spring 0,02 0,14 0,14 0,16 0,19 0,11 0,21 0,07 0,13 0,06
Summer 0,02 0,07 0,12 0,18 0,06 0,09 0,12 0,04 0,05 0,05
Autumn 0,03 0,15 0,12 0,12 0,15 0,11 0,11 0,09 0,11 0,06
Winter 0,02 022 020 0,15 0,25 0,23 0,15 0,15 0,18 0,15
Year C 0,02 o015 0,13 0,12 0,19 0,11 0,12 0,09 0,11 0,05
Year S 0,03 o016 0,17 0,10 0,17 0,13 0,10 0,11 0,16 0,09
MUW

Spring 0,03 0,12 0,10 0,09 0,14 0,10 0,08 006 0,10 0,08
Summer 0,04 0,04 020 026 0,10 0,09 010 0,10 0,04 0,12
Autumn 0,04 0,11 0,14 0,13 0,14 0,10 0,09 0,05 0,07 0,04
Winter 0,03 o022 o017 0,13 0,24 0,21 0,17 0,16 020 0,16
Year C 0,02 o013 o0,12 0,13 0,17 0,16 0,11 0,06 0,13 0,07
Year S 0,06 0,15 0,12 0,11 0,18 0,15 0,11 009 0,14 0,10
GUR

Spring 0,02 o0,07 0,17 0,19 0,11 0,17 0,07 003 015 0,12
Summer 0,03 0,04 0,17 023 0,06 0,11 0,15 0,08 0,08 0,08
Autumn 0,03 0,09 0,17 0,13 0,11 0,18 0,10 0,04 0,13 0,04
Winter 0,04 021 024 0,17 023 025 0,19 013 025 0,12
Year C 0,01 o009 0,19 0,18 0,12 0,16 0,11 002 0,14 0,05
Year S 0,02 009 021 0,16 0,14 0,19 0,13 004 0,19 0,07
SEN

Spring 0,01 o002 039 0,22 0,12 0,17 0,08 005 025 0,08
Summer 0,02 003 034 019 009 031 019 0,04 016 0,11
Autumn 0,04 0,18 043 025 025 039 0,26 0,05 0,17 0,09
Winter 0,04 022 042 031 024 033 0,29 0,13 036 0,11
Year C 0,03 o010 039 026 0,19 032 0,23 0,04 024 0,06
Year S 0,0+ 013 043 0,29 0,21 0,32 023 008 029 0,08
ARE

Spring 0,02 o011 034 021 0,15 0,23 0,16 008 029 0,18
Summer 0,04 0,06 043 0,29 0,14 035 025 0,04 0,22 0,10
Autumn 0,04 0,17 038 023 022 039 0,25 0,07 024 0,04
Winter 0,03 021 037 028 0,22 031 027 012 029 0,13
Year C 0,02 015 039 026 020 032 0,25 0,07 031 0,11
Year S 0,06 0,18 042 030 0,22 035 0,27 0,11 032 0,14




n Supplementary material to Chapter 6

The supplementary material contains 3 figures showing the seasonal and annual cdfs
for each snow-dominated catchment.
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Figure D.1 — Modeled cdfs for all catchments during the accumulation season.
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Figure D.2 — Modeled cdfs for all catchments during the melting season.
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Figure D.3 — Modeled cdfs for all catchments during the pluvial season.

1) Dischmabach

0.2 0.4 0.6 0.8

4) Alpbach

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

10) Ova da Cluozza

0

0.2

0.4 0.6 0.8

1

Cumulated probability of Qa Cumulated probability of Qa

Cumulated probability of Qa

. 2) Sitter . 3) Rotenbach
P
e,
0.8 5 08
>
06 S os
Qo
[
Q
0.4 5 04
2
©
0.2 2 o.
g 02
3
(@]
0 0
10" 10° 10' 10° 10°
In(Q) mm/d In(Q) mm/d
] 5) Grosstalbach ; 6) Rhone
08 08
06 06
0.4 0.4
0.2 0.2
0 0
10" 10° 10’ 0 0.2 0.4 0.6 0.8 1
In(Q) mm/d
. 8) Riale di Calneggia . 9) Poschiavino
08 08
06 06
0.4 0.4
0.2 0.2
0 0
102 10° 102 0 02 04 06 08 1
In(Q) mm/d



Cumulated probability of Qy Cumulated probability of Qy

Cumulated probability of Qy

Cumulated probability of Qy

; 1) Dischmabach ; 2) Sitter ; 3) Rotenbach
3 3
0.8 G 08 G 08
£ £
0.6 g 06 § 06
o °
s s
0.4 3 0.4 3 04
Observed 2 =
0.2 _ _ Year.cdf g 02 g 02
B 3 3
o o
0 0 0
10" 10° 10' 10° 10" 10° 10 10 102
In(Q) mm/d In(Q) mm/d In(Q) mm/d
; 4) Alpbach ; 5) Grosstalbach ; 6) Rhone
3 / 3
0.8 ‘S 08 // ‘S 08
£ ) 2
0.6 g 06 g 06
[<} [<}
0.4 g 0.4 g 0.4
. g o g0
® ®
=l =l
0.2 g 02 g 02
= 3
o o
0 0 0
10" 10° 10 10? 10" 10° 10' 10 10" 10° 10'
In(Q) mm/d In(Q) mm/d In(Q) mm/d
; 7) Massa-Blatten bei Naters ; 8) Riale di Calneggia ; 9) Poschiavino
> >
[¢) ¢}
0.8 G 08 / 5 08
2 2
0.6 g 06 g 06
o o
0.4 & 0.4 & 0.4
© ©
=l =
0.2 g 02 g 02
= 3
o o
0 0 0
10?2 10° 10? 10?2 10° 10? 10 107 10° 10'
In(Q) mm/d In(Q) mm/d In(Q) mm/d
; 10) Ova da Cluozza
0.8
0.6
0.4
0.2

107 10° 10’ 10%

In(Q) mm/d

Figure D.4 — Modeled cdfs for all catchments during the complete year.
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