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Competition between intermediate plaquette phases in SrCu2(BO3)2 under pressure
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Building on the growing evidence based on NMR, magnetization, neutron scattering, electron spin resonance,
and specific heat that, under pressure, SrCu2(BO3)2 has an intermediate phase between the dimer and the Néel
phase, we study the competition between two candidate phases in the context of a minimal model that includes
two types of intra- and interdimer interactions without enlarging the unit cell. We show that the empty plaquette
phase of the Shastry-Sutherland model is quickly replaced by a quasi-one-dimensional full plaquette phase when
intra- and/or interdimer couplings take different values, and that this full plaquette phase is in much better
agreement with available experimental data than the empty plaquette one.
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Almost two decades after the discovery of the first mag-
netization plateaus, the investigation of the layered material
SrCu2(BO3)2 under extreme conditions continues to attract
a lot of attention and to reveal new fascinating properties.
If there is by now ample evidence in favor of a sequence
of magnetization plateaus at 1/8, 2/15, 1/6, 1/4, 1/3, and
1/2 (and possibly 2/5) [1–10], the structure of some of these
plateaus remains debated, and several groups are attempting
to perform x-ray or inelastic neutron scattering (INS) in fields
above 27 Tesla and at very low temperature to have direct
information on the structure of the 1/8 plateau. In parallel,
the investigation of the phase diagram under pressure using
various techniques ranging from NMR [11] to magnetization
[10], electron spin resonance (ESR) [12], INS [13], and spe-
cific heat [14] has revealed the presence of a phase transition
at around 1.7 GPa to a new gapped phase that is the subject of
the present Rapid Communication.

SrCu2(BO3)2 is described to a very good accuracy by
the stacking of the two-dimensional (2D) Shastry-Sutherland
model [15], also known as the orthogonal dimer model [16],
defined by the Hamiltonian

H = J
∑

〈〈i, j〉〉
�Si · �S j + J ′ ∑

〈i, j〉
�Si · �S j, (1)

where J is the intradimer coupling and J ′ the interdimer
coupling. In the limit J ′ = 0, the system consists of a set of
decoupled dimers, and the exact ground state is a product
of singlets on these dimers. Due to the frustrated nature of
the interdimer coupling, this remains strictly true as long as
J ′ is not too large. In the opposite limit J = 0, the system
is a square lattice with nearest-neighbor antiferromagnetic
couplings, and the ground state possesses long-range Néel
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order. In between, there is an intermediate phase that, after
some debate [17–25], has been convincingly proven to be
the empty plaquette phase (EPP) depicted in Fig. 1(b) and
to exist in the range 0.675(2) < J ′/J < 0.765(15) [26]. The
dominant interlayer interactions are not expected to change
the physics qualitatively since the product of dimer singlets
is still a ground state, while the small Dzyaloshinskii-Moriya
interactions are not expected to shift the boundaries signifi-
cantly since their effect on the ground-state energy of a gapped
singlet phase is of second order.

Since up to an overall energy scale the ratio J ′/J is the
only parameter of the Shastry-Sutherland model, applying
hydrostatic pressure to change this ratio is a natural way to
probe this phase diagram, and this has been first attempted
in 2007 using NMR [11]. This experiment has indeed re-
vealed the presence of a new phase at 2.4 GPa, but in this
intermediate phase, there are two types of Cu sites. This
is incompatible with the EPP, in which all Cu sites remain
equivalent. The report of a weak orthorhombic distortion
already at low pressure has led to the investigation of a model
with two sets of intradimer couplings [27]. If the couplings are
sufficiently different, another intermediate phase is realized. It
is a one-dimensional phase related to a spin-1 Haldane chain.
Note, however, that the presence of an orthorhombic distor-
tion at low pressure has not been confirmed by subsequent
experiments.

More recently, neutron scattering experiments have con-
firmed the presence of an intermediate phase [13] character-
ized by the presence of an additional second excitation branch
at low energies, in sharp contrast with the dimer phase. The
structure factors of these excitations appear to be incompatible
with the EPP, another indication that the intermediate phase is
not that of the Shastry-Sutherland model. They are, however,
compatible with a putative full plaquette phase (FPP) in which
bonds get stronger around plaquettes with diagonal couplings
[see Fig. 1(c)].

In this Rapid Communication, we discuss theoretically the
possible nature of this intermediate phase. We show that the
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FIG. 1. (a) Sketch of the distorted orthogonal dimer lattice. The
unit cell is defined by the unit vectors �ex and �ey. (b) Spin-spin
correlations in the EPP and (c) in the FPP phase obtained with iPEPS
for the parameters used in Figs. 3(a) and 3(b) and 3(d) and 3(e),
respectively.

Haldane and the FPP actually build a single phase in the
phase diagram of a generalized Shastry-Sutherland model that
includes two types of intra- and interdimer couplings, and
that the properties of this phase are in much better agree-
ment with available experimental data than those of the EPP.
Consequences for the three-dimensional system are briefly
discussed.

In choosing the model to describe the competition between
different possible intermediate phases, we have paid special
attention to the fact that, so far, no distortion could be detected
(although there has to be one of course, as discussed at the end
of the Rapid Communication). So we have concentrated on a
minimal modification that contains two sets of inequivalent J
bonds, J1 and J2, as assumed in Ref. [27], but also two sets
of inequivalent J ′ bonds, J ′

1 and J ′
2 [see Fig. 1(a)]. Models

with inequivalent J ′ bonds have been introduced in Ref. [22]
as starting points of series expansions (SEs), but the relative
stability of the EPP and FPP phases has not been studied. The
first goal of the present Rapid Communication is to map out
precisely these stability regions. As pointed out recently by
Lee et al. [28], the two candidate plaquette phases correspond
to natural distortions in a Landau expansion, depending on
the sign of the coupling constant. In the FPP, diamonds with
short intra- and interdimer bonds form. Naively one could
expect both intra- and interdimer couplings to get stronger,
but this is not the case. The intradimer coupling corresponds
to a Cu-O-Cu bond with an angle of 97.6◦, and making it
shorter will actually decrease the magnitude of the coupling
constant [12]. By contrast, the interdimer coupling is a more
standard geometry, and the coupling constant is expected to
get stronger if the bond gets shorter. So we have considered
the parameter range where the weaker intradimer coupling
J1 is surrounded by stronger interdimer couplings J ′

1. Taking

the other configuration would anyway require very different
interdimer bonds to stabilize the FPP, a possibility which is
not realistic.

Our results have been obtained by two complementary
methods, infinite projected entangled-pair states (iPEPS) and
high-order SEs. An iPEPS is a variational tensor-network
ansatz for two-dimensional ground states in the thermody-
namic limit [29–31], where the accuracy is systematically
controlled by the bond dimension D of the tensors. This ap-
proach has already been successfully applied in previous stud-
ies of the Shastry-Sutherland model (see, e.g., Refs. [26,32]).
The SE for the ground-state energies of the EPP and FPP
were performed by the Löwdin algorithm [33–35] while the
energies of the elementary triplon excitations [36,37] and
the dynamic structure factors have been determined using
perturbative continuous unitary transformations [38,39]. In all
cases we introduce a deformation parameter λ so that the un-
perturbed part λ = 0 corresponds to isolated (empty or filled)
plaquettes and λ = 1 to the distorted Shastry-Sutherland
model under study. The ground-state energy for the EPP (FPP)
is calculated up to order 9 (8) in λ. The excitation energies
of single triplons have been determined up to order 6 in both
plaquette phases. The static and dynamic structure factors are
calculated up to order 5. The derived orders are similar to
other plaquette expansions [22,25,40,41]. For the distorted
Shastry-Sutherland model we increased the maximal pertur-
bative order of the ground-state energies by two compared
to Ref. [22]. To our knowledge, the dynamic structure factor
was not calculated before. All series are extrapolated up to
λ = 1 using Padé extrapolation [42]. In the following we use
the variance of the different Padé extrapolants as uncertainty
of the extrapolation. For details about both methods, see the
Supplemental Material [37] (see also Refs. [43–64]).

Since we have four parameters, hence three up to an
overall energy scale, plotting the full phase diagram is tricky.
We have chosen to study the phase diagram in three planes
defined by J ′

1 = J ′
2 = J ′ [Fig. 2(a)], J1 = J2 = J [Fig. 2(b)],

and J ′
2/J2 = 0.68 [Fig. 2(c)]. In the phase diagram of Fig. 2(a),

we revisit the effect of different intradimer couplings dis-
cussed in Ref. [27]. Qualitatively, the results are the same,
with four phases (dimer, EPP, Néel, and Haldane), but the
extent of the EPP is considerably reduced, and accordingly
the Haldane phase is stabilized in a much larger parameter
range that extends up to J1/J2 � 0.98, very close to the
isotropic point. In the phase diagram of Fig. 2(b), we study the
effect of different interdimer couplings. This phase diagram
shows that the EPP is indeed the only one appearing in the
isotropic Shastry-Sutherland model, but that it only takes a
modest difference to stabilize the FPP. Finally, in Fig. 2(c),
we show a cut in which both the ratios J1/J2 and J ′

2/J ′
1 vary

for a fixed value of J ′
2/J2 = 0.68. At the bottom left corner,

the Haldane phase has to be stabilized, as we know from
Fig. 2(a), while at the top right corner, it is the FPP that is
stabilized, as is clear from Fig. 2(b). Quite remarkably, there
is no phase transition between them, and these two phases
actually constitute a single quasi-one-dimensional phase in
which strong correlations are concentrated around full pla-
quettes [see Fig. 1(c)]. Similar correlations have actually
already been reported in the bottom right panel of Fig. 3 of
Ref. [27].
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FIG. 2. Ground-state phase diagrams of distorted Shastry-Sutherland models by iPEPS and SE. In (a) for identical nearest-neighbor
couplings J ′

1 = J ′
2, in (b) for identical diagonal couplings, and in (c) both asymmetries are included at the ratio J ′

2/J2 = 0.68. The area based
on the iPEPS results of the dimer singlet phase is colored in red, the EPP in yellow, the FPP/Haldane phase in white, and the Néel phase is
shown in blue.

To further demonstrate that the FPP and the Haldane phase
are adiabatically connected we have computed the inter- and
intradimer spin-spin correlations and the correlation lengths
along a linear path in parameter space connecting the model
with unequal interdimer couplings (J ′

2/J2 = 0.66, J ′
1/J ′

2 =
1.1, J1/J2 = 1) to the one with unequal intradimer couplings
(J ′

2/J2 = 0.55, J ′
1/J ′

2 = 1, J1/J2 = 0.5). The iPEPS results
(D = 10 full update simulations) given in the Supplemental
Material [37] show that all correlations change smoothly, i.e.,
that there is no sign of a quantum phase transition along this
path. Interestingly, the ratio of the correlation lengths in the
x and y direction, ξx/ξy, remains almost constant along this
path, revealing the anisotropic nature of this phase, that we
will now call the FPP/Haldane phase, even in the limit of
equal intradimer couplings (J1 = J2).

Let us turn to the properties of the EPP and the
FPP/Haldane phase. As mentioned above, the first indication

that the EPP phase cannot be the intermediate phase came
from NMR [11], which detected two types of Cu sites. Since
NMR is (by necessity) performed in a finite magnetic field,
it is interesting to look for complementary evidence in zero-
field experiments, ESR, neutron scattering, and specific heat
[12–14]. All these experiments confirm the presence of two
well-defined magnetic excitations; one at an energy compa-
rable to that of the gap in the dimer phase just before the
transition (ESR, neutron scattering), and one at an energy
about two times smaller (neutron scattering, specific heat).
The neutron-scattering measurements have followed the dis-
persion along the line (kx, ky = 0) in the Brillouin zone, while
the specific heat could keep track of the pressure dependence
of the gap, i.e., of the minimum of the lowest excitation,
with clear evidence that it decreases with pressure. Neutron
scattering also revealed that the structure factors of the two
low-lying excitations have different momentum dependencies.

FIG. 3. Magnetic excitations in the EPP (top) and FPP/Haldane (bottom). Panels (a) and (d): magnetic excitations along kx = ky; panels
(b) and (e): static structure factors along ky = 0. The parameters are given inside the figures. Panels (c) and (f): pressure dependence of the gap
(with couplings from magnetic susceptibility χ [13] and excitation energies � measured by ESR [12]; see main text). All lines are guides to
the eye.
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To make contact with these experiments, we have studied
the magnetic excitations in both phases. Characteristic results
are plotted in the top panels [Figs. 3(a)–3(c)] for the EPP and
in the bottom panels [Figs. 3(d)–3(f)] for the FPP. In the EPP
there is a single low-energy excitation that can be interpreted
as the dispersion of a triplet plaquette in a sea of singlet
plaquettes. For small to intermediate ratios J ′/J its dispersion
has a minimum along the direction kx = ky. Since ESR only
measures the zero-momentum excitations while the specific
heat detects the gap, i.e., the minimal energy, this dispersion
could be compatible with ESR and specific heat. However,
this is not possible if the ratio between both energies is slightly
larger than 2, since then the mode at �k = (0, 0) decays. The
structure factor matches that of the lowest excitation detected
in neutron scattering. However, this possibility is excluded
by neutron scattering, which has observed two well-defined
excitations at the same momentum. In addition, the energy
gap in the EPP increases with pressure as shown in Fig. 3(f),
where the pressure is introduced by changing the ratio J ′/J
in the isotropic model following [12,13]. This is in clear
contradiction with specific heat data. Note that this remains
true also for the EPP in a model with stronger couplings
around one set of empty plaquettes, which corresponds to the
intrinsic lattice distortion of that phase [28].

In the FPP/Haldane phase, the situation is very different.
There are two well-defined excitations. The dispersions ωH

and ωf along kx = ky, which are protected by local symme-
tries, are shown in Fig. 3(d), and, at least not too far from
the Néel phase, the lowest one has an energy about half
that of the other one at k = 0. For momenta kx = ky � 0.5π

we determine accurately the lower bound of the two-triplon
continuum, whereas for larger momenta the true continuum
might be below, so the excitation ωH decays. Details about the
determination of the continuum are given in the Supplemental
Material [37]. The structure factors of these excitations along
ky = 0 are shown in Fig. 3(e), where we can exclude decay
for momenta kx/π = {0, 2, 4, 6}. They are in good agreement
with neutron scattering, which resolved a lower excitation
with a large intensity at kx/π = 2 and a very small intensity
at kx/π = 4, and an excitation at larger energy with a rather
small intensity for all momenta [see Fig. 3(f) of Ref. [13]]. In
addition, the gap decreases with pressure, which matches with
specific heat data. This conclusion has been reached following
a path in parameter space assuming J1 = 0.9J2 and adjusting
the average of J1 and J2 to the estimates from INS for a
symmetric model, but we have checked that the sign of the
slope remains negative for similar paths. So the case in favor
of the FPP appears to be very strong.

The presence of two low-lying excitations in the
FPP/Haldane phase can be traced back to the quasi-one-
dimensional nature of this phase. In the limit of completely
decoupled chains (J ′

2 = 0), the branch called Haldane cor-
responds to the triplet excitation branch of a spin-1 chain,
realized when all the weak J1 dimers are in a triplet state,
while the branch called flat, which is indeed completely flat in
that limit, corresponds to a singlet dimer on one of the weak
J1 bonds [37].

Next we briefly discuss the implications of the present
results for the intermediate phase of SrCu2(BO3)2. Within
the minimal model studied in this Rapid Communication (a

purely 2D model with two types of intra- and interdimer
couplings), there is a single alternative to the EPP of the
Shastry-Sutherland model, namely, a quasi-1D phase with
strong correlations around full plaquettes, and the properties
of this phase appear to be consistent with available data. If the
system was purely 2D, the stabilization of this phase would
induce an orthorhombic distortion since the C4 symmetry is
lost. This can be expected to remain true for SrCu2(BO3)2,
which is a three-dimensional crystal, if, in all layers, the
weak intradimer couplings are oriented in the same direction.
However, if this direction alternates from one layer to the
next, the distortion is not expected any more to be a clear
orthorhombic distortion, but to be some local rearrangement
inside an essentially unchanged unit cell. The failure so
far to detect any clear lattice distortion in the intermedi-
ate phase points to the second possibility with alternating
directions.

There is also an interesting conceptual difference between
the two plaquette phases regarding the nature of the phase
transition. The EPP is an instability of the Shastry-Sutherland
model that spontaneously breaks the symmetry even if all
intra- and interdimer couplings remain the same. By contrast,
the FPP is not an instability of the Shastry-Sutherland model.
Like a spin-Peierls transition in spin-1/2 chains, it has to be
an instability of the coupled spin-lattice system. So, when
applying pressure, if there is a direct transition between the
dimer phase and the FPP, it has to take place below the critical
ratio at which the transition to the EPP takes place in the
Shastry-Sutherland model. Otherwise, there would first be a
transition to the EPP. Current estimates of the ratio J ′/J at
1.7 GPa from ESR and susceptibility are in the range 0.66–
0.665 [12–14], indeed below the critical ratio 0.675 of the
EPP.

What could be the next step to confirm (or discard) the FPP
as the intermediate phase of SrCu2(BO3)2? Of course, a direct
identification of the structural distortion would be ideal, but
even if the distortion turns out to be too small to be detected,
one could hope to detect it indirectly through selection rules.
In that respect, measuring the phonons with Raman scattering
as a function of pressure could be very helpful. Alternatively,
since in our calculations the details of the excitation spectrum
change significantly inside the intermediate phases, additional
inelastic neutron-scattering measurements would be most
welcome. Finally, a theoretical investigation of the properties
of the intermediate phase in a magnetic field to make contact
with NMR and with magnetization measurements is clearly
needed. Work is in progress along these lines.
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The first part of this Supplemental Material gives details on the iPEPS methods and results. In
the second part the series expansion approaches for the ground-state energies, the excitations and
the dynamic structure factors are discussed. This includes information on the convergence behavior
of the various series.

INFINITE PROJECTED ENTANGLED-PAIR STATES

An infinite projected entangled-pair state (iPEPS) [1–3] is an efficient tensor network variational ansatz tailored
for systematically approximating ground states of two-dimensional lattice models in the thermodynamic limit. It can
be seen as a natural extension of (infinite) matrix product states to two dimensions. On a square lattice, an iPEPS
consists of a periodically repeated rectangular unit cell made up of five-legged tensors. Each tensor has a single
physical leg representing the local Hilbert space of one or several lattice sites, and four auxiliary legs. The auxiliary
legs connect to neighboring tensors such that the whole forms a square lattice network of tensors. The accuracy of the
ansatz is systematically controlled by the dimension D of the auxiliary legs, called the bond dimension. The iPEPS
ansatz used in the present work consists of a 2 × 2 unit cell, with one tensor per dimer (a similar ansatz was used
in setup D in Ref. 4). In order to increase the efficiency of the simulations we implement a global U(1) symmetry (a
subgroup of the SU(2) symmetry of the model) in the iPEPS tensors, see Refs. 5 and 6 for details.

Given a Hamiltonian H, the goal of an iPEPS simulation is to find the optimal tensors that provide the best
possible approximation to the ground state of H. The simulation starts from either a randomly initialized or a
previously converged state, which is then optimized using imaginary-time evolution by applying the operator e−βH to
the initial state for sufficiently large β. The evolution operator is split into a product of two-body operators by means
of a Trotter-Suzuki decomposition. Application of the two-body operator to two neighboring tensors increases the
dimension of the auxiliary bond connecting them, which then needs to be truncated back to the original dimension
D. This can be done by using either the simple- [7] or full-update [8, 9] method. The former method truncates the
updated bond by applying a singular-value decomposition to the tensors connected to the bond, and keeping only the
D largest singular values. This approach is computationally inexpensive, but it does not provide the most optimal
truncation. In contrast, the full update takes the whole wave function into account when truncating the updated bond,
which is optimal, but computationally more demanding. In the present work we have run simple- and full-update
simulations up to D = 10. We have also crosschecked our results for smaller D using variational optimization [10].

Once the optimized tensors have been obtained, expectation values can be calculated by contracting the infinite
two-dimensional network formed by the iPEPS, its complex conjugate and the observable of interest. Since two-
dimensional tensor networks cannot be exactly contracted in an efficient way, a controlled, approximate contraction
method is required. In this work the contraction is done with the corner-transfer matrix (CTM) method [11, 12]
adapted for a rectangular unit cell [13, 14]. The CTM introduces a new parameter, called the boundary dimension χ,
which controls the accuracy of the contraction. We always choose χ to be large enough such that the error induced
by χ is negligible compared to the error due to the finite D.

To determine the location of the phase boundaries between two phases, we first obtain two initial states biased
towards both respective phases. The states are generated by evolving randomly initialized iPEPS in imaginary time
with the simple-update method using a biased Hamiltonian. Next, using the biased initial states, we perform multiple
simulations in the vicinity of the phase transition. Due to hysteresis, a state initialized in one phase will remain within
this phase slightly beyond the transition point. The critical coupling is found by determining the point where the
linearly interpolated energies of the two phases intersect. All the phase boundaries in Fig. 2 in the main text have
been determined by this procedure, using D = 10 full-update simulations.

We have verified that finite D effects on the phase boundary are small by comparing the finite D = 10 results to the
ones obtained by extrapolating the energies to the exact, infinite D limit, for the transition with fixed J ′2/J2 = 0.7.
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FIG. S1. Energy per site of the FPP and EPP states as a function of the truncation error w obtained with iPEPS (using the
full-update with bond dimensions ranging from D = 6 . . . 10), for different values of J ′1/J

′
2 and fixed value of J ′2/J2 = 0.7. The

extrapolations are obtained by a polynomial fit of the data, where the shown error is given by the 1σ confidence interval.

The extrapolation is done based on the truncation error w which quantifies the degree of approximation in a state,
and goes to zero in the exact limit (see Ref. 15 for details). Figure S1 shows the energies of the two plaquette states for
different values of J ′1/J

′
2. For the unbiased Hamiltonian (J ′1/J

′
2 = 1), we find that the empty plaquette phase (EPP)

is clearly lower in energy than the filled plaquette phase (FPP). When increasing J ′1/J
′
2, taking the extrapolated

energies including their error bars into account, we find a transition value of J ′1/J
′
2 = 1.060(8). In comparison, the

D = 10 result for the critical coupling is J ′1/J
′
2 = 1.058, which is very close to the extrapolated result and lies well

within the extrapolation error bar. Thus, we conclude that the D = 10 result already provides a good accuracy of
the phase boundary in the infinite D limit. We take the extrapolation error computed here as a representative error
estimate of the phase boundary in Figs. 2(b-c) of the main text. A similar approach was used to obtain an estimate
of the error bar on the phase boundary between the EPP and FPP in vertical direction and between the FPP and
Néel phase in horizontal direction in Fig. 2a.

The D = 10 phase boundary between the FPP and dimer phase in Fig. 2a represents a lower bound for the phase
transition, since the energy of the dimer phase is known exactly, whereas the energy of the FP state decreases with
increasing D. The error bar is obtained by intersecting the energy of the dimer state with the one of the FP state
extrapolated in 1/D. The latter provides a lower bound of the exact ground-state energy since the energy converges
faster than linearly in 1/D. The error estimate between the EPP and dimer phase in Fig. 2a is obtained with a similar
approach. The other error estimates in Fig. 2a-b between either the dimer or Néel phase and the EPP have been
obtained from Ref. 4.
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iPEPS results along a path in parameter space

In Fig. S2 we present the iPEPS results for the inter- and intra-dimer spin-spin correlations and the correlation
length along the path in parameter space mentioned in the main text, i.e. a linear path connecting the model with
unequal inter-dimer couplings (J ′2/J2 = 0.66, J ′1/J

′
2 = 1.1, J1/J2 = 1) to the one with unequal intra-dimer couplings

(J ′2/J2 = 0.55, J ′1/J
′
2 = 1, J1/J2 = 0.5). These results have been obtained by D = 10 full-update simulations, starting

from a state in the FPP. To exclude that the results are biased due to this choice of the initial state we have verified
that the results at the end point of the path in the Haldane phase agree with the ones obtained when starting from
randomly initialized tensors. We further note that the correlation lengths have been computed based on the largest
and second largest eigenvalue of the row-to-row transfer matrix along both directions, as explained in Ref. [16].
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FIG. S2. Various correlations along a path connecting the model with only asymmetric intra-dimer couplings to the model with
only asymmetric inter-dimer couplings. The path is parametrized by (J ′2/J2, J

′
1/J

′
2, J1/J2) = (0.66− 0.1t, 1.10− 0.1t, 1− 0.5t)

with t ∈ [0, 1]. The correlations with a prime 〈•〉′ refer to inter-dimer bonds, the ones without a prime 〈•〉 to the intra-dimer
bonds. Additionally, the anisotropy in the correlation length ξx/ξy is shown. All correlations change smoothly, i.e. there is no
sign of a quantum phase transition along this path, from which we conclude that the FPP and Haldane phase are the same
phase which we call the FPP/Haldane phase.

SERIES EXPANSION METHODS

Ground-state energies

A subtle point about plaquette phases in the distorted Shastry-Sutherland model is given by the spatial location
of the dressed plaquette singlets. In the following we simply refer to them as singlets. At first there is the obvious
distinction between the location on either plaquettes containing or not containing an inner diagonal dimer coupling,
corresponding to the FPP or to the EPP, respectively. Besides, in each case, there is the choice of the subset of
plaquettes on which the singlets are formed. In the case of the FPP, the singlets can either be on plaquettes formed
by only J ′1 or J ′2 couplings. For identical dimer couplings J1 = J2 with the bias J ′1 > J ′2 the singlets are located
on the J1 plaquettes, whereas for J ′2 > J ′1 the J2 plaquettes host the singlets. Therefore, the FPP/Haldane phases
shown in the Fig. 2b of the main article actually represent two distinct phases which are separated by intermediate
phases in this parameter range. For other parameters with J1 6= J2 this is not necessarily the case, and in particular
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for J2 < J1 and J ′1 > J ′2 or vice versa, a direct phase transition between these two FPP/Haldane phases occurs. By
contrast, the possibility to choose between two sets of empty plaquettes leads to a single EPP phase in Fig. 2a-c of
the main article with a two-fold degenerate ground state.

For the ground-state energies per site ε0 we apply perturbation theory after Löwdin [17–19] and perform linked-
cluster expansions (LCEs). The series expansion (SE) about the FPP is performed from an unperturbed model of
decoupled filled plaquettes at λ = 0. In the following we set the inter-dimer coupling of these plaquettes J ′1 = 1 and
choose an intra-dimer coupling J1 of intermediate strength J0

1 = 1/0.74 at λ = 0. The intra-dimer coupling in the
physical model at λ = 1 is then reached by an additional local perturbation on the intra-dimer bond. This approach
for the FPP with such an initial value of J0

1 turns out to be efficient to study a broad range of values, and is especially
well converged in the parameter regime of interest. The Hamiltonian used for the SE of the FPP reads

HFPP =
∑
〈i,j〉
bold

~Si · ~Sj + J0
1

∑
〈〈i,j〉〉
bold

~Si · ~Sj + λFJ
′
2

∑
〈i,j〉
thin

~Si · ~Sj + λF∆J1

∑
〈〈i,j〉〉
bold

~Si · ~Sj + λFJ2

∑
〈〈i,j〉〉
thin

~Si · ~Sj , (S1)

where the sums can be understood with the lattice given in the left panel of Fig. S3. The diagonal couplings of the
initial plaquettes are tuned to the physical value by ∆J1 = J1 − J0

1 .
For the EPP the unperturbed model at λ = 0 is given by symmetric empty plaquettes. The inter-plaquette

interactions are introduced perturbatively. Locally, the empty plaquettes in the distorted Shastry-Sutherland model
exhibit different strengths on neighboring bonds of the plaquette, which is why an additional local interaction is
introduced on two opposing bonds on the empty singlet plaquettes. The Hamiltonian used for the SE of the EPP is

HEPP =
∑
〈i,j〉

vertical
bold

~Si · ~Sj + (1 + λE(J ′2 − 1))
∑
〈i,j〉

horizontal
thin

~Si · ~Sj + λE

∑
〈i,j〉

horizontal
bold

~Si · ~Sj + λEJ
′
2

∑
〈i,j〉

vertical
thin

~Si · ~Sj

+ λEJ1

∑
〈〈i,j〉〉
thin

~Si · ~Sj + λEJ2

∑
〈〈i,j〉〉
bold

~Si · ~Sj .
(S2)

Note, that the parameter spaces of the two deformed Hamiltonians linking the unperturbed product states of filled
and empty plaquette singlets with the adiabatically connected states in the distorted Shastry-Sutherland model are
not the same if λ 6= 1. We therefore refer to the expansion parameter in the expansion of the FPP with λF and to
the expansion parameter in the expansion of the EPP with λE.

The perturbative description effectively takes place on a lattice of supersites, which are either given by one set of
empty or of filled plaquettes. For all exchanges between these supersites transitions within a basis of 256 nearest-
neighbor two-plaquette states occur. We exploit the linked-cluster theorem and perform a full graph expansion,
where bonds of the same coupling need to be distinguished for different directions. For instance a trimer of three

1

λFJ
′
2J0

1

λF∆J1

λFJ2

1

λE
λEJ2

λEJ1

λEJ
′
2

τhoriz

FIG. S3. Illustration of the models for the SE approaches. In the left panel the deformed Hamiltonian for the expansion about
the full plaquette singlet state is indicated. The deformed Hamiltonian for the expansion of the empty plaquette state is shown
in the right panel. The unperturbed plaquettes at λF = 0 or λE = 0 are shaded in gray. The exchange τhoriz = 1 + λE(J ′2 − J ′1)
introduces the asymmetry on the empty plaquettes hosting singlets.
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supersites has differing contributions for the direction (2, 0)T and (1, 1)T and hence needs to be calculated several
times. This increases the number of required graphs for the ground-state energy ε0 and one has to calculate the
energy on 2849 graphs for the expansion in the FPP up to order eight in λF on a directed triangular lattice and 212
graphs on a directed square lattice for the expansion in the EPP in λE also up to order eight. As a consequence the
expansions cannot be pushed to similarly high orders as known for other models with smaller local Hilbert spaces of

the supersites [20–22]. For both special cases J1 = J2 and J ′1 = J ′2 order nine for the ground-state energies ε
(E)
0 of the

EPP is calculated. In that case, separate calculations on 244 graphs are required.
The polynomial series derived for the ground-state energies of both plaquette phases need to be analyzed carefully

with respect to their convergence behavior. We apply Padé extrapolations which are given by rational functions. They
are defined such that the Taylor expansion of the extrapolation equals the original series in the prevailing order [23].
The exponents of the numerator and denominator polynomials are referred to as [l,m]. An important issue for
the usage of these extrapolations are spurious poles. If such a pole arises for an extrapolation in the parameter
space of interest or in the close vicinity, the extrapolation has to be excluded from the physical analysis. The
convergence behavior of the Padé extrapolations is analyzed by grouping them into families. All members of a family
are characterized by the same difference l −m. If the extrapolations within one family show a convergent behavior,
the member with the highest available order is taken as the best converged representant. The average about these
representants from different families is considered as the most reliable result. In the following, we use the standard
deviation of these extrapolants as a measure for the uncertainty. It is usually plotted as error bar. Another advantage
of the Padé extrapolations as compared to the bare series is that they are better suited to control divergences for large
values of λ. This is in particular true for all extrapolations with similar exponents in the numerator and denominator
and the diagonal extrapolations with l = m are expected to yield the most accurate results. In the following, we
analyze the convergence behavior for the ground-state energies of the FPP and EPP and state the detailed choices
of Padé extrapolants. The main guideline is to average over extrapolations in the highest available order of every
convergent family with similar exponents l and m.

For the Löwdin expansion the dependencies of the FPP and EPP ground-state energies on the parameters λF and λE

at the coupling strengths J ′2/J2 = 0.68, J ′1/J
′
2 = 1.01 and J1/J2 = 0.98 are shown in Fig. S4 and Fig. S5, respectively.

Displayed are the bare series in orders seven and eight, the Padé extrapolants [3,5], [5,3] and [4,4] as well as the
resultant mean value with the corresponding standard deviation taken from this set of extrapolants. The energies of
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FIG. S4. Ground-state energies as bare series, Padé extrapolants and mean values of the expansion of the FPP at J ′2/J2 = 0.68,
J ′1/J

′
2 = 1.01 and J1/J2 = 0.98. The point λF = 1 belongs to the physically relevant distorted Shastry-Sutherland model.
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FIG. S5. Ground-state energies as bare series, Padé extrapolants and mean values of the expansion of the EPP at J ′2/J2 =
0.68, J ′1/J

′
2 = 1.01 and J1/J2 = 0.98. The point λE = 1 belongs to the physically relevant distorted Shastry-Sutherland model.
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FIG. S6. Energy differences between ground-state energies from iPEPS and SE along the line J ′2/J2 = 0.7 with J1/J2 = 1.
The yellow background color indicates where the EPP is the ground state and no background color signals the FPP as found
by iPEPS.

both states decrease with increasing expansion parameters due to quantum fluctuations. The difference between the
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unperturbed energy and the energy in the distorted Shastry-Sutherland model is more than twice as large for the FPP
than for the EPP. This is due to the fact that the intra-dimer bond on a single plaquette increases the ground-state
energy. Furthermore, the energy splitting between the bare series as well as the Padé extrapolants is larger for the
FPP than for the EPP at these coupling values at λ = 1. The standard deviation of both phases becomes more similar
in the parameter space where the FPP is the ground state. This can be seen in Fig. S6, where the energy differences
between the SE and the iPEPS results are shown along the line J ′2/J2 = 0.7 in the case J1/J2 = 1. For the EPP
in this more symmetric case the series are reached up to order nine in λE and for the mean value the extrapolants
[4,4], [4,5] and [5,4] are used. The FPP energies of both approaches agree extremely well, whereas for the EPP the
difference between iPEPS and SE energies is larger with a value of ≈ 0.0005. This difference increases with the ratio
J ′1/J1 because the asymmetry on the EPP supersites becomes stronger, which corresponds to a larger perturbation.
The point in parameter space at λ = 0 is noticeably closer to the distorted Shastry-Sutherland model of interest for
the FPP than for the EPP. This is due to the fact that one of the strong intra-dimer couplings is mainly included in
the unperturbed part of the FPP expansion. In this sense the perturbation for the EPP is larger, which might lead
to an error on the EPP energies that is not reflected in the standard deviation of the Padé extrapolants, but would
rather require higher-order calculations to become evident.

For the analysis of the phase diagram in Fig. 2a in the main text we use the mean values of the energies as defined
above in order eight for the FPP and order nine for the EPP. The same mean value for the FPP was used to extract
the phase diagram in Fig. 2b. For the EPP energies the Padé extrapolant with the exponents [5,4] has to be excluded.
In the phase diagram of the completely distorted Shastry-Sutherland model given in Fig. 2c in the main text both
energies are taken as mean values of Padé extrapolants in order eight. The parameters where the standard deviations
of the EPP and FPP expansion overlap are indicated as error bars.

Magnetic excitations

The magnetic excitations are calculated with SE using perturbative continuous unitary transformations
(pCUTs) [24, 25], which allows to apply a LCE as well. For the pCUT the unperturbed problem is required to
have an equidistant energy spectrum bounded from below. Considering an isolated plaquette, these conditions are
fulfilled for an intra-dimer J1-bond with J0

1 = 0 or J0
1 = 1. It is then possible to rewrite the unperturbed part H0

of isolated plaquettes in Eq. (S1) for both cases as a counting operator Q up to an additional constant E0. The
perturbation λV can be decomposed as a sum of operator Tn with n ∈ {−4, . . . ,+4} with [Tn,Q] = nTn, i.e. the
operators Tn change the number of energy quanta by n. These energy quanta are called quasi-particles (QPs). The
deformed Hamiltonians can be written as

H = E0 +Q+ λ

4∑
n=−4

Tn . (S3)

Within pCUTs, this type of Hamiltonian is unitarily mapped, order by order in λ, to an effective Hamiltonian Heff

which conserves the number of QPs, i.e. [Heff ,Q] = 0. We note that this step can be done model-independently. The
model-dependent part of pCUTs corresponds to a normal-ordering of the effective Hamiltonian in the QP sector of
interest. This is done most efficiently via a full-graph decomposition using the linked-cluster theorem [26].

Here we focus on the one-QP sector with total spin one, which is the relevant sector for the comparison with inelastic
neutron scattering (INS) measurements. Such magnetic three-fold degenerate triplet excitations above a magnetically
disordered singlet ground state, which are adiabatically connected to singlet-triplet excitations on isolated plaquettes,
are called triplons in this work. This therefore generalizes the original terminology, where triplons are dressed triplet
excitations adiabatically connected to singlet-triplet dimer excitations [27].

For the FPP we use J0
1 = 1, where two one-QP triplon modes are present. In practice, one determines all hopping

amplitudes for these excitations up to some order in λF by calculating matrix elements of Heff between one-triplon
states. The resulting one-QP hopping Hamiltonian can be further digonalized by a Fourier transformation exploiting
the translational symmetry of the lattice. Starting from the unperturbed plaquette with J0

1 = 1, one gets the 2 × 2

matrix Ω(~k) for each ~k, which is easily diagonalized yielding two one-triplon dispersions ω±(~k). These one-triplon
dispersions are determined up to order six in λF for the distorted Shastry-Sutherland model. At specific momenta the
two one-triplon modes are protected by the local symmetry on the J1-bonds so that Ω(~k) is directly diagonal. These

decoupled modes are referred to as ωH(~k) and ωf(~k). In addition, we check whether the one-triplon modes have an
infinite life-time by calculating the lower band edges ωablowerbandedge of the two-triplon continua of triplons a, b ∈ {±} .



8

The lower band edge is given by

ωablowerbandedge(~k) = min~q

[
ωa

(
~k

2
+ ~q

)
+ ωb

(
~k

2
− ~q
)]

, (S4)

where the minimum should be taken over all momenta ~q, so that the full dispersions are required. This is challenging
for the excitations of the FPP since the series are only partly converged. Nevertheless, a careful analysis allows one
to draw conclusions. Up to perturbation strengths where there is no convergence issue, the energy gap is definitely
located at some intermediate value ~k∆ along kx = ky, and the slopes along this line are smaller than in other directions.

In the area around ~k∆ the convergence works well. The energy of the gap determines the lower bound of the two-QP
continuum at ~k = 0, as well as at ~k = 2~k∆, and for intermediate values the minima are located on the diagonal
kx = ky. These are the lower bounds of the continuum shown in Fig. 3d of the main part. At larger momenta, we
continue to use the dispersions along kx = ky, which may or may not yield the lower-bound of the continuum.

For the EPP we use J0
1 = 0, where a single one-QP triplon is present in the perturbation theory. In this case

the Fourier-transformation directly leads to the dispersion ω(~k). There is a single two-triplon continuum following

Eq. (S4) with ωa = ωb = ω. If a one-triplon mode does not decay for a given wave vector ~k, the calculated series can
again be extrapolated by Padé approximation [23].

For the magnetic excitations the convergence behavior is generically worse than for the ground-state energies. This
has several reasons. Firstly, we only reach the series up to order six. Secondly, both triplon modes mix typically and
therefore more quantum fluctuations contribute. For the specific momenta with kx = ky as well as (kx = ±π, ky = 0)
and (kx = 0, ky = ±π) the two triplon modes are protected, which is why we focus on these values. In Fig. 3a in the
main text for the FPP the Padé extrapolents [2,3] and [3,2] are used. The Padé extrapolation with exponents [3,3]
shows unphysical divergences in the chosen parameter space. For the EPP combinations of the extrapolants with the
exponents [2,3], [3,2] and [3,3] are used depending on the convergence behavior at the specific momentum.

Magnetic dynamic structure factor

The magnetic dynamic structure factor S(~k, ω) gives the intensities measured in INS in the approximation of linear
response theory. It reads

S(~k, ω) = − 1

π
=
(〈

0
∣∣∣O†(~k)

1

ω − (H − E0)
O(~k)

∣∣∣0〉) ,
O(~k) =

∑
i

∑
α

Sα(~xi)e
i~k~xi ,

(S5)

where the ground state is denoted with |0〉. The operator O(~k) is the Fourier-transformation of the sum of spin
operators Sα, with α ∈ {x, y, z}. Since the problem is SU(2) invariant it is sufficient to study only α = z and multiply
the result by three. In our approach we consider the problem in terms of 4-site plaquettes and it is most convenient
for the Fourier-transformation to label the position of a spin at ~xi by the plaquette p it belongs to and the position
within the plaquette ν ∈ {1, 2, 3, 4}. For the comparison with experiments the real lattice structure has to be taken
into account. It is illustrated in Fig. S7 including the real space distances, which have been measured to be a = 8.99Å,

h = 5.120Å, and d = 2.905Å [28]. For convenience we define h̃ =

√(
h2 −

(
d
2

)2)
/2. The crystal vectors are

~δ1 = a(1, 0)T , ~δ2 = a(0, 1)T . (S6)

The lattice offers two distinct orientational choices for both the empty and the filled plaquettes. Here we choose a
single one, under the expectation that the symmetry is broken by the realization of either of the plaquette singlet
phases, leading to one distinct choice. The other orientation leads to the same structure factors only rotated in
momentum space (kx → kx, ky → −ky). The inclusion of both orientations is only necessary, if the material exhibits
several domains. If the unit cell is chosen to be centered around a filled plaquette as illustrated in Fig. S7(a), the
positions of the spins within the unit cells are given by

~ν1 =
d

2
√

2
(1,−1)T , ~ν2 = h̃(−1,−1)T

~ν3 =
d

2
√

2
(−1, 1)T , ~ν4 = h̃(1, 1)T .

(S7)
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For the empty plaquettes chosen in Fig. S7(b) the position vectors can be written as

~ν1 =
a

2
(1, 0)T + h̃(−1,−1)T , ~ν2 = −a

2
(1, 0)T +

d

2
√

2
(1,−1)T

~ν3 = −a
2

(1, 0)T + h̃(1, 1)T , ~ν4 =
a

2
(1, 0)T +

d

2
√

2
(−1, 1)T .

(S8)

Similar to the derivation of the excitation energies we use pCUTs to calculate the dynamic structure factors order by
order [25]. The unperturbed Hamiltonians are the same as before. As for the effective Hamiltonian, we concentrate
on the one-QP contributions to the dynamic structure factor in the EPP and FPP/Haldane phase.

For the EPP, the application of the observable in the unperturbed case leads to the creation or annihilation of a
single type of triplet on the very same plaquette at ~p in the one-QP sector. One can therefore express the observable
as

O~p,~ν = a~νempty

(
t†~p + t~p

)
+ . . . (S9)

using the creation and annihilation operators t†~p and t~p. Here aν are the one-triplon amplitudes at λ = 0 and . . .
represents all other QP-processes.

With the pCUT this process is less confined in space and the area which gets affected by the application of the
operator grows with the order of the perturbation theory. The effective observable in the one-triplon sector reads

Oeff,1QP
~p,~ν = U†O~p,~νU

∣∣∣∣
1QP

=
∑
~δ

a~ν~δ,empty

(
t†
~p+~δ

+ t
~p+~δ

)
, (S10)

where the index ~δ runs over all plaquettes in infinite order. In the present case and in finite orders only a finite number
of plaquettes is involved. For the calculation of the dynamic structure factor

S1QP(~k, ω) = − 1

π
=


〈

0
∣∣∣O1QP†

eff (~k)O1QP
eff (~k)

∣∣∣0〉
E0 +H1QP

eff (~k)− ω + iδ

 , (S11)
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FIG. S7. Illustrations of the Shastry-Sutherland lattice. The distances a, d, and h are given in the text. The spins are labeled
by the position within their plaquette ν ∈ {1, 2, 3, 4}. The vectors from the plaquette center to the spins are plotted and

indicated as ~νi. The lattice vectors are also given as ~δ1 and ~δ2. On the left the unit cell is chosen to be centered around a filled
plaquette with a diagonal coupling between the top left spin and the bottom right spin. On the right one of the choices for the
empty plaquettes is shown.
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the effective operator is taken in momentum space

O1QP
eff (~k) = aempty(~k)

(
t†~k

+ t~k

)
, with aempty(~k) =

∑
~ν

∑
~δ

ei~k(~ν−~δ)a~ν~δ,empty
. (S12)

The operators t†~k
and t~k

create and annihilate a triplon with momentum ~k, respectively. Finally, the one-triplon part
of the dynamic structure factor reduces to

S1QP(~k, ω) = 3|aempty(~k)|2δ(ω(~k)− ω). (S13)

The full information on the intensity is therefore given by 3|aempty(~k)|2, where the factor 3 accounts for the three spin
components Sα with α ∈ {x, y, z} in Eq. (S5). This quantity is plotted in Fig. 3b in the main body of the manuscript.
In order zero of perturbation theory one finds

aempty(~k) = 0.816497(cos(0.357615kx − 1.21318ky)− cos(1.21188kx + 0.358915ky)), (S14)

which is identical to the calculation on a single filled plaquette [29]. Note, that here we use the dependency of the
momentum, whereas for the comparison with the experiment [29] the number of reciprocal lattice units is needed.

For the FPP, one has to perform the same kind of calculation for the one-QP contribution to the dynamic structure
factor. However, in this case, two-triplons |t1〉 and |t2〉 are present in the one-QP sector and the apparent effective
Hamiltonian is given by a 2×2 matrix, which needs to be diagonalized to get the proper energy excitations |tã〉 and∣∣tb̃〉. The eigenvectors are denoted by

|tã〉 = ã1 |t1〉+ ã2 |t2〉 ,∣∣tb̃〉 = b̃1 |t1〉+ b̃2 |t2〉 .
(S15)

For the dynamic structure factor of these excitations it is therefore necessary to study the linear combination of
contributions

Sã(~k, ω) = 3
(
ã1|a(~k)|2 + ã2|b(~k)|2

)
δ(ωã(~k)− ω),

S b̃(~k, ω) = 3
(
b̃1|a(~k)|2 + b̃2|b(~k)|2

)
δ(ωb̃(

~k)− ω).
(S16)

The full information on the intensity of each mode is again given by the prefactor of the δ-function taking into account
the three spin components Sα with α ∈ {x, y, z} in Eq. (S5). These quantities are plotted in Fig. 3e in the main body
of the manuscript. In lowest-order perturbation theory it is

afull(~k) = 0.816497 cos(0.358915(kx − ky))− 0.816497 cos(1.21318(kx + ky)). (S17)

The matrix elements of the observable are identical for a single empty and filled four-site plaquette. Therefore,
at λ = 0 only the Fourier-transformation leads to a difference in the dynamic structure factor. We perform pCUT
calculations for both phases using a LCE and reached order five in λ. Padé extrapolations with the exponents [2,3]
and [3,2] are used.

ASYMMETRIC ORTHOGONAL-DIMER CHAIN

In the limit J ′2 = 0 the distorted Shastry-Sutherland model reduces to decoupled orthogonal-dimer spin chains. This
quasi one-dimensional model is very well suited to understand some of the main features also present in the distorted
Shastry-Sutherland model. The phase diagram obtained with SE is shown in Fig. S8. It exhibits two phases both
adiabatically connected to the case of completely decoupled filled plaquettes J2 = 0: For weak intra-dimer couplings
J1 the ground state is determined by singlets on full plaquettes, where the total spin between both spins on both
diagonals is one. This singlet phase is identical to the Haldane phase. At J1 = 2 the ground state changes towards a
state which has a total spin zero between the spins on the diagonals, and hence the spins connected by the J1 coupling
form a singlet. This is the exact dimer singlet phase.

In the limit J ′1, J1 � J2 at λ = 0 the decoupled filled plaquettes are present. In this case the ground state of
the unperturbed Hamiltonian is non-degenerate and the ground-state energy follows directly from the SE, which we



11

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

J
1
/J

′ 1

J2/J
′
1

J ′
1, J1 � J ′

2, J2
J2 � J1, J

′
1

FPP/Haldane

dimer

FIG. S8. The phase diagram of the orthogonal-dimer chain with distinct dimer couplings J1 and J2. The background color shows
results derived by SEs around the limit J ′1, J1 � J2. The red(white) area represents where the dimer singlet(FPP/Haldane)
phase is present. The phase boundary found from the limit J2 � J1, J

′
1 and J1 � J ′1 is illustrated in cyan. For comparison two

phase transition points from previous works are shown: i) as a black empty circle from [30] and ii) as a black star from [31].

performed up to order eight in J2/J
′
1 and ∆J1/J

′
1. We take the average value of the Padé extrapolations with the

exponents [3,4], [4,3] and [4,4] and compare with the dimer singlet energies. The phase diagram is represented in
Fig. S8 by the background color (red for the dimer singlet phase, white for the FPP/Haldane phase).

Another limit which can be investigated with SE is J2 � J1, J
′
1 and J1 � J ′1. It was previously studied for

the asymmetric orthogonal-dimer chain up to second order [32] and for an extended Shastry-Sutherland model with
distinct dimer couplings J1 6= J2 in third-order perturbation theory [33]. The ground state of the unperturbed system
is degenerate and consists of the manifold of states with a singlet on the J2 bonds and isolated intermediate spins on the
(vanishing) J1 bonds. In third order in J ′1/J2 the effective model is given by an effective frustrated Heisenberg ladder
with rung couplings JR, leg couplings JL, and diagonal couplings between opposite sites of neighboring rungs J×, with
JL = J×. This effective model is identical for the Shastry-Sutherland model up to order three. Therefore, the FPP
in the two-dimensional model is of purely one-dimensional nature for large J2. In fourth-order perturbation theory
additional effective four-spin interactions arise, and the distorted Shastry-Sutherland model is no longer described by
a one-dimensional effective model. For the asymmetric orthogonal-dimer chain the effective Hamiltonian in order four
is given by

H
O(4)
eff = ε0N + JR

∑
.

..

i

j

~Si · ~Sj + JL
∑

ji

~Si · ~Sj + J×
∑

j

k

i

l

~Si · ~Sk + ~Sj · ~Sl

+ JRK
∑

j

k

i

l

(~Si · ~Sl)(~Sj · ~Sk) + JLK
∑

j

k

i

l

(~Si · ~Sj)(~Sl · ~Sk) + J×K
∑

j

k

i

l

(~Si · ~Sk)(~Sl · ~Sj),
(S18)

with the effective coupling parameters

JR = J1 −
J ′2

J2
− 1

2

J ′3

J2
2

+
5

8

J ′4

J3
2

, JL =
1

2

J ′2

J2
+

3

4

J ′3

J2
2

− 5

8

J ′4

J3
2

,

J× = JL, JRK = −1

2

J ′4

J3
2

, JLK =
J ′4

J3
2

, J×K = JLK ,

(S19)
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and the constant

ε0 = −1

4

J ′2

J2
− 7

8

J ′3

J2
2

+
11

8

J ′4

J3
2

. (S20)

For the further analysis the third-order model is particularly useful because it has been studied before [34]. The total
spin quantum number on every rung is conserved and in the limit JR � JL, or J2 � J ′2/J1, the system exhibits
a ground state with singlets on every rung. At JR/JL ≈ 1.4 a first-order phase transition takes place to a state
where all rungs are occupied by triplets. This state corresponds to a spin-1 chain and therefore is associated with the
Haldane phase. In terms of the coupling constants of the asymmetric orthogonal-dimer chain the phase transition is

at J1

∣∣
cr
' 1.7J

′2

J2
+ 1.55J

′3

J2
2

+ 1.5J
′4

J3
2

(the fourth-order term is not exact due to the additional four-spin interactions).

This phase transition is included as a cyan line in the phase diagram in Fig. S8 by the average of the bare second-,
third-, and fourth-order result. The SEs from both limits can be seen to yield similar results. Additionally, a couple
of phase transition points from the literature are included for comparison in the phase diagram in Fig. S8. In the
symmetric case J1 = J2 our SE results agree very well with the value J/J ′|cr = 1.22100 by Koga et al [31]. Along the
line J2 = 2J1 exact diagonalization by Richter et al revealed another transition point [32], which also matches our
findings.

At last we give some information concerning the magnetic dispersion of the asymmetric-orthogonal dimer chain.
From the limit J2 � J1, J

′
1 and J1 � J ′1 it is clear that the Haldane phase of the spin-1 chain exhibits a low-lying

dispersive excitation. The minimum gives the Haldane gap ∆H = 0.41 at k = π [35, 36]. This mode decays at small
momenta, due to a continuum [35]. In terms of the frustrated ladder the energy gap is ∆H = 0.41JL. Another
excitation is given by a rung singlet and is therefore completely localized. The excitation energy of this state is
linked to the energy difference between a spin-1 chain with periodic and with open boundary conditions. It has been
determined to be 1.21JL [34]. In terms of the frustrated ladder with an interaction on the bond of the flipped triplet
we need to subtract the energy gained by the local singlet and find ∆f = 1.21JL − JR.

Both low-energy excitations together with the continuum of two Haldane triplons from the limit J ′1, J1 � J2 at
λ = 0 are depicted for the parameters J1 = 0.5 and J2 = 1.2 in Fig. S9. The Haldane gap at k = π is present
and the corresponding dispersion increases with decreasing momentum. At values around k ≈ 0.45π nearly a saddle
point can be observed, which becomes more pronounced for larger J2 couplings and eventually transforms into a local
maximum. For momenta close to k = 0 the Haldane mode decays into the continuum. All these three features are
also known from the spin-1 Heisenberg chain [35] and this set of parameters is already somehow close to the Haldane
limit with J2 � J ′1, J1 and J1 � J ′1. The flat excitation at these parameters lies above the Haldane mode and also
overlaps with the continuum. Nevertheless it does not decay since the total spins on the diagonals J1 are conserved
quantities. The overall structure of the excitation spectrum depends qualitatively on the coupling values.
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