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Abstract
This thesis studies the valuation and hedging of financial derivatives, which is fundamental

for trading and risk-management operations in financial institutions. The three chapters in

this thesis deal with derivatives whose payoffs are linked to interest rates, equity prices, and

dividend payments.

The first chapter introduces a flexible framework based on polynomial jump-diffusions (PJD)

to jointly price the term structures of dividends and interest rates. Prices for dividend futures,

bonds, and the dividend paying stock are given in closed form. Option prices are approximated

efficiently using a moment matching technique based on the principle of maximum entropy.

An extensive calibration exercise shows that a parsimonious model specification has a good

fit with Euribor interest rate swaps and swaptions, Euro Stoxx 50 index dividend futures and

dividend options, and Euro Stoxx 50 index options.

The second chapter revisits the problem of pricing a continuously sampled arithmetic Asian

option in the classical Black-Scholes setting. An identity in law links the integrated stock price

to a one-dimensional polynomial diffusion, a particular instance of the PJD encountered

in the first chapter. The Asian option price is approximated by a series expansion based on

polynomials that are orthogonal with respect to the log-normal distribution. All terms in the

series are fully explicit and no numerical integration nor any special functions are involved.

The moment indeterminacy of the log-normal distribution introduces an asymptotic bias

in the series, however numerical experiments show that the bias can safely be ignored in

practice.

The last chapter presents a non-parametric method to construct a maximally smooth discount

curve from observed market prices of linear interest rate products such as swaps, forward rate

agreements, or coupon bonds. The discount curve is given in closed form and only requires

basic linear algebra operations. The method is illustrated with several practical examples.

Keywords: mathematical finance, derivative pricing, term structure models, interest rates,

polynomial processes, orthogonal polynomials, dividend derivatives
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Résumé
Cette thèse étudie la valorisation et la couverture des produits dérivés en finance, activité

essentielle dans une salle de marchés et un bureau de gestion des risques d’une institution

financière. Les trois chapitres de cette thèse traitent des produits dérivés sur taux d’intérêts,

actions et dividendes.

Le premier chapitre introduit un cadre flexible basé sur les processus stochastiques poly-

nomiaux avec sauts afin de valoriser conjointement les courbes des taux de dividende et

d’intérêt. Les prix des contrats à terme sur dividendes, obligations, et dividendes payant des

actions possèdent une expression fermée. Les prix des options sont approximés de manière

efficace à l’aide d’une technique de correspondance basée sur le principe d’entropie maximale.

Un important travail de calibration montre que les paramètres d’un modèle parcimonieux

permettent d’obtenir des valeurs qui concordent avec celles du taux d’intérêt Euribor swap

et swaptions, l’indice Euro Stoxx 50 contrats à terme sur dividendes, l’indice Euro Stoxx 50

options sur dividendes et l’indice Euro Stoxx 50 options.

Le deuxième chapitre revisite le problème de la valorisation de l’option asiatique dans le

modèle classique de Black-Scholes. Une identité en loi permet de faire le lien entre l’intégrale

du prix de l’action et une diffusion polynomiale unidimensionnelle, un cas particulier des

processus stochastiques polynomiaux avec sauts vus dans le premier chapitre. Le prix de l’op-

tion asiatique est approximé par un développement en série basé sur des polynômes qui sont

orthogonaux sous la mesure log-normale. Tous les termes de la série possèdent une expression

explicite et aucun calcul d’intégrale ni l’utilisation de fonctions spéciales n’est nécessaire. La

loi log-normale n’étant pas caractérisée par ses moments, un biais asymptotique apparaît

dans la série. Toutefois, des résultats numériques montrent que ce biais est négligeable en

pratique.

Le dernier chapitre présente une méthode non-paramétrique pour construire une courbe

de taux à partir des prix de produits à taux d’intérêt linéaire tels que le swap, l’accord à taux

futur ou le coupon d’une obligation. La courbe de taux a une expression fermée et requiert

seulement des opérations élémentaires d’algèbre linéaire. Cette méthode est illustrée avec

plusieurs exemples pratiques.

Mots clefs : mathématiques financières, valorisation des produits dérivés, modèles de courbe

de taux, taux d’intérêts, processus polynomiaux, polynômes orthogonaux, produits dérivés

sur dividendes
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Introduction

Mathematical finance is a relatively young research field that is concerned with modeling of

financial markets. One of the major topics within this field, and also the focus of my thesis,

is pricing and hedging of financial derivatives. Research questions in this topic are often

rooted in problems faced by the financial industry, who employ derivatives in their day-to-day

business. The constantly evolving product offering and regulations of the derivatives market

provide ample opportunity for new research directions. In this introduction, I give an overview

of the three chapters of my thesis and how they are related to each other. A more detailed

introduction, including extensive literature reviews, can be found at the beginning of each

chapter.

When I started my doctoral studies, one of the recent innovations in the derivatives market

were the exchange traded dividend derivatives. These products have payoffs linked to the

dividends paid by a company, or a basket of companies, over a certain period of time. The

development of the market for dividend derivatives was mainly driven by issuers of retail

equity structured products (e.g., autocallables) who wanted to offload their structurally long

dividend exposure. From an investor’s point of view, dividend derivatives offer an opportunity

to have equity exposure with relatively low volatility, since dividend payments tend to be

smoother over time than the prices of the stock paying the dividends. From a modeling

perspective, the main difficulty with dividend derivatives stems from the fact that dividend

payments also have a direct impact on the price of the dividend paying stock, and therefore

also on prices of derivatives on the stock. The relation between dividend payments and stock

prices is further complicated by changes in interest rates. Combining all three dimensions, i.e.,

dividends, stock prices, and interest rates, together in a tractable derivative pricing framework

is a major challenge that has not been addressed in the literature to date. The first chapter

of my thesis takes on this challenge by making use of polynomial jump-diffusions (PJD), as

studied in Cuchiero et al. (2012) and Filipović and Larsson (2016, 2017). This class of stochastic

processes is characterized by the fact that their generator maps polynomials to polynomials

of the same degree or less. As a consequence, all conditional moments of any order can be

computed in closed form, up to a matrix exponential. The first chapter develops a framework

to jointly price the term structures of dividends and interest rates using PJD as building stones.

The available conditional moments of the PJD lead to closed form prices for dividend futures,

bonds, and the dividend paying stock. Option prices are approximated using a moment
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Introduction

matching technique. An extensive calibration exercise, using market data on dividend, stock,

and interest rate derivatives over a five year period, illustrates the flexibility of the framework.

The research in this chapter is based on Filipović and Willems (2019).

The second chapter continues with another application of PJD to derivative pricing. This

chapter focuses on Asian style equity derivatives, where Asian style refers to the fact that the

derivative’s payoff depends on the average stock price over a period of time. These type of

derivatives are popular, for example, when there are concerns about potential price manip-

ulation, since it is more difficult to manipulate the price over a period of time than at one

point in time. The stock price is assumed to follow a geometric Brownian motion and the

averaging is assumed to be arithmetic and computed continuously. Furthermore, interest

rates are assumed to be constant and the stock is assumed to pay no dividends. Even though

this is arguably the most basic setup for modeling Asian style derivatives, no closed form

solutions exists for Asian call and put options. The distribution of the stock price at one point

in time is well-known to be log-normal, but the distribution of the average stock price is

unknown. There exist many different methods to approximate Asian option prices, ranging

from simulation to partial differential equation techniques. In the second chapter, I show

how an identity in law can be used to relate the distribution of the average stock price to the

distribution of a one-dimensional polynomial diffusion, which is a special instance of the PJD

used in the first chapter. Therefore, all conditional moments of the average stock price are

available in closed form. In a subsequent step, an orthogonal polynomial series expansion is

used to approximate Asian option prices. The terms in the series can be calculated explicitly

thanks to the available conditional moments. The series has an asymptotic bias, however

numerical experiments show that it can safely be ignored for reasonable parameterizations.

The research in this chapter is based on Willems (2019a).

In the last chapter of my thesis, I revisit the problem of bootstrapping a curve of zero-coupon

bond prices, also known as the discount curve. A zero-coupon bond is a financial instrument

that delivers a unit of currency at a future date, which is referred to as the maturity date.

Prices of zero-coupon bonds therefore reflect the time-value of money. Derivative pricing

models often assume that prices of zero-coupon bonds are observable for any maturity.

In reality, however, zero-coupon bonds are not actively traded and in any case not for a

continuum of maturities. In practice, prices of zero-coupon bonds are derived from more

actively traded fixed-income instruments, such as coupon bonds, interest rate swaps, or

forward rate agreements. The prices of these instruments depend on zero-coupon bond

prices with a finite number of maturities and are therefore not sufficient to determine zero-

coupon bond prices for the continuum of maturities. This is an under-determined problem in

the sense that there exist infinitely many discount curves that perfectly price the observed

instruments. In order to pin down one particular curve, an additional objective has to be

imposed. The objective used in the last chapter is related to the smoothness of the discount

curve. Specifically, the optimal curve is found by searching in an infinite-dimensional Hilbert

function space for a discount curve with minimal integrated squared second derivative, subject

to perfectly reproducing the prices of a given set of fixed-income instruments. The optimal

2



Introduction

discount curve is given in closed form as the solution to a convex variational optimization

problem. This chapter also investigates the sensitivities of the optimal discount curve with

respect to perturbations in the input prices, which is important from a hedging perspective.

Several practical examples using data on coupon bonds and interest rate swaps illustrate how

the method works in practice. The method can also easily be adapted for use outside of the

interest rate context. For example, the appendix of the first chapter describes how to bootstrap

a curve of expected dividend payments from observed dividend futures prices. The research

in this chapter is based on Filipović and Willems (2018).

Statement of Originality

I hereby declare that the content of this thesis is my own work, where some parts are the result

of collaborations with my thesis supervisor Prof. Damir Filipović. No other person’s work has

been used without due acknowledgement.
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1 A Term Structure Model for Dividends
and Interest Rates

Over the last decade, dividends have become a standalone asset class instead of a mere

side product of an equity investment. In this chapter, we introduce a framework based on

polynomial jump-diffusions to jointly price the term structures of dividends and interest rates.

Prices for dividend futures, bonds, and the dividend paying stock are given in closed form. We

present an efficient moment based approximation method for option pricing. In a calibration

exercise we show that a parsimonious model specification has a good fit with Euribor interest

rate swaps and swaptions, Euro Stoxx 50 index dividend futures and dividend options, and

Euro Stoxx 50 index options.

1.1 Introduction

In recent years there has been an increasing interest in trading derivative contracts with a direct

exposure to dividends. Brennan (1998) argues that a market for dividend derivatives could

promote rational pricing in stock markets. In the over-the-counter (OTC) market, dividends

have been traded since 2001 in the form of dividend swaps, where the floating leg pays the

dividends realized over a predetermined period of time. The OTC market also accommodates

a wide variety of more exotic dividend related products such as knock-out dividend swaps,

dividend yield swaps and swaptions. Dividend trading gained significant traction in late

2008, when Eurex launched exchange traded futures contracts referencing the dividends paid

out by constituents of the Euro Stoxx 50. The creation of a futures market for other major

indices (e.g., the FTSE 100 and Nikkei 225) followed shortly after, as well as the introduction

of exchange listed options on realized dividends with maturities of up to ten years. Besides

the wide variety of relatively new dividend instruments, there is another important dividend

derivative that has been around since the inception of finance: a simple dividend paying stock.

Indeed, a share of stock includes a claim to all the dividends paid over the stock’s lifetime.

Any pricing model for dividend derivatives should therefore also be capable of efficiently

pricing derivatives on the stock paying the dividends. What’s more, the existence of interest

rate-dividend hybrid products, the relatively long maturities of dividend options, and the

long duration nature of the stock all motivate the use of stochastic interest rates. Despite

5



Chapter 1. A Term Structure Model for Dividends and Interest Rates

its apparent desirability, a tractable joint model for the term structures of interest rates and

dividends, and the corresponding stock, has been missing in the literature to date.

We fill this gap and develop an integrated framework to efficiently price derivatives on div-

idends, stocks, and interest rates. We first specify dynamics for the dividends and discount

factor, and in a second step we recover the stock price in closed form as the sum of the fun-

damental stock price (present value of all future dividends) and possibly a residual bubble

component. The instantaneous dividend rate is a linear function of a multivariate factor pro-

cess. The interest rates are modeled by directly specifying the discount factor to be linear in the

factors, similarly as in Filipović et al. (2017). The factor process itself is specified as a general

polynomial jump-diffusion, as studied in Filipović and Larsson (2017). Such a specification

makes the model tractable because all the conditional moments of the factors are known

in closed form. In particular, we have closed form expressions for the stock price and the

term structures of dividend futures and interest rate swaps. Any derivative whose discounted

payoff can be written as a function of a polynomial in the factors is priced through a moment

matching method. Specifically, we find the unique probability density function with maximal

Boltzmann-Shannon entropy matching a finite number of moments of the polynomial, as

in Mead and Papanicolaou (1984). We then obtain the price of the derivative by numerical

integration. In particular, this allows us to price swaptions, dividend options, and options on

the dividend paying stock. We show that our polynomial framework also allows to incorporate

seasonal behavior in the dividend dynamics.

Within our polynomial framework, we introduce the linear jump-diffusion (LJD) model. We

show that the LJD model allows for a flexible dependence structure between the factors. This

is useful to model a dependence between dividends and interest rates, but also to model

the dependence within the term structure of interest rates or dividends. We calibrate a

parsimonious specification of the LJD model to market data on Euribor interest rate swaps

and swaptions, Euro Stoxx 50 index dividend futures and dividend options, and Euro Stoxx 50

index options. Our model reconciles the relatively high implied volatility of the index options

with the relatively low implied volatility of dividend options and swaptions through a negative

correlation between dividends and interest rates. The successful calibration of the model to

three different classes of derivatives (interest rates, dividends, and equity) illustrates the high

degree of flexibility offered by our framework.

This chapter is related to various strands of literature. In the literature on stock option pricing,

dividends are often assumed to be either deterministic (e.g., Bos and Vandermark (2002),

Bos et al. (2003), Vellekoop and Nieuwenhuis (2006)), a constant fraction of the stock price

(e.g., Merton (1973), Korn and Rogers (2005)), or a combination of the two (e.g., Kim (1995),

Overhaus et al. (2007)). Geske (1978) and Lioui (2006) model dividends as a stochastic fraction

of the stock price. They derive Black-Scholes type of equations for European option prices,

however dividends are not guaranteed to be non-negative in both setups. Chance et al. (2002)

directly specify log-normal dynamics for the T -forward price of the stock, with T the maturity

of the option. Closed form option prices are obtained as in Black (1976), assuming that today’s

6



1.1. Introduction

T -forward price is observable. This approach is easy to use since it does not require any

modeling assumptions on the distribution of the dividends. However, it does not produce

consistent option prices for different maturities. Bernhart and Mai (2015) take a similar

approach, but suggest to fix a time horizon T long enough to encompass all option maturities

to be priced. The T -forward price is modeled with a non-negative martingale and the stock

price is defined as the T -forward price plus the present value of dividends from now until

time T . As a consequence, prices of options with maturity smaller than T will depend on the

joint distribution between future dividend payments and the T -forward price, which is not

known in general. Bernhart and Mai (2015) resort to numerical tree approximation methods

in order to price options. The dependence of their model on a fixed time horizon still leads to

time inconsistency, since the horizon will necessarily have to be extended at some point in

time. We contribute to this literature by building a stock option pricing model that guarantees

non-negative dividends, is time consistent, and remains tractable.

Another strand of literature studies stochastic models to jointly price stock and dividend

derivatives. Buehler et al. (2010) assumes that the stock price jumps at known dividend

payment dates and follows log-normal dynamics in between the payment dates. The jump

amplitudes are driven by an Ornstein-Uhlenbeck process such that the stock price remains

log-normally distributed and the model has closed form prices for European call options

on the stock. The high volatility in the stock price is reconciled with the low volatility in

dividend payments by setting the correlation between the Ornstein-Uhlenbeck process and

the stock price extremely negative (−95%). A major downside of the model is that dividends

can be negative. Moreover, although the model has a tractable stock price, the dividends

themselves are not tractable and Monte-Carlo simulations are required to price the dividend

derivatives. In more recent work, Buehler (2015) decomposes the stock price in a fundamental

component and a residual bubble component. The dividends are defined as a function of a

secondary driving process that mean reverts around the residual bubble component. This

model has closed form expressions for dividend futures, but Monte-Carlo simulations are still

necessary to price nonlinear derivatives. Guennoun and Henry-Labordère (2017) consider

a stochastic local volatility model for the pricing of stock and dividend derivatives. Their

model guarantees a perfect fit to observed option prices, however all pricing is based on

Monte-Carlo simulations. Tunaru (2018) proposes two different models to value dividend

derivatives. The first model is similar to the one of Buehler et al. (2010), but models the jump

amplitudes with a beta distribution. This guarantees positive dividend payments. However,

the diffusive noise of the stock is assumed independent of the jump amplitudes in order to

have tractable expressions for dividend futures prices. Smoothing the dividends through a

negative correlation between stock price and jump amplitudes, as in Buehler et al. (2010), is

therefore not possible. In a second approach, Tunaru (2018) directly models the cumulative

dividends with a diffusive logistic growth process. This process has, however, no guarantee to

be monotonically increasing, meaning that negative dividends can occur frequently. Willems

(2019b) jointly specifies dynamics for the stock price and the dividend rate such that the stock

price is positive and the dividend rate is a non-negative process mean-reverting around a

7
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constant fraction of the stock price. The model of Willems (2019b) is in fact a special case of

the general framework introduced in this chapter, although it is different from the LJD model

and does not incorporate stochastic interest rates. We add to this literature by allowing for

stochastic interest rates, which is important for the valuation of interest rate-dividend hybrid

products or long-dated dividend derivatives (e.g., the dividend paying stock). Our model

produces closed form prices for dividend futures and features efficient approximations for

option prices which are significantly faster than Monte-Carlo simulations. The low volatility

in dividends and interest rates is reconciled with the high volatility in the stock price through

a negative correlation between dividends and interest rates.

Our work also relates to literature on constructing an integrated framework for dividends and

interest rates. Previous approaches were mainly based on affine processes, see e.g. Bekaert

and Grenadier (1999), Mamaysky et al. (2002), d’Addona and Kind (2006), Lettau and Wachter

(2007, 2011), and Lemke and Werner (2009). In more recent work, Kragt et al. (2018) extract

investor information from dividend derivatives by estimating a two-state affine state space

model on stock index dividend futures in four different stock markets. Instead of modeling

dividends and interest rates separately, they choose to model dividend growth, a risk-free

discount rate, and a risk premium in a single variable called the ‘discounted risk-adjusted

dividend growth rate’. Yan (2014) uses zero-coupon bond prices and present value claims to

dividend extracted from the put-call parity relation to estimate an affine term structure model

for interest rates and dividends. Suzuki (2014) uses a Nelson-Siegel approach to estimate the

fundamental value of the Euro Stoxx 50 using dividend futures and Euribor swap rates. We add

to this literature by building an integrated framework for dividends and interest rates using

the class of polynomial processes, which contains the traditional affine processes as a special

case.

Finally, our work also relates to literature on moment based option pricing. Jarrow and Rudd

(1982), Corrado and Su (1996b), and Collin-Dufresne and Goldstein (2002b) use Edgeworth

expansions to approximate the density function of the option payoff from the available mo-

ments. Closely related are Gram-Charlier expansions, which are used for option pricing for

example by Corrado and Su (1996a), Jondeau and Rockinger (2001), and Ackerer et al. (2018).

Although these series expansions allow to obtain a function that integrates to one and matches

an arbitrary number of moments by construction, it has no guarantee to be positive. In this

chapter, we find the unique probability density function with maximal Boltzmann-Shannon

entropy. subject to a finite number of moment constraints. Option prices are then obtained by

numerical integration. A similar approach is taken by Fusai and Tagliani (2002) to price Asian

options. The principle of maximal entropy has also been used to extract the risk-neutral distri-

bution from option prices, see e.g. Buchen and Kelly (1996), Jackwerth and Rubinstein (1996),

Avellaneda (1998), and Rompolis (2010). There exist many alternatives to maximizing the

entropy in order to find a density function satisfying a finite number of moment constraints.

For example, one can maximize the smoothness of the density function (see e.g., Jackwerth

and Rubinstein (1996)) or directly maximize (minimize) the option price itself to obtain an

upper (lower) bound on the price (see e.g., Lasserre et al. (2006)). A comparison of different
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1.2. Polynomial Framework

approaches is beyond the scope of this chapter.

The remainder of this chapter is structured as follows. Section 1.2 introduces the factor pro-

cess and discusses the pricing of dividend futures, bonds, and the dividend paying stock. In

Section 1.3 we explain how to efficiently approximate option prices using maximum entropy

moment matching. Section 1.4 describes the LJD model. In Section 1.5 we calibrate a parsi-

monious model specification to real market data. Section 1.6 discusses some extensions of the

framework. Section 1.7 concludes. All proofs and technical details can be found in Appendix

A.

1.2 Polynomial Framework

We consider a financial market modeled on a filtered probability space (Ω,F ,Ft ,Q) where Q

is a risk-neutral pricing measure. Henceforth Et [·] denotes the Ft -conditional expectation.

We model the uncertainty in the economy through a factor process X t taking values in some

state space E ⊆ Rd .1 We assume that X t is a polynomial jump-diffusion (cfr. Filipović and

Larsson (2017)) with dynamics

dX t = κ(θ−X t )dt +dMt , (1.1)

for some parameters κ ∈ Rd×d , θ ∈ Rd , and some d-dimensional martingale Mt such that

the generator G of X t maps polynomials to polynomials of the same degree or less. One

of the main features of polynomial jump-diffusions is the fact that they admit closed form

conditional moments. For n ∈ N, denote by Poln(E) the space of of polynomials on E of

degree n or less and denote its dimension by Nn .2 Let h1, . . . ,hNn form a polynomial basis for

Poln(E ) and denote Hn(x) = (h1(x), . . . ,hNn (x))>. Since G leaves Poln(E ) invariant, there exists

a unique matrix Gn ∈RNn×Nn representing the action of G on Poln(E ) with respect to the basis

Hn(x). Without loss of generality we assume to work with the monomial basis.

Example 1.2.1. If n = 1, then we have H1(x) = (1, x1, . . . , xd )> and G1 becomes

G1 =
(

0 0

κθ −κ

)
. (1.2)

From the invariance property of G , one can derive the moment formula (Theorem 2.4 in

Filipović and Larsson (2017))

Et [Hn(XT )] = eGn (T−t )Hn(X t ), (1.3)

for all t ≤ T . Many efficient algorithms exist to numerically compute the matrix exponential

1We assume that E has non-empty interior.
2Since the interior of E is assumed to be non-empty, Poln (E) can be identified with Poln (Rd ) and therefore

Nn = (n+d
d

)
.
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Chapter 1. A Term Structure Model for Dividends and Interest Rates

(e.g., Al-Mohy and Higham (2011)).

1.2.1 Dividend Futures

Consider a stock that pays a continuous dividend stream to its owner at an instantaneous

rate D t , which varies stochastically over time. We model the cumulative dividend process

Ct =C0 +
∫ t

0 Ds ds as:

Ct = eβt p>H1(X t ), (1.4)

for some parameters β ∈ R and p ∈ Rd+1 such that Ct is a positive, non-decreasing, and

absolutely continuous (i.e., drift only) process. This specification for Ct implicitly pins down

D t , which is shown in the following proposition.

Proposition 1.2.2. The instantaneous dividend rate D t implied by (1.4) is given by

D t = eβt p>(βId+G1)H1(X t ), (1.5)

where Id denotes the identity matrix.

Remark that both the instantaneous dividend rate and the cumulative dividends load linearly

on the factor process. The exponential scaling of Ct with parameter β can be helpful to

guarantee a non-negative instantaneous dividend rate. Indeed, if

λ= sup
x∈E

−p>G1H1(x)

p>H1(x)
(1.6)

is finite, then it follows from (1.5) that D t ≥ 0 if and only if β ≥ λ.3 Moreover, when all

eigenvalues of κ have positive real parts, it follows from the moment formula (1.3) that

lim
T→∞

1

T − t
log

(
Et [DT ]

D t

)
=β.

The parameter β therefore controls the asymptotic risk-neutral expected growth rate of the

dividends.

The time-t price of a continuously marked-to-market futures contract referencing the divi-

dends to be paid over a future time interval [T1,T2], t ≤ T1 ≤ T2, is given by:

D f ut (t ,T1,T2) = Et

[∫ T2

T1

Ds ds

]
= Et

[
CT2 −CT1

]
= p>

(
eβT2 eG1(T2−t ) −eβT1 eG1(T1−t )

)
H1(X t ), (1.7)

where we have used the moment formula (1.3) in the last equality. Hence, the dividend futures

3We calculate λ explicitly for the linear jump-diffusion model studied in Section 1.4.
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price is linear in the factor process. Note that the dividend futures term structure (i.e., the

dividend futures prices for varying T1 and T2) does not depend on the specification of the

martingale part of X t .

1.2.2 Bonds and Swaps

Denote the risk-neutral discount factor by ζt . It is related to the short rate rt as follows

ζT = ζt e−
∫ T

t rs ds , 0 ≤ t ≤ T.

We directly specify dynamics for the risk-neutral discount factor:

ζt = e−γt q>H1(X t ), (1.8)

for some parameters γ ∈R and q ∈Rd+1 such that ζt is a positive and absolutely continuous

process. This is similar to the specification (1.4) of Ct but, in order to allow for negative interest

rates, we do not require ζt to be monotonic (non-increasing). Filipović et al. (2017) follow a

similar approach and specify linear dynamics for the state price density with respect to the

historical probability measure P. Their specification pins down the market price of risk. It

turns out that the polynomial property of the factor process is not preserved under the change

of measure from P to Q in this case. However, as seen in (1.7), the polynomial property (in

particular the linear drift) under Q is important for pricing the dividend futures contracts.

The time-t price of a zero-coupon bond paying one unit of currency at time T ≥ t is given by:

P (t ,T ) = 1

ζt
Et [ζT ] .

Using the moment formula (1.3) we get a linear-rational expression for the zero-coupon bond

price

P (t ,T ) = e−γ(T−t ) q> eG1(T−t )H1(X t )

q>H1(X t )
. (1.9)

Remark that the term structure of zero-coupon bond prices depends only on the drift of X t .

Similarly as in Filipović et al. (2017), one can introduce exogenous factors feeding into the

martingale part of X t to generate unspanned stochastic volatility (see e.g., Collin-Dufresne

and Goldstein (2002a)), however we do not consider this.

Using the relation rt =−∂T logP (t ,T )|T=t , we obtain the following linear-rational expression

for the short rate:

rt = γ− q>G1H1(X t )

q>H1(X t )
.

When all eigenvalues of κ have positive real parts, it follows that

lim
T→∞

− log(P (t ,T ))

T − t
= γ,
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so that γ can be interpreted as the yield on the zero-coupon bond with infinite maturity.

Ignoring differences in liquidity and credit characteristics between discount rates and IBOR

rates, we can value swap contracts as linear combinations of zero-coupon bond prices. The

time-t value of a payer interest rate swap with first reset date T0 ≥ t , fixed leg payment dates

T1 < ·· · < Tn , and fixed rate K is given by:

π
sw ap
t = P (t ,T0)−P (t ,Tn)−K

n∑
k=1

δk P (t ,Tk ), (1.10)

with δk = Tk −Tk−1, k = 1. . . ,n. The forward swap rate is defined as the fixed rate K which

makes the right hand side of (1.10) equal to zero. Note that the discounted swap value ζtπ
sw ap
t

becomes a linear function of X t , which will be important for the purpose of pricing swaptions.

1.2.3 Dividend Paying Stock

Denote by S∗
t the fundamental price of the stock, which we define as the present value of all

future dividends:

S∗
t = 1

ζt
Et

[∫ ∞

t
ζsDs ds

]
. (1.11)

In order for S∗
t to be finite in our model, we must impose parameter restrictions. The following

proposition provides sufficient conditions on the parameters, together with a closed form

expression for S∗
t . The latter is derived using the fact that ζt D t is quadratic in X t , hence we

are able to calculate its conditional expectation through the moment formula (1.3).

Proposition 1.2.3. If the real parts of the eigenvalues of G2 are bounded above by γ−β, then

S∗
t is finite and given by

S∗
t = eβt w> H2(X t )

q>H1(X t )
, (1.12)

where w = [
(γ−β) Id−G>

2

]−1
v and v ∈RN2 is the unique coordinate vector satisfying

v>H2(x) = p>(βId+G1)H1(x) q>H1(x).

Proposition 1.2.3 shows that the discounted fundamental stock price ζt S∗
t is quadratic in

X t , which means in particular that we have all moments of ζt S∗
t in closed form. Loosely

speaking, the fundamental stock price will be finite as long as the dividends are discounted at

a sufficiently high rate (by choosing γ sufficiently large). Henceforth we will assume that the

assumption of Proposition 1.2.3 is satisfied.

The following proposition shows how the price of the dividend paying stock, which we denote

by St , is related to the fundamental stock price.4

4This relationship has been highlighted in particular by Buehler (2010, 2015) in the context of derivative pricing.
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Proposition 1.2.4. The market is arbitrage free if and only if St is of the form

St = S∗
t +

Lt

ζt
, (1.13)

with Lt a non-negative local martingale.

The process Lt can be interpreted as a bubble in the sense that it drives a wedge between the

fundamental stock price and the observed stock price. If X t is continuous, then applying Itô’s

lemma to (1.13) and using the fact that ζt is assumed to be absolutely continuous, we obtain

the following risk-neutral stock price dynamics

dSt = (rt St −D t )dt +eβt w> JH2 (X t )

q>H1(X t )
dMt + 1

ζt
dLt , (1.14)

where JH2 (x) denotes the Jacobian of H2(x).5 Remark that St has the correct risk-neutral

drift, by construction. Given dynamics for rt and D t , an alternative approach to model St

for derivative pricing purposes would have been to directly specify its martingale part, see

for instance Willems (2019b). With such an approach, however, it is not straightforward to

guarantee a positive stock price. Indeed, the downward drift of the instantaneous dividend

rate could push the stock price in negative territory.6 Moreover, it is clear that by directly

specifying the martingale part of the stock price, we risk implicitly modeling a bubble in the

stock price. In contrast, our approach implies a martingale part (the second term in (1.14)) that

guarantees a positive stock price. This martingale part is completely determined by the given

specification for dividends and interest rates. In case this is too restrictive for the stock price

dynamics, one can always adjust accordingly through the specification of the non-negative

local martingale Lt . For example, Buehler (2015) considers a local volatility model on top of

the fundamental stock price that is separately calibrated to equity option prices.

Remark 1.2.5. Bubbles are usually associated with strict local martingales, see e.g. Cox and

Hobson (2005). In fact, for economies with a finite time horizon, a bubble is only possible if

the deflated gains process is a strict local martingale, which corresponds to a bubble of Type

3 according to the classification of Jarrow et al. (2007). For economies with an infinite time

horizon, which is the case in our setup, bubbles are possible even if the deflated gains process

is a true martingale. Such bubbles are of Type 1 and 2 in the classification Jarrow et al. (2007).

Specifically, a (uniformly integrable) martingale Lt corresponds to a bubble of Type 2 (Type 1).

We finish this section with a result on the duration of the stock. We define the stock duration

as

Durt =
∫ ∞

t (s − t )Et [ζsDs]ds

ζt S∗
t

. (1.15)

5A similar, but lengthier, expression can be derived in case there are jumps in Xt . We choose to omit it since it
does not add much value to the discussion that follows.

6Instead of starting from dynamics for Dt , we could have specified dynamics for the dividend yield Dt /St . This
would help to keep the stock price positive, but it does typically not produce a tractable distribution for Dt . This is
problematic since dividend derivatives reference notional dividend payments paid out over a certain time period.
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The stock duration represents a weighted average of the time an investor has to wait to receive

his dividends, where the weights are the relative contribution of the present value of the

dividends to the fundamental stock price. This definition is the continuous time version of the

one used by Dechow et al. (2004) and Weber (2018). The following proposition gives a closed

form expression for stock duration in our framework.

Proposition 1.2.6. The stock duration is given by

Durt =
w> [

(γ−β) Id−G2
]−1 H2(X t )

w>H2(X t )
. (1.16)

1.3 Option Pricing

In this section we address the problem of pricing derivatives with discounted payoff functions

that are not polynomials in the factor process. The polynomial framework no longer allows

to price such derivatives in closed form. However, we can accurately approximate the prices

using the available moments of the factor process.

1.3.1 Maximum Entropy Moment Matching

In all examples encountered below, we consider a derivative maturing at time T whose dis-

counted payoff is given by F (g (XT )), for some g ∈ Poln(E ), n ∈N, and some function F : R→R.

The time-t price πt of this derivative is given by

πt = Et
[
F

(
g (XT

)]
. (1.17)

If the conditional distribution of the random variable g (XT ) were available in closed form,

we could compute πt by integrating F over the real line. In general, however, we are only

given all the conditional moments of the random variable g (XT ). We thus aim to construct

an approximative probability density function f matching a finite number of these moments.

In a second step we approximate the option price through numerically integrating F with

respect to f . Given that a function is an infinite dimensional object, finding such a function f

is clearly an underdetermined problem and we need to introduce additional criteria to pin

down one particular function. A popular choice in the engineering and physics literature is to

choose the density function with maximum entropy:

max
f

−
∫

R
f (x) ln f (x)dx

s.t.
∫

R
xn f (x)dx = Mn , n = 0, . . . , N ,

(1.18)

where R ⊆R denotes the support and M0 = 1, M1, . . . , MN denote the first N +1 moments of

g (XT ). Jaynes (1957) motivates such a choice by noting that maximizing entropy incorporates
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the least amount of prior information in the distribution, other than the imposed moment

constraints. In this sense it is maximally noncommittal with respect to unknown information

about the distribution.

Straightforward functional variation with respect to f gives the following solution to this

optimization problem:

f (x) = exp

(
−

N∑
i=0

λi xi

)
, x ∈ R,

where the Lagrange multipliers λ0, . . . ,λN have to be solved from the moment constraints:

∫
R

xn exp

(
−

N∑
i=0

λi xi

)
dx = Mn , n = 0, . . . , N . (1.19)

If N = 0 and R = [0,1], then we recover the uniform distribution. For N = 1 and R = (0,∞)

we obtain the exponential distribution, while for N = 2 and R = R we obtain the Gaussian

distribution. For N ≥ 3, one needs to solve the system in (1.19) numerically, which involves

evaluating the integrals numerically.7 We refer to the existing literature for more details on

the implementation of maximum entropy densities, see e.g. Agmon et al. (1979), Mead and

Papanicolaou (1984), Rockinger and Jondeau (2002), and Holly et al. (2011).

Remark 1.3.1. By subsequently combining the law of iterated expectations and the moment

formula (1.3), we are also able to compute the conditional moments of the finite dimensional

distributions of X t . In particular, the method described in this section can also be applied to

price path-dependent derivatives whose discounted payoff depends on the factor process at a

finite number of future time points. One example of such products are the dividend options,

which will be discussed below.

7Directly trying to find the roots of this system might not lead to satisfactory results. A more stable numerical
procedure is obtained by introducing the following potential function: P (λ0, . . . ,λN ) = ∫

R exp(−∑N
i=0λi xi )dx +∑N

i=0λi Mi . This function can easily be shown to be everywhere convex (see e.g., Mead and Papanicolaou (1984))
and its gradient corresponds to the vector of moment conditions in (1.19). In other words, the Lagrange multipliers
can be found by minimizing the potential function P (λ0, . . . ,λN ). This is an unconstrained convex optimization
problem where we have closed form (up to numerical integration) expressions for the gradient and hessian, which
makes it a prototype problem to be solved with Newton’s method.
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1.3.2 Swaptions, Stock and Dividend Options

The time-t price πsw apti on
t of a payer swaption with expiry date T0, which gives the owner the

right to enter into a (spot starting) payer swap at T0, is given by:

π
sw apti on
t = 1

ζt
Et

[
ζT0

(
π

sw ap
T0

)+]
= 1

ζt
Et

[(
ζT0 −ζT0 P (T0,Tn)−K

n∑
k=1

δkζT0 P (T0,Tk )

)+]

= e−γ(T0−t )

q>H1(X t )
Et

[(
q>

(
Id−e(G1−γId)(Tn−T0) −K

n∑
k=1

δk e(G1−γId)(Tk−T0)

)
H1(XT0 )

)+]
,

where we have used (1.9) in the last equality. Observe that the discounted payoff of the

swaption is of the form in (1.17) with F (·) = max(·,0) and g is a polynomial of degree one in

XT0 .

The time-t price πstock
t of a European call option on the dividend paying stock with strike K

and expiry date T is given by

πstock
t = 1

ζt
Et

[
ζT (ST −K )+

]
= 1

ζt
Et

[
(LT +ζT S∗

T −ζT K )+
]

= e−γ(T−t )

q>H1(X t )
Et

[(
eγT LT +eβT w>H2(XT )−q>H1(XT )K

)+]
, (1.20)

where we have used (1.12) in the last equality. If (Lt , X t ) is jointly a polynomial jump-diffusion,

we can compute all moments of the random variable eγT LT +eβT w>H2(XT )−q>H1(XT )K

and proceed as explained in Section 1.3.1.

Remark 1.3.2. If one assumes independence between the processes Lt and X t , then the assump-

tion that (Lt , X t ) must jointly be a polynomial jump-diffusion is not necessarily needed. Indeed,

suppose Lt is specified such that we can compute F (k) = e−γ(T−t )Et [(eγT LT −k)+] efficiently. By

the law of iterated expectations we have

πstock
t = Et

[
F (g (XT ))

]
q>H1(X t )

,

where we define g (x) = −eβT w>H2(x)+ q>H1(x)K ∈ Pol2(E). The numerator in the above

expression is now of the form in (1.17) and we proceed as before.

Consider next a European call option on the dividends realized in [T1,T2], expiry date T2, and

strike price K . This type of options are actively traded on the Eurex exchange where the Euro
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Stoxx 50 dividends serve as underlying. The time-t price πdi v
t of this product is given by

πdi v
t = 1

ζt
Et

[
ζT2

(∫ T2

T1

Ds ds −K

)+]

= 1

ζt
Et

[(
ζT2 (CT2 −CT1 −K )

)+]
= e−γ(T2−t )

q>H1(X t )
Et

[(
q>H1(XT1 )

(
eβT2 p>H1(XT2 )−eβT1 p>H1(XT1 )−K

))+]
.

We can compute in closed form all the moments of the scalar random variable

q>H1(XT2 )
(
eβT2 p>H1(XT2 )−eβT1 p>H1(XT1 )−K

)
by subsequently applying the law of iterated expectations and the moment formula (1.3), see

Remark 1.3.1. We then proceed as before by finding the maximum entropy density correspond-

ing to these moments and computing the option price by numerical integration.

1.4 The Linear Jump-Diffusion Model

In this section we give a worked-out example of a factor process that fits in the polynomial

framework of Section 1.2. In the following, if x ∈Rd then diag(x) denotes the diagonal matrix

with x1, . . . , xd on its diagonal. If x ∈Rd×d , then we denote diag(x) = (x11, . . . , xdd )>.

The linear jump-diffusion (LJD) model assumes the following dynamics for the factor process

dX t = κ(θ−X t )dt +diag(X t−) (ΣdBt +dJt ) , (1.21)

where Bt is a standard d-dimensional Brownian motion, Σ ∈Rd×d is a lower triangular matrix

with non-negative entries on its main diagonal, Jt is a compensated compound Poisson

process with arrival intensity ξ≥ 0 and a jump distribution F (dz) that admits moments of all

orders.8 Both the jump amplitudes and the Poisson jumps are assumed to be independent

from the diffusive noise. The purely diffusive LJD specification (i.e., ξ = 0) has appeared

in various financial contexts such as stochastic volatility (Nelson (1990), Barone-Adesi et al.

(2005)), energy markets (Pilipović (1997)), interest rates (Brennan and Schwartz (1979)), and

Asian option pricing (Linetsky (2004), Willems (2019a)). The extension with jumps has not

received much attention yet.

The following proposition verifies that X t is indeed a polynomial jump-diffusion and also

shows how to choose parameters such that X t has positive components.

Proposition 1.4.1. Assume that matrix κ has non-positive off-diagonal elements, (κθ)i ≥ 0,

i = 1, . . . ,d, and F has support S ⊆ (−1,∞)d . Then for every initial value X0 ∈ (0,∞)d there

8For simplicity we assume a compound Poisson process with a single jump intensity, however this can be
generalized (see Filipović and Larsson (2017)).
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Chapter 1. A Term Structure Model for Dividends and Interest Rates

exists a unique strong solution X t to (1.21) with values in (0,∞)d . Moreover, X t is a polynomial

jump-diffusion.

We will henceforth assume that the assumptions of Proposition 1.4.1 are satisfied, as it allows

to derive parameter restrictions to guarantee Ct > 0, ζt > 0, and D t ≥ 0. In order to have

p>H1(x) > 0 and q>H1(x) > 0 for all x ∈ (0,∞)d , the vectors p and q must have non-negative

components with at least one component different from zero. The following proposition

introduces a lower bound on β such that D t ≥ 0.

Proposition 1.4.2. Let p = (p0, p1, . . . , pd )> ∈ [0,∞)1+d and denote p̃ = (p1, . . . , pd )>. Assume

that at least one of the p1, . . . , pd is non-zero, so that dividends are not deterministic. Without

loss of generality we assume p1, . . . , pk > 0 and pk+1, . . . , pd = 0, for some 1 ≤ k ≤ d. If we denote

by κ j the j -th column of κ, then we have D t ≥ 0 if and only if

β≥


max

{
p̃>κ1

p1
, . . . ,

p̃>κk

pk

}
if p0 = 0,

max

{
− p̃>κθ

p0
,

p̃>κ1

p1
, . . . ,

p̃>κk

pk

}
if p0 > 0.

(1.22)

The LJD model allows a flexible instantaneous correlation structure between the factors

through the matrix Σ. This is in contrast to non-negative affine jump-diffusions, a popular

choice in term structure modeling when non-negative factors are required, see, e.g., Duffie

et al. (2003). Indeed, as soon as one introduces a non-zero instantaneous correlation between

the factors of a non-negative affine jump-diffusion, the affine (and polynomial) property is

lost. Correlation between factors can be used to incorporate a dependence between the term

structures of interest rates and dividends, but also to model a dependence within a single term

structure. The LJD model also allows for state-dependent, positive and negative, jump sizes of

the factors. This again is in contrast to non-negative affine jump-diffusions.

The following proposition provides the eigenvalues of the corresponding matrix G2 under the

assumption of a triangular form for κ. Combined with Proposition 1.2.3, this gives sufficient

conditions to guarantee a finite stock price in the LJD model.

Proposition 1.4.3. If κ is a triangular matrix, then the eigenvalues of the matrix G2 are

0,−κ11, . . . ,−κdd ,

−κi i −κ j j + (ΣΣ>)i j +ξ
∫
S

zi z j F (dz), 1 ≤ i , j ≤ d .

The eigenvalues of G1 coincide with the values on the first line.
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1.5. Numerical Study

1.5 Numerical Study

In this section we calibrate a parsimonious LJD model specification to market data on weekly

intervals (Wednesday to Wednesday) from May 2010 until December 2015. All the data is

obtained from Bloomberg. On every day of the sample we minimize the squared difference

between the model implied and market observed prices. The initial values of the factor process

are included as free parameters, which brings the total number of parameters to be calibrated

to 12. For the optimization we use the Nelder-Mead simplex algorithm. We use the outcome

of every optimization as initial guess for the optimization on the next sample day.

1.5.1 Data Description

The dividend paying stock in our calibration study is the Euro Stoxx 50, the leading blue-chip

stock index in the Eurozone. The index is composed of fifty stocks of sector leading companies

from twelve Eurozone countries. We choose to focus on the European market because the

dividend futures contracts on the Euro Stoxx 50 are the most liquid in the world and have been

around longer than in any other market. Kragt et al. (2018) report an average daily turnover

of more than EUR 150 million for all expiries combined, with the majority of the liquidity in

the first five expiries. The Euro Stoxx 50 dividend futures contracts are traded on Eurex and

reference the sum of the declared ordinary gross cash dividends (or cash-equivalent, e.g. stock

dividends) on index constituents that go ex-dividend during a given calendar year, divided by

the index divisor on the ex-dividend day. Corporate actions that cause a change in the index

divisor are excluded from the dividend calculations, e.g. special and extraordinary dividends,

return of capital, stock splits, etc. One every day of the sample there are ten annual contracts

available for trading with maturity dates on the third Friday of December. For example, on

September 1 2015, the k-th to expire contract, k = 1, . . . ,10, references the dividends paid

between the third Friday of December 2014+k −1 and the third Friday of December 2014+k.

We interpolate adjacent dividend futures contracts using the approach of Kragt et al. (2018) to

construct contracts with a constant time to maturity of 1 to 9 years.9 In the calibration we use

the contracts with maturities in 1, 2, 3, 5, 7, and 9 years, the remaining ones will be used for an

out-of-sample exercise. Figure 1.1a plots the interpolated dividend futures prices with 1, 2, 5,

and 9 years to maturity.

Next to the Euro Stoxx 50 dividend futures contracts, there also exist exchanged traded options

on realized dividends. The maturity dates and the referenced dividends of the options coincide

with those of the corresponding futures contracts. At every calibration date, we consider the

Black (1976) implied volatility of an at-the-money (ATM) dividend option with 2 years to

maturity. Since dividend option contracts have fixed maturity dates, we interpolate the

implied volatility of the second and third to expire ATM option contract.10 Figure 1.1b plots

9We could also calibrate the model without doing any interpolation of the data. However, in order to make the
fitting errors of the sequential calibrations more comparable over time, we choose to interpolate all instruments
such that they have a constant time to maturity.

10We linearly interpolate the total implied variance σ2
Bl ackτ, where σBl ack denotes the implied volatility and τ
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Chapter 1. A Term Structure Model for Dividends and Interest Rates

the implied volatilities of the dividend options over time.

The term structure of interest rates is calibrated to European spot-starting swap contracts

referencing the six month Euro Interbank Offered Rate (Euribor) with tenors of 1, 2, 3, 5, 7,

10, and 20 years. Figure 1.1c plots the par swap rates of swaps with tenors of 1, 5, 10, and

20 years (other tenors have been left out of the plot for clarity). In addition, we also include

ATM swaptions with time to maturity equal to 3 months and underlying swap with tenor 10

years. These are among the most liquid fixed-income instruments in the European market.

The swaptions are quoted in terms of normal implied volatility and are plotted in Figure 1.1d.

We also consider Euro Stoxx 50 index options with ATM strike and a maturity of 3 months.

Their prices are quoted in terms of Black-Scholes implied volatility and plotted in Figure 1.1b

together with the dividend options implied volatility. Figure 1.1e plots the Euro Stoxx 50 index

level over time.

1.5.2 Model Specification

We propose a parsimonious four-factor LJD specification without jumps for X t = (X I
0t , X I

1t , X D
0t , X D

1t )>

dX I
0t = κI

0

(
X I

1t −X I
0t

)
dt

dX I
1t = κI

1(θI −X I
1t )dt + σI X I

1t dB1t

dX D
0t = κD

0

(
X D

1t −X D
0t

)
dt

dX D
1t = κD

1 (θD −X D
1t )dt + σD X D

1t

(
ρdB1t +

√
1−ρ2 dB2t

) , (1.23)

with ρ ∈ [−1,1], κI
0,κD

0 ,κI
1,κD

1 ,θI ,θD ,σI ,σD > 0, and X0 ∈ (0,∞)4. By Proposition 1.4.1, X t

takes values in (0,∞)4. Since we only include options with ATM strike in the calibration, we

choose not to include any jumps in the dynamics in order to keep the number of parameters

small. We define the cumulative dividend process as

Ct = eβt X D
0t ,

so that X D
0t and X D

1t are driving the term structure of dividends. The corresponding instanta-

neous dividend rate becomes

D t = eβt ((
β−κD

0

)
X D

0t +κD
0 X D

1t

)
.

Using Proposition 1.4.2, we guarantee D t ≥ 0 by requiring β≥ κD
0 . In order to further reduce

the number of parameters, we set β= κD
0 , so that D t = eβtβX D

1t and X D
0t no longer enters in

the dynamics of D t . We can thus normalize C0 = X D
00 = 1.

the maturity of the option.
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Figure 1.1 – Data used in the calibration exercise. Dates range from May 2010 until December
2015 at a weekly frequency. Figure 1.1a shows the interpolated Euro Stoxx 50 dividend futures
prices with a constant time to maturity of 1, 2, 5, and 9 years. The contracts with time to
maturity of 3, 4, and 7 years are not plotted for clarity. Figure 1.1c shows the par swap rate
of Euribor spot starting swaps with tenors 1, 5, 10, and 20 years. The swap rates with tenors
2, 3, 4, and 7 years are not plotted for clarity. Figure 1.1b shows the Black-Scholes and Black
implied volatility, respectively, of ATM Euro Stoxx 50 index and dividend options. The stock
option has a time to maturity of 3 months and the dividend option 2 years. Figure 1.1d shows
the normal implied volatility of swaptions with time to maturity 3 months and the underlying
swap has a tenor of 10 years. Figure 1.1e shows the level of the Euro Stoxx 50.
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Chapter 1. A Term Structure Model for Dividends and Interest Rates

The discount factor process is defined as

ζt = e−γt X I
0t ,

so that X I
0t and X I

1t are driving the term structure of interest rates. The corresponding short

rate becomes

rt = (γ+κI
0)−κI

0

X I
1t

X I
0t

,

which is unbounded from below and bounded above by γ+κI
0.11 This allows to capture the

negative interest rates that occur in the sample. Dividing ζt by a positive constant does not

affect model prices, so for identification purposes we normalize θI = 1.12

The matrix κ is upper triangular and given by

κ=


κI

0 −κI
0 0 0

0 κI
1 0 0

0 0 κD
0 −κD

0

0 0 0 κD
1

 .

The diagonal elements, which coincide with the eigenvalues, ofκ are all positive by assumption.

We can therefore interpret γ as the asymptotic zero-coupon bond yield andβ as the asymptotic

risk-neutral expected dividend growth rate. Using Propositions 1.2.3 and 1.4.3, we introduce

the following constraint on the model parameters in order to guarantee a finite stock price:

γ−β> max
{
0, (σI )2 −2κI

1 , (σD )2 −2κD
1 , σIσDρ−κI

1 −κD
1

}
.

The parameter ρ ∈ [−1,1] controls the correlation between interest rates and dividends. Specif-

ically, the instantaneous correlation between the dividend rate and the short rate is given by

d[D,r ]t√
d[D,D]t

√
d[r,r ]t

=−ρ, (1.24)

where [·, ·]t denotes the quadratic covariation. The minus sign in front of ρ appears because

the Brownian motion B1t drives the discount factor, which is negatively related to the short

rate.

11In the more general polynomial framework described in Section 1.2, it is possible to lower bound the short rate.
For example, one can use compactly supported polynomial processes, similarly as in Ackerer and Filipović (2019a).

12For a constant k > 0, the dynamics of (X̃ I
0t , X̃ I

1t ) := (k X I
0t ,k X I

1t ) is given by{
dX̃ I

0t = κI
0

(
X̃ I

1t − X̃ I
0t

)
dt

dX̃ I
1t = κI

1(θ̃I − X̃ I
1t )dt + σI X̃ I

1t dB1t
,

with θ̃I := kθI . The dynamics of (X̃ I
0t , X̃ I

1t ) is therefore of the same form as that of (X I
0t , X I

1t ).
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1.5.3 Calibration Results

Although the option pricing technique described in Seciton 1.3.1 works in theory for any finite

number of moment constraints, there is a computational cost associated with computing

the moments on the one hand, and solving the Lagrange multipliers on the other hand. In

the calibration, we use moments up to order four to price swaptions, dividend options, and

stock options. The number of moments needed for an accurate option price depends on the

specific form of the payoff function and on the model parameters. As an example, Figure

1.2 shows prices of a swaption, dividend option, and stock option for different number of

moments matched and using the calibrated parameters from an arbitrary day in the sample.

As a benchmark, we perform a Monte-Carlo simulation of the model. We discretize (1.23)

at a weekly frequency with a simple Euler scheme and simulate 105 trajectories.13 For all

three options, the maximum entropy method based on the first four moments produces an

approximation within the 95%-confidence interval of the Monte-Carlo simulation.

Table 1.1 shows the absolute pricing error over the sample period. Considering the relatively

small number of parameters, the fit is surprisingly good. Dividend futures have a mean

absolute relative error between 1 and 4%. The mean absolute error of the swap rates is in

the order of basis points for all tenors. The fit with the dividend option, swaption, and stock

option implied volatilities is close to perfect with a mean absolute pricing error of less than

three basis points. The Eurostoxx 50 index level is matched with a mean relative error of less

0.1%. Figure 1.3 shows the evolution of the errors over time. The largest errors for the dividend

futures occur in the 2011-2013 period, which corresponds to the peak of the European debt

crisis.

Figure 1.4a plots the calibrated γ, which is the yield on the zero-coupon bond with infinite

maturity. The plot shows a steady decline over time from approximately 6.5% to 1%. This

reflects the drop in interest rates over the sample period as a consequence of quantitative

easing by the European Central Bank. Figure 1.4b plots the calibrated β, which corresponds to

the asymptotic risk-neutral expected growth rate of the dividends. It is always substantially

lower than γ, which is required to keep the stock price finite. Figure 1.4c plots the calibrated ρ,

which in view of (1.24) determines the correlation between the term structure of interest rates

and dividends. Remarkably, ρ is positive over almost all of the sample period, with an average

of around 80%. In view of (1.24), this indicates a highly negative correlation between interest

rates and dividends. This negative correlation is a central ingredient in our model, since it

increases the volatility of the stock price relative to the dividends and interest rates. This allows

to reconcile the relatively high implied volatility of stock options with the relatively low implied

volatility of dividend options and swaptions. For example, the large drop in ρ at the beginning

of 2015 corresponds to the a period where the implied volatility of the stock option dropped

sharply, but the dividend option was unaffected. Figure 1.5 plots the instantaneous correlation

between St and rt . The stock price is affected by interest rates through two channels: 1)

13In addition, we also use the forward contract price as a control variate. This variance reduction technique
reduces the variance of the Monte-Carlo estimator approximately by a factor 4.
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Figure 1.2 – Maximum entropy option prices for different number of moments matched. The
swaption has maturity 3 months and underlying swap with tenor ten years, the dividend
option has maturity 2 years, and the stock option has maturity 3 months. All options have
ATM strike.
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Mean Median Std Max

Dividend futures (ARE in %)
1y 3.90 3.01 3.02 12.98
2y 1.12 0.93 1.00 5.42
3y 2.26 1.25 2.29 10.53
4y 2.59 1.54 2.41 10.80
5y 2.25 2.15 1.77 7.88
7y 1.18 0.76 1.10 5.34
9y 3.13 2.40 2.42 12.06

Interest rate swaps (AE in %)
1y 0.12 0.11 0.08 0.41
2y 0.08 0.06 0.07 0.40
3y 0.09 0.09 0.05 0.38
4y 0.08 0.09 0.04 0.35
5y 0.06 0.05 0.05 0.28
7y 0.10 0.09 0.06 0.27

10y 0.16 0.15 0.09 0.38
20y 0.16 0.13 0.13 0.61

Dividend option (AE in %) 0.04 0.01 0.10 0.78

Swaption (AE in bps) 0.01 0.01 0.02 0.10

Stock option (AE in %) 0.04 0.01 0.08 0.60

Index level (ARE in %) 0.10 0.07 0.12 1.09

Table 1.1 – Statistics on Absolute Error (AE) and Absolute Relative Error (ARE) of instruments
included in the calibration. The dividend option has a maturity of 2 years, the swaption has a
maturity of 3 months and underlying swap of 10 years, and the stock option has a maturity of
3 months. All options have ATM strike.
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Figure 1.3 – Absolute Error (AE) or Absolute Relative Error (ARE) of instruments included in
the calibration. The errors of the dividend futures and interest rate swaps are averaged across
all maturities. The dividend option has maturity 2 years, the swaption has maturity 3 months
and underlying swap of 10 years, and the stock option has maturity 3 months. All options have
ATM strike.
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Mean Median Std Max

Dividend futures (ARE in %)
6y 1.58 1.42 1.08 4.52
8y 1.98 1.45 1.66 9.60

Interest rate swaps (AE in %)
6y 0.07 0.06 0.05 0.25
8y 0.12 0.12 0.07 0.32

Dividend option (AE in %) 2.40 2.42 0.85 5.28

Swaption (AE in bps) 3.85 3.71 2.17 8.84

Stock option (AE in %) 1.81 1.51 1.65 15.83

Table 1.2 – Statistics on Absolute Error (AE) or Absolute Relative Error (ARE) of instruments
not included in the calibration. The dividend option has maturity 3 years, the swaption has
maturity 6 months and underlying swap of 10 years, and the stock option has a maturity of 6
months. All options have ATM strike.

through the discounting of future dividends and 2) through the correlation between dividends

and interest rates. Figure 1.5 shows a negative instantaneous correlation between St and rt ,

except on a handful of days where the second channel marginally offsets the first one.

Figure 1.6a plots the scaled initial value X D
10, which corresponds to the spot dividend rate

D0. Not surprisingly, it closely resembles the dynamics of the 1 year dividend futures price

in Figure 1.1a. The term structure of dividend futures is downward sloping over almost the

entire sample, which is reflected in the calibration by the fact that X D
10 is always well above

its long-term mean θD . Figure 1.6b plots the initial values X I
00, X I

10 of the interest rate factors,

and Figure 1.6c plots the corresponding model implied short rate r0. The increasing trend of

the factor process over time illustrates the increasingly exceptional low interest rate situation

in the Eurozone. Figure 1.6d plots the normal volatility σIκI
0

X I
10

X I
00

of the short rate, which looks

similar in shape to the swaption implied volatility in Figure 1.1d.

As an out-of-sample exercise, we compute model implied prices of instruments not included

in the calibration. Specifically, we consider dividend futures and interest rate swaps with

maturity in 6 and 8 years, a dividend option with maturity in 3 years, a swaption with maturity

in 6 months and underlying swap with tenor 10 years, and a stock option with maturity in

6 months. All options have ATM strike. The market and model implied prices are shown in

Figure 1.7. The errors are reported in Table 1.2. The errors of the dividend futures and the

interest rate swaps are comparable to their in-sample counterparts. There is however a clear

deterioration in the fit with option prices out-of-sample, especially dividend options. This

indicates that a richer volatility structure than the parsimonious one in (1.23) might be needed

to fit the term structure of option prices.
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Figure 1.4 – Calibrated model parameters.
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Figure 1.7 – Market and model implied prices of instruments not included in the calibration.
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1.5. Numerical Study
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Figure 1.8 – Stock duration implied by calibrated parameters.

Figure 1.8 plots the stock duration (1.15) implied by the calibrated model parameters. The

duration is quite stable over the calibration period, with an average around 24 years. Dechow

et al. (2004) and Weber (2018) construct a stock duration measure based on balance sheet

data and find an average duration of approximately 15 and 19 years, respectively, for a large

cross-section of stocks. Table 1.3 contains computation times for calculating option prices.

The bulk of the computation time is due to the computation of the moments of g (XT ) in (1.17).

The number of stochastic factors that drive a derivative’s payoff and the degree of moments

that have to be matched therefore strongly affect the computation time. We observe that all

timings of the maximum entropy method are well below the time it took to run the benchmark

Monte-Carlo simulation. The pricing of swaptions is much faster than the pricing of dividend

and stock options, especially as the number of moments increases. This is because the

discounted swaption payoff only depends on on the 2-dimensional process (X I
0t , X I

1t )>, while

the discounted payoff of the dividend and stock option depends on the entire 4-dimensional

process X t = (X I
0t , X I

1t , X D
0t , X D

1t )>. In addition, the discounted payoff of the dividend and stock

option is quadratic in the factors. Therefore, in order to compute moments up to degree N

of the discounted payoff, we need to compute moments up to degree 2N of the factors. The

computation of the dividend option is further complicated by the path-depedent nature of its

payoff. Indeed, the dividend option payoff depends on the realization of the factors at T1 and

T2. In order to compute the moments of ζT2 (CT2 −CT1 ), we have to apply the moment formula

twice. Hence, it involves computing a matrix exponential twice, which causes an additional

computation time compared to the stock option.
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N = 2 N = 3 N = 4 N = 5 N = 6 MC

Swaption 0.02 0.02 0.02 0.02 0.02 1.0114
Dividend option 0.03 0.06 0.14 0.41 1.24 25.88
Stock option 0.02 0.03 0.06 0.07 0.11 3.49

Table 1.3 – Computation times (in seconds) needed to price swaptions, dividend options,
and stock options using a) the maximum entropy method matching N moments and b)
Monte-Carlo simulation with 105 sample paths and weekly discretization. The swaption has a
maturity of 3 months and underlying swap of 10 years, the dividend option has a maturity of 2
years, and the stock option has a maturity of 3 months. All options have ATM strike.

1.6 Extensions

1.6.1 Seasonality

It is well known that some stock markets exhibit a strongly seasonal pattern in the payment of

dividends. For example, Figure 1.9 shows that the constituents of the Euro Stoxx 50 pay a large

fraction of their dividends between April and June each year.14 The easiest way to incorporate

seasonality in our framework is to introduce a deterministic function of time δ(t ) and redefine

the cumulative dividend process as:

Ct =
∫ t

0
δ(s)ds +eβt p>H1(X t ). (1.25)

The function δ(t ) therefore adds a deterministic shift to the instantaneous dividend rate:

D t = δ(t )+eβt p>(βId+G1)H1(X t ). (1.26)

In addition to incorporating seasonality, δ(t) can also be chosen such that the observed

dividend futures prices are perfectly matched. In Appendix A.1 we show how the bootstrapping

method described in Chapter 3 (cf., Filipović and Willems (2018)) can be used to find such a

function. We do not lose any tractability with the specification in (1.25), since the moments of

CT2 −CT1 can still easily be computed.

Alternatively, we could also introduce time dependence in the specification of X t . Doing so

in general comes at the cost of losing tractability, because we leave the class of polynomial

jump-diffusions. However, it is possible to introduce a specific type of time dependence such

that we do stay in the class of polynomial jump-diffusions. Define Γ(t ) as a vector of sine and

cosine functions whose frequencies are integer multiples of 2π (so that they all have period

14See e.g. Marchioro (2016) for a study of dividend seasonality in other markets.
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Figure 1.9 – Monthly dividend payments by Euro Stoxx 50 constituents (in index points) from
January 2009 until December 2016. Source: Euro Stoxx 50 DVP index, Bloomberg.

one)

Γ(t ) =



sin(2πt )

cos(2πt )
...

sin(2πK t )

cos(2πK t )

 ∈R2K , K ∈N, t ≥ 0.

The superposition

z0 + z>Γ(t ), (z0, z) ∈R1+2K ,

is a flexible function for modeling annually repeating cycles and is a standard choice for

pricing commodity derivatives (see e.g. Sørensen (2002)). In fact, from Fourier analysis we

know that any smooth periodic function can be expressed as a sum of sine and cosine waves.

Remark now that Γ(t ) is the solution of the following linear ordinary differential equation

dΓ(t ) = blkdiag

((
0 2π

−2π 0

)
, . . . ,

(
0 2πK

−2πK 0

))
Γ(t )dt .

The function Γ(t) can therefore be seen as a (deterministic) process of the form in (1.1) and

can be added to the factor process. For example, the specification for (X D
0t , X D

1t ) in (1.23) could
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be replaced by dX D
0t = κD

0

(
X D

1t −X D
0t

)
dt

dX D
1t = κD

1 (z0 + z>Γ(t )−X D
1t )dt + σD X D

1t

(
ρdB1t +

√
1−ρ2 dB2t

) ,

where the first factor mean-reverts around the second, and the second mean-reverts around

a time-dependent mean. The process X t does not belong to the class of polynomial jump-

diffusions, however the augmented process (Γ(t ), X t ) does.

In the calibration exercise in Section 1.5, we did not include any seasonal behavior in the

dividends because the instruments used in the estimation are not directly affected by season-

ality. Indeed, all the dividend derivatives used in the calibration reference the total amount

of dividends paid in a full calendar year. The timing of the dividend payments within the

year does therefore not play any role. In theory, the stock price should inherit the seasonal

pattern from the dividend payments, since it drops by exactly the amount of dividends paid

out. In practice, however, these price drops are obscured by the volatility of the stock price

since the dividend payments typically represent only a small fraction of the total stock price.

Dividend seasonality only plays a role for pricing claims on dividends realized over a time

period different from an integer number of calendar years.

1.6.2 Dividend Forwards

Dividend forwards, also known as dividend swaps, are the OTC equivalent of the exchange

traded dividend futures. The buyer of a dividend forward receives at a future date T2 the

dividends realized over a certain time period [T1,T2] against a fixed payment. Dividend

forwards differ from dividend futures because they are not marked to market on a daily basis.

The dividend forward price Dsw ap (t ,T1,T2), t ≤ T1 ≤ T2, is defined as the fixed payment that

makes the forward have zero initial value

D f wd (t ,T1,T2) = 1

P (t ,T2)

1

ζt
Et

[
ζT2 (CT2 −CT1 )

]
= D f ut (t ,T1,T2)+ Covt

[
ζT2 ,CT2 −CT1

]
P (t ,T2)ζt

.

If interest rates and dividends are independent, then we have D f wd (t ,T1,T2) = D f ut (t ,T1,T2).

However, if there is a positive (negative) dependence between interest rates and dividends,

then there is a convexity adjustment and the dividend forward price will be smaller (larger)

than the dividend futures price. The following proposition derives the dividend forward price

in the polynomial framework.

Proposition 1.6.1. The dividend forward price is given by

D f wd (t ,T1,T2) =
(
eβT2 w>

2 eG2(T2−t ) −eβT1 w>
1 eG2(T1−t )

)
H2(X t )

q>eG1(T2−t )H1(X t )
,
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where w1, w2 ∈RN2 are the unique coordinate vectors satisfying

w>
1 H2(x) = p>H1(x)q>eG1(T2−T1)H1(x), w>

2 H2(x) = p>H1(x)q>H1(x).

1.7 Conclusion

We have introduced an integrated framework designed to jointly price the term structures of

dividends and interest rates. The uncertainty in the economy is modeled with a multivariate

polynomial jump-diffusion. The model is tractable because we can calculate all conditional

moments of the factor process in closed form. In particular, we have derived closed form

formulas for prices of bonds, dividend futures, and the dividend paying stock. Option prices

are obtained by integrating the discounted payoff function with respect to a moment matched

density function that maximizes the Boltzmann-Shannon entropy. We have introduced the

LJD model, characterized by a martingale part that loads linearly on the factors. The LJD

model allows for a flexible dependence structure between the factors. We have assumed that

dividends are paid out continuously and ignored the possibility of default. These assumptions

are justified when considering derivatives on a stock index, but become questionable for

derivatives on a single stock. An interesting future research direction is therefore to extend our

framework with discrete dividend payments and default risk.
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2 Asian Option Pricing with Orthogonal
Polynomials

In this chapter we derive a series expansion for the price of a continuously sampled arithmetic

Asian option in the Black-Scholes setting. The expansion is based on polynomials that are

orthogonal with respect to the log-normal distribution. All terms in the series are fully explicit

and no numerical integration nor any special functions are involved. We provide sufficient

conditions to guarantee convergence of the series. The moment indeterminacy of the log-

normal distribution introduces an asymptotic bias in the series, however we show numerically

that the bias can safely be ignored in practice.

2.1 Introduction

An Asian option is a derivative contract with payoff contingent on the average value of the

underlying asset over a certain time period. Valuation of these contracts is not straightforward

because of the path-dependent nature of the payoff. Even in the standard Black and Scholes

(1973) setting the distribution of the (arithmetic) average stock price is not known. In this

chapter we derive a series expansion for the Asian option price in the Black-Scholes setting

using polynomials that are orthogonal with respect to the log-normal distribution. The terms

in the series are fully explicit since all the moments of the average price are known. We prove

that the series does not diverge by showing that the tails of the average price distribution

are dominated by the tails of a log-normal distribution. As a consequence of the well known

moment indeterminacy of the log-normal distribution (see e.g., Heyde (1963)), it is not theo-

retically guaranteed that the series converges to the true price. We show numerically that this

asymptotic bias is small for standard parameterizations and the real approximation challenge

lies in controlling the error coming from truncating the series after a finite number of terms.

There exists a vast literature on the problem of Asian option pricing. We give a brief overview

which is by no means exhaustive. One approach is to approximate the unknown distribution

of the average price with a more tractable one. Turnbull and Wakeman (1991), Levy (1992),

Ritchken et al. (1993), Li and Chen (2016) use an Edgeworth expansion around a log-normal

reference distribution to approximate the distribution of the arithmetic average of the ge-
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ometric Brownian motion. Ju (2002) and Sun et al. (2013) use a Taylor series approach to

approximate the unknown average distribution from a log-normal. Milevsky and Posner

(1998) use a moment matched inverse gamma distribution as approximation. Their choice is

motivated by the fact that the infinite horizon average stock price has an inverse gamma dis-

tribution. More recently, Aprahamian and Maddah (2015) use a moment matched compound

gamma distribution. Although these type of approximations lead to analytic option price

formulas, their main drawback is the lack of reliable error estimates. A second strand of the

literature focuses on Monte-Carlo and PDE methods. Kemna and Vorst (1990) propose to use

the continuously sampled geometric option price as a control variate and show that it leads to

a significant variance reduction. Fu et al. (1999) argue that this is a biased control variate, but

interestingly the bias approximately offsets the bias coming from discretely computing the

continuous average in the simulation. Lapeyre et al. (2001) perform a numerical comparison

of different Monte-Carlo schemes. Rogers and Shi (1995), Zvan et al. (1996), Vecer (2001, 2002),

Marcozzi (2003) solve the pricing PDE numerically. Another approach is to derive bounds

on the Asian option price, see e.g. Curran (1994), Rogers and Shi (1995), Thompson (2002),

and Vanmaele et al. (2006). Finally, there are several papers that derive exact representations

of the Asian option price. Yor (1992) expresses the option price as a triple integral, to be

evaluated numerically. Geman and Yor (1993) derive the Laplace transform of the option price.

Numerical inversion of this Laplace transform is however a delicate task, see e.g. Eydeland and

Geman (1995), Fu et al. (1999), Shaw (2002). Carverhill and Clewlow (1990) relate the density of

the discrete arithmetic average to an iterative convolution of densities, which is approximated

numerically through the Fast Fourier Transform algorithm. Later extensions and improve-

ments of the convolution approach include Benhamou (2002), Fusai and Meucci (2008), Černỳ

and Kyriakou (2011), and Fusai et al. (2011). Dufresne (2000) derives a series representation

using Laguerre orthogonal polynomials. Linetsky (2004) derives a series representation using

spectral expansions involving Whittaker functions.

The approach taken in this chapter is closely related to Dufresne (2000) in the sense that

both are based on orthogonal polynomial expansions. The Laguerre series expansion can be

shown to diverge when directly expanding the density of the average price, which is related to

the fact that the tails of the average price distribution are heavier than those of the Gamma

distribution. As a workaround, Dufresne (2000) proposes to work with the reciprocal of the

average, for which the Laguerre series does converge. The main downside of this approach is

that the moments of the reciprocal average are not available in closed form and need to be

calculated through numerical integration, which introduces a high computational cost and

additional numerical errors. Asmussen et al. (2016) use a different workaround and expand an

exponentially tilted transformation of the density of a sum of log-normal random variables

using a Laguerre series. They show that the exponential tilting transformation guarantees the

expansion to converge. However, a similar problem as in Dufresne (2000) arises: the moments

of the exponentially tilted density are not available in closed form and have to be computed

numerically. In contrast, our approach is fully explicit and does not involve any numerical

integration, which makes it very fast.
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2.2. The Distribution of the Arithmetic Average

Truncating our series after only one term is equivalent to pricing the option under the assump-

tion that the average price is log-normally distributed. The remaining terms in the series can

therefore be thought of as corrections to the log-normal distribution. This has a very similar

flavour to approaches using an Edgeworth expansion around the log-normal distribution

(cfr. Jarrow and Rudd (1982) and Turnbull and Wakeman (1991)). The key difference with

our approach is that the Edgeworth expansion can easily diverge because it lacks a proper

theoretical framework. In contrast, the series we present in this chapter is guaranteed to

converge, possibly with a small asymptotic bias. A thorough study of the approximation error

reveals that the asymptotic bias is positively related to the volatility of the stock price process

and the option expiry. We use the integration by parts formula from Malliavin calculus to

derive an upper bound on the approximation error.

The remaining of this chapter is structured as follows. Section 2.2 casts the problem and derives

useful properties about the distribution of the arithmetic average. Section 2.3 describes the

density expansion used to approximate the option price. In Section 2.4 we investigate the

approximation error. Section 2.5 illustrates the method with numerical examples. Section 2.6

concludes. All proofs can be found in Appendix B.3.

2.2 The Distribution of the Arithmetic Average

We fix a stochastic basis (Ω,F , (Ft )t≥0,Q) satisfying the usual conditions and let Q be the

risk-neutral probability measure. We consider the Black-Scholes setup where the underlying

stock price St follows a geometric Brownian motion:

dSt = r St dt +σSt dBt ,

where r ∈ R is the short-rate, σ > 0 the volatility of the asset, and Bt a standard Brownian

motion. For notational convenience we assume S0 = 1, which is without loss of generality. We

define the average price process as

At = 1

t

∫ t

0
Su du, t > 0.

The price at time 0 of an Asian option with continuous arithmetic averaging, strike K > 0, and

expiry T > 0 is given by

π= e−r T E
[
(AT −K )+

]
.

The option price can not be computed explicitly since we do not know the distribution of AT .

However, we can derive useful results about its distribution.

We start by computing all the moments of AT . Using the time-reversal property of a Brownian

motion, we have the following identity in law (cfr. Dufresne (1990), Carmona et al. (1997),

Donati-Martin et al. (2001), Linetsky (2004)):
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Lemma 2.2.1. The random variable T AT has the same distribution as the solution at time T of

the following SDE

dX t = (r X t +1)dt +σX t dBt , X0 = 0. (2.1)

The SDE in (2.1) defines a polynomial diffusion (see e.g., Filipović and Larsson (2016)) and is

a special case of the factor process (1.1) considered in the first chapter. Using the moment

formula in (1.3) we can therefore compute all the moments of AT in closed form, as shown in

the following proposition.

Proposition 2.2.2. If we denote by Hn(x) = (1, x, . . . , xn)>, n ∈N, then we have

E [Hn(AT )] = eGn T Hn(0),

where Gn ∈R(n+1)×(n+1) is the following lower bidiagonal matrix

Gn =


0
1
T r

. . .
. . .
n
T (nr + 1

2 n(n −1)σ2)

 . (2.2)

Given that the matrix exponential is a standard built-in function in most scientific computing

packages, the above moment formula is very easy to implement. There also exist efficient

numerical methods to directly compute the action of the matrix exponential, see e.g. Al-

Mohy and Higham (2011) and Caliari et al. (2014). An equivalent, but more cumbersome to

implement, representation of the moments can be found in Geman and Yor (1993).

The following proposition shows that AT admits a smooth density function g (x) whose tails

are dominated by the tails of a log-normal density function:

Proposition 2.2.3.

1. The random variable AT admits an infinitely differentiable density function g (x).

2. The density function g (x) has the following asymptotic properties:

g (x) =


O

(
exp

{
−3

2

log(x)2

σ2T

})
for x → 0,

O

(
exp

{
−1

2

log(x)2

σ2T

})
for x →∞.

40



2.3. Polynomial Expansion

2.3 Polynomial Expansion

Armed with the moments of AT , we now tackle the problem of pricing options on AT . In the

first chapter, we used a maximum entropy approach to find a density function satisfying the

moment constraints and we used numerical integration to compute option prices. In this

chapter, we employ the polynomial density expansion approach described by Filipović et al.

(2013), see also Ackerer et al. (2018), Ackerer and Filipović (2019b), and Carr and Willems

(2019) for similar applications. The advantage over a maximum entropy approach lies in the

fact that we do not have to do any numerical integration in this case.

Define the weighted Hilbert space L2
w as the set of measurable functions f on R with finite

L2
w -norm defined as

‖ f ‖2
w =

∫ ∞

0
f (x)2w(x)dx, w(x) = 1p

2πνx
exp

{
− (log(x)−µ)2

2ν2

}
, (2.3)

for some constants µ ∈R, ν> 0. The weight function w is the density function of a log-normal

distribution. The corresponding scalar product between two functions f ,h ∈ L2
w is defined as

〈 f ,h〉w =
∫ ∞

0
f (x)h(x)w(x)dx.

Since the measures associated with the densities g and w are equivalent, we can define the

likelihood ratio function ` such that

g (x) = `(x)w(x), x ∈ (0,∞).

Using Proposition 2.2.3 we now have the following result:

Proposition 2.3.1. If ν2 > 1
2σ

2T , then ` ∈ L2
w , i.e.

∫ ∞

0

(
g (x)

w(x)

)2

w(x)dx <∞.

Denote by Pol(R) the set of polynomials on R and by PolN (R) the subset of polynomials on R of

degree at most N ∈N. Since the log-normal distribution has finite moments of any degree, we

have PolN (R) ⊂ L2
w for all N ∈N. Let b0,b1, . . . ,bN form an orthonormal polynomial basis for

PolN (R). Such a basis can, for example, be constructed numerically from the monomial basis

using a Cholesky decomposition. Indeed, define the Hankel moment matrix M = (Mi j )0≤i , j≤N

as

Mi j = 〈xi , x j 〉w = eµ(i+ j )+ 1
2 (i+ j )2ν2

, i , j = 0, . . . , N , (2.4)

which is positive definite by construction. If we denote by M = LL> the unique Cholesky
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decomposition of M , then

(b0(x), . . . ,bN (x))> = L−1HN (x),

forms an orthonormal polynomial basis for PolN (R). Alternative approaches to build an

orthonormal basis are, for example, the three-term recurrence relation (see Lemma B.1.1 for

details) or the analytical expressions for the orthonormal polynomials derived in Theorem 1.1

of Asmussen et al. (2016).

Remark 2.3.2. The matrix M defined in (2.4) can in practice be non-positive definite due to

rounding errors. This problem becomes increasingly important for large N and/or large ν

because the elements in M grow very fast. Similarly, the moments of AT can also grow very

large, which causes rounding errors in finite precision arithmetic. In Appendix B.1 we describe

a convenient scaling technique that solves these problems in many cases.

Define the discounted payoff function F (x) = e−r T (x −K )+. Since F (x) ≤ e−r T x for all x ≥ 0,

we immediately have that F ∈ L2
w . Denote by Pol(R) the closure of Pol(R) in L2

w . We define the

projected option price π̄ = E[F̄ (AT )], where F̄ denotes the orthogonal projection of F onto

Pol(R) in L2
w . Elementary functional analysis gives

π̄= 〈F̄ ,`〉w = ∑
n≥0

fn`n , (2.5)

where we define the likelihood coefficients `n = 〈`,bn〉w and payoff coefficients fn = 〈F,bn〉w .

Truncating the series in (2.5) after a finite number of terms finally gives the following approxi-

mation for the Asian option price:

π(N ) =
N∑

n=0
fn`n , N ∈N. (2.6)

The likelihood coefficients are available in closed form using the moments of AT in Proposition

2.2.2:

(`0, . . . ,`N )> = L−1eGN T HN (0).

The payoff coefficients can also be derived explicitly, as shown in the following proposition.

Proposition 2.3.3. LetΦ be the standard normal cumulative distribution function. The payoff

coefficients f0, . . . , fN are given by

( f0, . . . , fN )> = e−r T L−1( f̃0, . . . , f̃N )>,

with

f̃n = eµ(n+1)+ 1
2 (n+1)2ν2

Φ(dn+1)−K eµn+ 1
2 n2ν2

Φ(dn), n = 0, . . . , N ,

dn = µ+ν2n − log(K )

ν
, n = 0, . . . , N +1. (2.7)
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Equivalently, we could also derive the approximation (2.6) by projecting `, instead of F , on

the set of polynomials. This leads to the interpretation of (2.6) as the option price one obtains

when approximating the true density g (x) by

g (N )(x) = w(x)
N∑

n=0
`nbn(x). (2.8)

The function g (N )(x) integrates to one by construction

∫ ∞

0
g (N )(x)dx =

N∑
n=0

`n〈bn ,b0 = 1〉w = `0 = 1,

where the last equality follows from the fact that g (x) integrates to one. However, it is not a

true probability density function since it is not guaranteed to be non-negative.

2.4 Approximation Error

The error introduced by the the approximation in (2.6) can be decomposed as

π−π(N ) = (π− π̄)+ (
π̄−π(N )) .

The second term is guaranteed to converge to zero as N →∞. In order for the first term to

vanish, we need F ∈ Pol(R) and/or ` ∈ Pol(R). It is well known (see e.g., Heyde (1963)) that

the log-normal distribution is not determined by its moments. As a consequence, the set

of polynomials does not lie dense in L2
w : Pol(R) ( L2

w . Hence, the fact that F,` ∈ L2
w is not

sufficient to guarantee that the first term in the error decomposition is zero. One of the goals

of this chapter is to quantify the importance of the first error term. In this section we therefore

investigate the error associated with projecting F and ` on the set of polynomials.

The L2
w -distances of F and ` to their respective orthogonal projections on PolN (R) are given

by

εF
N :=

∥∥∥∥∥F −
N∑

n=0
bn fn

∥∥∥∥∥
2

w

= ‖F‖2
w −

N∑
n=0

f 2
n ,

ε`N :=
∥∥∥∥∥`− N∑

n=0
bn`n

∥∥∥∥∥
2

w

= ‖`‖2
w −

N∑
n=0

`2
n .

The L2
w -norm of the payoff function F can be derived explicitly following very similar steps as

in the proof of Proposition 2.3.3:

‖F‖2
w = e−2r T

(
e2µ+2ν2

Φ(d2)−2K eµ+0.5ν2
Φ(d1)+K 2Φ(d0)

)
,

where d0,d1, and d2 are defined in (2.7). Hence, we can explicitly evaluate εF
N .
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The computation of ε`N is more difficult since ‖`‖2
w depends on the unknown density g (x).

The following lemma uses the integration by parts formula from Malliavin calculus to derive

a representation of g (x) in terms of an expectation, which can be evaluated by Monte-Carlo

simulation:

Lemma 2.4.1. For any x ∈R we have

g (x) = E
[(

1{AT ≥x} − c(x)
) 2

σ2

(
ST −S0

T A2
T

+ σ2 − r

AT

)]
, (2.9)

where c is any deterministic finite-valued function.

Remark 2.4.2. The purpose of the function c is to guarantee that the simulated g (x) actually

goes to zero for x → 0. Indeed, if we set c(x) ≡ 0, then g (0) can be different from zero due to the

Monte-Carlo error, which can lead to numerical problems when evaluating `(x). This can be

avoided by, for example, using the indicator function c(x) = 1x≤ξ, for some ξ> 0.

As a direct consequence of (2.9) we get the following expression for the L2
w -norm of the

likelihood ratio.

Corollary 2.4.3. The L2
w -norm of ` is given by

‖`‖2
w = E

 (1{AT ≥ÃT } − c(ÃT )) 2
σ2

(
ST −S0

T A2
T

+ σ2−r
AT

)
w(ÃT )

 ,

where the random variable ÃT is independent from all other random variables and has the

same distribution as AT .

This allows us to get an estimate for ε`N by simulating the random vector (ST , AT , ÃT ). In

Appendix B.2 we describe how to use the known density function of the geometric average as

a powerful control variate to significantly reduce the variance in the Monte-Carlo simulation.

Using the Cauchy-Schwarz inequality we also have the following upper bound on the approxi-

mation error in terms of the projection errors εF
N and ε`K .

Proposition 2.4.4. For any N ≥ 0 we have

|π−π(N )| ≤
√
εF

Nε
`
N (2.10)

This upper bound will therefore be small if F and/or ` are well approximated by a polynomial

in L2
w . Computing the upper bound involves a Monte-Carlo simulation to compute ε`N , which

makes it impractical to use as a decision rule for N . This bound should be seen as a more

conservative estimate of the approximation error compared to direct simulation of the option

price.
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2.5 Numerical Examples

In this section we compute Asian option prices using the series expansion in (2.6). The

orthonormal basis is constructed using the scaling technique described in Appendix B.1. We

set ν2 = 1
2σ

2T +10−4 so that Proposition 2.3.1 is satisfied and choose µ so that the first moment

of w matches the first moment of AT . As a consequence, we always have

`1 =
∫ ∞

0
b1(x)g (x)dx = 〈b0,b1〉w = 0.

Remark 2.5.1. Choosing µ and ν so that the first two moments of AT are matched is typically

not possible due to the restriction ν2 > 1
2σ

2T in Proposition 2.3.1. A similar problem arises in

the Jacobi stochastic volatility model of Ackerer et al. (2018), where options are priced using a

polynomial expansion with a normal density as weight function. Ackerer and Filipović (2019b)

address this problem by using a mixture of two normal densities as weight function. Specifying

w as a mixture of normal densities would not work in our setting since in this case ` ∉ L2
w .1

Instead, we can use a mixture of two log-normal densities:

w(x) = cw1(x)+ (1− c)w2(x),

where c ∈ [0,1] is the mixture weight, and w1 and w2 are log-normal density functions with

mean parameters µ1,µ2 ∈ R, and volatility parameters ν1,ν2 > 0, respectively. In order for

Proposition 2.3.1 to apply, it suffices to choose ν2
1 > 1

2σ
2T . The remaining parameters can then

be chosen freely and used for higher order moment matching.

We consider a set of seven parameterizations that has been used as a set of test cases in, among

others, Eydeland and Geman (1995), Fu et al. (1999), Dufresne (2000), and Linetsky (2004).

The first columns of Table 2.1 contain the parameter values of the seven cases. The cases are

ordered in increasing size of τ=σ2T . Remark that S0 6= 1 for all cases, however we normalize

the initial stock price to one and scale the strike and option price accordingly. The columns

LNS10, LNS15, LNS20 (Log-Normal Series) contain the option price approximations using

(2.6) for N = 10,15,20, respectively. The columns LS (Laguerre Series) and EE (Eigenvalue

Expansion) correspond to the series expansions of Dufresne (2000) and Linetsky (2004), re-

spectively. The column VEC shows the prices produced by the PDE method of Vecer (2001,

2002) using a grid with 400 space points and 200 time points.2 The last column contains the

95% confidence intervals of a Monte-Carlo simulation using the geometric Asian option price

as a control variate, cfr. Kemna and Vorst (1990). We simulate 2×105 price trajectories with a

time step of 10−3 and approximate the continuous average with a discrete average.

1Instead of approximating the distribution of AT , it is tempting to approximate the distribution of log(AT )
and rewrite the discounted payoff function accordingly. In this case, one can show that specifying w as a normal
density function gives a series approximation that converges to the true price. The catch is that we do not know
the moments of log(AT ), only those of AT , and hence the terms in the series can not be computed explicitly.

2This grid choice corresponds to the one used in Vecer (2001). By significantly increasing the number of space
points in the grid, the PDE method can achieve the same accuracy as Linetsky (2004). However, doing so makes
the method very slow.
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Case r σ T S0 LNS10 LNS15 LNS20 LS EE VEC MC 95% CI

1 .02 .10 1 2.0 .05601 .05600 .05599 .0197 .05599 .05595 [.05598 , .05599]
2 .18 .30 1 2.0 .2185 .2184 .2184 .2184 .2184 .2184 [.2183 , .2185]
3 .0125 .25 2 2.0 .1723 .1722 .1722 .1723 .1723 .1723 [.1722 , .1724]
4 .05 .50 1 1.9 .1930 .1927 .1928 .1932 .1932 .1932 [.1929 , .1933]
5 .05 .50 1 2.0 .2466 .2461 .2461 .2464 .2464 .2464 [.2461 , .2466]
6 .05 .50 1 2.1 .3068 .3062 .3061 .3062 .3062 .3062 [.3060 , .3065]
7 .05 .50 2 2.0 .3501 .3499 .3499 .3501 .3501 .3500 [.3494 , .3504]

Table 2.1 – Price approximations for different parameterizations and different methods. The
strike price is K = 2 for all cases. The column LNSX refers to the method presented in this
chapter with the first 1+X terms of the series, LS to Dufresne (2000), EE to Linetsky (2004),
VEC to Vecer (2001, 2002), and MC 95% CI to the 95% confidence interval of the Monte-Carlo
simulation.

For the first three cases we find virtually identical prices as Linetsky (2004), which is one

of the most accurate benchmarks available in the literature. Remarkably, our method does

not face any problems with the very low volatility in case 1. Many other existing method

have serious difficulty with this parameterization. Indeed, the series of Dufresne (2000) does

not even come close to the true price, while Linetsky (2004) requires 400 terms to obtain an

accurate result. The price of Vecer (2001, 2002) is close to the true price, but still outside

of the 95% Monte-Carlo confidence interval. Methods based on numerical inversion of the

Laplace transform of Geman and Yor (1993) also struggle with low volatility because they

involve numerical integration of highly oscillating integrands (see e.g., Fu et al. (1999)). When

using exact arithmetic for case 1, our series with 20+1 terms agrees with the 400 term series of

Linetsky (2004) to eight decimal places. When using double precision arithmetic, which was

used for all numerical results in this section, the price agrees to four decimal places due to

rounding errors. For cases 4 to 7, the LNS prices are slightly different from the EE benchmark.

However, they are still very close and with the exception of case 4, they are all within the 95%

confidence interval of the Monte-Carlo simulation.

Figure 2.1 plots the LNS price approximations for N ranging from 0 to 20, together with the

Monte-Carlo price and the corresponding 95% confidence intervals as a benchmark.3 We

observe that the series converges very fast in all cases. In fact, truncating the series at N = 10

would give almost identical results. In theory, N can be chosen arbitrarily large, however in

finite precision arithmetic it is inevitable that rounding errors start playing a role at some point.

Remark that the prices for N = 0 and N = 1 are identical, which is a consequence of the fact

that the auxiliary distribution matches the first moment of AT . Figure 2.2 plots the simulated

true density g (x) and the approximating densities g (0)(x), g (4)(x), and g (20)(x) defined in (2.8).

The true density was simulated using (B.3) in Appendix B.2, which is an extension of (2.9) using

the density of the geometric average as a powerful control variate. Note that g (0)(x) = w(x),

3Figure 2.1 and 2.2 only show cases 1, 3, 5, and 7. The plots for the other cases look very similar and are available
upon request.
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Figure 2.1 – Asian option price approximations in function of polynomial approximation order
N . The cases correspond to different parameterizations shown in Table 2.1.
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Figure 2.2 – Simulated true density function g (x) and approximated density functions g (n)(x),
n = 0,4,20. The cases correspond to different parameterizations shown in Table 2.1.

since b0(x) = `0 = 1. We can see that the approximating densities approach the true density as

we include more terms in the expansion. In Figure 2.2a and 2.2b the approximation g (20)(x)

is virtually indistinguishable from the true density. However, in Figure 2.2c and 2.2d there

remains a noticeable difference between g (x) and g (20)(x). This is consistent with the pricing

errors we observed earlier in Table 2.1.

The above results indicate that for τ not too high, the LNS provides a very accurate approx-

imation of the option price. This is not entirely surprising since τ determines the volatility

parameter of the auxiliary log-normal density w , and hence how fast the tails of w go to zero.

Loosely speaking, when τ is small, projecting the payoff or likelihood ratio function on the

set of polynomials in L2
w is almost like approximating a continuous function on a compact

interval by polynomials. However, when τ becomes larger, the tails of w decay slowly and it

becomes increasingly difficult to approximate a function with a polynomial in L2
w . In other

words, for larger values of τ, the moment indeterminacy of the log-normal distribution starts

playing a more prominent role. A natural question is therefore whether this poses a problem

for option pricing purposes. In Figure 2.3a we fix T = 1 and plot for a range of values for σ the
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Figure 2.3 – Squared relative approximation error for different values of σ. Dashed lines
correspond to the 95% confidence intervals from the Monte-Carlo simulation. Parameters:
T = 1, r = 0.05, S0 = K = 2.

squared relative error

SRE =
(
π̂MC −π(20)

π(20)

)2

,

where π̂MC denotes the Monte-Carlo price estimate. The error starts to becomes noticeable

around σ= 80%, where
p

SRE ≈ 0.5%. For higher values of σ the error increases sharply. In

Figure 2.3b we plot a more conservative estimate of the squared relative error using the upper

bound in (2.10). This plot shows that the upper bound is only significantly different from zero

for σ larger than approximately 70%. Figure 2.4 gives a more detailed insight in the extreme

case of σ= 100%. Although the LNS series converges relatively fast, it is clear from Figure 2.4a

that it does not converge to the true price. The reason, as already mentioned before, is that

the payoff and likelihood ratio functions are not accurately approximated by polynomials in

the L2
w -norm, as indicated by the projection errors in Figure 2.4c and 2.4d. We would obtain

similar results by keeping σ fixed and varying the maturity T , since the crucial parameter for

the asymptotic pricing error is τ=σ2T . As a rule of thumb, we suggest to use the LNS method

when τ≤ 0.5.

The main advantage of the method proposed in this chapter is the ease of of its implemen-

tation and the computation speed. All terms in the series are fully explicit and involve only

simple linear algebra operations. Table 2.2 shows the computation times of the LNS with

N ∈ {10,25,20}, as well as the computation times of the benchmark methods.4 The LNS com-

4For the LS, all symbolic calculations related to the moments of the reciprocal of the average have been pre-
computed using Matlab’s Symbolic Math Toolbox. We use 15+1 terms in the series, a higher number of terms
leads to severe rounding problems in double precision arithmetic. For the EE, the integral representation (16) in
Linetsky (2004) has been implemented instead of the series representation (15). The implementation of the series
representation involves partial derivatives of the Whittaker function with respect to its indices. These derivatives
are not available in Matlab’s Symbolic Math Toolbox and numerical finite difference approximations did not give
accurate results. All numerical integrations are performed using Matlab’s built-in function integral. For case 1,
the numerical integration in the EE did not finish in a reasonable amount of time. For the VEC method, we use
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Figure 2.4 – Visualization of the projection bias in the extreme volatility case. Dashed lines
correspond to the 95% confidence intervals from the Monte-Carlo simulation. Parameters:
σ= 1, T = 1, r = 0.05, S0 = K = 2.
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2.6. Conclusion

Case r σ T S0 LNS10 LNS15 LNS20 LS EE VEC MC

1 .02 .10 1 2.0 .006 .008 .009 .930 - .277 6.344
2 .18 .30 1 2.0 .002 .002 .003 .666 2.901 .345 5.518
3 .0125 .25 2 2.0 .002 .002 .002 .635 3.505 .374 12.138
4 .05 .50 1 1.9 .001 .002 .003 .785 3.172 .404 6.819
5 .05 .50 1 2.0 .001 .002 .002 .701 2.768 .404 5.432
6 .05 .50 1 2.1 .001 .001 .002 .687 2.719 .398 5.452
7 .05 .50 2 2.0 .002 .002 .004 .594 2.202 .438 11.699

Table 2.2 – Computation times in seconds. The column LNSX refers to the method presented
in this chapter with the first 1+ X terms of the series, LS to Dufresne (2000), EE to Linetsky
(2004), VEC to Vecer (2001, 2002), and MC to the Monte-Carlo simulation.

putation times are all in the order of miliseconds. Although the EE is very accurate, it comes at

the cost of long computation times (in the order of several seconds) caused by the expensive

evaluations of the Whittaker function. The LS does not require calls to special functions,

however the method is slowed down by the numerical integration involved in computing the

moments of the reciprocal of the average. The implementation of both the EE and LS require

the use of software that can handle symbolic mathematics, in contrast to the implementation

of the LNS. The VEC method is the fastest among the benchmarks considered in this chapter,

but still an order of magnitude slower than the LNS.

2.6 Conclusion

We have presented a series expansion for the continuously sampled arithmetic Asian option

using polynomials that are orthogonal with respect to the log-normal distribution. The terms

in the series are fully explicit and do not require any numerical integration or special functions,

which makes the method very fast. We have shown that the series does not diverge if the

volatility of the auxiliary log-normal distribution is sufficiently high. However, the series

is not guaranteed to converge to the true price. We have investigated this asymptotic bias

numerically and found that its magnitude is related to the size of τ=σ2T .

There are several extensions to our method. First of all, we can handle discretely monitored

Asian options using exactly the same setup, but replacing the moments of the continuous

average with those of the discrete average. The latter are easily computed using iterated

expectations. Secondly, we only look at fixed-strike Asian options in this chapter. Since

the process
(
St ,

∫ t
0 Su du

)
is jointly a polynomial diffusion, we can compute all of its mixed

moments. Our method can then be extended to price floating-strike Asian options by using

a bivariate log-normal as auxiliary distribution. Finally, we can define the auxiliary density

w as a mixture of log-normal densities, as studied in Ackerer and Filipović (2019b). Using a

Prof. Jan Vecer’s Matlab implementation, which can be downloaded at http://www.stat.columbia.edu/~vecer/
asiancontinuous.m. All computations are performed on a desktop computer with an Intel Xeon 3.50GHz CPU.
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mixture allows to match higher order moments, which can lead to a faster convergence of the

approximating series.

52



3 Exact Smooth Term Structure Estima-
tion

We present a non-parametric method to estimate the discount curve from market quotes

based on the Moore–Penrose pseudoinverse. The discount curve reproduces the market

quotes perfectly, has maximal smoothness, and is given in closed-form. The method is easy

to implement and requires only basic linear algebra operations. We provide a full theoretical

framework as well as several practical applications.

3.1 Introduction

In financial models it is often assumed that we can observe an initial term structure of zero-

coupon bond prices for the continuum of maturities, also known as the discount curve.

In practice, however, zero-coupon bonds are rarely traded and the discount curve has to

be derived from prices of actively traded fixed-income instruments such as coupon bonds,

interest rate swaps or futures. Since the discount curve is an infinite-dimensional object, we

need an interpolation method to complete the information obtained from the finite number

of observed market instruments. Broadly speaking we can divide term structure estimation

methods in two categories: parametric methods and non-parametric methods.

Parametric methods impose a particular functional form for (parts of) the discount curve and

calibrate the parameters by minimizing the pricing error. Examples of single-piece functions

that are defined over the entire maturity domain include the seminal work of Nelson and Siegel

(1987) and Svensson (1994). These are typically low-dimensional parametric forms and are

preferred for more qualitative studies where the general shape of the curve is more important

than the exact values (e.g. monetary policy in central banks). Single-piece functional forms

are however too restrictive for institutions involved in trading as they prefer to have a discount

curve that perfectly reproduces market quotes in order to mark to market their books within

a single arbitrage-free valuation framework. Rather than specifying a single function for

the entire maturity spectrum, polynomial spline methods impose a piecewise polynomial

specification. The first application in term structure estimation goes back to McCulloch (1971,

1975) where quadratic and cubic splines are fitted directly to the discount function using
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ordinary least squares regressions. Steeley (1991) proposed the use of B-splines to overcome

ill-conditioned matrices encountered in McCulloch (1971, 1975). We refer to Hagan and West

(2006) for a survey of several other spline based algorithms. A close fit to market data can

be achieved by increasing the number of knot points in the spline. The choice of both the

number and the positions of the knot points remains, however, completely ad hoc.

A second class of estimation methods are the non-parametric approaches. Instead of imposing

a particular functional form on (a transformation of) the discount curve, these methods

minimize a norm that is related to the smoothness and goodness-of-fit of the curve. Several

definitions of smoothness have been considered in the literature. Delbaen and Lorimier (1992)

and Frishling and Yamamura (1996) minimize the integrated squared first derivative of the

forward curve, arguing that forward rates over various harizons should not vary too much.

Adams and Van Deventer (1994) and Lim and Xiao (2002), among others, use the integrated

squared second order derivative of the forward curve as a measure of smoothness. Both

approaches lead to polynomial splines for the optimal forward curve. Manzano and Blomvall

(2004), Andersen (2007), and Kwon (2002) consider combinations of these two measures

and show that this results in so called hyperbolic or tension splines. All of the above papers

smooth a transformation of the discount curve (typically the forward curve) and numerical

routines have to be invoked to solve for the optimal curve. Exceptions are the works of Delbaen

and Lorimier (1992) and Adams and Van Deventer (1994) for the special case where the set

of benchmark instruments consists solely of zero-coupon bonds. In reality, however, zero-

coupon bonds are hardly ever liquidly traded and the discount curve has to be estimated

based on coupon bearing bonds or swaps rates.

In this chapter we introduce an easy to use non-parametric method based on the Moore–

Penrose pseudoinverse. We search in an infinite-dimensional Hilbert function space for a

discount curve that has minimal norm and exactly prices a benchmark set of linear fixed-

income instruments, e.g. FRAs, swaps, or coupon bonds. The norm is related to the integrated

squared second derivative of the discount curve. The optimal discount curve is given by a cubic

spline with knot points positioned exactly at the cashflow dates of the benchmark instruments.

Because we directly smooth the discount curve function, the optimal curve is given in closed

form and requires only simple linear algebra calculations. The methodology in this chapter

closely resembles that of Lorimier (1995), Adams and Van Deventer (1994), Tanggaard (1997),

Andersen (2007), and others, however they all focus on estimating transformations of the

discount curve (e.g., the forward curve). To the best of our knowledge, this work is the first

to present a fully worked out treatment of non-parametrically estimating the discount curve

itself. We argue that our method is a valuable and easy to use alternative to more complex

numerical algorithms to find a smooth discount curve.

Our method is designed to exactly reproduce the prices of benchmark instruments. This

is common practice when the benchmark instruments are liquid Libor related instruments

(e.g., swaps). The prices are typically taken to be the mid-prices. When building discount

curves using coupon bonds, bid-ask ranges are often wider and a discount curve is in principle
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allowed to produce any price that lies within this range. We show how to optimally pick the

prices within bid-ask ranges such that the smoothness of the discount curve is maximally

increased. In case the benchmark instruments are coupon bonds, we show that this reduces

to solving a convex quadratic programming problem with linear inequality constraints.

As highlighted initially by Vasicek and Fong (1982) and Shea (1984), fitting a polynomial spline

directly to the discount curve need not lead to a positive nor a monotonically non-increasing

discount curve. Barzanti and Corradi (1998) use tension splines where the tension in the

spline is increased manually until problematic behaviour is avoided. Chiu et al. (2008), Laurini

and Moura (2010), and Fengler and Hin (2015), among others, impose shape constraints on

the B-splines used to represent the discount function. The discount curve produced by our

method is not guaranteed to be positive or monotonic non-increasing, however we did not

find this to be a problem in the numerical examples we have explored. We develop a finite-

dimensional counterpart of our method for which positivity and monotonicity constraints

can easily be incorporated by numerically solving a convex quadratic programming problem

with linear inequality constraints.

The remainder of this chapter is structured as follows. Section 3.2 casts the term structure

estimation problem and shortly reviews the steps taken in a traditional bootstrap. Section 3.3

presents the theory behind our proposed method. In Section 3.4 we discuss the sensitivity of

the optimal discount curve with respect to the input prices. In particular this section shows

how to optimally choose prices from a bid-ask range. Section 3.5 illustrates our method with

market data. Section 3.6 contains a finite-dimensional equivalent of our method. Section 3.7

concludes. All proofs can be found in Appendix C.

3.2 Estimation Problem

Suppose today is time 0 and denote by p = (p1, . . . , pn)> the observed prices of n fixed-income

instruments. Denote by 0 ≤ x1 < ·· · < xN the union of all the cashflow dates of these instru-

ments and call C = (ci j ) the corresponding n ×N cashflow matrix.1 If instrument i does not

have a cashflow at time x j , then we simply set ci j = 0. The information contained in these n

instruments about the discount curve can be summarized by a linear system as follows:

C d = p, (3.1)

with d = (g (x1), . . . , g (xN ))> and where g (x) denotes the price of a zero-coupon bond maturing

in x years. If C were an invertible square matrix, then there would exist a unique solution to

this system: d =C−1p. In reality, however, we typically have many more cashflow dates than

instruments (n ¿ N ) that we can use for the estimation. In other words, the linear system

C d = p is under-determined and there exist many discount vectors d that satisfy the relation

1By cashflow dates we mean every date that is relevant for the pricing of the instrument.
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in (3.1).2 The first problem that arises is therefore which of the admissible discount vectors

should be chosen. Second, once we have chosen a particular admissible vector d , we still face

an interpolation problem to find g (x) for x ∈ (0, x1) and x ∈ (xi−1, xi ), i = 2, . . . , N .

Bootstrapping is a common practice among trading desks to construct a discount curve from

a limited number of carefully selected liquid market instruments such that the resulting curve

perfectly reproduces the prices of the instruments used in the estimation. There is no unique

bootstrapping method and it is likely that there are at least as many methods as there are

trading desks in the world. In this section we give a very brief description of some methods, for

a more detailed overview of the most popular (single-curve) bootstrapping methods used in

practice we refer to Hagan and West (2006, 2008). In general, one can a priori impose an explicit

parametric form for the discount curve: g (x) = g (x; z) for some parameter z with dimension

less than or equal to the number of observed instruments n. The pricing system (3.1) then

becomes a system of possibly nonlinear equations in z:

C (g (x1; z), . . . , g (xN ; z))> = p.

Assuming that the gradients ∇z g (x j , z), j = 1, . . . , N , are linearly independent, the inverse

mapping theorem asserts that this system is no longer (locally) under-determined with respect

to the parameter z. If it admits a solution z∗ then it is (locally around z∗) unique. The choice of

a suitable parametric form g (x; z) is however not straightforward. One possibility is to choose

a polynomial of degree n −1, also known as the Lagrange polynomial. Although this function

is very smooth and flexible enough to satisfy n constraints, it demonstrates strong oscillatory

behavior. A standard solution to this so called ‘roller coaster’ effect is to describe the discount

curve by splines, i.e. piece-wise low-dimensional polynomials. There are many different ways

to specify the functional form of a spline and the position of the knot points, see for example

McCulloch (1971, 1975), Steeley (1991) and Adams (2001). It is important to note that in all

these cases the spline solution is imposed a priori and both the number and the position of

the knot points are chosen manually. The method we present in the next section also produces

a spline. However, it remains fully non-parametric in the sense that the spline is the outcome

of a proper optimization problem which determines the optimal number and position of the

knot points.

3.3 Pseudoinverse on Hilbert Spaces

Instead of first finding a discount vector d = (g (x1), . . . , g (xN ))> satisfying (3.1) and in a second

step interpolating these discount factors to a continuous discount curve, we now directly

search for a discount curve in a convenient Hilbert function space that is optimal in the sense

of having minimal norm. The optimal discount curve is explicitly calculated through the

pseudoinverse of a continuous linear map.

2Assuming the system is not inconsistent, i.e. instruments that can be replicated as a linear combination of
other instruments must have the same price (no-arbitrage).
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We fix a finite time to maturity horizon τ̄ large enough to contain all cashflow dates. We define

the Hilbert space of discount curves H which consists of real functions g : [0, τ̄] → R with

absolutely continuous first derivative and norm given by

‖g‖2
H = 〈g , g 〉H = g (0)2 + g ′(0)2 +

∫ τ̄

0
g ′′(x)2 dx. (3.2)

This norm serves as a measure of smoothness for the discount curve, which approximately

captures the ‘flatness’ of the corresponding forward curve. The forward rate is the rate one

can lock in today on a riskless loan over a future time period. Unless there are specific reasons

to believe otherwise, the forward rate should not fluctuate too much from one period to the

next. If we denote by F (x, y) the simple forward rate over a future time period [x, y], 0 < x < y ,

then we have for small h > 0:

g ′′(x) ≈ g (x −h)−2g (x)+ g (x +h)

h2

= g (x)

h

(
F (x −h, x)+ 1

h

(
1

1+hF (x, x +h)
−1

))
≈ g (x)

h

(
F (x −h, x)−F (x, x +h)

)
.

Hence, by minimizing the curvature of the discount curve, we are approximately minimizing

the difference between subsequent simple forward rates.

For any τ ∈ [0, τ̄] we now define the linear functionalΦτ : H →R which evaluates the discount

curve at τ:

Φτ(g ) = g (τ). (3.3)

By the Riesz representation theorem there exists a unique element φτ ∈ H such that for any

g ∈ H we have

Φτ(g ) = 〈φτ, g 〉H .

The following lemma gives an explicit expression for this element.

Lemma 3.3.1. The linear functionalΦτ on H can be uniquely represented by the elementφτ ∈ H

given by

φτ(x) = 1− 1

6
(x ∧τ)3 + 1

2
xτ (2+x ∧τ) ,

where we write x ∧τ := min(x,τ).

Let us define the linear map M : H →Rn by

M g =C (Φx1 (g ), . . . ,ΦxN (g ))>, (3.4)

where C is just as before the n×N cashflow matrix. We henceforth assume that C has full rank.

This is without loss of generality. Indeed, if C did not have full rank, we would be including

redundant instruments in our estimation as they can be replicated by linear combinations
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of other instruments. For example, two coupon bonds with different principal but otherwise

identical characteristics impose the same constraints on the discount curve (assuming their

prices are consistent with the law of one price).

We now find the discount curve with minimal H-norm that matches all benchmark quotes.

That is, we solve the following infinite-dimensional optimization problem:

min
g∈H

1
2‖g‖2

H

s.t. M g = p.
(3.5)

The solution of (3.5) is an explicit piecewise cubic function, as shown in the following theorem:

Theorem 3.3.2. There exists a unique solution g∗ ∈ H to the optimization problem (3.5) and it

is given as

g∗(x) = (M+p)(x) = z>φ(x), (3.6)

where M+ : Rn → H denotes the Moore–Penrose pseudoinverse of M, z = C> (
C AC>)−1

p,

φ(x) = (φx1 (x), . . . ,φxN (x))>, and A is the positive definite N × N -matrix with components

Ai j =φxi (x j ) =φx j (xi ).

We have therefore explicitly constructed the discount curve x 7→ g∗(x) that exactly replicates

the prices p of the instruments with cashflows C and moreover it is the smoothest curve to

do so among all real functions with absolutely continuous first derivative in the sense that it

minimizes the norm in (3.2). The corresponding instantaneous forward curve f ∗ : [0, τ̄] →R is

given explicitly by:

f ∗(x) =− d

dx
ln(g∗(x)) =−z>φ′(x)

z>φ(x)
,

where φ′(x) = (φ′
x1

(x), . . . ,φ′
xN

(x))> and φ′
x j

(x) = x j − 1
2 (x ∧x j )2 +x j (x ∧x j ).

Remark 3.3.3. Gourieroux and Monfort (2013) characterize dynamic term structure models

in which the zero-coupon bond prices are of the form P (t ,T ) = z>
t a(T − t), where zt is a set

of N ≥ 1 linearly independent stochastic factors and a : R+ → RN is a deterministic function.

They show that the absence of arbitrage opportunity for a self-financed portfolio of zero-coupon

bonds implies that there must exist a matrix M such that a′(τ) = M a(τ). The function φ =
(φx1 , . . . ,φxN )> does not satisfy this requirement and hence (3.6) is not consistent with a dynamic

term structure model. Similarly, the Nelson and Siegel (1987) and Svensson (1994) specifications

are also not arbitrage-free in a dynamic sense, see e.g. Filipović (2000).

The terms g (0)2 and g ′(0)2 are included in (3.2) to guarantee the definiteness of the norm.

Since the discount curve must start at face value, we henceforth impose g (0) = 1 by setting

x1 = 0, p1 = 1, c11 = 1, and c1 j = ci 1 = 0 for all i , j 6= 1. Hence, minimizing g (0)2 does not

influence the optimal curve since it is fixed in the constraints.
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The term g ′(0)2 leads to a minimization of the instantaneous short rate. If this is not desirable,

we can easily fix the short rate to an exogenously specified value r ∈ R. Indeed, note that

ψ(x) = x is the Riesz representation of the linear functional Ψ(g ) = g ′(0) in H . We now add

Ψ(g ) =−r as an additional constraint in (3.5) and find (analogously as in the proof of Theorem

3.3.2) the following unique solution:

g∗(x) = z̃>φ̃(x), (3.7)

with z̃ = C̃> (
C̃ ÃC̃>)−1

p̃, C̃ = blkdiag(C ,1), p̃ =
(

p

−r

)
, φ̃(x) =

(
φ(x)

ψ(x)

)
, and Ã is the positive

definite (N +1)× (N +1) matrix with components

Ãi j =


Ai j i ≤ j ≤ N

xi i < j = N +1

1 i = j = N +1

.

3.4 Discount Curve Sensitivites

The optimal discount curve (3.6) depends on the benchmark quotes through the vector

z =C>(C AC>)−1p. Depending on the type of benchmark instruments used, their quotes can

enter through the price vector p or through the cashflow matrix C . For example, prices of

coupon bonds enter through p, while swap rates and forward rates enter through C . The

results in this section are derived for the curve in (3.6), however the results for the optimal

curve (3.7) with constrained short rate directly follow by replacing p,C , z, A,φwith p̃,C̃ , z̃, Ã, φ̃,

respectively.

3.4.1 Portfolio Hedging

The sensitivities of the optimal discount curve g∗(x; p,C ) with respect to the entries of p and

C are most easily expressed using directional derivatives:

Lemma 3.4.1.

1. The directional derivative Dp g∗ · v ∈ H of the optimal discount curve g∗ in (3.6) along a

vector v ∈Rn is given by

(
Dp g∗ · v

)
(x) =

n∑
i=1

vi
∂g∗

∂pi
(x) = c(v)>φ(x),

with c(v) =C> (
C AC>)−1

v ∈RN .

2. The directional derivative DC g∗ ·m ∈ H of the optimal discount curve g∗ in (3.6) along a
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matrix m ∈Rn×N is given by

(
DC g∗ ·m

)
(x) =

n∑
i=1

N∑
j=1

mi j
∂g∗

∂Ci j
(x) = f (m)>φ(x),

with f (m) = [
m>−C>(C AC>)−1(C Am>+m AC>)

]
(C AC>)−1p ∈RN .

These sensitivities can be used in practice to hedge a portfolio of securities against changes in

the discount curve. Consider for example a bond portfolio which generates fixed cashflows

ck in τk years, τk ∈ [0, τ̄], k = 1, . . . ,K , and denote its current value by Vpor t . Suppose that all

benchmark instruments are coupon bonds.3 A change ∆pi in the price of the i -th benchmark

instrument leads to the following change ∆Vpor t in the value of the bond portfolio:

∆Vpor t =
n∑

i=1

∂Vpor t

∂pi
∆pi =

n∑
i=1

K∑
k=1

ck
(
Dp g∗ ·ei

)
(τk )︸ ︷︷ ︸

=:qi

∆pi ,

where ei ∈Rn denotes the i -th canonical basis vector. Hence, we can hedge the bond portfolio

against changes in the prices of the benchmark coupon bonds by purchasing −qi units of the

i -th benchmark coupon bond. Andersen (2007) points out that such a hedging strategy only

works well in practice if the discount curve construction produces ‘local perturbations’. For

example if bond i has a short maturity, then (Dp g∗ ·ei )(x) should be zero for large x in order

to avoid hedging long-term cashflows with short-term instruments. In general, cubic splines

are known to perform poor with this respect and the above hedging strategy might therefore

give unreasonable results with the discount curve construction presented in this chapter.

Hedging against individual small movements of the benchmark prices is however not necessar-

ily consistent with the way interest rates move over time. Indeed, there is abundant empirical

evidence that interest rate movements are attributable to a small number of stochastic factors

often called level, slope, and curvature (see e.g., Litterman and Scheinkman (1991)). An al-

ternative to hedging against changes in each benchmark price is therefore to directly hedge

against interest rate movements that are deemed most likely. Specifically, we first build a

discount curve g∗(x) and then consider functional shifts s j (x), j = 1, . . . , J , to, for example, the

corresponding forward curve f ∗(x). The sensitivity of Vpor t =Vpor t ( f ∗) to these functional

shifts can be expressed through the following functional derivative:

dVpor t ( f ∗+εs j )

dε

∣∣∣∣∣
ε=0

=−
K∑

k=1
ck g∗(τk )

∫ τk

0
s j (x)dx, j = 1, . . . J .

Next, we construct a hedging portfolio such that the functional derivatives of the hedged

portfolio are equal to (or as close as possible to) zero.4 The main advantage of this approach is

3A similar hedging strategy can be built if the benchmark instruments have quotes that enter through C using
the directional derivative with respect to C from Lemma 3.4.1.

4We refer to section 6.4.2-6.4.3 in Andersen and Piterbarg (2010) for more details on this hedging approach.

60



3.4. Discount Curve Sensitivites

that the method used to construct g∗ does not play a major role in determining the hedging

strategies (see e.g., Hagan and West (2006)). If J = 1 and s1(x) ≡ 1, then we have a standard

duration hedge. In order to hedge more than only parallel shifts in the forward curve, a popular

choice in practice for s j are piecewise triangular functions around a pre-defined set of so

called key rate horizons 0 ≤ ξ1 < ·· · < ξJ ≤ τ̄:

s1(x) =


ξ2−x
ξ2−ξ1

x ∈ [ξ1,ξ2]

0 el se
, s J (x) =


x−ξJ−1

ξJ−ξJ−1
x ∈ [ξJ−1,ξJ ]

0 el se

s j (x) =


x−ξ j−1

ξ j−ξ j−1
x ∈ [ξ j−1,ξ j ]

ξ j+1−x
ξ j+1−ξ j

x ∈ [ξ j ,ξ j+1]

0 el se

, j = 2, . . . , J −1.

3.4.2 Optimal Market Quotes

So far we have assumed that market quotes are observed without any error. In practice,

however, we do not observe a single price but rather a bid-ask range. Any price in this range

can be used to estimate the discount curve and this flexibility can be used to increase the

smoothness of the discount curve.

The following lemma provides an explicit expression for the norm of the optimal discount

curve we have derived before (i.e., for the case with equality constraints):

Lemma 3.4.2. The squared norm of the optimal discount curve g∗ in (3.6) is given by

‖g∗‖2
H = p>(C AC>)−1p.

We first assume that the benchmark instruments are coupon bonds for which we observe

bid prices pb ∈ Rn and ask prices pa ∈ Rn . We are now interested in solving the following

optimization problem:
min
p∈Rn

p>(C AC>)−1p

s.t. pb ≤ p ≤ pa

. (3.8)

Remark that (C AC>)−1 ∈ Rn×n is a positive definite matrix. Indeed, C is assumed to have

full rank and A is positive definite as a consequence of the definiteness of the inner product.

Hence, (3.8) is a convex quadratic programming problem where the unique solution p∗ can

easily be found using standard techniques. The optimal discount curve is then given by

g∗ = M+p∗.

Assume now that the benchmark instruments have quotes that enter through C . This is for

example the case for swaps and FRAs. Denote the bid and ask quotes byαb andαa , respectively.
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The optimization problem now becomes:

min
α∈Rn

p>(C AC>)−1p

s.t. αb ≤α≤αa

. (3.9)

This problem is more difficult to solve than (3.8) because it is not necessarily a convex pro-

gramming problem. However, we are able to compute the gradient explicitly:

Lemma 3.4.3. The partial derivative with respect to αi of the squared norm of the optimal

discount curve in (3.6) is given by:

∂‖g∗‖2
H

∂αi
=−2p>(C AC>)−1 ∂C

∂αi
AC>(C AC>)−1p,

where ∂C
∂αi

denotes the componentwise derivative of C with respect to the quote αi .

We can therefore use a wide range of gradient-based constrained optimization algorithms. A

similar idea was used by Kwon (2002), however his approach requires a numerical evaluation

of the gradient at every iteration step. In contrast, we have the gradient in closed form which

can be beneficial for both the computation time and accuracy of the numerical procedure.

3.5 Numerical Examples

In this section we discuss three practical illustrations of the pseudoinverse method using

different types of benchmark instruments.

3.5.1 Coupon Bonds

In this example we estimate the discount curve from prices of coupon bonds. Specifically, we

consider data from 4th of September 1996 on nine UK government bonds with semi-annual

coupons and times to maturity varying approximately from 2 months to 12 years, see Table 3.1

for details. The vector p and the first ten columns (out of 104+1) of the matrix C are shown

below:

p =



1
103.82
106.04
118.44
106.28
101.15
111.06
106.24
98.49

110.87



, C =



1 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 105 0 0 0 0 0 0 . . .
0 0 0 0 0 0 4.875 0 0 0 0 . . .
0 6.125 0 0 0 0 0 0 0 0 6.125 . . .
0 0 0 0 0 0 0 0 4.5 0 0 . . .
0 0 0 3.5 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 4.875 0 0 0 . . .
0 0 0 0 0 4.25 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 3.875 0 . . .
0 0 4.5 0 0 0 0 0 0 0 0 . . .



.

The first row and column of C and p correspond to the restriction g (0) = 1. Figure 3.1a shows
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Coupon Next Maturity Dirty price
(%) coupon date (pi )

Bond 1 10 15/11/96 15/11/96 103.82
Bond 2 9.75 19/01/97 19/01/98 106.04
Bond 3 12.25 26/09/96 26/03/99 118.44
Bond 4 9 03/03/97 03/03/00 106.28
Bond 5 7 06/11/96 06/11/01 101.15
Bond 6 9.75 27/02/97 27/08/02 111.06
Bond 7 8.5 07/12/96 07/12/05 106.24
Bond 8 7.75 08/03/97 08/09/06 98.49
Bond 9 9 13/10/96 13/10/08 110.87

Table 3.1 – Market data on UK gilts, 04/09/1996. Source: James and Webber (2000).

the continuously compounded yield curve and the instantaneous forward curve obtained

from the pseudoinverse method presented in Section 3.3. The yield curve looks very smooth,

but the forward curve exhibits oscillatory behavior that might be undesirable.

Next, we assume that the observed coupon bond prices are mid prices and we assume a

relative bid-ask spread of 0.50% for every bond price. We use the approach outlined in Section

3.4.2 to find a discount curve which produces coupon bond prices within the bid-ask range.

Figure 3.1b shows the resulting yield curve and instantaneous forward curve. We observe a

significant increase in smoothness for the forward curve. Remark also the decrease of the

short rate from approximately 5.5% to 4% as a consequence of the g ′(0)2 term in the norm

definition (3.2). As explained at the end of Section 3.3 this can be avoided by fixing the short

rate to an exogenous constant, for example r = 5.5%. The result of this estimation is shown in

Figure 3.1c and Figure 3.1d for the original and optimal prices, respectively.

3.5.2 Libor Single Curve

In this example we use the same curve for both discounting cashflows as well as projecting

forward rates. We consider data from the US money and swap markets as of 1st of October

2012, as shown in Table 3.2. More specifically we look at three USD Libor rates (overnight, 1M

and 3M) with maturity dates S = {S1,S2,S3}, five futures contracts on the 3M Libor and nine

par swap rates with annual paying fixed leg. The futures contracts are quoted as:

100(1−F f utur es(Ti−1,Ti )), i = 1, . . . ,7,

with F f utur es(Ti−1,Ti ) denoting the futures rate and T = {T0,T1, . . . ,T7} the corresponding

reset/settlement dates. We ignore any convexity adjustments and take the futures rate as the

simple forward rate to keep the estimation procedure model-independent.5 Finally we denote

5The convexity adjustments are only a fraction of basis points because of the short maturities, so they do not
make much qualitative difference.
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(b) Optimal prices
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(c) Original prices, fixed r = 5.50%.
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(d) Optimal prices, fixed r = 5.50%.

Figure 3.1 – Zero-coupon yield and instantaneous forward rate from the discount curve
estimated using prices of UK government bonds.
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Maturity date Market quote (%) Instrument

S1 = 04/10/2012 0.1501 o/n Libor
S2 = 05/11/2012 0.2135 1M Libor
S3 = 03/01/2013 0.3553 3M Libor
T1 = 20/03/2013 99.685 Futures
T2 = 19/06/2013 99.675 Futures
T3 = 18/09/2013 99.655 Futures
T4 = 18/12/2013 99.645 Futures
T5 = 19/03/2014 99.620 Futures
U2 = 03/10/2014 0.361 Swap
U3 = 05/10/2015 0.431 Swap
U4 = 03/10/2016 0.564 Swap
U5 = 03/10/2017 0.754 Swap
U7 = 03/10/2019 1.174 Swap

U10 = 03/10/2022 1.683 Swap
U15 = 04/10/2027 2.192 Swap
U20 = 04/10/2032 2.405 Swap
U30 = 03/10/2042 2.579 Swap

Table 3.2 – Market quotes for Libor rates, futures prices and swap rates from the USD market
as of 1st of October 2012. All contracts are spot (T +2) starting. Source: Bloomberg.

by U = {U1, . . . ,U30} the cashflow dates of the swaps.

Traditional bootstrap

We first perform a traditional bootstrap where we interpolate all the missing simple spot and

swap rates linearly. Remark first the overlapping cashflow dates of the different instruments:

S1 < S2 < T0 < S3 < T1 < T2 < T3 <U1 < T4 < T5 <U2 < ·· · <U30. (3.10)

The prices of the discount bonds g (S1), g (S2), and g (S3) are readily obtained from the given

Libor rates. At the reset date of the first futures contract, we obtain the simple spot rate L(T0)

by linear interpolation of the last two Libor rates:

L(T0) = wL(S2)+ (1−w)L(S3), w = δ(T0,S3)

δ(S2,S3)
,

where δ(x, y) denotes the day count fraction between dates x and y . The discount factor

g (T0) is now recovered from the interpolated simple spot rate L(T0). Treating the futures rates

as simple forward rates, we have all the information needed to compute g (Ti ), i = 1, . . . ,5,

iteratively from:

P (Ti ) = g (Ti−1)

1+δ(Ti−1,Ti )F (Ti−1,Ti )
.
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For the swaps we exploit again the overlapping cashflow dates to obtain g (U1) by linearly

interpolating between L(T3) and L(T4). The swap rate Rsw ap (U1) of the swap with just one

cashflow at U1 can be calculated from the discount bond price g (U1). The remaining discount

factors are now obtained by iterated use of the formula:

g (Ui ) =
1−Rsw ap (Ui )

∑i−1
j=1δ(U j−1,U j )g (U j )

1+Rsw ap (Ui )δ(Ui−1,Ui )
, i = 2, . . . ,30,

where all the missing swap rates are obtained by linear interpolation.

Finally, we obtain the discount curve for the continuum of maturities by linearly interpolating

the zero-coupon bond yields between cashflow dates. Figure 3.2a and Figure 3.2b show the

zero-coupon bond yields and the instantaneous forward rates6. Although the zero-coupon

yield curve looks fairly smooth, the same cannot be said of the instantaneous forward curve.

This well known ‘sawtooth’-behaviour of the forward curve is a consequence of the linear

interpolation. Other interpolation techniques may lead to improved smoothness of the

forward curve, however choosing the correct technique remains somewhat arbitrary and can

lead to a significant increase in complexity.

Pseudoinverse

The pseudoinverse method that we introduced in Section 3.3 does not require any ad hoc in-

terpolation. We only have to construct the cashflow matrix and the smoothness maximization

criterion uses the remaining degrees of freedom in an optimal way. The cashflow matrix C in

this example has dimension 18×40, one row for every observed instrument and an additional

row to impose g (0) = 1. The columns represent all the dates relevant in the valuation of the

instruments.

The Libor rates L(Si ), i = 1,2,3, can be represented as instruments that have price 1 today

and cashflow 1+δ(0,Si )L(Si ) at time Si . The simple forward rates F (Ti−1,Ti ), i = 1, . . . ,5, can

be seen as instruments with price 0 today, cashflow −1 at time Ti−1 and another cashflow of

1+δ(Ti−1,Ti )F (Ti−1,Ti ) at time Ti . For the swaps with maturity Ui , i = 2,3,4,5,7,10,15,20,30,

we recall the definition of the par swap rate Rsw ap (Ui ):

1− g (Ui ) = Rsw ap (Ui )
i∑

j=1
δ(U j−1,U j )g (0,U j )

where we set U0 := 0. We see that this is equivalent to an instrument with price 1 today, cashflow

δ(U j−1,U j )Rsw ap (Ui ) at time U j , j = 1, . . . , i −1, and a final cashflow 1+δ(Ui−1,Ui )Rsw ap (Ui )

at time Ui . The vector p and the first 13 columns of the matrix C therefore take the following

form:

6We have approximated the instantaneous forward rates using first order finite differences on a fine grid.
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(a) Bootstrap.
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(b) Bootstrap, zoom.
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(c) Pseudoinverse.
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(d) Pseudoinverse, zoom.

Figure 3.2 – Zero-coupon yield and instantaneous forward rate from the discount curve
estimated using USD Libor swaps and futures.
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p =





1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1

, C =

0 S1 S2 T0 S3 T1 T2 T3 U1 T4 T5 U2 U3 · · ·



1 0 0 0 0 0 0 0 0 0 0 0 0 · · · g (0)=1

0 c11 0 0 0 0 0 0 0 0 0 0 0 · · · Li bor

0 0 c22 0 0 0 0 0 0 0 0 0 0 · · · Li bor

0 0 0 0 c34 0 0 0 0 0 0 0 0 · · · Li bor

0 0 0 −1 0 c45 0 0 0 0 0 0 0 · · · Futur es

0 0 0 0 0 −1 c56 0 0 0 0 0 0 · · · Futur es

0 0 0 0 0 0 −1 c67 0 0 0 0 0 · · · Futur es

0 0 0 0 0 0 0 −1 0 c79 0 0 0 · · · Futur es

0 0 0 0 0 0 0 0 0 −1 c8,10 0 0 · · · Futur es

0 0 0 0 0 0 0 0 c98 0 0 c9,11 0 · · · Sw ap

0 0 0 0 0 0 0 0 c10,8 0 0 c10,11 c10,12 · · · Sw ap

0 0 0 0 0 0 0 0 c11,8 0 0 c11,11 c11,12 · · · Sw ap

0 0 0 0 0 0 0 0 c12,8 0 0 c12,11 c12,12 · · · Sw ap

0 0 0 0 0 0 0 0 c13,8 0 0 c13,11 c13,12 · · · Sw ap

0 0 0 0 0 0 0 0 c14,8 0 0 c14,11 c14,12 · · · Sw ap

0 0 0 0 0 0 0 0 c15,8 0 0 c15,11 c15,12 · · · Sw ap

0 0 0 0 0 0 0 0 c16,8 0 0 c16,11 c16,12 · · · Sw ap

0 0 0 0 0 0 0 0 c17,8 0 0 c17,11 c17,12 · · · Sw ap

.

In Figure 3.2c and Figure 3.2d we have plotted zero-coupon yields and instantaneous forward

rates. We observe that the pseudoinverse method produces a substantially smoother forward

curve than the one in Figure 3.2a. Note that fixing the short rate to an exogenous constant

would not change much here since we have included the overnight Libor rate as a benchmark

instrument.

As an example of a hedging strategy, we consider a payer swap maturing in 13 years. We want

to hedge this swap with the nine receiver swaps used in our estimation through the hedging

approach outlined in Section 3.4.1 with triangular functional shifts to the forward curve.

Following Andersen and Piterbarg (2010) we choose to use key rate horizons ξ j , j = 1, . . . , J ,

spaced three months apart over the interval [0, τ̄]. Note that J > 9, which means we cannot

build a perfect hedge but only an approximate one (in a least squares sense). The hedging

quantities are shown in Figure 3.3. The hedging strategy consists roughly in combining the

swaps with maturity in 10 and 15 years. This makes sense intuitively since these are the two

hedging instruments whose cashflows resemble the one of the 13 year swap the most.

3.5.3 Libor Multi Curve

After the credit crisis of 2008 it became clear that using one and the same curve for both

discounting and projecting cashflows was no longer realistic. Today’s market standard is to

use overnight indexed swaps (OIS) to extract a risk-free curve for the purpose of discounting

cashflows and to use separate curves to project forward rates with different tenors. We show

in this example how the pseudoinverse method can easily be used to extract all these different

curves from market data.

Table 3.3 shows quotes of four different swap instruments from the eurozone market as of
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Figure 3.3 – Hedging a 13 year swap using the nine swaps used in the estimation as hedging
instruments.

4th of November 2013. The first is an OIS that pays fixed and receives floating tied to Eonia.

Eonia swaps with maturity longer than one year have annual payment frequency on both legs

while those with maturity less than one year only have a cashflow at maturity. The second

swap instrument pays fixed and receives floating tied to 6M Euribor. The 6M Euribor swap has

annual payments on its fixed leg and semi-annual on the floating leg. The remaining two swap

instruments are basis swaps that swap cashflows tied to floating rates. The first one swaps 3M

Euribor against 6M Euribor and the second one 1M Euribor against 6M Euribor. These swaps

are quoted in terms of the spread that has to be added to the shorter leg such that the two legs

have identical present value.

The curve gOI S used for discounting is extracted from the OIS quotes. This can be done

with the pseudoinverse method in exactly the same way as in the single curve example. The

corresponding yield and instantaneous forward curve are plotted in Figure 3.4a. The 6M

Euribor swap and the two basis swaps have payment frequencies that are multiples of one

month. In the following we therefore consider a time grid T = {t1, . . . , tN } where ti and ti−1,

i = 1, . . . , N , are one month apart and N = 30×12.

We start with the instruments that swap the 6M Euribor against a fixed rate. These are quoted

in terms of the swap rate K that equates the value of the fixed and the floating leg:

K
n∑

i=1
δ(t12(i−1), t12i )gOI S(t12i ) =

2n∑
i=1

δ(t6(i−1), t6i )gOI S(t6i )F6(t6i ),
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Tenor Eonia-Fix (%) 6M-Fix (%) 3M-6M (bps) 1M-3M (bps) Cash (%)

o/n 0.092
1m 0.102 0.129
3m 0.109 0.227
6m 0.108 0.342
9m 0.121
1y 0.130 0.386 10.85 8.90
2y 0.205 0.482 12.15 10.90
3y 0.334 0.656 12.85 12.60
4y 0.533 0.870 13.00 13.70
5y 0.742 1.097 12.95 14.20
6y 0.952 1.306 12.70 14.30
7y 1.145 1.503 12.35 14.20
8y 1.328 1.677 11.90 14.00
9y 1.479 1.833 11.40 13.80

10y 1.625 1.973 10.90 13.60
11y 1.757 2.095
12y 1.872 2.199
15y 2.124 2.418 8.85 11.80
20y 2.317 2.570 7.40 10.10
25y 2.385 2.618 6.50 8.90
30y 2.406 2.625 5.90 8.10

Table 3.3 – Mid swap rates for Eonia swaps, 6M Euribor swaps, 3M-6M basis swaps, 1M-6M
basis swaps and Euribor cash rates as of 04/11/2013. Source: Bloomberg.
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(a) Zero-coupon yield and instantaneous forward curve corresponding to the OIS
discount curve gOI S .
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(b) Forward curves with tenors one, three, and six months.

Figure 3.4 – Multicurve term structure estimation from Euribor and Eonia swaps with pseu-
doinverse method.
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where t0 = 0, t12n is the maturity of the swap, and Fk (ti ) denotes the k-month simple for-

ward rate with reference period [ti−k , ti ]. With our estimate for the OIS discount curve we

are able to value the fixed leg of this swap. Notice that the right-hand side is a linear func-

tion of the unknown 6M forward rates with known coefficients. In other words, using our

methodology from before we are able to extract the smoothest possible 6M forward curve

that exactly fits the quoted swap rates. The pricing system therefore becomes C f = p, where

f = (F6(t6), . . . ,F6(tN ))>, the price vector p takes the form

p =
(

F6(t6), Kδ(t0, t12)gOI S(t12), . . . , K
30∑

i=1
δ(t12(i−1), t12i )gOI S(t12i )

)>

and the first three rows of the ‘cashflow’ matrix C for become:

C =


1 0 0 0 0 · · ·

δ(t0, t6)gOI S (t6) δ(t6, t12)gOI S (t12) 0 0 0 · · ·
δ(t0, t6)gOI S (t6) δ(t6, t12)gOI S (t12) δ(t12, t18)gOI S (t18) δ(t18, t24)gOI S (t24) 0 · · ·

...
...

...
...

...
. . .

 .

Next to the quotes of the swaps, we also included here the given 6M Euribor spot rate F6(t6) by

adding the row (1,0, . . . ,0) to the matrix C and the rate to the vector p.

In a next step we use the 6M forward curve to extract the 3M forward curve from the 3M-6M

tenor basis swaps. Basis swaps are quoted in terms of the spread S that has to be added to the

leg with the highest frequency in order to equate the value of both legs:

2n∑
i=1

δ(t6(i−1), t6i )gOI S(t6i )F6(t6i )

=
4n∑

i=1
δ(t3(i−1), t3i )gOI S(t3i )(F3(t3i )+S).

Rearranging terms we get:

2n∑
i=1

δ(t6(i−1), t6i )gOI S(t6i )F6(t6i )−S
4n∑

i=1
δ(t3(i−1), t3i )gOI S(t3i )

=
4n∑

i=1
δ(t3(i−1), t3i )gOI S(t3i )F3(t3i ).

The left-hand side can be evaluated with the discount and 6M forward curve we have extracted

earlier and the right-hand side is a linear function of the unknown 3M forward rates. We can

therefore use the pseudoinverse method to extract the 3M forward curve. Once again we can

also easily include the spot 3M Euribor rate F3(t3). In a very similar fashion we also obtain

the 1M forward curve from the 1M-3M basis swap quotes, where we also include the spot 1M

Euribor rate F1(t1). All three curves are plotted in Figure 3.4b.

Remark 3.5.1. Although Eonia swaps are quoted up to 60 years of maturity, it is sometimes
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argued that the Eonia swaps with maturity longer than 1 year are not sufficiently liquid to be

used in the construction of the OIS discount curve. The remaining part of the curve is instead

often calculated from OIS-3M basis swaps, which are more actively traded. This does however

create a circular dependency between the OIS discount curve, the 3M forward and 6M forward

curves. The easy extension of the pseudoinverse method to the multi-curve world was mainly

due to the fact that we can estimate all the curves one by one. If we have to estimate a part of

the OIS discount curve from OIS-3M swaps, then we need to solve for all three curves at once.

This increases the complexity of the problem because in the swap valuations the forward rates

are multiplied with the discount rates, i.e. we face non-linear constraints in the optimization

problem. One possible workaround is to jointly estimate the OIS discount curve g1(x) := gOI S(x)

and the ‘discounted’ forward curves g2(x) := gOI S(x)F3(x), g3(x) := gOI S(x)F6(x). By smoothing

the discount curve and discounted forward curves, we are again solving an optimization

problem with linear constraints:

min
g1,g2,g3∈H

‖g1‖2
H +‖g2‖2

H +‖g3‖2
H

s.t. M1g1 +M2g2 +M3g3 = p,

for some appropriately defined linear maps M1, M2, and M3. We leave the implementation of

this extension for further research.

3.6 Pseudoinverse on the Euclidean Space

For readers unfamiliar with infinite-dimensional Hilbert spaces, we introduce in this section a

finite-dimensional analogue of the method introduced in Section 3.3. Instead of looking for a

discount curve in a Hilbert function space, we now search for a vector of discount factors in

the Euclidian space which has maximal smoothness in some sense. Suppose we are interested

in the discount factors at dates 0 = u1 < ·· · < uK :

d = (g (u1), . . . , g (uK ))>,

for some K ≥ 1 and (for simplicity) ui+1 −ui ≡ δ> 0. Suppose furthermore that d contains all

the discount factors that are required to value the n instruments we observe, i.e. {x1, . . . , xN } ⊆
{u1, . . . ,uK }. Redefine C ∈Rn×K as the cashflow matrix of the n benchmark instruments on the

dates {u1, . . . ,uK }.

We cast the smoothness criterion (3.2) in a discrete form using a left Riemann sum for the
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integral and forward finite differences for the derivatives (other choices are possible of course):

g (0)2 + g ′(0)2 +
∫ uK−1

0
g ′′(x)2 dx

≈ g (u0)2 + 1

δ
(g (u1)− g (u0))2 +

K−2∑
i=0

(
g (ui+2)−2g (ui+1)+ g (ui )

δ2

)2

δ

= ‖Ad‖2
K ,

where ‖ ·‖2
K denotes the Euclidian norm on RK and

A = diag(1,δ−1/2,δ−3/2, . . . ,δ−3/2)



1 0 . . . . . . . . . 0

−1 1 0
...

1 −2 1
. . .

...

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 1 −2 1


∈RK×K .

The finite dimensional optimization problem now becomes:

min
d∈RK

1
2‖Ad‖2

K

s.t. C d = p
. (3.11)

The above is a convex quadratic programming problem with linear inequality constraints, for

which we obtain the following solution:

Theorem 3.6.1. There exists a unique solution d∗ ∈RK to the optimization problem (3.11) and

it is given as

d∗ = A−1M+p,

where M =C A−1 and M+ = M>(M M>)−1 is the Moore–Penrose pseudoinverse of the matrix M.

Remark that in the finite-dimensional case it becomes very easy to impose positivity and

monotonicity constraints on the discount factors:

min
d∈RK

1
2‖Ad‖2

K

s.t. C d = p

d1 > ·· · > dK > 0

.

We therefore obtain a convex quadratic programming problem with linear inequality con-

straints. Such a problem has a unique solution that can easily be found with established

algorithms implemented in many numerical software packages.
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3.7 Conclusion

We have introduced a novel method based on the Moore–Penrose pseudoinverse to extract

a discount curve that exactly reproduces the prices of the benchmark instruments and that

has maximal smoothness in the sense that it has minimal integrated squared second-order

derivatives. The optimal discount curve is a piecewise-cubic function and is obtained as the

unique solution of an infinite-dimensional optimization problem. Bid-ask spreads can be

incorporated to further increase the smoothness of the discount curve. The pseudoinverse

method is very easy to implement, making it an interesting method of first resort before

considering more complex alternatives.
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A Appendix to Chapter 1

A.1 Bootstrapping an Additive Seasonality Function

In this section we explain how to bootstrap a smooth curve T 7→ ft (T ) of (unobserved) futures

prices corresponding to the instantaneous dividend rate DT . The curve should perfectly

reproduce observed dividend futures prices and in addition incorporate a seasonality effect.

Once we have this function, we define the function δ(T ) as

δ(T ) = ft (T )−p>(βId+G1)Et [H1(XT )], T ≥ t ,

so that the specification in (1.25) perfectly reproduces observed futures contracts and incor-

porates seasonality.

Suppose for notational simplicity that today is time 0 and we observe the futures prices Fi of

the dividends realized over one calendar year [i −1, i ], i = 1, . . . , I . Divide the calendar year in

J ≥ 1 buckets and assign a seasonal weight w j ≥ 0 to each bucket, with w1+·· ·+w J = 1. These

seasonal weights can for example be estimated from a time series of dividend payments. We

search for the twice continuously differentiable curve f0 that has maximal smoothness subject

to the pricing and seasonality constraints:

min
f0∈C 2(R)

f0(0)2 + f ′
0(0)2 +

∫ I

0
f ′′

0 (u)2 du

s.t.
∫ i−1+ j

J

i−1+ j−1
J

f0(u)du = w j Fi , i = 1, . . . , I , j = 1, . . . , J .

This can be cast in an appropriate Hilbert space as a convex variational optimization problem

with linear constraints. In particular, it has a unique solution that can be solved in closed form

using techniques similar to the ones presented in Chapter 3 (cf., Filipović and Willems (2018)).

By discretizing the optimization problem, a non-negativity constraint on f can be added as

well.
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A.2 Proofs

This section contains all the proofs of the propositions in the paper.

Proof of Proposition 1.2.2

Using the moment formula (1.3) we have for t ≤ T

Et [CT ] = eβT p>eG1(T−t )H1(X t ).

Differentiating with respect to T gives

dEt [CT ]

dT
=βeβT p>eG1(T−t )H1(X t )+eβT p>G1eG1(T−t )H1(X t ).

The result now follows from

D t = dEt [CT ]

dT

∣∣∣∣
T=t

.

Proof of Proposition 1.2.3

Plugging in the specifications for ζt and D t in (1.11) gives:

S∗
t = 1

ζt

∫ ∞

t
e−(γ−β)sEt

[
p>(βId+G1)H1(x)H1(Xs) q>H1(Xs)

]
ds.

Since X t is a polynomial process, we can find a closed form expression for the expectation

inside the integral:

Et
[
p>(βId+G1)H1(Xs) q>H1(Xs)

]= v>eG2(s−t ) H2(X t ).

The fundamental stock price therefore becomes:

S∗
t = eβt v>

q>H1(X t )

∫ ∞

t
e−(γ−β)(s−t )eG2(s−t ) ds H2(X t )

= eβt v>

q>H1(X t )

(
G2 − (γ−β) Id

)−1 exp
{(

G2 − (γ−β) Id
)

(s − t )
}∣∣∣∣∣

s=∞

s=t

H2(X t )

= eβt v>

q>H1(X t )

(
(γ−β) Id−G2

)−1 H2(X t )

<∞,

where we have used the fact that the eigenvalues of the matrix G2 − (γ−β) Id have negative

real parts.
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Proof of Proposition 1.2.4

The market is arbitrage free if and only if the deflated gains process

Gt = ζt St +
∫ t

0
ζsDs ds (A.1)

is a non-negative local martingale.

If St is of the form in (1.13), then we have

Gt = Et

[∫ ∞

0
ζsDs ds

]
+Lt ,

which is clearly a non-negative local martingale and therefore the market is arbitrage free.

Conversely, suppose that the market is arbitrage free and hence (A.1) holds. As a direct

consequence, the process

ζt St −ζt S∗
t =Gt −Et

[∫ ∞

0
ζsDs

]
must be a local martingale. To show nonnegativity, note that a local martingale bounded from

below is a supermartingale, so that we have for all T ≥ t

ζt St −ζt S∗
t ≥ Et

[
GT −

∫ ∞

0
ζsDs

]
= Et

[
ζT ST −

∫ ∞

T
ζsDs ds

]
≥ Et

[
−

∫ ∞

T
ζsDs ds

]
T→∞−−−−→ 0,

where we have used the limited liability of the stock in the last inequality.

Proof of Proposition 1.2.6

Similarly as in the proof of Proposition 1.2.3 we get∫ ∞

t
(s − t )Et [ζsDs]ds = v>

∫ ∞

t
(s − t )e(β−γ)seG2(s−t ) dsH2(X t )

= e(β−γ)t v>
∫ ∞

t
(s − t )e[G2−(γ−β)Id](s−t ) dsH2(X t ).
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Applying integration by parts gives∫ ∞

t
(s − t )Et [ζsDs]ds = e(β−γ)t v>[(γ−β)Id−G2]−1

∫ ∞

t
e[G2−(γ−β)Id](s−t ) dsH2(X t )

= e(β−γ)t v>[(γ−β)Id−G2]−2H2(X t )

= e(β−γ)t w>[(γ−β)Id−G2]−1H2(X t ).

The result now follows from (1.12) and (1.15).

Proof of Proposition 1.4.1

We start by showing that there exists a unique strong solution X t to (1.21) with values in (0,∞)d .

Due to the global Lipschitz continuity of the coefficients, the SDE in (1.21) has a unique strong

solution in Rd for every X0 ∈Rd , see Theorem III.2.32 in Jacod and Shiryaev (2003). It remains

to show that X t is (0,∞)d -valued for all t ≥ 0 if X0 ∈ (0,∞)d . First, we prove the statement for

the diffusive case.

Lemma A.2.1. Consider the SDE

dX t = κ(θ−X t )dt +diag(X t )ΣdWt , (A.2)

for some d-dimensional Brownian motion Wt and κ,θ,Σ as assumed in Proposition 1.4.1. If

X0 ∈ (0,∞)d , then X t ∈ (0,∞)d for all t ≥ 0.

Proof. Replace X t in the drift of (A.2) by X +
t componentwise and consider the SDE

dYt = κ(θ−Y +
t )dt +diag(Yt )ΣdWt , (A.3)

with Y0 = X0 ∈ (0,∞)d . The function y 7→ y+ componentwise is still Lipschitz continuous, so

that there exists a unique solution Yt to (A.3). Now consider the SDE

dZt =−diag(diag(κ))Z+
t dt +diag(Zt )ΣdWt , (A.4)

with Z0 = X0 ∈ (0,∞)d . Its unique solution is the (0,∞)d -valued process given by

Zt = Z0 exp

{(
−diag(κ)− 1

2
diag(ΣΣ>)

)
t +ΣWt

}
.

By assumption, we have that the drift function of (A.3) is always greater than or equal to the

drift function of (A.4):

κθ−κx+ ≥−diag(diag(κ))x+, ∀x ∈Rd .

By the comparison theorem from (Geiß and Manthey, 1994, Theorem 1.2) we have almost

surely

Yt ≥ Zt , t ≥ 0.
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Hence, Yt ∈ (0,∞)d and therefore Yt also solves the SDE (A.2). By uniqueness we conclude

that X t = Yt for all t , which proves the claim.

Define τi as the i th jump time of Nt and τ0 = 0. We argue by induction and assume that

Xτi > 0 for some i = 0,1, . . . . Since the process X t is right-continuous, we have the following

diffusive dynamics for the process X (τi )
t = X t+τi on the interval [0,τi+1 −τi )

dX (τi )
t =

(
κθ+

(
−κ−ξdiag

(∫
S

z dF (dz)

))
X (τi )

t

)
dt +diag(X (τi )

t )ΣdB (τi )
t ,

with X (τi )
0 = Xτi and B (τi )

t = Bτi+t −Bτi . The stopping time τi is a.s. finite and therefore the

process B (τi )
t defines a d-dimensional Brownian motion with respect to its natural filtration,

see Theorem 6.16 in Karatzas and Shreve (1991). By Lemma A.2.1 we have X (τi )
t ∈ (0,∞)d for

all t ∈ [0,τi+1 −τi ). As a consequence, we have X t ∈ (0,∞)d for all t ∈ [τi ,τi+1). The jump size

Xτi+1 −Xτi+1− at time τi+1 satisfies

Xτi+1 −Xτi+1− = diag(Xτi+1−)Zi+1 >−Xτi+1−,

where the Zi+1 are i.i.d. random variables with distribution F (dz). Rearranging terms gives

Xτi+1 ∈ (0,∞)d . By induction we conclude that X t ∈ (0,∞)d for t ∈ [0,τi ), i ∈N. The claim now

follows because τi →∞ for i →∞ a.s.

Next, we prove that X t is a polynomial jump-diffusion. The action of the generator of X t on a

C 2 function f : Rd →R is given by

G f (x) =1

2
tr

(
diag(x)ΣΣ>diag(x)∇2 f (x)

)+∇ f (x)>κ(θ−x)

+ξ
(∫

S
f (x +diag(x)z)F (dz)− f (x)−∇ f (x)>diag(x)

∫
S

z F (dz)

)
, (A.5)

where S denotes the support of F and we assume that f is such that the integrals are finite.

Now suppose that f ∈ Poln(Rd ) and assume without loss of generality that f is a monomial

with f (x) = xα = xα1
1 · · ·xαd

d , |α| = n. We now apply the generator to this function. It follows

immediately that the first two terms in (A.5) are again a polynomial of degree n or less. Indeed,

the gradient (hessian) in the second (first) term lowers the degree by one (two), while the

remaining factors augment the degree by at most one (two). The third term in (A.5) becomes

(we slightly abuse the notation α to represent both a multi-index and a vector):

ξ

(
xα

∫
S

d∏
j=1

(1+ z j )α j F (dz)−xα−xαα>
∫
S

z F (dz)

)

=ξxα
∫
S

(
eα

> log(1+z) −1−α>z
)

F (dz), (A.6)

where the logarithm is applied componentwise. Hence, we conclude that G maps polynomials

to polynomials of the same degree or less.
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Proof of Proposition 1.4.2

This proof is similar to the one of Theorem 5 in Filipović et al. (2017). From (1.5) we have that

D t ≥ 0 if and only if

β≥ sup
x∈(0,∞)d

−p>G1H1(x)

p>H1(x)
, (A.7)

provided it is finite. Using (1.2) we have

−p>G1H1(x)

p>H1(x)
=

−p̃>κθ+∑d
j=1 p̃>κ j x j

p0 +∑k
j=1 p j x j

. (A.8)

Using the assumption κi j ≤ 0 for i 6= j (cfr., Proposition 1.4.1), we have for all j > k that

p̃>κ j =
d∑

i=1
piκi j =

k∑
i=1

piκi j ≤ 0. (A.9)

Combining (A.8) with (A.9) gives

sup
x∈(0,∞)d

−p̃>κθ+∑d
j=1 p̃>κ j x j

p0 +∑k
j=1 p j x j

= sup
x∈(0,∞)k

−p̃>κθ+∑k
j=1 p̃>κ j x j

p0 +∑k
j=1 p j x j

. (A.10)

If p0 > 0, then the fraction on the right-hand side of (A.10) can be seen as a convex combination

of {
− p̃>κθ

p0
,

p̃>κ1

p1
, . . . ,

p̃>κk

pk

}
,

with coefficients p0, p1x1, . . . , pk xk . As a consequence, we have in this case

sup
x∈(0,∞)d

−p>G1H1(x)

p>H1(x)
= max

{
− p̃>κθ

p0
,

p̃>κ1

p1
, . . . ,

p̃>κk

pk

}
.

If p0 = 0, then using the assumption κθ ≥ 0 (cfr., Proposition 1.4.1) we get

sup
x∈(0,∞)d

−p>G1H1(x)

p>H1(x)
= sup

x∈(0,∞)k

−p̃>κθ+∑k
j=1 p̃>κ j x j∑k

j=1 p j x j

= sup
x∈(0,∞)k

∑k
j=1 p̃>κ j x j∑k

j=1 p j x j

= max

{
p̃>κ1

p1
, . . . ,

p̃>κk

pk

}
.

Proof of Proposition 1.4.3

Suppose first that κ is lower triangular. In order to get a specific idea what the matrix G2 looks

like, we start by fixing a monomial basis for Pol2(Rd ) using the graded lexicographic ordering
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of monomials:

H2(x) = (1, x1, . . . , xd , x2
1 , x1x2, . . . , x1xd , x2

2 , x2x3, . . . , x2
d )>, x ∈Rd . (A.11)

It follows by inspection of (A.5) and (A.6) that, thanks to the triangular structure of κ, the

matrix G2 is lower triangular with respect to this basis. Indeed, the first and third term in

(A.5) only contribute to the diagonal elements of G2, while the second term contributes to the

lower triangular part (including the diagonal). The eigenvalues of G2 are therefore given by its

diagonal elements.

Each element in the monomial basis can be expressed as as f (x) = xα1
1 · · ·xαd

d , for some α ∈Nd

with
∑d

i=1αi ≤ 2. In order to find the diagonal elements of G2, we need to find the coefficient

of the polynomial G f (x) associated with the basis element f (x). It follows from (A.5) and (A.6)

that this coefficient is given by

−
d∑

i=1
κi iαi + 1

2

∑
i< j

(ΣΣ>)i jαiα j +
d∑

i=1
(ΣΣ>)i iαi (αi −1)

+ξ
∫
S

(
eα

> log(1+z) −1−α>z
)

F (dz).

The restriction
∑d

i=1αi ≤ 2 allows to summarize all diagonal elements, and hence the eigenval-

ues, of G2 as follows

0,−κ11, . . . ,−κdd ,

−κi i −κ j j + (ΣΣ>)i j +ξ
∫
S

zi z j F (dz), 1 ≤ i , j ≤ d .

Note that a change of basis will lead to a different matrix G2, however its eigenvalues are

unaffected. The choice of the basis in (A.11) is therefore without loss of generality.

If κ is upper triangular, we consider a different ordering for the monomial basis:

H2(x) = (1, xd , . . . , x1, x2
d , xd xd−1, . . . , xd x1, x2

d−1, xd−1xd−2, . . . , x2
1)>, x ∈Rd .

The result now follows from the same arguments as in the lower triangular case.

Proof of Proposition 1.6.1

Using the law of iterated expectations and the moment formula (1.3) we get:

Et [ζT2 (CT2 −CT1 )] = e−γT2

(
eβT2Et [q>H1(XT2 )p>H1(XT2 )]−eβT1Et [p>H1(XT1 )ET1 [q>H1(XT2 )]]

)
= e−γT2

(
eβT2 w>

2 eG2(T2−t )H2(X t )−eβT1Et [p>H1(XT1 )q>eG1(T2−T1)H1(XT1 )]
)

= e−γT2

(
eβT2 w>

2 eG2(T2−t )H2(X t )−eβT1 w>
1 eG1(T1−t )H2(X t )

)
.
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Note that the vectors w1 and w2 are unique since the basis elements are linearly independent

by definition. Finally, using the bond price formula (1.9) we get

D f wd (t ,T1,T2) = 1

ζt P (t ,T2)
Et [ζT2 (CT2 −CT1 )]

= eβT2 w>
2 eG2(T2−t )H2(X t )−eβT1 w>

1 eG1(T1−t )H2(X t )

q>eG1(T2−t )H1(X t )
.
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B.1 Scaling with Auxiliary Moments

In this appendix we show how to avoid rounding errors by scaling the problem using the

moments of the auxiliary density w .

Using (L−1)>L−1 = M−1 we get from (2.6):

π(N ) = ( f0, . . . , fN )(`0, . . . ,`N )>

= e−r T ( f̃0, . . . , f̃N )M−1eGN T HN (0).

Define S ∈R(N+1)×(N+1) as the diagonal matrix with the moments of w on its diagonal:

S = diag(s0, . . . , sN ), si = eiµ+ 1
2 i 2ν2

.

We can now write

π(N ) = e−r T ( f 0, . . . , f N )S−1SM−1SS−1eGN T SS−1HN (0)

= e−r T ( f 0, . . . , f N )M
−1

eG N T HN (0), (B.1)

where we have defined the matrices ((GN )i j )0≤i , j≤N , (M i j )0≤i , j≤N and the vector ( f 0, . . . , f N )>

as

M i j = ei jν2
, f i = eµ+

1
2 (2i+1)ν2

Φ(di+1)−KΦ(di ), (GN )i j =


i r + 1

2 i (i −1)σ2 j = i
i
T e−µ+

1
2 (1−2i )ν2

j = i −1

0 el se

,

for i , j = 0, . . . , N . The components of M and ( f 0, . . . , f N )> grow much slower for increasing N

as their counterparts M and ( f̃0, . . . , f̃N )>, respectively. The vector eG N T HN (0) corresponds to

the moments of AT divided by the moments corresponding to w . Since both moments grow

approximately at the same rate, this vector will have components around one. This scaling is

85



Appendix B. Appendix to Chapter 2

important since for large N the raw moments of AT are enormous. This was causing trouble

for example in Dufresne (2000). We therefore circumvent the numerical inaccuracies coming

from the explosive moment behavior by directly computing the relative moments.

The likelihood and payoff coefficients can be computed by performing a Cholesky decomposi-

tion on M instead of M :

( f0, . . . , fN )> = e−r T L
−1

( f 0, . . . , f N )>,

(`0, . . . ,`N )> = L
−1

eG N T HN (0),

where M = L L
>

is the Cholesky decomposition of M .

Remark that to compute the option price in (B.1), we do not necessarily need to do a Cholesky

decomposition. Indeed, we only need to invert the matrix M . Doing a Cholesky decomposition

is one way to solve a linear system, but there are other possibilities. In particular, remark that

M is a Vandermonde matrix and its inverse can be computed analytically (see e.g. Turner

(1966)). There also exist specific numerical methods to solve linear Vandermonde systems,

see e.g. Björck and Pereyra (1970). However, we have not found any significant differences

between the Cholesky method and alternative matrix inversion techniques for the examples

considered in this chapter.

For very large values of ν, even the matrix M might become ill conditioned. In this case it is

advisable to construct the orthonormal basis using the three-term recurrence relation:

Lemma B.1.1. The polynomials bn ∈ Poln(R), n = 0,1, . . ., defined recursively by

b0(x) = 1, b1(x) = 1

β1
(x −α0),

bn(x) = 1

βn

(
(x −αn−1)bn−1(x)−βn−1bn−2(x)

)
, n = 2,3, . . . ,

with

αn = eµ+ν
2(n− 1

2 )
(
eν

2(n+1) +eν
2n −1

)
, n = 0,1, . . .

βn = eµ+
1
2ν

2(3n−2)
√

eν2n −1, n = 1,2, . . . ,

satisfy

∫
R

bi (x)b j (x)w(x)dx =
1 i = j

0 el se
, i , j = 0,1, . . . .

Proof. Straightforward application of the moment-generating function of the normal distribu-

tion and Theorem 1.29 in Gautschi (2004).
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The above recursion suffers from rounding errors in double precision arithmetic for small ν,

but is very accurate for large ν.

B.2 Control Variate for Simulating g (x)

In order to increase the efficiency of the Monte-Carlo simulation of g (x), we describe in this

appendix how to use the density of the geometric average as a control variate. This idea is

inspired by Kemna and Vorst (1990), who report a very substantial variance reduction when

using the geometric Asian option price as a control variate in the simulation of the arithmetic

Asian option price. Denote by QT = exp
(

1
T

∫ T
0 log(Ss)ds

)
the geometrical price average. It is

not difficult to see that log(QT ) is normally distributed with mean 1
2 (r − 1

2σ
2)T and variance

σ2

3 T . Hence, QT is log-normally distributed and we know its density function, which we denote

by q(x), explicitly. Similarly as in Lemma 2.4.1, we can also express q(x) as an expectation:

Lemma B.2.1. For any x ∈R

q(x) = E
[(

1{QT ≥x} − c(x)
)( 2BT

σT QT
+ 1

QT

)]
, (B.2)

where c is any deterministic finite-valued function.

We now propose the following estimator for the density of the arithmetic average:

g (x) =E
[

(1{AT ≥x} − c1(x))
2

σ2

(
ST −S0

T A2
T

+ σ2 − r

AT

)

+
(

q(x)− (
1{QT ≥x} − c2(x)

)( 2BT

σT QT
+ 1

QT

))]
, (B.3)

for some deterministic finite-valued functions c1 and c2. Given the typically high correlation

between the geometric and arithmetic average, the above estimator has a significantly smaller

variance than the estimator in (2.9). In numerical examples the functions c1 and c2 are chosen

as follows:

c1(x) = 1x≤m A
1

, c2(x) = 1x≤mQ
1

,

where m A
1 and mQ

1 denote the first moments of AT and QT , respectively.

Finally, we use (B.3) to express ‖`‖2
w as an expectation that can be evaluated using Monte-Carlo
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simulation:

‖`‖2
w = E

 (1{AT ≥ÃT } − c1(ÃT )) 2
σ2

(
ST −S0

T A2
T

+ σ2−r
AT

)
w(ÃT )

+
q(ÃT )−

(
1{QT ≥ÃT } − c2(ÃT )

)(
2BT
σTQT

+ 1
QT

)
w(ÃT )

 , (B.4)

where the random variable ÃT is independent from all other random variables and has the

same distribution as AT . In numerical examples we find a variance reduction of roughly a

factor ten.

B.3 Proofs

This appendix contains all the proofs.

Proof of Lemma 2.2.1

Using the time-reversal property of a Brownian motion, we have the following identity in law

for fixed t > 0 :

t At =
∫ t

0
e(r− 1

2σ
2)u+σBu du

law=
∫ t

0
e(r− 1

2σ
2)(t−u)+σ(Bt−Bu ) du

= St

∫ t

0
S−1

u du.

Applying Itô’s lemma to X t := St
∫ t

0 S−1
u du gives

dX t = St S−1
t dt +

∫ t

0
S−1

u du (r St dt +σSt dBt )

= (r X t +1)dt +σX t dBt .

Proof of Proposition 2.2.2

Applying the infinitesimal generator G corresponding to the diffusion in (2.1) to a monomial

xn gives:

G xn = xn(nr + 1

2
n(n −1)σ2)+nxn−1.
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Hence, we have G Hn(x) = G̃n Hn(x) componentwise, where G̃n is defined as

G̃n =


0

1 r
. . .

. . .

n (nr + 1
2 n(n −1)σ2)

 .

Using the identity in distribution of Lemma 2.2.1, we get

E[Hn(AT )] = diag(Hn(T −1))E[Hn(XT )]

= diag(Hn(T −1))

(
Hn(X0)+

∫ T

0
E[G Hn(Xu)]du

)
= diag(Hn(T −1))Hn(0)+diag(Hn(T −1))G̃n

∫ T

0
E[Hn(Xu)]du

= Hn(0)+diag(Hn(T −1))G̃ndiag(Hn(T ))
∫ T

0
E[Hn(Au)]du

= Hn(0)+Gn

∫ T

0
E[Hn(Au)]du,

where Gn was defined in (2.2). The result now follows from solving the above linear first order

ODE.

Proof of Proposition 2.2.3

1. We will show that the solution at time T > 0 of the SDE in (2.1) admits a smooth density

function. The claim then follows by the identity in law.

Define the volatility and drift functions a(x) = σx and b(x) = r x + 1. Hörmander’s

condition (see for example Section 2.3.2 in Nualart (2006)) becomes in this case:

a(X0) 6= 0 or a(n)(X0)b(X0) 6= 0 for some n ≥ 1.

Hörmander’s condition is satisfied since for n = 1 we have a′(0)b(0) = σ 6= 0. Since

a(x) and b(x) are infinitely differentiable functions with bounded partial derivatives of

all orders, we conclude by Theorem 2.3.3 in Nualart (2006) that XT , and therefore AT ,

admits a smooth density function.

2. We start from the following two observations:

AT ≤ sup
0≤u≤T

Su and P

(
sup

0≤u≤T
σBu ≥ x

)
= 2P

(
Z ≥ x

σ
p

T

)
,
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where Z ∼ N (0,1). Using the fact that the exponential is an increasing function, we get

P (AT ≥ x) ≤ P

(
sup

0≤u≤T
Su ≥ x

)
= P

(
sup

0≤u≤T
(r − 1

2
σ2)u +σBu ≥ log(x)

)

≤

2P

(
Z ≥ log(x)−(r− 1

2σ
2)T

σ
p

T

)
if r ≥ 1

2σ
2

2P
(

Z ≥ log(x)

σ
p

T

)
if r ≤ 1

2σ
2

.

Applying the rule of l’Hôpital gives

lim
x→∞g (x)

(
e−

log(x)2

2σ2T

)−1

= lim
x→∞P (AT ≥ x)

(∫ ∞

x
e−

log(y)2

2σ2T dy

)−1

≤ 2
1p

2πTσ
lim

x→∞

∫ ∞

x
e−

(log(y)−(r− 1
2 σ

2)+T )2

2σ2T dy

(∫ ∞

x
e−

log(y)2

2σ2T dy

)−1

=
√

2

πT

1

σ
.

Hence we have show that g (x) =O
(
exp

{
−1

2
log(x)2

σ2T

})
for x →∞.

Since the exponential is a convex function, we have that the arithmetic average is always

bounded below by the geometric average:

AT ≥QT = exp

(
1

T

∫ T

0
log(Ss)ds

)
.

It is not difficult to see that log(QT ) is normally distributed with mean 1
2 (r − 1

2σ
2)T and

variance σ2

3 T . By similar arguments as before we therefore have

g (x) =O

(
exp

{
−3

2

log(x)2

σ2T

})
for x → 0.

Proof of Proposition 2.3.1

We can write the squared norm of ` as

‖`‖2
w =

∫ ∞

0

(
g (x)

w(x)

)2

w(x)dx

=
∫ a

0

g (x)2

w(x)
dx +

∫ b

a

g (x)2

w(x)
dx +

∫ ∞

b

g (x)2

w(x)
dx, (B.5)
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for some 0 < a < b <∞. The second term is finite since the function g 2

w is continuous over the

compact interval [a,b]. From Proposition 2.2.3 we have

g (x)2 =O

(
exp

{
− log(x)2

σ2T

})
, for x →∞ and x → 0.

For the log-normal density we have

w(x) =O

(
exp

{
− log(x)2

2ν

})
, for x →∞ and x → 0.

Since 2ν>σ2T by assumption, we are guaranteed that the first and last term in (B.5) are finite

for a sufficiently small (resp. large) choice of a (resp. b).

Proof of Proposition 2.3.3

The payoff coefficients can be written as

( f0, . . . , fN )> = e−r T C ( f̃0, . . . , f̃N )>,

with

f̃n = 1p
2πν

∫ ∞

0
(ex −K )+enx e−

(x−µ)2

2ν2 dx

= 1p
2πν

(∫ ∞

log(K )
e(n+1)x e−

(x−µ)2

2ν2 dx −K
∫ ∞

log(K )
enx e−

(x−µ)2

2ν2 dx

)
.

Completing the square in the exponent gives

1p
2πν

∫ ∞

log(K )
enx e−

(x−µ)2

2ν2 dx = 1p
2πν

eµn+ 1
2 n2ν2

∫ ∞

log(K )
e−

(x−(µ+ν2n))2

2ν2 dx

= 1p
2π

eµn+ 1
2 n2ν2

∫ ∞
log(K )−(µ+ν2n)

ν

e−
1
2 y2

dy

= eµn+ 1
2 n2ν2

Φ(dn),

where dn is defined in (2.7). We finally get

f̃n = eµ(n+1)+ 1
2 (n+1)2ν2

Φ(dn+1)−K eµn+ 1
2 n2ν2

Φ(dn).

Proof of Lemma 2.4.1

This proof is based on Malliavin calculus techniques, we refer to Nualart (2006) for an overview

of standard results in this area. A similar approach is taken by Fournié et al. (1999) to compute

the Greeks of an Asian option by Monte-Carlo simulation.
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Denote by D :D1,2 → L2(Ω× [0,T ]), F 7→ {D t F, t ∈ [0,T ]}, the Malliavin derivative operator. By

Theorem 2.2.1 in (Nualart, 2006) we have St , At ∈D1,2 for t ∈ (0,T ] and

DuSt =σSt 1{u≤t }, Du At = σ

t

∫ t

u
Ss ds.

Denote by

δ : Dom(δ) → L2(Ω), {X t , t ∈ [0,T ]} 7→ δ(X )

the Skorohod integral and by Dom(δ) ⊆ L2(Ω× [0,T ]) the corresponding domain. The Skoro-

hod integral is defined as the adjoint operator of the Malliavin derivative and can be shown

to extend the Itô integral to non-adapted processes. In particular, we have immediately that

{St , t ∈ [0,T ]} ∈ Dom(δ) and

δ(S) =
∫ T

0
Ss dBs . (B.6)

For φ ∈C∞
c we have φ(AT ) ∈D1,2 and∫ T

0
(Duφ(AT ))Su du =φ′(AT )

∫ T

0
(Du AT )Su du.

Using the duality relationship between the Skorohod integral and the Malliavin derivative we

get

E[φ′(AT )] = E
[∫ T

0
(Duφ(AT ))

Su∫ T
0 (Du AT )Su du

du

]

= E
[
φ(AT )δ

(
S∫ T

0 (Du AT )Su du

)]
. (B.7)

By Lemma 1 in Bally (2003) (see also Proposition 2.1.1 in Nualart (2006) for a similar approach)

we obtain the following representation of the density function of AT :1

g (x) = E
[

1{AT ≥x}δ

(
S∫ T

0 (Du AT )Su du

)]

= T

σ
E

[
1{AT ≥x}δ

(
S∫ T

0 Su
∫ T

u Ss ds du

)]
. (B.8)

Interchanging the order of integration gives

∫ T

0
Su

∫ T

u
Ss ds du =

(∫ T

0
Su du

)2

−
∫ T

0

∫ u

0
SuSs ds du

=
(∫ T

0
Su du

)2

−
∫ T

0
Ss

∫ T

s
Su du ds,

1Informally speaking one applies a regularization argument in order to use (B.7) for the (shifted) Heaviside
function φ(y) = 1{y≥x}.
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which gives
∫ T

0 Su
∫ T

u Ss ds du = T 2

2 A2
T . Plugging this into (B.8) gives

g (x) = 2

Tσ
E

[
1{AT ≥x}δ

(
S

A2
T

)]
.

We use Proposition 1.3.3 in Nualart (2006) to factor out the random variable A−2
T from the

Skorohod integral:

δ

(
S

A2
T

)
= A−2

T δ(S)−
∫ T

0
D t

(
A−2

T

)
St dt

= A−2
T

1

σ

(
ST −S0 − r

∫ T

0
Ss ds

)
−

∫ T

0
D t

(
A−2

T

)
St dt ,

where we used (B.6) in the last equation. Using the chain rule for the Malliavin derivative we

get

δ

(
S

A2
T

)
= A−2

T
1

σ

(
ST −S0 − r

∫ T

0
Ss ds

)
+2A−3

T

∫ T

0
D t AT St dt

= A−2
T

1

σ
(ST −S0 − r T AT )+2A−3

T
1

T

∫ T

0
St

∫ T

t
σSu du dt

= A−2
T

1

σ
(ST −S0 − r T AT )+ A−1

T σT

= A−2
T

1

σ
(ST −S0)+ T

σ
A−1

T (σ2 − r ).

Putting everything back together we finally get:

g (x) = 2

σ2 E

[
1{AT ≥x}

(
ST −S0

T A2
T

+ σ2 − r

AT

)]
.

Since the Skorohod integral has zero expectation we also have

g (x) = 2

σ2 E

[(
1{AT ≥x} − c(x)

)(ST −S0

T A2
T

+ σ2 − r

AT

)]
,

for any deterministic finite-valued function c.

Proof of Corollary 2.4.3

The result follows immediately from (2.9) and

‖`‖2
w =

∫ ∞

0
`2(x)w(x)dx =

∫ ∞

0

g (x)

w(x)
g (x)dx.
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Proof of Proposition 2.4.4

Using the Cauchy-Schwarz inequality and the orthonormality of the polynomials b0, . . . ,bN

we get

|π−π(N )| =
∣∣∣∣∣〈F, l〉w −

N∑
n=0

fn`n

∣∣∣∣∣
=

〈
F −

N∑
n=0

bn fn , `−
N∑

n=0
bn`n

〉
w

≤
∥∥∥∥∥F −

N∑
n=0

bn fn

∥∥∥∥∥
w

∥∥∥∥∥`− N∑
n=0

bn`n

∥∥∥∥∥
w

=
(
‖F‖2

w −
N∑

n=0
f 2

n

) 1
2
(
‖`‖2

w −
N∑

n=0
`2

n

) 1
2

.

Proof of Lemma B.2.1

Applying the Malliavin derivative to QT gives

DuQT =QT Du

(
1

T

∫ T

0
log(Ss)ds

)
=QT

σ

T
(T −u)1u≤T .

Similarly as in the proof of Lemma 2.4.1 we can write

q(x) = E
[

1{QT ≥x}δ

(
1∫ T

0 DuQT du

)]

= E
[

1{QT ≥x}δ

(
2

QTσT

)]
. (B.9)

Using Proposition 1.3.3 in Nualart (2006) to factor out the random variable from the Skorohod

integral gives

δ

(
2

QTσT

)
= 2BT

σT QT
− 2

σT

∫ T

0
Du(Q−1

T )du

= 2BT

σT QT
− 2

σT
Q−2

T

∫ T

0
QT

σ

T
(T −u)du

= 2BT

σT QT
+ 1

QT
.

Plugging this back into (B.9) finally gives

q(x) = E
[

1{QT ≥x}

(
2BT

σTQT
+ 1

QT

)]
.
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Since the Skorohod integral has zero expectation we also have

q(x) = E
[(

1{QT ≥x} − c(x)
)( 2BT

σT QT
+ 1

QT

)]
,

for any deterministic finite-valued function c.
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Proof of Lemma 3.3.1

Integration by parts gives

g (τ) = g (0)+
∫ τ

0
g ′(x)dx

= g (0)+τg ′(0)−
∫ τ

0
(x −τ)g ′′(x)dx.

From the definition of the scalar product 〈·, ·〉H we get the following conditions for the function

φτ: 
φτ(0) = 1

φ′
τ(0) = τ

φ′′
τ(x) = (τ−x)1[0,τ](x), x ∈ [0, τ̄].

Integrating two time we arrive at:

φ′
τ(x) = τ− 1

2 (x ∧τ)2 +τ(x ∧τ), x ∈ [0, τ̄],

φτ(x) = 1− 1
6 (x ∧τ)3 + τ

2 (x ∧τ)2 − τ2

2 (x ∧τ)+x(1+ τ
2 )τ, x ∈ [0, τ̄].

Proof of Theorem 3.3.2

The transpose (adjoint operator) M> :Rn → H of the linear map M : H →Rn is defined by:

〈M g , z〉Rn = 〈g , M>z〉H , ∀g ∈ H , ∀z ∈Rn .

Using the definition of M and the Riesz representation of the linear functionalΦwe easily get:

M>z =
N∑

j=1
φx j C

>
j z, z ∈Rn ,

where C j represents the j -th column of the matrix C .
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The Lagrangian L : H ×Rn →R for problem (3.5) is defined as

L (g ,λ) = 1

2
‖g‖2

H +λ> (
M g −p

)
= 1

2
‖g‖2

H +〈λ, M g 〉Rn −〈λ, p〉Rn

= 1

2
‖g‖2

H +〈M>λ, g 〉H −〈λ, p〉Rn .

The optimizers g∗ andλ∗ satisfy the following first-order conditions with respect to the Fréchet

derivative in H and Rn

g∗+M>λ∗ = 0 (C.1)

M g∗−p = 0. (C.2)

From (C.1) we get g∗ = −M>λ∗. Plugging this into (C.2) gives −M M>λ∗ = p. Observe now

that M M> :Rn →Rn is a linear map that can be represented by the matrix C AC>, where A is

the positive definite N ×N matrix with components

Ai j = 〈φxi ,φx j 〉H =φxi (x j ) =φx j (xi ).

We now obtain the following unique solution for the optimal Lagrange multiplier and optimal

discount curve:

λ∗ =−(
C AC>)−1

p, g∗ = M> (
C AC>)−1

p.

Note that the matrix C AC> is invertible because A is positive definite and C has full rank.

The map

M+ : Rn → H , z 7→ M> (
M M>)−1

z,

is known as the Moore–Penrose pseudoinverse of the linear map M . We can therefore write the

optimal discount curve as

g∗ = M+p.

Proof of Lemma 3.4.1

The optimal discount curve g∗ can be written as

g∗(x) =
N∑

j=1
z j φx j (x) = p> (

C AC>)−1
Cφ(x), (C.3)

with φ(x) := (φx1 (x), . . . ,φxN (x))>. Differentiating (C.3) with respect to the components of p

immediately gives the first statement of the theorem:

(Dp g∗ · v)(x) = v> (
C AC>)−1

Cφ(x).
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Differentiating (C.3) with respect to the cashflow Ci j gives

∂g∗

∂Ci j
(x) =−p> (

C AC>)−1 ∂C AC>

∂Ci j

(
C AC>)−1

Cφ(x)+p> (
C AC>)−1

Ii jφ(x)

= p> (
C AC>)−1

(
Ii j − (C AI j i + Ii j AC>)

(
C AC>)−1

C
)
φ(x),

where Ii j ∈ Rn×N denotes a matrix with the (i , j )-th entry equal to one and all of the other

entries equal to zero. The second statement of the theorem now easily follows from the

distributive property of matrix multiplication and∑
1≤i≤n
1≤ j≤N

mi j Ii j = m.

Proof of Lemma 3.4.2

Using the notation of the proof of Theorem 3.3.2, the optimal discount curve g∗ can be written

as

g∗ = M+p = M>(M M>)−1p.

Using the fact that M> is the dual operator of M , we get:

‖g∗‖2 = 〈g∗, g∗〉H

= 〈
M>(M M>)−1p, M>(M M>)−1p

〉
H

= 〈
(M M>)−1p, M M>(M M>)−1p

〉
Rn

= 〈
(C AC )−1p, p

〉
Rn

= p>(C AC>)−1p.

Proof of Theorem 3.6.1

The Lagrangian is defined as

L (λ,d) = 1

2
‖Ad‖2

K +λ>(C d −p).

The first-order optimiality conditions for the optimal λ∗ and d∗ are

A>Ad∗+C>λ∗ = 0, C d∗−p = 0.

Straightforward calculations give the following unique solution:

d∗ = (A>A)−1C>
(
C (A>A)−1C>

)−1
p.
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Using the fact that A is invertible and defining M :=C A−1, we finally obtain

d∗ = A−1M+p,

where M+ = M>(M M>)−1 is the Moore–Penrose pseudoinverse of the matrix M .
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