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Abstract
Tractography is the only non-invasive technique which is used to reconstruct the white mat-

ter structural connectivity of the human brain. It relies on a specific Magnetic Resonance

Imaging (MRI) acquisition, called diffusion MRI, which is sensitive to the displacement of

water protons to varying magnetic fields, generating a signal that can be used to indirectly

estimate microscopic tissue characteristics, e.g., composition and geometry. More specifically,

tractography relies on two essential aspects: 1) orientations which indicates the direction of

the white matter fibers in a typical 3D grid, and 2) principles of how to connect the voxels to

reconstruct the white matter connections. Tractography is a relatively young technique since

it was proposed only twenty years ago; however, it is already used in specific clinical applica-

tions, e.g., partially in neurosurgery, and in research studies that involve reconstructions of

well-known neuronal pathways.

Hundreds of different tractography techniques have been proposed in the past years. In

order to evaluate their performance, we participated in several international challenges. The

outcomes of the challenges showed the advantages and limitations of modern tractography

methods. In particular, one issue that was highlighted is the lack of a gold standard. Diffusion

MRI tractography typically is validated with postmortem material and a tedious concatenation

of classical 2D histological slices. In this thesis, we propose one of the first studies that use

a novel 3D histological technique, named CLARITY, to validate fiber orientation in a large

portion of tissue.

At the typical spatial resolution of MRI, approximately 60-90% of voxels in the white

matter contain multiple fiber populations. However, most of the microstructure imaging

techniques proposed are not suitable to disentangle multiple populations in a voxel. In

this thesis, we aimed to study the limitations of modern tractography approaches, and we

proposed novel methods where tractography could play a crucial role. We propose to use

microstructure informed tractography to regularize two important microstructural features,

i.e., axon diameter and transversal relaxation time T2, showing the clear advantages of the use

of global approaches and opening a new perspective for connectivity analysis. However, the

price to pay for increasing the complexity of existing models is an increase in computational

burden. In the appendix of the thesis, we propose a preliminary study which uses neural

network approaches to accelerate global fitting of complex models.

Keywords: diffusion MRI, tractography, CONNECTOM scanner, microstructure informed

tractography, CLARITY, tissue clearing, axon diameter, T2, neural network
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Riassunto
La trattografia è l’unica tecnica non invasiva utilizzata per ricostruire la connettività strutturale

della materia bianca del cervello umano. Si basa su una specifica tecnica diagnostica per

immagini chiamata risonanza magnetica (MRI) a diffusione, che è sensibile allo spostamento

di protoni d’acqua a campi magnetici, generando un segnale che può essere utilizzato per

stimare indirettamente le caratteristiche microscopiche del tessuto, come ad esempio la com-

posizione e la geometria. In particolare, la trattografia si basa su due aspetti essenziali: 1)

orientazioni che indicano la direzione delle fibre di materia bianca, in una tipica griglia 3D, e

2) principi di come collegare i voxel per ricostruire le connessioni della materia bianca. La trat-

tografia è una tecnica relativamente giovane poiché è stata proposta solo vent’anni fa; tuttavia,

è già utilizzata in applicazioni cliniche specifiche, ad esempio, in parte in neurochirurgia, e in

studi di ricerca che coinvolgono ricostruzioni di ben noti percorsi neuronali.

Negli ultimi anni sono state proposte centinaia di diverse tecniche di trattografia. Al fine di

valutare le loro prestazioni, abbiamo partecipato a diverse sfide internazionali. I risultati delle

sfide hanno mostrato i vantaggi e i limiti dei moderni metodi di trattografia. In particolare, uno

dei maggiori problemi che sono stati evidenziati è stata la mancanza di un gold standard. La

trattografia a risonanza magnetica a diffusione è tipicamente convalidata con materiale post

mortem e una concatenazione di classiche fette istologiche 2D. In questa tesi, proponiamo

uno dei primi studi che utilizzano una nuova tecnica istologica 3D, denominata CLARITY, per

convalidare l’orientamento delle fibre in un’ampia porzione di tessuto.

Alla risoluzione spaziale tipica della risonanza magnetica, circa il 60-90% dei voxel nella

materia bianca contengono multiple popolazioni di fibre. Tuttavia, la maggior parte delle

tecniche di imaging microstrutturale proposte non sono adatte a risolvere più popolazioni in

un voxel. In questa tesi, abbiamo mirato a studiare i limiti dei moderni approcci, e abbiamo

proposto metodi nuovi in cui la trattografia potrebbe giocare un ruolo cruciale. Proponiamo

di utilizzare la microstruccture informata dalla trattografia per regolarizzare due importanti

caratteristiche microstrutturali, cioè il diametro dell’assone e il T2, mostrando gli evidenti

vantaggi dell’uso di approcci globali e aprendo una nuova prospettiva per l’analisi della

connettività. Tuttavia, il prezzo da pagare per aumentare la complessità dei modelli esistenti è

un aumento dell’onere computazionale. Nell’appendice della tesi, proponiamo uno studio

preliminare che utilizzo di approcci di reti neurali per accelerare il fitting globale di modelli

complessi.
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Introduction

In this dissertation, we explore the advantages and limitations of Microstructure Informed

Tractography through Diffusion-Weighted MRI (DW-MRI). The work was conducted under the

supervision of Professor Jean-Philippe Thiran (EPFL, Switzerland) and Professor Alessandro

Daducci (University of Verona, Italy), from September 2015 to August 2019.

This dissertation needs to be considered a parallel work to the thesis [296] defended by

Dr. David Romascano, focused on modeling intra-axonal and extra-axonal signals using a

voxel-wise approach. This dissertation is focused on tractography.

Tractography is the only technique available to infer non-invasive information of the brain

White Matter (WM) structural connections. It can be used in vivo, since it uses a Magnetic

Resonance Imaging (MRI) scanner to exploit protons’ response to varying the magnetic field

and estimate tissue properties, i.e., composition and geometry, in different brain’s tissue loca-

tions indirectly. More specifically, tractography relies on two essential aspects: 1) orientations

which indicates the direction of the white matter fibers, in a typical 3 dimensional (3D) grid,

and 2) principles of how to connect the voxels to reconstruct the white matter connections.

Tractography is a relatively young technique which has been proposed 20 years ago. It

is used in a few clinical applications, e.g., neurosurgery, and in research studies that involve

reconstructions of well-known neuronal pathways. However, it is not widely used in clinical

practice because up to date has significant limitations and controversial findings, e.g., Fur-

thermore, a non existence of a proper ground truth and a lack of proper validation technique

is a compound.

In this thesis, we learned the limitations of modern tractography methods participating

at three international challenges between 2015 and 2019. We proposed a novel approach

that uses 3D histology and can potentially be used to validate tractography algorithms. We

proposed two novel methods for Microstructure Informed Tractography aiming to estimate

bundle-specific T2 and axon diameter. Finally, in the appendix we proposed a neural network

approach for Microstructure Informed Tractography.
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Content of the thesis

The structure of this dissertation is as follows:

1. Chapter 1, we provide a brief state of art and theory regarding brain anatomy, diffusion

process, DW-MRI, microstructure imaging, tractography and finally microstructure

informed tractography.

2. Chapter 2, we provide an overview of the major tractography international challenges

proposed between 2015 and 2019 and their findings.

3. Chapter 3, we propose to use a recently introduced 3D histology technique, named

CLARITY, to validate medium-range length connections on primate brain; furthermore

we developed the first FOD analysis for CLARITY-based data.

4. Chapter 4, we provide and algorithm that uses microstructure informed tractography to

disentangle a specific physical property, i.e., intra-axonal T2, showing the advantages in

solving crossing fibers.

5. Chapter 5, we provide a second algorithm which uses microstructure informed tractog-

raphy to estimate a biological property, i.e. axonal diameter, showing the advantages in

using tractography to cope with dispersion and complex geometries; the strength of the

work lies in the reproducibility studies performed and in the validation of the results

through 2D histology.

6. Chapter 6, we propose a neural network to reduce the computational burden of mi-

crostructure informed tractography; this has to be consider a preliminary study and

propose a novel approach for microstructure informed tractography

7. Appendix, we review the main contributions of each chapter in this dissertation, and

provide various directions for future research.
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1 Background

This chapter aims to review the basic principles behind the central nervous system (CNS) and

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI), with a focus on microstructure

imaging and tractography. We will not examine the anatomy of the brain in detail, and we

will not discuss the basics of Magnetic Resonance Imaging (MRI), concepts that are widely

explained in several books [48, 52]. However, we will furnish basic knowledge to understand

how to study the human brain structure with a non-invasive technology.

In this background chapter, we introduce crucial elements which will allow understanding

the other chapters of the thesis. The first section describes elements of the nervous system,

which is the system that we want to study. Then, the diffusion phenomenon is introduced,

which indirectly gives us information about the structure. The technique that will be used to

measure diffusion in the brain is DW-MRI. The last two sections will deal with microstructure

imaging, which gives us information at the voxel level, and finally tractography, which will give

us an opportunity to connect voxels and reconstruct neuronal pathways in the brain.

1.1 Nervous system

The indispensable elementary unit of the nervous system is the neuron, Figure 1.1. In the hu-

man brain, billions of neurons process and transmit information, creating a highly organized

and complex network.

The body and the surrounding environment send information to the nervous system,

which receives, filters, possibly stores and then transmits, generating a command. More

specifically, the nervous system has receptors, which convert stimuli to electrical discharges,

i.e., nerve impulses, and directs them along the nerve to the cell bodies, where information

processing occurs. Furthermore, it can also evoke external responses in the muscles or glands

to generate movement or secretion. In this context, it assures that the body reacts appropriately

to the environment.
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Chapter 1. Background

The nervous system is divided in the CNS, composed by the spinal cord and the brain, and

the Peripheral Nervous System (PNS), which links the CNS to receptors and effectors. In this

thesis, we will focus on the brain.

Figure 1.1 – Neuron structure.

1.1.1 Neuron

The nervous system architecture is structured with neurons and glial cells. Neurons are

responsible for the functions, glial cells protect and support the neurons.

Neurons are composed of a cell body, of multiple short dendrites, which receives input

from other neurons, and of a single axon which conducts the nerve impulse. When the nerve

impulse reaches the location of the connection between neurons, i.e., synapse, a neurotrans-

mitter is released to the axon terminal. Furthermore, axons are surrounded with a myelin

sheath which serves as an insulator and increases the impulse conduction velocity [274].

1.1.2 Brain organization

The cerebral hemispheres, the cerebellum, and the brainstem subdivide the brain into three

parts. The cerebral hemispheres consist of the Grey Matter (GM), the outer portion containing

cell bodies, the White Matter (WM), the inner portion where axons reside, and the ventricles,

which are areas filled with Cerebrospinal Fluid (CSF). The cerebral hemispheres are the largest

part of the human brain, are the most developed portions of the CNS, and are connected by
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1.1. Nervous system

the Corpus Callosum (CC). A midline portion and two lateral lobes compose the cerebellum.

The diencephalon, midbrain, pons, and medulla constitute the brainstem.

In this thesis we will focus mainly on the WM.

1.1.3 Gray matter subdivision

The cerebral cortex, placed on the surface of the brain, is a sheet of neural tissue folded to

allow a large surface area to fit in the skull. Cortical ridges are gyri and cortical grooves or

fissures separating one gyrus from another with sulci.

The cerebral cortex is approximately symmetrical with two hemispheres connected by the

sagittal fissure. Different subdivisions of the cerebral cortex were proposed during the years

[12, 17, 69, 94, 107, 113, 128, 140, 142, 143, 159, 300, 347, 375]; here, we report the primary

conventional subdivision which divides each hemisphere into four macro-areas lobes: the

frontal, parietal, occipital, and temporal lobes; (See Figure 1.2). The frontal lobe is in front of

the brain and is associated with higher level cognition, motor skills, reasoning, and expressive

language [318]; in the posterior part of the frontal lobe lies the motor cortex which is related

to body movements. In the middle section of the brain is located the parietal lobe, which is

associated with sensory information such as pressure, touch, and pain [134]. On the bottom

section is located the temporal lobe which is associated with the primary auditory cortex,

related to speech perception, and the hippocampus, which is related to memory [327]. At the

posterior part of the brain is located the occipital lobe, which is associated with interpreting

visual stimuli [357].

1.1.4 White matter subdivision

Neural tracts form the connections between the distinct functional regions in the cerebral

cortex . Neural tracts can be divided into three main categories:

• Projection tracts establish connections between the subcortical structures, i.e., basal

ganglia and the thalamus, and the cerebral cortex. Projection tracts also establish the

connections between the brain and the spinal cord. These are of two types:

– Afferent tracts build up connections to the cerebral cortex from different regions

of the body. Except for the olfactory sensory information, all the other sensory

information end up in the primary sensory cortex.

– Efferent tracts are the communication fibers from the motor cortex to the glands

and muscles, passing through lower brain structures and the spinal cord.

• Association tracts establish connections between cortical areas within a hemisphere.

They are subdivided into two categories:
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Chapter 1. Background

Figure 1.2 – The cerebral cortex is divided in four lobes: frontal lobe, parietal lobe, occipital
lobe, and temporal lobe.

– Short association tracts establish connections with adjacent gyri and they build up

connections within a given lobe, an example are the so-called "U-fibers."

– Long association fibers carry information between different cerebral lobes passing

through different brain areas. An example of long association fibers is the Uncinate

Fasciculus (UF) which goes from the temporal to the frontal lobe.

• Commissural tracts build up connections from a region in one hemisphere to another

area of the opposite hemisphere. An example of commissural tract is the transcallosal

fibers.

In the literature, there has not always been an agreement in the classification and use of

"fibers", "fascicles", "bundles", "tracts" and "pathways". A recent study proposed a unified

classification [224]. In this thesis, we propose the following classification:

• set of spacially coherent axons: fiber. In the DW-MRI community, we use incorrectly the

notion of streamline to think about the fiber. However, the streamline is the output of

tractography and is different from a fiber.

• set of fibers: bundle or fascicle or tract

• combinations of fibers/bundles/tract: pathway (synopsis in between)
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1.2. Diffusion

1.1.5 Reconstructing the wiring of the brain

Reconstructing the wiring of the human brain is a crucial step to understand its function.

During the past years, several methods have been proposed. We can divide the methods into

two main categories: ex vivo and in vivo. With ex vivo studies, the community discovered

most of the white-matter connections using tracers. Tracers have the advantage of higher

anatomical accuracy, and they use natural axonal transport mechanisms. In vivo studies have

been conducted mainly with DW-MRI and functional Magnetic Resonance Imaging (fMRI)

[204]. In this second category, tractography, which can be associated to virtual dissection, is

the tool of choice for inferring white matter structure.

Till now, the results of in vivo studies of wiring of the brain are less accurate compared to

those of the ex vivo studies; however, there are definite advantages, e.g., they can be used for

longitudinal and comparative studies.

1.2 Diffusion

In this section, we will address concepts of diffusion at the macroscopic scale. Furthermore,

we will try, when possible, to historically reconstruct the key events that led the advance of

knowledge in diffusion and DW-MRI as it is known today.

1.2.1 What is diffusion?

Diffusion is a mass transport process whereby molecules change their position as a result of

random, thermally-driven collisions. Commonly, diffusion is reported as an expression of a

change in molecular displacement from an area of high concentration to low concentration.

Thanks to this property, inhomogeneous materials can become homogeneous. However,

diffusion happens also in the absence of a macroscopic concentration gradient; in this case,

we speak about "self-diffusion", a process derived by local concentration fluctuations.

Diffusion process differs from advection. Advection occurs with the bulk flow, and it is

characterized by a macroscopic effect that involves the entire fluid, e.g., river streaming from

a high point to a low point. On the contrary, diffusion occurs without any bulk flow.

1.2.2 When was diffusion observed for the first time?

Often the discovery of the diffusion process is attributed to a Scottish botanist Robert Brown

(1773 - 1858) [44]. However, this phenomena has been probably observed by many scientists

throughout history. The Roman poet and philosopher Titus Lucretius Carus (99 BC - c. 55 BC)

in his scientific poem De Rerum nature [59] report a phenomenon that can be brought back to

the observations of Robert Brown:

"Observe what happens when sunbeams are admitted into a building and shed light on its
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shadowy places. You will see a multitude of tiny particles mingling in a multitude of ways...

their dancing is an actual indication of underlying movements of matter that are hidden from

our sight... It originates with the atoms which move of themselves". Although the jiggling dust

particles in light seen by Lucretius was probably largely caused by advection of air currents,

there was probably a diffusion component in the tumbling motion of small particles caused

by diffusion.

The diffusion process was not been commented during history until 1785 when the Dutch

physiologist, biologist and chemist Jan Ingenhousz (1730-1799) reported a random motion

of coal dust particles on the surface of alcohol [161]. Although Ingenhousz reported a phe-

nomenon that can be related to diffusion, it is not clear if he was the first person able to state

the random motion of particles. The uncertainty of the attribution of the discover can be

attributed to the lack of information on the microscope used, doubts about the experimental

conditions, and quick evaporation of the liquid used.

Therefore, currently the observation of diffusion is commonly associated to Robert Brown,

who in 1827 described grains of pollen wiggling around in water [44], what we refer nowadays

as "Brownian motion".

1.2.3 Fick’s First Law

Inspired by the work of the Scottish chemist Thomas Graham (1805-1869) on diffusion of salts

in water [144] and of the French mathematician and physicist Joseph Fourier (1768-1830) on

his law of thermal conduction [130], in 1855 Adolf Eugen Fick (1829-1901), a German physician

and physiologist, introduced for the first time the diffusion coefficient. Fick identified the first

quantitative measure of diffusion, relating molecular displacement through time.

In his work [119], he studies the diffusion flux to concentration. The phenomena are

described in "Fick’s first law" which states that the diffusion flux is proportional to the negative

of the concentration gradient and goes from a region of high concentration to region of low

concentration. In one dimension, the law is:

J =−D0
d

d x
c(r , t ) (1.1)

where J is the diffusion flux and measures the amount of substance which flow, D0 is the

diffusivity or diffusion coefficient, c is the concentration and x is the position. In two or more

dimensions we have:

J =−D0∇c(r , t ) (1.2)

where ∇ is the gradient operator.
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1.2.4 Fick’s Second Law

From the continuity equation of the conservation of mass:

d

d x
c(r , t )+∇· J = 0 (1.3)

We combine (1.2) and (1.3) and derive "Fick’s second law" or diffusion equation:

d

d t
c(r , t ) =∇· (D0∇c(r , t )) = D0∇2c(r , t ) (1.4)

where ∇2 is the Laplace operator.

Here, there is an implicit dependence on the starting point at 0, P (r , t) = P (r |r0, t), and

this quantity is known as the propagator, which give us the probability to be found at the

position r given that we start at r0 at t = 0.

We assume that D0 is constant, which is a good assumption for diffusion in water.

Fick’s Laws in (1.2) and (1.4), describe mutual diffusion, where particles drift from higher

to lower concentration. Albert Einstein (1879-1955), applied the same idea to self-diffusion,

the case without a macroscopic concentration gradient and interpreted the phenomena in

terms of probability.

1.2.5 Diffusion as a Random Walk

Even though the single molecules do not have a preferred direction of motion, if there exists a

concentration gradient then over time you see a diffusive flux from high to low concentration.

The motion of a single molecule can be described in terms of "random walks".

From the discovery of Brownian motion passed seven decades before some progress in

the field happened. During this period, physicist like the Scottish James Clerk Maxwell (1831-

1879), the Austrian Ludwig Eduard Boltzmann (1844-1906) and the German Rudolf Julius

Emanuel Clausius (1822-1888), founders of the kinetic theory, tried to measure the velocity of

particles, without success.

It is only around 1900 that the physicists Albert Einstein and the Polish physicist Marian

Smoluchowski (1872-1917) started to gain understanding about Brownian motion, and they

understood that velocity is not a useful feature to be characterized.

The simplest mathematical model that can be related to Brownian motion[71] is the "ran-

dom walks"; a term introduced by the French mathematician Louis Jean-Baptiste Alphonse

Bachelier (1870-1946) in his Ph.D. thesis [20] and the English mathematician Karl Pearson

with his letter to Nature [271].

Einstein studied the Brownian motion [108–111] and concluded that it was associated
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Figure 1.3 – Illustration of Brownian motion. Left side free diffusion, right side restricted
diffusion. From top to bottom the time increases.

with diffusion. Furthermore, he concluded that the fundamental quantity is the mean-square

displacement and not the velocity. Moreover, he related the mean square-displacement with

the diffusion coefficient. During the same period, Smoluchowski worked on the Brownian

motion and published his first papers right after the first Einstein publication [354, 355].

In 1909, the physicist Jean Baptiste Perrin (1870-1942) confirmed the Einstein’s Brown-

ian motion equation [275], proved the existence of water molecules, and estimated its size,

winning the Nobel Prize for Physics in 1926.

In the random walks model, particles start from a position r0 and move freely with velocity
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vi for time τ. They collide with another particle, and they change their velocity vi+1 randomly.

This process is repeated. The position rn after n steps is:

rn = r0 +τ
n∑

i=1
vi (1.5)

The corresponding time elapsed is t = nτ.

What characterizes diffusion is that there is no net transport and the mean distance traversed

is zero:

〈rn − r0〉 = τ
n∑

i=1
〈vi 〉 = 0 (1.6)

However, the mean squared distance grows in proportion with the time elapsed:

〈(rn − r0)2〉 = tτ〈v 2〉 ≡ 6D0t (1.7)

where D0 is the diffusion constant. We can connect the equation to the equipartition theorem:

D0 = 1

6
〈v 2〉τ= kB T

2m/τ
(1.8)

where kB is the Boltzmann constant, T the temperature.

This relation is more typically rewritten in combinations with the findings of George

Gabriel Stokes (1819-1903) [331], which introduced the frictional force, leading to the the

Stokes-Einstein relation:

D0 = kB T

ζ
(1.9)

where ζ= 2m/τ is the friction coefficient, proportional to viscosity.

1.2.6 Diffusion propagator

For long times, we can use the central limit theorem [84, 200, 282]: a sum of independent and

identically distributed stochastic variables tends to be distributed according to the normal

distribution when the n is large enough as long the distribution of the individual variables

decays sufficiently fast.

The Einstein relation (1.7), which define the mean squared displacement, can also describe

the variance of the spread of positions after a certain amount of time.

Hence, to define the probability of a particle being displaced from r0 to r in time t we use

the Gaussian function.

For large t we have:

P (r , t ) = 1

(4πD0t )
3
2

e−
(r−r0)2

4D0 t (1.10)
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where
p

2D0t is known as the diffusion length. Einstein showed that the macroscopic

movements are related to the thermal energy of molecules. The typical velocity can be esti-

mated by the mean square velocity and the equipartition of the kinetic energy which says that

the mean square velocity is proportional to the product of the temperature and the Boltzmann

constant divided by the mass of the diffusing particles:

〈v2〉 = 3kB T

m
(1.11)

1.3 Diffusion MRI

1.3.1 Bloch and Bloch-Torrey equation

Earlier to the proposal of DW-MRI, in 1946, Felix Bloch (1905-1983), a Swiss-American physicist,

proposed in a mathematical context the equation (1.12) [43] with the purpose of calculating

the nuclear magnetization as a function of time when T1 and T2 relaxation[328] are applied:

d M

d t
= γ(M ×B0)+


−Mx

T2

−My

T2
M0−Mz

T1

 (1.12)

The first term of the equation expresses the torque on the magnetic moments due to B0

[43], the second term adds the relaxation component of T1 and T2.

In 1956, the equation was extended to be sensitive to diffusion, with the mathematical

framework proposed by Henry Cutler Torrey (1911-1998). The framework incorporated the

diffusion effects into the Bloch Equations 1.12, creating the so called Bloch-Torrey equation

[339]. The equation assumes that the magnetization is proportional to the spin density.

d M

d t
= γ(M ×B0)+


−Mx

T2

−My

T2
M0−Mz

T1

+D∇2M (1.13)

Compared to equation (1.12), the difference is the addition of the diffusion attenuation.

If we ignore the T1 and T2 effect, the solution of the Bloch-Torrey equation is:

d M

d t
= γ(M ×B0)+D∇2M (1.14)

Since the image depend on the transverse magnetization, we can define the complex
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number S = Mx + j My . Then the equation can be reduced to:

dS

d t
=− jγ(G · r )S +D∇2M (1.15)

where r is the location, not the random position of the spin. Equation (1.14) can be solved as

follows:

S = S0eγ
2G2δ2(∆− δ

3 )D = S0e−bD (1.16)

1.3.2 Sensitizing the MRI signal to Diffusion

Parallel to the theoretical developments of diffusion in magnetic resonance, work on the

hardware and sequence development to measure the phenomena was developing. Only

a few years after the introduction of the Block equation (1.12), the principles of spin echo

were noted by Erwin Hahn (1921-2016) in 1950 [148]. At the time, typical Nuclear Magnetic

Resonance (NMR) experiments were performed with an initial 90-degree radio frequency

(RF) pulse, to align the protons in the plane perpendicular to the main magnetic field. Then

the Larmor precession occurs, and the spins start to precess around the main magnetic field.

Spins that are initially coherent start to dephase due to dipolar interactions or magnetic field

inhomogeneities, leading to a decay of the signal in the receiver.

However, further development was still needed to achieve a better understanding of the

contrast acquired. Hahn introduced a 180-degree RF pulse, after the 90-degree degree RF

pulse, to remove the inhomogeneities of the field and to reproduce the signal. Later, the

technique was refined to be sensitive to diffusion. Herman Y. Carr (1924-2008) and Edwis Mills

Purcell (1912-1997) in 1954 [58] introduced a constant gradient field to achieve sensitivity to

diffusion. Using the advancements in the field mentioned above, in 1965 Edward O. Stejskal

and John E. Tanner developed the widely used DW-MRI sequence, the Pulsed Gradient Spin

Echo (PGSE) [330], see figure 1.4.

Figure 1.4 – Schematic representation of the Pulsed Gradient Spin Echo (PGSE) sequence.

The underlying principle of PGSE is the introduction of two gradient lobes, before and after

the 180-degree pulse, which transmit a spatially-dependent phase to each spin. If the spins

are not moving, the second gradient lobe will reverse the phase introduced by the first lobe
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resulting in no net effect. However, the protons that experience random movement between

the application of the two gradient pulses will experience a phase offset comparable to the

degree of the displacements. The result will show a phase dispersion comparable to the spread

of positions. The signal will be exponentially attenuated, after a time-echo (TE), according

to the diffusion coefficient D, the γ gyromagnetic ratio, the amplitudes G and timing of the

gradients, δ and ∆.

It is useful to define the so-called b-value [330] for a given sequence as:

b = γ2
∫ T E

0
(
∫ t

0
G(t ′)d t ′)2d t (1.17)

More specifically, we define a b-value of the PGSE sequence, including two diffusion

gradients with duration δ, separation ∆ and amplitude G .

b = (γGδ)2(∆− δ

3
) (1.18)

1.3.3 Measuring the diffusion coefficient

The measured signal can be expressed as:

S = S0e−bD (1.19)

where S, the measured signal, has a decreased amplitude compared to the spin-echo

signal S0 [330]. The greater the diffusion is, the more the measured signal S will be attenuated.

Because the methods are used to detect the signals of several processes together, and not

only diffusion, e.g., phase dispersion due to susceptibility effects and bulk tissue motion from

respiration or cardiac pulsations, we define the overall effect as an apparent diffusion, denoted

as Apparent Diffusion Coefficient (ADC) [29]. The ADC along a given direction can thus be

estimated by applying the diffusion gradients in said direction, and solving:

ADC =
l n S(b)

S0

−b
. (1.20)

For free diffusion, the ADC is the same in any direction, and the ADC profile is said to be

isotropic.

1.4 Microstructure Imaging

The microstructure imaging techniques aim at obtaining valuable information on the tissue

microstructure properties utilizing the DW-MRI signal. To extract these microstructural
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1.4. Microstructure Imaging

features we need the DW-MRI signal to be sensitive to specific features; hence, in the case

of the simple PGSE sequence, we can vary the amplitude of G , the timing δ and ∆ of the

gradients, and the echo time (TE), to create a contrast in the signal. Ultimately, according to

the previous sequence acquired, different approaches can be used for the reconstruction. One

of the first microstructural imaging technique proposed was Diffusion Tensor Imaging, then

more complex models were proposed to estimate axon diameter, axon density, and dispersion.

1.4.1 Diffusion Tensor Imaging

In free water, e.g., a glass of water, the diffusion is isotropic because movement in any direction,

given a fixed magnitude of motion, is equally probable. However, in biological tissue, the self-

diffusion of water molecules is hindered and restricted by membranes and macromolecules.

In particular, in brain tissue, water can diffuse more freely along white matter fibers than

across them.

This key concept was used by Basser et al. [28, 279] to define Diffusion Tensor Imaging

(DTI).

From the DW-MRI data, fiber orientation in white matter can be estimated using a Gaus-

sian propagator with the following equation:

D =

Dxx Dx y Dxz

Dx y D y y D y z

Dxz D y z Dzz

=

e1 e2 e3


λ1 0 0

0 λ1 0

0 0 λ3


 e1

e2

e3

 (1.21)

The diffusion tensor is a positive definite, symmetric 3x3 matrix with eigenvectors e1, e2

and e3 and eigenvalues λ1, λ2 and λ3. Eigenvectors represent the principal diffusion direction

and the eigenvalues give the diffusivity along these directions.

Following the Gaussian assumption, the diffusion signal can be then expressed in terms of

the diffusion tensor as:

S(b)n = S0 exp(−bĝ T
n Dĝn) (1.22)

where ĝ represents the gradient direction. The equation has seven unknowns, six for

the diffusion tensor D and the S0. The primary fiber orientation can be recovered using the

eigenvector (e1) associated with the highest eigenvalue λ1.

With DTI, it is possible to recover two well-known indices: the Fractional Anisotropy (FA) and

the mean diffusivity (MD) [3].

F A =
√

(λ1 −λ2)2 + (λ2 −λ3)2 + (λ1 −λ3)2

2(λ2
1 +λ2

2 +λ2
3)

(1.23)
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MD = λ1 +λ2 +λ3

3
(1.24)

Orientation Distribution Functions

Figure 1.5 – Column one shows configurations of fibers that arise often in voxels (first column).
Column two shows the diffusion pattern expected. The third column shows the Diffusion
Tensor Imaging (DTI) fitting. The fourth column shows the principal direction of the DTI. In
the last row, the DT is perfectly oblate so the principal direction in undefined. The fifth shows
the Fiber Orientation Distribution (FOD) function. The illustration is modified from [315].

DTI is a very useful technique when we want to estimate anisotropy of diffusion. However,

taking into account the resolution at which DW-MRI operate, we are very likely to find in a

voxel multiple populations with different geometry: parallel, fanning, bending and crossing

[182].

In order to tackle the problem of complex orientation inside a voxel, several approaches

have been proposed: multi-tensor models [34, 346], Diffusion Spectrum Imaging (DSI) [345,

361], pasmri [167], Spherical Deconvolution (SD) [8, 92, 93, 343]. In this thesis, we will focus

on the SD [8, 343] because it is a technique that we will use in the next chapter of the thesis,

and it is widely used nowadays. With SD, we will try to recover multiple fiber orientations. See

Jbabdi and Johansen-Berg [168] for a more complete view on the crossing fiber problems.
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1.4. Microstructure Imaging

To find multiple orientations for fibers with the SD [343] technique, the diffusion signal

can be rewritten as:

S(θ,φ) = f ODF (θ,φ)⊗R(θ) (1.25)

where R(θ) is the unit sphere of a response function (kernel), representing the signal of a

single-fiber bundle, and f ODF (θ,φ) is a Fiber Orientation Distribution (FOD). The diffusion

signal S(θ,φ) is seen as the convolution between f ODF (θ,φ) and R(θ). In equation 1.25, only

S(θ,φ) is known. Initially, a step is performed to estimate the response function R(θ) using

the algorithm proposed by Tournier et al.[342]. The estimation is performed in voxels where

diffusion tensor analysis showed high anisotropy, i.e., an approximation of single fiber voxels.

Subsequently, the DW-MRI signal is deconvolved using spherical harmonics [340] in order to

obtain multiple orientations per voxel, i.e., fiber orientation density function.

1.4.2 Signal models

After the initial applications of DW-MRI, the number of studies in modeling the diffusion

signal increased radically. We can divide the approaches used in two fields: signal models and

biophysical models. Signal models aim to describe the signal through a continuous function,

while biophysical models aim to relate the signal to intrinsic biological properties of the tissue.

Typical signal models are the previously introduced DTI, higher order tensor [219, 265],

spherical harmonics ADC profile [7, 131], Diffusion Kurtosis Imaging (DKI) and cumulant

expansion [173], SHORE [263], Mean Apparent Propagator (MAP-MRI) [264], anomalous

diffusion [37, 262] and Intravoxel Incoherent Motion (IVIM) [205]. This last may be considered

more biophysical model compared to previously cited.

1.4.3 Biophysical models

Generally, biophysical models are associated with compartment models. In the compartment

models, the "stick" was proposed first [33, 34, 329]. Then studies of axon diameters estimation

with AxCaliber [14, 25] and ActiveAx [5, 104]. In the same period, estimation of fiber dispersion

was proposed [15, 171, 323, 371] and technique that refine the signal neglecting dispersion

were proposed with the Spherical Mean Technique (SMT) [189, 190].

The typical compartment model of the WM assumes the separation of intra-axonal signal,

the signal from water molecules trapped inside the axons, Si and extra-axonal signal Se [4],

whose signal is derived from the water molecules moving in the space between axons. The

WM can then be described as:

S = fi Si + fe Se (1.26)
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where fi and fe represent respectively the signal fraction of intra-axonal and extra-axonal

compartments, and fi + fe = 1. Compartment models may also include free diffusion water

which is typically modeled as a sphere.

In the following sections, we will present the most used compartment models which we

will also use in the following chapter of the thesis.

CHARMED

The Composite Hindered And Restricted ModEl of Diffusion (CHARMED) was proposed by

Assaf et al. [15] to model hindered and restricted water diffusion. The model proposes a

mixture of M hindered and N restricted compartments:

S(q,∆) =
M∑

j=1
f j

i S j
i (q,∆)+

N∑
k=1

f k
e Sk

e (q,∆) (1.27)

Where f j
i f j

e are the signal fractions of the restricted and hindered compartments, S j
i (q,∆)

is the signal given by a cylinder of radius r as derived by Neuman [248], and the extra-axonal

compartment is modeled with a tensor. The q-value is equal to q = 1
2πγδG . Since the model

includes several restricted compartments, it is possible to model fiber dispersion.

AxCaliber

After CHARMED, Assaf et al. [14] proposed a second model, named AxCaliber, to estimate the

axon diameter distribution. The assumption that the model uses is that the WM voxel model

contains only single populations voxels and the diffusion signal is represented as following:

S(q,∆) = fi Si (q,∆)+ fe Se (q,∆) (1.28)

Similarly to CHARMED, the extra-axonal signal is modeled with a tensor, and the intra-

axonal signal is modeled as a set of parallel cylinders with radii sampled from a gamma

distribution. A significant limitation of the method is that the AxCaliber model assumes

diffusion gradients to be applied perpendicularly to the axons. Non-linear Least Square (NLS)

is used to estimate the signal fractions, the perpendicular diffusivity, and the parameters α

and β of the gamma distribution.

ActiveAx

In 2010, Alexander et al. proposed ActiveAx [5] where the aim was to simplify previous models

and estimate the mean axon diameter or Axonal Diameter Index (ADI). The WM tissue model

used is the Minimal Model for White Matter Diffusion (MMWMD) and uses parallel cylinders
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1.5. Tractography

for the intra-axonal signal and tensors for the extra-axonal signal. To reduce the degree of

freedom in the extra-axonal signal the tortuosity model [332] was used. The model estimates

the ADI and the signal fractions, which are estimated using a non-linear optimization with a

Markov Chain Monte Carlo (MCMC) procedure.

NODDI

Probably one of the most popular models proposed in the last decade is Neurite Orientation

Dispersion and Density Imaging (NODDI) [371]. Instead of modeling the axon diameter with

a cylinder, with this approach we model the orientation dispersion with a set of "sticks", i.e.,

cylinders with radius 0. Similarly to previous mentioned methods the extra-axonal signal is

modeled with a tensor. The final parameter estimated by the model is signal fraction and

degree of dispersion. These parameters are estimated using a Gauss-Newton non-linear

optimization.

Compared to the previous three methods mentioned, NODDI gained much more popular-

ity, mainly because the model was suitable to be used in clinical scanners.

1.5 Tractography

The overall goal of tractography is to reconstruct WM connections. Using the local estimation

of orientation, which can be performed using methods cited in the previous section, the goal

of tractography is to piece together these orientations to show the underlying 3 dimensional

(3D) trajectory of the bundles. Furthermore, tractography is also the only tool that allow us to

reconstruct the 3D WM in the living brain.

Several tractography algorithms were proposed during the years. The two main categories

that we present in this thesis are: local and global approaches. The main differences between

the two are that the local approach creates streamlines independently, one after the other,

while the global approach builds streamlines all simultaneously.

1.5.1 Local approach

Local tractography is any method that takes local decisions: starting points, end points, what

is the next step.

All the first introduced tractography methods used local approaches. The first local trac-

tography method proposed was in 1992 with the hyperstreamlines [89], however, did not get

much popularity, probably due to its complexity. It is easier to relate the proposal of tractogra-

phy as it is known today with the studies performed around 1998 when several methods were

proposed [27, 66, 238, 362, 363].

Among all the first methods proposed, we introduce the Fiber Assignment by Continuous
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Figure 1.6 – Illustration of tractography. The goal of tractography is to reconstruct the White
Matter (WM) bundles of the brain. In this illustration, we show streamlines of the Corpus
Callosum (CC) connecting the left and right hemisphere of the brain. Streamlines can be
colored according to a tissue property. Endpoints of the streamlines can be projected onto the
cortex.

Tracking (FACT) [238]. This algorithm refers at the class of the streamline method which is the

most direct method for performing tractography as it can be reconstructed by only starting

at a seed point and following the local vector information. The FACT approach shows that

it is possible to track the 3D structure of fiber pathways by using the main direction of the

voxel diffusion profile and setting three principal parameters: step size, angular constraint,

and interpolation.

In terms of usage of local tractography, through the years it became famous thanks to

the simplicity of the method and the fast computation time. Local tractography proposed

many methods [31] and models; see [178] for a review of tractography algorithms. At the very

high level, there are deterministic methods where we find one trajectory per seed point, the

location where tractography is initiated, and probabilistic methods [34] which try to explore

the space of possible pathways exploring uncertainty in the diffusion orientation.

Start and stop criteria

One of the main local decision to take is the start and the stop criteria. Here we have two

main categories: threshold-based and rule-based. The threshold based criteria [223, 238, 269,

286, 310, 341] can be related to: FA, FOD density, bundle-specific, curvature angle between
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steps, free-water corrected. The rule-based are related to: seed mask, brain mask, anatomical

constraint [34, 106, 135, 139]

Data interpolation

Other important criteria to choose are the interpolation, which can be: local, less local and

with "memory". The first methods proposed were all local: nearest voxel, random voxel,

trilinear interpolation, spline interpolation. [26, 34, 238]. For the less local: Runge-Kutta or

midpoint method [333] where half of the step is taken, the data is interpolated, and then

that info is averaged with the data at the starting point. For the "memory" cases, data from

previous steps are used [117, 203, 203, 223, 362, 363].

Determinstic vs probabilistic propagation

Another important point to highlight is how to take the next step: deterministic or probabilistic.

The deterministic algorithm follows the major eigenvector (principal diffusion direction) of

the tensor or the maximum peak from an Orientation Diffusion Function (ODF) [93, 168, 238].

Probabilistic generally samples from some local distribution and sometimes they may have

priors that may prefer a previous orientation of tracking [34, 132].

Benefits and limitations

The major benefits of tractography are several and here we report few examples. Firstly,

the algorithms are widely available and freely provided by different softwares [135, 341].

Then, tractography is practically helpful, since it can be used to reconstruct in vivo the vivo

major bundles known from anatomy [19, 106, 201]. Hence, up to a certain extent, is used in

neurosurgery [251]. Ultimately, it has been shown consistency across subjects also in patients

with brain tumors [256].

Limitations of tractography include anatomical error such as false positive and false

negative connections [196, 221, 307, 319, 335]. More specifically, there is a known bias towards

certain type of connections [139, 168, 257, 291], i.e., it is more difficult to track the long-

range connections. The fundamental limitation is the resolution, where DW-MRI is in the

order of mm, and the axon diameter is in the order of µm. Nevertheless, validation is also

one of the main issues; and when this is put in the context of software availability, it is

difficult to evaluate performance due to different Region of Interest (ROI) or software programs

[47, 117, 283, 356]. Tractography is improving; however, more research is needed, with better

resolution, better algorithms, and better models. Alternatively, as proposed by [335] which

have a more pessimistic view, tractography may not be solved based with DW-MRI alone.

Deterministic limitations: the main limitation of the technique is that MRI can only give

information on the average axonal orientation within a voxel and the resolution does not allow
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distinguishing among several small projections that are immediately adjacent to each other.

In conclusion, streamline deterministic algorithms tend to be fast and straightforward but

suffer from the propagation of local estimation imprecisions along the path.

Probabilistic limitations: Probabilistic tractography techniques can generate streamlines

through regions of high uncertainty, where deterministic techniques would stop. Often, several

hundred streamlines are generated from each, and the most likely fiber pathways are extracted

from the results. However, probabilistic algorithms are more difficult to interpret, and the

probability maps generated may not be trivial; hence, they only partially solve the central

issues of the local formulations.

1.5.2 Global approach

Global minimization approaches have been proposed [126, 197, 288] to reconstruct at once

the full tractography over the whole brain. Global tractography concurrently reconstruct all the

fiber tracts by finding a solution that best explain the measured diffusion data. In particular, it

showed high stability in the presence of imaging artifacts and noise in the data as presented in

the work [216]. However, due to the complexity of the problem, a complete global algorithm

that recovers biological features needs still to be formulated. Nevertheless these limitations,

these methods outperform local methods, at the cost of and increased computational burden,

e.g., one week per brain, which is not suitable for some clinical applications.

In the list of the global methods we cite Spin Glass model [126], Gibbs Tracker [197, 288],

extension to microstructure [287, 316] and multishell data [63], simulated annealing [212],

and global reconstruction FODs [288]. The basic idea is that there is a fiber model where

there is a segment which can be associated to spin glasses which are distributed all over the

brain and they not fixed to voxels, and they can make connections. Each of the segment

can contribute to a signal. The goal is to find the best configuration of these spins that best

explain the observed data. Usually, algorithms are probabilistic in nature; however, there is

no idea of how many spins should be there and usually to make the fitting practical, the use

of simulated annealing with decreasing temperature [288] is performed. Segments also carry

variable diffusion parameters like signal fractions and diffusivities [63, 287]. Each segment

has a set of parameters: position, orientation intra-axonal diffusivity.

Limitations: hard non-parametric optimization problem, millions of connections, the

interaction of segments is often limited and each transition requires computation of energy

difference. They are slow and not efficient. Generally, it is not possible to guarantee GM

connectivity [319]. However, the main advantage is that they can be used to predict the DW

image data.
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1.6 Microstructure Informed Tractography

Initially, tractography and tissue microstructure estimation have been studied as two separate

problems. Nevertheless, recent studies [76, 77, 138, 297, 316, 317, 367] have demonstrated

the potential benefits of combining local microstructural features and tractography. These

last methods use broad set of candidate streamlines using different tractography algorithms,

followed by an extraction of a subset that best fits the acquired DW-MRI signal. This technique

tackles the problem in a top-down approach, whereas bottom-up strategies characterized all

previous tractography approaches.

1.6.1 Non linear methods

In Sherbondy et. al.[316], a supercomputer was used to find a optimal subset of fiber tracts

from a huge set of candidates. However, the use of a supercomputer limited the use for real

applications. Lately, the framework was optimized in MicroTrack [317] with the addition of

multicompartment model similar to Alexander et. al.[5]. MicroTrack was the first algorithm

that assumed that the microstructural properties of the fibers remain constant along their

trajectory. The algorithm was used successfully showing the advantages of combining mi-

crostructure and tractography. However, similar to previous global methods, the approach

suffered for two main limitations: first, the complexity of the formulation did not guarantee to

converge to the optimal solution, second, increased computational burden.

Other methods similar in spirit to MicroTrack have been proposed more recently. In [297], a

variation of the method with the introduction of a particle filter mechanism was proposed. The

method included axon dispersion using NODDI [371], during propagation of the streamlines.

Another example is the split-and-merge tractography [367] which proposed to split the fibers

at inaccurate locations according to an accuracy measure and produces clusters of short tracts

as output. One more example that was used more often by the community is the spherical-

deconvolution informed filtering of tractography (SIFT) method [320], which uses the fiber

orientation distribution reconstructed with constrained spherical deconvolution to select

which candidates have to be removed. Despite showing good results, these simplified methods

do not use multiple b-values acquisitions and proper tissue models which are required to be

sensitive to tissue microstructure.

1.6.2 Linear methods

To overcome previous limitations, the Convex Optimization Modeling Microstructure In-

formed Tractography (COMMIT) [76, 77] framework has been proposed, see figure 1.7. COM-

MIT reformulates tractography in the framework of convex optimization, reducing the com-

putational cost to accommodate real application demands and guaranteeing recovery of

the optimal global solution. The approach is close in spirit to MicroTrack[317], for both use

multicompartment models and global optimization techniques to combine tractography with
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Figure 1.7 – Example to illustrate the modeling of the Convex Optimization Modeling Mi-
crostructure Informed Tractography (COMMIT) framework. (a) The simulated Diffusion-
Weighted Magnetic Resonance Imaging (DW-MRI) data, a tractography and a forward-model
used to associate a signal contribution to each streamline. (b) The corresponding vector
y of DW-MRI measurements, the matrix A encoding the signal contributions according to
the forward-model of each streamline and the coefficients x estimated by COMMIT. The
illustration is reproduced from [302].

microstructure tissue parameters.

Although DW-MRI provides quantitative data, tractography is known to be a non-quantitative

technique [184, 185, 221, 307, 335]; COMMIT tries to overcome this limitation by assigning

a biophysical model [268] to each reconstructed streamline and expressing the whole DW

images as a linear combination of the signal’s contribution arising from all the streamlines:

y = Ax +η, (1.29)

where y contains the DW-MRI measurements for all voxels of the brain, A is a matrix that

accounts for the signal contributions of the streamlines in each voxel (possibly in addition

to local voxel-wise contributions tissue compartments, e.g. cerebrospinal fluid) according

to any given multi-compartment model [268] and η is the acquisition noise. The unknown
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contributions x of all the compartments can then be efficiently estimated by solving a non-

negative least-squares problem:

argmin
x≥0

||Ax − y ||22. (1.30)

Similarly to previous methods proposed [276, 316, 317, 320, 321], COMMIT enforces the

estimated parameter to be constant along the trajectory of the streamlines.

1.7 Thesis in a nutshell

The goal of this thesis is combining microstructure imaging and tractography to estimate

more robust microstructure parameters. Different approaches have been proposed during the

years, but only in 2015, the combination was formulated in a convex fashion, allowing fast

computation and exploration of modeling.

In this thesis, we contributed to highlighting standard tractography methods. Furthermore,

we proposed a pilot study to use a 3D histological method, named CLARITY 3D, to validate

diffusion tractography. However, the real contributions of this thesis lie on the new paradigm

proposed for modeling brain data. We will use microstructure informed tractography to

disentangle T2 contributions of different bundles. Furthermore, the second main contribution

is related to study the feasibility to achieve axon diameter distributions. Even if the new

formulation of microstructure informed tractography is faster when the model becomes

complex, the computational time increase. In the appendix, we propose a preliminary study

which uses a neural network to recover microstructure informed tractography scalar maps

and reduce the computational time from hours to seconds.
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The increasing interest in the human brain connectivity has heightened tractography as the

modeling technique of choice. Although significant research has been devoted applying

and developing tractography algorithms [21, 26, 33, 39, 49, 61, 65, 68, 87, 141, 151, 168, 178,

180, 181, 186, 202, 203, 207, 208, 213, 225, 239, 241–243, 254, 258, 283, 284, 322, 337, 349,

356, 360, 365, 372], rather more limited attention has been spent on proper validation and

reproducibility. To learn weaknesses and to test the algorithms that emerged during these

last years, we competed in 3 international tractography challenges in the period of 2015 to

2018. In this chapter, we aim to present these challenges, report the final findings and give

perspective on what are the principal limitations, and what are the next steps that need to be

implemented to obtain more reproducibility and specificity to tractography among, primarily,

the neuroscience community, and then other communities.

Of the three challenges, two were organized during the International Society for Magnetic

Resonance in Medicine (ISMRM) conference [221, 246], respectively named, the 2015 "tractog-

raphy" challenge and the 2017 "tractography-reproducibility with empirical data" challenge.

The last challenge was organized during the the Institute of Electrical and Electronics Engi-

neers (IEEE) International Symposium on Biomedical Imaging (ISBI) [307] in 2018, named

"3-D validation of tractography with experimental MRI".

The three challenges are related to three different problems. In the first section of this

chapter, we will focus on the ISMRM 2015 challenge based on numerical simulations. In

the second, we will tackle the problem of reproducibility using in vivo DW-MRI acquisition.

Ultimately, we will focus on tractography validation using physical phantoms and ex vivo

monkey acquisitions.

2.1 ISMRM 2015 Tractography

The ISMRM 2015 tractography challenge is based on synthetic data which gives the advantage

of knowing the ground truth. Hence, it is possible to evaluate the performance of tractography
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algorithms more accurately.

The next sections will present the dataset and the methodology proposed by several groups.

In the end, final comments and perspective works will be reported.

2.1.1 Dataset and evaluation

Shortly, the dataset proposed in the work of Maier-Hein et al. [221] is the following: numer-

ical phantoms that use tractography’s fiber geometry as ground truth for DW-MRI signal

generation.

Comparable approaches have been proposed in earlier studies [68, 125]. The originality

of the ISMRM 2015 tractography challenge lies in two aspects: the use of high-quality HCP

data[140] to generate realistic fiber bundles geometries and the manual segmentation by

an expert radiologist of 25 major fiber bundles. The bundles, (figure 2.1), were determined

according to knowledge taken from past electrophysiological and anatomical literature[61].

Ultimately, the DW-MRI signal was generated using a clinical acquisition protocol, gener-

ating a brain-like numerical phantom.

To quantitatively evaluate the tractography results submitted by the various groups, the

Tractometer connectivity metrics [68] were used. We do not enter in detail of all the metrics

used, however, we report briefly the main used: the true positive, defined as Valid Connections

ratio (VC) (portion of valid streamlines) and the Valid Bundles (VB) (number of valid bundles)

metrics; false positive, with the Invalid Connections ratio (IC) (portion of invalid streamlines)

and the Invalid Bundles (IB) (number of invalid bundles) metrics; volume reconstruction,

with the Volumetric OverLap (VOL) and the Volumetric OverReach (VOR) metrics. The VOL

describe the part of the voxels inside the volume of a ground truth bundle that is crossed by at

least one valid streamline; the VOR is the portion of voxels outside the volume of a ground

truth bundle that is traversed by at least a streamline associated with the bundles’ volume.

Notice that few abbreviations from the original article [221] are changed for the reason of

dissertation consistency.

2.1.2 Results

Most of the ground truth bundles are recovered

A positive message that came out is that most of the state of art algorithms obtained 90% of

the Ground Truth (GT) bundles, considering binary criteria of the ROIs; hence, considering if

a connection between two regions exist if at least one streamline connects two ROIs.

However, the volumetric reconstruction shows that accuracy in reconstructing the vol-

ume of the bundles varies greatly from different bundles and algorithms. Figure 2.2a shows

the analysis performed; identifying VB can be grouped into three clusters of "very hard",
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Figure 2.1 – Top, row summarizes the overview of the numerical phantom generation. Bottom,
25 manually cleaned bundles by an expert radiologist; the bundles were segmented from a
HCP data set whole-brain tractography. The bundles included in the study are the following:
the CorticoSpinal Tract (CST), the Corpus Callosum (CC), Cingulum (CG), Optic Radiation
(OR), Uncinate Fasciculus (UF), Superior Longitudinal Fasciculus (SLF), Inferior Longitudinal
Fasciculus (ILF), Arcuate Fasciculus (AF), Posterior Commissure, Inferior Cerebellar Peduncle
(ICP), Parieto-Occipital Pontine Tract (POPT), Superior Cerebellar Peduncle (SCP) and Fronto
Pontine Tracts (FPT). In the middle is shown the connectivity plot of the phantom design.
Reprinted from [221], Copyright 2017, with permission from Springer Nature.

"hard", and "medium difficulty", corresponding to the percentage of VOL. Figure 2.2b presents

corresponding examples that were reconstructed by different tractography techniques.

The smallest tracts were challenging to reconstruct, that is, the Posterior Commissure (PC)

and Anterior Commissure (AC) have a thickness lower than 2 mm; these were labeled as ’very

hard’. Bundles of medium difficulty were the UF, the Superior Longitudinal Fasciculus (SLF),

Inferior longitudinal fasciculus (ILF) and the CC with an mean of more than 50% volumetric

recovery. Furthermore, the Pearson product-moment correlation coefficient [1] was calculated.

The results (r=0.88, p< 10−8), indicated that the probability of reconstructing a greater part of

a bundle VOL is directly linked to generating false trajectories VOR.

More invalid than valid bundles

The negative message that came out from the challenge is that on the set-up used for this

study, on average tractography contained four times more IB than VB. This result shows that

35



Chapter 2. International tractography challenges

Figure 2.2 – All the ground truth bundles are identified with the method proposed, however,
the ratio of streamlines and their volume was not recovered correctly. (a) Averaged Volumetric
OverLap (VOL) and the Volumetric OverReach (VOR) values of the submissions for the 25
bundles from the ground truth. Colors: blue - medium; green - hard; red - very hard. (b) Ex-
ample of bundles for Diffusion Tensor Imaging (DTI) deterministic, High-Angular Resolution
Diffusion Imaging (HARDI) deterministic, and HARDI probabilistic. The first column shows
ground truth bundles. Volumetric OverLap (VOL) and Volumetric OverReach (VOR) scores are
reported. Reprinted from [221], Copyright 2017, with permission from Springer Nature.

tractography has still work to accomplish in order to diminish this problem. Moreover, more

research is needed to tackle the IB connections [302].

There are bundles which existence have been debatable: the middle longitudinal fasciculus

(MdLF) [222], the Superior fronto-occipital fasciculus (SFOF) [129, 232], the Inferior Frontal

Occipital Fasciculus (IFOF) [129], the Arcuate Fasciculus (AF) [86] and the Frontal Aslant Tract

(FAT) [60]. All these bundles were not integrated into the numerical phantom; however, most

of the tractography algorithms found them. These results do not prove that these bundles does

not exit. Moreover, the anatomical knowledge of these bundles should be studied more in

details. Perhaps, using complementary information with electro physiological and anatomical

studies.

2.1.3 Discussion

An international tractography competition (tractometer.org/ismrm_2015_challenge) was orga-

nized to test tractography algorithms. Numerical simulations of DW-MRI with geometry that

simulate known anatomical bundles were used and results of reconstruction were analyzed

quantitatively with the Tractometer connectivity metrics [68]. The final results show a funda-
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mental ambiguities tractography when based only on orientation information. The challenge

highlighted that innovative technological and conceptual developments are necessary in order

to achieve and solve tractography uncertainties.

Methodological innovation

The initial challenge provided only the DW-MRI. After the conclusion of the challenge, the

authors extended the data reducing the complexity of the problem and adding the GT field of

orientation. However, even with the GT field of orientation, the tractography results did not

improve the bundles’s reconstructions significantly. Hence, not only the DW-MRI may not

support a correct reconstruction, but even the local modeling may not be enough because it

creates ambiguities when used for tractography; at least for the resolution used in the study.

The fundamental problem reported is the presence of "bottlenecks." Maier-Hein et al. [221]

report a specific case in the temporal lobe, where multiple bundles overlap and tractography

clearly show his limitation. These "bottlenecks" are one of the main reason for the existence

of IB connections. The authors propose to use of additional information which could guide

better streamlines in the local orientation fields estimated from DW-MRI.

Personal considerations

The positive message that emerges from the ISMRM 2015 challenge is that a consensus of

tractography main limitations has been listed. Thanks to these findings, it is now possible to

re-direct the attention of the Diffusion MRI community to specific problems and try to achieve

better tractography methods.

However, particular attention has to be given to how the dataset was constructed. More

specifically, it is essential to highlight that a specific DW-MRI protocol was chosen; we suggest

that perhaps different protocol could perform better in terms of tractography reconstruction.

For example, as mention in the paper, biophysical modeling, which need more advanced

DW-MRI protocols, may help to reduce the ambiguities in tractography, see chapters 4 and 5.

In conclusion, we highlight that it is vital that the limitations of the standard clinical

protocol have been highlighted. However, more work is needed to generalize these findings to

all the tractography field.

2.2 ISMRM 2017: Tractography-reproducibility with Empirical Data

In the previous section 2.1 validation with numerical simulations was proposed to assess the

anatomical preciseness of tractography. In this section, we present an analysis performed on

in vivo data, intending to evaluate the level of reproducibility in tractography.

Reproducibility is not directly linked to the validity of the reconstructed WM bundles in the
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brain; however, it is a necessary step to create a tool that can be used in clinical applications.

Similarly as in section 2.1, in this study a standard clinically DW-MRI protocol was used.

Nine groups participated to the challenge and had to submit a tractography in the format of

the Track Density Imaging (TDI) [51] scalar map for the following bundles : UF, Fornix (Fx),

genu and splenium of the CC, Cingulum (Cg), Cortico-Spinal Tract (CST), ILF, SLF, and IFOF.

Bundles submitted are shown in figure 2.3.

Figure 2.3 – Left side shows the overlay of all the submissions from all sessions. On the right an
example of a a single submission. More information of the name of the bundles can be found
in the original manuscript [246]. Reprinted from [246], Copyright 2019, with permission from
International Society for Magnetic Resonance in Medicine.

2.2.1 Dataset and evaluation

A multi-shell High-Angular Resolution Diffusion Imaging (HARDI) sequence on single healthy

human subject was used for the DW-MRI protocol. Two different Philips scanners were

used to test the reproducibility inter-scanner. Five acquisitions in two separate session on

the two different scanners were collected with the following protocol: b-value 1000 smm−2,

2000 smm−2 and 3000 smm−2 with 20, 48 and 64 uniformly distributed gradient directions

respectively were acquired. Other parameters used were: ∆ = 48 ms, δ = 37 ms, Echo Time (TE)

= 99 ms, Repetition Time (TR) = 2920 ms and voxel resolution = 2.5 mm isotropic.

The following metrics were used for comparison: Intra Class Correlation (ICC) statistics

for continuous values and Dice similarity scores [97] with inter-scanner, inter-session, and

intra-session metrics. A violin plot, see figure 2.4, was generated using a combinations of pairs

of repeats of the two metrics.
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Figure 2.4 – Violin plots of intra-session submissions across both the scanners per tract. A)
Dice similarity coefficients B) Intra-class correlation coefficients. The top row depicts the
median of the top five intra-session submissions. More information of the name of the bundles
can be found in the original manuscript [246]. Reprinted from [246], Copyright 2019, with
permission from International Society for Magnetic Resonance in Medicine.

2.2.2 Results

The reproducibility, ICC, of the tractography methods varied from 0.27 to 0.97, however, most

of the algorithms performed with a reproducibility of 0.6 or higher. Tensor and compart-

ment models perform well, but trailed slightly worst compared to the submission that used

Constrained Spherical Deconvolution (CSD).

Figure 2.4 identify "low", "moderate", and "high" reproducibility bundles. "High" repro-

ducibility was defined as a median ICC greater than 0.6; less than 5% of entries obtain less

than 0.4 ICC. "Moderate" reproducibility was defined as median ICC greater than 0.4; less

than 25% of entries obtained less than 0.4 ICC. "Low" reproducibility was defined as a median

ICC less than 0.4; more than 25% of entries obtained less than 0.4 ICC. The conclusive findings

showed that, the "high" reproducibility bundles were genu of the CC, CST right, ILF, SLF and

IFOF. The "moderate" reproducibility tracts were CST left, splenium of the CC, Cg. The "low"

reproducibility tracts were UF and Fx.
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2.2.3 Discussion

A tentative analysis to discriminate the best performing algorithms and the most relevant

parameters to achieve reproducibility was performed. What was discovered is that, for exam-

ple, the step size seems to be an important element. Most of the algorithm used 1/10 of the

voxels size, this because it is a default value in most softwares. Moreover, algorithms using

unconventional step size choices (e.g., 0.005 mm, 1 mm and 1.25 mm) achieve better results

in terms of ICC. In terms of the threshold angle for tractography, different choices have been

used. The outcomes showed a nonclear preferential threshold angle to set, and most likely, the

optimal value is dependent on the algorithm of choice. High reproducibility has been found

at lower threshold angles, 20 degrees, but also at 60 degrees.

Another notable finding is that even if most of the methods did not use additional post-

processing steps, pipelines which included these last helped increase the reproducibility. In

this category was proposed: outliers rejection and spurious fiber removal.

The volumetric analysis pointed out that bundles that showed conservative volume per-

formed better in terms of reproducibility. However, small bundles showed lower reproducibil-

ity even with relatively small volumes.

This challenge pointed attention to the value of reproducibility in tractography, highlight-

ing the difficulties in reproducing different WM bundles. As in other challenges [221, 307], no

optimal set up of tractography was find. Known bundles challenging to reconstruct were also

challenging to reproduce. Nonetheless, an important finding is those processing techniques

used, i.e., COMMIT and Spherical-deconvolution Informed Filtering of Tractography (SIFT),

helped in improving reproducibility results.

An important aspect to show is that the pipeline that won the competition included a final

step of manual refinement of the WM bundles. This aspect shows that automatic pipelines

require still improvement to reach the level of human accuracy.

Personal considerations

Reproducibility of tractography reconstruction is a fundamental aspect in order to propose

tractography as a tool of choice in clinical routine. The challenge provided an impressive

acquisition set on one subject; however, it will be interesting to have more subjects with a

similar acquisition to test the dependence of reproducibility of tractography on different brain

topologies.

Another critical aspect to take into account is the metrics used for evaluation. Depending

on the metric chosen results will show preferential algorithms. Advanced metrics are needed

in the field to test reproducibility.

Moreover, a consensus of an optimal preprocessing pipeline has not been reached and will
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be interesting to test the influence of preprocessing pipelines for the different reproducibility

steps.

2.3 ISBI 2018: 3-D Validation of Tractography with Experimental

MRI

Following the two ISMRM tractography challenges organized by ISMRM [221, 246], a third

tractography challenge, named 3-D Validation of Tractography with Experimental MRI (3D-

VoTEM), was organized in 2018 during the IEEE ISBI conference. This challenge consisted of

three different validation sub-challenges:

• a macaque dataset with tracer connections [335]

• a squirrel monkey dataset with histology [305]

• a 3D physical fiber phantom

Similarly to the 2015 ISMRM tractography challenge, the goal is to test tractography algo-

rithms and find advantages and limitations on ex vivo monkey brain and physical phantoms.

2.3.1 Dataset and evaluation

The first sub-challenge consisted on a validation of region-to-region connectivity with high

quality, high resolution, and high angular sampling (114 sampling directions) - ex vivo

macaque dataset, see figure 2.5a [335] . Two ground truth connections are reconstructed

from anterograde tracer injections placed in the Posterior Commissure (PCG) (figure 2.5a, red)

and the ventral part of the visual area V4 (V4v), see figure 2.5a, yellow.

The second sub-challenge consisted of both voxel-wise spatial overlap and region-to-

region connectivity. The challenge is based on an ex vivo squirrel monkey dataset [305],

acquired with 31 sample directions. The retrograde and anterograde tracer injection in the

primary motor cortex (M1) define the ground truth. Furthermore, histological analysis allowed

extraction of information about the bundles’ volume, see figure 2.5b.

The third sub-challenge proposes of data acquired on a biomimetic anisotropic diffusion

phantom (Synaptive Medical, Toronto, ON) with 16 separate fiber bundles, see figure 2.5d.

The ground truth bundles was manually defined using a high-resolution T1-weighted image.

Standard metrics in the field were used to evaluate the accuracy of tractography. These can

be divided into two categories: ROI-based and voxel-based. The ROI-based metrics measure

the existence of connections between the two regions. This last was used in both squirrel

monkey and macaque sub-challenges. Voxel-based methods are more quantitative, aiming

to quantify the accuracy of the volumes generated by the streamlines. Voxel-based measures
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Figure 2.5 – Ground truth fiber pathways for the three sub-challenges. The figure shows
different sections and visualizations for the three challenges. Reprinted from [307], Copyright
2019, with permission from Elsevier Inc.
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used in the challenges were VOL, VOR and Dice coefficient. In the study was measured the

volume overlap, sensitivity measure, and the volume overreach, or specificity measure. These

were computed for the squirrel monkey and phantom sub-challenges.

2.3.2 Results

Results for the three sub-challenges of an example of submission are shown in figure 2.6.

The final results show that there is considerable variability in the pathways submitted. For

the monkey samples, reconstruction showed streamlines with a large spatial extent close

to the seed regions, while long connections were more challenging to reach. Moreover, for

the phantom submissions, the correct orientation, position and shape of all the bundles is

generally well captured. However, differences were shown in the thickness of pathways and

sparsity of streamlines.

Region-to-region connectivity

On ex vivo data, similarly to the findings in the ISMRM 2015 tractography challenge, the main

result is that no tractography method identifies valid connections without also generating a

large number of invalid connections. Hence, the increase in true positive rate, comes at the

cost of a decrease in specificity, true negative rate. it is valid also the opposite.

Spatial overlap

In terms of volumetric analysis, a voxel-based measure between ground truth and tractography

was performed on the second and third challenge. The results of overlap and overreach showed

similar findings to the region-to-region connectivity: the price to pay to recover the ground

truth volume of the pathways is a high overreach.

2.3.3 Discussion

One of the main progress that this challenge achieved is to release material with histological

validation freely. These datasets bring advantage, especially for those laboratories that devel-

ope tractography algorithms, but do not have the equipment and funding to perform these

analyses.

Limitations and future perspectives

In general we assume that higher resolution is directly related to more accurate estimates. In

this case, tractography in the macaque brain resulted in less precise connectivity compared to

squirrel monkey; even if the first one has better resolution, Signal to Noise Ratio (SNR), and

diffusion sensitivity. However, differences may be related to the diverse brain used in the first
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Figure 2.6 – Example of diffusion tractography submitted to the challenge. Coronal and sagittal
view. Reprinted from [307], Copyright 2019, with permission from Elsevier Inc.

case and also in the complexity of the anatomical regions studied.

Most of the recent tractography pipelines include a variation of post-processing method.
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In the submission which contained a post-processing method, the specificity increased, and

the overreach decreased. However, no significant difference was observed with different post-

processing. A confounding factor that needs to be considered is that different pre-processing

steps and tractography algorithms were used. This difference makes difficult the comparison

of the results.

Improving tractography in these three sub-challenges does not guarantee an improvement

directly on the human brain; however, it can provide a better understanding of the limitations.

Other factors may limit validations methods, including imperfect registrations between his-

tology and MRI or fixation. From the phantom physical perspective, the geometry build is

still too simplistic compared to the complex brain architecture. A possible solution of how

tractography can be improved was provided by Dyrby et al. [105] where the idea is to "loop

until our method’s results agree with the gold standard, and/or until the updated knowledge

of ground truth can explain the discrepancies observed."

Surely, there is a need for more advanced gold standards. Furthermore, the metric used till

now to analyze the connectivity is quite simple; validation is done as an overall assessment in

sensitivity and specificity. However, future studies should focus on using more complementary

information and microstructural features of the datasets.

Personal considerations

The results of this challenge confirm previous findings [19, 100, 335]. More specifically, the

main limitations of tractography are: algorithms show a trade-off in specificity and sensitivity.

The long-range connections are harder to detect compare to short-range connections, and

tractography performs worst when assessing connectivity of fine small connectivity compared

to large-scale regions. This challenge confirmed that these limitations have not been yet

solved.

Challenges that use ex vivo or physical phantom add a higher and more realistic level

of complexity compared to numerical simulations. However, most of the time it may add

more problems related to imaging artifacts instead of solving the wiring of the brain through

DW-MRI.

In this case, was proposed several challenges that may need completely different optimal

tractography algorithms to be solved. Hence, a possible solution is to focus on a specific,

well-defined problem. Ideally trying to isolate the problems, for example, having common

pre-processing steps or other, and try to conclude and eventually report achievements.

As shown in this chapter, tractography has many limitations. Perhaps, there is a need to

focus and work on specific directions, without dissipating energies between different problems.

This focusing process may lead to an acceleration in the development of tractography.
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2.4 Conclusion and Discussion

In this chapter, we presented three different tractography challenges proposed between

2015 and 2018, which aimed to highlight the limitations and positive aspects of nowadays

tractography algorithms.

From a philosophical and personal perspective, I consider these challenges an effective

group re-focusing exercise. As athletes need a certain number of skills and rules to achieve

excellence in their field [261], tractography needs to pass also a certain number of challenges

in order to evolve and become more robust and used.

Since in this thesis we will use microstructure informed tractography, which lies on the

benefits of tractography, it is essential to understand the limitations of tractography to be able

to use and understand the results of this novel technique.

The variety of validation technique proposed gives hope that tractography will be improved

in different aspects during the next years; eventually, a consensus will be reached among the

MRI community.
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3 Towards 3D histological validation of
DW-MRI fiber orientation

Tissue clearing techniques offer new opportunities for imaging precise 3D axons trajectories.

In this study, we cleared a 1.5 cm x 1.5 cm x 0.3 cm cuboid of rhesus macaque visual cortex

using CLARITY 3D histology with immunostaining for neurofilament to highlight neuronal

projections. We then confronted the CLARITY-based fiber orientation estimate to DW-MRI-

based fiber orientation. The comparison confirmed a better agreement in GM than in WM,

potentially reflecting complexities estimating the structure tensor in highly saturated regions

of the CLARITY sample.

The study was performed in one of the largest and highest quality CLARITY cuboids from

a macaque brain and explored critical steps in the co-registration and analysis required to

make a robust comparison with DW-MRI data.

3.1 Introduction

A crucial goal in neuroscience is to understand the connectivity between neural populations

by visualizing fiber pathways in the brain in vivo [154, 309, 324]. More specifically, there is an

essential need of a technology capable of achieving in vivo axon resolution, i.e., 1µm to 10µm.

As mentioned in previous chapters, scientists nowadays use DW-MRI [183], a non-invasive

technique that can indirectly estimate microstructure fiber orientations [30] to recover axonal

orientations. For each voxel, typically in the order from 1 mm to 3 mm, DW-MRI probe the

random motion of the water molecules in various directions, relying on the increased mobility

of water molecules along axons than perpendicular to them. Thanks to these measurements

and reconstruction algorithms, it is possible to estimate micro-structure properties of axons,

e.g., fiber orientation, up to a certain level of accuracy.
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3.1.1 Estimating fiber orientation

Diffusion fiber orientation can be reconstructed using a variety of methods [30, 57, 78, 343],

see chapter 1.4 for more details. However, due to the absence of proper GT, evaluation and

performance of algorithms are limited to the validation technique used.

Previous studies addressed the issue of reconstruction and validation, generating synthetic

data [74]. Still, these numerical phantoms are limited by the over-simplistic description of the

neural tissue.

To generate more realistic validation designs, studies on ex vivo human, [230, 231, 234]

and monkey [50, 335] brains have been proposed, see chapter 2 for more details. The main

advantage of performing ex vivo acquisition is that brains can be scanned for a longer time

allowing achievement of better resolution; typical high-resolution acquisitions are in the order

from 150µm to 300µm. After scanning with MRI, histology using microscopes is done to

recover a GT.

3.1.2 2D histology

Histological data have been used to analyze the mesoscale structure of the tissue in slices [62,

133, 209, 312]. Attempts to reconstruct the 3D wiring of the brain was performed concatenating

2D slicing using numerous techniques: confocal microscopy [176, 193, 304, 306], optical

coherence tomography [358] and polarized light imaging [18, 80, 150, 215, 235].

In 2D histology, the brain is cut in thin slices, which are imaged and subsequently recon-

structed in 3D. However, 2D histology suffers from tissue deformation during cutting [188],

e.g., folding, stretching, compression. These last can lead to artifacts and ambiguity in the 3D

reconstruction.

Nowadays, to obtain good 3D reconstruction and avoid artifacts, histologists must be very

careful. The accurate manual reconstruction of fibers is enormously time-consuming, and

lead to a typical reconstruction of only a few fibers. Recently, semi-automatic algorithms

were introduced to segment and label large portions of tissue [38] and, e.g., optical computer

tomography (OCT) [210] and tissue-clearing techniques [64, 67, 98, 112, 149, 289, 293, 325],

were proposed to overcome previous mentioned limitations. In this thesis, we will focus on

tissue-clearing techniques to validate fiber orientations.

3.1.3 Tissue clearing and 3D histology

Tissue-clearing techniques [64, 67, 98, 112, 149, 289, 293, 325] allow the volumetric reconstruc-

tion of biological tissue. These techniques homogenize the refractive index in the sample,

reducing the light-scattering, and allowing deep light penetration for 3D microscopy.

Several techniques have been proposed in the last few years. One of the most promising is
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CLARITY [64]. In a nutshell, CLARITY embeds the tissue in an acrylamide-based hydrogel that

binds to the proteins in the tissue. Then, the biomolecules that did not bind to the hydrogel,

i.e., lipids, are washed. Last, the refractive index is homogenized by replacing the water in the

sample with a refractive index matched solution. Compare to other tissue clearing techniques,

the major benefit of CLARITY is that it allows a minimal loss of protein during the washing

[214], keeping the 3D structure more intact.

CLARITY has been applied to mouse brains to pathology’s like Alzheimer [9], autism [64],

epilepsy [67], neuro-degeneration due to mitochondrial disease [278] and Parkinson’s [218].

Moreover, studies used CLARITY as a validation technique for fiber trajectories; firstly in

mouse [214], and recently, the protocol has been tested in tiny human tissue specimens [236].

3.2 Methods

3.2.1 CLARITY-based tissue clearing acquisition

Figure 3.1 – The photographs show the part of monkey brain tissue treated at Stanford Uni-
versity used for the CLARITY clearing. (a.) Brain cut of the posterior lateral part of the left
hemisphere (LLP). (b.) LLP4, the piece of tissue chosen for the analysis. (c.) LLP4 after clearing
using the CLARITY protocol and lying inside a container.

The macaque brain was cut, and the posterior lateral part of the left hemisphere (LLP,

Figure 3.1a) was extracted. A slab in the middle of the tissue block (LLP4, Figure 3.1b), 15 mm

x 15 mm x 3 mm size, was chosen for the analysis, and a T1 weighted sequence was acquired

with resolution 0.2 mm x 0.2 mm x 0.2 mm. The slab was cleared using the CLARITY protocol

[338] and stained for neurofilaments using the SWITCH protocol [244], with active clearing

with electrophoresis in a custom-designed chamber with continuous exchange of sodium

dodecyl sulfate (SDS) solution. A small portion of the LLP4 cleared slab (Figure 3.1c) was

imaged with a two-photon microscopy [91] at 1.5µm isotropic resolution, generating a cuboid

of 2.6 mm x 2.8 mm x 0.25 mm size (Figure 3.2d). An overview image of the LLP4 was taken with

a confocal microscope to localize the two-photon microscopy images (Figure 3.2c). Lastly, the

3D histological images were processed in Fiji [308] for bleach correction, blurring reduction

using Gaussian filtering with a kernel size 1/10 of the image dimension, median filtering with
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Figure 3.2 – Registration of the LLP4 monkey slab chosen for the analysis and acquired at
Stanford University to the whole-brain b0 of a different monkey used in the work of Thomas et
al.[335] From left to right: sagittal, coronal and axial view.

pixel size 1, and ultimately, contrast and brightness were adjusted. Fiber orientation from

the histological 3D CLARITY data was initially estimated using the structure tensor technique

[40, 45].

3.2.2 MRI imaging acquisition

Before cutting, the whole postmortem fixed rhesus macaque brain was scanned on Bruker

BioSpin MRI 7T animal system at Stanford University with a Turbo RARE T2 weighted sequence:

resolution 0.15 mm x 0.15 mm x 0.5 mm, TE=53.4 ms, TR=25 s.

The DW-MRI dataset was used from an open available dataset of another monkey brain.

The dataset consist of a high-resolution 0.25 mm isotropic macaque brain used in previous

studies [291, 307, 335] and also in the ISBI challenge mentioned in chapter 2. The ex vivo

brain was acquired in Bethesda at the National Institute of Mental Health (NIMH). We recall

the DW-MRI protocol: 114 directions with b-value = 4900 smm−2 and 7 volume of b-value =

0 smm−2. The data were furnished already preprocessed for eddy currents distortions and

frequency drift with the Tolerably Obsessive Registration and Tensor Optimization Indolent

Software Ensemble (TORTOISE) tool [280] .

Anatomical regions were identified with an expert anatomist. Furthermore, a secondary

analysis was performed registering a high-resolution 0.15 mm isotropic macaque brain atlas

[50] (Figure 3.3d) from the Center for In Vivo Microscopy (CIVM), Duke University. This second

co-registration step was performed to test the accuracy of the localization of the brain with an

automatic tool. Both analyses, manual and automatic, ended with the same conclusion.

3.2.3 Co-registration

The co-registration pipelines used are the following: 1) identification of the two-photon (Figure

3.3a) images location was recognized by image contrast created by fluorescent bleaching of
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Figure 3.3 – (a.) CLARITY two-photon microscopy images (b.) Registration of CLARITY two-
photon microscopy images to the CLARITY overview 5x microscopy; registration helped by
fluorescent bleaching. (c.) Registration of CLARITY overview 5x microscopy to structural
MRI T1 of slab LLP4. (d.) b-value=0 smm−2 of the Duke University MR monkey atlas used to
annotate anatomical regions in visual cortex. (e.) b-value=0 smm−2 of NIMH monkey dataset
used to co-register the CLARITY data (f.) Registration of structural MRI T1 images of the slab
LLP4 to the structural whole-brain T2 MRI images.

the overview image (Figure 3.3b); 2) initial manual registration and linear registration of the

overview images to the T1 weighted LLP4 slab (Figure 3.3c); 3) rigid registration of the T1

weighted LLP4 to the T2 weighted whole brain acquisition (Figure 3.3f). All previous steps

are performed on the same monkey brain, with data acquired at Stanford University. 4) rigid

registration of the T2 weighted Stanford whole macaque brain to the NIMH b-value=0 smm−2

image whole macaque brain (Figure 3.3e). Manual registration were performed with 3D

Slicer [116] and linear registration with elastix [195]. To refine the initial point co-registration

between the NIMH macaque brain diffusion tensor and CLARITY structure tensor a vector

field rigid registration algorithm was developed. The optimization algorithm minimizes the

angular vector distance allowing rotation and translation. Finally, all the registration matrices

were concatenated, and a final intensity-based linear registration with elastix[195] was used to

avoid unnecessary blurring.
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3.2.4 Structural tensor estimation

The fiber orientation for the CLARITY data was estimated using the eigenvector of the smallest

eigenvalue of the structure tensor [40, 45] defined as:

S =



∑
p∈w

(Ix (p))2
∑

p∈w
Ix (p)∗ Iy (p)

∑
p∈w

Ix (p)∗ Iz (p)∑
p∈w

Ix (p)∗ Iy (p)
∑

p∈w
(Iy (p))2

∑
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Iy (p)∗ Iz (p)∑
p∈w

Ix (p)∗ Iz (p)
∑

p∈w
Iy (p))∗ (Iz (p)

∑
p∈w

(Iz (p))2

 (3.1)

Ix , Iy , and Iz are the gradients of image volumes I along each of the x, y and z axes. A 3-

dimensional 1st order derivative of Gaussian filters of standard deviation 1µm was used to

recover the coefficients I . The structure tensor was computed over cubes of lengths of one side

equal to 166 voxels, equivalent to 250µm). From the structure tensor estimations, principal

directions were extracted using the MRtrix3 software [341].

3.2.5 Structural fiber orientation distribution estimation

In the structure tensor estimation, we performed analysis on a cube of 166x166x166 voxels,

equivalent to 250µm x 250µm x 250µm. We subdivide the cubes into smaller sub-cubes, and

we calculate the polar histogram of all principal direction of the structure tensors. The polar

histograms were then fitted with spherical harmonics with order lmax = 8 with the MrTrix3

software [341] to generate structure Orientation Distribution Function (sODF).

We varied the sub-cubes dimensions to study the influence of this parameter in the

reconstruction of the sODF. Values reported in this study are: 2x2x2, 4x4x4, 8x8x8 and 16x16x16,

corresponding respectively to structure tensors of length size 83x83x83, 41x41x41, 20x20x20

and 10x10x10. These values are chosen to keep the voxel size to 250µm to allow comparison

with the diffusion FOD.

Segmentation to separate WM and GM regions were performed with a threshold on the

DW-MRI b-value = 0 smm−2 image.

3.3 Results

3.3.1 Localisation and co-registration

In this study, we performed CLARITY on a portion of the primary visual cortex of a rhesus mon-

key 3.1, and we imaged a portion of the cleared sample with two-photon photon microscopy

for structure tensor analysis. For better localization, the sample was then co-registered, see

figure 3.2, and compared to a second monkey acquired with high-resolution and diffusion

gradient strength DW-MRI data used in previous work [335].
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Figure 3.3 shows in yellow the position of the two-photon microscopy image after co-

registration to the macaque brain [335].

Figure 3.4 – Six different sections of the monkey brain corresponding to location for which
CLARITY two-photon microscopy was acquired. The region corresponds roughly to the same
section area. The investigation was performed by an expert anatomist.

With an expert anatomist, G.M.I., we analyzed the localization of the two-photon mi-

croscopy CLARITY sample in five different monkeys: two monkey atlases [270, 298], two MRI

dataset [50, 335] and one monkey 2D histology section [336]. The slice corresponding to the

CLARITY sample is shown in Figure 3.4.
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We report differences in morphology between the same region across all the data analyzed.

Morphological differences in brains are known; human studies on the human brain have

quantified this aspect [22]. We can assume similar findings in the monkey brain.

The analysis across the five monkeys was done accounting for the possibility of different

preparation of ex vivo material and different angle of slice sections for MRI and histology.

Taking into account these considerations, we do not believe that the difference in brain

morphology can be due to those reasons. Furthermore, we report a non-negligible variation

in the organization of the WM and GM in this specific visual area of monkey brains.

Figure 3.5 – 2D histology of the section corresponding to the same location for which CLARITY
two-photon microscopy images were acquired; the data correspond to the CCT4 monkey
reported in the work [336]. (a) Overview image b) Zoomed image corresponding approximately
to the CLARITY two-photon images.

When investigating orientations, the first analysis with 2D histology in a different monkey

brain [336] was performed to get the orientations qualitatively in GM and WM, Figure 3.5.

Fibers in the GM, as known from previous literature, are perpendicular to the interface of the

WM. In the WM, Figure 3.6, we do not report a preferred orientation of the neurofilaments.

This finding can be due to an orientation of the neurons in anterior-posterior, where the

coronal sectioning of the 2D histology material cannot be helpful; sectioning on a sagittal or

transverse plane may reveal a preferential orientation for WM.

To associate cortical regions to the imaged sample, our expert anatomist G.M.I used two

atlases [270, 298]. Figure 3.7 report the closest visual area regions to the location of the sample

(green arrow).

3.3.2 Tensor comparison

To evaluate the difference in orientation between the CLARITY and DW-MRI estimations, we

initially used the simplest method proposed in the literature, the tensor. Figure 3.8 shows the

voxel comparison of the main fiber orientation estimation from structure tensor (Figure 3.8a)
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Figure 3.6 – 2D histology of the section of white matter zoomed from the section in figure 3.5;
data correspond to the CCT4 monkey reported in the work [336].

Figure 3.7 – Anatomical characterization of the LLP4 slab used for which CLARITY two-photon
microscopy data were acquired. The Paxinos et al. [270] atlas was used to parcellate the visual
cortical regions in V1, V2 and V3 ventral.

and the diffusion tensor (Figure 3.8b).

By visual inspection, we confirm that the primary vector in the structure tensor is defined

in the direction of eigenvector with the lowest eigenvalues; differently, from the diffusion
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Figure 3.8 – Tensor estimation on the region associated with CLARITY acquisition, and compar-
ison. (a.) Structure tensor estimation; (b.) diffusion tensor estimation; (c.) angle of difference
between the structure tensor and the diffusion tensor. Color code for figure (a.) (b.) are: red
for right-left, blue for dorsal-ventral, and green for anterior-posterior.

tensor where the main direction is related to the eigenvector with the highest eigenvalue.

Furthermore, we report a better orientation agreement in the GM voxels and worst agreement

in the WM voxels.

Figure 3.9 – Histogram of angle differences using the tensor analysis in (a.) Grey Matter (GM)
(b.) White Matter (WM).

Figure 3.8c shows a comparison of the angle between the two tensors. We report an angle

of difference of 21.00°+/- 18.55°in GM and 42.03°+/- 16.15°. Furthermore, we analysed the

histograms of angle differences in GM and WM, see Figure 3.9. We report a good agreement in

GM with 68% of voxels with an error below 20°and 40% of voxels with an error below 10°.

3.3.3 Orientation distribution function comparison

Tensor analysis is limited to a single bundle population. In this section, we extended the

tensor model, introducing ODF , and allowing comparison of multiple populations in a voxel.

Comparative analysis of ODF voxels is reported in Figure 3.10. ODF are distinguished in fiber
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3.3. Results

Figure 3.10 – Qualitative analysis of ODF s. Figure (a.) and (c.) show FOD estimated using
constraint spherical deconvolution on NIMH macaque data [335]. Figure (b.) and (c.) show
sODF varying the sub-voxel size, respectively, with sub-cubes of 2x2x2, 4x4x4, 8x8x8 and
16x16x16; spherical harmonics functions were computed using MrTrix[341] on CLARITY
two-photon microscopy images. (a.) A grey matter voxel is highlighted on top of a FOD
reconstruction. (b.) sODF estimations for a grey matter voxel highlighted in figure (a.), first-
row show vectors, second-row show the corresponding sODF . (c.) A white matter voxel is
highlighted on top of a FOD reconstruction. (d.) sODF estimations for the white matter voxel
highlighted in figure (c.), first-row show vectors, second-row show the corresponding sODF .
Qualitatively we report a variation of sODF shape varying the sub-voxel size. Voxels with high
sub-cubes, i.e. 16x16x16, have sODF more noisy.

ODF (FOD) if generated from DW-MRI data, and structural ODF (sODF) if generated from

microscopy images.

In 3.10 we compare qualitatively the FOD and the sODF. The sODF can be generated

summing structural tensors of different size. A sensitivity analysis was performed exploring

different values for tensor size. In 3.10 we report the results for subcubes of 2x2x2, 4x4x4 and

8x8x8 and 16x16x16.

We show how the sODF shapes vary, changing the structural tensor size. In particular, the

sODF increase in the number of population peaks when structural tensor of small size voxels
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is used, e.g., 16x16x16.

Figure 3.11 – ODF analysis on DW-MRI data and CLARITY two-photon microscopy. First-
column shows DW-MRI estimations; the other columns represent CLARITY two-photon
microscopy estimations. First-row shows f ODF and sODF , respectively for DW-MRI and
CLARITY. Second-row show principal peak and third-row show multiple peaks extraction.

In 3.11, we report the ODF for the whole sample where we performed a quantitative

analysis. The second and third row of the figure 3.11 report respectively the main peak and all

the peaks found above a threshold amplitude of 0.3. Comparative results show that DW-MRI

analysis commonly obtains more sporadic peaks compared to CLARITY imaging, where we

obtain multiple fiber populations, both in GM and WM.

Furthermore, we used the principal peak estimated from DW-MRI and CLARITY to com-

pare the angle of difference. Results are shown in the following table:

sODF WM GM

2x2x2 47.76 +/- 14.63 28.34 +/- 21.04

4x4x4 40.05 +/- 11.54 24.12 +/- 15.71

8x8x8 38.79 +/- 14.31 36.26 +/- 26.41

16x16x16 35.10 +/- 10.87 58.42 +/- 11.26
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3.4. Discussion

Similar to the tensor analysis, the best results are in GM, where we find good agreement for

the structure tensor of 41x41x41 voxels. This result is only 3 degree less accurate compared to

the previously reported with the tensor analysis.

3.4 Discussion

During the last decades, thanks to the development of MRI and DW-MRI, scientists started to

use these techniques to study the cortical connections. The main point in favor of DW-MRI,

compared to alternatives approaches, i.e., histology, is the possibility to perform faster analysis

[10]. DW-MRI is a relatively young technique and can be used to extract fiber orientation

features in vivo. However, parameter estimation needs to be validated accurately.

In this study, we use ex vivo material to create a comparative pipeline. We acknowledge

that ex vivo monkey findings may not apply to humans; nonetheless, so far it is the best

validation method that can be used.

Our study performed CLARITY on one of the first and the largest monkey sample. Our

ultimate goal was to estimate fiber orientation on a relatively large portion of tissue.

We compare CLARITY findings to DW-MRI estimates. Unfortunately, the main limitation

of the work is that we are limited to a comparison between two different monkey brains.

Hence, the co-registration steps need to be taken carefully, and this aspect may limit the

findings of our use of CLARITY as a validation technique for DW-MRI. However, the central

message of the study is the significant methodological contribution in terms of the design of

the co-registration pipeline and implementation of a novel sODF for 3D microscopy imaging

data.

In the following section, we discuss critical steps in co-registration, and WM and GM

comparisons.

3.4.1 Co-registration

To register the CLARITY two-photon microscopy images of the Stanford University monkey

to the b0 NIMH monkey brain, we performed different co-registration steps. All steps were

performed using linear registration[116, 195]. However, non linear registration could have

been used, especially between two critical steps of the pipeline: 1) registration of the CLARITY

two-photon microscopy images to the structural MRI of the LLP4 slab; 2) registration between

the whole-brain Stanford University monkey and the NIMH whole-brain monkey, as well as

registration between the Duke atlas MRI monkey to the NIMH whole-brain monkey.

In case 1) literature [64] report that during the CLARITY pipeline the sample increase

two times in size, and then during the imaging when the sample is immersed in an imaging

solution, the sample shrink to approximately the original size. No quantitative study of the

59



Chapter 3. Towards 3D histological validation of DW-MRI fiber orientation

amount of deformation has been done previously. We did not explore the benefits of using non-

linear registration because of the small size of the comparison image (10x10x1 voxels). More

specifically, the simple geometry of the interface between GM and WM, the main discriminant

that can be used to register the sample, do not provide enough information to acknowledge the

use of non-linear registration. However, for a more prominent portion of voxels comparison,

we do not exclude that non-linear registration could help.

In case 2), for registration between different whole-brain monkeys, we studied the effect

of non-linear registration; however, better results are found using linear registration.

3.4.2 WM and GM fiber orientation comparisons

Both the analysis performed with the structure tensor and sODF showed better agreement in

GM and worst agreement in the WM. The differences in WM can be due to several reasons: 1)

the neurofilament stain in the WM regions in the CLARITY images is very dense making the

estimation of the structure tensor in that region difficult; 2) even if DW-MRI estimates FOD

without crossing and fanning in WM, multiple bundle population may be present.

Furthermore, even if co-registration was done accurately, limits on different brain monkeys

used is a compound, because the fiber orientation can be different for different monkey

specimen in the tested region.

3.4.3 CLARITY and microscopy imaging limitations

The main advantages of CLARITY, as well as other hydrogel embedded methods, is that it has

excellent clearing performance and compatibility with protein-based fluorophores.

The main disadvantage of CLARITY is that passive clearing is slow. Faster clearing requires

high temperatures or custom electrophoresis equipment. Furthermore, although the tissue

transparency has been attributed to the removal of lipids during the procedure, it is still

unknown to what extent the lipids are cleared from the sample.

One of the significant challenges introduced by clarified tissue samples is imaging tech-

nology. Only a small sample was acquired, this because confocal and two-photon microscopy

imaging techniques have a major limitation in the amount of time required to image a large

sample. Better microscopy techniques are needed to increase the amount of data scanned.

3.5 Conclusion

The primary goal of this work was to study if the tissue-clearing protocol can be adapted to a

more larger portion of tissue on the primate brain, and both in GM and WM. More specifically,

we performed CLARITY on a slab of monkey visual cortex of 1.5 cm x 1.5 cm x 0.3 cm size.
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3.5. Conclusion

Previous work[118, 348] studied connections of the macaque visual system in detail. Here, we

use CLARITY as a complementary tool which allows recovering information of fiber orientation

in specific visual areas.

The second purpose of the study is to explore the accuracy of fiber orientation estimated

with DW-MRI and compare estimations with the reconstruction achieved with CLARITY. To

achieve this goal, we extend standard analysis performed using the tensors, suitable only for

single-fiber populations, to more complex functions, which are commonly known as ODF,

which are capable of capturing multiple fiber-populations in a voxel.

In general, validations strategies need multiple iterations and refinement [105], and our

pipeline is not exempt from this aspect. Nevertheless, this work demonstrates one of the

largest and highest quality CLARITY cuboids from a macaque brain and explores critical steps

in the co-registration and analysis required to make a robust comparison against DW-MRI

data. Our data suggest that CLARITY protocols may need to be adapted for staining of areas of

different neurofilaments protein densities. Ultimately, tissue clearing techniques that offer

visualization of 3D axons trajectories represent a new complementary imaging modality that

can help validate DW-MRI methods.
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4 Bundle-specific T2 mapping of corti-
cal pathways

At the typical spatial resolution of MRI, approximately 90% of voxels in the human brain

contain multiple fiber populations.

Quantifying microstructural properties of distinct populations with a voxel is challenging.

While progress has been made for diffusion and T1-relaxation properties, resolving intra-voxel

T2 heterogeneity remains an open question. In this chapter, we present a novel framework

that utilizes tractography-based spatial regularization and diffusion-relaxometry data.

We demonstrate both in numerical simulations and in vivo that, unlike previously-proposed

voxel-based methods, our framework can recover intra-axonal bundle-specific T2 values

within a voxel solving T2 heterogeneity.

4.1 Introduction

DW-MRI is the primary technique for studying the microstructural organization of the brain’s

WM in vivo. Despite the nominal imaging resolution, typically in the order from 1 mm to

3 mm, being orders of magnitude larger than the tissue features at the cellular level, i.e., few

micrometers, the technique is sensitive to the microscopic environment because the distance

traveled by water molecules is similar to the cellular dimensions [41].

Several relevant models have been proposed in recent years to quantify the microstructure

of white matter tissue, in which the diffusion processes taking place in the intra- and extra-

axonal spaces are modeled differently [15, 34, 175, 189, 329, 371].

Distinctly, as noted by Assaf and Basser [15] in the original CHARMED model, the signal

fractions assigned to the intra- and extra-axonal spaces are weighted according to their relative

transverse relaxation T2 times, and therefore the relative weighting also depends on the

experimental TE.

To obtain a complete characterization of the brain tissue microstructure it is crucial
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Chapter 4. Bundle-specific T2 mapping of cortical pathways

to develop new DW-MRI models disentangling the volume fractions of the different tissue

compartments from their relaxation times [32, 99].

4.1.1 T2 Relaxation and supression extra-axonal signal

Modern studies have proposed the integration of multimodal acquisition techniques and

multi-compartment models to characterize distinct features of the tissue. More precisely, the

acquisition of DW-MRI data using different TEs allowed estimating the T2 relaxation times

of the different tissue compartments [35, 56, 82, 194, 199, 211, 227, 252, 281, 334, 353]. As

hardware and software constraints limit the acquisition parameters in clinical scanners, most

of the studies employed diffusion sequences with TE>70 ms. For such long TE, the signal

coming from the myelin water is virtually zero (i.e., because the T2 of myelin water is around

10 ms to 30 ms) and thus only the intra- and extra-axonal compartments are considered [227].

4.1.2 Estimating T2 in single population voxels

Following a history of development in the field of physical chemistry [220, 364] Veraart et al.,

[353] developed the TE dependent Diffusion Imaging (TedDI) framework to simultaneously

estimate the intra- and extra-axonal water fractions and their absolute T2 values.

Other studies estimated the mean T2 of the intra-axonal compartment at each voxel by

suppressing the extra-axonal signal by using b-value > 4000 smm−2 [174, 227, 228, 253, 351].

Interestingly, the T2 computed for various ROIs located in regions areas of different bundles

with single fiber populations were similar within the tracts and different between tracts,

which suggests that different bundles are characterized by different T2 times and that the T2

relaxation may be bundle-specific. Thus, in voxels with different bundles, T2 heterogeneity

exists – but only the mean value of the ensemble of T2 values can be accessed. Given that

60-90% of brain voxels contain multiple fiber populations [179], a complete characterization

of the tissue necessitates the development of new methods that can estimate the T2 of the

constituent fibers.

There is a precedent for resolving fiber-specific relaxation properties within a voxel. De

Santis et al. [85] developed a framework that combined inversion recovery and DW-MRI to

assign a specific value of the longitudinal relaxation time T1 to each fiber population within

a voxel. It was shown that this method resulted in less inter-subject variability compared to

conventional voxel-by-voxel T1-mapping methods in areas of crossing fibers, suggesting an

increased specificity to distinct fiber populations.

4.1.3 Bundle-specific T2

In this study, we use a similar acquisition protocol as McKinnon and Hensen [227] and pro-

pose an extension of the COMMIT framework [75–77], named COMMIT-T2. The COMMIT
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framework has been extended previously in [303] and used to fit tractography to scalar maps

simplifying. On the contrary, our formulation model tractography fully utilizing diffusion-

relaxometry and adds the possibility to model the T2 and diffusion in a unique framework.

As the T2 value depends on the tissue microstructure and axonal bundles are structurally

homogeneous in their composition (i.e., axons tend to group into fascicles of their type [85]),

we assume that each bundle has a specific T2 value. Using a whole-brain tractography result

as input, COMMIT-T2 estimates the intra-axonal T2 value of each streamline, independently

of the organizational complexity within the voxel. The fitting is based on a global optimization

approach that estimates a T2 for every tractography streamline.

The framework was evaluated using numerical simulations and was applied to in vivo data.

Furthermore, it was compared with voxel-based methods, including the direction-averaged

method proposed in [227] and AMICO-T2, another new extension to the AMICO framework

[73] that considers the DW-MRI dependence on T2.

In this work, we demonstrate that our approach can detect differences in T2 between two

commonly-studied fasciculi: the CC and the Posterior Limb Internal Capsule (PIC).

4.2 Methods

4.2.1 Generative model

The measured signal S(T E ,b,~r ) for a given T E , b−value, and diffusion gradient unit vector~r

is given by:

S(T E ,b,~r ) = kPD
(

fi e
−T E
T2i Si (b,~r )+ fe e

−T E
T2e Se (b,~r )

)
, (4.1)

where PD is the proton density; k is a factor of the MRI machine that depends of the MRI

acquisition, including the pulse, image-reconstruction algorithm, and digital converter, etc;

fi and fe denote the intra- and extra-axonal volume fractions; T2i and T2e are the T2 values

of the intra- and extra-axonal compartments, and Si and Se denote the diffusion-weighted

signals from the intra- and extra-axonal compartments, respectively. An experimental TR

higher than 4 s is assumed to suppress T1 effects.

As in [227], Se ' 0 for b-value = 6000 smm−2 and 48 directions [124, 174, 227, 228, 253] and

Eq.(4.1) becomes:

S(T E ,b,~r ) =Ce
−T E
T2i Si (b,~r ), (4.2)

where C = kPD fi . The estimation of the T2i values was implemented using three different
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approaches: 1) the direction-averaged techique proposed in [227], 2) AMICO-T2, and 3)

COMMIT-T2. Technical details are provided in the next sections.

4.2.2 Direction-averaged technique

By following an approach similar to the one introduced in the SMT [189], Eq. (4.2) can be

simplified by computing the direction-averaged DW-MRI signal S(T E ,b) = 〈S(T E ,b,~r )〉 [227]:

S(T E ,b) = Ae
−T E
T2i , (4.3)

where A =C〈Si (b,~r )〉 =C Si (b). After taking the logarithm in both sides, Eq. (4.3) reduces

to a linear problem from which T2i can estimated [227].

4.2.3 Voxel-wise formulation: AMICO-T2

The conventional AMICO framework [73] is based on solving the following equation for each

voxel:

y = Ax +η, (4.4)

where y is the vector of measurements, A is the dictionary or design matrix, η denotes the

vector of noise, and x is the vector of coefficients to be estimated: each element in x contains

the weight that quantifies the contribution of the corresponding column/atom in A to explain

the measurements.

In this study, matrix A was built using a generative model that takes into account the signal

dependence on T2. Specifically, each element of A was obtained by evaluating the model given

by Eq. (4.2), A j ,k = e
−T E j
T2ik Si (b j ,~r j ), where T E j , b j , and ~r j are the experimental values used to

acquire the j-th measurement (i.e., y j ), and T2ik is the k-th value from a set of predefined T2i

times. Specifically, the dictionary was built using 20 equally-spaced T2i values in the range

40 ms to 135 ms and Si was evaluated using the "Stick" model [34, 175]. This degenerated

diffusion tensor model assumes that the intra-axonal perpendicular diffusivity Di⊥ is equal to

0. Given the known problem of degeneracy in solutions when trying to estimate parameters,

we chose to fix Di∥ = 2×10−3 mm2 s−1 [96] to ameliorate the degeneracy problem. Before

evaluating Si , the main eigenvector was calculated using the standard diffusion tensor model.

The vector of coefficients was estimated using a non-negative least square (NNLS) algo-

rithm:

x̂ = argmin
x≥0

||Ax −y||22, (4.5)
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and the average T2i was calculated for each voxel as the weighted mean:

T2i =

20∑
j=1

x̂ j T2i j

20∑
j=1

x̂ j

. (4.6)

4.2.4 COMMIT-T2

The conventional COMMIT framework [76, 77] models the DW-MRI signal in each voxel of

the image as a linear combination of the intra- and extra-axonal signals generated in every

location of the brain by using a set of candidate tracts, which are estimated using standard

fiber-tracking techniques. Then, COMMIT estimates the effective contribution or weight of

each of them, such that they globally fit the measured signal. These weights are estimated

by solving a global convex optimization problem. In practice, COMMIT creates a large linear

system of equations by concatenating the vectors of measurements from all brain voxels and

corresponding dictionaries. Notably, each individual dictionary column is not associated with

a voxel, but to a specific fiber bundle. For more details, see [76, 77].

In this work, COMMIT is modified to allow for tract-based T2i estimation by using the

generative model given in Eq. (4.2). COMMIT-T2 assumes that T2i remains constant along

the tracts trajectories. Specifically, the same model’s parameters used in AMICO-T2 were

employed (i.e., Di⊥, Di∥, and predefined set of T2i values). After solving the resulting global

regression problem using a large-scale Non-Negative Least Square (NNLS) solver [77], a vector

of coefficients x for each fiber bundle is obtained, where the k-th element xk quantifies the

signal fraction explained by that fiber bundle with a predefined T2ik value. Thus, a distribution

of T2i values is obtained for each bundle, which mean value is computed using Eq. (4.6). To

compare this tract-based estimation method with the voxel-based approaches described in

previous sections, the resulting mean T2i values from multiple streamlines were averaged and

projected at each voxel.

The starting input set of candidates fibers was estimated using the CSD method [344]

and the deterministic SD_STREAM fiber tracking algorithm included in the MRTrix3 software

(http://www.mrtrix.org). The reconstruction was carried out using default parameters. About

150K streamlines were obtained, and those ending in the WM were filtered out.

4.2.5 Protocol

The protocol is divided in two parts: tractography and intra-axonal T2 estimates. For all data,

δ 8 ms and ∆ = 22 ms were fixed. The tractography protocol uses 6 b-value = 0 smm−2, 8

directions at b-value = 750 smm−2 and 30 directions at b-value = 3000 smm−2 with TE= 45 ms.

For the T2 estimations part 4 b-value = 0 smm−2, 8 directions at b-value = 750 smm−2 and 48
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directions at b-value = 6000 smm−2 with TE= 73 ms, 93 ms, 118 ms and 150 ms.

The b-value = 0 smm−2 and b-value = 750 smm−2 data were used for the preprocessing

steps for the in vivo data.

4.2.6 Numerical simulations

A fiber crossing phantom was drawn in Blender [Blender Online Community] and the fibers

coordinates were saved in ’.obj’ file format. This file was then converted to ’.trk’ format to be

read by COMMIT (https://github.com/daducci/COMMIT), which was used to generate the

DW-MRI synthetic data.

The DW-MRI signals were generated by using the model given by Eq. 4.2 with the acquisi-

tion parameters described in section 4.2.5 and the following model’s parameters: bundle1)

T2b1= 78 ms, bundle2) T2b2= 116 ms. Each streamline contributed with fi s=0.0071 in or-

der to achieve max(S) = 1. The diffusivities in both tracts were fixed to Di⊥ = 0 and Di∥ =

2×10−3 mm2 s−1.

A second experiment performed was to evaluate the sensitivity of the methods varying T2

values per bundle. In this case we generated numerical phantoms of the crossing fixing T2b1 =

78 ms and varying T2b2 from 40 ms to 135 ms with 41 values equally-spaced.

Figure 4.1 – Noise level estimation on raw data and after denoising.
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4.3. Results

The resulting datasets were corrupted with noise using a noise level similar to that obtained

in real data, which was determined after applying the denoising algorithm developed in [352].

For more details see section 4.2.7 and the figure 4.1.

4.2.7 In vivo data acquisition and preprocessing

DW-MRI data were acquired using the Siemens Connectom 3T MRI scanner with 300 mTm−1

gradients. One healthy human volunteer was scanned within a single imaging session using

the acquisition parameters described in section 4.2.5. The study was approved by the local

ethics committee and the participant provided written informed consent. Other imaging

parameters are: TR = 4100 ms, voxel size = 2.5 mm isotropic, number of slices = 46, acquisition

matrix = 88×88. One image with b = 0 and opposite phase encoding direction were also

acquired. Additionally, a structural T1 image was collected using a 3D magnetization-prepared

rapid acquisition gradient echo (MPRAGE) sequence with the following parametters: TR =

2300 ms, TE = 2 ms, Inversion Time (IT) = 857 ms, voxel size = 1 mm isotropic, acquisition

matrix = 256×256, flip angle=9 degree, and scan time=5:32min.

The preprocessing steps were applied in the following order: 1) noise level estimation

and removal [352], 2) Rician unbiasing [190], 3) removal of Gibbs ringing artifacts [192] and 4)

motion and geometric distortion corrections using the "topup" and "eddy" tools included in

FSL [172]. In order to compensate for motion between the different scan-sets, all data with

different TE were preprocessed separately and then co-registered all together using a rigid

registration [195]. The registration was done based on the images without diffusion weighting,

i.e., b-value = 0 smm−2. Finally, the T1 image was parcellated with FreeSurfer [79] and the

extraction of the different bundles was carried out with the White Matter Query Language

(WMQL) [359].

4.3 Results

4.3.1 Numerical simulations

Figure 4.2 shows the T2i values estimated in the numerical phantom described in section 4.2.6

using the direction-averaged, AMICO-T2 and COMMIT-T2 methods. This result was obtained

using the noiseless data. The first column depicts the two bundles with ground truth values

of T2b1 = 78 ms and T2b2= 116 ms, respectively. The analysis was done separately on voxels

with a single and multiple fiber populations. In voxels with a single fiber, the three methods

recovered the ground truth values. In contrast, in regions with fiber crossings, the T2i values

estimated by the voxel-based methods (i.e., the direction-average technique and AMICO-T2)

are in between the two ground truth T2b1 and T2b2 values. Notably, COMMIT-T2 correctly

estimated the T2i values in both bundles in the fiber crossing region. This was possible thanks

to the spatial regularization naturally enforced by the fiber tracts.
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Figure 4.2 – A cross-section of the synthetic phantom is visualized. The phantom simulates a
crossing of two fiber bundles with different T2i values of T2b1 = 78 ms (in red color) and T2b2=
116 ms (in green color), respectively. Voxels with a single and two fibers were differentiated
to test the performance of the three evaluated methods: the direction-averaged technique,
AMICO-T2, and COMMIT-T2.

Figure 4.3 – Histograms of the T2i values estimated in the phantom using the three evaluated
methods: the direction-averaged technique, AMICO-T2, and COMMIT-T2. For more details
see Figure 4.2. Results from both the noiseless and noisy datasets are reported.

The histograms of the T2i values obtained from both the noiseless and noisy datasets are

shown in Fig. 4.3. The direction-averaged technique tends to overestimate, even in the case

of single bundle population, where AMICO-T2 has a peak on the ground truth value; thus,

although neither method addresses the crossing fiber problem directly, AMICO-T2 seems

more robust to noise compared to the direction-averaged method. COMMIT-T2, instead, does

a good job of recovering the correct ground truth values and is more robust to noise.

4.3.2 Sensitivity analysis

Figure 4.4 shows the plot of the mean value of the bundle 2. For direction-averaged and

AMICO-T2 noiseless single bundle population, the methods are recovering the GT values.
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Figure 4.4 – Comparison of T2 estimation against ground truth for the direction-averaged,
AMICO-T2 and COMMIT-T2 methods.

The noise makes the direction-averaged overestimating, wherein AMICO-T2 a clear pattern

is less clear. In the voxel-based analysis of multiple bundles, even in the noiseless case, the

expected overestimation for values lower than 78 ms and underestimation for values higher is

found. COMMIT-T2 recovers the correct T2 values at the variation of the T2b2, showing high

sensitivity; moreover, the effect of noise is minimal.

Figure 4.5 – Sensitivity analysis on the crossing phantom performed with COMMIT-T2 where
a new SD_ST RE AM tractography is generated. The study is performed in the noiseless and
noisy cases.

One possible reason for COMMIT-T2 outperforming the other methods is that the tracking

algorithm used in the signal fitting is the same used to generate the phantom data, warranting

the investigation of performance with different tracking algorithms. CSD was performed

on the numerical phantom using the SD_ST RE AM algorithm from MRTrix3 [344] with 10K

streamlines. The new tractography generated around 50% of false positives connections,

which were removed manually by region of interest in the endpoints and filter the tractography

remaining with the two correct bundles. This because in this study, there is no aim to explore

the removal of false positive by COMMIT-T2.
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The results of the experiment are shown in figure 4.5; COMMIT-T2 can recover values

robustly, both in the noiseless and noisy case, showing that the variance due to tractography is

minimal.

4.3.3 In vivo results

Figure 4.6 – Tractometry using T2 values estimated with the direction-averaged technique.
A portion of Corpus Callosum, Corticospinal tract and Arcatue Fasciculus is shown with
streamlines colored by T2 estimation. Below, we show the profile of the changing of T2 along
the bundles.

In figure 4.6 we highlight three bundles, portion of CC, portion of CST and AF. We show
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how using direction-averaged methods the values along the bundles show high variation.

Especially in the three bundle crossing area of the CC, CST and AF we see a drop of T2 for the

CC and CST. This can be caused by the overall lower T2 values of the AF.

Figure 4.7 – T2 estimations using the direction-averaged, AMICO-T2 and COMMIT-T2. The
analysis is performed on three well-known bundles in the brain: Corpus Callosum (CC) and
Posterior limb Internal Capsule (PIC) of the left and right hemisphere. The CC was subdivided
in 11 equally distant different ROIs, while the PICs are subdivided in 6 ROIs. Comparison
is performed considering the average along all voxels where the bundle is defined, where
multiple population was occurred, and voxel where only one population is presented (defined
as threshold of the Fractional Anisotropy (FA) map at 0.7).

Furthermore, it is interesting to examine the T2 estimates in well-known anatomical

bundles in order to correlate results to microstructural knowledge. In this study, we analyzed

in detail two well-known bundles, CC and PIC, left and right hemisphere. The CC was divided

into 11 ROIs and the two PIC in 6 ROIs, and analysis of T2 bundle-specific estimate was

performed, figure 4.8.

The results of the CC show that the voxel-based methods are recovering T2 around 20 ms

lower compare to the COMMIT-T −2. Furthermore, the T2 estimation of the bundles was

performed in single bundle voxels thresholding the FA at 0.7. Results show that direction-

73



Chapter 4. Bundle-specific T2 mapping of cortical pathways

averaged and AMICO-T2 recover similar values to COMMIT-T2. This outcome confirms in

real data that the voxel-based methods proposed, differently from COMMIT-T2 cannot solve

complex configuration.

More in detail, we explored the variation of T2 along the CC and the PIC. In the CC we can

define a pattern low-high-low-high. Lower values are associated to T2 around 80 ms, while

higher values are associated to T2 around 100 ms. In our subdivision CC5, CC6 and CC10,

which correspond to regions of bundles ending in motor, somatosensory cortex and visual

area, have considerably higher T2. In the PIC left and right, we find higher T2, above 90 ms in

the PIC1, PIC2, and PIC5; both left and right hemispheres seem to have a similar pattern.

Figure 4.8 – T2 estimations using the direction-averaged, AMICO-T2 and COMMIT-T2. The
analysis is performed on the arcuate fasciculus (AF), the cingulum (CG), the inferior fronto-
occipital fasciculus (IFOF), the inferior longitudinal fasciculus (SLF), the optic radiation (OR),
the superior longitudinal fasciculus (SLF), and the uncinate fasciculus (UF). Comparison
is performed considering the average along all voxels where the bundle is defined, where
multiple populations occurred, and voxel where only one population is presented (defined as
threshold of the fractional anisotropy (FA) map at 0.7).

In figure 4.8 we report the results of the comparison of single and multiple voxel popu-

lations in other geometrical well-known bundles in the brain: the AF, the Cg, the IFOF, the
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SLF, the Optic Radiation (OR), the SLF, and the UF. The analysis was performed on both

hemispheres.

Results of COMMIT-T2 are showing similar results for left and right hemisphere, except for

the UF, where higher T2, around 100 ms is found in the left hemisphere while lower values are

found on the right hemisphere 80 ms. We highlight that when voxel considers only a single

bundle population higher is the T2 estimated, compared to when also multiple bundle voxels

are considered.

4.4 Discussion

In this work, we explored the feasibility to estimate intra-axonal T2 in tracts with complex

geometry, i.e., crossing, fanning, and merging; and we propose the COMMIT-T2 framework.

To achieve these results, we used only high b-value, where the extra-axonal signal can be

neglected.

The origin of different T2 is not known. However, it is known that different tissue mi-

crostructure experience different T2, and previous work mainly focused on the disentangling

of intra-axonal and extra-axonal component [56, 281, 334, 353]. Some work went further and

proposed a possible subdivision of intra-axonal T2 components in different bundles [227, 353].

All previous studies focused on a model for a single bundle population which can be

applied in limited regions of the human brain. It is desirable to obtain of T2 estimates in

multiple population voxels. Hence, we proposed the COMMIT-T2, the first framework able to

disentangle T2 estimates of different bundles thanks to spatial regularization derived from

tractography.

The novel approach was compared to two voxel-based methods, the direction-averaged

proposed by [227] and another novel approach which we implemented and named AMICO-T2.

AMICO-T2, as COMMIT-T2 are dictionary approaches which are extensions respectively

of AMICO [73] and COMMIT [76, 77]. The original implementation of AMICO and COMMIT

frameworks used two different computational solvers to solve the non-negative least square,

respectively, an active set and gradient descent solver. Gradient descent solvers are slower

compared to the active set; however, they do not require storage of the matrix A in-memory

RAM, which for the complexity of the COMMIT global problem is not feasible. In order to

have a fair comparison between AMICO and COMMIT and avoid variability dependent on the

solver, we implemented the gradient descent solver in AMICO. We report that for the protocol

used, for relative tolerance lower than 10−6, the two solvers reach to the same solution.

We also can compare the two voxel-based methods. The comparison showed similar

results between the two. From a theoretical perspective, the main difference between the

two is that the direction-averaged method handle bundle dispersion, while in AMICO-T2 the

model does not account for dispersion. Nevertheless, the two voxel-based methods, when
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applied on in vivo data, did not show relevant variation between them.

In terms of robustness to noise on numerical simulations, our findings show that dictionary-

based methods seem more robust to noise compared to the direction-averaged method, in

which we find constant overestimation of the T2 estimates.

One of the main limitations that can be attributed to the method is the fact that the model

assumes constant properties along the tract trajectories. Changes of axonal properties have

been reported at the micro-scale level, however at long scale connection and for resolution

used it is conventional thinking that it is not a strong approximation [276, 316, 317, 320, 321].

Another critical limitation is related to the limits of tractography [221, 307] and of the FOD

estimated per voxel [57]. To address this issue, we mainly focus on well-known bundles, where

we assume false positive is minimal. However, it is of interest to analyze the whole brain T2

connectivity matrix, which we will address in future works.

Future approaches could be used to improve tractography, and consequently recover more

reliable estimates of bundle-specific T2 [292, 302].

Future works will address the possibility to extend the model for extra-cellular T2 estima-

tion and perhaps even myelin [240].

From the application perspective it is essential to highlight that this new contrast could

potential bring more benefits to find useful contrast in longitudinal studies, in developmental,

aging, early studies of decease, and pathological processes or bring anatomical landmarks to

describe different areas of a bundle, for example in the CC as shown in 4.8.

Moreover, this work did not aim to optimize a protocol, which was addressed in parallel

recent studies [160].

4.5 Conclusion

In this chapter, we proposed a novel framework that uses tractography-based spatial regular-

ization with diffusion-relaxometry data. We demonstrate both in numerical simulations and

in vivo that, unlike previously-proposed voxel-based methods, our framework can recover

intra-axonal bundle-specific T2 values within a voxel solving T2 heterogeneity. Furthermore,

our finding shows that different bundles in the human brain report different T2 values, opening

up the new opportunity to characterize bundles based on T2 relaxation.
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5 Bundle-specific axon diameter map-
ping of cortical pathways

In the central nervous system of non-human primates, several pathways are characterized by

different spectra of axon diameters. It is desirable to obtain similar information in live humans

where axon diameters are affected by different pathologies and probably by individual skills.

In vivo methods based on DW-MRI are available, but can only provide such estimates in

few and very selective locations along the course of axonal bundles, and are limited by the

power of the scanners used.

In this chapter, we propose a novel method for microstructure informed tractography

based on recent advances in MRI scanners applying ultra-strong gradients. This novel ap-

proach allows characterizing the composition of central nervous system pathways, in vivo and

in humans, at a level of resolution compatible with the investigation of differences between

healthy and exceptional brains.

5.1 Introduction

The WM of the CNS consists of axons with different diameters [2, 55, 146, 163, 164, 166, 277]

organized in pathways, tracts, bundles or fascicles. Diameters correlate with i) the size of

the parent cell body [336], ii) the size and density of synaptic boutons [162], iii) conduction

velocity [158], which together with axon length determines conduction delays between brain

sites; and possibly, iv) the frequency of firing [273]. All these different aspects, strictly related

to diameters, may play a crucial role in understanding sensory, motor, and cognitive functions.

Moreover, diameter estimation is of utter importance for interpreting pathological cases

[90, 157, 374].

In the early stages of DW-MRI, the technique was mainly used to recover the coefficient

of the impedance of water molecule diffusion [122], see chapter 1 for more details. Then,

researchers have focused on estimating diffusion profiles to estimation the local orientation

of the fiber, fundamental to reconstruct the pathways fascicles in the brain with tractography
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[26, 33, 66, 93, 170, 238], see chapter 1.5 for more details.

Following the development of the MRI scanners, new tools were developed to study

features going beyond the local orientation of the white matter structure [4, 5, 14, 15, 72, 73,

88, 121, 156, 185, 190, 264, 268, 286, 287, 301, 369–371], see chapter 1.4. Nowadays, we can

report that the DW-MRI community furnished useful tools to recover different axonal features

[4], e.g., density, cell shape, and diameter.

In this chapter, we focus specifically on axon diameter, as it may be the key feature that

will finally allowing the relation between structural and functional connections in the brain to

be solved [154].

The axon diameter is known to be related to conduction velocity [127, 153, 155, 273, 294];

hence, it is associated with the flow of information from the different regions of the brain.

Diameter estimation could potentially help to find the specific behavior and function of a

bundle of neurons [368]. Finally, it is used and will be used more in the future, in the diagnosis

of different neurological diseases, e.g., multiple sclerosis [147, 157].

Three decades ago, MRI was not ready to estimate such a feature in the brain; axon diame-

ter was initially estimated ex vivo using electron microscopy. Initial studies were performed

in the peripheral nervous system [137, 226, 311] for then move to the central nervous system

[2, 54, 166, 198, 217]. Remarkably, histological studies reported similar trends of axon diameter

in similar regions across different species, from monkey to human. In particular, the findings

revealed a systematic trend in the CC, the region of the brain involved in interhemispheric

functional connectivity [295]. From Genu to Midbody it is found a trend of axons that goes

from small to big, to end in the Splenium with a distribution of small axons and very at the

end of the Splenium there is part of higher axons connecting to the visual area. Furthermore,

large axons are also found in the portion of the CST that end in motor areas. These histological

findings have been used as a reference for most of the studies done with MRI.

The first theoretical model that tried to model pores of different size was done in NMR

[248]; applications can be found in the context of oil research [266], food science [53] and in

skeletal muscles [350]. Lately, with the development and improvements of the MRI, researchers

focused on the human neuronal tissue measuring the axon diameter using DW-MRI[13].

The first attempt to estimate the axon diameter was proposed with AxCaliber [14, 15]. In

the study, Assaf et al. used a method to map the axon diameter on an ex vivo spinal cord with

a technique that fit gamma distribution. Later, the technique was for the first time applied on

the CC in vivo rat brains with [25].

Initial studies with AxCaliber were done in the spinal cord [102, 103] and only recently

with the development of the CONNECTOM scanner, with a maximum gradient of 300mT/m,

the approach was applied on the CC in vivo human brain [156, 229, 314].

However, the major limitation of AxCaliber is that the signal needs to be acquired perpen-
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dicular to the axons and in single bundle population. An attempt to solve such limitations

was proposed with AxCaliber 3D [72]. Furthermore, from histological estimates it seems that

imposing a gamma distribution is not the optimal solution to recover the axon diameter

distribution [267, 313].

To overcome previous limitations, different approaches focused on estimating the mean

axon diameter or the ADI instead of the full distribution. One of the first studies was performed

by [260] using Q-space imaging in the spinal cord [259, 260]. Later, when was proposed the

ActiveAx model [5], which could be applied directly in the human brain, the ADI became more

popular. ActiveAx does not impose a gamma distribution. Furthermore, after the first proof

of concept on in vivo data was [5] was also used and validated on the CC on monkey ex vivo

material [104]. Attempts to extend the original formulation to include crossing fibers [369]

and dispersion [370] were performed but did not achieve popularity among the community.

These two approaches, AxCaliber and ActiveAx, used both non-linear optimization algo-

rithms, which are computationally expensive and prone to local minima. To overcome such

limitations, AMICO was proposed as a framework to accelerate the ActiveAx model with a

convex linear formulation [16, 77].

More recently, new approaches to estimate the axon diameter were proposed. In particular

estimation of axon diameter with non-convex regression method [115], non-parametric map-

ping of the distribution [36] and machine learning [120, 247] seems to be promising works.

Furthermore, a method to improves tractography having estimates of ADI was proposed in

[138].

Estimation of axon diameter by DW-MRI has limitations [6, 249], Work has been done,

and is in the process, to improve sequences protocols to find better contrast [101, 191, 233,

255]. Furthermore, more advanced modeling using e.g., time-dependence [46, 123, 299], was

demonstrated to improve in the axon diameter estimation.

The method proposed in the literature focused mainly on regions where the axons are

parallel. Only a few unsuccessful attempts on complex regions were proposed to study the

axon diameter of more complex geometries.

All the methods mentioned above are based on local voxel estimations; hence, estimation

is performed voxel bx voxel independently. However, the main disadvantage is that local

methods hardly solve the problem of crossing, dispersion, and undulation [250].

To overcome the limitations of existing methods, we propose for the first time a framework

that uses tractography to estimate the axon diameters distribution globally. We propose

tractography as implicit regularization to solve the problem of estimating diameter in regions

of fiber crossing, dispersion, and undulation.
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5.2 Methods

5.2.1 Axon diameter signatures

In this work, we extended the COMMIT framework using the Cylinder-Zeppelin and Ball model

[5] to estimate the fiber composition. The COMMIT framework is schematically summarized in

Figure 5.1, for more detail on the implementation see section 1.6. We then grouped streamlines

sharing the same anatomical pathways in bundles defined from the cortical parcellation.

Figure 5.1 – The COMMIT framework. (a) Crossing configuration of cylinders with differ-
ent diameter. Colors are associated with distinct voxels. (b) DW-MRI acquisition of the
crossing configuration. (c,d) two main branches of tools able to process the DW-MRI signal:
microstructure imaging, quantitative local estimation of tissue environment, i.e., axonal di-
ameter; tractography, global estimation of trajectories, i.e., bundles. (e) COMMIT framework:
unified expression of microstructure and tractography. y: DW-MRI signal acquired; A: matrix,
express the model that integrates microstructure and tractography. x: volume fractions derived
after the fitting.

The proposed method considers each streamlines as consisting of distinct axon popu-

lations having different diameters the amount of which must be estimated. Hence, several

contributions are associated with each streamline reconstructed by tractography. The es-

timated coefficients x (eq. 1.30) of a given streamline represent its volume-weighted axon

diameter composition. We used as a forward model (columns of the matrix A in eq. 1.30)

uses DW-MRI signal arising from axons represented as parallel cylinders oriented in the same

orientation of the streamline in the voxel and with fixed radii and fixed longitudinal diffusivity

d∥.

To account for different contributions arising from axons with distinct radii, we con-

sidered 12 columns for each streamline corresponding to 12 cylinders with radii equally-

spaced diameters in the range 1.5µm to 7µm. Unlike in Assaf et al. (2008), no assump-

tions are made on the fiber composition to be estimated. To compute the columns re-

lated to the extra-axonal DW-MRI signal, we used as a forward model the signal arising

from anisotropic tensors with the same longitudinal diffusivity but different perpendic-
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ular diffusivities d⊥. Finally, the cerebrospinal fluid is modeled as isotropic tensor with

fixed diffusivity di so . The physical parameters were set as follows: d∥ = 1.7×10−3 mm2 s−1

[5, 370, 371], d◦ = 3×10−3 mm2 s−1 [5, 206, 370, 371], and four values equally-spaced in the

range 0.5×10−3 mm2 s−1 to 1.0×10−3 mm2 s−1 for d⊥.

COMMIT estimates the volume-weighted axon diameter composition for each streamline.

To facilitate visual inspection of the results, we associated an ADI [5] to each streamline and

colored them accordingly. We recall the ADI is the mean of the axon diameter composition, as

described in [5].

Differently, from the AMICO framework formulation [73], the estimation of the ADI is

done excluding the smallest (1.5µm) and the biggest (7µm) cylinder compartments. This

step was done for two reasons: i) the used DW-MRI acquisition was shown to be insensitive

to diameters smaller than 2µm [249]. ii) We found that the smallest cylinder captures, only

partially, the signal of axons from 0µm to 1.5µm, and the biggest cylinder captures the signal

of axons above 7µm; hence, those columns of the matrix A are indeterminate and cannot be

included in the estimation. Simulations were performed to validate this conclusion, see the

Simulation section.

The axon diameter composition can be defined for a given bundle (i.e., a group of stream-

lines coursing through a specific ROI). We calculated the overall axon diameter composition of

a bundle by performing the weighted sum, column by column, of the axon diameter composi-

tions of all streamlines of the bundle. Furthermore, in order to represent the axon diameter of

a bundle with one value, we calculated the ADI of a bundle as the mean of the bundle axon

diameter compositions.

5.2.2 Acquisition Protocol

The DW-MRI acquisition protocol used is the following: TE 80 ms, TR 3900 ms, matrix size

110x110, 2 mm isotropic resolution, gradient strengths G= 138 mTm−1, 276 mTm−1, 102 mTm−1,

203 mTm−1, 85 mTm−1, 169 mTm−1, 74 mTm−1 and 175 mTm−1, δ=7 ms and ∆=17.3 ms,

17.3 ms, 30 ms, 30 ms, 42 ms, 42 ms, 55 ms and 55 ms. With the above parameters, a total

of 360 DW-MRI images distributed over 8 shells and including 4 non-diffusion weighted im-

ages (b0) were acquired. An additional b0 image was acquired in reverse phase encoding

to estimate the inhomogeneity field and induced eddy currents effect, which were used for

the preprocessing steps for the in vivo data. We also acquired a 1 mm isotropic resolution

T1-weighted anatomical image using a MPRAGE sequence: TE 2 ms, IT = 857 ms, TR=2300 ms,

matrix size 256x256, flip angle 9°.

5.2.3 Numerical simulations: crossing configuration

A numerical simulation experiment was performed to generate a 45deg crossing configuration

between two bundles, from which, main directions were obtained at each voxel. The intra-
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axonal and extra-axonal signals were generated separately and then merged to generate

unique numerical phantom [290]. For each bundle, the DW-MRI intra-axonal signal and extra-

axonal signal were simulated, using an in-house Monte Carlo Simulator [285], for a gamma

distribution of parallel cylinder diameters with a mean diameter of 2.70µm and 4.00µm, with

intra-axonal signal fractions of 0.3 and 0.4 and extra-axonal signal fraction of 0.7 and 0.6. Two

additional extra-axonal signals were generated in the crossing area with a signal fraction of

0.21 and 0.09. All the signal were summed up to have a total signal fraction of 1 in each voxel,

both in crossing and single population voxels. The diffusivity of the simulations were fixed to

D = 1.7×10−3 mm2 s−1 [5, 370, 371], both for intra-axonal and extra-axonal signals.

The resulting dataset was corrupted with Rician noise using a SNR of 30 in the b = 0 images.

Furthermore, a Watson distributed dispersion with k = 16 of was added to the resulting dataset

[370, 371]. Tractography was then performed using a second-order integration over Fibre

Orientation Distribution (iFOD2) algorithm [341], generating 10,000 streamlines, seeding from

the white matter mask. Streamlines not ending at the bundle extremities were removed before

processing with COMMIT.

5.2.4 Numerical simulations: resolution limit

A numerical phantom simulating the axon diameter distributions in the prefrontal and motor

sectors of the CC derived from histology was used. These two sectors were chosen as they

show significant differences in mean axon diameter, e.g., a representative of small and one

example of large diameters. The purpose of this experiment was to test the feasibility of

the newly proposed extension of the COMMIT framework to distinguish the bundle axon

diameter composition and in an environment without MRI distortions. A second purpose of

the simulation was to test the optimal range of diameter sensitivity. The intra-axonal signal of

the two bundles was generated analytically to have two number weighted gamma distributions

with means of 1.18µm and 1.59µm for the prefrontal and the motor bundles, respectively. The

intra-axonal volume fraction used for both bundles was 0.7.

The number-weighted distributions are typically used in histological reports. However,

MRI probes the volume of the structure, and thus provides estimates of the volume-weighted

axon diameter [5]. The conversion from number weighted to the volume-weighted was per-

formed, and the corresponding means were estimated to be 1.94µm and 3.32µm, respectively.

The extra-cellular signal was computed with an in-house Monte Carlo diffusion simulator[285]:

two different signals were generated, one for each bundle, with an extra-axonal volume fraction

of 0.3 in each voxel. The signal was used then assemble to form two bundles with dimensions

4x4x20 voxels.

The data was simulated with 0.5 mm isotropic resolution, 360 DW-MRI images distributed

on the same 8 shells and 4 b0 used to acquire in vivo data, δ=7 ms, G= 138 mTm−1, 276 mTm−1,

102 mTm−1, 203 mTm−1, 85 mTm−1, 169 mTm−1, 74 mTm−1 and 175 mTm−1, ∆=17.3 ms,

17.3 ms, 30 ms, 30 ms, 42 ms, 42 ms, 55 ms and 55 ms. Rician noise with SNR=30 was added
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for the simulated data.

Figure 5.2, show that the extended COMMIT framework can distinguish the two distinct

distributions of the prefrontal and the motor areas axons. Furthermore, analysis of the bundle

ADI was done considering two different ranges: the full distribution (1.5µm to 7µm) and re-

moving the smallest and the biggest diameter (2µm to 6.5µm), see Table 5.1. The comparison

shows that considering the full distribution leads to an overestimation of the bundle’s ADI is

overestimated. However, when removing the contribution from diameters 1.5µm and 7µm,

we recover the ground truth bundle ADI. These simulations show that those diameters are

indeterminate and should not be included for the ADI estimation.

Figure 5.2 – Numerical simulations using histological prefrontal and parietal samples [55]
were performed. (A) phantom shape and streamlines generated from: left) prefrontal area,
right) motor area. (B) Estimation of axon diameter index (ADI) per streamline. Notice how
prefrontal streamlines show a predominance of small diameter (blue) and motor area show
predominance of large diameter (red). (C,D), show the axon diameter composition for pre-
frontal and motor areas. Different ranges were tested in order to find the DW-MRI sensitivity
that is closest to the ground truth distributions, see Table 5.1.

5.2.5 Image processing

In vivo human data were acquired from 3 healthy volunteers on a Siemens Connectom 3T MRI

system (Cardiff University Brain Research Centre, Cardiff, Wales). Each subject was imaged

83



Chapter 5. Bundle-specific axon diameter mapping of cortical pathways

Table 5.1 – Empirical testing for the resolution limit on simulated data. Discarding the first
and last bin yields DW-MRI estimates that match the histological ground truth. Associated to
Fig.5.2.

mean diam [µm] Hist nw Hist vw Hist vw DW-MRI Hist vw DW-MRI
range 0-7 0-7 1.5-7 1.5-7 2-6.5 2-6.5
prefrontal 1.18 1.94 2.41 2.54 2.85 2.84
motor 1.59 3.32 3.42 3.65 3.52 3.52

five times over two weeks using the same MRI acquisition protocol described in section 5.2.2.

The anatomical T1-weighted image was registered to the average b0 image using FS-

L/FLIRT [172] using rigid-body registration. The white matter and gray matter masks were es-

timated using FSL/FAST [172]. The brain cortical parcellation was performed using FreeSurfer

[79, 95].

The DW-MRI data were corrected for magnetic field inhomogeneities, eddy currents, and

motion using the TOPUP and EDDY tools of FSL [172]. Subsequently, gradient non-linearity

correction was performed [187]. The shell with diffusion time ∆= 17.3 ms and G=276 mTm−1

was used to perform CSD [340]. Tractography was then performed using iFOD2 algorithm

[341], generating 10,000,000 streamlines from the white matter mask. Streamlines not reaching

the gray matter were removed. To reduce the computational burden of the COMMIT analysis,

300,000 streamlines were randomly selected for each DW-MRI dataset.

5.2.6 Analysis of specific neuronal connections

Our in vivo study is focused on two well-characterized axonal tracts: the CC and the PIC. The

CC has been well studied in the past with different methodologies including DW-MRI [5, 25].

The PIC has been less studied with DW-MRI but is extremely important since it is traversed

by cortico-descending axons involved in motor control, whose lesions lead to irreversible

paralysis. Moreover, we concentrate the analysis on these two bundles since they are known

to have a sufficiently large axons diameter to which we can be sensitive with DW-MRI.

To study the topology of bundles, the CC and the PIC were segmented and subdivided in,

respectively, 11 and 6 equal sectors normalized for different individuals as described in section

5.2.6. The streamlines passing through ROIs corresponding to these sectors were selected,

and we analyzed their projections to and from the cortex. These projections correspond to

corticofugal and corticopetal (for the CC) connections since DW-MRI does not distinguish the

direction of the connections.

Bundles of streamlines systematically organized from anterior to posterior connect the

CC to similarly ordered slabs of cortex extending from the cingulate gyrus to the lateral

sulcus, Figure 5.3. This has been shown by tracer injections in the CC of the cat [245], and is

compatible with the ordering of CC connections already described with DW-MRI [152]. Also,
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anteroposterior organized bundles of streamlines connect the sectors of PIC to anteroposterior

cortical territories, compatible with the topology shown by tracer injections and DW-MRI in

the monkey [237] and DW-MRI in humans [11].

Figure 5.3 – Topology of fibers in the Corpus Callosum (CC) and posterior limb of the internal
capsule (PIC), reconstructed with DW-MRI tractography. (A) Subdivision of the mid-sagittal
section of the CC in 11 sectors (corresponding to ROIs). (B,C) Streamlines colored according
to the corresponding ROIs (medial and lateral views of the hemisphere). (D) Projection of the
streamlines into the pial surface. (E) Subdivision of PIC in 6 sectors (ROIs). (F,G) Streamlines
colored according to the corresponding ROIs (medial and lateral view of the hemisphere). (H)
Projection of the streamlines into the pial surface.

5.2.7 Histological preparation

One of the subjects already studied in Caminiti et al. (2009) was used: 489/07. The subject is a

60 year and 9-month female obtained from forensic medicine department in Frankfurt who

died of a stabbing wound and whose post-mortem before fixation was 6 hours. Briefly, the

brain was fixed by immersion in 4% (w/vol) paraformaldehyde, and a sagittal block containing

the CC was removed, cryoprotected, cut frozen, and stained for myelin. The relevant ethical

committee approved tissue sampling and procedures. The analysis was performed with

Neurolucida 7 software (MBF Biosciences) and a digital camera-mounted Olympus BX51

microscope. The outline of the CC was drawn at low magnification and partitioned as in the

DW-MRI work. In Caminiti et al. (2009), axon diameters were measured at 2,900 magnification

112µm to 600µm wide probes, traversing the CC from dorsal to ventral in the regions of

maximal density of labeled axons. In the measurements, the transverse cut axonal profiles

were approximated to circles whose size was incremented in steps of 0.09µm.

5.2.8 Histological analysis

We similarly performed new measurements of axonal profiles to test the stability of axonal

assessments over several years and the biases potentially introduced by different sampling

85



Chapter 5. Bundle-specific axon diameter mapping of cortical pathways

strategies. In the 6th sector of the CC, wherefrom projections course mainly to the precentral

gyrus we compared the axon diameter distribution of 1403 axons measured in Caminiti et al.

(2009) along a vertical dorso-ventral probe with a second sample of 451 axons in the middle of

the sector 6 and with a third cohort of 1934 axons sampled systematically across the whole

sector 6, see Figure 3 left. The 1st and the 3rd sample returned similar means (1.35µm) and

medians (1.06µm and 1.1µm respectively). Values were not statistically different with t-test

although they were different with Mann-Whitney U and Kolmogorov-Smirnov tests. The

second sample (mean 1.5µm, median 1.25µm) was significantly different from the others with

all tests. Whether this difference is due to local inhomogeneities in the distribution of axon

diameters or to other factors could not be determined. The frequency histogram of the three

samples and the corresponding volume-weighted distribution are shown in Figure 5.4. The

significance of the difference between samples is shown in Table 5.2.

Figure 5.4 – Histological sampling CC sector 6. (A) Location of histological sampling in CC
sector 6. (B) volume weighted distribution of the three samples. Sample 1 in Caminiti et al.
(2009) has 1403 axons; sample 2, 451 axons and sample 3, 1934 axons. Significance of difference
of samples are in Table 5.2.

Table 5.2 – Reproducibility histological sampling. Table associated to Fig. 5.4

p-value T-test Mann-Whitney U Kolmogorov-Smirnov
S1 - S2 0.000256 2.532e-10 2.127e-33
S1 - S3 0.832280 1.161e-16 9.919e-53
S2 - S3 4.575e-07 2.593e-10 7.001e-07

5.3 Results and Discussion

5.3.1 In-silico analysis

The bundle-specific COMMIT framework and the voxel-wise ActiveAx [5] method were firstly

tested on the numerical phantom described in Section 5.2.3. The qualitative and quantitative

results are reported in Figure 5.5 and Table 5.3. For the voxel-wise estimation, the ADI for each
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voxel was estimated with the ActiveAx method described in [5]. For the COMMIT framework,

the two bundles were reconstructed using tractography, and two scalar maps were generated,

projecting the weighted signal fraction ADI estimated for each streamline onto the voxel-

based space. Various studies ([16, 369]) have already shown that the ActiveAx method [5]

encounter difficulties in solving the crossing problem. However, it has been widely used in

single populations voxels. Hence, the reason to include in the analysis also single populations

voxels.

As expected, results show that the ActiveAx method report diameter overestimation and

significant-high standard deviation in all the phantoms configuration. The best performance

in our simplistic phantom is obtained for the case of no dispersion, single population and

diagonal bundle at 4µm of ground truth in diameter. In this specific case, good results are also

reported for the smaller bundle, which we observe an overestimation of 0.5µm. We highlight

that the standard deviation reported is in the range 3µm to 4µm in all the cases.

Contrary to the voxel-wise method, COMMIT can solve the crossing problem and estimate

diameter indexes closer to the ground truth values. More precisely, in the case of no dispersion,

the bundle corresponding to the smaller diameter is overestimated by 0.2µm while the largest

diameter is underestimated by 0.5µm.

Interestingly, in the case of dispersion, the estimation with COMMIT performs better

achieving the ground truth in the bundle with the lower mean diameter and underestimating

by 0.5µm in the bundle with the bigger mean diameter. Furthermore, the standard deviation

reported is from three to four times smaller compared to the voxel-wise method.

In these numerical experiments, we proved the benefit of using COMMIT to estimate ADI.

Axon diameter index [µm]
no dispersion dispersion

ActiveAx bundle straight 4.16 +/- 3.00 5.57 +/- 1.60
bundle straight (no crossing) 3.16 +/- 3.27 5.31 +/- 1.81

bundle diagonal 4.40 +/- 3.91 5.59 +/- 4.07
bundle diagonal (no crossing) 3.95 +/- 4.30 5.45 +/- 4.57

COMMIT bundle straight 2.92 +/- 0.90 2.66 +/- 1.00
bundle diagonal 3.54 +/- 1.39 3.67 +/- 1.87

Table 5.3 – Axon diameter estimation: voxel-wise ActiveAx original implementation and
bundle-specific COMMIT.

5.3.2 Bundles composition

The fiber composition of the CC obtained with our novel technique was compared with

postmortem measurements of a human brain. Between 451 and 1934 axons stained for myelin

were measured in CC sectors crossed by axons connecting the prefrontal, motor, parietal and

visual cortices. Most measurements were from a previous study [55], but one of the sectors was
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Figure 5.5 – Axon diameter estimation: voxel-wise ActiveAx original implementation and
bundle-specific COMMIT. SNR=30, dispersion k=16.

measured again to evaluate the impact of histological sampling. From the histological data,

we estimated the histogram of diameters in each sector. However, since DW-MRI estimates

the signal fractions that are related to the volume occupied by axons of different diameter, not

their number, the data was converted to volume-weighted distributions, to allow comparison

with the DW-MRI estimates. Figure 5.6 shows that fiber composition estimated with DW-MRI

closely corresponds to the histological estimates within the DW-MRI range of sensitivity.

In the absence of human data, the in vivo estimates of the PIC were compared with

measurements of axons stained for myelin in the monkey PIC [163]. In both bundles we

studied, the highest axon diameters recovered by COMMIT were found in sectors of PIC

traversed by axons connecting the motor cortex (BA 4) while thinner axons were connected

to other areas. In order to facilitate visual inspection of the results, the streamlines passing

through each CC sectors were colored according to the corresponding ADI [5], which is a

weighted average of the different contributions estimated for each streamline, and their

endpoints were projected on the cortical surface, see Figure 5.7.

This visualization reveals that streamlines with thicker axons connect the CC to the pre-
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Figure 5.6 – Comparison of the fiber composition estimated with DW-MRI and histology in 4
CC sectors. The black curves represent axon diameter distributions (normalized to 1) of myeli-
nated axons estimated with histology (dashed=number weighted, nw; continuous=volume
weighted, vw). The three colored curves represent the axon diameter composition of bundles
of streamlines passing through the respective CC sectors, scaled according to histology in the
range 2µm to 6.5µm.

central gyrus, corresponding to the primary motor cortex (M1; Broadman area BA 4), the more

lateral part of premotor cortex (BA 6), and to the postcentral gyrus (BA 3,1,2) corresponding

to the primary somatosensory cortex (S1). Streamlines with progressively thinner axons ter-

minate in the medial premotor cortex (BA 6) and the parietal cortex (BA 5,7 and 40) and still

thinner axons in the rostral prefrontal cortex (BA 8 and 9) and BA 44 and 45.

Our method provide an in vivo estimate of the distribution of axon diameters along a fiber

tract (the CC); previous measurements were only possible ex vivo, with histological tracers

in the monkey [55, 336]. In both species, a hierarchy of axon diameters exists with thicker

and faster-conducting axons connecting the motor and somatosensory cortices, thinner and

slower axons elsewhere. The streamlines coursing in the PIC were color-coded as above

according to their estimated ADI. Those consisting of the thickest axons are mapped onto

the dorsal part of the precentral BA 4 (M1) and postcentral (BA 3,1,2; S1) gyrus. Progressively

thinner axons mapped onto the parietal cortex (BA 5 and 7) and the premotor cortex (BA 6)

and still thinner axons onto the rostral prefrontal cortex (BA 8 and 9).

This arrangement is similar to that demonstrated with injections of anterogradely trans-

ported tracers in corresponding areas of the monkey, although in the monkey the diameter of

axons originating in the precentral gyrus exceeds that of axons originating in the postcentral

gyrus [163]. Identical findings were reproduced for different sectors of the CC and PIC in three
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Figure 5.7 – Fiber composition of the streamlines passing through the CC and PIC. (A,C) show
streamlines colored according to their Axon Diameter Index (ADI). (B,D) show the projection
of streamlines onto the pial surface; colors correspond to the ADI averaged across streamlines.
Abbreviations: ces, central sulcus; ifs, inferior frontal sulcus; ips, interparietal sulcus; prs,
precentral sulcus; sfs, superior frontal sulcus. Numbers correspond to Brodman areas.

subjects and five times for each subject, Figure 5.8 and Figure 5.9.

Figure 5.8 – DW-MRI axon diameter composition within CC and PIC sectors compared to
histological mean volume-weighted axon diameter from human (CC) and monkey (PIC)
histology. Stars represent means of the volume-weighted histological distributions; hexagons
represent the means of volume-weighted distributions in the range 2µm to 6.5µm.
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Figure 5.9 – Reproducibility study on the comparison of axon diameters estimates with DW-
MRI and histology in 4 CC sectors. The black curves represent axon diameter distributions
(normalized to 1) of myelinated axons estimated with histology (dashed=number weighted,
nw; continuous=volume weighted, vw). The three colored curves represent the axon diameter
composition over streamlines passing through the respective CC sectors, scaled according to
histology in the range 2µm to 6.5µm. For each diameter, the means and standard deviations
over five acquisitions are shown. Reliable estimates of axon diameters could be obtained only
between 2µm to 6.5µm.

The crucial importance of long connections in brain function is well established among

others by split-brain studies [326], and so is the importance of different axon diameters in

the peripheral nervous system [136]. The existence of brain pathways consisting of axons of

different diameters has been guessed in humans based on brain slices, sometimes processed

for electron microscopy, and invariably weakened by poor tissue preservation. The histological

material used here was no exception to this drawback, Figure 5.10. The previous DW-MRI

methods modeled axons at selected locations within a tract assuming their linear trajectory.

This assumption caused gross overestimation of axon diameters [5]. In this study, tracking cor-

tical pathways in vivo from DW-MRI acquisitions using a cutting-edge scanner and evaluating

their composition using a novel technique overcame these limitations. Moreover, it provided

estimates of axon diameter composition closer to histology findings. Current technologies

restrict the resolution of axon diameters to about 2µm [249].

5.4 Conclusion

Since thick axons are found preferentially in specific pathways, their absence in the expected

pathways, or abnormal presence in unexpected pathways can disclose the neural basis of
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Figure 5.10 – Myelin-stained transversally-cut axons in sectors 6 (A) and 8 (B) of the Corpus
Callosum (CC) of a human case. Scale bar is 10µm. Some of the axons are surrounded by a
measuring circle. Notice the mediocre preservation of the tissue, unavoidable with human
material.
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specific neurological or psychiatric pathologies [90, 157, 374] and, possibly, of individual skills

[83]. An additional advantage of our approach is that the axon diameter composition of a

tract could be mapped onto the cortex where it originates (and/or terminates in the case of

CC), eliminating the ambiguities of tracking axon diameters at selected locations along the

white matter pathways [5, 14, 25]. Our findings stress the similarities between humans and

monkey in the axonal composition of callosal and corticospinal projections. The existence of

corticospinal projections with different axon diameters and hence conduction velocities from

different cortical areas, in both species, raises the question of how the motor command is

integrated at the spinal cord level [163] a crucial question for strategies attempting to restore

corticospinal control after lesions. On the other hand, the size and speed advantage of motor

and sensory axons in corticocortical connections raises in humans, more appropriately than

in monkey, the question of their role in the generation of the sense of body ownership [336].

Further studies could extend the presented approach to other CNS pathways significantly

amplifying the human “connectome” enterprise [70, 140, 169].
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6 Conclusion

6.1 Summary of the contributions

The ultimate goal of the neuroscience research is to study the human brain, understand

the underlying biological mechanisms, reconstruct the complex network of neurons, i.e.,

connectomics, diagnostic pathological conditions and ultimately give insights of how to cure

these conditions. All of these aspects are essential and related to each other. For what concerns

this thesis, we focused on the non-invasive imaging of the brain structure. From the several

techniques available to image the brain, we focused on MRI and more specifically on DW-MRI.

We used DW-MRI, and not conventional MRI contrasts because our goal is to reconstruct

the brain network, which is mainly composed of axons and cell bodies of neurons. These

last structures are on the size of micrometers; however, with clinical MRI the resolution is in

the order of millimiters. DW-MRI comes as a tool of choice to infer micrometer structures

using the natural diffusion of water measured in multiple directions at a millimeter resolution.

More specifically, thanks to inverse problem techniques, it is possible to use the measures

acquired with DW-MRI and reconstruct tissue properties, e.g., fiber orientation, axonal density,

axon diameter. Furthermore, it is possible to connect the different WM voxels in the brain

and performed the so-called tractography. Both problems have high complexity, and over

the last years, the community has split the two field and focused either on tractography or

microstructure. Few attempts have been made to merge the two fields using non-convex

formulations. However, at the cost of a computational burden of several weeks. In 2015,

the COMMIT framework was proposed to linearize the problem and showed advantages in

the combination of minimal microstructure modeling, e.g., the use of Stick for intra-axonal

compartments and Zeppelin for the extra-axonal compartment. In this thesis, we show the

advantages of combining microstructural imaging and tractography in a unique formulation

using advanced modeling, e.g., axon diameter mapping and T2 estimation.

In Chapter 2, we report the advancement of tractography, focusing on the benefits and

main limitations learned through international challenges competitions proposed in the
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period of 2015 and 2018. This first analysis of state of the art study in tractography was

necessary for two main reasons: 1) to understand what is the best tractography algorithm

available, which potentially can be used in our formulation; and 2) to understand what if exist

WM bundles where DW-MRI tractography recovers with high precision and which are more

harder to reconstruct.

Another important limitation, which we discussed in Chapter 2, is the challenge in trac-

tography validation. In the field, three main validation methods have been proposed: using

simulated data with know ground truth, using physical phantoms with know ground truth,

and using histological analysis from ex vivo data. The first two techniques suffer from over-

simplistic geometry, while the ex vivo analysis is often achieved with 2D slicing. In Chapter

3 we investigate the potential of using a novel 3D histological technique to validate fiber

orientation and tractography, named CLARITY. CLARITY has been proposed two years ago

as a validation technique for DW-MRI in small cuboid in the order of less than 1 mm and

only in GM. In this chapter, we propose the first study that uses CLARITY in large slabs of

monkey brain, in the order of 1.5 cm. The sample covers GM and WM. We find that CLARITY

is a potential complementary tool to extract information on fiber orientation. Furthermore, a

second contribution of the study is in the development of a FOD estimation algorithm for 3D

ex vivo histology.

In the latest years, one of the main topics that got interested in the Diffusion MRI commu-

nity is the capability of disentangling intra-axonal T2 of different bundles in the brain. The

state of art methods is limited to a single bundle population. In Chapter 4, we implemented

an extension of COMMIT modeling the intra-axonal T2 even in presence of multiple popu-

lation within a voxel. We showed that this new framework has advantages in disentangling

intra-axonal T2. The analysis was performed in numerical simulations and on real data.

From a biological perspective, the major proposal in this thesis is in the estimation of

axon diameter features regularized by streamlines tractography. In Chapter 5, we extended

the COMMIT framework allowing streamlines to have cylinder model of different sizes. We

proposed two simulation studies, one selecting the optimal dictionary for the resolution limit

of the protocol used, and the second showing that our formulation have major advantages in

crossing bundles and in presence of axonal dispersion. Furthermore, we compared the DW-

MRI estimates with histological material, finding good agreement on the fiber composition.

The approach used in the previous two chapters, to extend the original COMMIT dictionary,

led to an increase of the computational burden. For example, in the case of the axon diameter

estimation, the computation time can reach up to 24 hours. In the appendix A, we propose

a neural network to recover scalar maps extracted from the global features estimated by

COMMIT, e.g., axon diameter map. This novel approach brings down the COMMIT fitting

time from several hours to few second, maintaining similar results compared to the original

formulation, and allowing fast computation and in the future potential clinical application

usage.

96



6.2. Perspectives

6.2 Perspectives

Following the order of the chapters proposed in this section, we want to highlight the future

works and perspectives that emerged from the work proposed in the thesis.

Tractography. Tractography, as a tool, has been the lietmotif of this thesis. We have showed

the advantages and limitations, and we showed the potential benefits of combining the

technique with microstructure modeling using convex optimization. However, not all the

work is done. What can we do next and what is the future of tractography?

We need to start from the basics. A streamline is not an axon, it is not a bundle and is not a

biological representation of the underlying structure. It is a potential representation of the

underlying structure. The reason is that we have a limited understanding of the physical and

biological properties and the technology which tractography is based on.

In the following list, I report my view on what the ultimate tractography algorithm should

be able to do:

• Tractography needs to learn from mistakes. Since the complexity of the problem is high,

most researchers implement tractography algorithms to solve one specific problem,

e.g., solving a bias or following biophysical parameters. The researcher injects the prior,

spend several months for the implementation, and finally, the tractography algorithm is

used for a specific application. However, often, development stops, and it is difficult to

integrate this new knowledge in a unique formulation from another researcher which

may be working on a different aspect.

• Tractography needs quality feedback when tracking. This statement is related to the

previous one. Often tractography algorithms do not have a way to show the potential

error made during tracking; this aspect brings difficulty in the interpretation of the

results. An algorithm that shows during tracking the percentage of how good is the

tracking according to predefined rules, and perhaps, showing critical section where

estimation start to be less confident, can be useful to understand better the where the

bundle brake down or could have generated a potential error.

• What are the alternatives of DW-MRI tractography? Very little time is spent thinking if

we have alternatives to DW-MRI to perform tractography for reconstructing the brain

connections since up to date very few alternative exist in vivo in human.

• Include complementary information. As several works are proposing in the last years

[139, 302], we may start to think to add more and more anatomical priors derived from

literature or complementary information derived from physiology to achieve better

algorithm reconstructions.

• Reproducibility. To have tractography in the routine of clinical applications, the repro-

ducibility of results will need to be achieved.
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Validation with 3D histology. To validate tractography and microstructure imaging, com-

parison with histology is necessary. More specifically, 3D histology technique should be

refined and developed to overcome classical 2D histological techniques.

Another essential factor to consider is the costs of performing protocols and acquisition of

histological data. Ideally, the post mortem imaging techniques must be accessible and easy to

use to a broad community to researchers. However, often, this is not the case.

Despite the importance of having better protocols for the histological pipelines, one of

the main limitations is the imaging. Only few microscope are able to image a large portion of

tissue, e.g., few cm, at the level of µm, especially in a reasonable amount of time, e.g., less than

one day, and without artifacts.

In Chapter 3, we proposed the first study of using CLARITY in a large portion of tissue, and

we proposed a potential validation study. However, our study could be improved in several

aspects:

• the CLARITY data were acquired on a different monkey, in future, we would like to have

the analysis performed on the same sample.

• different variation of the CLARITY protocols were proposed; however, the one that

showed best results is the variation that uses passive clearing, hence, without elec-

trophoresis and with no acceleration the clearing process. The passive clearing for large

samples can take up to several months. It will be desirable to accelerate the procedure.

• in the study that we proposed, six slabs of monkey tissue were cleared with CLARITY;

however, only two of them showed contrast after the imaging in the microscope. The

reason why the process did not work is not known, and it will be desirable to explore

more this aspect.

• from the DW-MRI perspective it will be useful to acquire the same sample with several

protocols with different resolution and study the agreement with histological validations.

The ultimate goal that will help to understand the structural brain will be to have in vivo,

ex vivo and 3D histology of the same sample.

T2 mapping. Generally, in the research topic of T2 estimation, researchers tend to find tools

to disentangle myelin water, intra-axonal water, and extra-axonal water fractions. However, it

is plausible to assume that within the different tissue compartments exist a variation. We tried

to propose methods able to disentangle the difference of the intra-axonal T2.

One fundamental work to be done will be the development of a T2 simulator for different

tissue geometries and properties. Furthermore, the framework should be tested under a
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possible assumption of T2 orientation dependence of bundles. Ultimately, we would like to

extend the approach proposed, including also an extra-axonal signal.

Axon diameter mapping. Similarly to work presented in Chapter 3, also here the compar-

ison of the axon diameter estimation done with DW-MRI and histology was performed in

different brains. It will be desirable to perform the analysis on the same tissue sample.

It is essential to mention the limitations of histological material. Especially in human

samples, but also in monkey samples, the preservation tissue is challenging due to deformation

artifacts. Furthermore, the histological sampling of axon diameter is often performed manually

by humans, mainly because of the difficulties in automatic segmentation; hence, it is limited

to a few locations. Novel techniques are emerging to automatize the reconstruction, but often

the dd well in reconstructing the inner-diameter while myelin, extra-axonal space is more

challenging to be segmented. Usually, because of the above mention reason that the human

material is difficult to be preserved.

It is crucial to have a measurement of axon diameter for several reasons. Since it is strictly

related to conduction delay, we would like to reconstruct fast conducting and slow conducting

impulses. This will allow us to understand better neural communication and brain behaviour.

Furthermore, axon diameter could help to understand the relation between structure and

function, development, and give more insights about plasticity.

More precisely, in the approach proposed in Chapter 5, we assume invariance along a

streamline. This constraint approached showed good results in several applications. This

could be further extended to allow variance along the streamlines.

It is essential to highlight that axon diameter estimation is a highly degenerate problem,

which is mainly dependent on the gradient strength and the SNR achievable. Different proto-

cols have been proposed, e.g., oscillating gradients, diffusion spectroscopy. A possible future

work could extend the COMMIT framework to take into account the advantages of these

different protocols.

Similarly to work done in Chapter 4, an important aspect will be to use protocols with high

b-value that suppress the extra-axonal signal.

In terms of modeling, we could use more complex atoms for the extra-axonal signal, i.e.,

derived from Monte Carlo simulations.

As the last step, we should investigate the relations between the similar trends found in

the different bundles analyzed in the axon diameter estimates, in chapter 5, and T2 estimates,

in chapter 4.
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Philosophical conclusion.Tractography will improve with new knowledge and technology.

Tractography will only benefit from new technologies and a new understanding of the physical

mechanisms underlying the brain structure. At a certain point in time, we will have a non-

invasive tool that accurately represents the underlying tissue; it can be a key factor necessary

for the human species. However, to achieve such a goal, we do need more iterations and more

research in the field from different perspectives.
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A Appendix: Learning global brain axon
diameter index maps using trainable
sparse encoders
Currently, one of the promising methods for microstructure imaging in DW-MRI is signal

modeling using convex formulation, e.g., using the COMMIT framework. Recently, COMMIT

has been extended to estimate axon diameters, see previous chapter. Despite the benefits

introduced with the axon diameter formulation, a significant limitation is the long convergence

time that can reach more than 24 hours for computation, making the method unappealing for

large subject studies. In order to address this limitation, we propose to use a neural network

to learn the sparse representation of the data and implement an end-to-end reconstruction of

the microstructure estimates directly from the DW-MRI data. The results show that the neural

network can accurately estimate the microstructure scalar maps, four orders of magnitude

faster than the convex formulation.

A.1 Introduction

DW-MRI has become the method of choice to probe the human brain’s white matter in

vivo [183]. DW-MRI has been used for the reconstruction of the WM pathways of the brain

using tractography algorithms[177]. However, tractography has been shown to be not a truly

quantitative method [165, 168, 221, 307]. To overcome such limitation, the COMMIT [76, 77]

framework was introduced.

In previous studies, this framework was successfully used to recover ADI [5], see chapter 5,

from whole-brain tractography on ex vivo monkey data[23] and on in vivo human data[24].

However, even if the convex optimization formulation brings fast estimations for simple

biophysical forward models, with the increase in complexity of the forward models, the

optimization procedure can reach several hours/days of computation time. For example,

for 300K streamlines, 12 values of diameter for streamlines, 360 diffusion directions . In

the following sections, we propose the use of a deep neural network to learn the sparse

representation of the data and perform an end-to-end reconstruction of the axon diameter

estimates directly from the DW-MRI data.
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sparse encoders

Inspired by Ye et al. (2017) [366], we propose to learn the sparse representation of the

voxel-wise mean ADI (mADI) computed with the aforementioned COMMIT framework.

A.2 Methods

The COMMIT framework associates whole-brain tractography streamlines and microstructure

imaging in a joint formulation. Briefly, COMMIT associate to each streamlines a coefficient

depending on the microstructural model used. The estimated coefficients of x for each

streamline can be then projected back to the voxel space. This procedure generates biophysical

scalar maps allowing comparison to state-of-art voxel-based methods [5, 73].

A.2.1 Learned Sparse Encoding

The goal of sparse encoding is to reconstruct an input signal using a linear combination of

basis functions with a sparse set of coefficients. In the work of Gregor and LeCun (2010)

[145], a learned method that computes approximations of optimal sparse codes in a fixed

amount of times was proposed. The method uses a time-unfolded neural network architecture

where back-propagation through time can be applied. This method was coined Learned

Iterative Shrinkage/Thresholding Algorithm ISTA (LISTA) since it unfolds the popular ISTA

algorithm [81], which solves the most common form of sparse encoding. This is summarized

in equation A.1,

EWe (X ,Y ) = 1

2
||X −We Y ||22 +α||Y ||1, (A.1)

where We is a Nsi g nal s × Natoms dictionary matrix of which the columns are the basis

vectors, α is a coefficient controlling the sparsity penalty, and the vector Y is the signal data.

ISTA finds the sparse coefficients X by iterating until convergence the following equation:

Yk+1 = hθ(We X +SYk ),Y (0) = 0, (A.2)

where We = θW T
d is the filter matrix, S = (I −θW T

d Wd ) is the mutual inhibition matrix θ-

weighted, and hθ(·) is the shrinkage function [145]. The idea of LISTA is to unfold the iterative

process in Equation A.2 and map it into a sequential neural network.

Sparse Encoding for Microstructure Estimation. In a previously proposed framework,

Daducci et al. used sparse encoding to infer microstructure information using dictionaries of

microstructure compartmentalized signals, coined as AMICO [73]. More recently, [366] used

the LISTA architecture to learn microstructure properties by mimicking the computation of

the NODDI estimates as proposed in AMICO.

Differently, from local microstructure frameworks like AMICO where the estimations are
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A.2. Methods

Figure A.1 – a) Whole-brain tractography of one of the subjects of the HCP dataset; the
white colour of the streamlines means that no quantitative information is associated to the
tractography; b) Whole-brain tractography with streamlines colored according to the Axon
Diameter Index (ADI) estimated using the COMMIT framework; c) Voxel-wise map of the
mean Axon Diameter Index (mADI); left: sagittal view, top right: coronal view; bottom right:
axial view.

computed voxel-by-voxel independently, COMMIT computes the microstructure properties

jointly for the whole-brain, using the geometry of the streamlines to create voxel connections.

We use the LISTA Network architecture to map the voxel-wise DW-MRI signal to the estimated

mADI by adding a fully connected layer that maps directly into the learned coefficients.

A.2.2 Dataset

We used 34 subjects of the MGH-USC HCP Adult Diffusion Dataset [114, 314]. The DW-MRI

acquisition scheme consists of 552 q-space samples over 4 shells with b-value = 1000 smm−2,

3000 smm−2, 5000 smm−2 and 10000 smm−2 and 40 b-value = 0 smm−2 images. The DW-MRI

images were acquired at 1.5 mm isotropic voxel size (Spin-echo EPI sequence, TR = 8800 ms,

TE 57 ms δ=12.9 ms, ∆=21.8 ms).

DW-MRI images were corrected for motion and EDDY currents [114]. The FOD were com-

puted using a single averaged fibre response (white matter voxels with fractional anisotropy

above 0.7) as input for the CSD [57, 340] on single-shell DW-MRI images (3000 smm−2 and a

maximum spherical harmonic order 8). Partial Volume Estimates (PVEs) for the white matter,

gray matter, and cerebrospinal fluid were obtained from the provided T1-weighted using

FSL/FAST [373]. We used the PVEs as input for the probabilistic Particle Filtering Tractography

(PFT) algorithm [135, 139], with a total of 80K streamlines generated from seeds in the white

matter volume, the resulting streamlines are shown in Figure A.1a.

We used the COMMIT framework to estimate the ADI coefficients [5] for each stream-

line, Figure A.1b, and the Extra Axonal Signal Fraction (EASF) for each voxel, as previously

done in [23, 24]. We used the Cylinder-Zeppelin-Ball multi-compartment model [5, 268]

with extra-axonal perpendicular diffusivity d⊥ = 0.51×10−3 mm2 s−1, 0.68×10−3 mm2 s−1,

0.85×10−3 mm2 s−1 and 1.02×10−3 mm2 s−1, isotropic diffusivity d◦ = 3×10−3 mm2 s−1, and

intra-axonal longitudinal diffusivity d∥ = 1.7×10−3 mm2 s−1 with 9 cylinders with diameters
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ranging from 2µm to 10µm [23, 24]. The mADI, Figure A.1c, is reported voxel-wise as:

m AD I =
∑S

s ws · ls · AD Is∑S
s ws · ls

, (A.3)

where S is the set of all streamlines crossing the voxel, AD Is is the ADI of the streamline s, ls is

the length of the segment intersecting the voxel, and ws is the intra-axonal contribution of the

streamlines.

A.2.3 Neural Network Parameters

Training data. We used a total of 20 subjects for training and 14 for testing. The input data

consisted of all 552 q-space samples over the four shells for all the DW-MRI voxels inside

a predefined white matter mask. The total number of input voxels counted in all training

subjects was 3066226 voxels, and 2178620 voxels for the testing set.

Network Hyperparameter Tuning. We performed a selective tuning of the network pa-

rameters by discretely varying the following parameters and re-training the network: a) the

number of hidden layers from 5 to 10 layers, which relates to the number of ISTA iterations

to achieve convergence, b) The number of epochs from 200 to 500 epochs, c) The column-

dimensionality of the matrix We from 200 to 500, which is related to the number of dictionary

atoms to learn in the encoder, and the dimension of the last layer for microstructure estima-

tion denoted as D. Each network was generated by varying one parameter at the time and

fixing all others to the median value in the compared range. In the following results, we used

the set of parameters which resulted in the lowest mean squared error over the training set, 8

layers, 300 columns, and 200 epochs.

A.3 Results

Figure A.2 shows the mADI and the EASF maps obtained for a single volume in the test dataset

from both the Neural Network (NN) and COMMIT. The bottom row shows the difference map

between both estimations. The overall mean (µ) and standard deviation (σ) of the mADII and

ECSF error, calculated as the difference between the estimations of COMMIT and the NN over

14 training subjects, were µ= 0.627 and σ= 0.083, and µ= 0.028 and σ= 0.003, respectively.

In addition, a regular trend of high mADI estimations near the CC can be observed in both

COMMIT and NN methods, as well as a decrease of the EASF in both maps in the same CC

regions. The average computation time for COMMIT was approximately 15 hours per subject

on a machine with 12 cores, while with NN, the computation time went down to a few seconds

per subject using a NVIDIA Titan Xp GPU.
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A.3. Results

Figure A.2 – a) axial view of the b0 image. b) Track Density Imaging [51] (TDI) counting the
number of tractography streamlines passing through each voxel. c) Top: mADI map estimated
with COMMIT; bottom: mADI map estimated with the neural network (NN). d) Top: EASF
map estimated with COMMIT; bottom: EASF estimated with the NN. e) Map of the difference
between the mADI estimated with COMMIT and with the NN. f) Map of the difference between
EASF estimated with COMMIT and with the NN.
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A.4 Discussion

Limitation and future work: The presented work is exploratory, and further experiments will

be carried out in order to address some limitations, such as the quality of the microstructure

maps.

The axon diameter maps estimated are limited by the diffusion data used. Better mi-

crostructural estimation could be achieved using data with higher diffusion gradients and

more sensitivity sequences. The work is not intended to show improvements in axon diameter

estimation, but, a way to speed up the COMMIT’s fitting.

The main message of this preliminary work is to show that the global COMMIT estimates,

which are global because they rely on the tractography regularization, could be achieved using

a proper neural network and the input diffusion data, with no tractography involved.

Finally, a thorough comparison of the network’s architecture and convergence, for instance,

against more robust architectures as the one proposed in [272] will be considered in future

work.

A.5 Conclusion

In this work, we present a preliminary exploration of the use of learned sparse encoders in

order to estimate tissue microstructure properties derived from a whole-brain tractography

informed microstructure framework, i.e., COMMIT. The first advantage of the proposed

method is the speed up in computation time of the microstructure maps from several hours

for COMMIT to a few seconds. The second advantage is that the learned network can compute

the microstructure maps directly from the raw DW-MRI data, and thus, it does not require the

use of tractography methods.

Finally, the results presented in this work shows the feasibility of neural networks approach

to estimate microstructure informed tractography derived scalar maps.
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