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“The next great era of awakening of human intellect may well produce a method of

understanding the qualitative content of equations. Today we cannot. Today we cannot see

that the water flow equations contain such things as the barber pole structure of turbulence

that one sees between rotating cylinders. Today we cannot see whether Schrödinger’s

equation contains frogs, musical composers, or morality - or whether it does not.”

— The Feynman lectures on physics, Vol. 2 (1964)

To Romy and Björn . . .





Abstract
When laminar shear flows in large wall-bounded domains transition to turbulence, the flow

exhibits spatio-temporally chaotic dynamics. Despite its chaotic dynamics, the flow may

self-organize into characteristic spatially periodic patterns of unknown origin. To understand

how regular patterns emerge in a turbulent flow, a nonlinear theory is needed. In this thesis

we apply dynamical systems theory to explain the spatial structure, origin and dynamics of

turbulent patterns. To this end, we construct and analyze exact invariant solutions of the 3D

nonlinear fluid flow equations that capture the non-trivial spatial structure of the patterns.

This approach requires high-performance computational tools, that have been developed as

part of this thesis and are now publicly available within the widely used state-of-the-art open

source software Channelflow 2.0. Using the developed tools, we explain turbulent patterns in

two different wall-bounded shear flows:

In plane Couette flow, the flow between two parallel walls moving in opposite direction, turbu-

lent flow emerges subcritically and may coexist with regions of laminar flow. For specific wall

velocities, the turbulent-laminar flow self-organizes into an intricate pattern of periodically

alternating laminar and turbulent bands oriented obliquely against the direction of the wall

movement. Experiments and simulations have reproduced the oblique stripe pattern for more

than 50 years but the pattern characteristics, in particular the wavelength and the oblique

orientation, remain to be explained. We present the first unstable equilibrium solution of the

fully nonlinear Navier-Stokes equations that captures the flow structure of oblique turbulent-

laminar stripes. Using numerical continuation, we show how the stripe equilibrium bifurcates

from the well-known Nagata equilibrium via two successive symmetry-breaking bifurcations.

Within the subspace of the symmetry that is broken by the second bifurcation, we identify

three obliquely patterned periodic orbits embedded in the edge of chaos. The spatial struc-

ture of these invariant solutions suggests a nonlinear mechanism by which weakly turbulent

Couette flow selects the wavelength and the oblique orientation of turbulent-laminar stripes.

The second studied system is inclined layer convection, a thermally driven shear flow in an

inclined channel. Like Rayleigh-Bénard convection, the case of zero inclination, inclined layer

convection shows a large variety of different convection patterns when the control parameters

are varied. While linear stability analysis has explained the onset of some of these patterns,
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their spatio-temporally complex dynamics is not well understood. We identify a multitude of

invariant solutions underlying previously observed pattern motifs at a Prandtl number of 1.07

and show how the nonlinear time evolution in inclined layer convection follows dynamical

connections between invariant solutions. Numerical continuation of stable and unstable

invariant solutions under changing thermal driving and inclination angle reveals an extensive

network of bifurcating solution branches. The bifurcation structures indicate existence, stabil-

ity and dynamical connectivity of invariant solutions. We thereby reveal how spatio-temporally

complex convection patterns depend on the control parameters in inclined layer convection.

Keywords: Transition to turbulence, pattern formation, shear flows, thermal convection,

nonlinear dynamical systems, bifurcation theory, high-performance computing, compu-

tational fluid dynamics
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Résumé
Dans cette thèse, nous nous intéressons aux écoulements de cisaillement dans un large do-

maine délimité par des parois. Lorsque ce type d’écoulements effectue une transition d’un

état laminaire vers un état turbulent, le flux manifeste une dynamique spatio-temporelle

chaotique. Malgré cette évolution chaotique, l’écoulement peut s’organiser de lui-même en

structures caractéristiques, spatialement périodiques et d’origine inconnue. Il est nécessaire

de mobiliser une théorie non-linéaire afin de comprendre comment ces structures régulières

émergent dans un écoulement turbulent. Dans cette thèse, nous mobilisons la théorie des sys-

tèmes dynamiques pour expliquer l’organisation spatiale, l’origine et l’évolution de structures

turbulentes. Pour cela, nous construisons et analysons des solutions exactes et invariantes

aux équations tridimensionnelles et non-linéaires de la mécanique des fluides. Ces solutions

capturent l’organisation spatiale non-triviale de ces structures. Cette approche requiert des

outils de calcul à hautes-performances, qui ont été développés dans le cadre de cette thèse et

sont désormais disponible publiquement dans un logiciel de recherche de pointe, open-source

et largement utilisé, Channelflow 2.0. A l’aide de ces outils, nous expliquons les structures

turbulentes dans deux types différents d’écoulements limités par des parois :

Dans un écoulement de Couette (c’est-à-dire où le flux évolue entre deux parois parallèles

se déplaçant dans des directions opposées), un écoulement turbulent émerge de manière

sous-critique et peut coexister avec des régions d’écoulement laminaire. Pour des vitesses de

parois spécifiques, l’écoulement turbulent-laminaire s’organise de lui-même en une forma-

tion complexe de bandes obliques, alternant périodiquement entre écoulement laminaire et

turbulent et orientées par rapport à la direction du mouvement des parois. Depuis plus de

50 ans, des expérimentations et simulations ont reproduit la structure en bandes obliques,

mais ses caractéristiques, et en particulier sa longueur d’onde et son orientation oblique,

reste à expliquer. Nous présentons ici la première solution d’équilibre instable des équa-

tions de Navier-Stokes, entièrement non-linéaires, qui capture la structure oblique de bandes

turbulentes-laminaires. A l’aide de continuation numérique, nous montrons comment cet

équilibre bifurque du célèbre équilibre de Nagata via deux bifurcations successives, rompant

chacune une symétrie. A l’intérieur du sous-espace de la symétrie rompue par la seconde bifur-

cation, nous identifions trois orbites périodiques à motif oblique, incrustées dans le bord du

chaos. La structure spatiale de ces solutions invariantes suggère un mécanisme non-linéaire
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par lequel l’écoulement de Couette faiblement turbulent sélectionne la longueur d’onde et

l’orientation oblique des bandes turbulentes-laminaires.

Le second système étudié est la convection de couche inclinée, soit un flux de cisaillement

thermiquement entraîné dans un canal incliné. La convection de couche inclinée témoigne

d’une grande variété de structures convectives quand les paramètres de commande sont

modifiés, comme pour la convection de Rayleigh-Bénard où l’inclinaison est nulle. Alors

que l’analyse de stabilité linéaire a expliqué l’apparition de certaines de ces structures, leurs

dynamiques spatio-temporelles complexes n’est pas entièrement comprise. Nous identifions

ici une multitude de solutions invariantes, à l’origine de motifs déjà observés au nombre de

Prandtl de 1.07, et montrons comment l’évolution temporelle non-linéaire de la convection

de couche inclinée découle de connexions dynamiques entre solutions invariantes. La conti-

nuation numérique de solutions invariantes stables et instables, soumises à des variations de

contraintes thermiques et d’angle d’inclinaison, révèle un vaste réseau de solutions. Celles-ci

sont interconnectées entre-elles grâce des bifurcations, dont l’organisation indique l’existence,

la stabilité et la connectivité dynamique de solutions invariantes. Nous révélons ici comment

ces motifs de convection, a l’évolution spatio-temporelle complexe, dépendent des paramètres

de commande dans la convection de couche inclinée.

Mots-clefs : Transition vers la turbulence, formation de motifs, écoulement de cisaillement,

convection thermique, systèmes dynamiques non-linéaires, théorie de la bifurcation, in-

formatique haute-performance, mécanique des fluides numériques.

viii



Zusammenfassung
Wenn laminare Scherströmungen in einem schmalen Spalt zwischen zwei räumlich ausge-

dehnten Wänden turbulent werden, zeigt die Strömung raum-zeitlich chaotische Dynamik.

Trotz der chaotischen Dynamik kann sich die Strömung in charakteristischen, räumlich pe-

riodischen Mustern unbekannten Ursprungs selbst organisieren. Um die Entstehung dieser

regelmäßigen Muster in einer turbulenten Strömung zu verstehen, bedarf es einer nichtlinea-

ren Theorie. In dieser Doktorarbeit wenden wir die Theorie dynamischer Systeme an, um die

räumliche Struktur, den Ursprung und die Dynamik von turbulenten Mustern zu erklären.

Hierzu konstruieren und analysieren wir exakt invariante Lösungen der 3D nichtlinearen

Strömungsgleichungen, welche die nichttriviale räumliche Struktur der Muster erfassen. Diese

Herangehensweise benötigt Tools für Hochleistungsrechnungen, die im Rahmen dieser Dok-

torarbeit entwickelt wurden und nun öffentlich zugänglich sind als Teil der hochmodernen

Open-Source-Software Channelflow 2.0. Dank der entwickelten Tools können wir turbulente

Muster in zwei verschiedenen, durch Wände begrenzten Scherströmungen erklären:

In ebener Couette Strömung, einer Strömung zwischen zwei parallelen Wänden die sich in

entgegengesetzte Richtungen bewegen, entstehen turbulente Strömungen subkritisch und

können mit Regionen laminarer Strömung im Raum koexistieren. Für spezifische Wandge-

schwindigkeiten organisiert sich die turbulent-laminare Strömung selbst zu einem komplizier-

ten Muster, in dem laminare und turbulente Bänder periodisch wechseln und geneigt gegen

die Bewegungsrichtung der Wände orientiert sind. Experimente und Simulationen haben

dieses geneigte Streifenmuster über 50 Jahre hinweg immer wieder reproduziert. Dennoch

bleiben die Mustereigenschaften, insbesondere die Wellenlänge und die geneigte Orientie-

rung, nach wie vor unerklärt. Wir beschreiben die erste instabile Gleichgewichtslösung der

vollen nichtlinearen Navier-Stokes-Gleichungen, welche die Strömungsstruktur der geneigten

turbulent-laminaren Streifen erfasst. Unter Verwendung numerischer Fortführungsmethoden

zeigen wir wie die Streifenlösung von der bekannten Nagata-Lösung in zwei aufeinanderfol-

genden symmetriebrechenden Bifurkationen entsteht. Innerhalb des Symmetrieunterraums

der Symmetrie, die durch die zweite Bifurkation gebrochen wird, identifizieren wir drei peri-

odische Orbits mit geneigtem Muster, welche in der Schwelle zum Chaos (“edge of chaos”)

eingebettet sind. Die räumliche Struktur dieser invarianten Lösungen legt einen nichtlinearen

Mechanismus nahe mittels dessen schwach turbulente Couette Strömung die Wellenlänge
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und die geneigte Orientierung der turbulent-laminaren Streifen auswählt.

Das zweite untersuchte System ist Schrägschichtkonvektion, eine thermisch getriebene Scher-

strömung in einem schrägen Kanal. Wie im nicht-schrägen Fall der Rayleigh-Benard-Konvektion,

zeigt Schrägschichtkonvektion eine große Vielfalt von unterschiedlichen Konvektionsmustern,

wenn Kontrollparameter verändert werden. Während die beginnende Entstehung einiger

dieser Muster schon durch lineare Stabilitätsanalyse erklärt werden konnte, ist deren raum-

zeitlich komplexe Dynamik nicht gut verstanden. Wir identifizieren eine Vielzahl von invarian-

ten Lösungen, die Mustermotiven zugrunde liegen, welche in vorhergehenden Studien bei

einer Prandtl-Zahl von 1.07 beobachtet wurden, und zeigen wie die nichtlineare Zeitentwick-

lung in Schrägschichtkonvektion dynamischen Verbindungen zwischen invarianten Lösungen

folgt. Numerische Fortführung von stabilen und instabilen invarianten Lösungen unter ver-

änderlicher Schräge und thermischem Antrieb offenbart ein umfangreiches Netzwerk von

Lösungsästen. Die Bifurkationsstruktur weist auf Existenz, Stabilität und dynamische Verbin-

dung von invarianten Lösungen hin. Dadurch können wir zeigen wie raum-zeitlich komplexe

Dynamik von Konvektionsmustern von den Kontrollparametern in Schrägschichtkonvektion

abhängen.

Stichwörter: Turbulenzübergang, Musterbildung, Scherströmung, Thermische Konvekti-

on, Nichtlineare Dynamische Systeme, Bifurkationstheorie, Numerische Strömungsmecha-

nik, Hochleistungsrechnung
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1 Introduction

A fluid resides in a narrow gap between two extended walls. Moving or heating the two walls

differently creates forces in the fluid that drive a flow. One example for such a wall-bounded

flow, driven by moving the walls, is Taylor-Couette flow (TCF). Here, two concentric cylinders

rotate at different angular velocities and drive a flow in the gap between the cylinders. At

particular angular velocities, the flow may adopt stable flow structures that periodically repeat

in the two directions along the walls and thereby form a regular pattern in space. Figure 1.1a

shows a snapshot of an experimentally observed regular pattern in TCF called wavy vortex

flow. Bright and dark regions represent different orientations of the flow and indicate a wavy

pattern with clear pattern wavelengths along the walls. The preferred pattern wavelengths

and the critical driving forces at which stable regular patterns, like wavy vorticies in TCF,

emerge can often be explained by applying methods from pattern formation theory for non-

equilibrium systems (Cross and Hohenberg, 1993; Cross and Greenside, 2009). These methods

include linear stability analysis and the construction of weakly nonlinear amplitude equations.

When the relative velocity of the two cylinders is increased, the regular wavy vortex pattern

becomes unstable and the flow may eventually become turbulent, giving rise to turbulent

patterns (e.g. Andereck et al., 1986). In this context, turbulence does not imply a fully developed

turbulent flow with an energy cascade across multiple spatial scales but a flow that shows

spatio-temporally chaotic dynamics. Nevertheless, the strongly nonlinear dynamics of even

such weakly turbulent flow makes turbulent patterns to large extent inaccessible to linear or

weakly nonlinear analyses.

The situation is very similar in Rayleigh-Bénard convection (RBC), an example for a wall-

bounded flow which is driven by heating two parallel horizontal walls differently. Like TCF, RBC

exhibits a large variety of different patterns (Cross and Hohenberg, 1993; Cross and Greenside,

2009) which, when increasing the temperature difference between the walls, become more and

more complicated and eventually turbulent. Figure 1.1c shows an example for a regular steady

stripe pattern in RBC that becomes unstable to a spatially localized modulation. While the
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Chapter 1. Introduction

(a) TCF (b) PCF (c) RBC (d) ILC

Figure 1.1 – Different nonlinear flow patterns observed experimentally in four different wall-
bounded flows (sketched). The fluid (blue) resides in a narrow gap between two parallel walls
with two extended space dimensions. The patterns are shown over the two extended space
dimensions along the walls. (a) Taylor-Couette flow (TCF) may exhibit a regular pattern called
wavy vortex flow (Fenstermacher et al., 1979). (b) Plane Couette flow (PCF) may exhibit a
regular oblique stripe pattern of periodically alternating turbulent and laminar bands (Prigent
et al., 2002). (c) Rayleigh-Bénard convection may exhibit spatially localized skewed varicose
modulations within regular straight convection rolls (Bodenschatz et al., 2000). (d) Inclined
layer convection may exhibit regular wavy convection rolls coexisting at various orientations
(Daniels et al., 2000). Note that the aspect ratio relative to the gap size and the visualization
method is not equal between the images. The pattern in (a) is well understood. Explaining the
regularity in pattern (b) and the complex features related to spatial coexistence of different
patterns in (c) and (d) is subject of the present thesis.

onset of this so-called skewed varicose instability can be characterized using linear stability

analysis (Busse and Clever, 1979), it may generate defects in the pattern with a non-trivial time

evolution (Figure 7 in Bodenschatz et al., 2000) and eventually may lead to a highly irregular

and turbulent pattern called spiral defect chaos (Morris et al., 1993).

The discovery of non-periodic solutions (Lorenz, 1963) and “strange attractors” supporting

chaos in deterministic nonlinear equations (Ruelle and Takens, 1971) changed the view on

turbulent flow, governed by the deterministic nonlinear Navier-Stokes equations. Instead

of describing the onset of turbulence as an increasing number of superimposed periodic

flows (Landau and Lifschitz, 1987; Hopf, 1948), many different routes to turbulence have been

described within nonlinear dynamical systems theory (see Eckmann, 1981; Argyris et al., 1993,

for reviews). These routes to turbulence have been identified in both TCF (Gollub and Swinney,

1975, e.g.) and RBC (Swinney and Gollub, 1978, e.g.). Thus, dynamical systems theory seems

to apply to turbulent flows providing useful descriptions of the strongly nonlinear dynamics.
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Nonlinear dynamical systems theory is often used to explain the complex temporal dynamics

of turbulence. However, when wall-bounded flows like TCF or RBC transition to turbulence,

regular spatial patterns may exist in the flow, thereby forming a turbulent pattern. In order

to explain a turbulent pattern, the regular features in the pattern, like pattern wavelength

or orientation, must be explained together with the complex features that exhibit turbulent

dynamics. Here, turbulent dynamics refers to spatio-temporally complex or weakly chaotic

dynamics, in contrast to fully developed turbulence with certain statistical properties (Frisch,

1995). For the present thesis, two different wall-bounded flows are studied that each gives rise

to turbulent patterns in a different way:

(a) The flow has self-organized into a regular spatial pattern. When the driving forces

are changed, the regular pattern develops increasingly complex features, like evolving

defects or intermittent bursts, leading to a turbulent pattern.

(b) The flow is turbulent and unpatterned. When the driving forces are changed, the

turbulent flow self-organizes into a turbulent pattern with regular features like a pattern

wavelength and orientation.

First, turbulent patterns of type (a) are studied in inclined layer convection (ILC). Like RBC,

ILC is a thermally driven flow between two differently heated parallel walls. Unlike in RBC, the

walls may be inclined against gravity in ILC. Buoyancy forces along the walls drive hot and cold

fluid up and down the incline creating a thermally driven shear flow. At moderate inclinations

and moderate temperature differences, ILC gives for example rise to a steady regular pattern

of wavy convection rolls. When the temperature difference between the walls is increased, the

regular wavy rolls become more complex by incorporating defects that dynamically evolve

and create spatial coexistence of wavy rolls with different orientations. Figure 1.1d shows

an experimental snapshot of weakly turbulent wavy rolls. Besides wavy rolls, many other

spatio-temporal patterns with weakly turbulent dynamics have been observed in experiments

of ILC. The turbulent dynamics of these spatio-temporal convection patterns in ILC is not well

understood. Section 1.2 introduces the problem of spatio-temporal patterns in ILC in more

detail.

Second, turbulent patterns of type (b) are studied in plane Couette flow (PCF). Here, a wall-

bounded shear flow is driven by moving two parallel planar walls against each other. In contrast

to TCF, PCF is not subject to centrifugal forces that may destabilize the laminar flow and create

patterns. In PCF observed patterns are always turbulent. For particular relative wall velocities,

turbulent PCF may self-organize into a regular pattern of oblique turbulent-laminar stripes

(Figure 1.1b). How turbulent PCF selects a pattern wavelength and the oblique orientation is

not well understood. Section 1.3 introduces the problem of oblique turbulent-laminar stripes

in PCF in more detail.
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Turbulent patterns in ILC and PCF are studied using a numerical nonlinear dynamical systems

analysis of fully resolved three-dimensional flows. This approach is introduced in the following

subsection.

1.1 Numerical dynamical systems approach to turbulent shear flows

Dynamical systems theory is often applied to study complex dynamics in simple nonlinear

model equations, like the Lorenz model mentioned above. In the Lorenz model, three coupled

nonlinear ordinary differential equations describe the dynamics in a three-dimensional state

space which is sufficient to accommodate a chaotic ‘strange’ attractor. For a “strange attractor

theory of turbulence” (Lanford, 1982), one needs to consider the nonlinear partial differential

equations that govern fluid flow and have in principle, an infinite dimensional state space.

However, these equations may be solved accurately in direct numerical simulations where time

and the three-dimensional space is discretized at sufficiently high resolution. The discretized

description of a flow yields a finite set of coupled ordinary differential equations and thus, a

state space of finite dimension. The number of equations and dimensions depends on the

specific flow that is solved. The wall-bounded shear flows discussed in the present thesis can

be described in a state space with O(104)-O(106) dimensions. This state space comprises all

possible flows for specific boundary conditions. A vector x(t) in this state space represents

one particular three-dimensional flow field. The time evolution of this flow field, as simulated

in the direct numerical simulation, corresponds to a unique state space trajectory of the

corresponding state space vector x(t ).

Several methods for obtaining information about the state space structure that supports

turbulence in a high-dimensional state space are described in Cvitanović et al. (2016). One

of the most basic methods are low-dimensional projections. Here, state space trajectories

x(t) are projected onto typically two or three dimensions representing certain quantities of

the flow. Examples for projections of turbulent state space trajectories in PCF can be found

in Gibson et al. (2008b). The present thesis refers to two-dimensional projections as ‘phase

portraits’.

Not all trajectories in a turbulent state space represent chaotic dynamics. The identification

of steady or periodic states is an essential step towards a dynamical systems description of a

turbulent shear flow, just like fixed points or limit cycles in low-dimensional chaotic dynamical

systems (e.g. Strogatz, 2018). These states are called invariant solutions or invariant states and

are defined as exactly steady or recurrent flow fields whose state space vectors x(t ) satisfy

G(x(t )) =σFT (x(t ))−x(t ) = 0 , (1.1)
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1.1. Numerical dynamical systems approach to turbulent shear flows

where FT () is a time evolution operator that evolves state vector x(t ) over period T according

to the governing fluid flow equations. Operator σ represents a coordinate transformation of

the flow field which allows for propagating solutions but may also be an identity operation.

Invariant solutions in shear flows are either steady equilibrium solutions, traveling waves or

periodic orbits.

Invariant solutions may be dynamically stable or unstable. In shear flows with a linearly stable

laminar flow, like pipe flow or PCF, almost all invariant solutions are dynamically unstable.

Hence, it is necessary to numerically identify these dynamically unstable solutions in order to

make progress in describing the nonlinear turbulent dynamics in these flows (Kerswell, 2005;

Eckhardt et al., 2007; Kawahara et al., 2012, and references therein). The relevance of unstable

invariant solutions is based on their ability to transiently attract the dynamics along their stable

manifolds. When embedded in a ‘strange’ turbulent attractor or saddle, unstable invariant

solutions with their entangled stable and unstable manifolds support turbulent dynamics

which may transiently visit the state space neighborhood of these invariant solutions. In

the case of transiently visited equilibrium solutions, their spatial flow structure emerges

transiently in the flow (Gibson et al., 2008b; Suri et al., 2017). Transiently visited periodic orbits

additionally influence the temporal dynamics and may be used to describe the associated

statistical properties of the flow (Chandler and Kerswell, 2013; Budanur and Cvitanović, 2017).

Thus, coexisting unstable invariant solutions with their stable and unstable manifolds provide

a ‘dynamical scaffold’ for a turbulent state space.

When changing the driving forces of shear flows, invariant solutions may be created or de-

stroyed in bifurcations. Bifurcations are structural changes in the state space across which

the dynamics changes qualitatively (e.g. Guckenheimer and Holmes, 1983). To compute bi-

furcations, a bifurcating invariant solution must be numerically continued under changing

control parameters towards its bifurcation point. Bifurcations that occur along a continued

solution branch of an invariant solution change the stability properties of this invariant solu-

tion and thereby modify its dynamical relevance. Thus, the bifurcation structure associated

to relevant invariant solutions describes how complex state space structures might change

under changing control parameters.

In summary, a numerical dynamical systems approach to turbulent patterns in shear flows

requires tools and methods for

a) direct numerical simulations to compute state space trajectories,

b) solving (1.1) to identify stable and unstable invariant solutions,

c) analyzing the dynamical stability of invariant solutions,

d) continuing invariant solutions under changing control parameters.

The open source software Channelflow 2.0 developed in-house (channelflow.ch) provides

such tools and methods for studying PCF. To study turbulent patterns in ILC, Channelflow
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2.0 had to be extended for this thesis. A review of tools and methods in Channelflow 2.0

and the implementation details for the code extension module Channelflow-ILC are given

in Section 2.2. The following two sections describe how the dynamical systems analysis is

applied to the specific problems of spatio-temporal patterns in ILC (Section 1.2) and oblique

turbulent-laminar stripes in PCF (Section 1.2).

1.2 Spatio-temporal patterns in inclined layer convection

Inclined layer convection (ILC) is a thermally driven flow between two parallel walls at two

different fixed temperatures and inclined against gravity (Figure 1.1d). Experiments of ILC

in spatially extended domains report on many different convection patterns, most of which

exhibit some form of spatio-temporal chaos (Daniels et al., 2000). Direct numerical simulations

in spatially extended domains reproduce the different patterns and their complex dynamics

(Subramanian et al., 2016). This implies that the large variety of experimentally observed

turbulent patterns and their complex dynamics are fully contained in the nondimensional

incompressible Oberbeck-Boussinesq equations

∂U

∂t
+ (U ·∇)U =−∇p +

√
Pr

Ra
∇2U − ĝT , (1.2)

∂T
∂t

+ (U ·∇)T =
√

1

PrRa
∇2T , (1.3)

∇·U = 0 , (1.4)

for the fields of total velocity U (x, y, z, t ), total temperature T (x, y, z, t ), and pressure p(x, y, z, t )

relative to the hydrostatic pressure. Bold quantities denote vectors, and ĝ = −sin(γ)ex −
cos(γ)e y denotes the unit vector of gravitational acceleration that may be inclined in the frame

of reference. The equations are complemented by no-slip and fixed temperature boundary

conditions at the walls and periodic boundary conditions in lateral directions. The equations

have three control parameters. The Rayleigh number Ra parametrizes the strength of thermal

driving. The Prandtl number Pr parametrizes the ratio between kinematic viscosity and

thermal diffusivity. The angle of inclination of the fluid layer against gravity parametrizes

the direction of buoyancy force in the flow and is measured between the wall-normal and

the vector of gravitational acceleration. A zero inclination corresponds to the horizontal

Rayleigh-Bénard case (Figure 1.1d).

The experimental and numerical observations raise the question of how the various convection

patterns arise and how their spatio-temporally complex dynamics depends on the control

parameters of ILC. Linear stability analysis has identified two primary and five different

secondary instabilities at Pr = 1.07. This analysis suggests that regular pattern motifs at critical
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stability thresholds are related to the observed patterns (Subramanian et al., 2016). Explaining

however the observed weakly turbulent dynamics in the patterns, including intermittent

bursting, chaos, temporally evolving defects, and spatial coexistence of different patterns,

requires a nonlinear dynamical systems description. Following a dynamical systems approach

(Section 1.1), the present thesis discusses three main steps towards explaining the arising

complex dynamics in ILC

1) Development of the tools and methods for a numerical dynamical systems analysis of

ILC. The open source software Channelflow 2.0 is extended by equations (1.2-1.4). To

solve (1.1), an interface for the nonlinear solver library is implemented (Section 2.2.4-

2.2.7). In the context of this code development, the modular code structure became

more flexible (Section 2.2.1-2.2.3) and the input/output performance was improved

(Section 2.2.8). These general code contributions are part of the published version

Channelflow 2.0, reviewed in Section 2.1.

2) Construction of exact invariant solutions of (1.2-1.4) underlying the relevant spatially

periodic convection patterns in ILC. The temporal dynamics of ILC is analyzed via direct

numerical simulations in small periodic domains at specific control parameters where

the convection patterns are observed. Domain sizes are chosen according to the pattern

wavelengths suggested by linear stability analysis. This yields a collection of stable and

unstable invariant solutions that capture the spatial feature of relevant spatially periodic

patterns. The nonlinear temporal dynamics is found to either asymptotically approach

or transiently visit these invariant solutions (Section 4).

3) Computation of the bifurcations and branches of the invariant solutions under changing

control parameters. We numerically continued the constructed invariant solutions in Ra

and inclination angle at fixed Pr = 1.07 (as studied by Daniels et al., 2000; Subramanian

et al., 2016). The resulting bifurcation diagrams illustrate coexistence, stability and

parametric connections between invariant solutions, including a range of different types

of bifurcations (Section 5).

1.3 Oblique turbulent-laminar stripes in plane Couette flow

Plane Couette flow (PCF) is the flow between two parallel walls moving in opposite directions

(Figure 1.1b). Experiments of PCF in spatially extended domains show that weakly turbulent

PCF may self-organize into a regular stripe pattern of alternating turbulent and laminar bands

that coexist in space. These stripes have a pattern wavelength much larger than the gap

size and are oriented at oblique orientation against the direction of wall movement (Prigent

et al., 2002, and Figure 1.1b). Since the first observation of a single oblique turbulent band in

Taylor-Couette flow (Coles and Van Atta, 1966), regular oblique turbulent-laminar patterns
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have been found in various wall-bounded shear flows (see Tuckerman et al., 2020, for a recent

review). Direct numerical simulations reproduce the oblique stripe pattern in a periodic

domain of minimal spatial extent and tilted against the direction of wall movement (Barkley

and Tuckerman, 2005). Since oblique turbulent-laminar stripes can be reproduced in direct

numerical simulations, the regular pattern, including the selection mechanism for the pattern

wavelength and the oblique orientation, must be fully contained in the incompressible Navier-

Stokes equations

∂U

∂t
+ (U ·∇)U =−∇p + 1

Re
∇2U , (1.5)

∇·U = 0 , (1.6)

for the fields of total velocity U (x, y, z, t ) and pressure p(x, y, z, t ). The equations are comple-

mented by no-slip boundary conditions at the walls and periodic boundary conditions in

lateral directions. The single control parameter of the equations is the Reynolds number Re

parametrizing the driving shear force due to the relative velocity of the counter-moving walls.

The experimental and numerical observations raise the question of how the regular pattern

of large-scale oblique stripe emerges. In particular, the mechanism that selects the pattern

wavelength and the oblique orientation in the flow is unknown. Due to the turbulent dynamics

of transitional PCF, a nonlinear theory is required to explain the pattern characteristics of

oblique turbulent-laminar stripes. Following a dynamical systems approach (Section 1.1), the

present thesis discusses three main steps towards explaining the arising regular pattern in

weakly turbulent PCF

1) Construction of an invariant solution that captures the spatial features of oblique

turbulent-laminar stripes in a minimal periodic domain with tilted orientation rel-

ative to the direction of the wall movement. Using a windowing approach, a spatially

modulated variant of Nagata’s equilibrium solution (Nagata, 1990) is identified. This

new equilibrium captures the pattern of oblique stripes (Section 7).

2) Numerical continuation of the stripe equilibrium traces the solution branch to a symmetry-

breaking bifurcation from the unpatterned Nagata equilibrium. The emergence of the

oblique large-scale pattern along a sequence of two symmetry-breaking bifurcations

and the corresponding solution branches illustrate how the pattern forms and in what

parameter ranges an underlying invariant solutions exists (Section 8).

3) The temporal dynamics of oblique turbulent stripe patterns are studied in different

symmetry subspaces. By confining the dynamics further to the edge of chaos, three peri-

odic orbits are found that represent slow standing wave oscillations. Using a projection

that captures the essential oscillatory mechanism of the periodic orbits, turbulent state

space trajectories inside and outside the edge of chaos are analysed (Section 9).

8



2 Methods and tools for a numerical
dynamical systems analysis

The open source software Channelflow provides a numerical framework for direct numerical

simulations (DNS) and dynamical systems analysis of shear flows in periodic domains with

channel geometry. During the period of research leading towards the present thesis, a MPI-

parallel in-house version of Channelflow 1.5 (see Gibson et al., 2008b, and channelflow.org)

has been developed further in collaboration between members of the Emergent complexity in

physical systems laboratory (ECPS), including the author of the present thesis, EPFL’s Scientific

IT and applications support (SCITAS), and John Gibson (University of New Hampshire). This

development project lead to the publication of Channelflow 2.0 in September 2018 (see Gibson

et al., 2019, and channelflow.ch). Section 2.1 reviews the code design and the numerical

algorithms of Channelflow 2.0.

The present thesis includes an analysis of turbulent plane Couette flow (PCF). PCF is one type

of shear flow for which Channelflow has initially been developed and which can be studied

using Channelflow without modifying the set of equations being solved. In order to also study

turbulent patterns in inclined layer convection (ILC), the author has extended Channelflow

specifically for the present thesis. The code development, detailed in Section 2.2, may be

summarized in three main contributions to Channelflow:

• The time-stepping algorithms have been encapsulated from applications to the Navier-

Stokes equations only. The new implementation invokes terms of a general nonlinear

equation (Section 2.2.1) and allows users to easily extend Channelflow to systems with

other governing equations. The practical steps necessary for implementing a new system

are outlined in Section 2.2.3.

• The implementation of the Oberbeck-Boussinesq equations for ILC as an extension

module to Channelflow is discussed in Section 2.2.4 and validated in Section 2.2.7.
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Chapter 2. Methods and tools for a numerical dynamical systems analysis

• Some turbulent patterns in wall-bounded shear flows require spatially extended flow

domains, increasing the computational cost of input/output of data files (I/O). Parallel

I/O using NetCDF-4 has been implemented to improve the I/O performance (Section

2.2.8).

The generalized time-stepping algorithms and the better performing I/O with NetCDF-4

have already been publicly released with Channelflow 2.0. The ILC extension module will be

published with the next release version as Channelflow-ILC.

2.1 Channelflow 2.0 - a review

The purpose of this review is to provide both an overview and relevant references on the design

and the content of Channelflow 2.0. As a technical description, this section is especially tar-

geted at future developers of the code. More detailed explanations of the main algorithms are

found elsewhere (Gibson et al., 2019). First, Section 2.1.1 discusses code design, development

guidelines and tools used for code development. Second, Section 2.1.2 reviews the numerical

algorithms in Channelflow 2.0 with references to literature. Algorithms implemented by the

author of this thesis are described in the following subsection (Section 2.2).

2.1.1 Code design and development

Channelflow 2.0 is written in C++, object-oriented, and uses C++11 standards. A class diagram

indicating the main classes with their inheritance structure and their dependencies on external

libraries is given in Figure 2.1. The code utilizes standard language features like abstract classes

and smart pointers. The time integration of the fluid flow equations is parallelized with the

message passing interface (MPI) (Kreilos, 2014). Certain parts of Channelflow 2.0, such as

the ILC extension module, are only conditionally compiled depending on user settings and

available external libraries. The build process is managed using CMake (https://cmake.org).

Code development towards Channelflow 2.0 followed essentially three design guidelines:

• Encapsulation: The two main purposes of Channelflow are DNS of shear flows in three-

dimensional rectangular domains and a nonlinear dynamical systems analysis of such

flows. Code for these two main purposes is independent from each other and sepa-

rated in two libraries: chflow for DNS, and nsolver, short for “nonlinear solver”, for

dynamical systems analysis. This separation allows to link any dynamical system against

nsolver, not only shear flows. In order to link a time integrator for a dynamical system

to nsolver, a dynamical systems interface (DSI) must be implemented which translates

between states and equations of a physical system, like that implemented in chflow,
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DNS
user interface

extDNS

NSE
implementation 
of governing eq.

DNSAlgorithm
base class for time-

stepper implementation

DNSFlags

extFlags

CNABstyleDNS
time-stepper implem.

RungeKuttaDNS
time-stepper implem.

MultistepDNS
time-stepper implem.

FlowField
main data class

#include fftw3.h
#include H5Cpp.h
#include netcdf.h

cfMPI
data distribution (!"#×!"%)
#include mpi.h
#include fftw3-mpi.hextNSE

extDSI

DSI
abstract class for 
library interfaces

Eigenvals
user interface and 
implementation of 
Arnoldi iteration

Newton
user interface

cfDSI
library interface 

defining fun. &(()

NewtonAlgorithm
implementation of Newton-

Krylov methods

NewtonSearchFlags

EigenvalsFlags

chflow librarynsolver library

msDSI
multi-shooting interface

continuation()

Figure 2.1 – Class diagram of the main classes in the nsolver and chflow library of Chan-
nelflow 2.0. Numerical continuation is not implemented as a class but as a separate function
continuation(). The relations between the classes are indicated by arrows for inheritance
(derived class → base class) and by bullet points for dependence (A−•B means class A has
a member of type B). Classes with prefix “ext” (framed in red) need to be implemented for
extending the Navier-Stokes equations to other/additional governing equations (Section 2.2.3).

and abstract state space vectors and maps, like Equation (1.1). Besides this major design

decision, classes within each library should encapsulate their functionality to a level that

does not require to re-code their implementation when extending the software.

• Usability: Channelflow may be used via command line tools or by writing scripts in

C++ or python that call types and functions from the chflow or nsolver libraries. If the

problem size is small, users might want to run Channelflow on a laptop device. If the

problem size is large, users might want to run Channelflow on high-performance com-

puting (HPC) clusters. Channelflow is most widely used for research in computational

fluid dynamics where the problem size can be very large. Thus, much development

towards Channelflow 2.0 was driven by enhancing performance. However, optimizing

the performance must not conflict with attempts to increase the readability of the code,

the flexibility in usage, or the interchangeability between computing platforms.

• Backward compatibility: Channelflow has a large user community which produced

many scientific results over the past 10 years (see Gibson et al., 2019, for a review of

results). To ensure that existing data can be reproduced and studied further, any de-

velopment must be compatible with previous code versions. Integration tests and an

increasing number of unit tests help developers to write compatible code.
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Chapter 2. Methods and tools for a numerical dynamical systems analysis

Several tools and applications have been employed to aid the development of Channelflow 2.0.

Version controlled collaborative programming has been coordinated on the platform GitHub

(https://github.com). A specific style format of the code is enforced using ClangFormat (https:

//clang.llvm.org). Integration tests are incorporated into Make. Unit tests can be implemented

using Google Test (https://github.com/google/googletest). Continuous integration with Travis-

CI (https://travis-ci.com) checks style format and the success of compilation and tests, prior

to pull requests. Code coverage is measured using Codecov (https://codecov.io).

2.1.2 Numerical algorithms

The chflow library contains algorithms for DNS of the incompressible Navier-Stokes equations

(1.5) and (1.6) in double-periodic wall-bounded domains. A Galerkin approximation with

Fourier-Chebychev-Fourier expansions of the three-dimensional flow field is inserted into the

Navier-Stokes equations and solved using the pseudo-spectral method (Canuto et al., 2006,

p.133ff). Fourier transforms of the nonlinear terms in (1.5) are obtained via transform routines

of the FFTW library (Frigo and Johnson, 2005) and are specified in FlowField. Different

expressions of the nonlinear terms are implemented in NSE, including convection, divergence,

skew-symmetric and rotation form (Zang, 1991) which can be dealiased using the 2/3 rule

(Canuto et al., 2006, p.133f). Pressure is obtained by the influence matrix method for a

Chebyshev Tau approximation (Kleiser and Schumann, 1980; Canuto and Landriani, 1986)

in TauSolver. The time-stepping algorithms in DNSAlgorithm are implicit-explicit methods

(Ascher et al., 1995). These include second-order Crank-Nicolson/Adams-Bashforth (Canuto

et al., 2006, Sec.D.2.2), three-stage Runge-Kutta (Spalart et al., 1991), both in CNABstyleDNS,

three-stage Crank-Nicolson/Runge-Kutta (Zang and Hussaini, 1985; Peyret, 2002, p.146), in

RungeKuttaDNS, and multistep Adams-Bashforth/Backward-Differentiation of first- to fourth-

order (Peyret, 2002, p.130ff), in MultistepDNS.

The nsolver library contains algorithms to analyze a dynamical system. Based on a given

time-integrating function GT (x ;µ), defined in (1.1), iterative matrix-free Krylov subspace

methods (Edwards et al., 1994; Knoll and Keyes, 2004) allow the construction, continuation

and stability analysis of invariant solutions with many degrees of freedom. The construction

of invariant solutions employs Newton-Krylov iterations (Kelley, 2003; Sanchez et al., 2004)

implemented in NewtonAlgorithm with different solver methods including GMRES, short

for generalized minimum residual method, (Trefethen and Bau, 1997; Saad, 2003), BiCGStab,

short for bi-conjugate gradient method - stabilized, (Saad, 2003, p.244ff), and flexible GMRES

(Saad, 2003, p.287ff). The convergence radius of the Newton-Krylov iteration is increased

by an Hookstep trust-region optimization (Dennis and Schnabel, 1996; Viswanath, 2007).

Numerical continuation of invariant solutions follows a predictor-corrector scheme with

quadratic extrapolation in the predictor step and a Newton-Krylov iteration in the corrector
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2.2. Extending Channelflow to thermal convection

step. Two types of numerical continuation are available: control parameter continuation and

pseudo-arclength continuation (Sanchez et al., 2004; Dijkstra et al., 2014). Convergence of

very long unstable periodic orbits may require a multi-shooting formulation (van Veen et al.,

2011; Sánchez and Net, 2010), implemented in MultishootingDSI. A linear stability analysis

is performed by Arnoldi iteration (e.g. Antoulas, 2005) using a finite difference approximation

of the linearized time evolution (Gibson et al., 2008a, A.3), implemented in Arnoldi.

2.2 Extending Channelflow to thermal convection

This section describes the individual development steps towards a validated and well-performing

code for studying turbulent patterns in ILC. First, the implementations of the DNS algorithms

have been restructured. The time-stepping algorithms have been encapsulated such that they

became independent from the Navier-Stokes equations (Section 2.2.1). The new modular class

structure simplifies extensions to other governing equations, as explained in Section 2.2.3.

The Oberbeck-Boussinesq equations have been non-dimensionalized (Section 2.2.4), solved

for the laminar base flow (Section 2.2.5), and implemented into the framework of Channelflow

as ILC extension module Channelflow-ILC (Section 2.2.6). Validations of Channelflow-ILC are

discussed in Section 2.2.7. The data input/output using NetCDF-4 is described and analyzed

in Section 2.2.8.

2.2.1 Generalizing the time-stepping algorithms

In previous versions of Channelflow, each of the three different time-stepping classes (Section

2.1.2) was closely tied to applications governed by the Navier-Stokes equations. Every loop

over time-steps in each time-stepper class contained the loops over the spectral modes to

add the individual ‘hard-coded’ terms of the Navier-Stokes equations. Already this imple-

mentation produced code duplications in each time-stepper class. Without generalizing

the time-stepping classes, extending Channelflow to other systems with different governing

equations would have implied further code duplications. In line with the encapsulation guide-

line (Section 2.1.1), the time-stepping classes have been encapsulated from the governing

equations. This development step happened before implementing the Oberbeck-Boussinesq

equations for inclined layers. The encapsulation does not change the code performance

substantially but simplifies the implementation of new code extensions as discussed in the

subsequent section. The generalized time-stepping algorithms described here are part of the

published release version Channelflow 2.0.
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The time-stepping algorithms advance a set of coupled nonlinear partial differential equations

in time. These equations have the form

∂

∂t
x̂ =Lξi x̂ −Nξi (x̂) (2.1)

where x̂ = [ξ̂1, ξ̂2, ...] is a vector of arrays ξ̂i in spectral representation, as denoted by ,̂ and Lξi x̂

and Nξi (x̂) are the linear and nonlinear terms, respectively, defining the evolution of field

quantity ξi . In the case of the Navier-Stokes equations (1.5) and (1.6) for velocity fluctuations

u =U−U0(y) around a laminar base solution U0(y), the vector of spectral arrays is x̂ = [ξ̂1, ξ̂2] =
[û, p̂] and

Lu x̂ = 1

Re

(∇̂ · ∇̂)
û −∇̂p̂ , (2.2)

Nu (x̂) = F(
F−1(Û ) ·F−1(∇̂Û )

)+Cu , (2.3)

with linear spectral operator

∇̂ =
(
2πi

(
kx

Lx
êx + kz

Lz
êz

)
+ ∂

∂y
ê y

)
, (2.4)

and Fourier-Chebyshev transform operator F. The pressure field p does not have a sepa-

rate evolution equation since p is directly implied by the instantaneous velocity field in an

incompressible flow. The constants Cu may contain additional fixed body forces.

During time-stepping, Nξi (x̂) in (2.1) is always treated fully explicitly and Lξi x̂ is treated either

fully implicitly or semi-implicitly.

Multistep Adams-Bashforth/Backward-Differentiation in MultistepDNS with k stages/steps

at time-step n of size ∆t is given by

a0

∆t
x̂n+1 −Lx̂n+1 =

k∑
j=1

−a j

∆t
x̂n+1− j −b j−1N

(
x̂n+1− j

)
. (2.5)

The coefficients a j and b j are found in Peyret (2002, Tab.4.4,p.131).

The Crank-Nicolson/Adams-Bashforth (CNAB) and Runge-Kutta algorithms in CNABstyleDNS
have been generalized to the form(

1

β j∆t
−L

)
x̂n, j+1 =

(
1

β j∆t
− α j

β j
L

)
x̂n, j + γ j

β j
N

(
x̂n, j

)
+ ζ j

β j
N

(
x̂n, j−1

)
, (2.6)

for Runge-Kutta substep j ∈ {0,1, ...,k} at time-step n, such that x̂n+1,0 = x̂n,k+1. Here, k = 2

for Runge-Kutta and k = 0 for CNAB. The coefficients α j ,β j ,γ j ,ζ j are found in Table 4 of the

Channelflow user manual (channelflow.org).
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The three-stage Crank-Nicolson/Runge-Kutta in RungeKuttaDNS,(
1

C j∆t
−L

)
x̂n, j =

(
1

C j∆t
+L

)
x̂n, j−1 + B j

C j∆t
Qn, j , (2.7)

Qn, j = A j Qn, j−1 +∆tN
(

x̂n, j−1
)

, (2.8)

for Runge-Kutta substep j ∈ {1,2, ...,k} at time-step n, such that x̂n+1,1 = x̂n,k+1. Here, k = 3

with coefficients [C1,C2,C3] = [1/6,5/24,1/8] and others specified in (Peyret, 2002, Eq.4.110,p.146).

Vector x̂ is of type std::vector<FlowField> and may be of larger dimension than Lx̂ and

Nx (x̂). In the case of the incompressible Navier-Stokes equations, linear and nonlinear oper-

ators do not return a pressure dimension, and the right-hand side of (2.1) has only velocity

dimensions. When looping over the arrays in vector x̂, the generalized time-steppers loop only

over the number of entries corresponding to the size of the right-hand side vector, thus, skip-

ping the last pressure FlowField. This avoids unnecessary loops. A vector for the right-hand

side must be created by a function createRHS in the NSE class which knows the structure of

the equations. The NSE class also provides the functions for linear and nonlinear terms, as well

as the implicit solver method. Consequently, pointers of type NSE must be passed from DNS
objects down to the time-stepper implementations in objects of DNSAlgorithm-derived types.

Passing pointers to constructors of DNSAlgorithm-derived classes creates two copies of the

pointer and requires to use the smart pointer type shared_ptr instead of unique_ptr.

2.2.2 Performance impact of the new code structure

The encapsulation of the time-stepper from the governing equations does not reduce the

performance of Channelflow substantially. Benchmarks with a field of size [Nx , Ny , Nz ] =
[128,121,128] indicate a performance reduction of < 5% and unchanged scaling behavior

(Figure 2.2). The small performance loss results from a slightly less efficient summation of

the right-hand side in (2.5-2.8): Instead of summing the individual terms on the right-hand

side as ChebyCoeff-objects at each Fourier mode, the generalized time-steppers must sum

FlowField-objects containing the terms. Operations on FlowField-objects have a slightly

larger overhead. Since the overhead occurs in a performance relevant part of the code, a small

slow-down is observed in the benchmarks. Future development should aim to reduce the

overhead produced by the algebraic operations with FlowField-objects. The slow-down has

been compensated by additional development making iterative data access in FlowField-

objects predictable at compile-time leading to vectorized operations and a speed-up by ∼ 20%.

The strong-scaling behaviour of Channelflow 2.0 is shown in Figure 2.3.
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Figure 2.2 – Benchmarks of average time units during DNS using three different time-stepping
algorithms before (black) and after the encapsulation of the algorithms (red). The elapsed
wall-clock time is measured over the number of CPU cores nc in a strong scaling study with
FlowField-objects of size [Nx , Ny , Nz ] = [128,121,128]. While the average relative elapsed
time 〈Tnew /Tol d 〉 differs slightly, the scaling behavior is unaffected by the new code design.

2.2.3 How to implement additional equations in the new code structure

The generalized time-steppers make implementations of additional or modified fluid flow

equations in Channelflow more straightforward. Only few classes and functions need to be

implemented. The following action items outline the general procedure that has been followed

to implement ILC in Channelflow.

• Non-dimensionalize the new equations. In Channelflow 2.0, the main control parameter

of the Navier-Stokes equations is a non-dimensional kinematic viscosity, denoted as ν̃

here. Only for particular boundary conditions this control parameter may be interpreted

as ν̃= 1/Re. The location of the channel walls, the velocity at the walls, and the pressure

gradient along the channel can be chosen independent of ν̃. The flexibility in the

boundary conditions allows to simulate flows with mixed boundary conditions, e.g.

required for homotopy transformations of flows. Thus, the interpretation of ν̃ is left to

the user. For consistency, the new governing equations are ideally non-dimensionalized

such that the non-dimensional system parameters can be expressed as non-dimensional

diffusion constants in the equations, and such that the interpretation of these constants

depends on the specific boundary conditions. Section 2.2.4 describes how this step is

carried out for ILC.

• Find a general laminar base solution and express it in terms of Chebychev coefficients.

Section 2.2.5 describes how this step is carried out for ILC.
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Figure 2.3 – Benchmarks of the parallel time-stepper during DNS in a strong scaling study using
a FlowField of size [Nx , Ny , Nz ] = [682,121,682], excluding padded modes, corresponding
to a file size of 1.35GB . The DNS speed-up relative to a serial single-core computations has
been measured as averaged elapsed wall-clock time on (a) EPFL’s HPC cluster ‘Fidis’ (28 Intel
Broadwell cores per node) and on (b) the CSCS cluster ‘Piz Daint’ (Cray XC40 with 36 cores per
node). The vertical grey lines mark computations on a single node. The dashed line marks
ideal speed-up.

• Implement the non-dimensionalized governing equations for fluctuations around a

laminar base flow. Keep the terms for the base flow in the equations to allow a base flow

that is not a solution of the equations. Derive from the existing classes in Channelflow

2.0 to use the already implemented methods. A maximum of four derived classes need

to be implemented for an extension that can use all tools and methods of Channelflow

2.0: One class that provides an implicit solver as well as linear and nonlinear terms

of the governing equation to the time-steppers, as described in Section 2.2.1. This

class is labeled extNSE in Figure 2.1. Two classes that allow to control a DNS (extDNS
and extFlags in Figure 2.1). One dynamical systems interface class to link the time

integrator to the nsolver-library (extDSI in Figure 2.1). Section 2.2.6 describes how

this step is done for ILC.

• Validate the implementation. Section 2.2.7 describes how this step is carried out for ILC.

2.2.4 Non-dimensionalizing the Oberbeck-Boussinesq equations

The time-evolution of velocity U (x, y, z, t), pressure P (x, y, z, t) and temperature T (x, y, z, t)

for a three-dimensional incompressible flow in the presence of gravitational acceleration g is

17



Chapter 2. Methods and tools for a numerical dynamical systems analysis

described by the Oberbeck-Boussinesq equations

∂U

∂t
+ (U ·∇)U =− 1

ρr e f
∇P +ν∇2U +g

[
1−α(T −Tr e f )

]
(2.9)

∂T
∂t

+ (U ·∇)T = κ∇2T , (2.10)

∇·U = 0 . (2.11)

Bold symbols denote vector quantities. While many previous numerical studies have con-

sidered these equations for toroidal-polodial variables (Busse and Clever, 1992; Subrama-

nian et al., 2016), the present study implements the Oberbeck-Boussinesq equations for

primitive variables. The Oberbeck-Boussinesq approximation states that density ρ is the

only fluid property depending on temperature, and that this dependence is linear, ρ(T ) =
ρr e f

[
1−α(T −Tr e f )

]
(Landau and Lifschitz, 1987). Accordingly, the kinematic viscosity ν,

the thermal conductivity κ and the thermal expansion coefficient α of the fluid are assumed

constant. Moreover, density fluctuations around the reference density ρr e f (Tr e f ) are assumed

to only affect the buoyancy term gρ(T )/ρr e f , i.e. the last term in the momentum equations

(2.9). The range of validity of the Oberbeck-Boussinesq approximation is discussed e.g. by

Gray and Giorgini (1976).

In ILC, the fluid resides between two parallel walls. The wall-normal direction is y . The

reference frame is allowed to rotate about the z-direction by angle γ. Directions x and z are

called the streamwise and the spanwise directions, respectively. The vector of gravitational

acceleration is g = g ĝ = g
(−sin(γ)êx −cos(γ)ê y

)
. Vectors ĝ , êx and ê y are unit vectors. Note

that here gravity is aligned with −ê y for γ= 0◦. This choice of coordinates makes the notation

of space dimensions compatible with the notation typically used in pure shear flows with

channel geometry as well as consistent with the notation implemented in Channelflow.

Equations (2.9-2.11) are five coupled nonlinear second-order partial differential equations for

five unknowns [U ,T ,P ] with U = [U ,V ,W ]. The boundary conditions for these unknowns cor-

respond to a flow domain with channel geometry. The fluid resides between two parallel walls

at locations y = a and y = b, respectively, moving at different fixed velocities and maintained

at different fixed temperatures such that

U (y = a,b) =U1,2 , (2.12)

V (y = a,b) = 0 , (2.13)

W (y = a,b) =W1,2 , (2.14)

T (y = a,b) = T1,2 . (2.15)
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Figure 2.4 – The incompressible Oberbeck-Boussinesq equations are solved in a double-
periodic channel of height H , length Lx and width Lz , inclined against gravity g at angle γ.
The fluid (light grey) is confined between two walls at y = a and y = b (dark grey). The walls
can have prescribed temperatures T1,2 and streamwise and spanwise velocities U1,2 and W1,2,
respectively. The sketched laminar temperature profile (red) and laminar velocity profile (blue)
correspond to the standard ILC-boundary conditions with wall velocities zero.

In the streamwise dimension x and and the spanwise dimension z, periodic boundary condi-

tions are imposed

[U ,T ,∇P ] (x = 0, y, z, t ) = [U ,T ,∇P ] (x = Lx , y, z, t ) , (2.16)

[U ,T ,∇P ] (x, y, z = 0, t ) = [U ,T ,∇P ] (x, y, z = Lz , t ) . (2.17)

Thus, Lx and Lz are length and width of the double-periodic channel, and H = b −a is the gap

height between the walls. The flow domain is sketched in Figure 2.4.

The integrated flow over the full domain must satisfy a balance between the mean pressure

gradient and the mean flow rate in both the streamwise and the spanwise directions. For

periodic boundary conditions (2.16) and (2.16), this balance is under-determined and needs

to be constrained. As an integral constraint, either the mean pressure gradient or the mean

flow rate are imposed in each of the streamwise and spanwise directions. This choice affects

the calculation of the pressure distribution and consequently, affects the dynamics of the flow.
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A boundary condition for calculating pressure at the channel walls is

∂V

∂y
(y = a,b) = 0 , (2.18)

which follows implicitly from (2.11) and the imposed uniform velocities at the walls.

In order to non-dimensionalize the Oberbeck-Boussinesq equations and the boundary condi-

tions, the dimensional scales are separated from non-dimensional numerical values, denoted

by “˜”. Substituting, x = x̃ L, t = t̃ τ, U = Ũ U , T = T̃ ϑ, and P = P̃ π into (2.9-2.11) leads to[
U

τ

]
∂Ũ

∂t̃
+

[
U 2

L

](
Ũ · ∇̃)

Ũ =−
[

π

ρr e f L

]
∇̃P̃ +

[
νU

L2

]
∇̃2Ũ + [

g
]

ĝ − [
gαϑ

]
ĝ (T̃ − T̃r e f ) ,

(2.19)[
ϑ

τ

]
∂T̃
∂t̃

+
[
ϑU

L

](
Ũ · ∇̃) T̃ =

[
κϑ

L2

]
∇̃2T̃ , (2.20)[

U

L

]
∇̃ ·Ũ = 0 . (2.21)

All dimensional scales are collected in rectangular brackets. Following previous studies

(Malkus, 1964; Gray and Giorgini, 1976; Chillà and Schumacher, 2012), we choose to measure

the dimensional scales in units of three external scales:

• Length is measured in units of the gap height: L = H = b −a

• Temperature is measured in units of the temperature difference between the walls:

ϑ=∆T = T1 −T2

• Velocity is measured in units of the free fall velocity: U =U f =
√

g α∆T H

Alternative sets of other external scales may be chosen (Subramanian et al., 2016). From the

above choice of external scales, the units of time and pressure scales follow when collecting all

scales on the right-hand side of (2.19-2.21),

∂Ũ

∂t̃
+ (

Ũ · ∇̃)
Ũ =−∇̃P̃ +

[
ν√

g α∆T H 3

]
∇̃2Ũ +

[
1

α∆T

]
ĝ − ĝ (T̃ − T̃r e f ) (2.22)

∂T̃
∂t̃

+ (
Ũ · ∇̃) T̃ =

[
κ√

g α∆T H 3

]
∇̃2T̃ (2.23)

∇̃ ·Ũ = 0 (2.24)

Since the non-dimensional form requires π = ρr e f g α∆T H , pressure is measured in units

of the hydrostatic pressure exerted by a fluid of height H . Since the non-dimensional form
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requires τ= H/U f , time is measured in free-fall time units. In this non-dimensional form, the

dimensional scales form two dimensionless groups, the Rayleigh number Ra and the Prandtl

number Pr, where

Ra = g α∆T H 3

νκ
, (2.25)

Pr = ν

κ
. (2.26)

Thus, the non-dimensional Oberbeck-Boussinesq equations have the form

∂U

∂t
+ (U ·∇)U =−∇P + ν̃∇2U +ηĝ − ĝ (T −Tr e f ) , (2.27)

∂T
∂t

+ (U ·∇)T = κ̃∇2T , (2.28)

∇·U = 0 , (2.29)

where “ ˜ ” is omitted for all quantities except for the two parameters, ν̃ = (Pr/Ra)1/2 and

κ̃= 1/(PrRa)1/2, to clearly denote them as non-dimensional kinematic viscosity and thermal

diffusivity, respectively. The non-dimensionalization of the boundary conditions (2.12-2.17)

implies b − a = 1 and T1 −T2 = 1. Choosing different numerical values for gap heights or

temperature differences makes the above non-dimensionalization inconsistent and the in-

terpretation Ra = 1/ν̃κ̃ and Pr = ν̃/κ̃ does not hold anymore. In Channelflow, the location of

the wall and the numerical values of velocities at the walls can be set by the user and are not

enforced to match certain numbers. In line with this design decision, the non-dimensionalized

Oberbeck-Boussinesq equations (2.27-2.29) are implemented with boundary conditions of the

general form (2.12-2.17), which from now on, are considered as non-dimensional. Boundary

conditions for which b −a = 1 and T1 −T2 = 1 hold are suggested by the default settings of the

implementation. Users that want to exploit the flexibility in the boundary conditions should

be aware that deviations from the default settings may change the interpretation of ν̃ and κ̃.

The above non-dimensional form of the Oberbeck-Boussinesq equations has two advantages

compared to other forms. First, the dimensionless parameters Ra and Pr are combined in a

non-dimensional kinematic viscosity ν̃. Thus, the non-dimensional Oberbeck-Boussinesq

equations share one control parameter with the non-dimensional Navier-Stokes equations,

as already implemented in Channelflow. Second, Rayleigh numbers in studies of thermal

convection often span several orders of magnitude. In (2.27) and (2.28), Ra appears as square

root, which makes this form of non-dimensionalization numerically advantageous over forms

where Ra directly scales non-dimensional terms in the equations (e.g. Subramanian et al.,

2016).
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Equations (2.27-2.29) correspond to the initially given equations (1.2-1.4) with two modifi-

cations. First, the reference temperature is chosen as Tr e f = 0. For non-dimensional and

anti-symmetric boundary conditions T1,2 =±0.5, commonly used to numerically study ILC

(e.g. Subramanian et al., 2016), Tr e f = 0 matches the laminar base state for temperature at

midplane and makes the laminar velocity and temperature profiles antisymmetric. Second,

(1.2-1.4) describe pressure relative to the hydrostatic pressure profile. As a result, the hydro-

static pressure term ηĝ , where η= 1/α∆T , is canceled out. The laminar base state for pressure,

temperature and velocity are discussed in the following section.

2.2.5 Laminar base state for general boundary conditions

To find the laminar base states of (2.27-2.29) for inclined channels, three assumptions are

made:

1. The laminar base state is time independent.

2. The laminar base state is homogeneous in the x- and z-dimension, implying y-dependence

only.

3. No external pressure gradients are imposed to drive a flow. The pressure base state

absorbs the hydrostatic pressure.

The second assumption simplifies the continuity equation (2.29) to ∂V (y)/∂y = 0. Together

with boundary condition (2.13), this implies that there is no wall-normal base flow, V0(y) = 0.

Decomposing velocity, pressure gradient and temperature into y-dependent base profiles for

the laminar solution and fluctuations read

U (x , t ) =U0(y)ex +W0(y)ez +u(x , t ) , (2.30)

∇P (x , t ) =Πx (y)ex +Πy (y)e y +Πz (y)ez +∇p(x , t ) , (2.31)

T (x , t ) = T0(y)+θ(x , t ) . (2.32)

The pressure base state is considered as gradients which can be x-z-homogeneous in a laminar

flow. Inserting these decompositions into (2.27) and (2.28) and assuming the fluctuations to
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be zero, the laminar base state must satisfy

U : 0 =−Πx (y) +ν̃ ∂2

∂y2 U0(y)−ηsin(γ)+ sin(γ)
(T0(y)−Tr e f

)
, (2.33)

V : 0 =−Πy (y) −ηcos(γ)+cos(γ)
(T0(y)−Tr e f

)
, (2.34)

W : 0 =−Πz (y) +ν̃ ∂2

∂y2 W0(y) , (2.35)

T : 0 = κ̃
∂2

∂y2T0(y) , (2.36)

as well as the boundary conditions (2.12-2.15). Since these boundary conditions are considered

in a general form without enforcing particular numerical values, the laminar base state is

calculated for three different types of boundary conditions:

• general: Location of the walls and the numerical boundary values at the walls (2.12-2.15)

are arbitrary.

• symmetric walls: The location of the walls is fixed at [a,b] = [−0.5,0.5]. Velocity and

temperature values at these symmetrically placed walls remain arbitrary. This form of

the laminar base state is the one implemented in Channelflow as rescaled Chebychev

polynomials. In Channelflow, Chebychev polynomials are defined on the interval [a,b] =
[−1,1] and rescaled to the specific height H of the numerical domain.

• default: The y-symmetric boundary conditions of non-dimensional ILC are T (y =
±0.5) = ∓0.5, Tr e f = 0 and U (y = ±0.5) = W (y = ±0.5) = 0. They are defined as the

default settings in Channelflow.

Pressure base profile

In general, the four equations (2.33-2.36) under-determine the laminar base state which

consists of six unknown profiles U0(y), W0(y), T0(y) andΠ(y) along all three space dimensions.

In the hydrostatic case however, the number of unknowns reduces to four because U0(y) =
W0(y) = 0. A hydrostatic layer requires stationary walls and may occur for two different cases

of inclination angle γ. First, in a horizontal channel with γ= 0, the fluid is at rest for any T0(y).

The only non-zero pressure gradient in this case is Πy (y) =−ηcos(γ)+cos(γ)
(T0(y)−Tr e f

)
,

due to (2.34). Second, in an inclined channel with γ 6= 0, the fluid is at rest only if T0(y) = Tr e f .

In this case, the non-zero pressure gradients areΠx =−ηsin(γ) and Πy =−ηcos(γ). Thus, the
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laminar base state for hydrostatic pressure gradients in horizontal and inclined channels is

Πx =−ηsin(γ) , (2.37)

Πy (y) =−ηcos(γ)+cos(γ)
(T0(y)−Tr e f

)
, (2.38)

Πz = 0 , (2.39)

with η= 1/α∆T . Note that the second term in 2.38 is not part of the hydrostatic pressure at

finite inclinations. These pressure base profiles apply under general, symmetric walls and

default boundary conditions.

Temperature base profile

The temperature profile T0(y) of the laminar base state is found by integrating (2.36) twice

with respect to y :

C2 + y C1 = T0(y) (2.40)

The integration constants C1 and C2 are determined by the general dimensionless boundary

conditions (2.15)

C2 +a C1 = T0(a) = T1 , (2.41)

C2 +b C1 = T0(b) = T2 . (2.42)

The first constant follows from the difference (2.41) - (2.42):

C1 = T2 −T1

(b −a)
(general) (2.43)

C1 = T2 −T1 (sym. walls) (2.44)

C1 =−1 (default) (2.45)

The second constant follows from the sum (2.41) + (2.42) with C1:

C2 = bT1 −aT2

(b −a)
(general) (2.46)

C2 = T1 +T2

2
(sym. walls) (2.47)

C2 = 0 (default) (2.48)
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Thus, the temperature base profile is

T0(y) = (b − y)T1 − (a − y)T2

(b −a)
(general) , (2.49)

T0(y) = (T2 −T1)y + T1 +T2

2
(sym. walls) , (2.50)

T0(y) =−y (default) . (2.51)

Velocity base profile

The velocity profile U0(y) of the laminar base state must satisfy (2.33). Since the pressure base

profile (2.37) cancels with the mean gravitional acceleration term, ηsin(γ), the velocity base

profile U0(y) must satisfy

ν̃
∂2

∂y2 U0(y) =−sin(γ)
(T0(y)−Tr e f

)
. (2.52)

Inserting the temperature base profile (2.49) gives

H

q

∂2

∂y2 U0(y) = (T2 −T1)y + (bT1 −aT2 −HTr e f ) , (2.53)

with prefactor q =−sin(γ)/ν̃ and scale H = (b −a). Integrating twice with respect to y gives

H

q

∂

∂y
U0(y) = 1

2
(T2 −T1)y2 + (bT1 −aT2 −HTr e f )y +C1 , (2.54)

H

q
U0(y) = 1

6
(T2 −T1)y3 + 1

2
(bT1 −aT2 −HTr e f )y2 +C1 y +C2 . (2.55)

The integration constants C1 and C2 are determined by the general dimensionless boundary

conditions (2.12):

y = a :
H

q
U1 = 1

6
(T2 −T1)a3 + 1

2
(bT1 −aT2 −HTr e f )a2 +C1a +C2 (2.56)

y = b :
H

q
U2 = 1

6
(T2 −T1)b3 + 1

2
(bT1 −aT2 −HTr e f )b2 +C1b +C2 (2.57)
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C1 follows from the difference (2.56) - (2.57):

C1 = (U1 −U2)H

(a −b)q

− 1

2(a −b)

(
1

3
(T2 −T1)(a3 −b3)+ (bT1 −aT2 −HTr e f )(a2 −b2)

)
(general) (2.58)

C1 = U1 −U2

(a −b)q
+ 1

24
(T1 −T2) (sym. walls)

(2.59)

C1 = 1

24
(default)

(2.60)

C2 follows from the sum (2.56) + (2.57) with C1:

C2 = H

2q

[
(U1 +U2)− (U1 −U2)

(a +b)

(a −b)

]
+ 1

12
(T1 −T2)

[
(a3 +b3)− (a3 −b3)

(a +b)

(a −b)

]
− 1

4
(bT1 −aT2 −HTr e f )

[
(a2 +b2)− (a2 −b2)

(a +b)

(a −b)

]
(general) (2.61)

C2 = 1

2q
(U1 +U2)+ 1

16
(T1 +T2 −2Tr e f ) (sym. walls) (2.62)

C2 = 0 (default) (2.63)
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Inserting the two coefficients into (2.55), one obtains the velocity profile U0(y) of the laminar

base state:

U0(y) = sin(γ)(T1 −T2)

6ν̃(b −a)
y3

− sin(γ)

2ν̃(b −a)
(bT1 −aT2 −HTr e f )y2

+
(

U1 −U2

(a −b)
− sin(γ)

2ν̃(a −b)2

(
1

3
(T2 −T1)(a3 −b3)+ (bT1 −aT2 −HTr e f )(a2 −b2)

))
y

+ 1

2

[
(U1 +U2)− (U1 −U2)

(a +b)

(a −b)

]
− sin(γ)

12ν̃
(T1 −T2)

[
(a3 +b3)− (a3 −b3)

(a +b)

(a −b)

]
+ sin(γ)

4ν̃
(bT1 −aT2 −HTr e f )

[
(a2 +b2)− (a2 −b2)

(a +b)

(a −b)

]
(general) (2.64)

U0(y) = sin(γ)

6ν̃
(T1 −T2)y3 − sin(γ)

2ν̃

(T1 +T2

2
−Tr e f

)
y2

− sin(γ)

24ν̃
(T1 −T2)y + sin(γ)

8ν̃

(T1 +T2

2
−Tr e f

)
+ (U2 −U1)y + U1 +U2

2
(sym. walls)

(2.65)

U0(y) = sin(γ)

6ν̃

(
y3 − 1

4
y

)
(default)

(2.66)

The base profile W0(y) must satisfy (2.35). The problem is solved for the general boundary

conditions (2.14) in analogy to the temperature base profile T0(y) and thus, has the same linear

form as (2.49) and (2.50):

W0(y) = (b − y)W1 − (a − y)W2

(b −a)
(general) (2.67)

W0(y) = (W2 −W1)y + W1 +W2

2
(sym. walls) (2.68)

W0(y) = 0 (default) (2.69)

Here, the spanwise velocity base profile is only wall-driven. Future development should

consider inclination and buoyancy-driven flow also along the z-dimension.

Having calculated the complete laminar base state, the next step is to express this state in terms

of spectral Chebychev coefficients. These coefficients are then implemented in Channelflow.

Chebychev coefficients of the base profiles
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Wall-normal profiles are defined as series expansions with Chebyshev polynomials within the

spectral data representation of Channelflow. The above calculated laminar base profiles are at

most of cubic order. The first four Chebyshev polynomials of the first kind are

C0(x) = 1 , (2.70)

C1(x) = x , (2.71)

C2(x) = 2x2 −1 , (2.72)

C3(x) = 4x3 −3x , (2.73)

defined on the interval x ∈ [−1,1] with the normalization C j (1) = 1. The laminar base solution

profiles have been calculated in the polynomial form

f (y) = p3 y3 +p2 y2 +p1 y +p0 . (2.74)

In the case of general boundary conditions with symmetric walls, the calculated polynomials

are defined on the interval yε[−0.5,0.5]. The coefficients qi of a Chebyshev expansion f (y) =∑3
i=0 qiCi (x) relate to coefficients pi as

q0 = 1

8
p2 +p0 (2.75)

q1 = 3

32
p3 + 1

2
p1 (2.76)

q2 = 1

8
p2 (2.77)

q3 = 1

32
p3 (2.78)

where a the stretching transformation with y = x/2 is considered. Using this relation, the

laminar base profiles, calculated for symmetric walls at y =±0.5, can be expressed in terms of

Chebyshev coefficients. If the walls are located differently, the Chebyshev transformation in

Channelflow transforms the functions from the interval [−1,1] in the spectral representation

to any chosen interval [a,b] in the physical representation. The base profiles calculated for

arbitrary wall locations at y = a and y = b (general case) provide test cases for units testing

the numerical implementations of the Oberbeck-Boussinesq equations and the Chebyshev

transformation.

The temperature base profile T0(y), defined in (2.50), has the spectral Chebyshev coefficients:

q0 = T2 +T1

2
(2.79)

q1 = T2 −T1

2
(2.80)
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The coefficients of the spanwise velocity profile W0(y), defined in (2.68), are found analogously:

q0 = W2 +W1

2
(2.81)

q1 = W2 −W1

2
(2.82)

The Chebyshev coefficients for the streamwise velocity profile U0(y), defined in (2.65), are

slightly more complicated:

q0 = sin(γ)

16ν̃

(T1 +T2

2
−Tr e f

)
+ U2 +U1

2
(2.83)

q1 =−sin(γ)

192ν̃
(T1 −T2) + U2 −U1

2
(2.84)

q2 =−sin(γ)

16ν̃

(T1 +T2

2
−Tr e f

)
(2.85)

q3 = sin(γ)

192ν̃
(T1 −T2) (2.86)

The pressure base profiles Πx and Πy (y), defined in (2.37) and (2.38), respectively, are linearly

related to T0(y) and its Chebyshev coefficients.

2.2.6 Implementation of the Oberbeck-Boussinesq equations

Having non-dimensionalized the Oberbeck-Boussinesq equations and calculated the laminar

base state, Channelflow is extended to the new governing equations. Inserting the decomposi-

tion (2.30-2.32) into the governing equations (2.27-2.28) yields the following momentum and

heat equations

∂u(x , t )

∂t
+ (U (x , t ) ·∇)U (x , t ) =−∇p(x , t )+ ν̃∇2u(x , t )

+ (
sin(γ)ex +cos(γ)e y

)
θ(x , t )

+
[
−Πx −ηsin(γ)+ ν̃∂

2U0(y)

∂y2 + sin(γ)(T0(y)−Tr e f )

]
ex

+ [−Πy (y)−ηcos(γ)+cos(γ)(T0(y)−Tr e f )
]

e y

+
[
ν̃
∂2W0(y)

∂y2

]
ez , (2.87)

∂θ(x , t )

∂t
+ (U (x , t ) ·∇)T (x , t ) = κ̃∇2θ(x , t )+

[
κ̃
∂2T0(y)

∂y2

]
. (2.88)

The nonlinear terms on the left-hand side are not considered in decomposed form and are

products of the total velocity U and the total temperature T . InChannelflow, fluctuating

components around any arbitrary base profile may be considered. In line with the design
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decision that base profiles do not need to be a solution of the governing equations, the terms

containing the base profiles are not canceled and remain in the equations. If the base profiles

correspond to the laminar base state as defined in Section 2.2.5, all terms in rectangular

brackets in (2.87) and (2.88) are zero. If not, these terms are added as constant profiles,

denoted as Cu (y) or Cθ(y), to the equations.

Equations (2.87) and (2.88) are numerically implemented as a spectral Galerkin approximation

using Fourier × Chebyshev × Fourier expansions in x × y × z. Velocity and temperature

fluctuations are expanded as

[u,θ] (x , t ) =
Kx∑

kx=−Kx

Ny−1∑
j=0

Kz∑
kz=−Kz

[
û, θ̂

]
kx , j ,kz

(t ) C j (y) e2πi (kx x/Lx+kz z/Lz ) (2.89)

where C j (y) is the j -th Chebyshev polynomial of the first kind. [û, θ̂]kx , j ,kz (t) are the time-

dependent amplitudes of the discrete Fourier and Chebyshev modes, respectively. Inserting

(2.89) into (2.87) and (2.88), the momentum and heat equations can be expressed in the form

of a general spectral nonlinear evolution equation (2.1) for the general state vector x̂ = [û, θ̂, p̂].

Using the spectral operator ∇̂, given in (2.4), the components of the linear operator Lξi x̂ in

(2.1) are defined as

Lu x̂ = ν̃(∇̂ · ∇̂)
û −∇̂p̂ , (2.90)

Lθ x̂ = κ̃(∇̂ · ∇̂)
θ̂ , (2.91)

and the components of the nonlinear operator Nξi (x̂) in (2.1) are defined as

Nu (x̂) = F(
F−1(Û ) ·F−1(∇̂Û )

)+Cu − sin(γ)θ̂êx −cos(γ)θ̂êz , (2.92)

Nθ(x̂) = F(
F−1(Û ) ·F−1(∇̂T̂ )

)+Cθ , (2.93)

with the Fourier-Chebyshev transform operator F. The evaluation of nonlinear products in

physical space instead of spectral space reduces the number of operations N 2 to N log(N ). This

approach is called pseudospectral method (Canuto et al., 2006, Section 3.4.1). The constants

Ĉu and Ĉθ contain the spectral form of the constant base profiles inside the rectangular

brackets in (2.87) and (2.88), respectively. The spectral base profiles are given by the Chebyshev

coefficients discussed in Section 2.2.5.

The generalization of the time-stepping algorithms discussed in Section 2.1.2 allows to advance

(2.87) and (2.88) in time based on the definition of the linear and nonlinear terms (2.90-2.93).

The time-stepping algorithms treat the linear terms fully or semi implicitly and the nonlinear

terms fully explicitly. Since the linear terms are not coupled, the two implicit problems can

be solved independently from each other at the same temporal stage. For all time-stepping
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algorithms (2.5-2.8), the implicit problem for time step n +1 reads

ν̃
∂2

∂y2 ûn+1 −λu ûn+1 −∇̃p̂n+1 = RHSu (u,θ)n,n−1,... , (2.94)

κ̃
∂2

∂y2 θ̂
n+1 −λθθ̂n+1 = RHSθ(u,θ)n,n−1,... , (2.95)

with

λu = χ

∆t
+4π2ν̃

(
k2

x

L2
x
+ k2

z

L2
z

)
, (2.96)

λθ =
χ

∆t
+4π2κ̃

(
k2

x

L2
x
+ k2

z

L2
z

)
. (2.97)

The factor χ depends on the specific time-stepping algorithm (2.5-2.8). Equation (2.95)

represent a one-dimensional Helmholtz problem that is solved for boundary conditions

θ(y = a,b) = 0 using the Chebyshev Tau method (Canuto et al., 1988, Section 5.1.2). The cou-

pled Helmholtz problem (2.94) is solved for boundary conditions u(y = a,b) = 0 and ∇·u = 0

using the influence matrix method (Kleiser and Schumann, 1980; Canuto and Landriani, 1986).

The specific Helmholtz problem also depends on the choice of the integral constraint as either

mean pressure gradient or mean flow rate (see Section 2.2.4). The methods to solve (2.95) and

(2.95) were already implemented in Channelflow.

The Oberbeck-Boussinesq equations contain the Navier-Stokes equations. See the first line in

(2.87). As a consequence much of the existing implementation for the Navier-Stokes equations

in Channelflow has been re-used for the extension module Channelflow-ILC. Four new classes

have been implemented, all of which were derived from existing classes and override the base

class methods. The class diagram in Figure 2.1 indicates the four new classes by the prefix

“ext” (short for extension). The terms of the Oberbeck-Boussinesq equations and the laminar

base state are implemented in the class OBE derived from NSE (see “extNSE” in Figure 2.1).

Three public class methods in OBE provide the terms in the Oberbeck-Boussinesq equations

to the generalized time-stepping algorithms in DNSAlgorithm: linear provides (2.90) and

(2.91), nonlinear provides (2.92) and (2.93), and solve solves (2.94) and (2.95). Each of

these methods takes one input and one output argument of type vector<FlowField>&. This

vector type corresponds to x = [û, θ̂, ˆ̂p]. This order of entries is assumed at multiple locations

and must be respected. The classes ILC and ILCFlags are user interfaces for running direct

numerical simulations of ILC and derived from DNS and DNSFlags, respectively. The class

ilcDSI, derived from cfDSI, is the dynamical systems interface to provide the time evolution

of the Oberbeck-Boussinesq equations to the nsolver library.
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2.2.7 Validation

The numerical implementation of the Oberbeck-Boussinesq equations for inclined channels

has been validated by reproducing previously computed or analytic results on three different

levels of importance of nonlinear effects.

Linear and weakly nonlinear instabilities. Many previous studies have accurately deter-

mined stability thresholds in thermal convection. The primary onset of convection in Rayleigh-

Bénard at Rac = 1707.76 (Busse, 1978b) and the codimension-2 point in ILC at [γc2,Rac2] =
[77.7567◦,8053.1] (Subramanian et al., 2016) have been successful reproduced using numerical

continuation of exact invariant straight convection rolls (see Section 4.3.3 for more details).

Moreover, critical thresholds of the well-known secondary wavy instability of longitudinal rolls

in ILC (Clever and Busse, 1977) have been compared with recent Floquet analysis (Subrama-

nian et al., 2016, personal communication). The wavelengths that first become unstable in the

wavy instability are much larger than the gap height H of ILC. Floquet analysis of longitudinal

rolls atγ= 40◦, resolved by M = 12 wall-normal sine-modes (compare Subramanian et al., 2016,

Appendix A), indicates a wavenumber of kx = 0.03 at a critical Rayleigh number of Rac = 2257.9

as most unstable wavenumber. This implies a pattern wavelength of Lx = 2π/kx ≈ 200 in units

of H . Smaller or larger wavelengths become unstable at higher Rac . Channelflow-ILC re-

produces this result. At the wavy instability, a Ra-forward supercritical Pitchfork bifurcation

creates a finite amplitude branch of exact invariant wavy rolls (see Section 5.3.3). Numerical

continuation along this branch down in Ra yields the bifurcation point and the critical wavy

instability threshold Rac . The critical thresholds Rac computed for different imposed domain

lengths Lx coincide with the neutral stability curve obtained from Floquet analysis (Figure 2.5).

Computing a long-wavelength instability, like the wavy instability, by continuing nonlinear

invariant states in a fully resolved three-dimensional domain of lateral extent [Lx ,Lz ] ≈ [200,2]

and with resolution [Nx , Ny , Nz ] = [64,17,32] is numerically challenging because all modal

interactions within this domain are considered. Floquet analysis considers different modal

interactions only individually.

Nonlinear scaling invariance. During the scope of studying the bifurcations to invariant solu-

tions underlying spatially periodic convection patterns in ILC (Section 5), a scaling invariance

of the nonlinear Oberbeck-Boussinesq equations has been identified (Equations 5.15-5.19).

The scaling invariance leads to an exact correspondence of steady and x-uniform states across

Ra and γ. Numerical continuation of invariant longitudinal rolls along the scale invariant path

in control parameters reproduces this analytic result (see Figure 5.4 and Section 5.3).
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Floquet analysis

Channelflow-ILC

Figure 2.5 – Agreement between results of Channelflow-ILC and recent Floquet analysis.
Critical thresholds in Rayleigh number Rac for the secondary wavy instability of longitudinal
straight convection rolls in ILC at inclination angle γ= 40◦ and Prandtl number Pr = 1.07. The
Floquet analysis is described in Subramanian et al. (2016) and the data was communicated
with the leading author.

Fully turbulent thermal convection. The MPI parallelization of Channelflow-ILC allows

performant DNS of fully turbulent thermal convection. Previous statistical results on the

Nusselt number scaling Nu ∼ Ra for fully turbulent Rayleigh-Bènard convection by (Kerr, 1996)

have been reproduced.

The DNS are for Pr = 0.7 and Ra ∈ (5e4,2e7) in a periodic domain of size [Lx ,Ly ,Lz ] = [6,6,1],

discretized by 288× 288× 96 gird points (Figure 2.6a). Nu is calculated at midplane and

averaged over T = 2500 free fall time units. The present simulated data follows the scaling

of Kerr (1996) (Figure 2.6b). The DNS at Ra = 2e7 used 11.6e3C PUh requiring a runtime of

approximately 1 week using 64 cores in parallel.

2.2.8 The NetCDF file format an parallel input/output

Prior to the numerical research on turbulent patterns in wall-bounded shear flows, a new file

format, NetCDF-4, has been implemented in Channelflow. This part of code development was

motivated by

• improving visual post-processing analysis of three-dimensional field data.

• improving the performance of input/output operations.

Numerical studies of turbulent patterns in wall-bounded shear flows are often interactive.

Preliminary data is computed and decisions how to proceed need to be based on a post-

processing analysis of the preliminary data. This includes a visual inspection of the three-
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(a)

105 106 107

Ra

101

N
u

(b)

Figure 2.6 – DNS of turbulent convection in Rayleigh-Bénard convection at Pr = 0.7 using
Channelflow-ILC. (a) Volumetric rendered temperature field of positive temperatures at Ra =
1e7 illustrates range of scales of turbulent convection plumes. (b) Scaling of Nusselt number
Nu with Rayleigh number Ra of the present DNS statistics (×) compare well to the DNS
statistics of Kerr (1996) (◦) which fit to Nu = 0.186Ra0.276 (−).
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dimensional raw data of velocity or temperature fields in physical space. NetCDF-4 simplifies

such an analysis. The description of metadata in the file is chosen according to the “climate and

forecast” conventions (CF). These convections are supported by many standard visualization

tools like Paraview or VisIt and allow to directly import the data. The file formats that were

already implemented in Channelflow before are the original binary format (extension .ff) and

the HDF5 format (extension .h5). These formats cannot be directly imported into standard

visualization tools without additional conversions.

Turbulent patterns in wall-bounded shear flows can be of large spatial extent. Hence, the file

size with the corresponding field data can be large. Advancing spatially extended turbulent

patterns has become feasible with the MPI parallel time-stepping algorithms in Channelflow.

However, the input/output of data files, in HDF5 or binary format, was previously not paral-

lelized. In addition, the communication protocol to collect (or distribute) the data on (or from)

the single process that performs the I/O was inefficient. Data was not communicated in the

largest possible chunks of the data array but rather entry by entry. For the implementation of

the NetCDF file format, the communication protocol has been optimized by sending/receiving

the largest possible chunks of the data array. This step in the code development improved the

performance of serial input/output operations for MPI applications by three orders of magni-

tude (Figure 2.7). Moreover, the NetCDF interfaces for parallel I/O have been implemented.

On HPC clusters with a parallel file system hardware, parallel I/O allows all processors to

access storage. This avoids expensive communication between processors and, typically more

costly, between compute nodes. The performance improvement due to parallel I/O becomes

significant only for very large data files on very large distributions (Figure 2.7).
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Figure 2.7 – Benchmarks of the newly implemented file Input/Output (I/O) in a strong scaling
study using a FlowField of size [Nx , Ny , Nz ] = [682,121,682], excluding padded modes, corre-
sponding to a file size of 1.35GB . The averaged elapsed wall-clock time per I/O operation is
measured for varying numbers of CPU cores on (a) EPFL’s HPC cluster ‘Fidis’ (28 Intel Broad-
well cores per node) and on (b) the CSCS cluster ‘Piz Daint’ (Cray XC40 with 36 cores per node).
The performance of the previously existing I/O protocol using the HDF-5 format (black) is
compared to the serial (blue) and parallel I/O protocol (red/green) using the NetCDF-4 format.
On ‘Fidis’, parallel I/O performs better using the ‘collective’ (red) than the ‘independent’ access
mode (green). On ‘Piz Daint’, the HDF-5 I/O protocol is not working for FlowFields of this
size. The performance difference between the three different I/O protocols using NetCDF-4
is negligible. Serial and parallel I/O protocols using NetCDF-4 were implemented during
the scope of the present thesis and improved the I/O performance by up to three orders of
magnitude for MPI applications.
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3 Invariant states in inclined layer con-
vection: An overview

In this part of the thesis, we investigate spatially periodic convection patterns in inclined

layer convection. We construct and analyze invariant solutions underlying all observed basic

pattern motifs when changing Rayleigh number and inclination at a Prandtl number of 1.07.

Figure 3.1 provides an overview of the main invariant solutions in the considered parameter

space.

This part differs from the remaining parts of this thesis in notation and terminology in that

• we refer to the wall-normal direction in inclined layer convection as the z-direction

and to the spanwise direction as the y-direction. This is the common choice in thermal

convection studies.

• we refer to “invariant solutions” as “invariant states”. This is convenient because the

terminology of “primary state” and “secondary state” is often used to describe convection

patterns that emerge sequentially when control parameters are varied.
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Chapter 3. Invariant states in inclined layer convection: An overview

Figure 3.1 – This part of the thesis considers a parameter space of inclined layer convection
over inclination angle γ and normalized Rayleigh number ε = (Ra −Rac )/Rac at Pr = 1.07.
Thick lines indicate critical thresholds of secondary instabilities (Subramanian et al., 2016)
explaining the onset of spatio-temporal convection patterns observed by Daniels et al. (2000).
Here, we identified invariant solutions capturing the full variety of previously analyzed spatio-
temporal convection patterns. Panels show the midplane temperature contours of these
invariant solutions with gravity pointing from right to left. Circular markers point to the
control parameters where their relevance for the temporal dynamics is studied in Chapter
4. Thin grey lines indicate the sections along which these invariant states are numerically
continued for a bifurcation analysis (Chapter 5). Results about individual convection patterns
are found in the following specific sections: Skewed varicose pattern (SV) in Sections 4.4.3
and 5.3.1. Subharmonic standing waves (SSW) and traveling waves (STW) in Sections 4.4.2
and 5.3.2. Wavy rolls (WR) in Sections 4.4.1 and 5.3.3. Crawling rolls (CR) in Chapter 6. Knot
pattern (KN) in Sections 4.4.1 and 5.3.4. Transverse oscillations (TO) in Sections 4.4.2 and
5.3.5.
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4 Temporal transitions along dynamical
connections between invariant states

Remark This chapter is largely inspired by a pre-print of the name “Invariant states in

inclined layer convection. Part 1. Temporal transitions along dynamical connections between

invariant states”.

Florian Reetz1 and Tobias M. Schneider1

1Emergent Complexity in Physical Systems Laboratory (ECPS),

École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland

Under consideration for publication in Journal of Fluid Mechanics

Chapter summary

Thermal convection in an inclined layer between two parallel walls kept at different fixed tem-

peratures is studied for fixed Prandtl number Pr = 1.07. Depending on the angle of inclination

and the imposed temperature difference, the flow exhibits a large variety of self-organized

spatio-temporal convection patterns. Close to onset, these patterns have been explained in

terms of linear stability analysis of primary and secondary flow states. At larger temperature

difference, far beyond onset, experiments and simulations show complex, dynamically evolv-

ing patterns that are not described by stability analysis and remain to be explained. Here

we employ a dynamical systems approach. We construct stable and unstable exact invari-

ant states, including equilibria and periodic orbits of the fully nonlinear three-dimensional

Oberbeck-Boussinesq equations. These invariant states underlie the observed convection
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patterns beyond their onset. We identify state-space trajectories that, starting from the un-

stable laminar flow, follow a sequence of dynamical connections between unstable invariant

states until the dynamics approaches a stable attractor. Together, the network of dynami-

cally connected invariant states mediates temporal transitions between coexisting invariant

states and thereby supports the observed complex time-dependent dynamics in inclined layer

convection.

4.1 Introduction

Fluids in spatially extended wall-bounded domains can form regular flow patterns when

driven by external forces (Cross and Hohenberg, 1993). Even when the flow exhibits spatio-

temporal chaos or is weakly turbulent, regular patterns may form. Prominent examples are

chaotic spirals in thermal convection (Morris et al., 1993), or oblique turbulent-laminar stripes

in shear flows (Prigent et al., 2002). These patterns emerge in dissipative systems that are not

in thermodynamic equilibrium. Consequently, the formation of sustained patterns depends

crucially on the strength and nature of the energy supplying external driving forces.

A fluid system where not only the strength but also the nature of the driving force can be

controlled and changed smoothly is inclined layer convection (ILC), the flow between two

parallel walls maintained at different temperatures and inclined against gravity. Here, the

angle of inclination defines the ratio between the wall-normal and the wall-parallel buoyancy

force. The former drives a lift-up mechanism, by which buoyancy may directly destabilize the

flow as in the non-inclined Rayleigh-Bénard system. The latter generates shear forces between

upward and downward driven flow, leading to shear instabilities. Many different convection

patterns have been observed in ILC by systematically changing the angle of inclination from

horizontal layer convection to vertical layer convection and beyond (Daniels et al., 2000). These

observations also reveal complex spatio-temporal dynamics of convection patterns, such as

intermittent bursting (Busse and Clever, 2000; Daniels et al., 2003) or spatial competition

between patterns (Daniels and Bodenschatz, 2002; Daniels et al., 2008). While the onset

of several convection patterns has been explained using stability analysis, the mechanisms

underlying the complex dynamics far above onset are not well understood.

First experiments on ILC focused on heat transfer properties in an inclined layer of air at

Prandtl number Pr ≈ 0.7 (Nusselt, 1908; de Graaf and van der Held, 1953; Hollands and Konicek,

1973; Ruth et al., 1980b). Qualitative changes in the heat transfer were related to instabilities in

the flow. Early linear stability analysis of laminar ILC at different Pr found two different primary

instabilities (Gershuni and Zhukhovitskii, 1969; Chen and Pearlstein, 1989). Depending on the

angle of inclination, laminar flow becomes unstable to convection rolls with either longitudinal

orientation, at small inclinations, or with transverse orientation, at large inclinations. This

result was confirmed by systematic experimental surveys using water at Pr ≈ 7 (Hart, 1971a) as
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well as experiments using liquid crystals at high Pr (Shadid and Goldstein, 1990). Observations

of modulated longitudinal rolls (Hart, 1971a,b) were compared and related to secondary

instabilities of longitudinal rolls calculated using stability analysis (Clever and Busse, 1977).

Similar primary and secondary instabilities have also been found in other shear flows with

imposed temperature gradients (see Kelly, 1994, for a review).

Systematic experimental explorations of self-organized patterns in large aspect ratio domains

of ILC under changing control parameters report on ten different convection patterns in

compressed CO2 at Pr = 1.07 (Daniels et al., 2000; Daniels and Bodenschatz, 2002; Daniels et al.,

2003, 2008). While some of the observed patterns are sufficiently regular to resemble patterns

linked to instabilities that had been described previously for other Pr, most observations

indicate complex dynamics including spatio-temporal chaos. Exploring the same parameter

space studied by Daniels, Bodenschatz, Pesch and collaborators, Subramanian et al. (2016)

identified five secondary instabilities using Floquet analysis. These instabilities were calculated

at the critical control parameters for the onset of the pattern and related to the dynamics

observed in experiments and numerical simulations above these critical parameters using

Galerkin methods (Subramanian et al., 2016). In summary, pattern formation in ILC has been

studied extensively at different control parameters using experiments, numerical simulations,

and stability analysis.

Relating a pattern forming instability identified by stability analysis at a critical control param-

eter to experimental or numerical observations above the critical control parameter requires

a particular underlying bifurcation structure: At a critical control parameter, attracting state

A loses stability to a forward bifurcating stable branch B . Above the critical control param-

eter, the unstable pattern A has lost dynamical relevance and the dynamics approaches the

attracting state B that has emerged at the critical control parameter. Attracting state B remains

observable in the flow until it undergoes another bifurcation and itself loses stability. Explain-

ing the succession of patterns observed in ILC and other flows based on stability analysis

thus relies on two conditions: First, a forward bifurcating stable branch continues to the

control parameters where the pattern is observed without undergoing another bifurcation.

Second, there is a single attracting state that describes the asymptotic dynamics both before

and after the bifurcation. Under these conditions, a sequence of patterns can be described by

a succession of single-state attractors arranged in a forward bifurcation sequence. However,

such a ’sequence of bifurcations’-approach (Busse and Clever, 1996), envisioning a forward

bifurcating scenario, is not applicable a priori. Rather, in order to describe observed patterns

via sequences of forward bifurcations, the bifurcation structure needs to be confirmed by

following the fully nonlinear bifurcation branches. Moreover there might not be a single

attracting state as evidenced by observations of complex non-saturated temporally evolving

dynamics in large domains. The time-dependent, complex dynamics was speculated to be

a consequence of experimental imperfections (Clever and Busse, 1995; Busse and Clever,

43



Chapter 4. Temporal transitions along dynamical connections between invariant states

1996) but have also been observed in direct numerical simulations in the absence of such

imperfections (Subramanian et al., 2016). Consequently, an alternative approach is required

to explain those complex patterns beyond onset.

Recent studies of subcritical shear flows have demonstrated the dynamical relevance of un-

stable exact invariant states, also called exact coherent states (Kawahara et al., 2012, and

references therein). Invariant states are numerically fully resolved exact solutions of the gov-

erning nonlinear Navier-Stokes equations representing non-trivial flow structures or patterns

in the flow as either steady equilibrium states or exact periodic orbits. The dynamical relevance

of weakly unstable invariant states follows from their ability to transiently attract and repel

the dynamics along their stable and unstable manifolds (Gibson et al., 2008b; Halcrow et al.,

2009; Chandler and Kerswell, 2013; Suri et al., 2017; Farano et al., 2019). Whenever invariant

states are transiently approached by the dynamics, they become transiently observable in the

flow (Hof et al., 2004). These results support a dynamical systems description of turbulent

flow where invariant states and their stable and unstable manifolds form a dynamical network

embedded in the ‘strange’ state space attractor generating the complex turbulent dynamics

(Lanford, 1982). Likewise, within this nonlinear dynamical systems approach, we expect

unstable invariant states in ILC representing pattern motifs to support the complex pattern

dynamics observed in experiments and simulations.

Shortly after the discovery of the first unstable invariant state in Couette flow (Nagata, 1990;

Clever and Busse, 1992; Waleffe, 1998), invariant states were also identified in ILC. Busse and

Clever (1992) revisited their analysis of the wavy instability of longitudinal rolls (Clever and

Busse, 1977), and constructed stable and unstable finite amplitude states corresponding to

wavy rolls combining a Galerkin method with Newton-Raphson iteration. Clever and Busse

(1995) applied the same approach to tertiary and quarternary states for convection in a vertical

layer, where shear forces dominate over buoyancy. Since then, invariant states have not been

studied in ILC. In pure shear flows however, the significance of invariant states for the temporal

transition between subcritical laminar and turbulent shear flows was extensively investigated

(Kerswell, 2005; Eckhardt et al., 2007; Kawahara et al., 2012). In linearly stable shear flows, the

transition to turbulence requires finite amplitude perturbations of the stable laminar flow

that cross the edge of chaos between laminar and turbulent attractors in state space. This

edge is spanned by the stable manifold of invariant states with a single unstable direction, a

so-called edge state (Skufca et al., 2006; Schneider et al., 2007), such that the edge separates

the coexisting attractors of turbulent and laminar flow (Schneider et al., 2008). Consequently,

invariant edge states guide the transition to turbulence for linearly stable flows. In contrast to

canonical subcritical shear flows, the laminar flow in ILC undergoes a linear instability so that

infinitesimal perturbations are sufficient to trigger temporal transitions away from laminar

flow. The role of invariant states for the dynamics leaving the unstable laminar flow and their
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4.2. Oberbeck-Boussinesq equations for inclined layers

significance for the observed complex dynamics has not been investigated in ILC. They may

act as transiently visited unstable states or serve as asymptotic attractors.

In the present chapter we numerically study ILC at Pr = 1.07 in minimal periodic domains

and identify stable and unstable invariant states underlying different convection patterns at

selected control parameters where these basic convection patterns are observed in simulations

and experiments. Temporal transitions from unstable laminar flow are characterized using

a phase portrait analysis of the state space trajectories describing the temporal evolution.

For seven different combinations of inclination angle and imposed temperature difference

transient visits to unstable invariant states are observed before the dynamics approaches

attracting stable invariant states.

Depending on the inclination angle, the instability of the laminar flow is either driven by

buoyancy or shear (Chen and Pearlstein, 1989; Daniels et al., 2000). At small inclinations,

shear forces are negligible in the laminar state so that the emerging longitudinal convection

rolls are associated with a buoyancy driven instability. At large inclinations, the wall-normal

lift-up mechanism due to buoyancy is negligible so that the instability giving rise to transverse

convection rolls is shear driven. Disentangling the role of buoyancy and shear for higher order

instabilities driving the dynamics away from non-trivial unstable states is not straightforward

as even at low inclinations, the flow field of any type of convection roll will produce significant

shear, and at any inclination, temperature gradients aligned with gravity will lead to buoyant

forcing. We demonstrate that phase portraits based on energy transport rates provide a

systematic approach for clearly characterising any instability of an equilibrium state as either

shear or buoyancy driven.

The chapter has the following structure. Section 4.2 introduces the governing equations for

ILC, symmetries of the system and equations for energy transfer. Numerical methods for a

dynamical systems description are introduced in Section 4.3. Temporal transitions between in-

variant states are presented in seven phase portraits in Section 4.4 and discussed in Section 4.5.

4.2 Oberbeck-Boussinesq equations for inclined layers

We consider thermal convection of a Newtonian fluid in an infinite layer of thickness H

confined between a hot and a cold wall at prescribed temperatures T1 and T2, respectively.

The fluid layer is inclined against the vector of gravitational acceleration g by angle γ (Figure

4.1). The dynamics of the incompressible flow with velocity vector U = [U ,V ,W ](x, y, z, t),

temperature T = T (x, y, z, t ), and pressure p = p(x, y, z, t ) relative to the hydrostatic pressure

P = P (x, y, z, t), where ∇P = ĝ , is given by the nondimensionalised Oberbeck-Boussinesq
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equations

∂U

∂t
+ (U ·∇)U =−∇p + ν̃∇2U − ĝ T , (4.1)

∂T
∂t

+ (U ·∇)T = κ̃∇2T , (4.2)

∇·U = 0 , (4.3)

with ν̃ = (Pr/Ra)1/2 and κ̃ = (PrRa)−1/2. This set of nonlinear partial differential equations

has three control parameters: the angle of inclination γ against the gravitational unit vector

ĝ =−sin(γ)ex −cos(γ)ez , the Prandtl number Pr = ν/κ, the ratio between kinematic viscosity

ν and thermal diffusivity κ, and the Rayleigh number Ra = g α∆T H 3/(νκ) where ∆T = T1−T2

and α is the thermal expansion coefficient.

In the nondimensionalised equations (4.1-4.3), temperature is measured in units of ∆T and

lengths in units of H . To describe convective fluid motion with an appropriate scale, we

choose to measure velocity in units of the free fall velocity U f = (g α∆T H)1/2 that has also

been used in previous studies of Rayleigh-Bénard convection at control parameters above

convection onset (e.g. Gray and Giorgini, 1976; Chillà and Schumacher, 2012). The free

fall velocity scale implies a free-fall time unit T f = (H/g α∆T )1/2. Note that an alternative

nondimensionalisation using the heat diffusion time scale Td = H 2/κ is also common in

thermal convection studies (e.g. Subramanian et al., 2016). The conversion factor is T f =
Td /

p
RaPr.

The nondimensionalised boundary conditions at the walls are

U (z =±0.5) = 0 , (4.4)

T (z =±0.5) =∓0.5 . (4.5)

4.2.1 Laminar base flow

Equations (4.1-4.3) with boundary conditions (4.4-4.5) admit a laminar solution that only

depends on the wall-normal coordinate z and is spatially uniform in x and y

U0(z) = sin(γ)

6 ν̃

(
z3 − 1

4
z

)
ex , (4.6)

T0(z) =−z , (4.7)

p0(z) =Π−cos(γ)z2/2 , (4.8)
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Figure 4.1 – Schematic of inclined layer convection. Streamwise, spanwise and wall-normal
dimensions are indicated by x, y and z, respectively. A layer of an incompressible Newtonian
fluid is confined between a lower hot and an upper cold wall. The layer is inclined against
gravity g at angle γ. Hot fluid flows up the hot wall while cold fluid descends along the cold
wall generating a laminar base flow (4.6-4.7) with linear temperature profile T0(z) and cubic
velocity profile U0(z), as outlined by grey lines. The competition of buoyancy and shear gives
rise to a variety of intricate convection patterns when the three control parameters, inclination
γ, thermal driving Ra and Prandtl number Pr are varied.

with arbitrary pressure constant Π. The linear temperature profile and the cubic velocity

profile of this laminar base flow are sketched in Figure 4.1 (grey lines). Within the laminar

solution, buoyancy forces caused by the linear temperature profile as well as shear forces

due to the velocity gradients in the buoyancy driven cubic velocity profile are present. The

former is destabilizing for −90◦ < γ< 90◦ while shear can lead to instabilities at all non-zero

inclination angles. At sufficiently strong driving, instabilities create overturning convective

motion so that the laminar solution is no longer observed and the symmetries of ILC are

broken.

4.2.2 Symmetries

ILC at zero inclination (γ= 0◦) corresponds to Rayleigh-Bénard convection with isotropy and

homogeneity in the x-y-plane. At all inclinations 0◦ 6= γ 6= 180◦, the isotropy of the horizontal

layer is broken by the wall-parallel component of gravity, driving the laminar flow along the

x-dimension. The laminar flow in ILC is still homogeneous and thereby invariant under

continuous translations

τ′(∆x,∆y)[U ,V ,W,T ](x, y, z) = [U ,V ,W,T ](x +∆x, y +∆y, z) . (4.9)

47



Chapter 4. Temporal transitions along dynamical connections between invariant states

Moreover, ILC is invariant under discrete reflections

πy [U ,V ,W,T ](x, y, z) = [U ,−V ,W,T ](x,−y, z) , (4.10)

πxz [U ,V ,W,T ](x, y, z) = [−U ,V ,−W,−T ](−x, y,−z) . (4.11)

The symmetry group of ILC consists of all products of the generators {πy ,πxz ,τ′(∆x,∆y)}. We

indicate this group by Si lc = 〈πy ,πxz ,τ′(∆x,∆y)〉, where angle brackets 〈〉 imply all products

of elements given in the brackets. ILC has the same symmetries as plane Couette flow where

analogous notation is commonly used (e.g Gibson and Brand, 2014).

Instead of considering an infinite fluid layer, we consider a finite periodic fluid layer by

imposing periodic boundary conditions in x and in y , [U ,V ,W,T ](x, y, z) = [U ,V ,W,T ](x +
Lx , y, z) and [U ,V ,W,T ](x, y, z) = [U ,V ,W,T ](x, y +Ly , z), respectively. Due to the periodic

boundary conditions, we express continuous translations as

τ(ax , ay )[U ,V ,W,T ](x, y, z) = [U ,V ,W,T ](x +ax Lx , y +ay Ly , z) , (4.12)

with shift factors ax , ay ∈ [0,1) scaling the spatial periods Lx and Ly of the periodic domain.

Continuous translations in periodic domains are cyclic and shifts by Lx or Ly correspond to

the identity operator τ(0,0). Since the streamwise direction x and the spanwise direction y

of ILC can be rotated and reflected, the symmetry group of ILC in x-y-periodic domains is

O(2)x ×O(2)y , where × is the direct product.

The relevance of the system’s symmetries for the dynamics is that once a state is invariant

under a symmetry transformation of the equivariance group Si lc , [U ,T ] =σ[U ,T ] with σ ∈
Si lc , the evolution under the full nonlinear governing equations (4.1-4.3) will preserve the

symmetry and the evolving trajectory will remain in the symmetry subspace of all possible

states invariant under σ (e.g. Cvitanović et al., 2017). Consequently, trajectories and invariant

states of the infinitely extended system without any symmetry constraints can be computed in

symmetry subspaces, including those defined by the discrete translation symmetries imposed

by periodic boundary conditions. To compute states in symmetry subspaces defined by

a discrete symmetry σ ∈ Si lc satisfying σ2 = 1, we impose σ using a projection ([U ,T ]+
σ[U ,T ])/2 during simulations. Any exact solution in a symmetry subspace remains a valid

solution of the full unconstrained infinite system. Imposing symmetries does not affect the

state but may disallow instabilities breaking the imposed symmetries and thereby simplifies

numerical access to invariant state with symmetries.

All invariant states discussed in the present chapter are invariant under transformations of

subgroups of Si lc = 〈πy ,πxz ,τ(ax , ay )〉. We will specify the generators of the symmetry group

S of invariant states in terms of the combinations of πy , πxz and τ(ax , ay ). The choice of

generators is not unique because translations τ(ax , ay ) define conjugacy classes of group
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elements, corresponding to the free choice of the spatial phase of invariant states in x and

y . We choose the spatial phase such that three-dimensional inversion πx y z = πyπxz , where

applicable to invariant states, applies with respect to the domain origin at (x, y, z) = (0,0,0).

4.2.3 Energy transfer

ILC is a thermally driven dissipative system. The externally imposed temperature difference

results in the thermal energy flux that is required to sustain those temperature gradients that,

together with gravity, generate buoyancy forces driving fluid flow. Thereby thermal energy

is converted to kinetic energy, that is eventually dissipated by viscosity. The kinetic energy

balance is obtained by multiplying (4.1) with U and space averaging equations (4.1) over the

entire domain volumeΩ, denoted by 〈〉Ω,

1

2

∂

∂t

〈
U 2〉

Ω = 〈
ĝ U T 〉

Ω− ν̃〈
(∇×U )2〉

Ω =(I −D) I0 . (4.13)

The rate of change of kinetic energy in Ω is given by the difference between energy input I ,

the work due to buoyancy forces, and viscous dissipation D (Malkus, 1964). These rates are

measured in units of the laminar transfer rate

I0 = D0 = sin2(γ)/(720 ν̃) . (4.14)

Since the kinetic energy of all equilibrium states remains constant, energy transfer rates need

to be balanced, implying I = D. A periodic orbit will be characterized by instantaneously

unbalanced rates but the net energy transfer integrated over one period T of the orbit vanishes,∫ T
0 (I −D)d t = 0. For equilibria with relative dissipation D/I = 1, Equation (4.13) allows to

distinguish two destabilising mechanisms. When buoyancy forces drive an instability of an

equilibrium state, I increases over D implying D/I < 1 for the initial dynamics triggered by

the instability. A shear driven instability of an equilibrium leads initially to D/I > 1 because

rising shear increases D over I . Local oscillatory instabilities of equilibrium states discussed in

the present chapter cause oscillation amplitudes to grow symmetrically around D/I = 1 with

an exponential growth rate. The symmetry around D/I = 1 suggests that buoyancy and shear

forces contribute equally to the destabilising mechanism underlying an oscillatory instability.

We will characterize all invariant states and their instabilities in terms of energy transfer.

On average, the thermal heat flux through any plane parallel to the walls is independent of

the height z. At the walls, the transport is purely diffusive but in the center of the domain

convective heat transport can be significant. To quantify the instantaneous, time-dependent,

heat transport due to convective effects, we formulate the energy balance equation for heat

not averaged over the full but over the lower half of the domain. This generates boundary flux
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terms at the midplane between the walls, where convective transport is expected to be largest.

The volume average of (4.2) over the lower half of the domain volumeΩ/2, yields

∂

∂t
〈T 〉Ω/2 =

〈
−κ̃ ∂

∂z
T

〉
A(−0.5)

−
〈

W T − κ̃ ∂

∂z
T

〉
A(0)

=(J −Nu) J0 . (4.15)

Here 〈〉A(z) denote averages over planes at height z parallel to the walls. The rate of change

of thermal energy averaged over the lower half of the domain Ω/2 is given by the diffusive

boundary heat flux J at the lower wall and the instantaneous Nusselt number Nu at the

midplane. J0 is the laminar diffusive heat flux

J0 = Nu0 = κ̃ . (4.16)

As for the kinetic energy balance, equilibrium states imply J = Nu. Periodic orbits will have

unbalanced instantaneous fluxes that average to vanishing net thermal energy change over

one period.

4.3 Numerical approach

We perform direct numerical simulations of (4.1-4.3) in x-y-periodic domains and compute

invariant states using matrix-free Newton methods. The evolution of simulated state trajecto-

ries is studied relative to invariant states in ‘phase portraits’ defined by the net kinetic energy

transfer rates in (4.13). The technical details are introduced in the following sections, and the

approach is demonstrated by explaining the transition dynamics from laminar flow to straight

convection rolls.

4.3.1 Direct numerical simulations

The Oberbeck-Boussinesq equations for inclined layers (4.1-4.3) in a x-y-periodic domain are

solved using a pseudo-spectral method (Canuto et al., 2006, p.133ff), fully resolving all dissi-

pative scales in a direct numerical simulations (DNS). After substituting the base-fluctuation

decomposition [U ,T ] = [U0,T0]+ [u,θ] into (4.1-4.3), the continuous field variables of the fluc-

tuations [u,θ](x, y, z, t ) are numerically approximated by Fourier and Chebychev expansions

of the form

[u,θ] (x , t ) =
Kx∑

kx=−Kx

Ky∑
ky=−Ky

Nz−1∑
j=0

[
û, θ̂

]
kx ,ky , j (t ) C j (z) e2πi(kx x/Lx+ky y/Ly ) (4.17)

where C j (z) is the j -th Chebyshev polynomial of the first kind, linearly rescaled to the interval

z ∈ [−0.5,0.5]. Velocity and temperature are fixed at the walls of the domain at u(z =±0.5) =
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0 and θ(z = ±0.5) = 0, as the inhomogeneous boundary conditions are absorbed in T0(z).

Owing to incompressibility, pressure p is a dependent variable and fully determined by u.

Pressure is obtained by solving a τ-problem with the influence matrix method (Kleiser and

Schumann, 1980; Canuto and Landriani, 1986). To completely specify the problem with

periodic boundary conditions, an integral constraint on either pressure gradient or mean flux

is required. We keep the mean-pressure gradient along the x- and the y-direction constant,

specifically
∫ Ly

0

∫ Lx
0 ∇p dxdy = 0. Technically, we modify pressure as p = p ′ +U 2/2 which

allows expressing the nonlinear term in (4.1) in rotational form U × (∇×U ) = (U ·∇)U −U 2/2.

After evaluation of the nonlinear terms in (4.1) and (4.2) in physical space, the products are

transformed to a spectral representation using the FFTW library (Frigo and Johnson, 2005)

and dealiased using the 2/3 rule (Canuto et al., 2006, p.133f). Due to dealiasing, a grid of

size Nx × Ny × Nz in physical space implies spectral summation bounds of Kx = Nx /3− 1

and Ky = Ny /3−1 in (4.17). We use e.g. [Nx , Ny , Nz ] = [32,32,25] to resolve a single pair of

convection rolls in a domain of extent [Lx ,Ly ] = [2.2211,2.0162]. This choice is discussed

in Section 4.3.3. For time-marching, an implicit-explicit multistep algorithm of 3rd order

is implemented solving the diffusion terms and the pressure term fully implicitly, and the

nonlinear terms and the buoyancy term explicitly. See Section 2.2.6 for the details of the time-

stepping algorithm. The code is written in C ++ as an extension module to the MPI-parallel

software Channelflow 2.0 (Gibson et al., 2019).

The numerical implementations in Channelflow-ILC has been validated by reproducing three

key results with different levels of importance of nonlinear effects. First, a highly resolved

critical threshold for the linear onset of convection in Subramanian et al. (2016) is accurately

reproduced (see Section 4.3.3). Second, numerical continuations in γ and Ra of invariant

states underlying longitudinal convection rolls reproduce an analytic scaling invariance of the

nonlinear Oberbeck-Boussinesq equations (4.1-4.3), as discussed in Section 5.3 (Equations

5.15-5.19). Third, the statistics of fully turbulent Rayleigh-Bénard convection match previous

results on the scaling of Nu ∼ Ra (Section 2.2.7).

4.3.2 Computation of invariant states

We not only simulate the time evolution of ILC but also compute invariant states. Any state

of ILC can be expressed as a state vector x(t ) = [u,θ](x, y, z, t ) in a state space of ILC for given

boundary conditions. The unique time evolution of state vectors x(t ) is computed using DNS.

Invariant states are defined as particular state vectors x∗ such that

G(x∗) =σFT (x∗)−x∗ = 0 , (4.18)

where FT is the evolution operator for equations (4.1-4.3) over a finite time period T defining

a dynamical system for ILC. Operator σ is an element of the symmetry group Silc and applies a
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discrete coordinate transformation in terms of (4.10-4.12). Since equations (4.1-4.3) are partial

differential equations, the state space of this dynamical system is of infinite dimension. The

numerical representation of ILC discussed in Section 4.3.1 renders the state space dimension

finite. The spatially discretised partial differential equations correspond to a set of coupled

ordinary differential equations, one for each of the four fields [u, v, w,θ] at each spatial colloca-

tion point. Thus, the dynamical system has a state space with N = 4×Nx×Ny ×Nz×4/9 dimen-

sions. The factor 4/9 accounts for the cut-off wavenumbers due to dealiasing. To solve (4.18)

efficiently in an N -dimensional state space, Channelflow-ILC employs a matrix-free Newton-

Raphson iteration, based on GMRES to construct a Krylov subspace, together with a Hookstep

trust region optimization (Viswanath, 2007). The trust region optimization increases the

radius of convergence. To be within a radius of convergence of the Newton-Raphson method,

the initial state of the iteration must be close to an invariant state. Full convergence within

double-precision arithmetic requires the residual of (4.18) to be ||G(x)||2 =O(10−16). Here,

we define the normalized L2-norm of state vectors as ||x ||2 = (Lx Ly )−1/2(
∫

[u,θ]d xd yd z)1/2.

Once invariant states have converged in a Newton iteration, their spectrum of eigenvalues

can be computed using Arnoldi iteration (Viswanath, 2007) and bifurcation branches can be

computed using continuation methods (see Dijkstra et al., 2014, for a review).

We distinguish two types of invariant states, namely equilibrium states (EQ) and periodic

orbits (PO). If the period T in (4.18) can be arbitrarily chosen a priori, then invariant states are

steady states or EQs. We use T = 20 to compute an EQ. If invariant states require T to match

a specific time period, the state is unsteady but exactly recurrent over T and the invariant

state is a PO. The period T of a PO is determined in the Newton iteration. There are additional

classifications of EQs and POs. If σ ∈ Si lc in (4.18) with σ 6= 1, the invariant state is a relative in-

variant state. Relative EQs are traveling wave states (TW) that are steady states in a co-moving

frame of reference. TWs satisfy (4.18) with σ= τ(ax , ay ), where shift factors ax and ay must be

determined in the Newton iteration. A relative PO might also travel over its period T requiring

a specific σ = τ(ax , ay ). Some periodic orbits that have σ = 1 after a full period T still may

exploit a discrete symmetry operation σ 6= 1 after a relative period T ′ = T /n with n ∈N. This

type of relative PO is a ‘pre-periodic orbit’ (see e.g. Budanur and Cvitanović, 2017).

Where possible, we name invariant states according to the existing names of observed con-

vection patterns and instabilities in Subramanian et al. (2016). We will show that specific

nonlinear invariant states underlie specific convection patterns and that the specific states

can be linked, in most cases, to bifurcation points corresponding to specific instabilities. To

reflect the link between observed patterns, invariant states and instabilities but also to clearly

distinguish between the three distinct objects, we use different symbols/fonts to indicate: An

observed “pattern X” as PX , instabilities linked to this pattern as P Xi , and exact invariant

states underlying the pattern as P X .
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(a) (b)

Figure 4.2 – (a) Critical thresholds Rac (γ) for the instabilities to longitudinal rolls (LRi ) and
transverse rollse (T Ri ) from linear stability analysis of B at Pr = 1.07 (Subramanian et al., 2016).
(b) Bifurcation branches of invariant states LR and T R at γc2 bifurcate together from B at
Rac2 = 8053.1. When computing LR and T R in a minimal domain of size [Lx ,Ly ] = [λx ,λy ],
LR is stable (solid line) and T R is unstable (dotted line).

4.3.3 Straight convection rolls as equilibrium states

The simplest invariant state in ILC is the laminar base flow (4.6-4.8), denoted as B and rep-

resenting a zero-state for the fluctuations [u,θ] = 0. When B becomes dynamically unstable,

straight convection rolls may form. In ILC at γ= 0◦, the case equal to Rayleigh-Bénard convec-

tion, the critical threshold for the onset of convection is Rac (γ= 0◦) = 1707.76 (Busse, 1978b).

In ILC at γ 6= 0◦, two types of straight rolls can emerge from the primary instability, either

longitudinal rolls (LR), with orientation along x, or transverse rolls (TR), with orientation

along y . The type of rolls to which B becomes first unstable when Pr is fixed and Ra is in-

creased depends on γ (Gershuni and Zhukhovitskii, 1969; Hart, 1971a). Figure 4.2a shows the

curves for critical thresholds Rac (γ) at Pr = 1.07. The point in the γ-Ra-plane where LRi and

T Ri have the same critical threshold is a condimension-2 point. We reproduce this point at

γ = 77.7567◦ ≡ γc2 and Rac (γc2) = 8053.1 ≡ Rac2 via numerical continuation of equilibrium

states LR and T R down in Ra to their exact bifurcation point from B (Fig. 4.2b). LR is invariant

under the symmetry group Slr = 〈πxzτ(0,0.5),πyτ(0,0.5),τ(ax ,0)〉, and T R is invariant under

Str = 〈πxz ,πy ,τ(0, ay )〉. Both equilibrium states, LR and T R , are numerically fully converged to

satisfy (4.18). Useful initial states for the Newton iteration are obtained from a ‘phase portrait’

analysis as explained in the following section.

Floquet analysis suggests streamwise and spanwise wavelengths for the primary instability

to longitudinal and transverse rolls at the codimension-2 point (Subramanian et al., 2016).

Accordingly we choose the periodic domain to match wavelengthsλx = 2.2211 andλy = 2.0162

of instabilities T Ri and LRi , respectively. For the domain size [Lx ,Ly ] = [λx ,λy ], we have
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Chapter 4. Temporal transitions along dynamical connections between invariant states

reproduced the codimension-2 point at [γc2,Rac2] = [77.7567◦,8053.1]. We confirmed that all

given digits are significant. The step-size of the continuation was chosen sufficiently small

to indicate the bifurcation point at this accuracy. Moreover, increasing the grid resolution

beyond [nx ,ny ,nz ] = [32,32,25] does not change the result. We fix λx = 2.2211 and λy = 2.0162

as constants in this chapter, and choose all periodic domains to be periodic over [Lx ,Ly ] =
[l λx ,mλy ] and to be discretised with [Nx , Ny , Nz ] = [l nx ,m ny ,nz ] with l ,m ∈N. Thus, the

invariant states discussed here have prescribed pattern wavelengths, unlike pattern forming

instabilities calculated using a Floquet analysis.

4.3.4 Phase portrait analysis

Temporal transitions from laminar flow to longitudinal or transverse rolls are studied by

initialising a simulation with small perturbations around the dynamically unstable base state

B and visualizing the time evolution in a state space projection representing a ‘phase portrait’.

Two state vector trajectories x(t) are simulated just above the codimension-2 point, at γc2

and Ra = 8500 > Rac2. Each trajectory starts from B perturbed by small amplitude noise of

O(10−5). The evolution of x(t ) is simulated in the symmetry subspace of (λx ,λy )-periodicity,

corresponding to the domain size, and either Slr or Str. Imposing either Slr or Str causes x(t )

to remain in the symmetry subspace since (4.1-4.3) are equivariant under Slr and Str. Each

symmetry subspace contains only one type of straight convection rolls. Thus, the choice of

either Slr or Str selects whether longitudinal or transverse rolls emerge.

The longitudinal and the transverse state trajectories are analysed in a ‘phase plane’ spanned

by kinetic energy input I and relative viscous dissipation D/I defined in (4.13). The D/I -axis

allows to distinguish two types of instabilities of equilibrium states in ILC satisfying D = I . The

transition towards LR is triggered by a buoyancy driven instability of B that initially increases

I over D . The transition towards T R is triggered by a shear driven instability of B that initially

increases D over I . The phase portrait illustrates that the state LR is reached via a temporal

transition from a buoyancy driven instability of B , and T R is reached via a temporal transition

from a shear driven instability of B (Figure 4.3a).

The phase portrait analysis not only characterises the forces driving an instability but also

helps to identify good initial guesses for Newton iterations that may converge to invariant

states. After a stage of exponential growth in the transition from B , the two state trajectories

saturate and the dynamics slows down exponentially (Figure 4.3a). Exponential slow-down

near D/I = 1 suggests the presence of an equilibrium state, and indeed, the two final state

vectors x(t = 1000) are close to invariant states and good initial guesses for a Newton iteration.

They converge to LR and T R, respectively, and provide the starting point for the numerical

continuation shown in Figure 4.2b. Consequently, the phase portrait analysis is useful for

finding invariant states during temporal transitions. Moreover, the phase portrait clearly

illustrates how the dynamics follow dynamical connections between invariant states, in this
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Figure 4.3 – (a) Simulated state trajectories (grey dots) evolving from noise around the unstable
laminar base flow B at γc2 and Ra = 8500 over time t (left), and plotted as phase portraits in a
plane of kinetic energy input I and relative dissipation D/I (right). The DNS is confined to
either Slr and Str, allowing either a buoyancy driven instability to initiate a temporal transition
to LR or a shear driven instability to initiate a temporal transition to T R. Arrows indicate
the direction of the evolution. Exact equilibrium states LR and T R are visualized by 3D
contours at 1/3[min(θ),max(θ)] and the inplane components of u at the domain sides. (b)
Without imposing discrete symmetries, T R is dynamically unstable. Perturbing T R initiates a
dynamical connection to LR with fast dynamics near the unstable manifold of T R and slow
dynamics near the stable manifold of LR.
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case B → LR and B → T R. We use the term ‘dynamical connection’ for state trajectories

connecting the state space neighborhood of two invariant states in a finite time. Dynamical

connections indicate the existence of a nearby heteroclinic connection requiring infinite time

to be traversed (e.g. Farano et al., 2019).

The dynamical stability of LR and T R at γc2 and Ra = 8500 is characterised using Arnoldi

iteration in the symmetry subspace of the (λx ,λy )-periodic domain. LR is stable and T R is

weakly unstable with respect to two shift-symmetry related three-dimensional, longitudinally

oriented, eigenmodes with linear growth rate of ωr = 0.044. These unstable eigenmodes of T R

do not exist in the symmetry subspace defined by Str where the temporal transition to stable

T R was simulated. However, the simulated dynamical connection B → T R also exists in the

larger subspace where Str is not imposed and B → T R connects two unstable invariant states.

When perturbing unstable T R, a buoyancy driven instability triggers a dynamical connection

T R → LR. Along this connection the dynamics undergo a rapid slow-down suggesting a

transition from the fast unstable manifold of T R to the slow stable manifold of LR whose

leading eigenvalue is ωr =−0.016 (Figure 4.3b).

In summary, the phase portrait analysis serves three purposes. First, high-dimensional state

space trajectories can be visualised in a two-dimensional projection. Second, close approaches

to invariant states and a slow-down of the dynamics provide useful initial guesses for Newton

iterations to converge. Thus, the phase portrait analysis gives access to invariant states. Third,

the type of instability triggering a transition from an equilibrium state can be characterized as

either buoyancy driven or shear driven via the departure from the D/I = 1 line in the phase

portrait.

4.4 Transitions to tertiary states

On increasing Ra, secondary patterns of regular straight convection rolls give way to five differ-

ent tertiary convection patterns (Daniels et al., 2000). These patterns have been associated

with five different secondary instabilities (Subramanian et al., 2016). The type of convection

pattern emerging when increasing Ra depends on the inclination angle γ. Following the cited

work, we study the five tertiary convection patterns in ILC at Pr = 1.07. In the parameter space

γ ∈ [0◦,120◦] and ε ∈ [0,2], where ε= (Ra−Rac )/Rac is a normalized Rayleigh number relative

to the critical threshold Rac (γ) for convection onset (Figure 4.2a). We select specific control

parameters where the patterns have been observed.

The following sections apply the phase portrait analysis outlined in Section 4.3.4 to each con-

vection pattern individually. Instead of discussing the five patterns in order of increasing angle

of inclination γ, we choose to order the patterns in terms of the complexity of the transition

dynamics towards the attractive invariant state underlying the pattern: first, transitions to

equilibrium states (Section 4.4.1), second, transitions to periodic orbits (Section 4.4.2), and

third, transition dynamics in the absence of an attractive tertiary state (Section 4.4.3).
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Figure 4.4 – (a) State trajectory evolution from the unstable base state B at γ = 40◦ and
Ra = 2385 (ε= 0.07). After a transient in the vicinity of LR, the shear driven instability W Ri of
LR makes the trajectory follow a stable spiral towards equilibrium state W R . (b) Flow structure
of W R in a periodic domain of size [2λx ,λy ].

4.4.1 Transitions with equilibrium state attractor

Wavy rolls

The convection pattern of wavy rolls (WR) has been observed in early experiments (Hart,

1971a) and associated to the wavy instability W Ri of LR (Clever and Busse, 1977), also found

for longitudinal rolls in Benard-Couette flow (Clever et al., 1977). Hart (1971b) already hypoth-

esised a relation between WR and wavy vortex flow in Taylor-Couette experiments (Coles,

1965). Such a relation was later found to exist, and exploited in the first constructions of in-

variant states underlying wavy velocity streaks in subcritical shear flows (Nagata, 1990; Clever

and Busse, 1992). WR are observed in ILC at control parameters [γ,ε,Pr] = [40◦,0.07,1.07]

(Daniels et al., 2000). We simulate a temporal transition starting from small-amplitude noise

around the unstable base flow at these control parameters. The size of the periodic domain is

[2λx ,λy ] and no additional discrete symmetries are imposed.

The phase portrait reveals a two-stage transition form the base flow B to wavy rolls. First, a

buoyancy driven instability of B leads to a slow transient over 700 < t < 1400 in the vicinity

of LR. Second, a shear driven instability of LR leads to a spiraling trajectory on which the

dynamics approach the equilibrium state W R (Figure 4.4). The spectrum of eigenvalues

of W R has the complex pair (ωr ,±ωi ) = (−0.007,±0.039) closest to the imaginary axis. The

imaginary part suggests an oscillation period on the spiraling trajectory of T = 2π/ωi = 161.

The decaying oscillations of the trajectory for t > 1500 match this period. The flow structure of

equilibrium state W R shows the characteristic wavy modulations observed in experiments and

simulations (Figure 4.4b). W R are invariant under shift-reflect and shift-rotate symmetries
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Figure 4.5 – (a) Spectrum of leading eigenvalues of LR explains exponential approach and
escape rates relative to LR . (b) L2-distance between LR and the state trajectory shown in Figure
4.4 illustrates exponential approach and escape dynamics in the state space neighborhood
of LR. The dotted line marks the exponential rates given by the leading stable and unstable
eigenvalues of LR.

Swr = 〈πyτ(0.5,0.5),πxzτ(0.5,0.5)〉. These symmetries are analogous to the symmetries of wavy

velocity streaks in plane Couette flow (e.g. Gibson et al., 2008b).

The state trajectory follows a sequence of dynamical connections B → LR →W R . The transient

close to LR, a saddle point with stable and unstable eigendirections, follows exponential dy-

namics. The leading eigenvalues of LR are real, [ω1,2,ω3,ω4] = [0.038,10−9,−0.039], and define

the exponential rate of approach, ∼ eω4t , and escape, ∼ eω1,2t (Figure 4.5). The double multi-

plicity of the positive eigenvalue is a result of the continuous translation symmetry τ(ax ,0)

of LR allowing two orthonormal eigenmodes of arbitrary x-phase. Continuous translations

τ(0, ay ) are not an invariance of LR but change the y-phase of LR and generate a continuum

of equivalent states. The Goldstone mode corresponding to the translation invariance of LR

is the marginally stable eigenmode with eigenvalue ω3. Therefore, the pitchfork bifurcation

creating LR is a circle pitchfork bifurcation(Crawford and Knobloch, 1991). The non-zero

finite value of ω3 is a measure for the accuracy of the Arnoldi iteration. The minimal distance

of the state trajectory to LR is ||x(t = 1050)−LR||2/||LR||2 ≈ 10−8. Consequently, the transition

dynamics from B generate a trajectory transiently visiting the state space neighborhood of the

unstable equilibrium state LR, as already suggested by the phase portrait.

When increasing thermal driving, the WR pattern is succeeded by weakly turbulent wavy

rolls, also called ‘crawling rolls’ (Daniels et al., 2000). A DNS at ε= 0.5 leads to a much more

complicated phase portrait than at ε= 0.07. At these control parameters, the state trajectory

initially still undergoes the transition sequence B → LR →W R . However, W R is now unstable.

After a transient visit close to W R at t = 500, a buoyancy driven instability of W R leads to

a sequence of large-amplitude, fast oscillations before the state trajectory is attracted to a

small-amplitude, slow bursting cycle (Figure 4.6). The fast transient oscillations have clockwise
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Figure 4.6 – State trajectory evolution from the unstable base state B at γ= 40◦ and Ra = 3344
(ε = 0.5). The trajectory visits unstable LR, followed by a transient visit of W R (inset (c)).
Subsequently, the trajectory undergoes a sequence of rapid oscillations and is finally attracted
to a heteroclinic cycle between equilibrium state OW R and a symmetry related equilibrium.
The time series for 2000 < t < 10000 in inset (a) indicates the increasing time spent near
the equilibrium states. The phase portrait of the heteroclinic cycle is magnified in inset (b).
Since the energy transfer rates do not differ for symmetry related states, the heteroclinic cycle
appears as a homoclinic cycle. See Figure 4.7a for a projection that distinguishes the two
equilibrium states.

revolving trajectories in the D/I -I -plane and dominate the phase portrait. We suspect the

existence of an unstable periodic orbit with similar shaped phase portrait underlying the

transient oscillations. Finding and analysing this periodic orbit is beyond the scope of this

work and discussed elsewhere (Chapter 6). Here, we discuss the slow dynamical attractor at

these control parameters.

The temporal dynamics of ILC at [γ,ε,Pr] = [40◦,0.5,1.07] in a periodic domain of size [2λx ,λy ]

is attracted to a heteroclinic cycle. The cycle dynamically connects an equilibrium state, which

we name oblique wavy rolls (OW R), with a symmetry related equilibrium state τx yOW R

(Figure 4.7). Here, τx y = τ(0.25,0.25) is a shift operator translating the wavy flow structure

by half a pattern wavelength in the direction of the domain diagonal along which the wavy

convection rolls of OW R are aligned. OW R and τx yOW R show two spatial periods of the wavy

pattern along the domain diagonal and both are invariant under transformations of Sowr =
〈πx y z ,τ(0.5,0.5)〉. Without imposing the symmetries in Sowr, OW R and τx yOW R have each

a single purely real unstable eigenmode, denoted as state vector eu and τx y eu , respectively,

that breaks the τ(0.5,0.5)-symmetry by having only one spatial period along the domain

diagonal (Figure 4.7c). Perturbing OW R with eu initiates the temporal transition OW R →
τx yOW R . Perturbing τx yOW R with τx y eu initiates the temporal transition τx yOW R →OW R .
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Figure 4.7 – Robust heteroclinic cycle between two symmetry related equilibrium states at
γ = 40◦ and Ra = 3344 (ε = 0.5). (a) L2-distance relative to the two symmetry related equi-
librium states, OW R and τx yOW R, visualises how the simulated state trajectory (grey dots)
approaches the heteroclinic cycle (black line). The direction of the dynamics is indicated by
black arrows. (b) Flow structure of OW R in a periodic domain of size [2λx ,λy ]. (c) Tempera-
ture contours at midplane illustrate the spatial phase of OW R, τx yOW R, and their unstable
eigenmodes eu and τx y eu , respectively, along the diagonal of the domain (dotted line). The
pattern wavenumbers of equilibria and unstable eigenmodes along the domain diagonals
suggest a nearby 1:2 resonance.
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Together, the two dynamical connections form a heteroclinic cycle. The two involved unstable

eigenmodes eu and τx y eu preserve the symmetriesπx y z andπx y zτ(0.5,0.5), respectively. Thus,

they are analogous to sine- and cosine-eigenmodes in that they first, are orthogonal such that

the L2 inner product is 〈eu ,τx y eu〉 = 0 and second, have a reflection symmetry with respect

to different reflection points, namely πx y z and πx y zτ(0.5,0.5) (Figure 4.7c). When imposing

πx y z -symmetry, the unstable eigenmode τx y eu is disallowed, τx yOW R becomes dynamically

stable, and the associated symmetry subspace Σ1 contains only the dynamical connection

OW R → τx yOW R. When imposing πx y zτ(0.5,0.5)-symmetry, the unstable eigenmode eu is

disallowed, OW R becomes dynamically stable, and the associated symmetry subspace Στ
contains only the dynamical connection τx yOW R → OW R. Hence, the heteroclinic cycle

satisfies all three conditions for the existence of a robust heteroclinic cycle between two

symmetry related equilibrium states (Krupa, 1997):

(i) OW R is a saddle and τx yOW R is an attractor (or sink) in a symmetry subspace Σ1 of the

entire state space of the [2λx ,λy ]-periodic domain.

(ii) There is a saddle-attractor connection OW R → τx yOW R in Σ1.

(iii) There is a symmetry relation between the two equilibrium states, mediated by τx y ∈ Silc.

Robust heteroclinic cycles of this type have been previously described in systems with O(2)-

symmetry that are near a codimension-2 point where bifurcating eigenmodes show a spatial

1:2 resonance (Armbruster et al., 1988; Proctor and Jones, 1988; Mercader et al., 2002; Nore

et al., 2003). In the present case, the existence of OW R with wavenumber m = 2 along the

domain diagonal and with an instability of wavenumber m = 1 suggests a nearby codimension-

2 point where oblique straight rolls become simultaneously unstable to m = 1 and m = 2

wavy modulations. Oblique straight rolls are not discussed here but are a known instability of

laminar ILC (Gershuni and Zhukhovitskii, 1969). In Section 5.3.3, we demonstrate that OW R

of both wavenumbers, m = 1 and m = 2, indeed bifurcate off oblique straight rolls in two

pitchfork bifurcations at only slightly different control parameters, suggesting a 1:2 resonance.

The robust heteroclinic cycle is numerically identified as an attractor of the dynamics suggest-

ing its dynamical stability. The stability of robust heteroclinic cycles depends on the leading

eigenvalues of the involved equilibrium states (Krupa and Melbourne, 1995). The leading

eigenvalues of OW R without imposing additional discrete symmetries are [ω1,ω2,ω3,4] =
[0.016,−0.023,−0.037±0.050]. When imposing πx y z , the contracting eigenvalue ω2 vanishes.

When imposing πx y zτ(0.5,0.5), the expanding eigenvalue ω1 vanishes. Thus, the leading

expanding and contracting eigenvalues belong to two different symmetry subspaces. The

complex eigenvalue ω3,4 is radial as it belongs to both subspaces and does not influence the

stability of the cycle. Since |ω1|/|ω2| < 1, the heteroclinic cycle is dynamically stable (Krupa

and Melbourne, 1995).
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We do not expect this heteroclinic cycle to be stable in larger domains. However, oblique wavy

rolls are observed to evolve slowly in experiments and simulations at lower thermal driving

(Daniels et al., 2008). At the control parameters selected here, observations in larger domains

indicate chaotic dynamics on a faster time scale than the time scale of the approach to the

heteroclinic cycle (Chapter 6). The time period ∆t over which the state trajectory remains

close to an equilibrium increases with time (Figure 4.6a). It should eventually diverge but here

saturates at ∆t ≈O(103). This saturation effect is due to the numerical double-precision of

the DNS. The unstable eigenvalue ω1 = 0.016 of OW R amplifies the numerical noise on a time

scale of log(1016)/ω1 =O(103).

Knots

The convection pattern of knots (KN ) is experimentally observed as ‘knotted’ superposition

of T R and LR just above inclination γc2 (Daniels et al., 2000). Stability analysis confirms

the existence of a K Ni instability of T R (Fujimura and Kelly, 1993). We refer to experimental

and numerical observations of KN at [γ,ε,Pr] = [80◦,0.05,1.07] (Subramanian et al., 2016).

At these control parameters, a temporal transition from the noise-perturbed unstable base

flow is simulated in a periodic domain of size [λx ,λy ]. No additional discrete symmetries are

imposed.

After the initially shear driven transition B → T R, the buoyancy driven instability K Ni of

T R leads to a stable spiral approaching K N , an equilibrium state underlying the observed

KN pattern (Figure 4.8). The spectrum of eigenvalues of stable K N has a complex pair

(ωr ,ωi ) = (−0.0085,±0.0304) closest to the imaginary axis. The linear period of T = 2π/ωi =
207 matches the simulated oscillations on the stable spiral trajectory. The flow structure

of K N shows the characteristic bimodal mix of longitudinal and transverse modes, here,

with a stronger transverse contribution (Figure 4.8b). K N is invariant under symmetries

Skn = 〈πyτ(0,0.5),πx y z〉.

Close to the control parameters where stationary KN are observed, Daniels et al. (2000)

report on bursting dynamics. When simulating a transition at increased ε= 0.15 (Ra = 9338),

the state trajectory, after transiently visiting T R, does not approach K N that has become

unstable. Instead, the trajectory visits again the laminar base flow (T R → B) from where

it approaches a stable periodic orbit with period T = 251 and Skn symmetries. We call this

orbit bursting knots (BK N ). The BK N orbit describes a bursting cycle with slow dynamics

near B and fast dynamics along a clockwise revolving trajectory in the D/I -plane (Figure

4.9). The fast stage shows growth of a transient KN pattern that ultimately forms decaying

longitudinal plumes (Figure 4.9b). Longitudinal modes decay because LRi exists only at higher

ε at γ= 80◦. During the slow stage, the phase portrait of the orbit shows sharp turns near B

suggesting an influence of the stable and unstable manifold of B on the orbit (inset in Figure

62



4.4. Transitions to tertiary states

0 500 1000 1500

t

0.970

0.975

0.980

0.985

0.990

0.995

1.000

I

0.9996 0.9998 1.0000 1.0002 1.0004

D/I

0.970

0.975

0.980

0.985

0.990

0.995

1.000

I

B

TR

KN

KN
i

(a) (b)

K N

Figure 4.8 – (a) State trajectory evolution from the unstable base state B at γ= 80◦ and ε= 0.05
(Ra = 8525). After a transient in the vicinity of T R , the buoyancy driven instability K Ni causes
the trajectory to follow a stable spiral towards equilibrium state K N . (b) Flow structure of K N
in a periodic domain of size [λx ,λy ].

4.9). The bursting dynamics of this specific periodic orbit appears similar to a nonlinear

limit cycle found in natural doubly diffusive convection (Bergeon and Knobloch, 2002) but

does not match the traveling dynamics of the longitudinal bursts observed in ILC at these

control parameters Daniels et al. (2000). The next section discusses two periodic orbits clearly

underlying experimental observations.

4.4.2 Transitions with periodic attractors

Subharmonic oscillations

An oscillatory instability of LR at small inclinations gives rise to a convection pattern of spa-

tially subharmonic oscillations observed in experiments at Pr = 1.07 (Daniels et al., 2000)

and studied using Floquet analysis at Pr = 0.71 (Busse and Clever, 2000). Here, we depart

from our convention to follow the naming of Subramanian et al. (2016) and name this pat-

tern subharmonic standing wave (SSW) instead of longitudinal subharmonic oscillations

to stress the standing wave nature of the pattern. We refer to observations of SSW at

[γ,ε,Pr] = [17◦,1.5,1.07] (Daniels et al., 2000; Subramanian et al., 2016). A temporal tran-

sition is simulated in a periodic domain of size [2λx ,2λy ], well matching the results of the

Floquet analysis in Subramanian et al. (2016). Unexpectedly, the dynamics transiently exhibits

spatially subharmonic oscillations but does not saturate at a stable oscillatory pattern at these

control parameters. Therefore, we reduce the angle of inclinations to γ= 15◦. No additional

discrete symmetries are imposed.

After a rapid transient visit near LR , the dynamics along a drifting spiral trajectory is attracted to

a stable limit cycle, a periodic orbit named SSW (Figure 4.10). The initial part of the transition
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Figure 4.9 – (a) State trajectory evolution from the unstable base state B at γ = 80◦, like in
Figure 4.8, but at increased ε = 0.15 (Ra = 9338). Instead of terminating in a stable spiral,
the trajectory returns to laminar flow from where it approaches the stable periodic orbit
BK N along which knots emerge as bursts. The inset magnifies the phase portrait close to the
laminar base state B . (b) Flow structure of an instance along the periodic orbit BK N illustrates
decaying longitudinal plumes that bring the state trajectory close to laminar flow.
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Figure 4.10 – State trajectory evolution from the unstable base state B at γ= 15◦ and ε= 1.5
(Ra = 4420). The phase portrait illustrates how the instability SSWi leads to an oscillatory
transition LR → SSW along a symmetric unstable spiral approaching periodic orbit SSW (red
solid line). The inset magnifies the phase portrait of the transition LR → SSW .
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transformation σ=πyτ(0.25,0.25).

LR → SSW is symmetric around D/I = 1 indicating that buoyancy and shear forces equally

drive this instability. The periodic orbit SSW revolves clockwise in the D/I -plane. SSW is also

a pre-periodic orbit satisfying condition (4.18) with σssw = πyτ(0.25,0.25) and a pre-period

of T ′
ssw = 12.03. The local oscillatory instability of LR suggests T = 2π/ωi = 45.11, close to

the observed full orbit period of Tssw = 4T ′
ssw = 48.12. After 2T ′

ssw, condition (4.18) requires

σ= τ(0.5,0). The orbit is invariant under inversion and half-box shifts Sssw = 〈πx y z ,τ(0.5,0.5)〉.

Periodic orbits in ILC must exactly balance net transfer of kinetic energy and heat over one

period
∫ T ′

ssw
0 (I −D)d t = 0. The terms in the energy equations (4.13-4.15) oscillate approxi-

mately harmonically with one relative period of SSW . Instances of I −D = 0 or J −Nu = 0

correspond to local extrema of <U 2/2 >Ω and < T >Ω/2, respectively. The phase lag between

kinetic energy and heat phase is 0.37T ′
ssw (Figure 4.11). The Nusselt number varies between

1.88 ≤ Nu ≤ 1.90, close but below the convective heat transfer of LR with Nu = 1.98. The

pattern of SSW over one period can be described as standing wave modulation (panels in

Figure 4.11), a consequence of counter-propagating traveling waves along the hot and cold
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Figure 4.12 – State trajectory evolution from the unstable base state B at γ= 100◦ and ε= 0.1
(Ra = 10050). The phase portrait illustrates how the TO instability leads to an oscillatory
transition LR → T O along an unstable spiral approaching periodic orbit T O (red solid line).
Initial oscillations triggered by T Oi are symmetric with respect to D/I = 1. The inset magnifies
the initial symmetric trajectory from T R.

plumes of LR (Busse and Clever, 2000).

Transverse oscillations

Transverse oscillations (T O) are observed experimentally as chaotic bending modulations of

T R, a pattern also named ‘switching diamond panes’ (Daniels et al., 2000). An oscillatory T Oi

instability is found as a secondary instability of T R in the interval 83.2◦ < γ≤ 120◦ for Pr = 1.07

(Subramanian et al., 2016). We refer to observations of T O at [γ,ε,Pr] = [100◦,0.1,1.07]

(Daniels et al., 2000; Subramanian et al., 2016), and simulate a temporal transition at these

control parameters in a periodic domain of size [12λx ,6λy ], close to the pattern wavelengths

used to simulate T O in Subramanian et al. (2016). Without imposing additional discrete sym-

metries, no stable periodic orbit is found. Therefore, a transition is simulated in a symmetry

subspace defined by Sto = 〈πy ,πxz ,τ(0.5,0.5)〉.

The transition B → T R gives rise to 12 pairs of straight transverse rolls before slow and weak

bending modulations set in. Like SSWi , the instability T Oi of T R generates a state trajectory

that is initially symmetric around D/I = 1 suggesting that buoyancy and shear forces drive

this instability equally. The state trajectory from T R approaches the stable periodic orbit T O

within a few oscillation periods (Figure 4.12). T O is a pre-periodic orbit solving condition

(4.18) withσto = τ(0.5,0) and a pre-period of T ′
to = 122.1, i.e. half of the full period. As observed

experimentally (Daniels et al., 2000), the oscillation period is on the order of one diffusion
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Figure 4.13 – Transfer rates of kinetic (solid) and thermal energy (dashed) over one relative
period T ′

to = 122.1 of the T O orbit at γ= 100◦ and ε= 0.1 (Ra = 10050). Temperature contours
at midplane show instances of thermal energy balance J −Nu = 0. States a and a′ are related
by symmetry transformation σ= τ(0.5,0).

time scale O(Td ) =O(
p

RaPrT f ). Without the imposed discrete symmetries Sto, T O has six

eigenvalues with positive real part at the given parameters. The associated eigenmodes break

all symmetries in Sto.

Heat and kinetic energy oscillate non-harmonically and almost in phase over a relative period

of T O at these control parameters. The pattern of T O resembles T R at the kinetic energy

minimum. Near the energy maximum, the transverse rolls are maximally bent (Figure 4.13).

The weak subharmonic varicose oscillations have a much larger pattern wavelength than

all other invariant states discussed in the present work. In very large domains, observations

show spatial-temporal chaos at these control parameters (Daniels et al., 2000; Subramanian

et al., 2016), suggesting that the periodic orbit T O in larger domains is embedded in a chaotic

attractor.
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Chapter 4. Temporal transitions along dynamical connections between invariant states

4.4.3 Transient dynamics of the skewed varicose pattern in Rayleigh-Bénard con-
vection

Various secondary instabilities are known in Rayleigh-Bénard convection, namely Eckhaus,

zigzag, knot, skewed varicose, cross rolls, and oscillatory instability (Busse, 1978b). At Pr = 1.07,

the skewed varicose instability SVi is the first to destabilise convection rolls as demonstrated

by experiments (Bodenschatz et al., 2000) and stability analysis (Subramanian et al., 2016). We

refer to observations of the skewed varicose pattern (SV) at [γ,ε,Pr] = [0◦,2.26,1.07] (Boden-

schatz et al., 2000, Fig.7). A normalised Rayleigh number of ε= 2.26 is far above the critical

threshold for SVi . Here, we simulate a temporal transition at ε= 1.05, much closer to threshold.

The periodic domain is of size [4λx ,4λy ], and no additional discrete symmetries are imposed.

The conducting state of the Rayleigh-Bénard system before convection onset is isotropic in

the x-y-plane and rolls have no preferred orientation in the infinite system. Therefore, we

denote straight convection rolls in the isotropic system as Rλ with a subscript indicating the

approximate pattern wavelength λ if γ = 0◦. The attributes ‘longitudinal’ and ‘transverse’

relate to the direction of rolls relative to the base flow and are only used in the inclined case.

At control parameters [γ,ε,Pr] = [0◦,1.05,1.07], rolls of various wavelengths are unstable. To

promote the growth of rolls at λy , we perturb the base state with small-amplitude rolls at λy

and aligned with the x-dimension. In addition, we add small-amplitude noise to break the

translational symmetries. This perturbation of B triggers the growth of four pairs of convection

rolls Rλ2, comparable to the pattern of LR at γ 6= 0 in the present study. After a rapid transition

B → Rλ2 over∆t = 40, the shear driven instability SVi generates a slow departure from Rλ2 over

∆t = 20000. The exponential escape rate from LR is given by the only positive real eigenvalue

of LR, ωr = 3.8 · 10−4, with quadruple multiplicity. The associated eigenmodes show the

characteristic three-dimensional oblique pattern of the skewed varicose instability (Busse and

Clever, 1979). While escaping from LR, the convection rolls Rλ2 start tilting and form a thin

skewed region along the domain diagonal where rolls become strongly sheared (t1 = 20680),

pinch off (t2 = 20782), reconnect and form rolls Rλ3 at increased wavelength λ= 2.5731 and

rotated by 16.8◦ against the x-direction (Figure 4.14). Rλ3 are linearly stable at these control

parameters.

The simulated sequence of dynamical connections B → Rλ2 → Rλ3 is invariant under Ssv =
〈πx y z ,τ(0.25,0.25)〉 and at t2, resembles the experimentally observed SV pattern (Figure 7

in Bodenschatz et al., 2000). However, the phase portrait does not indicate a transiently

visited invariant state. The state trajectory crosses D/I = 1 without slow-down (Figure 4.14).

Simulating the instability SVi at other control parameters does not change this observation.

Thus, the transient dynamics of the SV pattern seems to occur in the absence of an underlying

invariant state.
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Figure 4.14 – State trajectory evolution from the unstable base state B at γ= 0 and ε= 1.05
(Ra = 3500). Initially for 0 < t < 40, a fast transition along B → Rλ2 gives rise to straight
convection rolls at wavelength λy (not shown). After a very long transient close to Rλ2, the
shear driven instability SVi of straight convection rolls Rλ2 leads to rolls Rλ3 at increased
wavelength. The inset magnifies the phase portrait of the transition Rλ2 → Rλ3. During
the transition Rλ2 → Rλ3 around t1 = 20680, a skewed varicose pattern emerges transiently.
The midplane temperature contours (bottom) illustrate different instances along the state
trajectory (cross markers).
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Table 4.1 – Summary of temporal transitions sequences identified at selected control parame-
ters where complex convection patterns are observed. For each transition along a dynamical
connection, denoted by →, we list the initial driving force of the instability (B: buoyancy, S:
shear, E: equally).

γ Ra ε temporal transition sequence driving forces figure

0◦ 3500 1.05 B → Rλ2 → Rλ3 B, S 4.14
15◦ 4420 1.5 B → LR → SSW B, E 4.10
40◦ 2385 0.07 B → LR →W R B, S 4.4
40◦ 3344 0.5 B → LR →W R →OW R → τx yOW R →... B, S, B, S, S, ... 4.6
80◦ 8525 0.05 B → T R → K N S, B 4.8
80◦ 9338 0.15 B → T R → B → BK N S, B, S 4.9

100◦ 10050 0.1 B → T R → T O S, E 4.12

4.5 Discussion

In this study, we identify exact invariant states of the fully nonlinear three-dimensional

Oberbeck-Boussinesq equations that underlie the various convection patterns observed in ILC.

At control parameters where tertiary convection patterns have been observed in experiments

and simulations, we numerically study the temporal dynamics from a perturbed unstable

base flow. Table 4.1 summarises all cases studied. Except for the transient skewed varicose

pattern at γ= 0◦, the dynamics asymptotically approaches stable invariant states underlying

observed convection patterns. Temporal dynamics approaching attractive invariant states

has been suggested by earlier works Daniels et al. (2008); Subramanian et al. (2016). In these

previous studies, numerical simulations close to known secondary instabilities, and in parts

constrained to specific modal interactions, are found to approach nonlinear states emerging

from the instabilities. Here, we find both stable and unstable invariant states as fixed points of

a Newton iteration, numerically fully resolved and converged to machine precision. Details

of the transition from the laminar state to transiently visited unstable invariant states are

discussed.

State trajectories are never found to directly approach a stable tertiary or higher order state,

but the dynamics first transiently visits unstable invariant states underlying the secondary

convection pattern of straight convection rolls, as shown in Table 4.1. Approach to and escape

from unstable invariant states follow the exponential dynamics along their stable and unstable

manifolds, well described by the eigenvalues of the invariant states. This observation strongly

suggests the existence of nearby heteroclinic connections between invariant states, located

within the intersection of the unstable manifold of the initial state and the stable manifold of

the final state. In one case at γ= 40◦, a robust heteroclinic cycle between two symmetry-related
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unstable equilibrium states underlying oblique wavy rolls has been found. Thus, the present

results demonstrate the dynamical relevance not only of stable but also of coexisting unstable

invariant states and their dynamical connections. The network of dynamically connected

invariant states clearly supports complex temporal dynamics in ILC.

Invariant states and their dynamical connections have been computed in minimal periodic

domains matching single pattern wavelengths but they also exist in larger domains. The size

of the domain does however change the stability properties of the invariant states. States that

are stable in small domains can be unstable in larger domains (Ahlers and Behringer, 1978;

Melnikov et al., 2014). Consequently, the sequences of temporal transitions between invariant

states observed here may also be observed in larger domains, but not necessarily with the

same stable terminal state as in the present study. In the small domains, most transitions are

unidirectional, from the base state B , via a secondary roll (LR , T R) to a tertiary state (Table 4.1).

In larger domains, unstable tertiary states are expected to allow dynamical cycles that visit the

same states multiple times. Examples of such cycles observed in the small domains include

the robust heteroclinic cycle (OW R → τx yOW R → OW R →...) and the dynamics leading to

the periodic orbit of bursting knots (BK N ): After escaping from unstable laminar flow and

transiently visiting T R , the state trajectory returns to the state space neighborhood of laminar

flow B (Figure 4.9). Together, the connections may form a dynamical network supporting the

spatio-temporally chaotic dynamics observed in experiments and large-domain simulations.

We characterise the instabilities of equilibrium states that trigger temporal transitions as

buoyancy driven, shear driven or equally buoyancy-shear driven, by analysing the temporal

transitions in phase portraits defined by kinetic energy input and dissipation. We thereby

confirmed that LR emerge from a buoyancy driven instability and T R emerge from a shear

driven instability of the base state. Secondary instabilities are never driven by the same

force as the associated primary instability. If the primary instability is buoyancy dominated,

the secondary one will involve shear and vice versa (Table 4.1). Consequently, the temporal

dynamics in ILC at all angles of inclinations may involve instabilities driven by buoyancy and

shear.

We find seven invariant states that participate in sequences of temporal transitions that may

be described as primary state → secondary state → tertiary state. Here, the terminology refers

to the order of states visited in transition sequences such that primary transitions to secondary,

secondary transitions to tertiary. We expect that this order reflects the order of bifurcations

that create these invariant states. However, generically the sequence of bifurcations will not

prescribe the order in which states, coexisting at the same control parameters, are visited dur-

ing temporal evolution. An example for this is the temporal evolution triggered by the skewed

varicose instability of straight convection rolls. The transition Rλ2 → Rλ3 cannot result from

bifurcations of Rλ3 from Rλ2 because both types of straight convection rolls must bifurcate
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Chapter 4. Temporal transitions along dynamical connections between invariant states

Table 4.2 – Summary of invariant states underlying observed convection patterns (EQ: equilib-
rium, PPO: pre-periodic orbit). The symmetries of the invariant states are given by the size of
the periodic domain (λx = 2.2211, λy = 2.0162) and the generators of the symmetry group.

convection pattern invariant state type domain symmetry group generators

laminar flow B EQ - πy , πxz , τ(ax , ay )

isotropic rolls Rλ EQ [4λx ,4λy ] πy , πxz , τ(ax , ay (ax ))
long. rolls LR EQ [1λx ,1λy ] πy , πxz , τ(ax ,0)
trans. rolls T R EQ [1λx ,1λy ] πy , πxz , τ(0, ay )

skewed varicose - - [4λx ,4λy ] πx y z , τ(0.25,0.25)
subharmonic
standing wave

SSW PPO [2λx ,2λy ] πx y z , τ(0.5,0.5)

wavy rolls W R EQ [2λx ,1λy ] πyτ(0.5,0.5), πxzτ(0.5,0.5)
oblique wavy rolls OW R EQ [2λx ,1λy ] πx y z , τ(0.5,0.5)
knots K N EQ [1λx ,1λy ] πyτ(0,0.5), πxzτ(0,0.5)
trans. oscillations T O PPO [12λx ,6λy ] πy , πxz , τ(0.5,0.5)

from B . To understand the relation between the complex temporal dynamics reported here

and the corresponding bifurcation structure, the bifurcations of the invariant states visited

by the dynamics must be computed. We list all invariant states found to underlie observed

convection patterns in the present study in Table 4.2. This collection represents the starting

point for subsequent work where invariant states are numerically continued under changing

control parameters to compute bifurcation diagrams in ILC (Chapter 5).

In conclusion, temporal transitions from unstable laminar flow in ILC are found to follow

sequences of dynamical connections between unstable invariant states until the dynamics

approaches a stable invariant state. The stable invariant state underlies the basic pattern

observed in experiments and simulations. Existence and dynamical influence of the dynamical

connections between unstable invariant states support the complex dynamics observed in

large domains.
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states”.
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Chapter summary

Convection in a layer inclined against gravity is a thermally driven non-equilibrium system, in

which both buoyancy and shear forces drive spatio-temporally complex flow. As a function of

the strength of thermal driving and the angle of inclination, a multitude of convection patterns

is observed in experiments and numerical simulations. Several observed patterns have been

linked to exact invariant states of the fully nonlinear 3D Oberbeck-Boussinesq equations.

These exact equilibria, traveling waves and periodic orbits reside in state space and, depending

on their stability properties, are transiently visited by the dynamics or act as attractors. To

explain the dependence of observed convection patterns on control parameters, we study the
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Chapter 5. Bifurcations and connections between branches of invariant states

parameter dependence of the state space structure. Specifically, we identify the bifurcations

that modify the existence, stability and connectivity of invariant states. We numerically

continue exact invariant states underlying spatially periodic convection patterns at Pr =
1.07 under changing control parameters for temperature difference between the walls and

inclination angle. The resulting state branches cover various inclinations from horizontal layer

convection to vertical layer convection and beyond. The collection of all computed branches

represents an extensive bifurcation network connecting 16 different invariant states across

control parameters. Individual bifurcation structures are discussed in detail and related to the

observed complex dynamics of individual convection patterns. Together, the bifurcations and

associated state branches indicate at what control parameters which invariant states coexist.

This provides a nonlinear framework to explain the multitude of complex flow dynamics

arising in inclined layer convection.

5.1 Introduction

Thermal convection in a gap between two parallel infinite walls maintained at different fixed

temperatures, a system known as Rayleigh-Bénard convection, is a thermally driven nonequi-

librium system that exhibits many different complex convection patterns (e.g. Cross and

Greenside, 2009). When inclining the walls against gravity, hot and cold fluid flows up and

down the incline, respectively, creating a cubic laminar flow that breaks the isotropy of a

horizontal layer and produces shear forces. This system is known as inclined layer convec-

tion (ILC). ILC has three control parameters: the temperature difference between the walls,

the Prandtl number Pr parametrising the diffusive properties of the fluid, and the angle of

inclination against gravity.

Recent experiments of ILC using compressed CO2 (Pr = 1.07) have systematically varied the

temperature difference and the inclination angle over a wide range, and report ten different

spatio-temporal convection patterns (Daniels et al., 2000). In these experiments, the flow

domain has a lateral extent much larger than the gap height and thereby allows large-scale

patterns to form. The observed convection patterns show spatio-temporally complex dynam-

ics. This includes intermittent temporal bursting of spatially localized convection structures,

observed both at small angles of inclination (Busse and Clever, 2000; Daniels et al., 2000) as

well as at large angles of inclination (Daniels et al., 2003). Other examples include transient

oblique patterns forming unsteady interfaces between spatial domains of differently oriented

wavy roll patterns (Daniels and Bodenschatz, 2002; Daniels et al., 2008), bimodal patterns,

turbulent patterns like crawling rolls at intermediate inclinations (Daniels et al., 2008) and

chaotically switching diamond panes. These convection patterns have also been reproduced

in direct numerical simulations of ILC (Subramanian et al., 2016). How the large variety of
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patterns at different control parameters emerges from the nonlinear equations describing the

flow is however not completely understood.

Theoretical approaches towards explaining spatio-temporal convection patterns in ILC can

be described as either an approach ‘close to thresholds’ or an approach ‘far above thresholds’.

Approaches ‘close to thresholds’ include linear stability analysis and the construction of weakly

nonlinear amplitude equations. At critical stability thresholds, flow states become unstable

and give rise to new pattern motifs. Linear stability analysis of laminar ILC (Gershuni and

Zhukhovitskii, 1969; Vest and Arpaci, 1969; Hart, 1971b; Ruth et al., 1980a; Chen and Pearl-

stein, 1989; Fujimura and Kelly, 1993) identified two different types of primary instabilities. A

buoyancy driven instability gives rise to straight convection rolls oriented along the base flow

at small inclinations. A shear driven instability gives rise to straight convection rolls oriented

transverse to the base flow at large inclinations. Secondary instabilities of finite amplitude

straight convection rolls and subsequent tertiary instabilities at increased temperature differ-

ence and certain angles of inclination have been investigated using Floquet analysis of two-

and three-dimensional states (Clever and Busse, 1977; Busse and Clever, 1992; Clever and

Busse, 1995; Busse and Clever, 1996; Subramanian et al., 2016). Such stability analysis can only

explain the onset of convection patterns at, or very close, to the critical stability thresholds in

control parameters.

Theoretical approaches to convection patterns ‘far above thresholds’ include the construction

of finite amplitude states within a nonlinear analysis at control parameters far above the

critical stability thresholds. Finite amplitude states can be constructed by choosing a Galerkin

projection for the governing equations of ILC, often motivated by pattern motifs and their

symmetries as identified in a stability analysis at critical stability thresholds (Busse and Clever,

1996; Golubitsky and Stewart, 2002). Galerkin approximations can then be evolved in time

under the fully nonlinear governing equations until their amplitudes saturate at finite values

with either steady or periodic time evolution (Subramanian et al., 2016). Alternative to forward

time integration, finite amplitudes of a Galerkin projection may also be calculated using a

Newton-Raphson iteration giving access also to dynamically unstable finite amplitude states

(Busse and Clever, 1992; Fujimura and Kelly, 1993; Subramanian et al., 2016). If Galerkin

projections invoke a complete basis and fully resolve all spatial scales and modal interactions

in the three-dimensional flow, exact finite-amplitude states with steady or periodic time

evolution can be found. These so-called invariant states are time-invariant exact solutions

of the full nonlinear partial differential equations governing the flow. Depending on their

temporal dynamics, invariant states are steady equilibrium states, traveling waves or periodic

orbits, all of which capture particular structures in the flow. Invariant states can either be

dynamically stable or dynamically unstable. In subcritical shear flows like pipe or Couette

flow, the construction and analysis of unstable invariant states has lead to significant progress

in understanding the complex dynamics of weakly turbulent flow by describing chaotic state
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space trajectories relative to invariant states (Kerswell, 2005; Eckhardt et al., 2007; Kawahara

et al., 2012, and references therein).

In ILC, only few highly resolved three-dimensional invariant states had been constructed

(Busse and Clever, 1992; Clever and Busse, 1995) before in Chapter 4 (referred to as RS19 in the

following), we identified stable and unstable invariant states underlying various convection

patterns at Pr = 1.07 observed in experiments (Daniels et al., 2000) and simulations (Subrama-

nian et al., 2016). These invariant states are found to transiently attract and repel the dynamics

of ILC that is numerically simulated in minimal periodic domains. Minimal periodic domains

accommodate only a single spatial period of a periodic convection pattern. Any invariant

state computed in minimal periodic domains is also an invariant state in larger extended

domains where the pattern of the state periodically repeats in space. To capture a specific

pattern with an invariant state in a minimal periodic domain, the size of the domain must be

chosen appropriately to match the wavelengths of the pattern. A suitable domain size for a

specific pattern can be suggested by Floquet analysis which determines the most unstable

pattern wavelength of an instability. At the critical thresholds of instabilities, invariant states

emerge in bifurcations and may continue as state branches far above critical thresholds. Thus,

bifurcations provide a connection between instabilities ‘at thresholds’ and invariant states ‘far

above thresholds’.

In general, bifurcations are structural changes in a system’s state space across which the

dynamics of the system changes qualitatively (Guckenheimer and Holmes, 1983). Emerging

stable invariant states that may continue ‘far above thresholds’ correspond to a supercrtical,

forward bifurcation leading to continuous changes in the dynamics. Subcritical bifurcations

however, create discontinuous changes in the dynamics allowing for sudden transitions from

one state of the system to a very different state. Prominent and potentially harmful examples of

such bifurcations, also called tipping points, have been identified in the earth’s climate system

(Lenton et al., 2008) or in combustion chambers (Juniper and Sujith, 2018). In low-dimensional

nonlinear model systems, like the three-dimensional Lorenz model for thermal convection

(Lorenz, 1963), various types of bifurcations have been found and related to different routes to

chaos (see Argyris et al., 1993, for a review). Thus, different types of bifurcations change the

dynamics in different ways. Complex temporal dynamics may be observed where invariant

states coexist at equal control parameters (RS19). Complex spatial dynamics, like spatial

coexistence of different states in a non-conservative system as ILC, suggests that the spatially

coexisting states also coexist as individual states at equal control parameters (Knobloch, 2015).

Coexistence of invariant states at equal control parameters is a consequence of bifurcations

creating these invariant states. Thus, bifurcations creating invariant states that underlie

observed convection patterns in ILC not only provide a parametric connection between

invariant states and instabilities, but may also explain the state space structure underlying the

spatio-temporally complex dynamics observed in spatially extended domains.
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Computing bifurcation diagrams in nonlinear dynamical systems requires in practice to

numerically continue branches of stable and unstable invariant states under changes of

control parameters (see Dijkstra et al., 2014, for a review). Numerically fully resolved invariant

states in minimal periodic domains of ILC have between ∼ 104 and ∼ 106 degrees of freedom

(RS19), fewer than the earth’s climate system but much more than the Lorenz equations. Due

to the numerically demanding size of the state space, not many prior studies have computed

bifurcation diagrams in ILC. Using 4 degrees of freedom, Fujimura and Kelly (1993) traced

states of mixed longitudinal and transverse modes in almost vertical fluid layers. Using ∼ 103

degrees of freedom, Busse and Clever (1992) continued invariant states underlying three-

dimensional wavy rolls at selected Pr and angles of inclinations, and Clever and Busse (1995)

followed a sequence of supercritical bifurcations in vertical fluid layers. Bifurcation diagrams

of two-dimensional invariant states have been computed in vertical convection (Mizushima

and Tanaka, 2002b,a) and horizontal convection (Waleffe et al., 2015), not addressing three-

dimensional dynamics. Recent advances in matrix-free algorithms and computer hardware

allow to efficiently construct and continue fully resolved three-dimensional invariant states in

double-periodic domains with channel geometry (Viswanath, 2007; Gibson et al., 2008b). We

use an extension to the existing numerical framework of the MPI-parallel code Channelflow

2.0 (Gibson et al., 2019) that also handles ILC (RS19).

The aim of this chapter is to systematically compute and describe bifurcations in ILC. These

bifurcations explain the spatio-temporal complexity observed both experimentally and nu-

merically. Using numerical continuation, we trace invariant states that have been constructed

in RS19 and that underlie the observed basic convection patterns. The analysis covers the

same range of system parameters as recent experimental (Daniels et al., 2000) and theoretical

work (Subramanian et al., 2016) at Pr = 1.07 and leads to an extensive network of bifurcating

branches across control parameters. To understand how temporal and spatio-temporal com-

plexity arises in ILC, we specifically address the following three questions:

Q1 Bifurcation types: Complex temporal dynamics between coexisting invariant states is a

result of bifurcations creating the associated invariant states. Different bifurcation types

change the dynamics in different ways. What types of bifurcations create invariant states

underlying the observed convection patterns in ILC?

Q2 Connection to instabilities: Floquet analysis characterises instabilities at critical control

parameters. Results from such an analysis are valid close to the critical thresholds for

small amplitude solutions. Do the fully nonlinear invariant states, found in RS19 to

underlie the observed convection patterns far from critical thresholds in ILC, bifurcate

at the corresponding secondary instabilities reported from a Floquet analysis in Subra-
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manian et al. (2016)?

Q3 Range of existence: Spatio-temporally complex dynamics suggests existence of invariant

states at the associated control parameters. How do the bifurcation branches of invari-

ant states in ILC continue across control parameters and what are the limits of their

existence?

The present chapter is structured in the following way. Section 5.2 describes the numerical

methods and outlines the systematic bifurcation analysis. The results of the bifurcation

analysis are stated in Section 5.3. In five subsections, we report in detail on selected bifurcation

diagrams explaining individual convection patterns. The results are discussed in response to

Q1-Q3 in Section 5.4.

5.2 Bifurcation analysis of invariant states

Before introducing the approach of the bifurcation analysis in Section 5.2.3, we summarize

the basic numerical concepts underlying direct numerical simulations of ILC (Section 5.2.1),

and describe the invariant states that capture relevant convection patterns (Section 5.2.2).

More details on the direct numerical simulations and identified invariant states are described

elsewhere (RS19).

5.2.1 Direct numerical simulation of inclined layer convection

ILC is studied by numerically solving the nondimensionalised Oberbeck-Boussinesq equations

for the velocity U , temperature T and pressure p relative to the hydrostatic pressure

∂U

∂t
+ (U ·∇)U =−∇p + ν̃∇2U − ĝ T , (5.1)

∂T
∂t

+ (U ·∇)T = κ̃∇2T , (5.2)

∇·U = 0 , (5.3)

in numerical domains with x, y and z indicating the streamwise, the spanwise and the wall-

normal dimension. The domains are bounded in z by two parallel walls at z =±0.5. In the

streamwise dimension x and the spanwise dimension y periodic boundary conditions are

imposed at x = [0,Lx ] and y = [0,Ly ], respectively. The walls are stationary with U (z =±0.5) =
0, have prescribed temperatures T (z =±0.5) =∓0.5, and are inclined against the gravitational

unit vector ĝ =−sin(γ)ex −cos(γ)ez by inclination angle γ. With these boundary conditions,
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Equations (5.1-5.3) admit the laminar solution

U0(z) = sin(γ)

6 ν̃

(
z3 − 1

4
z

)
ex , (5.4)

T0(z) =−z , (5.5)

p0(z) =Π−cos(γ)z2/2 , (5.6)

with arbitrary pressure constant Π. Equations (5.1-5.3) are nondimensionalised by three

characteristic scales of the system. We have chosen the temperature difference ∆T between

the walls, the gap height H , and the free-fall velocity U f = (g α∆T H )1/2 as characteristic scales.

This nondimensionalisation defines the parameters ν̃= (Pr/Ra)1/2 and κ̃= (PrRa)−1/2 in terms

of the Rayleigh number Ra = g α∆T H 3/(νκ) and the Prandtl number Pr = ν/κ. Here, α is the

thermal expansion coefficient, ν is the kinematic viscosity, and κ is thermal diffusivity. Thus,

ILC has three control parameters, γ, Ra, and Pr, of which we fix Pr = 1.07.

Time is measured in free-fall units H/U f but will also be compared with other relevant time

scales of ILC, like the heat diffusion time H 2/κ, and the laminar mean advection time Lx /Ū0.

The latter follows from the laminar velocity profile (5.4) integrated over the lower half of the

domain where −0.5 ≤ z ≤ 0, that is Ū0 = sin(γ)/384ν̃.

The pseudo-spectral code Channelflow 2.0 (Gibson et al., 2019) has been extended to solve

(5.1-5.3) using Fourier-Chebychev-Fourier expansions with N spectral modes in space and

a 3rd order implicit-explicit multistep algorithm to march forward in time (see RS19; and

references therein). Any time evolution computed with Channelflow-ILC represents a unique

state vector trajectory x(t) = [u,θ](x, y, z, t) in a state space with N dimensions. This state

space contains all solenoidal velocity fluctuations u =U −U0 and temperature fluctuations

θ = T −T0.

5.2.2 Computing invariant states

Invariant states are particular state vectors x∗(t ) representing roots of a recurrent map

G(x∗,µ) =σFT (x∗,µ)−x∗ = 0 . (5.7)

Here, FT (x ,µ) is the dynamical map integrating (5.1-5.3) from state x over time period T

at system parameter µ ∈ [γ,Ra,Pr]. The invariant state is either an equilibrium state if T

is a free parameter, or a periodic orbit if T must match a specific period. Definition (5.7)

includes a symmetry transformation σ ∈ Si lc . The symmetry group Si lc =O(2)x ×O(2)y , where

× is the direct product, is an equivariance of Equations (5.1-5.3) in x-y-periodic domains.

Si lc is generated by spanwise y-reflection πy , streamwise x-z-reflection πxz , and x- and
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y-translations τ(ax , ay ) such that

πy [u, v, w,θ](x, y, z) = [u,−v, w,θ](x,−y, z) , (5.8)

πxz [u, v, w,θ](x, y, z) = [−u, v,−w,−θ](−x, y,−z) , (5.9)

τ(ax , ay )[u, v, w,θ](x, y, z) = [u, v, w,θ](x +ax Lx , y +ay Ly , z) , (5.10)

with shift factors ax , ay ∈ [0,1) scaling the spatial periods Lx and Ly of the periodic domain.

All invariant states discussed here are invariant under transformations within subgroups of

Si lc = 〈πy ,πxz ,τ(ax , ay )〉, where angle brackets 〈〉 imply all products of elements given in the

brackets. The specific coordinate transformations for reflection symmetries depend on the

spatial phase of the flow structure relative to the origin. We choose the spatial phase such that

three-dimensional inversion πx y z =πyπxz , where applicable to invariant states, applies with

respect to the domain origin at (x, y, z) = (0,0,0).

If σ 6= 1 in (5.7), the invariant state is a relative invariant state. A traveling wave state, where

σ = τ(ax , ay ) with specific shift factors ax and ay , is a relative equilibrium state. A relative

periodic orbit is either traveling, where σ = τ(ax , ay ) must be applied after period T , or is

‘pre-periodic’ if σ= 1 after a full period T but σ 6= 1 after time interval T ′ = T /n with n ∈N.

Invariant states are computed by solving (5.7) with a Newton-Raphson iteration using matrix-

free Krylov methods (Gibson et al., 2019). Practically, we stop iterations if ||G(x ,µ)||2 < 10−13

where

||x ||2 =

 1

Lx Ly

Lx∫
0

Ly∫
0

0.5∫
−0.5

u2 + v2 +w2 +θ2d x d y d z


1/2

. (5.11)

A residual of < 10−13 is sufficiently close to double machine precision to consider the iteration

as fully converged.

Invariant states may be dynamically stable or unstable. The dynamical stability is characterised

by the eigenvalues and eigenmodes of the linearised equations computed using Arnoldi

iteration (Gibson et al., 2019) and depends on the specific symmetry subspace defined by

size [Lx ,Ly ] of the periodic domain and potentially imposed discrete symmetries σ ∈ Si lc .

We impose σ on a state vector x(t) using a projection (x(t)+σx(t))/2 which requires σ2 = 1.

We will specify the considered symmetry subspace for each computation of the eigenvalue

spectrum.

Previously, invariant states underlying observed convection patterns in ILC have been iden-

tified by combining direct numerical simulations in small periodic domains with Newton-

Raphson iteration (RS19). There, simulations from unstable laminar flow perturbed by small-
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Figure 5.1 – Invariant states found as sequentially visited states in temporal transitions at
selected control parameters (RS19). Black arrows indicate the direction of temporal transitions,
starting from laminar base flow B , via longitudinal and transverse rolls (equilibria LR and T R),
to four different tertiary invariant states representing the convection patterns of subharmonic
standing waves (periodic orbit SSW ), wavy rolls (equilibrium W R), knots (equilibrium K N )
and transverse oscillations (periodic orbit T O). While B is shown as the vector fields of
total velocity U at the box sides and 3D contours of total temperature T , all other states are
shown in terms of velocity and temperature fluctuations, u and θ, around B . Iso-contours
of temperature are at 1/3[min(θ),max(θ)]. The states are computed at different inclinations
of the domain (green gravity vectors): B , LR and T R at γc2, and the four tertiary states at the
system parameters marked in Figure 5.2.
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amplitude noise lead to temporal transitions between seven invariant states. All of these seven

invariant states are either stable or weakly unstable, depending on the symmetry subspace

corresponding to the chosen periodic domain, control parameters and potentially imposed

discrete symmetries. As a consequence, the temporal dynamics is either asymptotically or

transiently attracted to these invariant states. Moreover, the temporal dynamics is found to

visit these invariant states in a specific sequential order. Figure 5.1 summarizes the observed

transition sequences and visualises the flow structures of all seven invariant states. Which

invariant state is visited by the dynamics depends on the control parameters. Following

Daniels et al. (2000) and Subramanian et al. (2016), we explore the two-dimensional parameter

space of inclination angle γ and Rayleigh number Ra at fixed Pr = 1.07. Here, a codimension-2

point at [γc2,Rac2] determines the type of primary instability and visited secondary state. In

general, at any Prandtl number, the transition from a laminar base flow (B) leads to longi-

tudinal rolls (LR) for angles of γ < γc2, while for angles with γ > γc2 the transition from B

leads to transverse rolls (T R). At Pr = 1.07, we determine the codimension-2 point accurately

at [γc2,Rac2] = [77.7567◦,8053.1] when computing LR and T R in a domain with periodicity

[Lx ,Ly ] = [λx ,λy ] where [λx ,λy ] = [2.2211,2.0162] and grid size [nx ,ny ,nz ] = [32,32,25]. Wave-

lengths λx and λy are suggested by Floquet analysis (Subramanian et al., 2016). As in RS19, we

fix the domain periodicity [λx ,λy ] and the grid resolution [nx ,ny ,nz ] throughout this study

and choose all computational domains as multiples of this minimal periodic box. Subhar-

monic standing waves (SSW ) are computed in a domain with periodicity [Lx ,Ly ] = [2λx ,2λy ],

wavy rolls (W R) with [Lx ,Ly ] = [2λx ,λy ], knots (K N ) with [Lx ,Ly ] = [λx ,λy ], and transverse

oscillations (T O) with [Lx ,Ly ] = [12λx ,6λy ]. The grid size is scaled accordingly. Choosing all

domains as integer multiples of the same minimal box ensures commensurable wavelengths

and thus allows for potential bifurcation between invariant states.

The approach of combining direct numerical simulations from unstable laminar flow with

Newton-Raphson iteration allows to determine all of the above invariant states. However,

this approach fails in the case of the pattern emerging from the skewed varicose instability

at γ= 0◦ (RS19). There, the dynamics does not asymptotically approach or transiently visit

an invariant state underlying the pattern, suggesting that no associated invariant state exists

above thresholds. Therefore, we search for the bifurcating branch below critical parameters

of the skewed varicose instability by taking the following steps. The bifurcating eigenmode

that destabilizes x-aligned straight convection rolls at wavelength λy (Rλ2) in a domain of

periodicity [Lx ,Ly ] = [4λx ,4λy ] is computed using Arnoldi iteration. Different finite amplitude

perturbations of Rλ2 with the bifurcating eigenmode are integrated forward in time to generate

a large set of initial states for brute-force Newton-Raphson iterations below critical threshold

parameters of the instability. Using this approach we identified an unstable equilibrium state

that underlies the skewed varicose pattern and is described in Section 5.3.1. Consequently,

invariant states in thermal convection cannot be assumed to generically exist above critical

control parameters, but may also be found below thresholds suggesting a backward bifurcation.
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Whether bifurcations are forward or backward in control parameters, is studied in the present

bifurcation analysis.

5.2.3 Bifurcation analysis

The general approach of our bifurcation analysis is to compute bifurcation branches of invari-

ant states in ILC and to characterize the resulting bifurcation diagrams. Branches of invariant

states are computed using continuation methods to solve (5.7) under a changing control

parameter µ (Dijkstra et al., 2014). There are two iterative predictor-corrector schemes for

numerical continuation implemented in Channelflow-ILC. The control parameter continu-

ation uses quadratic extrapolation to predict a state vector x for some value of µ which is

fixed in the following Newton-Raphson iteration, the corrector step. The pseudo-arclength

continuation does not prescribe µ in the corrector step but solves for µ as additional unknown

entry in state vector x under an additional arclength constraint. Depending on the shape of the

continued state branch, one continuation scheme might outperform the other (Gibson et al.,

2019). Continuation of periodic orbits with long periods may require a multi-shooting method

to converge (Gibson et al., 2019). Where invariant states have discrete reflection symmetries

πy or πxz (5.8-5.9) we impose reflections during numerical continuation because they fix the

spatial phase of the flow relative to the x- or y-coordinates. If the spatial phase is free, states

may translate under numerical continuation reducing the computational efficiency. Since

both continuation schemes solve (5.7) and the algorithmic details do not change the resulting

bifurcation diagrams, we use the better performing scheme for each branch.

Continuations of the invariant states cover a priori chosen sections across the considered

parameter space at Pr = 1.07 covering 0◦ ≤ γ< 120◦ and 0 ≤ ε≤ 2, as illustrated by thin grey

lines in Figure 5.2. The control parameter ε= (Ra−Rac (γ))/Rac (γ) indicates Ra normalised

by a critical threshold function Rac (γ) which here, approximates the true critical control

parameters Ra′c (γ) of the primary instability in ILC (see Figure 2a in RS19). Thus, the primary

instability defining the onset of convection is always at ε≈ 0, independent of the inclination

angle. Critical thresholds of bifurcation points are denoted as εc . To continue invariant states

in γ at ε= const., also Ra needs to be adjusted accounting for variations in Rac (γ). Since the

true critical Ra′c (γ) cannot be expressed in closed-form, we define the function

Rac (γ≤ γc2) = Ra′c (γ= 0◦)

cos(γ)
(5.12)

Rac (γ> γc2) = 1

41
(γ−γc2)3 + 5

14
(γ−γc2)2 +29(γ−γc2)+Ra′c2 (5.13)

to keep ε= (Ra−Rac (γ))/Rac (γ) = const. under γ-continuations. The definition of function

Rac (γ) has three precise coefficients, namely the critical parameters for horizontal convection

Ra′c (γ= 0◦) = 1707.76 (Busse, 1978a) and the codimension-2 point [γc2,Ra′c2] = [77.7567◦,8053.1].
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Figure 5.2 – The considered parameter space is spanned by inclination angle γ and ε =
(Ra−Rac )/Rac at Pr = 1.07. The parameters at which invariant states have been identified
in RS19 (Figure 5.1) are marked by circles. The invariant state underlying skewed varicose
pattern (SV ) is not described in RS19 but identified in this work. Thick solid lines indicate
critical thresholds in control parameters of the five secondary instabilities determined by
Subramanian et al. (2016). Bifurcations between invariant states are computed along 15
sections across the parameter space (grey solid lines). The thin grey dotted line marks the
inclination angle of the codimension-2 point at γc2 = 77.7567◦.

Relation (5.12), already found by Gershuni and Zhukhovitskii (1969), is a geometric conse-

quence of the linear laminar temperature profile. Polynomial (5.13) is a least-square-fit of the

empirical critical thresholds for γc2 < γ< 120◦ reported in Subramanian et al. (2016), and is

an approximation of the true Ra′c (γ) ≈ Rac (γ). The purpose of defining Rac (γ) in (5.12-5.13)

is not to most accurately capture the true Ra′c (γ) but to provide a closed-form function for

converting values between Ra and ε. The conversion allows γ-continuations at ε= const. and

a comparison of the present results with other work reported in terms of a similar ε′, based on

the empirically determined primary instabilities.

Linear stability analysis of invariant states is performed at selected points along continued

branches. Under continuation, we consider invariant states in their minimal periodic domain

capturing only one spatial period of the pattern. In order to compare the dynamical stability

between different invariant states, Arnoldi iterations must be performed in identical symmetry

subspaces. This implies using the same periodic domains and imposing the same discrete

symmetries for all considered states. Wherever we compute the dynamical stability along

selected bifurcation branches, we specifically choose and report the symmetry subspace for

the full branch.

Many bifurcation types of vector fields are known (e.g. Guckenheimer and Holmes, 1983). The

most common bifurcations we encounter in ILC are pitchfork bifurcations, Hopf bifurcations,
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saddle-node bifurcation and mutual annhilation of two periodic orbits, all of which are also

well-known bifurcations in ordinary differential equations (e.g. Schaeffer and Cain, 2016). The

two latter types we simply refer to as ‘folds’. If bifurcations are not one of these four common

types, we provide explicit references that discuss the bifurcation type in detail, as such discus-

sions would be beyond the scope of the present work. When discussing symmetry-breaking

bifurcations, the classification into supercritical/subcritical bifurcations refers to a ‘more

stable’/’less stable’ bifurcating branch in comparison to the stability of the coexisting parent

branch (Tuckerman and Barkley, 1990). The orientation of symmetry-breaking bifurcations

along a control parameter µ is given specifically as µ-forward or µ-backward.

5.3 Results

We first provide an overview of the results from the bifurcation analysis. Considering twelve

sections at constant γ and three sections at ε= const. (Figure 5.2), we present 15 bifurcation

diagrams here in Figures 5.3 and 5.4. A complete analysis of all branches in these diagrams

is beyond the scope of this chapter. Instead in this section, we first summarise the bifurca-

tion diagrams and then focus on selected state branches covering the control parameters

where spatio-temporally complex convection patterns are observed and temporal dynamics

between invariant states has been studied (RS19). We specifically discuss the branches that

bifurcate from straight convection rolls via the five secondary instabilities that were identified

by Subramanian et al. (2016). These are, skewed-varicose instability, longitudinal subharmonic

oscillatory instability, wavy roll instability, knot instability and transverse oscillatory instability.

Branches of equilibrium and travelling wave states are plotted in terms of the norm of the

temperature fluctuations,

||θ||2 =

 1

Lx Ly

Lx∫
0

Ly∫
0

0.5∫
−0.5

θ2(x, y, z, t±)d x d y d z


1/2

, (5.14)

as a function of the bifurcation parameter. Periodic orbits are illustrated by a pair of branches

indicating the minimum and maximum of ||θ||2 over one orbit period, at instances t±. Bi-

furcation branches are labeled inside the diagram with the name of the invariant state. We

recommend reading each diagram panel by first identifying the branches of LR and/or T R . In

most cases, LR or T R have the largest ||θ||2 and tertiary branches bifurcate to lower ||θ||2. See

Figure 5.3 for bifurcations while varying ε and Figure 5.4 for bifurcations while varying γ.

The ε-bifurcations at fixed γ, confirm the common observation that LR and T R always bifur-

cate in supercritical, ε-forward pitchfork bifurcations from the laminar base state. At γ= 0,

longitudinal and transverse rolls are related via symmetries, and we refer to both of them as

Rλ, where the subscript indicates the wavelength of the roll pattern. At 0 < γ≤ 20◦, branches

85



Chapter 5. Bifurcations and connections between branches of invariant states

0.00

0.05

0.10

0.15

0.20
||θ
|| 2

γ = 0◦

Rλ2
SV

Rλ3

γ = 10◦

LR
SSW

γ = 20◦

LR
WR

SSW

STW

0.00

0.05

0.10

0.15

0.20

||θ
|| 2

γ = 30◦

LR

WR

SSW

STW γ = 40◦

LR
WR

SSW

STW
γ = 50◦

LR

TR

WR

RB

SSW

STW

0.00

0.05

0.10

0.15

0.20

||θ
|| 2

γ = 60◦

LR

TR

WR

SSW

STW

γ = 70◦

LR

TR

WR

STW

SSW

γ = 80◦

LR

STW

TR

KN

WR

SSW

0.0 0.5 1.0 1.5 2.0

ε

0.00

0.05

0.10

0.15

0.20

||θ
|| 2

Fig5.15

Fig5.14

γ = 90◦

TR

TO
KN

STW

WR

SSW

SL

0.0 0.5 1.0 1.5 2.0

ε

γ = 100◦

TR

TO

STW

WR

0.0 0.5 1.0 1.5 2.0

ε

γ = 110◦

TR

TO

STW

0.2 0.3

Rλ3

SV

2 4

LR

SSW

STW

0.4 0.6

LR

SSW

TR

0.6 0.8 1.0

LR
WR

0.1 0.2

LR

TO

0.1 0.2

LR
TO

0.1 0.2

LR
TO

Figure 5.3 – Summary of all bifurcation branches of invariant states continued in ε at constant
γ ∈ {0◦,10◦,20◦, ...,110◦}. Each branch is plotted in terms of ||θ||2 (Equation 5.14) and is labeled
by the name of the invariant state to which the branch belongs. Insets enlarge or isolate
features of the bifurcations diagrams. All panels are labeled by the angle of inclination and
share the same axes. T R is left out in panels γ ∈ {0◦,10◦,20◦} to avoid clutter. In panel γ= 90◦,
the grey vertical line crosses the bifurcation branches where invariant states are shown in
Figure 15 and discussed in Section 5.7. K N at γ= 90◦ connect to equilibrium state SL showing
a subharmonic lambda pattern (Figure 14), discussed in Section 5.6.
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of LR and T R still are very close to each other. Only the LR-branches, defining the onset of

convection, are plotted to avoid clutter. At 30◦ ≤ γ≤ 40◦, T R bifurcates outside the considered

interval of 0 ≤ ε≤ 2. At γ≥ 50◦, the branches of T R and LR bifurcate again closer to each other.

The branches however differ significantly in amplitude and functional form. T R-branches

show non-monotonic behaviour in ||θ||2, e.g., a local maximum at ε= 1.8 and γ= 90◦. Non-

monotonic branches of T R were also computed in vertical convection at Pr = 0.71 (Mizushima

and Tanaka, 2002b,a).

LR-branches monotonically increase in ||θ||2 with ε. For further increasing ε, LR appears to

eventually approach the same ε-scaling law as reported for invariant states underlying straight

convection rolls in horizontal convection at γ= 0◦ (Waleffe et al., 2015). The large-ε behaviour

is observed for all γ. The observation that a scaling law of straight convection rolls at γ= 0◦

also describes LR-branches at γ 6= 0◦ suggests a particular scaling invariance of the nonlinear

Oberbeck-Boussinesq equations under changes of inclination angle γ. This scaling invariance

is discussed in the following paragraph.

At fixed ε, all γ-continuations of LR result in horizontal lines in ||θ||2 for 0◦ ≤ γ≤ γc2 (Figure

5.4). These horizontal lines are a remarkable feature of the bifurcation diagrams and can be

explained as a consequence of a scaling invariance of the nonlinear Oberbeck-Boussinesq

equations, that holds for patterns or states that are steady in time and uniform in x, like LR:

For γ< γc2, keeping ε= const. implies Ra ∼ 1/cos(γ) (5.12). The laminar solution thus scales

with γ as U0 ∼ sin(γ)/
√

cos(γ) and T0 ∼ 1. Here, Pr is constant. Inserting the base-fluctuation

decomposition U =U0+u and T = T0+θ into (5.1-5.3) and assuming ∂t [u,θ] = 0 and ∂x [u,θ] =
0 for steady stripe/roll states, the governing equations for each component scale with a global

γ-dependent factor, provided that temperature and velocity fluctuations scale as u(y, z) ∼
sin(γ)/

√
cos(γ), v(y, z) ∼ w(y, z) ∼√

cos(γ), and θ(y, z) ∼ 1:

u : v∂y u +w∂z (u +U0(z)) =−∂x p + (Pr/Ra)1/2∇2u + sin(γ)θ ∼ sin(γ) (5.15)

v : v∂y v +w∂z v =−∂y p + (Pr/Ra)1/2∇2v ∼ cos(γ) (5.16)

w : v∂y w +w∂z w =−∂z p + (Pr/Ra)1/2∇2w +cos(γ)θ ∼ cos(γ) (5.17)

θ : v∂yθ+w∂z (θ+T0(z)) = (PrRa)−1/2∇2θ ∼√
cos(γ) (5.18)

c : ∂y v +∂z w = 0 ∼√
cos(γ) (5.19)

This scaling implies that any equilibrium at one value of γ corresponds to a whole family of

equilibria for 0◦ ≤ γ≤ 90◦. The temperature scaling θ(y, z) ∼ 1 directly implies that ||θ||2 of LR

remains invariant under changes in γ with ε= const. This leads to self-similar curves under

ε-continuation at fixed γ (Figure 5.3) and horizontal lines under γ-continuation at fixed ε

(Figure 5.4). Moreover, any x-uniform and steady invariant state for 0 < γ≤ 90◦ corresponds to

a specific invariant state in the horizontal Rayleigh-Bénard case at γ= 0◦. A similar relation

has previously been reported for the infinite Pr limit only (Clever, 1973). The scaling relation
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provided here is valid for all Pr and a property of the full nonlinear Oberbeck-Boussinesq

equations.

In the limit of a vertical gap (γ→ 90◦), the cos−1(γ)-scaling implies diverging Ra. In this limit,

the amplitude of the fixed u(y, z)-profile diverges and the cross-flow components vanish,

v, w → 0. The temperature field θ(y, z) remains fixed. Consequently in a vertical gap, hot

and cold streamwise jets without cross flow and diverging streamwise velocity amplitude are

invariant states in the Ra →∞ limit. Any temperature field of LR found at γ< 90◦ is a valid

temperature field for these jets at infinite Ra.

The subsequent sections discuss selected bifurcation diagrams covering the parameters where

temporal dynamics between invariant states has been studied (RS19). We do not systematically

explain the bifurcations at all control parameters but rather highlight important features of

the bifurcations at selected control parameters. In each section we summarise key features of

the bifurcation structure and relate those to observed spatio-temporally complex dynamics of

the flow. The sections are ordered by increasing values of the angle of inclination.

5.3.1 Skewed varicose state - subcritical connector of bistable rolls

The skewed varicose instability of Rayleigh-Bénard convection, first found as spatially periodic

instability at Pr = 7 (Busse and Clever, 1979), is experimentally observed to trigger a spatially

localized transient pattern at Pr = 1.07 with very subtle varicose features (Bodenschatz et al.,

2000, Figure 7). This section reports on a bifurcation from straight convection rolls to an

equilibrium state capturing the observed skewed varicose pattern in a periodic domain. The

bifurcating branch is subcritical, exists only below εc of the skewed varicose instability, and

connects two bistable straight convection rolls at different wavelengths and orientations. The

subcritical coexistence of the skewed varicose equilibrium with bistable straight convection

rolls may explain the spatial localization of the transiently observed pattern.

Bifurcation branch of skewed varicose states

When convection patterns in experiments or numerical simulations exhibit complex dynamics,

we expect the existence of invariant states underlying the pattern dynamics. For the pattern

dynamics emerging from the skewed varicose instability of straight convection rolls Rλ at

γ= 0◦ we however do not find invariant states at the control parameters where the dynamics

is observed. Direct numerical simulations in a minimal periodic domain can reproduce the

transient dynamics of the skewed varicose pattern, but previous analysis of the temporal

dynamics did not yield an underlying invariant state (RS19).
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An equilibrium state resembling the observed skewed varicose pattern (SV ) is identified

below εc of the skewed varicose instability, as described in Section 5.2.2. Numerical contin-

uation of SV reveals a subcritical ε-backward pitchfork bifurcation from Rλ2 at εc = 1.019.

The bifurcation breaks the continuous translation symmetry τ(ax ,0) of straight convection

rolls Rλ2. Here we consider the rolls to be x-aligned and periodic with wavelength λy . The

bifurcating eigenmode shows a skewed three-dimensional flow structure. The bifurcating

equilibrium SV is [4λx ,4λy ]-periodic and invariant under transformations of the symmetry

group Ssv = 〈πx y z ,τ(0.25,0.25)〉. From the bifurcation point, the SV -branch continues down

in ε, undergoes a sequence of folds, and terminates at ε= 0.206 in a bifurcation from straight

convection rolls Rλ3 with wavelength λ= 2.8 (panel γ= 0◦ in Figure 5.3). Thus, the equilibrium

state SV connects two equilibrium states representing straight convection rolls at different

wavelengths. SV exists only below the critical threshold parameter εc . The pure subcritical

existence of SV explains why no temporal transition to an underlying invariant state at ε> εc

has been found in RS19.

Since the bifurcation branches are very cluttered at γ = 0◦ in Figure 5.3, we reproduce the

bifurcation diagram schematically. In Figure 5.5, the bifurcation branches are plotted in

terms of their approximate dominating pattern wavelength λp as a function of ε. Along the

SV -branch, convection rolls develop skewed relative orientations (Figure 5.5b) until the rolls

pinch-off and reconnect at an oblique orientation (Figure 5.5c). At the bifurcation point, Rλ3

is rotated by 74.6◦ against the orientation of Rλ2 (Figure 5.5a,c). To link these two different roll

orientations, the continuous deformations in the skewed varicose pattern skip two instances

for potential reconnection to straight rolls with orientations in between. Each of the potential

reconnection points corresponds to a pair of folds along the SV -branch. Here, three pairs of

folds are observed but this number is specific to the chosen domain size. In between the first

two folds at 0.94 < ε< 0.95, the SV -branch is bistable with Rλ2 and Rλ3 in a symmetry subspace

of Ssv . The stability of all branches is indicated by the linestyle. Overall, the bifurcation diagram

indicates coexistence of stable (or weakly unstable) SV with stable Rλ2 and Rλ3 over a range of

ε. The coexistence of invariant states suggests spatial coexistence of straight convection rolls

and the skewed varicose patterns.

The convection pattern along the SV -branch at ε< εc may be compared to the convection

pattern observed transiently in time along a simulated transition at ε= 1.05 > εc (dashed line

in Figure 5.5d and Section 4.3 in RS19). The midplane temperature contours of SV along

its subcritical bifurcation branch partly match the transient patterns along the supercritical

temporal transition. We find matching patterns at initial instances in time when straight

convection rolls are observed (Figure 5.5c,g), and at intermediate time when the transient

pattern of skewed varicose pattern emerges (Figure 5.5b,f). Thus, SV indeed captures the

observed transient pattern triggered by the skewed varicose instability, but the comparison

is for different ε. This observation raises the question how the transient temporal dynamics
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Figure 5.5 – For γ= 0◦ (Rayleigh-Bénard), the subcritical bifurcation of the skewed varicose
state (SV ) connects two equilibrium states of straight convection rolls at different wavelength
and orientation. Midplane temperature fields of equilibrium states (a-c) are chosen along
the SV -branch, plotted here in a schematic bifurcation diagram in terms of an approximate
dominating pattern wavelengthλp over ε in (d). A simulated temporal transition from unstable
Rλ2 to stable Rλ3 at supercritical ε > εc (RS19) is indicated by the dashed line. Snapshots
from the temporal transition (g,f,e) show matching skewed varicose patterns between the
equilibrium state (b) for ε < εc and the transient state (f ) at ε > εc . The orientation of Rλ3

differs between the terminating bifurcation branch at ε= 0.2 (a) and the attracted temporal
dynamics at ε= 1.05 (e).

observed above critical thresholds can be related to an equilibrium state existing only below

critical thresholds.

5.3.2 Subharmonic oscillations - standing and traveling waves

Subharmonic oscillations are observed as standing wave patterns emerging in spatially lo-

calized patches that may travel across extended domains (Daniels et al., 2000; Subramanian

et al., 2016). Here, the periodic orbit SSW , underlying the standing wave, is found to coexist

with a traveling wave state. Standing and traveling wave states always bifurcate together in

equivariant Hopf bifurcations. Both, standing and traveling waves capture observed patterns
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of spatially subharmonic oscillations. The existence of a traveling wave state explains the

observed traveling dynamics of the pattern.

Equivariant Hopf bifurcation from longitudinal rolls

Starting from the periodic orbit SSW , found at [γ,ε] = [15◦,1.5] in RS19, we continue the

branch down in γ. The SSW -branch bifurcates from LR at [γc ,εc ] = [8.5◦,1.5]. This bifurcation

is a γ-forward, supercritical Hopf bifurcation with a critical orbit period of Tssw = 80.2. The

bifurcation corresponds to four complex eigenvalues crossing the imaginary axis at ωi =
±0.078 controlling the period Tssw = 2π/|ωi |. The Hopf bifurcation to SSW accounts only

for one pair of complex neutral eigenmodes. The other pair gives rise to a traveling wave

state that we term longitudinal subharmonic wave (ST W ) with a critical phase speed of

c = Lx /Tlsw = 0.055 where Tlsw = Tssw. Both invariant states, the πy -symmetric ST W and

the πx y z -symmetric SSW (shown in left panels of Fig. 5.6(a) and (b)), each have a counter-

propagating sibling state obtained via πxz -transformation. Both invariant states capture a

subharmonic oscillatory convection pattern invariant under τ(0.5,0.5). An equilibrium pattern

very close to ST W can be observed in spatially forced horizontal convection (Weiss et al.,

2012). ST W also resembles the subharmonic “sinucose” state arising from an instability of

longitudinal streaks in pure shear flow (Waleffe, 1997).

At parameters where SSW and ST W bifurcate locally from LR , they share the same bifurcation

point (see panels for 10◦ ≤ γ≤ 60◦ in Figure 5.3. This robust feature in the bifurcation diagram

is a consequence of equivariant Hopf bifurcations. It is known that Hopf bifurcations that break

the O(2)-symmetry of a flow must result in two branches originating from the bifurcation: A

standing wave branch and a traveling wave branch (Knobloch, 1986). At most one of the two

branches is stable. In the present case, the Hopf bifurcation breaks the O(2)x -symmetry of

LR. The bifurcation at [γc ,εc ] = [8.5◦,1.5] (inset panel in Figure 5.6c) has both the branches

bifurcating supercritically. SSW is initially stable and ST W is unstable. This corresponds

to one specific of six discussed cases in Knobloch (1986). However, here the bifurcation is

secondary. While in Knobloch (1986), bifurcations from a non-patterned two-dimensional

primary state with a spatial O(2)-symmetry are discussed, here, the bifurcating secondary

equilibrium state LR is a three-dimensional state that is symmetric under transformations

of O(2)×Z2. The additional third dimension and the additional reflection symmetry do not

affect the conditions necessary for equivariant Hopf bifurcations (Knobloch, 1986).

Continuations of SSW and ST W in γ reveal their existence over a large range of inclination

angles γ, including γ> 90◦ where their parent state LR does not exist anymore (Figure 5.6c).

Over this range in γ, the orbit period of SSW and the propagation time Tlsw = Lx /c of ST W

with phase velocity c and Lx = 2λx follow approximately the mean laminar advection time

Lx /Ū0 (Figure 5.6d). While the state branch of ST W at ε= 1.5, shown as light grey line in Figure
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STW

SSW

SSW

RS19 (a)

(b)LR

SSW STW

(c)

(d)

Figure 5.6 – Symmetry-related pairs of standing wave states SSW (a) and traveling wave states
ST W (b) bifurcate together in equivariant Hopf-bifurcations from LR. The pattern of SSW
and ST W is visualised by temperature contours in three and two dimensions (midplane).
The bifurcation diagram in (c) shows the branches of SSW (black) and ST W (grey) at ε= 1.5.
Other branches shown in Figure 5.4 for ε= 1.5 are suppressed for clarity. The inset indicates
stable (solid) and unstable (dotted) branches close to the bifurcation at γ= 8.5◦ giving rise
to the states in (a) and (b) at γ = 15◦. ‘RS19’ labels the control parameter where temporal
dynamics has been studied in RS19. Panel (d) illustrates how the orbit period Tssw of SSW and
the travel time Tlsw of ST W across Lx approximately follow the mean advection time Lx /Ū0

of the laminar base flow B (dashed-dotted line). Note the ‘hydrolic jumps’ where phase and
advection velocity match at γ= 65◦ and at γ= 110◦ of the ST W -branch.
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5.6c, connects two Hopf bifurcations, one at small and one at large γ, the SSW branches at

ε= 1.5, shown as black lines in Figure 5.6c, originating from these two bifurcations remain

disconnected. The branch bifurcating forward at γc = 8.5◦ undergoes a fold at γ= 15.2◦ (Figure

5.6c) explaining why no temporal state transition from LR to SSW was found at γ= 17◦ in RS19.

The fold destabilizes SSW and connects to a state branch reaching to subcritical parameters

where LR is linearly stable. Similar folds occur under ε-continuations at γ= 10◦ and γ= 20◦.

Beyond these folds, SSW state branches terminate and show ‘loose ends’ in the bifurcation

diagrams. These terminations correspond to global bifurcations which we explain in the next

subsection.

Global bifurcation to longitudinal subharmonic oscillations

The global bifurcation at γ= 10◦ occurs at Rac = 2230.25 (εc = 0.286) where the pre-periodic

orbit SSW , satisfying (5.7) with σssw = πyτ(0.25,0.25) and a pre-period of T ′ = T /4, collides

with a heteroclinic cycle between two symmetry related saddle states T R and σsswT R (Figure

5.7). At the global bifurcation point, the spectrum of eigenvalues of T R is computed in a sym-

metry subspace Σ0 given by the [2λx ,2λy ]-periodic domain with imposed symmetries of SSW ,

namely τ(0.5,0.5) and πx y z . The five leading eigenvalues are real and read [ω1,ω2,ω3,ω4,ω5]

= [0.048,0.045,−0.090,−0.120,−0.138]. The midplane temperature contours of the associated

eigenmodes [eu
1 ,eu

2 ,e s
3e s

4,e s
5] are given in Figure 5.7h. Eigenvalues and eigenmodes of T R do

not change significantly when Ra crosses Rac . In contrast to the heteroclinic cycle discussed

in RS19, where each of the two symmetry related instances of OW R has a single unstable

eigenmode, the present cycle connects symmetry related instances of T R with two unsta-

ble eigenmodes each. Perturbations of T R with the eigenmode eu
1 trigger a state transition

T R →σsswT R while perturbations with eu
2 lead to LR which is dynamically stable inΣ0 at these

control parameters. The symmetry relation between T R and σsswT R guarantees that σsswT R

has the same eigenvalues as T R and symmetry related eigenmodes σssw[eu
1 ,eu

2 ,e s
3,e s

4,e s
5] al-

lowing for the returning transition σsswT R → T R to close the heteroclinic cycle.

Direct numerical simulations indicate that states close to the heteroclinic cycle are eventually

attracted to LR. To show that this heteroclinic cycle is dynamically unstable but structurally

stable, we identify two symmetry subspaces of Σ0 in which either T R →σsswT R or σsswT R →
T R exists as heteroclinic connection between an equilibrium with a single unstable eigenmode

and a dynamically stable equilibrium. By doing so, the heteroclinic cycle is shown to satisfy all

conditions of a structurally stable, or robust, heteroclinic cycle between two symmetry related

equilibrium states (Krupa, 1997), also discussed in RS19. Subspace Σ1 is given by imposing

the symmetries in the group 〈πy ,πxz ,τ(0.5,0.5)〉 and contains the connection T R →σsswT R.

Of the five initially considered eigenmodes in Σ0, T R in Σ1 has still [eu
1 ,e s

3,e s
5] and σsswT R

in Σ1 has still σssw[e s
4,e s

5]. Subspace Στ is given by imposing the symmetries in the group
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Figure 5.7 – The pre-periodic orbit SSW approaches a global bifurcation at γ = 10◦ and
Rac = 2230.25 (εc = 0.286) where it collides with a robust heteroclinic cyle between T R and
the symmetry related equilibrium σssw T R with σssw = πyτ(0.25,0.25). (a-e) Sequence of
midplane temperature contours along the dynamical connection T R →σssw T R at Ra = 2230.
(f ) State space projection of the lower (LB) and the upper branch (U B) of SSW (cf. Figure
5.8a). Inset enlarges the orbit trajectories (black dots) near T R and the heteroclinic cycle
(grey lines). (g) L2-distance of the SSWU B orbit trajectory from T R at Ra = 2230.24 very close
to Rac . The dynamics of SSWU B is exponential for most of the pre-period and governed
by two eigenvalues of T R. (h) Midplane temperature contours of two unstable and three
stable eigenmodes eu/s

i of T R associated to the five leading eigenvalues [ω1,ω2,ω3,ω4,ω5] =
[0.048,0.045,−0.090,−0.120,−0.138] of T R.
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〈πyτ(0.5,0),πxzτ(0.5,0),τ(0.5,0.5)〉 and contains the connection σsswT R → T R. Of the five

initially considered eigenmodes in Σ0, σsswT R in Στ has still σssw[eu
1 ,e s

3,e s
5] and T R in Στ has

still [e s
4,e s

5]. Using the classification of eigenvalues and associated stability theorem in Krupa

and Melbourne (1995), we identifyω1 as expanding,ω2 as transverse,ω4 as contracting andω5

as radial eigenvalue. Eigenvalue ω3 exists in the same subspace as the expanding eigenvalue

ω1 and therefore does not affect the dynamical stability. Since min(−ω4,ω1 −ω2) ≯ω1, the

heteroclinic cycle is not asymptotically stable (Krupa and Melbourne, 1995, Theorem 2.7).

Before SSW disappears in the global bifurcation at Rac , the solution branch undergoes a fold

at Ra < Rac (Figure 5.8a). The existence of such a fold near a global bifurcation follows from

the dynamical stability of the bifurcating periodic orbit relative to the dynamical stability of

the heteroclinic cycle. To analyse the stability, we consider the linearised dynamics around

the heteroclinic cycle T R →σsswT R → T R at Rac and obtain the following Poincaré map (see

Bergeon and Knobloch, 2002, for a derivation)

ζi+1 = cζρi +µ, ρ =−ω4

ω1
= 2.51 , (5.20)

with constant c > 0 and control parameter µ∝ Rac −Ra. Variable ζi ¿ 1 describes a local

coordinate in a Poincaré section located at a distance ε¿ 1 from T R and defining a small

perturbation around the state vector of T R as x ′ = xT R +ζi eu
1 +εe s

4. The heteroclinic cycle

corresponds to ζi = 0 and is reached at µ= 0. The bifurcating periodic orbit is a fixed point

ζ̄ of the map such that ζ̄ = c ζ̄ρ +µ. Since ρ > 1, a nearby fixed point ζ̄ exists only for µ > 0

and Ra < Rac , respectively. The graph in Figure 5.8b illustrates the map (5.20) and shows

that the fixed point ζ̄ is dynamically stable. The stability of ζ̄ assumes that no additional

transverse eigendirections are unstable. However, the symmetry subspace that contains SSW

also contains eu
2 which must be taken into account. Thus, the above analysis predicts that

SSW bifurcates with a single unstable eigendirection from the heteroclinic cyle, namely eu
2 .

Since SSW for Ra > Rac has two unstable eigenmodes, the periodic orbit must undergo a fold

prior to the global bifurcation to stabilise the extra unstable eigendirection. Such a fold also

exists at γ= 20◦ (Figure 5.3) but further away from the global bifurcation. Note that unlike the

global bifurcation discussed in Bergeon and Knobloch (2002), the present bifurcation involves

first, a heteroclinic cycle between two symmetry related equilibrium states and second, a

dynamically unstable periodic orbit such that the fold may have a stabilising effect.

The period of SSW must increases towards an infinite time period as the periodic orbit

approaches the heteroclinic cycle. The map (5.20) suggests a scaling law for T ∼ Ra close to

the global bifurcation. Since ζ¿ 1 and ρ > 1, the periodic orbit is given by the approximation

ζ̄≈ µ. Over a full period of SSW , the orbit trajectory visits both T R and σsswT R twice. The

time the orbit trajectory spends in the ε-neighborhood of T R or σsswT R dominates the entire

orbit period T (Figure 5.7g) such that T satisfies the approximation ζ̄≈ εexp(−ω1T /4). Hence,
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Figure 5.8 – Before SSW disappears in a global heteroclinic bifurcation at γ= 10◦ and Rac =
2230.25 (εc = 0.286), the branch undergoes a saddle node bifurcation. (a) Enlarged bifurcation
diagram showing the branch of SSW indicating the maximum ||θ||2 over one cycle (cf. panel
γ= 10◦ in Figure 5.3). (b) Graphical representation of the linearised Poincaré map (5.20) for
µ= 0.1 around the heteroclinic cycle between symmetry related instances of T R. The fixed
point ζ̄ is stable as the slope of the map at ζ̄ is less than one (dashed line). (c,d) Towards
the global bifurcation, the orbit period of SSW approaches an infinite period according to a
logarithmic scaling law shown as a function of Ra in (c) and for rescaled Ra in (d). This law
follows from the linearised map (5.20). Here, the constant is cT = 560.
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the period of SSW is expected to increase with T ∼−4/ω1 ln(Rac −Ra). Using a mutli-shooting

method, SSW is continued close to the global bifurcation. The increasing orbit period confirms

the predicted scaling law (Figure 5.8c,d).

5.3.3 Wavy rolls with defects - connecting coexisting state branches

Convection patterns of wavy rolls are observed to quickly incorporate defects in large exper-

imental domains (Daniels and Bodenschatz, 2002; Daniels et al., 2008). These defects may

form interfaces between spatially coexisting wavy rolls at different orientations against the

base flow. Here, a bifurcation and stability analysis of W R reveals four new equilibrium states,

including obliquely oriented states and rolls with defects, that all coexist with W R for the same

control parameters. The multiple states can give rise to the observed spatial coexistence.

Pitchfork bifurcations from longitudinal rolls

Equilibrium states W R emerge either in pitchfork bifurcations from LR at inclinations 20◦ ≤
γ≤ 80◦ or in saddle-node bifurcations in the absence of LR at 90◦ ≤ γ≤ 100◦. The fact that

W R can exist without bifurcating from LR is known from thermal Couette flow (Clever and

Busse, 1992). Almost all computed pitchfork bifurcations from LR to W R are either ε-forward

or γ-backward. This observation holds even when the W R-branches develop additional folds,

like in the bifurcation diagrams at γ= 80◦ or at ε= 1.5. The only γ-forward bifurcation of W R

from LR is observed at ε= 0.1 (Figure 5.4, ε= 0.1).

Additional bifurcations from wavy rolls

In most cases, W R-branches continue to large ε. This does not imply the absence of con-

nections to other invariant states. When W R lose stability, additional bifurcations occur. We

demonstrate the increasing number of invariant states and their patterns by following the

higher order instabilities of W R at γ= 40◦. Arnoldi iteration for W R indicates the stability of

the W R-branch up to ε= 0.256 in a [2λx ,λy ]-periodic domain (Figure 5.9f). At this point, a

subcritical pitchfork bifurcation breaks the πxz - and πy -symmetry and gives rise to an equi-

librium state showing disconnected wavy rolls and named DW R. DW R is invariant under

πx y z . Following the DW R-branch from the pitchfork bifurcation, it undergoes a saddle-node

bifurcation at ε= 0.254, becomes bistable with W R and connects to an equilibrium state of

oblique rolls (OR) that continues as a stable branch to larger values of ε. DW R represents

stationary roll defects that along its branch breaks the topology of rolls in a double periodic

domain (Figure 5.9b), and connects convection rolls at different orientations.
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Figure 5.9 – Bifurcation sequence from wavy rolls to oblique wavy rolls (a-d). Bifurcation
diagram (e) shows how seven equilibrium states are connected over ε and indicates stable
(solid) and unstable (dotted) parts of the branches. Dynamical stability is computed by Arnoldi
iteration in a (2λx ,λy )-periodic domain. Panel (g) enlarges the parameter region where DW R
connects W R with OR. Panel (f ) enlarges the parameter region where OW R1 with pattern
wavenumber m = 1 connects OW R with pattern wavenumber m = 2 with OR. ‘RS19’ labels
the control parameter values at which temporal dynamics have been studied in RS19.
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OR is a secondary state bifurcating from the laminar flow B . The oblique orientation at

angle tan−1(λy /2λx ) against the laminar flow direction coincides with the diagonal of the

[2λx ,λy ]-periodic domain (Figure 5.9c). OR is invariant under transformations of Sor =
〈πx y z ,τ(ax ,±ax )〉 corresponding to an O(2)-symmetric state. The sign of continuous shift

factor ax differs between left (+) and right (−) oblique rolls, with OR l = πyORr . When OR

becomes unstable, an ε-forward pitchfork bifurcation at ε= 0.456 gives rise to stable oblique

wavy rolls (OW R), see Figure 5.9d. As OR, OW R can have left or right orientation. The sym-

metry group of OW R is Sowr = 〈πx y z ,τ(0.5,±0.5)〉. Equilibrium OW R with a wavy pattern

of wavenumber m = 2 along the domain diagonal loses stability at ε = 0.463 to an equilib-

rium OW R1 with a pattern wavenumber of m = 1 and broken τ(0.5,±0.5)-symmetry. The

branch of OW R1 undergoes a saddle-node bifurcation at ε = 0.477 and terminates on OR

at ε= 0.476 (Figure 5.9f). The small ε-range with ∆ε= 0.476−0.456 = 0.02 between the two

symmetry-breaking bifurcations of OW R1 with m = 1 and OW R with m = 2 from OR suggests

a nearby codimension-2 point with spatial 1:2 resonance. When stable OW R1 disappear in

the saddle-node bifurcation, the temporal dynamics becomes attracted to a robust hetero-

clinic cycle between unstable instances of OW R that is discussed in RS19. The branch of

OW R continues as unstable branch until it terminates at ε= 0.8 on ribbons (RB), an unstable

equilibrium state bifurcating together with OR from B in an equivariant pitchfork bifurcation

(Figure 5.9e). The detailed properties of RB are discussed in the following section, but we

already note that RB shows disconnected rolls or plumes, similar to DW R. Thus, we find

two instances of bifurcation sequences that may be described as “straight rolls bifurcate to

wavy rolls, wavy rolls bifurcate to disconnected rolls”. In one instance the sequence happens

for longitudinal orientation and in the other instance for oblique orientation. The fact that

all of the above states coexist with the W R branch at equal control parameters explains that

all patterns represented by the invariant states can spatially coexist with wavy rolls in large

domains.

5.3.4 Knots and ribbons - two different types of bimodal states

Observations of knot patterns exist in horizontal convection (Busse and Whitehead, 1974;

Busse and Clever, 1979) and inclined layer convection (Daniels et al., 2000). They have been

described as ‘bimodal convection’ in both cases. Here, the properties of equilibrium states

for knots are compared to ribbons, a bimodal state identified in the previous section. A

decomposition along their bifurcation branches implies that knots and ribbons are bimodal

states that fundamentally differ in their bifurcation structure.
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Bifurcations to states for knots and ribbons

K N at γ= 80◦ bifurcates ε-forward from T R. At smaller ||θ||2 than T R, K N continues without

folds and terminates in ε-backward bifurcations from LR (Figure 5.3, γ= 80◦). This bifurcation

sequence requires γ> γc2 and was previously analysed using two-mode interactions (Fujimura

and Kelly, 1993). At γ= 90◦, LR does not exist at finite ε and the K N -branch terminates in a

bifurcation from an equilibrium state we term subharmonic lambda plumes (SL) and briefly

discuss in Section 5.6.

RB is an equilibrium state found via continuing the state branches of OW R and W R that

terminate in ε-bifurcations from RB at γ = 40◦ and γ = 50◦, respectively (Figure 5.3). RB

is invariant under transformations of Srb = 〈πy ,πxz ,τ(0.5,0.5)〉. Neither experiments nor

simulations of ILC observe the pattern of RB as dynamically stable pattern at the considered

parameters. However, we refer to experimental observations of “ribbons” in Taylor-Couette

flow (Tagg et al., 1989). Ribbons in Taylor-Couette flow are analogous to ribbons in ILC. In

Taylor-Couette flow, they bifurcate together with oblique spirals (Chossat and Iooss, 1994)

and are connected via oblique wavy cross-spirals (Pinter et al., 2006), two states that are

comparable to OR and OW R in ILC. As in the Taylor-Couette flow, OR and RB in ILC bifurcate

robustly together in equivariant bifurcations (Knobloch, 1986) and are connected via OW R.

However, OR and RB are stationary states and their bifurcation is an equivariant pitchfork

bifurcation, unlike equivariant Hopf bifurcations such as those found in Taylor-Couette flow,

and those discussed in Section 5.3.2.

Decomposition in terms of straight convection rolls

As a consequence of the stationary equivariant bifurcation, the linear relation xRB =αx l
OR +

βxr
OR with α=β holds at the bifurcation points, where xRB indicates the state space vector

of RB , and x l
OR and xr

OR are the state space vectors of OR l and ORr , respectively. This linear

decomposition is valid for all parameters, where RB and OR bifurcate from laminar flow B .

Since RB emerges as linear superposition of two differently oriented straight convection rolls,

we call RB a ‘bimodal state’. The term ‘bimodal’ has been used previously to describe knot

patterns of straight convection rolls at orthogonal orientations in experiments of Rayleigh-

Bénard convection (Busse and Whitehead, 1974) and in experiments of ILC for γ> γc2 (Daniels

et al., 2000). In line with previously used terminology, we describe K N and RB both as bimodal

states. However, there are fundamental differences between K N and RB bimodal states that

are illustrated by the subsequently discussed decomposition analysis.
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Chapter 5. Bifurcations and connections between branches of invariant states

We consider a bimodal equilibrium state vector b(ε) depending on continuation parameter ε

as decomposition

b(ε) =α(ε)m1(ε)+β(ε)m2(ε)+d(ε) (5.21)

where α,β ∈ R and m1,m2 are state vectors of two differently oriented straight convection

rolls. d is the difference vector that is necessary to create the composite state b. We simplify

the notation by suppressing the dependence of the decomposition on ε. We seek the optimal

bimodal decomposition (5.21)

〈αm1 +βm2,d〉 = 0, (5.22)

with ||d||2 minimal. The minimal d measures nonlinear and non-bimodal effects. The corre-

sponding optimal coefficients α and β may be found via the inner product of (5.21) with m1

and m2, respectively,

α= 〈m1,b〉
〈m1,m1〉

−β 〈m1,m2〉
〈m1,m1〉

, β= 〈m2,b〉
〈m2,m2〉

−α 〈m2,m1〉
〈m2,m2〉

, (5.23)

where we assume 〈m1,d〉 = 0 and 〈m2,d〉 = 0 to satisfy (5.22). The inner product 〈,〉 is induced

by the full norm (5.11). (5.23) with (5.21) is a coupled system of equations for the optimal

coefficients α and β that we solve iteratively.

The optimal bimodal decomposition (5.21) with (5.23) is calculated for b = xRB and m1,2 = x l ,r
OR

along the ε-bifurcation branches at γ = 40◦. The coefficients are found to be equal at all

ε, and to decrease linearly from α = β = 0.3291 at the bifurcation point (Figure 5.10). The

difference vector d increases linearly in ||θ||2 and mostly accounts for corrections to the flow

at the streamwise interfaces between hot and cold plumes (Figure 5.10d).

The optimal bimodal decomposition (5.21) with (5.23) is calculated again for b = xK N along the

K N -branch at γ= 80◦. Since LR does not coexist with most of the K N -branch (Figure 5.11), the

state vectors m1 = xT R and m2 = xLR in the decomposition are not considered as ε-dependent.

We choose the decomposition xK N (ε) =α(ε)xT R (ε= 0.024)+β(ε)xLR (ε= 0.22)+d (ε). Here, ε

parametrises linear interpolation between two bifurcation points. The resulting optimal coeffi-

cients α and β in general differ. While the contribution of the longitudinal rolls monotonically

increases, the contribution of the transverse rolls decreases (Figure 5.11). A decomposition

with α=β is found at ε= 0.095, approximately half-way between the bifurcation points and

close to the maximum of ||d||2. Note that d at the maximum amplitude resembles a ribbon

pattern (Figure 5.11d). Towards the bifurcation points, d decreases parabolically to zero. Since

d combines nonlinear and non-bimodal effects, as well as effects due to interpolation between

T R and LR at fixed values of ε, the dominant source for the large values of ∂||d ||2/∂ε at the

bifurcations is unclear. Stability analysis of the knot instability indicates a three-mode inter-
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Figure 5.10 – Decomposition of bimodal ribbons (RB) into left and right oriented oblique rolls
(OR l ,r ). The bifurcation diagram with details of the decomposition (left) is shown together with
visualisations of the temperature and velocity fields on the right (red labels in the diagram in-
dicate panels on the right). RB bifurcates together with OR l ,r in equivariant pitchfork bifurca-
tions from the laminar base flow. At γ= 40◦, RB emerges with one additional unstable eigendi-
rection, and OR l ,r become dynamically stable in a [2λx ,λy ]-periodic domain at ε= 0.282 (solid
line in top left panel). The optimal decomposition xRB (ε) = α(ε) x l

OR (ε)+β(ε) xr
OR (ε)+d(ε)

implies linearly decreasing equal coefficients α=β along the branches (middle panel). The
difference vector d grows linearly in ||θ||2 from zero at the bifurcation point (bottom panel).
Thus, RB can be viewed as a bimodal state combining two equally contributing oblique rolls.
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Figure 5.11 – Decomposition of knots (K N ) into longitudinal and transverse oriented rolls, LR
and T R , respectively. The bifurcation diagram with details of the decomposition (left) is shown
together with visualisations of the temperature and velocity fields on the right (red labels in
the diagram indicate panels on the right). K N connect T R and LR at γ= 80◦ (top). Dynamical
stability in a [λx ,λy ]-periodic domain is indicated by the solid lines. ‘RS19’ labels the control
parameter where temporal dynamics has been studied in RS19. Between the bifurcation
points, the optimal decomposition K N (ε) =α(ε)T R(ε= 0.024)+β(ε)LR(ε= 0.22)+d(ε) results
in decreasing α, increasing β (middle), and parabolically varying d (bottom). Thus, K N can
be viewed as a bimodal state combining transverse and longitudinal rolls with monotonically
changing relative contributions.
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action(Fujimura and Kelly, 1993; Subramanian et al., 2016), suggesting that a third state is

involved as evidenced by the significant contribution of d .

K N and RB differ in their bifurcation structure. K N is a connecting state between T R and

LR, while RB bifurcates together with OR l ,r in an equivariant pitchfork bifurcation. As a

consequence, their bimodal decomposition into two composing straight convection rolls

differs significantly. RB is composed of an equal weight superposition of two symmetry related

oblique rolls OR l =πyORr . K N in ILC at γ 6= 0◦ is a mixed mode state, composed of transverse

and longitudinal rolls that are not symmetry related and whose weight continuously changes

along the branch. At γ= 0◦ however, T R and LR become symmetry related via rotation. The

knot patterns observed in Rayleigh-Benard convection (Busse and Whitehead, 1974) are thus

expected to bifurcate in equivariant pitchfork bifurcations, like RB in ILC .

5.3.5 Transverse oscillations - continuation towards a chaotic state space

The pattern of obliquely modulated transverse rolls, called ‘switching diamond panes’, shows

complex dynamics with chaotically switching pattern orientations (Daniels et al., 2000). A

periodic orbit T O underlying transverse oscillations has been identified in RS19 at moderate ε.

The pattern of transverse oscillations seems to capture some aspects of the observed complex

dynamics. ε-continuations of T O show that the orbit period of T O is subject to large and

non-monotonic changes, and the number of unstable eigendirections of T O increases quickly

with ε. This suggests the existence of complex state space structures that support the chaotic

dynamics of switching diamond panes.

Bifurcations to transverse oscillations

In all but one analysed parameter continuations, the pre-periodic orbit T O bifurcates from

T R in a supercritical Hopf bifurcation. The bifurcations are either ε-forward at ε≈ 0.07, found

at inclination angles γ= [80◦,90◦,100◦,110◦], or γ-backward, found at ε= 0.1 and γ= 132.2◦.

The latter case represents the upper inclination limit of existence of T O at ε = 0.1. At the

lower limit, just below γc2, T O bifurcates as quaternary state from the transverse subharmonic

varicose state T SV (see inset panel in Figure 5.4). T SV is an equilibrium state discussed

briefly in Section 5.6. A common feature of all T O-branches is that the ||θ||2-maximum over

the orbit period remains close to the ||θ||2-value of T R. This agrees with the observation that

T O modulations are sinusoidal oscillations around strictly transverse rolls with the maximum

deflection associated to the minimum in ||θ||2 over the orbit period (RS19).
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Figure 5.12 – Continuation of T O at γ = 100◦ towards a chaotic state space. (a) Midplane
temperature of T O at Ra = 11000 (ε = 0.203) before instabilities create a turbulent flow (b).
The corresponding simulated time series of T O (d) shows the transition from a periodic to
a turbulent signal. The transition is a consequence of the many linear instabilities of T O
(f ) that have emerged along the bifurcation branch (c). Solid/dotted bifurcation branches
indicate stable and unstable states in the symmetry subspace of S = 〈πy ,πxz ,τ(0.5,0.5)〉. ‘RS19’
labels the control parameter value at which temporal dynamics has been studied in RS19. The
changing relative period T ′ of T O along the bifurcation branch is shown in (e) and compared
to the time scale of thermal diffusion H 2/κ and laminar mean advection Lx /Ū0 (dashed and
dashed-dotted lines).
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Numerical continuation of transverse oscillations

γ-continuation of T O at ε = 0.1 is numerically straight forward and yields periodic orbits

showing weak bending modulations around a purely transverse orientation (RS19, Section

4.2.2). ε-continuations are found to be numerically challenging for increasing ε. We could

not continue T O much beyond ε = 0.2 (Figure 5.12c). The reason for the computational

difficulty is two-fold. First, the time period of the orbit drastically changes with ε, which

causes challenges for our shooting method. The pre-periodic orbit T O satisfying (5.7) with

σ= τ(0.5,0) oscillates slowly with a relative period T ′ ∼O(102) close to the heat diffusion time

H 2/κ and the laminar mean advection time Lx /Ū0. Along the continuation, the large orbit

period is subject to significant and non-monotonic changes over small ε-intervals (Figure

5.12e). These changes in the orbit period are numerically difficult to trace. Secondly, the

iterative solver of the Newton algorithm converges better if the target state is dynamically

stable or weakly unstable (Sanchez et al., 2004). Computing the spectrum of eigenvalues of

T O in the symmetry subspace of [12λx ,6λy ]-periodicity indicates that the state branch at

γ= 100◦ and ε= 0.203 has collected 63 unstable eigenvalues with a broad range of frequencies

ωi (Figure 5.12f). At these parameters, the single-shooting Newton algorithm converged

T O to a residual of ||G(x)||2 < 3×10−11 (see Equation 5.7). When integrating the converged

orbit forward in time, unstable directions trigger a transition to a turbulent state after t = 500

(Figure 5.12d). This turbulent state has been described as longitudinal bursts within switching

diamond panes (Daniels et al., 2000). We conclude that continuation of T O for ε > 0.2 is

challenging due to the numerical condition of a temporally slow, spatially large and very

unstable periodic orbit that competes with many fast and small-scale modes in a chaotic

turbulent state space.

5.4 Discussion

Towards understanding how temporal and spatio-temporally complex dynamics arises in ILC,

we have computed three-dimensional invariant states underlying several observed spatially

periodic convection patterns in ILC at Pr = 1.07. Numerical continuation of these invariant

states in two control parameters, the normalised Rayleigh number ε and the inclination angle

γ, yields 15 bifurcation diagrams covering systematically selected parameter sections in the

intervals ε ∈ [0,2] and γ ∈ [0,120). For some selected bifurcating state branches, we have

characterised their stability properties and pattern features along the branches. These state

branches were selected for a more detailed discussion in the present chapter for two reasons.

First, each selected branch bifurcates at a different secondary instability. Second, they cover

the control parameters at which the temporal dynamics along dynamical connections between

stable and unstable invariant states have previously been described (RS19).
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The relevance of the computed invariant states for observed spatio-temporally complex dy-

namics in ILC depends in general on the type of bifurcation creating the states, the range in

control parameters over which state branches exist, and the stability properties of the invariant

states along their branches. The dynamical relevance of invariant states in the context of the

entire bifurcation structure is discussed below by answering the three specific questions posed

in the introduction (Q1-Q3). To describe the role of individual invariant states for temporal

pattern dynamics, we can distinguish three different cases:

In case 1, a stable invariant state represents a dynamical attractor at specific control param-

eters. This case corresponds for example to supercritical ε-forward bifurcations where the

stable bifurcating invariant state is an attractor for the dynamics above the critical control

parameters for the bifurcation. For invariant states that have been identified because they

represent dynamical attractors at specific control parameters (RS19), the present bifurcation

analysis indeed confirms supercritical ε-forward bifurcations (Sections 5.3.2-5.3.5).

In case 2, invariant states exist at specific control parameters but are dynamically unstable.

State branches are only stable over a finite range in control parameters. This range is limited

by instabilities along state branches. Invariant states which the present study indicates as

dynamically unstable at specific control parameters, may still be relevant for the observed

temporal dynamics at these control parameters. One reason is that the range of stability along

state branches depends on the considered pattern wavelength. Thus, invariant states might

be dynamically stable at other pattern wavelengths not considered here. Another reason is

that weakly unstable invariant states may be building blocks for the dynamics supported by

a more complex state space attractor. Here, the evolving state vector may transiently visit

weakly unstable invariant states by approaching and escaping along their stable and unstable

manifolds, respectively (e.g. Suri et al., 2017). The simplest example for such complex state

space attractors is the robust heteroclinic cycle between two weakly unstable instances of

symmetry related OW R described in RS19.

In case 3, invariant states do not exist at specific control parameters but their pattern is remi-

niscent in some state space regions that may be transiently visited by the dynamics. Folds or

symmetry-breaking bifurcations may limit the existence of invariant states in parameter space.

However, the pattern of the invariant state may still emerge transiently at control parameters

beyond the existence limits. We have observed this case for the transient skewed varicose

pattern along a dynamical connection from unstable to stable straight convection rolls in

Rayleigh-Bénard convection (Section 5.3.1), as well as for transient subharmonic oscillations

at [ε,γ] = [1.5,17◦] (see Section 4.4.2) where the SSW -branch does not exist anymore due to a

fold (Figure 5.6). The state space structure supporting such transient dynamics seems related

to a state space structure supporting intermittency (Pomeau and Manneville, 1980).

Consequently, the patterns of invariant states are often observed because invariant states

are stable and attracting, but neither stability nor existence of invariant states is required for

observing their pattern.
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5.4.1 Bifurcation types (Q1)

Bifurcations create or destroy invariant states and change the stability along state branches.

Thus, bifurcation structures describe how state space structures change across control param-

eters. In response to question Q1, stated in the introduction, we list all the different types of

bifurcations found in the present study and refer to particular examples. Identified bifurcation

types include:

Pitchfork bifurcation, e.g. from T R or LR to K N along ε at γ= 80◦ (Figure 5.11). Equivariant

pitchfork bifurcation, e.g. from B to RB and OR along ε at γ= 40◦ (Figure 5.10). Hopf bifurca-

tion, e.g. from T R to T O along ε at γ= 100◦ (Figure 5.12). Equivariant Hopf bifurcation, e.g.

from LR to SSW and ST W along γ at ε= 1.5 (Figure 5.6). Saddle-node bifurcation, e.g. W R

along ε at γ= 90◦ (Figure 5.3, panel γ= 90◦). Mutual annihilation of two periodic orbits, e.g.

the two folds bounding the SSW isola along γ at ε= 0.5 (Figure 5.4). The global bifurcation of

a periodic orbit colliding with a structurally robust heteroclinic cycle, e.g. the SSW collision

with T R → τx T R → T R along Ra at γ= 10◦ (Figure 5.8).

The symmetry-breaking pitchfork and Hopf bifurcations are found as ε- or γ-forward or back-

ward bifurcations. The orientation of bifurcations can change when control parameters are

changed, e.g. W R bifurcates γ-forward from LR at ε= 0.1, but γ-backward at ε= 0.5 (Figure

5.4). Moreover, pitchfork and Hopf bifurcations can be supercritical or subcritical indepen-

dent of their orientation. The ε-backward pitchfork bifurcation from Rλ2 to SV at γ = 0◦ is

subcritical (Figure 5.5) but the ε-backward pitchfork bifurcation from OR to DW R at γ= 40◦ is

supercritical (Figure 5.9f).

The sequential order in which bifurcations occur may depend on the considered path through

parameter space. RB at ε= 0.5 for example can bifurcate in primary or secondary bifurcations

along γ. When decreasing γ towards γ= 46◦, RB bifurcate from B in a primary bifurcation.

When increasing γ towards γ= 24◦, RB bifurcate from T R in a secondary bifurcation (Figure

5.4, panel ε = 0.5). Thus, describing for example W R as tertiary state implies a particular

parameter path. Since W R can bifurcate from RB that may be described as tertiary state

(Figure 5.3, panel γ= 50◦), W R may also be described as quartenary state.

The relation between bifurcation structures and spatio-temporally complex dynamics is in

general complicated. The various local and global bifurcations can modify the coexisting

invariant states and their dynamical connections in various ways. Coexistence of invariant

states may result from supercritical or subcritical bifurcations as well as from folds. These

bifurcation types exist in ILC at all angles of inclinations. For example, the subcritical coexis-

tence of stable straight convection rolls with unstable SV (Figure 5.5) or with unstable SSW

(Figure 5.3, panels γ= 10◦,20◦), supports the experimental observation of spatially localized

variants of these spatially periodic states (Bodenschatz et al., 2000; Daniels et al., 2000). The

supercritical coexistence of W R with DW R, OR or OW R (Figure 5.9) supports the observed

pattern defects within the spatially coexisting wavy rolls of different orientations (Daniels and
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Table 5.1 – Comparison between critical thresholds of secondary instabilities determined by
Floquet analysis (Subramanian et al., 2016) and the critical bifurcation points determined by
the present bifurcation analysis. The comparison requires to state all critical frequencies ω†

c

in diffusion time scales. Frequencies in free fall time units, used throughout this chapter, are
obtained via ω=ω†/

p
Pr Ra.

Floquet analysis bifurcation analysis

γ instability (Lx ,Ly ) εc ω†
c invariant state (Lx ,Ly ) εc ω†

c

0◦ skewed varicose (10.6, 8.07) 1.100 0 SV (8.88, 8.06) 1.020 0
10◦ long. subh. oscil. (4.89, 4.03) 1.360 6.211 SSW /T W (4.44, 4.03) 1.454 6.269
20◦ long. subh. oscil. (4.89, 4.03) 0.900 11.66 SSW /T W (4.44, 4.03) 0.929 11.64
20◦ wavy (62.8, 2.02) 0.018 0 W R (4.44, 2.02) 0.054 0
30◦ wavy (62.8, 2.02) 0.014 0 W R (4.44, 2.02) 0.033 0
40◦ wavy (62.8, 2.02) 0.013 0 W R (4.44, 2.02) 0.034 0
50◦ wavy (62.8, 2.02) 0.013 0 W R (4.44, 2.02) 0.043 0
60◦ wavy (62.8, 2.02) 0.013 0 W R (4.44, 2.02) 0.072 0
70◦ wavy (62.8, 2.02) 0.013 0 W R (4.44, 2.02) 0.159 0
80◦ knot (2.23, 2.03) 0.026 0 K N (2.22, 2.02) 0.024 0
90◦ trans. oscil. (26.9, 13.4) 0.063 1.733 T O (26.7, 12.1) 0.061 2.527

100◦ trans. oscil. (27.2, 15.7) 0.060 1.484 T O (26.7, 12.1) 0.060 2.776
110◦ trans. oscil. (27.4, 17.0) 0.057 1.312 T O (26.7, 12.1) 0.059 3.043

Bodenschatz, 2002). The details of these relations are non-trivial as they require to consider

spatial dynamics (e.g. Knobloch, 2015).

For a specific bifurcation structure we see a generic relation to complex temporal dynamics.

All computed sequences of primary and secondary supercritical ε-forward pitchfork or Hopf

bifurcations give rise to one of the four sequences of dynamical connections. These are

B → LR → SSW,W R and B → T R → K N ,T O as observed in RS19 and illustrated in Figure

5.2. Consequently, a ‘sequence of bifurcations’ (Busse and Clever, 1996), that consists of

supercritical ε-forward bifurcations, gives rise to a corresponding ‘sequence of dynamical

connections’.

5.4.2 Connection to instabilities (Q2)

The patterns of the tertiary invariant states SV , SSW /W , W R, K N and T O are similar to the

pattern motifs associated to the five secondary instabilities in ILC at Pr = 1.07 (Subramanian

et al., 2016). The similarity suggests that the invariant states bifurcate at corresponding

secondary instabilities. To confirm this, we compare the bifurcation points of the nonlinear

state branches with the critical threshold parameters of the secondary instabilities determined

by Subramanian et al. (2016) using Floquet analysis (compare with question Q2 stated in the

introduction). Floquet analysis solves for the pattern wavelengths that first become unstable at
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the critical threshold εc when ε is increased towards εc for fixed γ. For numerical continuation

of invariant states, the pattern wavelength is prescribed. The critical threshold εc is determined

by continuing the state branch down in ε towards the bifurcation at εc for fixedγ. Consequently,

Floquet analysis yields the minimal εc of the instability, while branches of invariant states

at prescribed wavelengths bifurcate at higher εc . We expect comparable critical thresholds

between the two methods if the associated pattern wavelengths are comparable.

Table 5.1 compares the results of Floquet analysis and bifurcation analysis in terms of pattern

wavelengths Lx and Lz , critical thresholds εc , and critical frequency ωc for Hopf bifurcations.

We find clear agreement between the results for skewed varicose, longitudinal subharmonic

oscillatory, and knot instabilities. Note that Floquet analysis finds the skewed varicose instabil-

ity for γ= 0◦ at a slightly higher εc than the bifurcation analysis. This suggests that the Floquet

analysis did not capture the most unstable wavelengths of the skewed varicose instability.

For the wavy instabilities, the εc obtained from the bifurcation analysis is significantly larger.

This discrepancy results from the difference in wavelength Lx . Floquet analysis indicates Lx

one order of magnitude larger than the Lx prescribed in the bifurcation analysis. We confirmed

that W R bifurcates at identical εc when identical pattern wavelengths are prescribed. Thus,

the equilibrium state W R bifurcates at the previously characterised wavy instability.

For the transverse oscillatory instability, the two methods agree in εc but differ in the critical

frequency ωc . The reasons for this discrepancy are not clear. Continuing the periodic orbit

T O to identical pattern wavelengths does not change the critical frequency much. Thus, we

hypothesise that the instability characterised by Floquet analysis corresponds to a different

bifurcating periodic orbit as T O. This hypothesis is supported by two observations. First,

a weakly nonlinear analysis of the normal form near the transverse oscillatory instability

suggests a subcritical ε-backward bifurcation. T O however, is always found to bifurcate super-

critically and ε-forward. Second, the pattern of T O can be described as spatially subharmonic

standing wave oscillations. Like the subharmonic standing wave state SSW , also T O oscillates

on the time scale of the laminar mean advection across the pattern Lx /Ū0 (Section 5.2.1). Thus,

these subharmonic standing waves satisfy the approximate resonance condition

m Lx ωc ≈ nŪ02π , (5.24)

with (m,n) ∈N. For bifurcations to SSW at small γ, this approximation holds for (m,n) = (2,1)

with relative errors of about ±15%. The nonlinear time scales along the SSW -branch are

shown in Figure 5.6d. For bifurcations to T O, this approximation holds for (m,n) = (2,1) with

relative errors of less than ±10%. The nonlinear time scales along the T O-branch are shown

in Figure 5.12e. The transverse oscillatory instability from Floquet analysis however satisfies

(5.24) best for (m,n) = (4,1). Due to the different resonance numbers, we suspect other physics

than those of subharmonic standing waves to govern the instability described by Floquet

analysis. Future research should investigate the possibility for other periodic orbits than T O
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Chapter 5. Bifurcations and connections between branches of invariant states

to bifurcate, possibly subcritically, at or near the transverse oscillatory instability. Except in

the case of T O, the bifurcating invariant states match the characteristics of the secondary

instabilities described previously in Subramanian et al. (2016).

5.4.3 Range of existence (Q3)

The third specific question is about the limits of existence of invariant solutions as control

parameters are varied (Q3 state in the introduction). This problem has been approached

by continuing invariant states as far as possible along a priori defined sections across the

[γ,ε]-parameter space at Pr = 1.07. Since the continuation methods allow tracing invariant

states beyond critical threshold parameters of additional instabilities, it was possible to follow

bifurcation branches over large intervals of control parameters. The travelling wave ST W , for

example, is found to exist over a large range of inclinations 10◦ ≤ γ≤ 110◦, covering different

flow regimes with small and large laminar shear forces. We identify three invariant states

SSW /W and W R whose solution branches persist across the angle of the codimension-2

point γc2, and for γ> 90◦ where their parent state LR has disappeared. With the exception

of SV , all tertiary invariant states are found to exist for the case of vertical convection with

γ= 90◦. All invariant states existing at [γ,ε] = [90◦,1.5] are briefly discussed and compared with

turbulent vertical convection in Section 5.7. We visually summarise the regions of existence

and coexistence of the computed invariant states in Figure 5.13.

Continuation and stability analysis along state branches revealed bifurcations to or from other

invariant states. These states are neither clearly observed in experiments or simulations, nor

do they correspond to instabilities found by Floquet analysis. The stability analysis along the

branch of W R (Section 5.3.3) introduced four additional equilibrium states, namely DW R,

OR, OW R, and RB . Other invariant states were obtained because continuations terminated

at bifurcations from these states. Specifically, T O may bifurcate from the T SV equilibrium

(Figure 5.4, ε= 0.1), K N may bifurcate from SL (Figure 5.3, γ= 90◦), and a global bifurcation

of SSW may involve LSV as parent state (Figure 5.6c). These three additional states are de-

scribed in Section 5.6. We do not distinguish invariant states connected via folded bifurcation

branches as upper and lower branch states. Folds exist at all angles of inclinations. See e.g.,

the bifurcation branches of SV at γ= 0◦, and of ST W at γ= 110◦. However, we observe that

state branches tend to become more folded towards inclinations around vertical (compare

panels in Figure 5.3).

5.5 Conclusions

The present bifurcation analysis has identified an extensive network of parametrically con-

nected invariant state branches in inclined layer convection. Overall, 16 different nonlinear
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5.6. Additional invariant states participating in bifurcations

Figure 5.13 – Existence regions of invariant states in the considered parameter space at
Pr = 1.07. Local symmetry breaking bifurcations are marked and connected to guide the
eye: SV (D), W R (◦) and K N (3) bifurcate in pitchfork bifurcations. SSW /ST W (�) and
T O (?) bifurcate in Hopf bifurcations. Where existence is not limited by symmetry breaking
bifurcations, the limits are due to folds, global bifurcations or, in the case of T O, due to
numerical challenges. Hatched regions of existence allow to better distinguish SSW (×) and
ST W (+).

three-dimensional invariant states have been discussed in the present chapter. Many of them

are related to spatio-temporally complex dynamics observed in experiments and simula-

tions. Seven different types of bifurcations were found, including common types like Hopf

bifurcations or saddle-node bifurcations, and including less common types like equivariant

bifurcations or global collisions between periodic orbits and robust heteroclinic cycles. Com-

puting this many different invariant states and branches just for this work and RS19 has been

straightforward relative to recent integrated efforts of the research community to compute sim-

ilar numbers of invariant states and branches in other canonical shear flows like plane Couette

or pipe flow. Inclined layer convection covers flows from horizontal Rayleigh-Bénard convec-

tion to vertical layer convection which are relevant for engineering applications and which

have been widely studied using experiments and simulations. This chapter demonstrates that

these flows are numerically accessible to nonlinear dynamical systems concepts.

5.6 Additional invariant states participating in bifurcations

This section briefly discusses three additional invariant states that do not represent previously

observed convection patterns at Pr = 1.07 but that participate in the bifurcation network by

bifurcating to the above discussed invariant states.
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Chapter 5. Bifurcations and connections between branches of invariant states

(a) (b) (c)

Figure 5.14 – 3D flow structure and midplane temperature contours of three steady equilibrium
states participating in bifurcations. (a) longitudinal subharmonic varicose LSV , (b) transverse
subharmonic varicose T SV , (c) subharmonic lambda plumes SL.

The γ-continuation of SSW at ε = 1.5 approaches an equilibrium state at γ = 1.9◦ that we

name LSV , short for longitudinal subharmonic varicose state. The pattern of the equilibrium

resembles an instance in time along the orbit SSW at γ= 15◦ (Figure 5.14a). LSV is invariant

under transformations of Sssw = 〈πx y z ,τ(0.5,0.5)〉 and can be continued from γ= 0◦ to γ= 30◦

along which the relative position of the hot and cold plumes changes continuously.

Just below γc2, a γ-forward Hopf bifurcation generates T O from an equilibrium state, previ-

ously named transverse subharmonic varicose (T SV ), at ε= 0.1 (inset panel in Figure 5.4). This

invariant state represents stationary varicose modulations of the T R pattern with [3λx ,3λy ]-

periodicity and invariance under transformations of Stv = 〈πxz ,πy 〉 (Figure 5.14b). T SV are

similar to the state discussed in Clever and Busse (1995) but have different periodicity.

Due to the absence of LR at finite Ra at γ= 90◦, K N do not terminate in a bifurcation from LR

as described in Section 5.3.4 but from SL, an equilibrium that we name subharmonic lambda

plumes. The [λx ,λy ]-periodic SL emerges in a saddle-node bifurcation at ε= 1.670. From the

upper branch of SL, K N bifurcate ε-backward at ε= 1.672 (Figure 5.3). The subharmonic flow

structure of SL is invariant under transformations of Ssl = 〈πxzτ(0,0.5),πyτ(0.5,0),τ(0.5,0.5)〉
and resembles lambda-shaped plumes at scales of half the gap height (Figure 5.14c).

114



5.7. Invariant states in vertical layer convection

(a) (c) (e) (g)

(b) (d) (f ) (h)

(i) (j) (k) (l)

Figure 5.15 – Continuation yields eight invariant states in vertical layer convection (γ= 90◦)
at ε= 1.5 (Ra = 21266). (a) T R, (b) K N , (c/d) upper/lower branch of W R, (e/f ) upper/lower
branch of SSW , (g/h) upper/lower branch of ST W . The distinction between upper/lower
branches refers to ||θ||2. The upper branches of W R and SSW are closer to bifurcations from
LR than the lower branches, for ST W vice versa. (i)-(l) Snapshots from a DNS at γ= 90◦ and
ε= 1.5 show transiently emerging structures resembling the invariant states above.

5.7 Invariant states in vertical layer convection

ILC atγ= 90◦ is a particular case because vertical layer convection has the largest laminar shear

forces of all inclinations and can be considered a pure shear flow. Here, buoyancy provides

a body force along the channel domain, acting like a pressure gradient in pressure-driven

channel flow. Despite the absence of a wall-normal buoyancy force, all main invariant states

considered in the present study were numerically continued to γ= 90◦, with the exception

of LR existing only at Ra =∞ due to (5.15-5.19) and SV . The flow structures of the invariant

states at γ= 90◦ and ε= 1.5 show sharper interfaces and more pointed convective plumes than

at the parameters where these states were initially found (Figure 5.15).
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6 Turbulent wavy rolls in inclined layer
convection: An outlook

The invariant states discussed in the previous two chapters underlie spatially periodic patterns

whose temporal dynamics is observed to be spatio-temporally complex only in large flow

domains. Here, we provide an outlook to invariant states in ILC that capture chaotic dynamics

in a small flow domain (Section 6).

Inclining a Rayleigh-Bénard convection cell against gravity creates a shear flow between hot

and cold fluid, driven up and down the inclined plates by buoyancy force. Experiments on

so-called inclined layer convection (ILC) find turbulent wavy convection rolls (Daniels et al.,

2000, 2008), reminiscent of wavy velocity streaks in weakly turbulent subcritical shear flows.

Turbulent ILC is observed close above the onset of convection where a turbulent attractor

can be expected to have a much simpler structure than in subcritical shear flows. However,

turbulent inclined layer convection has not been studied using exact invariant solutions.

This outlook reports on an exact periodic orbit (EPO) forming the obvious ‘backbone’ structure

of turbulent ILC studied in direct numerical simulations (DNS). The EPO is found via step-

wise reducing the complexity of the flow by reducing the domain size, from spatio-temporal

chaos in a large numerical domain, via temporal chaos in an intermediate size domain, to an

attractive EPO in a small minimal domain. The EPO captures the bursting dynamics and the

mean statistics of turbulent ILC, and defines the onset of chaos.

Numerical dynamical systems approach. We consider ILC as a dynamical system with the

fully resolved three-dimensional velocity field U (x, y, z) and temperature field T (x, y, z) evolv-

ing under the nonlinear incompressible Oberbeck-Boussinesq equations (4.1-4.3). The flow

domain is bounded by two plates at temperature difference ∆T , seperated by H , and inclined

by angle γ against the unit vector of gravity ĝ =−sin(γ)ex −cos(γ)ez . Along the plates in the

streamwise and spanwise dimensions, the domain is periodic over Lx and Ly . The character-

istic time scale is the free-fall time unit (H/g α∆T )1/2. The nondimensional parameters are

ν̃= (Pr /Ra)1/2 and κ̃= (Pr Ra)−1/2 with Rayleigh number Ra = g α∆T H 3/(νκ) and Prandtl
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Chapter 6. Turbulent wavy rolls in inclined layer convection: An outlook

number Pr = ν/κ. Here, α is the thermal expansion coefficient, ν is the kinematic viscosity,

and κ is thermal diffusivity. Turbulent ILC is studied at the control parameters Ra = 3344,

Pr = 1.07 and γ= 40◦.

DNS of the governing equations are done using the ILC extension module to the code Chan-

nelflow 2.0 (Section 2). Matrix-free algorithms allow the construction, parametric continuation

and stability analysis of invariant solutions, as described in Gibson et al. (2019). Numerical

domains are discretized using N Fourier and Chebychev modes, implying a phase space with

N dimensions. We consider numerical domains of three different sizes: the large domain

Ω1 : (Lx ,Ly , H) = (26.7,24.2,1) with Nx ×Ny ×Nz = 256×256×25 = 1.6 ·106, the intermediate

domainΩ2 : (Lx ,Ly , H) = (4.4,4.0,1) with Nx ×Ny ×Nz = 42×42×25 = 4.4 ·104, and the small

domain Ω3 : (Lx ,Ly , H) = (4.4,2.0,1) with Nx × Ny × Nz = 42× 20× 25 = 2.1 · 104. Domains

Ω2 and Ω3 have been used recently to study invariant solutions in ILC at different control

parameters (Reetz et al., 2019b). The choice of the numerical domain determines the observed

level of dynamical complexity in DNS, namely spatio-temporal chaos inΩ1, temporal chaos

inΩ2, and periodic bursting inΩ3.

Spatio-temporal chaos in a large domain. DNS in Ω1 reproduces a convection pattern first

observed in experiments on ILC with large aspect ratio (Daniels et al., 2000, 2008) and described

as crawling rolls or undulation chaos. If a domain is large enough, the bursting cycle of crawling

rolls may be observed at different locations in space. Thus, a single snapshot from DNS in

Ω1 suffices to show the different stages of the bursting cycle at different locations at the same

time (Fig. 6.1A-D). The spatial pattern at each location is compared with the spatial pattern at

temporal instances along an unstable EPO found at the considered control parameters (Fig.

6.1a-d).

Temporal chaos in a small domain. DNS inΩ2 shows chaotic dynamics suggesting the exis-

tence of a chaotic attractor. A phase portrait of the chaotic attractor together with the unstable

EPO reveals a characteristic shape in the plane of kinetic energy and dissipation (Figure 6.2).

The chaotic trajectory clearly resembles the shape of the EPO in this projection. Moreover, the

EPO captures the dominant frequency of the dynamics and the mean statistics of the chaotic

attractor (Figure 6.2).

This unstable periodic orbit is a paradigm of how unstable invariant solutions may be highly

relevant for observed chaotic dynamics. Studying this periodic orbit allows furthermore to

characterize the onset of turbulent crawling rolls in ILC.
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Figure 6.1 – Exact periodic orbit (EPO) captures a characteristic bursting cycle of turbulent
inclined layer convection at γ= 40◦ observed in direct numerical simulations (DNS). Instan-
taneous temperature patterns at different locations (A-D) in the large domainΩ1 match the
patterns of the EPO at different timings (a-d) in a small minimal domain Ω3. The timings
are indicated in the time series (vertical lines) of terms in the energy equations (4.13-4.15)
over one orbit period. The EPO undergoes a nonlinear cycle of slow formation of wavy rolls
(a-b), followed by a rapid burst of spanwise roll break-up (b-c), and regeneration of rolls with a
defect at a different spatial phase (c-d). This nonlinear bursting cycle is also observed over
time in the large domain turbulence.
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Figure 6.2 – (a) ‘Phase portrait’ of the chaotic attractor (grey dots) illustrates how chaotic
inclined layer convection in the intermediate domain Ω2 shadows the unstable EPO (red
orbit with points referring to instances a-d in Fig. 6.1). The cloud of 20k dots represents 20k
simulated time units. The chaotic time series from DNS (b) has the same mean energy input
as the EPO, and the Fourier spectrum (c) peaks at the inverse pre-period of the EPO (red lines).
Thus, the statistics of chaotic inclined layer convection is centered around the unstable EPO.
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Part IIOblique stripe patterns in plane
Couette flow
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7 Constructing invariant solutions with
oblique patterns

Plane Couette flow (PCF) and inclined layer convection (ILC) are both shear flows between

two extended parallel walls with a laminar flow that is anti-symmetric in the wall-normal

direction. However, the physics of PCF are very different compared to ILC. ILC is driven by

buoyancy forces which are absent in PCF. PCF is driven by moving the walls against each other.

The laminar flow is linearly stable at all driving forces (Bayly et al., 1988). Other dynamical

attractors are not known in PCF, except for a short range of wall velocities (Clever and Busse,

1997; Kreilos and Eckhardt, 2012). Thus, the approach to identify invariant solutions by

following the temporal dynamics towards an attractor, as applied to ILC (Section 4), does not

work in PCF. Various other approaches (see e.g. Kawahara et al., 2012, for a review) lead to a

large collection of unstable invariant solutions in PCF (Gibson et al., 2009). None of the known

invariant solutions captures the spatial features of oblique turbulent-laminar stripes (Section

1.3).

The starting point for finding an invariant solution that captures the spatial features of oblique

turbulent-laminar stripes is the well-known Nagata equilibrium (Nagata, 1990; Clever and

Busse, 1992; Waleffe, 1997). This equilibrium solution is the first invariant solution found

in PCF. Two branches of the Nagata equilibrium emerge in a saddle-node bifurcation. The

so-called ‘upper branch’ is connected to the dynamical attractor mentioned above. The ‘lower

branch’ is always dynamically unstable. At control parameters where oblique stripe patterns

are observed, the Nagata equilibrium in a minimal periodic domain has only a single unsta-

ble eigendirection and is thus an ‘edge state’ (Skufca et al., 2006; Schneider et al., 2007). In

spanwise extended periodic domains of PCF, the ‘edge states’ are spanwise localized variants

of the Nagata equilibrium that coexist with laminar flow (Schneider et al., 2010b) and may

bifurcate from the spatially periodic Nagata equilibrium (Schneider et al., 2010a; Salewski

et al., 2019). These and other localized invariant solutions have been proposed to represent

the turbulent-laminar coexistence of transitional PCF (e.g. Brand and Gibson, 2014). These

previous results motivate the following

123



Chapter 7. Constructing invariant solutions with oblique patterns

Hypothesis: Spatially modulated variants of the Nagata equilibrium capture turbulent-laminar

coexistence over a specific oblique period in space, thereby suggesting how weakly turbulent PCF

selects wavelength and orientation for a regular oblique stripe pattern.

As for the turbulent patterns in ILC (Chapter 4), a minimal periodic domain is chosen to

search for invariant solutions underlying the oblique stripe pattern in PCF. A suitable minimal

domain is suggested by Barkley and Tuckerman (2005) who performed first DNS of oblique

turbulent-laminar stripes. Their minimal periodic domain is tilted against the streamwise

direction to align the domain orientation with the typically arising oblique orientation of

stripes in experiments, i.e. θ = 24◦ against the streamwise direction. Along the statistically

homogeneous direction of stripes, the domain is short with Lx = 10. Across the pattern, the

domain is long with Lz = 120 (Barkley and Tuckerman, 2005) or Lz = 40 (Barkley and Tuck-

erman, 2007) and matches a typically observed pattern wavelength of λ = 40. Like for the

turbulent patterns in ILC, the choice of a minimal domain is motivated by observations or

analysis of patterns whose spatial features emerge under less constrained conditions. This is

important because the analysis in a specific minimal domain prescribes the spatial features of

the pattern. Nevertheless, a minimal domain representation is needed to reduce the size of

the state space. Throughout this section, the analysis focuses on oblique stripe patterns in a

minimal periodic domain of extent [Lx , H ,Lz ] = [10,2,40] and tilted against the streamwise

direction by θ = 24◦.

Invariant solutions have previously not been studied in tilted periodic domains. To construct

a variant of the Nagata equilibrium in a tilted periodic domain, the following shear transfor-

mation is applied to the velocity field of the ‘lower branch’-Nagata equilibrium at Re = 350 in a

non-tilted domain of extent [Lx , H ,Lz ] = [10,2,40/9] (Figure 7.1a):

Sn[u, v, w](x, y, z) =
[

u, v, w +u

(
Lz

Lx

)](
x, y, z +x

(
Lz

Lx

))
. (7.1)

Using the resulting velocity field as initial guess for a Newton-Krylov iteration in a tilted do-

main of extent [Lx , H ,Lz ] = [10,2,40/9] and orientation θ = tan−1(Lx /Lz ) = 24◦, the algorithm

converges on a new invariant solution. This equilibrium solution has wavy velocity streaks

aligned with the domain diagonal (Figure 7.1b). We refer to this equilibrium as the tilted

Nagata equilibrium. It differs from the standard Nagata equilibrium in its symmetries. The

tilted Nagata equilibrium has broken the shift-reflect and shift-rotate symmetries of the Nagata

equilibrium (Gibson et al., 2008b) and is only invariant under three-dimensional inversion

symmetry

πi [u, v, w](x, y, z, t ) = [−u,−v,−w](−x,−y,−z, t ) . (7.2)
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Figure 7.1 – Iso-surface in 3D of downstream velocity fluctuations around the base flow
(red/blue: us = ±0.3) of the well-known Nagata equilibrium (a) and the constructed tilted
Nagata equilibrium (b) at Re = 350. Both invariant solutions are x-z-periodic with Lx = 10
and Lz = 40/9, respectively. Boundary conditions at the lower and upper wall differ in the
orientation of velocities. The tilted Nagata equilibrium requires tilted wall velocities with
θ = arctan(λz /λx ) = 24◦. The corresponding tilted laminar base flow is sketched on the right.

Thus, the tilted Nagata equilibrium is an equilibrium solution that has not been described

previously.

The tilted Nagata equilibrium is not only a solution in a periodic domain of extent [Lx , H ,Lz ] =
[10,2,40/9] but also in a domain of extent [Lx , H ,Lz ] = [10,2,40] where nine copies of the flow

structure repeat in space. Thus, a first invariant solution has been found that respects the

same boundary conditions as oblique turbulent-laminar stripes. However, the tilted Nagata

equilibrium is still spatially periodic on a scale of the gap height rather than of oblique stripes. A

spatially modulated variant of the tilted Nagata equilibrium is obtained by applying a particular

windowing function (Gibson and Brand, 2014; Beaume et al., 2016). Attempts using analytically

defined windowing functions failed due to not capturing the intricate three-dimensional

structure of the oblique turbulent-laminar interfaces (Barkley and Tuckerman, 2007; Duguet

and Schlatter, 2013). Therefore, a statistically defined windowing function is used. The three-

dimensional mean field of turbulent kinetic energy 〈u2〉t (x, y, z) = 1/T
∫ T

0 u2(x, y, z, t)d t of

a single stripe period is computed via DNS in a tilted minimal domain with θ = 24◦ and

[Lx , H ,Lz ] = [10,2,40] over a period of T = 5500. Additionally, the DNS are confined to the

symmetry subspace of πi (7.2) which is found to still allow the formation of self-organized

turbulent-laminar stripes. In this subspace, the envelope of the stripe pattern cannot drift in

the x- or z-dimension, as observed by Barkley and Tuckerman (2007), because the inversion

symmetry fixes the spatial phase of the pattern envelope. Simulating patterns with a fixed

spatial phase allows us to combine mean energy fields of turbulent-laminar stripes from several
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Figure 7.2 – Contours of the statistical window function W (x, y, z) (white lines, solid: W = 1,
dashed: W = 0.25), defined in (7.3), overlying the contours of kinetic energy of periodically
extended tilted Nagata equilibrium (a) and the converged modulated equilibrium solution in
(b), all in a y-z-cross-section at x = 0.

DNS runs in an ensemble average. The window function is given by the three-dimensional

scalar field

W (x, y, z) = 1.4〈u2〉t /max(〈u2〉t ) . (7.3)

The product of W with the tilted Nagata equilibrium in the domain [Lx , H ,Lz ] = [10,2,40]

represents an initial guess for a Newton-Krylov iteration with Hookstep optimization that

yields an obliquely patterned equilibrium solution (Figure 7.2). We refer to this equilibrium as

stripe equilibrium.

The windowing approach discussed above may yield a second, in some sense complementary,

stripe equilibrium. The tilted Nagata equilibrium is invariant under πi with respect to two dif-

ferent symmetry points along one streamwise wavelength of its wavy velocity streaks. Shifting

the tilted Nagata equilibrium by half a streamwise wavelength results in a velocity field that is

again invariant under πi . Thus, the πi -symmetric windowing function W (x, y, z) can be multi-

plied with two different πi -symmetric velocity fields of the tilted Nagata equilibrium such that

the symmetry points of velocity field and of windowing function W (x, y, z) coincide. Newton-

Krylov iteration converges for both initial guesses to a πi -symmetric stripe equilibrium. The

spatial structure of the two different stripe equilibria is visualized in Figure 7.3. The mean

amplitude modulation along the z-dimension indicates that the two stripe equilibria have the

same large-scale modulation but ‘opposite’ small-scale modulation (Figure 7.3e). Velocity and

vorticity contours at midplane of the two stripe equilibria and the two differently tilted Nagata

equilibria illustrate different internal ‘topological’ structures (Figure 7.3a-d). The green lines
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connect vorticity maxima or minima with each other and guide the eye along wavy velocity

streaks of equal streamwise phase. These green lines have the same topology in panels (b-d)

but a different one in panel (a), showing the tilted Nagata equilibrium that has been combined

with the windowing function W (x, y, z) to construct the stripe equilibrium. The following

section discusses how the stripe equilibrium in panel (d) can be connected via a bifurcation to

the Nagata equilibrium in a tilted domain, having the same internal topological structure as

the equilibrium in panel (b). The stripe equilibrium in panel (c) cannot be connected via a

bifurcation to an equilibrium like in panel (b). The reason is that this stripe equilibrium has

10 vorticity minima, like the equilibrium solutions in panel (b) and (d), but only 9 vorticity

maxima. This structural difference was not found to change under numerical continuations.
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Figure 7.3 – Four different equilibrium solutions of PCF at Re = 350 in a tilted periodic
domain with θ = 24◦ and [Lx , H ,Lz ] = [10,2,40]. Figure (a-d) show contours of streamwise
velocity and vorticity at midplane (y = 0). The grey grid indicates streamwise and spanwise
directions. Green lines connect neighboring vorticity maxima or minima to guide the eye
along wave fronts of the wavy velocity streaks with equal streamwise phase. Panel (e) shows
the amplitude modulation of the two stripe equilibria in panel (c) and (d) and of the mean
kinetic energy field of stripes, used to define the windowing function in (7.3), in terms of
|u|(z) = (2Lx )−1/2(

∫
u2d xd y)1/2. The unpatterned tilted Nagata equilibrium solutions in panel

(a) and (b) are shown in terms of the total velocity norm ||u||2 = (2Lx Lz )−1/2(
∫

u2d xd yd z)1/2.
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8 Equilibrium solution underlying
oblique turbulent-laminar stripes

Remark This chapter is largely inspired by the publication of the name “Exact invariant

solution reveals the origin of self-organized oblique turbulent-laminar stripes”.

Florian Reetz1, Tobias Kreilos1 and Tobias M. Schneider1

1Emergent Complexity in Physical Systems Laboratory (ECPS),

École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland

Nature Communications 10, Article number: 2277 (2019)

Chapter summary

Wall-bounded shear flows transitioning to turbulence may self-organize into alternating tur-

bulent and laminar regions forming a stripe pattern with non-trivial oblique orientation.

Different experiments and flow simulations identify oblique stripe patterns as the preferred

solution of the well-known Navier-Stokes equations, but the origin of stripes and their oblique

orientation remains unexplained. In concluding his lectures, Feynman highlights the un-

explained stripe pattern hidden in the solution space of the Navier-Stokes equations as an

example demonstrating the need for improved theoretical tools to analyze the fluid flow equa-

tions. Here we exploit dynamical systems methods and demonstrate the existence of an exact

equilibrium solution of the fully nonlinear 3D Navier-Stokes equations that resembles oblique

stripe patterns in plane Couette flow. The stripe equilibrium emerges from the well-studied
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Nagata equilibrium and exists only for a limited range of pattern angles. This suggests a

mechanism selecting the non-trivial oblique orientation angle of turbulent-laminar stripes.

8.1 Introduction

The complex laminar-turbulent transition in wall-bounded shear flows is one of the least

understood phenomena in fluid mechanics. In the simple geometry of plane Couette flow

(PCF), the flow in a gap between two parallel plates moving in opposite directions, the tran-

sitional flow spontaneously breaks the translational symmetries in both the streamwise and

the spanwise direction causing regions of turbulent and laminar flow to coexist in space

(Lundbladh and Johansson, 1991; Tillmark and Alfredsson, 1992; Daviaud et al., 1992; Lemoult

et al., 2016; Couliou and Monchaux, 2017). Remarkably, the flow may further self-organize

into a regular pattern of alternating turbulent and laminar stripes (Prigent et al., 2002; Barkley

and Tuckerman, 2005, 2007; Duguet et al., 2010; Tuckerman and Barkley, 2011; Philip and

Manneville, 2011; Ishida et al., 2017) also observed in Taylor-Couette (Coles, 1965; Andereck

et al., 1986; Hegseth et al., 1989; Prigent et al., 2002; Meseguer et al., 2009; Dong, 2009) and

channel flow (Tsukahara et al., 2005; Hashimoto et al., 2009; Aida et al., 2011; Tuckerman et al.,

2014; Xiong et al., 2015). The wavelength of these stripes or bands is much larger than the

gap size, the only characteristic scale of the system, and they are oblique with respect to the

streamwise direction. Consequently, both the large-scale wavelength and the oblique orien-

tation of turbulent-laminar stripes must directly follow from the flow dynamics captured by

the governing Navier-Stokes equations. Experiments and numerical flow simulations reliably

generate stripe patterns but a theory explaining the origin of the pattern characteristics is

still missing. This is related to the Navier-Stokes equations being highly nonlinear partial

differential equations, whose theoretical analysis remains challenging.

It was the early observation that an oblique turbulent-laminar pattern can be the preferred

solution of the Navier-Stokes equations that motivated R. Feynman to stress the lack of “math-

ematical power [of his time] to analyze [the Navier-Stokes equations] except for very small

Reynolds numbers” (Feynman et al., 1964). Recent advances in numerical methods not only

allow the simulation of flows but also the construction of exact equilibria, traveling waves

and periodic orbits of the fully nonlinear 3D Navier-Stokes equations. These exact invariant

solutions are believed to be embedded in a strange invariant set generating the chaotic dy-

namics of turbulent flow in the system’s state space (Lanford, 1982). Consequently, a picture

emerges where turbulent flow is described as a chaotic walk between dynamically unstable

invariant solutions which together with their entangled stable and unstable manifolds support

the turbulent dynamics (Gibson et al., 2008b). Exact invariant solutions are thus ‘building

blocks’ which resemble characteristic flow structures that are observed in flow simulations and

experiments, when the dynamics transiently visits the exact invariant solution. A theoretical
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explanation of oblique stripe patterns within this dynamical systems description requires the

as yet unsuccessful identification of exact invariant solutions resembling the detailed spatial

structure of turbulent-laminar stripes, including their oblique orientation and large-scale

periodicity.

Nagata discovered the first invariant solution of PCF (Nagata, 1990; Clever and Busse, 1992;

Waleffe, 1998). Like most invariant solutions of PCF found since then (Gibson et al., 2009), this

so-called Nagata equilibrium is periodic in the streamwise and spanwise directions, repeating

on the scale of the gap height. Such periodic solutions do not capture the coexistence of

turbulent and laminar flow on scales much larger than the gap height and consequently

cannot underly oblique stripes. Spanwise localized invariant solutions (Schneider et al.,

2010a; Gibson and Brand, 2014) and doubly localized invariant solutions in extended periodic

domains (Brand and Gibson, 2014) show nonlinear flow structures coexisting with laminar flow

but no known invariant solution captures oblique orientation or suggests a pattern wavelength

matching oblique stripe patterns.

We present a fully nonlinear equilibrium solution of PCF (Fig. 8.1b), resembling the oblique

stripe pattern observed in direct numerical simulations (Fig. 8.1a). Parametric continuation

demonstrates that this stripe equilibrium is connected to the well-studied Nagata equilibrium

via two successive symmetry-breaking bifurcations, and that its existence is limited to oblique

orientations.

8.2 Results

8.2.1 Simulating stripe patterns

For direct numerical simulations (DNS) of oblique stripe patterns in PCF we use a parallelized

version of the pseudo-spectral code CHANNELFLOW (Gibson et al., 2008b, 2019). The nu-

merical domain is periodic in two perpendicular dimensions along the plates (x and z) with

periods of (Lx ,Lz ) = (10,40) in units of half the gap height. No-slip boundary conditions are im-

posed at the moving plates located at y =±1. Inversion symmetry with respect to the domain

center is enforced. The relative plate velocity and the associated base flow are tilted against

the periodic domain dimensions at an angle of θ = 24◦ following Barkley and Tuckerman

(2005). At Reynolds number Re =Uh/ν= 350, with the relative plate velocity 2U , gap height

2h and kinematic viscosity ν the flow organizes into self-sustained turbulent-laminar stripes,

as shown in Fig. 8.1a, where we periodically repeat the computational domain to highlight the

large-scale structure of the pattern.
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Figure 8.1 – Equilibrium solution underlies turbulent-laminar stripes. a The self-organized
pattern of oblique turbulent-laminar stripes is observed in direct numerical simulations of
plane Couette flow at Re = 350. Following Barkley and Tuckerman (2005) a tilted x-z-periodic
domain outlined on the left side with (θ,Lx ,Lz ) = (24◦,10,40) is used for computations. b The
observed stripe pattern is captured by an exact invariant equilibrium solution of the fully
nonlinear 3D Navier-Stokes equations. The contours are turbulent kinetic energy saturating
at u2 = 0.25 (green), where u is the velocity fluctuation field around the laminar base flow (c).
The plane of visualization is at 3/4 of the gap height.

8.2.2 Equilibrium resembling stripes

An invariant equilibrium solution capturing the stripes was found by introducing a large-scale

amplitude modulation to a known spatially periodic equilibrium using a suitable window

function, similar to Gibson and Brand (2014). Specifically, the Nagata equilibrium was periodi-

cally extended in the spanwise direction for n = 9 periods, then sheared to align the velocity

streaks with the base flow in the tilted domain and finally multiplied with a scalar window

function equal to a scaled mean field of turbulent kinetic energy of the oblique stripe pattern

from several DNS runs. Using the constructed velocity field as initial guess, Newton iteration

yields the stripe equilibrium (Fig. 8.1b).

The stripe equilibrium shares the small-scale wavy modulation with the Nagata equilibrium

but also shows the large-scale oblique amplitude modulation of the turbulent-laminar stripe
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Figure 8.2 – Eigenvalue spectrum characterising the linear stability of the stripe equilibrium.
Shown are the 100 leading eigenvalues in the complex plane (ωr,ωi), computed by Arnoldi
iteration at Re = 350 (Gibson et al., 2019). 15 eigenvalues with a positive real part ωr > 0
quantify the exponential growth rate ωr along the unstable directions in the linear eigenspace
of the stripe equilibrium. The imaginary parts ωi quantify the oscillatory frequencies in the
eigenspace and the absolute values indicate typical turbulent time scales in the flow in units
of U /h. The wide aspect ratio of the spectrum (uniform axes) graphically illustrates that the
maximum growth rate ωr = 0.034 is small compared to the typical turbulent time scales. The
stripe equilibrium shown in Fig. 1b is thus weakly unstable.

pattern. The amplitude modulation between the high-amplitude turbulent region and the

low-amplitude laminar region of the equilibrium on average follows a sinusoidal profile closely

resembling the pattern mean flow found in DNS at identical boundary conditions (Barkley

and Tuckerman, 2007). The stripe equilibrium moreover captures detailed features of the

turbulent-laminar interfaces. A base flow directed into a turbulent region leads to a sharper

’upstream’ interface than a base flow directed out of a turbulent region at a ’downstream’

interface. The direction of the base flow is reversed for y →−y . An upstream interface in the

upper half thus corresponds to a downstream interface in the lower one. This gives rise to

so-called overhang regions (Lundbladh and Johansson, 1991; Duguet and Schlatter, 2013) and

an asymmetry between the left and right interface in Fig. 8.1 where turbulent kinetic energy is

visualized at y = 0.5 above the midplane. Finally, the stripe equilibrium is symmetric under

inversion σi[u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z), a symmetry also found for the mean

flow of stripe patterns (Barkley and Tuckerman, 2007). The sinusoidal amplitude modulation,

the captured overhang regions and the inversion symmetry, all characteristic of the pattern’s

mean flow, together with the visual comparison in Fig. 8.1 show that the stripe equilibrium has

the spatial features of the oblique stripe pattern. We have thus identified a first exact invariant

solution underlying oblique turbulent-laminar patterns.

The unstable eigenspace of the evolution operator linearized around the equilibrium is

spanned by 15 directions. The remaining ∼ 106 directions are attracting. Consequently,

the dynamics is attracted towards the stripe equilibrium from almost all directions. The expo-

nential growth rates ωr along the unstable directions are small compared to typical turbulent

time scales in the flow, given by the oscillatory frequencies ωi in the spectrum of eigenvalues
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(Fig. 8.2). The low dimensional unstable eigenspace and the small exponential growth rates

suggest a weakly unstable exact invariant solution that is a dynamically relevant transiently

visited ’building block’ of the chaotic saddle underlying the turbulent flow.

8.2.3 Origin of the equilibrium

At small scales the stripe equilibrium reflects the wavy streak structure of the spatially periodic

Nagata equilibrium. This suggests that the stripe equilibrium emerges from the Nagata

equilibrium in a bifurcation creating oblique long-wavelength modulations. To identify this

pattern-forming bifurcation numerically, the Nagata equilibrium needs to ’fit’ in an extended

tilted periodic domain aligned with the wave-vector of the neutral mode creating the oblique

long-wavelength modulation. The Nagata equilibrium indeed not only satisfies the stream-

and spanwise periodic boundary conditions of the commonly studied minimal flow domain

but may also be periodic with respect to selected larger tilted domains. The symmetry group

of the Nagata equilibrium, including all combined discrete translations over streamwise-

spanwise periods (λst,λsp), intersects with the group of translations of a tilted rectangular

domain, with periodicity (Lx ,Lz ), if

Lx = kλst

cosθ
= l λsp

sinθ
, Lz = mλst

sinθ
= nλsp

cosθ
(8.1)

is satisfied for (k, l ,m,n) ∈ N and 0 < θ <π/2. Geometrically, condition (8.1) describes how the

x-z coordinate lines of the tilted domain wind on a torus defined by the streamwise-spanwise

periodic minimal domain. The condition is satisfied if the coordinate lines are closed curves

(Fig. 8.3a). For the domain (θ,Lx ,Lz ) = (24◦,10,40) considered so far, the geometric condition

(8.1) implies wavelengths (λst,λsp) = (1.02,4.06) at which the Nagata equilibrium does not

exist. Keeping Lz = 40 and choosing winding numbers (k, l ,m,n) = (1,1,1,9) however leads

to a slightly modified domain (θ,Lx ,Lz ) = (18.4◦,40/3,40) in which the Nagata equilibrium

with (λst,λsp) = (12.65,4.22) exists, as displayed in Fig. 8.3b. On the lower branch of the Nagata

equilibrium close to the saddle-node bifurcation, there is a pitchfork bifurcation at ReI = 164.

Its neutrally stable long-wavelength eigenmode, whose eigenvalue changes sign at ReI, is

plotted in Fig. 8.3c. This is the initial pattern-forming bifurcation creating oblique amplitude

modulations on the Nagata equilibrium.

Using parametric continuation we follow both the periodic Nagata equilibrium (named A
hereafter) and the emerging modulated equilibrium solution (B) from its primary bifurcation

point at (Re,θ,Lx )I = (164,18.4◦,40/3) to the parameters (Re,θ,Lx )C = (350,24◦,10) of the

stripe equilibrium (C). In the three-dimensional parameter space we choose a continuation

path parametrized by tilt angle θ with the Reynolds number linear in θ, such that Re(θ) =
(ReI(θC −θ)+ReC(θ−θI))/(θC − θI) and domain length Lx (θ) = Lz /(n tan(θ)) for n = 9 and
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Figure 8.3 – Instability of the Nagata equilibrium creates oblique amplitude modulations. a
Torus representing a streamwise-spanwise periodic domain. If tilted rectangular coordinate
lines x and z (black) close on themselves, all solutions on the torus also respect the periodicity
of a domain spanned by those lines. Specifically, the Nagata equilibrium with streamwise-
spanwise periodicity (λst,λsp) = (12.65,4.22) (grey lines) is also periodic with respect to the
tilted domain (black) with (θ,Lx ,Lz ) = (18.4◦,40/3,40), shown in b for ReI = 164. In this tilted
domain, a bifurcation with neutral eigenmode (c) can be detected at ReI. This bifurcation
introduces oblique long-wavelength amplitude modulations on the Nagata equilibrium. Red
(blue) contours represent positive (negative) streamwise velocity in the midplane.
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b c

a

Figure 8.4 – Pattern forming bifurcations give rise to the stripe equilibrium. a A sequence of
pattern-forming bifurcations from the small-scale periodic Nagata equilibrium A (Fig. 8.3b)
leads to the large-scale modulated stripe equilibrium C (Fig. 8.1b). The solution branches are
plotted in terms of the domain averaged velocity square ||u||2 = (2Lx Lz )−1/2(

∫
u2d xd yd z)1/2

over linearly coupled bifurcation parameters θ (top axis) and Re(θ) (see text). A primary
pattern-forming bifurcation on A at (Re,θ,Lx )I = (164,18.4◦,40/3) creates equilibrium B with
double-pulse profile of x-y averaged squared velocity |u|(z) = (2Lx )−1/2(

∫
u2d xd y)1/2 (inset

panel b). A secondary pattern-forming bifurcation at (Re,θ,Lx )II = (332,23.4◦,10.3) creates the
single-pulse solution branch of equilibrium C (inset panel c). Points mark the exact invariant
solutions shown in Fig. 8.5.

constant domain width of Lz = 40. The resulting bifurcation diagram demonstrates that the

Nagata equilibrium A, is connected to the stripe equilibrium C (Fig. 8.4).

The primary bifurcation is of pitchfork type, subcritical, forward in Re and breaks the streamwise-

spanwise translation symmetry of A. Along the bifurcating branch of B significant amplitude

modulations of the small scale periodic signal form with period Lz /2 along z, as indicated by

the double-pulse profile of the z-dependent and x-y-averaged fluctuations |u|(z) at Re = 225

in Fig. 8.4b. The modulation period reflects a discrete translation symmetry σB over half the

domain diagonal, σB[u, v, w](x, y, z) = [u, v, w](x +Lx /2, y, z +Lz /2). Equilibrium B inherits

this symmetry fromA becauseσB is not broken by the neutral mode of the primary bifurcation

(Fig. 8.3c).

A secondary pattern-forming bifurcation occurs at (Re,θ,Lx )II = (332,23.4◦,10.3) along solu-

tion branch B (blue line in Fig. 8.4). This subcritical pitchfork bifurcation breaks the trans-

lation symmetry σB. The spatial period of the amplitude modulation is doubled and gives
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Figure 8.5 – Phase modulations along the bifurcation sequence. Streamwise vorticity
ωst = (cos(θ)ex + sin(θ)ez ) ·∇×u at the midplane (black solid/dashed contours at ωst =±0.12)
encodes streamwise phase information of wavy streak modulations for equilibria A, B and C
along the bifurcation sequence (points in Fig. 8.4). Red (blue) lines connecting vorticity max-
ima (minima) represent wave fronts of constant streamwise phase. The Nagata equilibrium A
has wave fronts oriented in the spanwise direction. The stripe equilibrium C has sigmoidal
wave fronts. In the turbulent region the wave fronts are oriented at θ = 24◦ (red/blue arrows),
and align with the pattern wave vector (in the z-direction). Bottom panel indicates turbulent
and laminar regions in C (see also Fig. 8.1b).

rise to solution branch C forming a single-pulse equilibrium. Solution branch C (red line

in Fig. 8.4) reaches ReC = 350 after undergoing an additional saddle-node bifurcation at

(Re,θ,Lx ) = (243,20.8◦,11.7). The amplitude profiles of single- and double-pulse equilibria

show that the single-pulse with period Lz = 40 has large modulations at Re = 350 and θ = 24◦,

while the modulations in the double-pulse equilibrium are reduced (Fig. 8.4c). This agrees with

the observations that stripes tend to have pattern wavelengths λ in the range of 40 ≤λ≤ 60 at

Re around 350 (Prigent et al., 2002; Tuckerman and Barkley, 2011). In summary, two bifurca-

tions successively break discrete translation symmetries of the Nagata equilibrium to create

the stripe equilibrium solution.
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Small-scale velocity streaks carry a wavy modulation which has a streamwise phase that is

clearly evident when plotting the streamwise vorticity at the midplane. We illustrate stream-

wise wave fronts by lines connecting vorticity maxima or minima in the spanwise direction

(red/blue lines in Fig. 8.5). Straight and strictly spanwise oriented wave fronts indicate a

constant streamwise phase of all streaks of the (spanwise periodic) Nagata equilibrium A. The

primary pattern forming bifurcation from A to B introduces local phase shifts which dislocate

vorticity extrema away from a straight alignment and bend the wave front. The dislocations

introduced into B are symmetric with respect to half-domain translations σB and centered at

z = 0 and z = 20. For the stripe equilibrium C formed from B in the second pattern forming

bifurcation, the topology of the wave fronts is preserved but they are geometrically deformed

into sigmoidal structures.

In the turbulent region of equilibrium C, the wave fronts of the wavy streaks are skewed at

θ = 24◦ against the spanwise direction and oriented exactly along the pattern wave vector (C
in Fig. 8.5). Assuming that all exact invariant solutions underlying stripe patterns show this

alignment of wave fronts in the turbulent region with the pattern orientation, we conjecture

that the range of possible skewing angles Nagata-type equilibria can sustain (Gibson and

Schneider, 2016) limits the range of angles at which oblique stripe patterns can exist.

8.2.4 Pattern angle selection

We identified equilibrium C at pattern angle θ = 24◦. Continuation in θ for fixed pattern

wavelength λ = 40 determines the range in θ for which the stripe equilibrium exists. At

Re = 350, the equilibrium exists in the range 16.5◦ ≤ θ ≤ 26.1◦ before it undergoes saddle-

node bifurcations (Fig. 8.6). Outside this range the stripe equilibrium is not sustained. The

range of orientation angles over which the stripe equilibrium exists agrees with the range over

which oblique stripe patterns of wavelength λ= 40 are observed in simulations (Barkley and

Tuckerman, 2007). At lower Re, the range of allowed pattern angles shrinks and shifts towards

larger values (Fig. 8.6). This trend of allowed θ for varying Re aligns with simulations and

experiments of turbulent-laminar stripes (Barkley and Tuckerman, 2007). The finite existence

range of the fully nonlinear exact equilibirum solution of the 3D Navier-Stokes equations

thus appears to select the non-trivial angle at which self-organized turbulent-laminar stripes

emerge in transitional shear flows.

8.3 Discussion

Experimental and numerical observations of self-organized oblique turbulent-laminar stripes

in wall-bounded extended shear flows suggest the existence of exact invariant solutions
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Figure 8.6 – Range of pattern orientation angle θ for which the stripe equilibrium C exists.
Parametric continuations in θ at constant Lz = 40 implying Lx ∼ tan−1(θ) (top axis). The
solution branches are labeled by Re which remains fixed for each continuation. Beyond
saddle-node bifurcations only the initial part of the branches are plotted (dotted lines). Along
the remaining parts of the branches (not shown), the equilibrium solutions no longer represent
the stripe pattern. The inset displays the amplitude profiles at selected points along the branch
(like in Fig. 8.4). For θ increasing towards the upper saddle-node the amplitude of the profile
|u|(z) rises globally at all z; for θ decreasing towards the lower saddle-node the amplitude
maximum decreases. At intermediate angles close to θ = 24◦ the equilibrium best represents
turbulent-laminar stripes.

underlying these patterns. We present the first such invariant solution of the fully nonlinear

3D Navier-Stokes equations in plane Couette flow that captures the detailed spatial structure

of oblique stripe patterns. The stripe equilibrium emerges from the known Nagata equilibrium

via a sequence of two pattern-forming bifurcations with long-wavelength oblique neutral

modes. The existence of the stripe equilibrium at wavelength λ = 40 is limited to oblique

orientations in a finite range of pattern angles around θ = 24◦. The existence range agrees

with simulations and experimental observations of turbulent-laminar stripes. This suggests

a selection mechanism for the pattern angle and provides a route towards explaining why

turbulent-laminar stripes are oblique.
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9 Periodic orbits with oblique patterns
in the edge of chaos

Remark This chapter is largely inspired by a pre-print of the name “Periodic orbits with

oblique patterns in transitional plane Couette flow”.

Florian Reetz1 and Tobias M. Schneider1

1Emergent Complexity in Physical Systems Laboratory (ECPS),

École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland

Under consideration for publication in Physical Review Fluids

9.1 Introduction

Transitional turbulence in linearly stable wall-bounded shear flows may segregate into laminar

and turbulent regions. The spatial coexistence of turbulent and laminar flow has been observed

in pipes with one extended space dimension (Barkley, 2016) and in planar shear flows with

two extended space dimensions (Tuckerman et al., 2020). The properties of turbulent-laminar

coexistence have been studied extensively, both, in terms of statistical laws describing a non-

equilibrium phase transition (Lemoult et al., 2014; Chantry et al., 2017) and in terms of the

dynamics at the interfaces between laminar and turbulent regions (Barkley, 2011; Duguet

and Schlatter, 2013). For intermediate strength of driving, turbulent and laminar regions in

wall-bounded shear flows may self-organize into a regular pattern of spatially periodic stripes

or bands oriented obliquely relative to the laminar flow direction. Oblique stripe patterns

have been observed experimentally and numerically in various wall-bounded shear flows

suggesting universal mechanisms that create a regular pattern in a turbulent flow (Manneville,
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2017). How turbulent-laminar stripes emerge at particular pattern wavelengths and particular

oblique orientations remains an open problem.

This chapter discusses oblique stripe patterns in plane Couette flow (PCF) where two extended

parallel walls slide into opposite directions and drive an incompressible flow in the gap

between the walls. First experimental observations of oblique stripe patterns in spatially

extended PCF report a regular pattern at a Reynolds numbers of Re =Uw h/ν= 358 (Prigent

et al., 2002, 2003). In PCF, Re is the single control parameter of the flow where 2Uw is the

relative wall velocity, 2h is the gap-height and ν is the kinematic viscosity. The wavelength of

the stripe pattern λ is large compared to the gap height, 40h/λ/ 60h, and the orientation

angle θ against the streamwise direction of the walls is observed in the interval 20◦/ θ/ 40◦.

Oblique stripe patterns with similar ranges of λ and θ have also been reproduced in direct

numerical simulations of PCF at 330 ≤ Re ≤ 380 (Duguet et al., 2010). Both, experiments

and simulations indicate a coupling of λ, θ and Re, such that the pattern wavelength λ and

the orientation angle θ tend to increase with decreasing Re. A simple approximate relation,

Resin(θ) ≈πλ, has been proposed based on a mean flow analysis of the stripe pattern (Barkley

and Tuckerman, 2007). Further empirical and theoretical studies are needed to more precisely

describe the coupling of λ, θ and Re.

Oblique turbulent-laminar stripes are statistically symmetric under continuous translations

in the direction along the oblique stripes and under discrete translations with periodicity

λ across the pattern. These translation symmetries in two orthogonal space dimensions

have been exploited in direct numerical simulations of oblique stripes in minimal periodic

domains (Barkley and Tuckerman, 2005, 2007). In general, minimal periodic domains treat

dimensions with translation symmetries as periodic. This minimizes the computational

cost to study complex patterns and may reduce the level of complexity of the underlying

dynamics (Golubitsky and Stewart, 2002). The size of a minimal domain capturing the pattern

must be chosen such that it contains a single period of the sustained periodic flow structure

(Jiménez and Moin, 1991). To capture oblique turbulent-laminar stripe patterns, the two lateral

dimensions of a periodic domain must be chosen to coincide with the translation invariant

directions of the pattern implying that the domain is tilted against the wall-velocity by angle θ.

One side of the domain has to reflect the wavelength λ (Barkley and Tuckerman, 2005). Thus

in this minimal domain approach, not only Re but also θ and λ are imposed parameters. This

is in contrast to experiments and simulations in large extended domains where the angle θ

and the wavelength λ are unconstrained and can be freely selected by the flow. By choosing a

tilted minimal periodic domain matching experimental observations, Barkley and Tuckerman

(2007) obtained well-converged temporal statistics of a stripe pattern at Re = 350, θ = 24◦ and

λ= 40. They find the pattern’s mean flow to be well-approximated by few harmonic functions

with centro-symmetry about the center points of either the laminar or the turbulent flow
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region. Recently, tilted minimal domains have also been used to study oblique stripe patterns

in other shear flows (Tuckerman et al., 2014).

When lowering Re from the turbulent regime towards the parameters where stripes are ob-

served, the oblique pattern emerges from statistically homogeneous turbulence. Some studies

have suggested that turbulent-laminar stripes are the consequence of a large-wavelength

instability of unpatterned turbulence, in analogy to linear instabilities forming steady patterns

in non-linear amplitude equations (Prigent et al., 2002; Manneville, 2012). The identification

of such large-wavelength instabilities is however challenging because the nonlinear dynamics

of turbulent flows are chaotic in time and space (Philip and Manneville, 2011). One way to

disentangle the temporal dynamics from the spatial structure of the flow is to study exact equi-

librium solutions of the governing equations with steady, time-invariant dynamics that capture

the coexistence of different pattern motifs in space (Knobloch, 2015). If an exact equilibrium

solution of the fully nonlinear Navier-Stokes equations captures the spatial coexistence of

non-trivial ‘turbulent’ flow structures and the laminar solution, then the turbulent-laminar

coexistence may be described as homoclinic connections in space between laminar and tur-

bulent flow. This description assumes that the spatial coordinate across a one-dimensional

pattern is treated as a time-like variable (Burke and Knobloch, 2006). Such spatial homoclinic

orbits have been identifed in PCF between laminar flow and spanwise localized wavy-streaky

structures (Schneider et al., 2010a; Gibson and Schneider, 2016; Salewski et al., 2019). However,

these time-invariant solutions do not capture the oblique orientation of the stripe pattern nor

do they suggest any particular pattern wavelength because they represent localized states of

various spanwise extent. Recently, an equilibrium solution of PCF has been found to capture

the pattern of oblique turbulent-laminar stripes (Reetz et al., 2019a). This stripe equilibrium

is computed at Re = 350 in the same tilted minimal periodic domain with θ = 24◦ and λ= 40

used to simulate oblique stripes (Barkley and Tuckerman, 2007). The stripe equilibrium bi-

furcates first with a period of λ = 20 from the well-known ‘unpatterned’ equilibrium with

wavy-streaky flow structures (Nagata, 1990; Busse and Clever, 1992; Waleffe, 1997), and second,

increases the spatial period to λ= 40 in a spatial period-doubling bifurcation. This bifurcation

sequence confirms the existence of a large-wavelength instability creating the oblique stripe

patterns in PCF at a particular wavelength. Despite capturing the spatial structure of stripes

the stripe equilibrium is time-independent. Thus, it does not capture the temporal dynamics

of turbulent-laminar stripe patterns.

The temporal dynamics of weakly turbulent shear flows has been extensively studied by nu-

merically constructing invariant solutions, also called ‘exact coherent states’ (Kerswell, 2005;

Eckhardt et al., 2007; Kawahara et al., 2012). Since invariant solutions in shear flows are typ-

ically dynamically unstable, the spatial structure and the recurrent dynamics of individual

invariant solutions may only be observed transiently in a turbulent flow (Hof et al., 2004).

Moreover, transitional turbulence in small domains of PCF is itself transient. The statistical
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life-time of a turbulent state depends on Re and suggests to be supported by a saddle structure

in state space (Hof et al., 2006; Kreilos et al., 2014), the space spanned by all solenoidal velocity

fields (Cvitanović et al., 2016). Laminar PCF is linearly stable and state space trajectories are

thus either attracted to the laminar equilibrium solution or visit the turbulent saddle. Trajec-

tories approaching the laminar attractor and trajectories approaching the turbulent saddle

are separated in state space by the edge of chaos, a codimension-1 manifold locally formed

by the stable manifold of invariant solutions with a single unstable eigendirection, known

as edge states (Schneider et al., 2007). These edge states guide the transition to turbulence

and might also be relevant for spontaneous decay of turbulence (de Lozar et al., 2012). Edge

states can be identified using a method known as edge-tracking (Skufca et al., 2006). Many

spatially localized invariant solutions in subcritical shear flows have been found because they

are edge states for appropriately chosen flow parameters (Schneider et al., 2010b; Avila et al.,

2013; Khapko et al., 2013). The stripe equilibrium is not an edge state (Reetz et al., 2019a) and

the edge of chaos for turbulent-laminar stripes has not been studied.

Turbulent flows show characteristic recurrent motion where flow approximately repeats after

some time (Jiménez, 2018). Unstable periodic orbits (UPO) are a particular type of invariant

solutions with exact periodic time evolution. These orbits capture recurrent motion of the

flow and are thus particular interesting building blocks of the temporal dynamics (Cvitanović,

2013). Knowing sufficiently many relevant UPOs allows one to predict turbulent statistics

(Cvitanović and Eckhardt, 1991; Chandler and Kerswell, 2013) but individual UPOs also can

be instructive by capturing important temporal features of the flow (Kreilos et al., 2013). To

capture the temporal dynamics of oblique stripe patterns in PCF, periodic orbits are needed

that both show temporal dynamics and capture the spatial characteristics of the pattern. Such

orbits have not been identified yet.

Following the recent construction of an equilibrium solution capturing the spatial structure

of oblique turbulent-laminar stripes in PCF (Reetz et al., 2019a), in this chapter we construct

UPOs underlying oblique stripe patterns. Imposing discrete symmetries allows to identify one

UPO in the edge of chaos at Re = 350 in a tilted domain. Continuation reveals two additional

UPOs at the same Re connected via fold bifurcations. The UPOs represent standing wave

oscillations with a wavelength of λ= 20 and an oblique orientation at θ = 24◦. We describe the

transient turbulent dynamics at Re = 350 relative to the three identified UPOs.

This chapter is structured as follows. To identify the symmetry subspace in which edge-

tracking yields an UPO, we step-wise reduce the complexity of the spatio-temporal dynamics

by imposing symmetries (Section 9.2). Confining the temporal dynamics in two symmetry

subspaces additionally to the edge of chaos, reduces the complexity even more (Section 9.3),

and leads to almost periodic dynamics near one UPO that is connected to two other UPOs at
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Figure 9.1 – Geometry of plane Couette flow (PCF). A Newtonian fluid (light blue) is studied
numerically in x-z-periodic domains, bounded in y by two parallel walls (light grey). The
walls move with a relative velocity of 2Uw in opposite directions and thereby drive a flow. The
unit vector ês indicates the streamwise direction. In the present chapter, PCF is studied in
both, non-tilted domains (a), where ês is aligned with x, and in tilted domains (b), where
ês is oriented at a non-zero angle θ relative to the x-dimension. For all values of θ, the
nondimensionalized laminar flow profile is U0(y) = y ês . We visualize non-laminar PCF in the
indicated midplane at y = 0.

Re = 350 via fold bifurcations (Section 9.4). The dynamical relevance of the three identified

UPOs is discussed in Section 9.5.

9.2 Numerical simulations in symmetry subspaces

The velocity vector field U (x, y, z, t) and the pressure p(x, y, z, t) in PCF are governed by the

incompressible Navier-Stokes equations

∂U

∂t
+ (U ·∇)U =−∇p + ν̃∇2U , (9.1)

∇·U = 0 , (9.2)

in a three-dimensional channel. The channel domain is considered as periodic in the two

lateral dimensions x and z, such that the velocity field repeats in space as U (x, y, z, t) =
U (x +Lx , y, z, t ) and U (x, y, z, t ) =U (x, y, z +Lz , t ) over the lateral domain size Lx and Lz . The

Navier-Stokes equations are nondimensionalized by the half-gap height h and the wall velocity

Uw leading to the dimensionless Reynolds number Re =Uw h/ν. No-slip boundary conditions

at the walls are imposed such that U (y =±1) =±ês . The unit vector ês = cos(θs)êx + sin(θs)êz

describes the streamwise direction in which the walls move. The streamwise direction may be

rotated by θs relative to the x- and z-direction. The nondimensional Navier-Stokes equations

with these boundary conditions admit the linear velocity profile U0(y) = y ês as laminar flow

solution (Figure 9.1).
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Chapter 9. Periodic orbits with oblique patterns in the edge of chaos

We perform direct numerical simulations (DNS) of PCF in domains sufficiently large to contain

turbulent-laminar stripes. Such large-scale DNS can be computationally demanding. We

employ the MPI-parallel code CHANNELFLOW 2.0 (Gibson et al., 2019). The code implements

a pseudo-spectral method based on Fouier-Chebychev decompositions of the velocity fluctua-

tion field u(x, y, z, t ) =U (x, y, z, t )−U0(y). An implicit-explicit multistep algorithm of 3rd order

is used for time marching. The mean pressure gradient is fixed at zero along the streamwise

and the spanwise direction. DNS of weakly turbulent PCF at Re = 350 in a large numerical

domain of size [Lx ,Lz ] = [197,87.5] with [Nx , Ny , Nz ] = [852,33,340] dealiased spectral modes

and walls moving with θs = 0 along the x-dimension result in self-organized oblique turbulent-

laminar stripes predominantly oriented along the domain diagonal at θ = ±24◦. However,

the large-scale pattern is subject to statistical fluctuations in the pattern wavelength and

orientation, as already observed previously (Duguet et al., 2010). Oblique stripe patterns may

drift in space, break up, and form again. To reduce the complexity of the spatio-temporal dy-

namics, we will impose additional discrete symmetries of PCF. Imposing a discrete symmetry

disallows instabilities that would break this symmetry and reduces the number of degrees of

freedom in the numerical simulation. Thereby, imposed symmetries also reduce the number

of dimensions of the accessible state space. In the following, N = Nx ×Ny ×Nz ≈ 1.1×106

degrees of freedom in the above described DNS-setup are reduced by more than one order of

magnitude.

The governing equations (9.1-9.2), complemented with periodic boundary conditions and

imposed wall velocity at θs = 0◦, are equivariant under reflections and translations in the x-

and z-direction

πx y [u, v, w](x, y, z, t ) = [−u,−v, w](−x,−y, z, t ) , (9.3)

πz [u, v, w](x, y, z, t ) = [u, v,−w](x, y,−z, t ) , (9.4)

τ(ax , az )[u, v, w](x, y, z, t ) = [u, v, w](x +ax Lx , y, z +az Lz , t ) , (9.5)

with continuous real-valued shift factors ax , az ∈ [0,1). Symmetry transformations (9.3-9.5)

generate a symmetry group Spcf = 〈πx y ,πz ,τ(ax , az )〉, where 〈〉 denotes all products between

the listed transformations. For tilted domains with wall velocities at θs 6= 0 and −90◦ < θs < 90,

the reflections πx y and πz are broken. Only their product πi =πx yπz , the inversion symmetry

πi [u, v, w](x, y, z, t ) = [−u,−v,−w](−x,−y,−z, t ) (9.6)

remains a symmetry of PCF in the considered domain. We denote the symmetry group in

tilted domains as S′
pcf. To impose a particular symmetry σ ∈ Spcf on a velocity field u, we apply

the projection (σu +u)/2. Such a projection requires the additional property σ2 = 1. Once

u is σ-symmetric, the time evolution of u will remain σ-symmetric because the governing

equations are equivariant under σ (Cvitanović et al., 2017). Thus, imposing symmetries on a
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9.2. Numerical simulations in symmetry subspaces

flow confines the flow and its time evolution to a symmetry subspace containing only flows

that are invariant under the imposed symmetries.

Changing the spatial extent of a double-periodic domain imposes different discrete translation

symmetries on the flow and is therefore another way to change the symmetry-subspace of

the flow. Previous numerical studies have systematically varied the domain size to investigate

turbulent-laminar patterns in different symmetry subspaces (Philip and Manneville, 2011;

Chantry et al., 2017). Here, we aim for reducing the complexity of the spatio-temporal dynam-

ics of a sustained oblique stripe pattern while trying to preserve the pattern characteristics of

a large-scale wavelength and an oblique orientation. Starting from a regular stripe pattern in a

large domain we systematically impose additional discrete symmetries in Spcf or reduce the

domain size. We consider simulations of oblique stripe patterns in four different symmetry

subspaces, A-D, of PCF at Re = 350:

A: Inversion symmetryπi is imposed on PCF in the large periodic domain [Lx ,Lz ] = [197,87.5]

with x-aligned wall velocities, θs = 0◦. The number of degrees of freedom is NA =
Nx × Ny × Nz /2 = 562320. A snapshot of a regular stripe pattern with pattern wave-

length λ= 40 and orientation at θ = 24◦ along the domain diagonal is shown in Figure

9.2a. Imposing πi prohibits drift of the large-scale pattern by fixing the pattern’s spatial

phase in x and z. In this case, the center of a laminar region coincides with the center of

the domain (Figure 9.2a).

B: We impose the periodicity of a tilted periodic domain of extent [Lx ,Lz ] = [10,40] and

orientation θs = 24◦. The grid resolution is [Nx , Ny , Nz ] = [42,33,170]. No reflection

symmetry is imposed. The number of degrees of freedom is NB = Nx ×Ny ×Nz = 235620.

The tilted domain allows to simulate a single spatial period of turbulent-laminar stripes

whose geometry matches the boundary conditions of the domai with λ = Lz = 40 and

θ = θs = 24◦. The domain is identical to the one used in Barkley and Tuckerman (2007). A

snapshot from the simulation is periodically repeated in Figure 9.2b.

C: Again, a single stripe period is simulated in a tilted domain like for subspace B but with

additionally imposed πi -symmetry. The corresponding symmetry subspace, resolved

with NC = Nx ×Ny ×Nz /2 = 117810 degrees of freedom, contains the mean flow of the

stripe pattern in a tilted domain of size [Lx ,Lz ] = [10,40] (Barkley and Tuckerman, 2007)

and also the stripe equilibrium reported in Reetz et al. (2019a). The emerging oblique

stripe pattern is shown in Figure 9.2c.

D: In the final step of reducing the complexity of the dynamics, we impose a shift-inversion

symmetry πsi = πiτ(0.5,0.5) in addition to the symmetries of subspace C. The number

of degrees of freedom is ND = Nx ×Ny ×Nz /4 = 58905. The πsi -symmetry changes the

wavelength of the emerging oblique stripe pattern from λ = 40 to λ = 20 (Figure 9.2d).
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Figure 9.2 – Imposing symmetries reduces the complexity of the oblique stripe pattern at
Re = 350 from (a) to (d). The contours indicate streamwise velocity at midplane (y = 0). (a)
Snapshot from a DNS in a periodic domain of extent [Lx ,Lz ] = [197,87.5] with additionally
enforced σi -symmetry. (b) Periodically repeated snapshot from a DNS in a periodic domain
of extent [Lx ,Lz ] = [10,40] and tilted at θ = 24◦ against the streamwise direction. (c) Like in (b)
but with inversion symmetry σi imposed additionally. (d) Like in (c) but with shift-inversion
symmetry σsi imposed additionally. This symmetry enforces a pattern wavelength of λ= 20,
while cases (a-c) have a pattern wavelength of λ= 40.

Oblique stripe patterns with πsi -symmetry and wavelength λ= 20 have been observed in

the bifurcation sequence towards the stripe equilibrium solution (Reetz et al., 2019a) but

are typically not naturally selected in less confined domains.

Robust oblique stripe patterns are observed in all four DNS runs over a time interval of

∆t = 1500. Beyond this time interval, stripes typically either break up, leading to defects in

the large-scale pattern (observed for DNS inA), or decay to laminar flow (observed for DNS

in B-D). In the time interval over which the pattern characteristics are robust, the domain

averaged velocity norm

||u||2(t ) = 1

(2Lx Lz )1/2

(∫ Lx

0

∫ 1

−1

∫ Lz

0
u2(x, y, z, t )d x d y d z

)1/2

(9.7)

fluctuates at different amplitudes in the four different subspaces (Figure 9.3). In the higher-

dimensional subspace A, temporal velocity fluctuations at different uncorrelated locations in
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Figure 9.3 – Time series from DNS in four different symmetry subspaces corresponding to the
four snapshots in Figure 9.2 (a-d) showing instance t = 0 in (a-d) of the present figure. While
the amplitudes of the temporal fluctuations differs significantly between the cases (a-d), the
mean values of ||u||2 (horizontal red lines) is approximately equal in the symmetry subspaces
of cases (a-c). Case (d) has a different mean because the imposed shift-inversion symmetry
disallows the oblique stripe patterns at wavelength λ= 40◦, present in (a-c), and enforces a
pattern wavelength of λ= 20.

the domain statistically compensate each other more than in the lower-dimensional subspace

D. There, the imposed symmetries correspond to spatial correlations that reduce the number

of independently fluctuating modes. This induces higher amplitude fluctuations. Thus,

the fluctuation amplitude of norm ||u||2(t) can be used as a proxy for the spatio-temporal

complexity of the pattern dynamics simulated at equal Re.

The temporal average of ||u||2(t ) over ∆t = 1500 is the same for oblique stripes in subspaces

A-C (red lines in Figure 9.3), suggesting that the imposed symmetries do not change the

pattern’s mean flow. In subspace D however, the shift-inversion symmetry πsi enforces a

pattern wavelength of λ= 20. This increases the temporal mean from ||u||2 = 0.26, observed

for stripes with λ = 40, to ||u||2 = 0.33. Thus, the mean pattern in symmetry subspace D is

qualitatively and quantitatively different from the patterns inA-C. All patterns are obliquely

oriented at θ = 24◦ and periodic over wavelength λ= 40. Note that subspaceA is well suited to

accommodate a pattern of this geometry but does not contain the subspaces B-D. Subspace B

however containsC andD. Including the subspaces B-D of the tilted domain into the subspace

of a non-tilted domain requires choosing a non-tilted domain with at least [Lx ,Lz ] = [98.5,394].
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The geometric condition to make the flow in tilted and non-tilted domains commensurable is

discussed in Reetz et al. (2019a).

There is no obvious additional symmetry to further reduce the complexity of the spatio-

temporal dynamics of oblique stripe patterns beyond subspace D. Other additional shift-

symmetries enforce periodicity on even smaller pattern wavelengths than λ= 20, that are not

observed for self-organized stripe patterns in large domains.

9.3 Edge of chaos in symmetry subspaces

Despite reducing the number of degrees of freedom to the presumable minimum for sup-

porting oblique stripe patterns, the dynamics in the symmetry subspaces remains chaotic.

To identify periodic orbits, we follow the established approach to confine the dynamics to

the edge of chaos. Using the edge-tracking algorithm implemented in CHANNELFLOW 2.0

(Gibson et al., 2019), we follow two trajectories inside the edge of chaos in symmetry subspace

C and D, respectively. The Reynolds number is again fixed at Re = 350. The initial condition

was chosen arbitrarily from the DNS in C and D. We confirmed that the state approached by

edge-tracking does not depend on the initial condition in these two cases. Edge-tracking in C

follows a chaotic trajectory indicating a chaotic edge state (Figure 9.4a). Chaotic edge states

have been described previously for pipe flow (Schneider et al., 2007) and PCF (Duguet et al.,

2009). In D, the trajectory approaches a near-periodic edge state (Figure 9.4b).

The chaotic edge state inC differs clearly from the chaotic state found by DNS inC (Figure 9.3c).

The mean L2-norm of the trajectory in the edge of chaos in C is with ||u||2 = 0.18 significantly

smaller than for the trajectory in the DNS with ||u||2 = 0.26. Likewise, the L2-norm of the

near-periodic edge state in D is with ||u||2 = 0.24 lower than the simulated state in D with

||u||2 = 0.33 (Figure 9.3d).

In summary, a chaotic edge state is found in C. By additionally imposing the shift-inversion

symmetry πsi , a much simpler, almost periodic edge state is found in D.

9.4 Unstable periodic orbits

The near-periodic oscillations in the edge of chaos in symmetry subspace D indicates the

presence of an unstable periodic orbit (UPO). Periodic orbits satisfy the recurrency condition

F T (u(x, y, z, t );Re)−u(x, y, z, t ) = 0 . (9.8)

The operator F T (u;Re) integrates the Navier-Stokes equations for PCF at a specific Re from

the initial velocity field u over time period T . A velocity field solving (9.8) can be found via
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Figure 9.4 – Time series of edge tracking at Re = 350 in different symmetry subspaces. Both
results are computed in a periodic domain of extent [Lx ,Lz ] = [10,40] and tilted at θ = 24◦

against the streamwise direction. In addition, centro-inversion σi is imposed in (a), and
shift-inversion σsi is imposed in (b). The mean values of ||u||2 (horizontal red lines) differ like
in DNS in the same two symmetry subspaces (Figure 9.3c,d). Only when imposing σsi the
edge-tracking approach yields a simple edge state.

Newton-Raphson iteration. Since subspace D is still high-dimensional (N = 58905), equation

(9.8) is solved with a matrix-free Newton-Krylov method. We use the Newton-Krylov method

implemented in the nonlinear solver library of CHANNELFLOW 2.0 to converge and numer-

ically continue invariant solutions under the changing control parameter Re (Gibson et al.,

2019). In order to converge the periodic orbits discussed here, a multi-shooting method with

two shots is required (Gibson et al., 2019).

Using the last velocity field obtained from edge-tracking in subspace D as initial state for

the Newton-Krylov iteration yields an UPO with period T = 225.4. The spatial structure of

the UPO is composed of wavy velocity streaks whose amplitude is modulated in time and

space along the orbit. The amplitude modulations represent a standing wave oscillation with

wavelength λ= 20 along the z-direction of the tilted domain (Fig. 9.5). The standing wave has

anti-nodes at z ∈ {0,10,20,30,40} where the imposed inversion symmetries have their points

of reflection. The locations of these symmetry points are marked by black dots in midplane

sections showing velocity and vorticity contours in Fig. 9.5c,d. Instances t = 7 and t = 109

along the orbit show intense localized velocity and vorticity fluctuations. These localized

intense fluctuations are centered around the symmetry points (see blue and red contours in

Fig. 9.5c,d). The intense fluctuation regions have also a large x-y-averaged velocity norm

(Fig. 9.5b) and coincide with velocity streaks that are more wavy than outside these regions

where streaks are more straight (Fig. 9.5b). Thus, the UPO is a standing wave that periodically

exchanges regions of high amplitude wavy velocity streaks and low amplitude near-straight

velocity streaks. We name this UPO “oblique standing wave" and denote it by OSW1.
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Figure 9.5 – Unstable periodic orbit OSW1 in the edge of chaos describes a slow standing wave
modulation. (a) Velocity norm ||u||2 oscillations over period T = 225.4 with two local maxima
and minima. The local minima correspond to the instances of large amplitude modulations
as indicated by the x-y-averaged squared velocity profiles |u|(z) = (2Lx )−1/2(

∫
u2d xd y)1/2

in (b). These instances are further illustrated by midplane contours of streamwise velocity
(c) and streamwise vorticity (d). The black contours in (c) mark the critical layer with u = 0.
The grey grid indicates the streamwise and the spanwise directions. The midplane structure
oscillates locally between high-amplitude wavy velocity streaks generating much vorticity and
low-amplitude near-straight velocity streaks generating little vorticity.

The phase velocity of the standing wave oscillation in the streamwise direction is c =λs/T =
0.22. The streamwise pattern wavelength of OSW1 with λ= 20 and θ = 24◦ is λs =λ/sin(θ) =
49.2. Due to the chosen nondimensionalization, time is measure in advective time units Ta =
h/Uw . Note that the period T = 223.4 of OSW1 approximately equals one viscous diffusion

time unit, T ≈ Td = h2/ν = 350. Thus, the periodic orbit OSW1 satisfies an approximate

resonance condition between diffusion time and cross-pattern propagation time,

λ

sin(θ)
≈ c h2

ν
. (9.9)

This condition represents a dispersion relation for the standing wave. The relation between λ

and θ in (9.9) is similar to the approximate relation λ/sin(θ) ≈ Re/π that has been suggested
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from measured forces in the mean flow of simulated oblique stripe patterns at pattern wave-

length λ= 40 in the symmetry subspace B (Barkley and Tuckerman, 2007). Consequently, the

intrinsic spatio-temporal dynamics of OSW1 has similar characteristic scales as the mean flow

of oblique stripe patterns at pattern wavelength λ= 40.

Numerical continuation of OSW1 up in Re indicates a reducing oscillations amplitude for Re up

to 450 (Fig. 9.6a). The reduced amplitude remains approximately constant for 450 < Re < 700

(not shown). For decreasing Re, the oscillation amplitude increases and the branch leads

to a sequence of two smooth folds at Re = 327 and Re = 367, respectively. Further along the

branch a succession of sharp folds emerges in the interval 300 < Re < 330 (Fig. 9.6a). We have

encountered such sharp and irregular folds previously by continuing equilibrium solutions

underlying stripes (Reetz et al., 2019a) and interpret them as an indicator for a particular

frustration process: The frustration arises when continuous changes of invariant solutions

along a branch are hindered by geometric constraints imposed by the periodic boundary

conditions. The folded solution branches connect three periodic orbits at Re = 350 (Figure

9.6a). We index these orbits as they are encountered along the branch, OSWi with i = 1,2,3.

The dynamical stability of each orbit is characterized by calculating the spectrum of eigenval-

ues at Re = 350 using Arnoldi iteration in subspace D. All three periodic orbits are dynamically

unstable and have one dominating purely real unstable eigenvalue of ωr ≈ 0.035. More-

over, all three periodic orbits have at least one additional unstable eigenvalue in the interval

0 <ωr < 0.01 (Figure 9.6b). Consequently, none of the three periodic orbits OSWi is an edge

state which requires a single unstable eigenvalue (Skufca et al., 2006; Schneider et al., 2007).

The initially found periodic orbit OSW1 has in total five unstable eigenvalues, three real and

one complex pair of eigenvalues. Of the three UPOs, OSW3 is the least unstable one in terms

of number of unstable eigenvalues as well as absolute value of the leading eigenvalue with

maximum ωr .

The stability properties of the three UPOs raise the question if all of them are part of the

attractor in the edge of chaos, and if not, if all of them are yet embedded within the edge

of chaos. To study the attractor in the edge of chaos, edge-tracking is performed for 10000

advective time units. The state space trajectory over the last 1000 time units is projected

together with the state space trajectories of all orbits OSW1,2,3 onto a plane indicating kinetic

energy input I (t ) and dissipation D(t ), where

I (t ) = 1+ 1

2A

∫
A

(
∂us

∂y

∣∣∣
y=−1

+ ∂us

∂y

∣∣∣
y=1

)
dx dz (9.10)

D(t ) = 1

V

∫
Ω
|∇× (u + y ês)|2dx dy dz (9.11)
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Figure 9.6 – (a) Bifurcation diagram of the unstable periodic orbit along Re, computed via
numerical continuation. The two curves indicate maximum and minimum dissipation D
over one period. Towards high Re, the oscillation amplitude reduces. Towards low Re, the
branch undergoes folds leading to three periodic orbits coexisting at Re = 350 (dashed line).
(b) Spectrum of eigenvalues of the three unstable periodic orbits at Re = 350: OSW1 (•), OSW2

(×), OSW3 (©). The spectrum is calculated in the symmetry subspace D.

with the streamwise unit vector ês = cos(θs)êx + sin(θs)êz and the streamwise velocity com-

ponent us = u · ês . The quantities are normalized by cross-section area A = Lx Lz and volume

V = 2Lx Lz of the numerical domain, respectively. The projection yields the phase portrait in

Figure 9.7b that clearly reveals how the edge-tracking trajectory (grey dots) clusters around

OSW1 but not around OSW2 or OSW3. Thus, of the three UPOs only OSW1 is part of the

attractor in the edge of chaos. The edge-tracking trajectory, even after 9000 time units, does

still not coincide with OSW1 (Inset in Fig. 9.7b). This supports the above discussion that OSW1

is not an edge state and may only be part of an attractor in the edge of chaos.

For each of the UPOs, the time series I (t) and D(t) almost coincide along the orbits (Figure

9.7a). This leads to the property that the phase portrait in Figure 9.7b shows orbits that are

elongated along and entangled around the diagonal line D = I . The quantities I (t ) and D(t ) are

highly correlated and do not provide a good projection to illustrate the oscillatory behaviour

along the three orbits. A second projection is defined in terms of the two quantities

α(t ) =R
{

ũ2
}

(i = 0, j = 0,k = 2) , (9.12)

β(t ) =R {ω̃s} (i = 0,k = 2,) . (9.13)

Here, R{} returns the real part of spectral quantities indicated by ·̃, namely the Fourier- and

Chebyshev-transformed kinetic energy u2 = u2(x, y, z, t) and streamwise vorticityωs = (∇×
u(x, y = 0, z, t )) · ûs at midplane. Fourier modes in x and z are indexed by i and k. Chebyshev

modes in y are indexed by j . Thus, α(t ) and β(t ) are the time-dependent absolute values of
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Figure 9.7 – Two different projections for a phase portrait of the three unstable periodic
orbits OSW1,2,3 underlying slow oblique standing waves. Time series of kinetic energy input
I (t ) and dissipation D(t), defined in (9.10) and (9.11), and of α(t) and β(t ), defined in (9.12)
and (9.13), for periodic orbit OSW1 are plotted in in panels (a) and (c), respectively. The
corresponding phase portraits of all three periodic orbits OSW1,2,3 are plotted in (b) and (d).
The edge-tracking trajectory for 9000 < t < 10000 in subspace D (grey dots) clearly indicates
orbit OSW1 as part of the attractor in the edge of chaos. However, the distribution of points
along this trajectory does not exactly coincide with the trajectory of OSW1 (inset in panel b).
This suggests that OSW1 is part of a more complex attractor in the edge of chaos.

the second Fourier mode in z of the mean kinetic energy density and midplane streamwise

vorticity, respectively. This Fourier mode corresponds to the dominant mode of the standing

wave oscillations, shown by the z-profile in Figure 9.5b. Along the orbit of OW R1 with period

T = 225.4, α(t) and β(t) oscillate with a phase lag of approximately T /4 (Figure 9.7c). In

this projection, the phase portrait of the three periodic orbits OSW1,2,3 shows disentangled

near-circular loops along which the dynamics revolves in a clockwise sense (Figure 9.7d).

Consequently, the quantities α(t ) and β(t ) illustrate the oscillatory behaviour of the periodic

orbits better than I (t ) and D(t ).

Having identified a good state space projection to display the intrinsic temporal dynamics of

the three standing waves with oblique amplitude modulation, we investigate the relevance

of these UPOs for the turbulent dynamics in subspace D. Figure 9.8a shows the turbulent

time series also plotted in Figure 9.3d in terms of α(t ) and β(t ). Here, the phase lag between

α(t ) and β(t ) is not constant, varying between approximately in phase and out-of phase. We

have computed four transiently turbulent trajectories in subspace D that all exceed t = 1000
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Chapter 9. Periodic orbits with oblique patterns in the edge of chaos

before decaying to laminar flow. Projecting them onto α(t), β(t) and ||u||2(t), we find an

unstructured cloud of points (Figure 9.8c-d). Yet, the phase portrait clearly indicates the role

of the three UPOs for the turbulent dynamics: In the α-β plane, the orbits are located in the

center of the cloud implying that the orbits well represent the turbulent mean of α(t ) and β(t ).

When including ||u||2(t ) into the projection, the orbits mark the lower bound of the turbulent

saddle. Prior to decay, the state trajectories are close to the orbits in these projections (Figure

9.8). That decaying trajectories transiently visit the periodic orbits is plausible because the

periodic orbits are embedded in the edge of chaos. When perturbing OSWi with their most

unstable eigenmode, trajectories either intrude the turbulent saddle or decay to laminar flow

depending on the sign of the perturbation (Figure 9.8e,f). This provides evidence that all orbits

are indeed embedded in the edge of chaos.

9.5 Discussion

We study the spatio-temporal dynamics of oblique stripe patterns in PCF at Re = 350 within

a numerical dynamical systems analysis. Patterns in four different symmetry subspaces

are simulated using DNS in doubly periodic domains of different size and with additionally

imposed discrete symmetries. Imposing symmetries reduces the spatio-temporal complexity

of the turbulent patterns. It is shown that inversion symmetric oblique stripe patterns at

orientation θ = 24◦ with pattern wavelengths of λ= 40 and λ= 20 are transiently sustained

in a minimal periodic domain. In the most confined symmetry subspace, edge-tracking

approaches a slow periodic orbit with a pattern wavelength λ = 20 and a period T = 225.4

comparable to the viscous diffusion time scale. This unstable periodic orbit represents a

standing wave oscillation modulating wavy velocity streaks. The oscillation exchanges regions

of high-amplitude wavy streaks with regions of low-amplitude near-straight streaks on the

time-scales of viscous diffusion. Numerical continuation of the periodic orbit towards lower

Re indicates a solution branch that undergoes two folds such that three periodic orbits coexist

at Re = 350. All three periodic orbits represent standing waves, are weakly unstable and

embedded in the edge of chaos but have more than one unstable eigenvalue unlike edgestates.

Interestingly, the most unstable periodic orbit was approached during edge-tracking.

Oblique stripe patterns are typically not observed at a pattern wavelength of λ = 20 in ex-

periments or numerical simulations. However, the intrinsic dynamics of the three periodic

orbits discussed in this chapter provide relevant insights into possible selection mechanism

for a pattern wavelength and an orientation angle of stripes under less confined conditions.

First, the standing wave modulation involves skewing and bending effects of wavy velocity

streaks (Figure 9.7d). Such skewing and bending effects are characteristic features that were

also found in the analysis of the recently described stripe equilibrium solution (Reetz et al.,

2019a) and in the detailed analysis of snakes-and-ladders bifurcation structures of spanwise
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9.5. Discussion

localized wavy velocity streaks (Gibson and Schneider, 2016). The maximum degree of skewing

or bending of wavy velocity streaks against the streamwise direction is related to the maximum

degree to which periodic domains resolving wavy velocity streaks can be tilted. The angle of

tilt of the periodic domain reflects the angle of obliqueness of the stripe pattern. Thus, the

range of skewing and bending of wavy streaks that is observed along the UPOs discussed here

may suggest the range of orientation angles at which stripes can form. Second, the period of

the UPOs is on the order of the viscous diffusion time scale, a characteristic time scale of the

mean flow of oblique turbulent-laminar stripes. The approximate resonance condition for the

standing wave oscillations, Equation (9.9), couples the pattern orientation angle θ with the

pattern wavelength λ via the phase velocity c. This relation is similar to the condition derived

in Barkley and Tuckerman (2007) based on the dominating force balance of the mean flow of

oblique turbulent-laminar stripes at wavelength λ= 40. The existence of a standing wave with

λ= 20 that oscillates on the time scales of the pattern’s mean flow suggest that similar wave

solutions also exist with a pattern wavelength of λ= 40, the typically observed wavelength in

experiments.
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Figure 9.8 – Turbulent trajectory in subspace D (compare with Figure 9.3) is plotted in terms
of α(t ), β(t ) and ||u||2(t ). Panel (a) indicates the longest of four simulated time series of α(t )
(dotted) and β(t) (solid) that exceed t = 1000 before decaying to laminar flow. All four time
series are shown in the phase portraits (b-d) that illustrate that the three periodic orbits mark
the lower bound of the turbulent saddle in ||u||2(t ).
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10 Conclusions and perspectives

The previous sections discussed and concluded on individual topics. Here, general conclusions

are drawn. These conclusions are based on the summary of all results presented in this thesis

as well as on the development of numerical tools for a dynamical systems approach to wall-

bounded shear flows. The conclusions lead to specific Perspectives for future research.

Previous observations of turbulent patterns in experiments and simulations of two different

wall-bounded shear flows, ILC and PCF, raised the question of how these patterns emerge.

The results in the present thesis provide a dynamical systems description of various turbulent

patterns in ILC and of oblique turbulent-laminar stripes in PCF. For all studied turbulent

patterns, the following hypothesis has been confirmed:

If a turbulent pattern with spatio-temporally regular and complex features is observed in a wall-

bounded shear flow, there exists an invariant solution which supports the observed dynamics

and thereby explains certain regular and complex features in the observed turbulent pattern.

Regular pattern features. The existence of an exact invariant solution of the governing fluid

flow equations can explain how wall-bounded shear flows can give rise to a regular pattern.

The flow structure of the invariant solution and the associated regular spatial and temporal

properties, like wavelength, orientation and oscillation period, emerge in the flow when the

dynamics approaches the state space neighborhood of the specific invariant solution.

Complex dynamics. Spatio-temporally complex dynamics is supported by coexisting un-

stable invariant solutions and their dynamical connections in state space. The particular

dynamics depends on the geometry of the state space structure in which the unstable in-

variant solutions are embedded. The present thesis discusses the dynamical relevance of

invariant solutions in terms of their stability and connectivity by studying phase portraits

and bifurcation structures. However, more details need to be revealed to fully understand

how invariant solutions are embedded in complicated state space structures. The following
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Chapter 10. Conclusions and perspectives

subsections discuss specific conclusions and future perspectives for turbulent patterns in ILC

and PCF.

10.1 Complex dynamics in time

Unstable invariant solutions may influence complex temporal dynamics of turbulent patterns

in different ways.

Transiently visited invariant solutions. A state space trajectory describing the temporal

dynamics of the flow may transiently visit the state space neighborhood of invariant solutions.

This type of transient dynamics is observed in ILC by studying state space trajectories starting

from unstable laminar flow in minimal periodic domains (Chapter 4). There, sequences of

transient visits are clearly indicated when plotting the temporal dynamics in phase portraits.

For oblique stripe patterns in PCF, transient visits of invariant solutions are less obvious. The

state space of stripes in PCF is larger and invariant solutions are generally more unstable than

in ILC (e.g. Figure 8.2). Observing clear transient visits is thus less likely. Unstable invariant so-

lutions in a large state space are also found for transverse oscillations in ILC (Figure 5.12). The

conditions for clearly observing transient visits of invariant solutions are not well understood.

Perspective: To understand how unstable invariant solutions could be transiently visited,

constructing heteroclinic connections would yield insights. One approach to construct hetero-

clinic connections has previously been implemented in Channelflow and applied to previously

published invariant solutions in PCF (Farano et al., 2019). Constructing heteroclinic connec-

tions between the invariant solutions discussed in the present thesis, might allow to better

understand transient visits of these invariant solutions.

Reminiscence of invariant solutions along orbits. Besides transiently visited invariant soltu-

ions, a second mechanism for transiently emerging patterns has been identified in the present

thesis. In cases with subcritical bifurcations, the pattern of invariant solutions along the

subcritical solution branch may be observed transiently at supercritical control parameters

where the corresponding invariant solutions do not exist. This case is described in Sections

4.4.3 and 5.3.1 for the transient skewed varicose pattern in Rayleigh-Bénard convection. This

observation suggests a correspondence between flow structure of subcritical invariant solu-

tions and temporal instances along supercritical state space orbits.

Perspective: A detailed analysis of such a correspondence might help to understand the remi-

niscence of subcritical state space structures, involving invariant solutions, along supercritical

state space orbits.

Intrinsic temporal dynamics of invariant solutions. Equilibrium solutions, traveling waves

and periodic orbits have either steady or oscillatory dynamics. When unstable invariant
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10.2. Complex dynamics in space

solutions are transiently visited, their intrinsic temporal dynamics affects the state space

trajectories which becomes observable in the flow. An illustrative example is the single un-

stable periodic orbit underlying chaotic crawling rolls in ILC (Section 6). In chaotic flow, a

large number of unstable periodic orbits can be expected to be dense in the chaotic attractor.

Knowing many of them may allow to determine statistical properties of the chaotic dynamics

using periodic orbit theory (Cvitanović, 1995).

Perspective: Applying periodic orbit theory to turbulent ILC could capture statistical proper-

ties like turbulent heat transfer. Identifying a large number of periodic orbits appears easier in

ILC than in other pure shear flows.

10.2 Complex dynamics in space

Equilibrium solutions that capture the spatial coexistence of different patterns may be in-

terpreted in terms of space dynamics. The lateral pattern of the stripe equilibrium in PCF,

discussed in Section 8, represents a torus in space. This torus captures the coexistence of high

and low amplitude wavy velocity streaks in space. High and low amplitude wavy streaks also

exist separately from each other as small-scale periodic invariant solutions (Figure 7.3a,b).

Since coexistence of invariant solutions in dissipative systems at equal control parameters may

support spatial coexistence of these solution (Knobloch, 2015), the coexistence of invariant

solutions in ILC, as indicated by the bifurcation structures discussed in Section 5, suggests the

existence of invariant solutions describing how the associated patterns can coexist in space.

Perspective: The construction of invariant solutions that capture the spatial coexistence of two

different patterns in ILC would better explain the spatial complexity observed in experiments

and simulations, like defects or localized patterns.

10.3 Wavelength selection

Confining the state space of turbulent patterns to particular symmetry subspaces has been a

key step in all successful identifications of invariant solutions discussed in the present thesis.

This includes discrete reflection symmetries as well as descrete translation symmetries. The

latter correspond to confining the analysis to a subspace of a minimal periodic domain. In

minimal domains, patterns wavelengths are imposed by the size of the domain. In extended

experiments or simulations however, pattern wavelengths are not constrained by boundary

conditions and can be selected ‘freely’ by the flow. This unconstrained selection is not captured

by dynamical systems analysis in the present thesis. Turbulent patterns in ILC and PCF have

been studied in very specific minimal periodic domains. Three different approaches to study

wavelength selection are proposed.

Perspective A: Numerical continuation in the domain size allows to explore the existence and
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stability properties of invariant solutions at smoothly varying pattern wavelengths.

Perspective B: Appropriate domain sizes for convection patterns in ILC were suggested by

previous Floquet analysis. A future analysis of turbulent patterns in wall-bounded shear flows

using Channelflow would benefit from having a tool for Floquet analysis implemented in

Channelflow.

Perspective C: The problem of wavelength selection can be solved by constructing localized

invariant solutions. Patterns that are localized within a homogeneous background state are

not constrained in their wavelength. Such invariant solutions can directly be compared with

experimentally observed patterns.

10.4 Standing and traveling waves across patterns

Different periodic orbits have been identified that represent standing wave solutions. The

periodic orbit SSW , underlying subharmonic oscillations in ILC (Section 4.4.2), bifurcates

together with a traveling wave solution in equivariant Hopf bfirucations from straight con-

vection rolls with O(2)-symmetry in the streamwise dimension (Section 5.3.2). Like SSW ,

the periodic orbit T O, underlying transverse oscillations in ILC (Section 4.4.2), represents

a subharmonic standing wave solution. However, T O bifurcate from transverse rolls (T R)

which are patterned in the streamwise dimension (Section 5.3.5). Similarly, the periodic orbits

OSW1,2,3, underlying oblique stripe patterns in PCF (Section 9), represent standing waves

across a non-homogeneous pattern, namely wavy velocity streaks. For T O and OSW1,2,3, no

related traveling wave solution has been found. All discussed standing wave solutions have in

common that they satisfy an approximate resonance condition involving either diffusion time

scales (see Equation 9.9) or mean advection time scales (see Equation 5.24).

Perspective A: The approximate resonance relations (9.9) and (5.24) suggest that exact reso-

nance might be favorable for invariant solutions underlying standing waves. Exact resonance

is obtained by changing the size of the numerical domain.

Perspective B: Equivariant bifurcations are not expected for T O and OSW1,2,3 due to the ab-

sence of O(2)-symmetry in the streamwise direction. However, corresponding ‘traveling wave’

solutions might exist. This conjecture is based on the observations that in both turbulent

patterns, switching diamond panes in ILC and oblique turbulent-laminar stripes in PCF, con-

vection rolls and velocity streaks drift across the pattern. The drift relies on locations in space

where rolls/streaks emerge and decay. Since rolls/streaks not only drift but emerge and decay,

the underlying invariant solutions are expected to be technically periodic orbits rather than

traveling waves.

Perspective C: Switching diamond panes in ILC and oblique turbulent-laminar stripes in

PCF are both turbulent patterns with preferred oblique modulations against the streamwise

direction. Since both patterns have underlying standing wave solutions, investigating the
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analogy between the two patterns might reveal more insights. Homotopy transformations

between ILC and PCF as suggested in the next conclusion might be a useful approach.

10.5 Correspondence of patterns in ILC with patterns in PCF

Due to the existence of many different single state attractors in ILC, the dynamical systems

analysis of ILC is simpler than the analysis of PCF. Since ILC and PCF are both wall-bounded

shear flows that have the Navier-Stokes equations and the same discrete reflection symmetries

in common, homotopy transformations from ILC to PCF might be an appropriate approach to

transfer state space structures that have been understood in ILC to PCF.

Perspective: Since the boundary conditions of ILC have been implemented in a general form

(Section 2.2.5), the tools for homotopy transformations exist. However, preliminary results of

homotopy transformations suggest arising difficulties along numerical continuations. These

difficulties might stem from the fact that the cubic laminar flow profile in ILC creates shear

forces of opposite sign. At the walls shear is positive, in the bulk shear is negative. During

homotopy transformation, one shear region expands and the other shear region shrinks

and finally vanishes. If invariant solutions of ILC rely on bulk and/or wall shear, homotopy

transformations using numerical continuation might not work.
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J Halcrow, J F Gibson, P Cvitanović, and D Viswanath. Heteroclinic connections in plane

{Couette} flow. Journal of Fluid Mechanics, 621:365–376, feb 2009. ISSN 0022-1120. doi:

10.1017/S0022112008005065.

John E Hart. Stability of the flow in a differentially heated inclined box. Journal of Fluid

Mechanics, 47(03):547, 1971a. ISSN 0022-1120. doi: 10.1017/S002211207100123X. URL

http://www.journals.cambridge.org/abstract{_}S002211207100123X.

172

http://www.journals.cambridge.org/abstract{_}S0022112014000895
http://arxiv.org/abs/0705.3957 http://dx.doi.org/10.1017/S002211200800267X http://www.journals.cambridge.org/abstract{_}S002211200800267X
http://arxiv.org/abs/0705.3957 http://dx.doi.org/10.1017/S002211200800267X http://www.journals.cambridge.org/abstract{_}S002211200800267X
http://arxiv.org/abs/1509.08424 http://www.journals.cambridge.org/abstract{_}S0022112016001774
http://arxiv.org/abs/1509.08424 http://www.journals.cambridge.org/abstract{_}S0022112016001774
http://www.journals.cambridge.org/abstract{_}S002211207100123X


Bibliography

John E Hart. Transition to a wavy vortex régime in convective flow between inclined

plates. Journal of Fluid Mechanics, 48(2):265–271, 1971b. ISSN 14697645. doi: 10.1017/

S0022112071001587.

S. Hashimoto, A. Hasobe, T. Tsukahara, Y. Kawaguchi, and H. Kawamura. An experimental

study on turbulent-stripe structure in transitional channel flow. In Proceedings of the Sixth

International Symposium on Turbulence, Heat and Mass Transfer, pages 193–196, Rome,

Italy, 14-18 September, 2009. Begell House Inc. ISBN 978-1-56700-262-1. doi: 10.1615/

ICHMT.2009.TurbulHeatMassTransf.2370. URL http://www.dl.begellhouse.com/references/

1bb331655c289a0a,79a1a64252fdbc4b,39a032e27147214a.html.

John J Hegseth, C D Andereck, F Hayot, and Y Pomeau. Spiral Turbulence and Phase Dynamics.

Phys. Rev. Lett., 62(3):257–260, 1989.

Björn Hof, Casimir W H van Doorne, Jerry Westerweel, Frans T M Nieuwstadt, Holger Faisst,

Bruno Eckhardt, Hakan Wedin, Richard R Kerswell, and Fabian Waleffe. Experimental

observation of nonlinear traveling waves in turbulent pipe flow. Science, 305(September):

1594–1598, 2004. ISSN 1095-9203. doi: 10.1126/science.1100393.

Björn Hof, Jerry Westerweel, Tobias M Schneider, and Bruno Eckhardt. Finite lifetime of

turbulence in shear flows. Nature, 443(7107):59–62, sep 2006. ISSN 0028-0836. doi: 10.1038/

nature05089. URL http://www.nature.com/doifinder/10.1038/nature05089.

K G T Hollands and L Konicek. Experimental study of the stability of differentially heated

inclined air layers. International Journal of Heat and Mass Transfer, 16(7):1467–1476, 1973.

ISSN 00179310. doi: 10.1016/0017-9310(73)90153-1.

E Hopf. A mathematical example displaying features of turbulence. Communications on

Pure and Applied Mathematics, 1(4):303–322, dec 1948. ISSN 00103640. doi: 10.1002/cpa.

3160010401.

Takahiro Ishida, Geert Brethouwer, Yohann Duguet, and Takahiro Tsukahara. Laminar-

turbulent patterns with rough walls. Physical Review Fluids, 2(7):073901, 2017. ISSN

2469-990X. doi: 10.1103/PhysRevFluids.2.073901.

J Jiménez and P Moin. The minimal flow unit in near-wall turbulence. Journal of Fluid

Mechanics, 225:213–240, 1991. doi: 10.1017/S0022112091002033.

Javier Jiménez. Coherent structures in wall-bounded turbulence. Journal of Fluid Mechanics,

842:P1, may 2018. ISSN 0022-1120. doi: 10.1017/jfm.2018.144. URL https://www.cambridge.

org/core/product/identifier/S0022112018001441/type/journal{_}article.

Matthew P. Juniper and R.I. Sujith. Sensitivity and Nonlinearity of Thermoacoustic Oscillations.

Annual Review of Fluid Mechanics, 50(1):661–689, 2018. ISSN 0066-4189. doi: 10.1146/

annurev-fluid-122316-045125.

173

http://www.dl.begellhouse.com/references/1bb331655c289a0a,79a1a64252fdbc4b,39a032e27147214a.html
http://www.dl.begellhouse.com/references/1bb331655c289a0a,79a1a64252fdbc4b,39a032e27147214a.html
http://www.nature.com/doifinder/10.1038/nature05089
https://www.cambridge.org/core/product/identifier/S0022112018001441/type/journal{_}article
https://www.cambridge.org/core/product/identifier/S0022112018001441/type/journal{_}article


Bibliography

G Kawahara, M Uhlmann, and L van Veen. The significance of simple invariant solutions in

turbulent flows. Annual Review of Fluid Mechanics, 44(1):203–225, jan 2012. ISSN 0066-4189.

doi: 10.1146/annurev-fluid-120710-101228.

C. T. Kelley. Solving Nonlinear Equations with Newton’s Method. Society for Industrial and

Applied Mathematics, jan 2003. ISBN 978-0-89871-546-0. doi: 10.1137/1.9780898718898.

URL http://epubs.siam.org/doi/book/10.1137/1.9780898718898.

R E Kelly. The onset and development of thermal convection in fully developed shear flows.

Advances in applied mechanics, 31:35–112, 1994.

Robert M Kerr. Rayleigh number scaling in numerical convection. J . Fluid Mech, 310, 1996.

R R Kerswell. Recent progress in understanding the transition to turbulence in a pipe. Nonlin-

earity, 18(6):R17–R44, nov 2005. ISSN 0951-7715. doi: 10.1088/0951-7715/18/6/R01.

Taras Khapko, Tobias Kreilos, Philipp Schlatter, Yohann Duguet, Bruno Eckhardt, and Dan S

Henningson. Localized edge states in the asymptotic suction boundary layer. Journal of

Fluid Mechanics, 717:R6, 2013. doi: 10.1017/jfm.2013.20.

L. Kleiser and U. Schumann. Treatment of incompressibility and boundary conditions in 3-D

numerical spectral simulations of plane channel flows. In E. Hirschel, editor, Proceedings of

the Third GAMM — Conference on Numerical Methods in Fluid Mechanics, pages 165—-173,

Viewweg, Braunschweig, 1980.

E. Knobloch. Oscillatory convection in binary mixtures, 1986. ISSN 10502947.

E. Knobloch. Spatial Localization in Dissipative Systems. Annual Review of

Condensed Matter Physics, 6(1):325–359, mar 2015. ISSN 1947-5454. doi:

10.1146/annurev-conmatphys-031214-014514. URL http://www.annualreviews.org/doi/

abs/10.1146/annurev-conmatphys-031214-014514http://www.annualreviews.org/doi/10.

1146/annurev-conmatphys-031214-014514.

D.a. Knoll and D.E. Keyes. Jacobian-free Newton–Krylov methods: a survey of approaches and

applications. Journal of Computational Physics, 193(2):357–397, jan 2004. ISSN 00219991.

doi: 10.1016/j.jcp.2003.08.010.

Tobias Kreilos. Turbulence Transition in Shear Flows and Dynamical Systems Theory. PhD

thesis, Philipps-Universität Marburg, 2014.

Tobias Kreilos and Bruno Eckhardt. Periodic orbits near onset of chaos in plane Couette flow.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(4):047505, 2012. ISSN 10541500.

doi: 10.1063/1.4757227.

174

http://epubs.siam.org/doi/book/10.1137/1.9780898718898
http://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-031214-014514 http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031214-014514
http://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-031214-014514 http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031214-014514
http://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-031214-014514 http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031214-014514


Bibliography

Tobias Kreilos, Gregor Veble, Tobias M. Schneider, and Bruno Eckhardt. Edge states for the

turbulence transition in the asymptotic suction boundary layer. Journal of Fluid Mechanics,

726:100–122, 2013. ISSN 00221120. doi: 10.1017/jfm.2013.212.

Tobias Kreilos, Bruno Eckhardt, and Tobias M Schneider. Increasing Lifetimes and the Growing

Saddles of Shear Flow Turbulence. Physical Review Letters, 112(4):044503, jan 2014. ISSN

0031-9007. doi: 10.1103/PhysRevLett.112.044503.

M. Krupa. Robust Heteroclinic Cycles. Journal of Nonlinear Science, 7(2):129–176, 1997. ISSN

09388974. doi: 10.1007/BF02677976.

Martin Krupa and Ian Melbourne. Asymptotic stability of heteroclinic cycles in systems with

symmetry. Ergodic Theory and Dynamical Systems, 15(1):121–147, 1995. ISSN 14694417.

doi: 10.1017/S0143385700008270.

L D Landau and E M Lifschitz. Fluid Mechanics. Elsevier Science, 2nd edition, 1987.

Oscar E Lanford. The Strange Attractor Theory of Turbulence. Annual Review of Fluid Mechan-

ics, 14:347–364, 1982.

Grégoire Lemoult, Konrad Gumowski, Jean-Luc Aider, and José Eduardo Wesfreid. Turbulent

spots in channel flow: an experimental study: large-scale flow, inner structure and low-order

model. The European physical journal. E, Soft matter, 37(4):25, 2014. ISSN 1292-895X. doi:

10.1140/epje/i2014-14025-2. URL http://www.ncbi.nlm.nih.gov/pubmed/24771238.

Grégoire Lemoult, Liang Shi, Kerstin Avila, Shreyas V Jalikop, Marc Avila, and Björn Hof.

Directed percolation phase transition to sustained turbulence in Couette flow. Nature

Physics, 12(March):254–258, 2016. ISSN 1745-2473. doi: 10.1038/nphys3675. URL http://

arxiv.org/abs/1510.07868{%}5Cnhttp://www.nature.com/doifinder/10.1038/nphys3675.

Timothy M Lenton, Hermann Held, Elmar Kriegler, Jim W Hall, Wolfgang Lucht, Stefan

Rahmstorf, and Hans Joachim. Tipping elements in the Earth’s climate system. Proceed-

ings of the National Academy of Sciences, 105(6):1786–1793, 2008. ISSN 0027-8424. doi:

10.1073/pnas.0705414105.

Edward N Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sci-

ences, 20(2):130–141, mar 1963. ISSN 0022-4928. doi: 10.1175/1520-0469(1963)

020<0130:DNF>2.0.CO;2. URL http://journals.ametsoc.org/doi/abs/10.1175/

1520-0469{%}281963{%}29020{%}3C0130{%}3ADNF{%}3E2.0.CO{%}3B2.

A Lundbladh and A V Johansson. Direct simulation of turbulent spots in plane Couette

flow. Journal of Fluid Mechanics, 229:499–516, apr 1991. ISSN 0022-1120. doi: 10.1017/

S0022112091003130.

175

http://www.ncbi.nlm.nih.gov/pubmed/24771238
http://arxiv.org/abs/1510.07868{%}5Cnhttp://www.nature.com/doifinder/10.1038/nphys3675
http://arxiv.org/abs/1510.07868{%}5Cnhttp://www.nature.com/doifinder/10.1038/nphys3675
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469{%}281963{%}29020{%}3C0130{%}3ADNF{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469{%}281963{%}29020{%}3C0130{%}3ADNF{%}3E2.0.CO{%}3B2


Bibliography

W. V. R. Malkus. Boussinesq equations. Notes on the 1964 Summer Study Program in Geo-

physical Fluid Dynamics at the Woods Hole Oceanographic Institution Vol. 1, pages 1–12,

1964.

Paul Manneville. Turbulent patterns in wall-bounded flows: A Turing instability?

EPL (Europhysics Letters), 98(6):64001, 2012. ISSN 0295-5075. doi: 10.1209/

0295-5075/98/64001. URL http://stacks.iop.org/0295-5075/98/i=6/a=64001?key=crossref.

c94893b87a78bd6b1f51345b544f8540.

Paul Manneville. Laminar-Turbulent Patterning in Transitional Flows. Entropy, 19(7):316, 2017.

ISSN 1099-4300. doi: 10.3390/e19070316. URL http://www.mdpi.com/1099-4300/19/7/316.

Konstantin Melnikov, Tobias Kreilos, and Bruno Eckhardt. Long-wavelength instability of

coherent structures in plane Couette flow. Physical Review E, 89(4):043008, apr 2014. ISSN

1539-3755. doi: 10.1103/PhysRevE.89.043008.

Isabel Mercader, Joana Prat, and Edgar Knobloch. Robust heteroclinic cycles in two-

dimensional Rayleigh-Bénard convection without Boussinesq symmetry. International

Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 12(11):2501–2522,

2002. ISSN 02181274. doi: 10.1142/S0218127402006047.

Alvaro Meseguer, Fernando Mellibovsky, Marc Avila, and Francisco Marques. Instability

mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow. Physical

Review E - Statistical, Nonlinear, and Soft Matter Physics, 80(4):1–4, 2009. ISSN 15393755.

doi: 10.1103/PhysRevE.80.046315.

Jiro Mizushima and Hiroki Tanaka. Transitions of natural convection in a vertical fluid layer.

Physics of Fluids, 14, 2002a. ISSN 00319015. doi: 10.1143/JPSJ.71.2898.

Jiro Mizushima and Hiroki Tanaka. Transition Routes of Natural Convection in a Vertical Fluid

Layer. Journal of the Physical Society of Japan, 71(12):2898–2906, 2002b. ISSN 00319015. doi:

10.1143/JPSJ.71.2898.

Stephen W Morris, Eberhard Bodenschatz, David S Cannell, and Guenter Ahlers. Spiral defect

chaos in large aspect ratio Rayleigh-Bénard convection. Physical Review Letters, 71(13):

2026–2029, 1993. ISSN 00319007. doi: 10.1103/PhysRevLett.71.2026.

M Nagata. Three-dimensional finite-amplitude solutions in plane Couette flow: bifur-

cation from infinity. Journal of Fluid Mechanics, 217(-1):519, aug 1990. ISSN 0022-

1120. doi: 10.1017/S0022112090000829. URL http://www.journals.cambridge.org/

abstract{_}S0022112090000829.

C. Nore, L. S. Tuckerman, O. Daube, and S. Xin. The 1:2 mode interaction in exactly counter-

rotating von Kármán swirling flow. Journal of Fluid Mechanics, 477(477):51–88, 2003. ISSN

00221120. doi: 10.1017/S0022112002003075.

176

http://stacks.iop.org/0295-5075/98/i=6/a=64001?key=crossref.c94893b87a78bd6b1f51345b544f8540
http://stacks.iop.org/0295-5075/98/i=6/a=64001?key=crossref.c94893b87a78bd6b1f51345b544f8540
http://www.mdpi.com/1099-4300/19/7/316
http://www.journals.cambridge.org/abstract{_}S0022112090000829
http://www.journals.cambridge.org/abstract{_}S0022112090000829


Bibliography

Wilhelm Nusselt. Die Wärmeleitfähigkeit von Wärmeisolierstoffen. PhD thesis, 1908.

R Peyret. Spectral Methods for Incompressible Flows. Springer-Verlag, 2002.

Jimmy Philip and Paul Manneville. From temporal to spatiotemporal dynamics in transitional

plane Couette flow. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 83(3):

036308, 2011. ISSN 15393755. doi: 10.1103/PhysRevE.83.036308.

A. Pinter, M. Lücke, and Ch Hoffmann. Competition between traveling fluid waves of left and

right spiral vortices and their different amplitude combinations. Physical Review Letters, 96

(4):1–4, 2006. ISSN 10797114. doi: 10.1103/PhysRevLett.96.044506.

Y Pomeau and P Manneville. Intermittent Transition to Turbulence in Dissipative Dynamical

Systems. Communications in Mathematical Physics, 74:189–197, 1980. ISSN 0010-3616. doi:

10.1007/BF01197757.

A Prigent, G Grégoire, H Chaté, O Dauchot, and W van Saarloos. Large-Scale Finite-Wavelength

Modulation within Turbulent Shear Flows. Physical Review Letters, 89(1):014501, jun 2002.

ISSN 0031-9007. doi: 10.1103/PhysRevLett.89.014501.

Arnaud Prigent, Guillaume Grégoire, Hugues Chaté, and Olivier Dauchot. Long-wavelength

modulation of turbulent shear flows. Physica D: Nonlinear Phenomena, 174:100–113, 2003.

ISSN 01672789. doi: 10.1016/S0167-2789(02)00685-1.

M. R.E. Proctor and C. A. Jones. The interaction of two spatially resonant patterns in thermal

convection. Part 1. Exact 1:2 resonance. Journal of Fluid Mechanics, 188:301–335, 1988. ISSN

14697645. doi: 10.1017/S0022112088000746.

Florian Reetz and Tobias M Schneider. Invariant states in inclined layer convection. Part 1.

Temporal transitions along dynamical connections between invariant states. arXiv, 2019a.

Florian Reetz and Tobias M Schneider. Invariant state space structure of weakly turbulent

inclined layer convection. in preparation, 2019b.

Florian Reetz, Tobias Kreilos, and Tobias M Schneider. Exact invariant solution reveals the

origin of self-organized oblique turbulent-laminar stripes. Nature Communications, 10(1):

2277, 2019a. ISSN 2041-1723. doi: 10.1038/s41467-019-10208-x. URL https://doi.org/10.

1038/s41467-019-10208-x.

Florian Reetz, Priya Subramanian, and Tobias M Schneider. Invariant states in inclined layer

convection. Part 2. Bifurcations and connections between branches of invariant states.

arXiv, 2019b.

David Ruelle and Floris Takens. On the Nature of Turbulence. Communications in Mathemati-

cal Physics, 20(3):167–192, 1971. doi: 10.1007/BF01646553.

177

https://doi.org/10.1038/s41467-019-10208-x
https://doi.org/10.1038/s41467-019-10208-x


Bibliography

By Douglas W Ruth, K G T Hollands, and A N D G D Raithby. On free convection experiments

in inclined air layers heated from below. Journal of Fluid Mechanics, 96(3):461–479, 1980a.

Douglas W. Ruth, G. D. Raithby, and K. G. T. Hollands. On the secondary instability in inclined

air layers. Journal of Fluid Mechanics, 96(3):481–492, 1980b. ISSN 0022-1120. doi: 10.1017/

s0022112080002236.

Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, jan 2003. ISBN 978-0-89871-534-7. doi: 10.1137/1.9780898718003. URL

http://epubs.siam.org/doi/book/10.1137/1.9780898718003.

M Salewski, John F Gibson, and Tobias M Schneider. The origin of localized snakes-and-ladders

solutions of plane Couette flow. 2019.

J Sánchez and M Net. On the Multiple Shooting Continuation of Periodic Orbits By New-

ton–Krylov Methods. International Journal of Bifurcation and Chaos, 20(01):43–61, jan 2010.

ISSN 0218-1274. doi: 10.1142/S0218127410025399.

J. Sanchez, M. Net, B. Garcıia-Archilla, and C. Simo. Newton–Krylov continuation of peri-

odic orbits for Navier–Stokes flows. Journal of Computational Physics, 201(1):13–33, nov

2004. ISSN 00219991. doi: 10.1016/j.jcp.2004.04.018. URL https://linkinghub.elsevier.com/

retrieve/pii/S0021999104001895.

David G. Schaeffer and John W. Cain. Ordinary Differential Equations: Basics and Beyond,

volume 65. 2016. ISBN 978-1-4939-6387-4. doi: 10.1007/978-1-4939-6389-8. URL http:

//link.springer.com/10.1007/978-1-4939-6389-8.

Tobias M Schneider, Bruno Eckhardt, and James A Yorke. Turbulence transition and the edge

of chaos in pipe flow. Physical Review Letters, 99:34502, jul 2007. doi: 10.1103/PhysRevLett.

99.034502.

Tobias M Schneider, John F Gibson, Maher Lagha, Filippo De Lillo, and Bruno Eckhardt.

Laminar-turbulent boundary in plane Couette flow. Physical Review E, 78(3):037301, sep

2008. ISSN 1539-3755. doi: 10.1103/PhysRevE.78.037301. URL http://arxiv.org/abs/0805.

1015http://link.aps.org/doi/10.1103/PhysRevE.78.037301.

Tobias M Schneider, J F Gibson, and J Burke. Snakes and Ladders: Localized Solutions of Plane

Couette Flow. Physical Review Letters, 104(10):104501, mar 2010a. ISSN 0031-9007. doi:

10.1103/PhysRevLett.104.104501.

Tobias M Schneider, Daniel Marinc, and Bruno Eckhardt. Localized edge states nucleate

turbulence in extended plane Couette cells. Journal of Fluid Mechanics, 646:441, mar 2010b.

ISSN 0022-1120. doi: 10.1017/S0022112009993144. URL http://www.journals.cambridge.

org/abstract{_}S0022112009993144.

178

http://epubs.siam.org/doi/book/10.1137/1.9780898718003
https://linkinghub.elsevier.com/retrieve/pii/S0021999104001895
https://linkinghub.elsevier.com/retrieve/pii/S0021999104001895
http://link.springer.com/10.1007/978-1-4939-6389-8
http://link.springer.com/10.1007/978-1-4939-6389-8
http://arxiv.org/abs/0805.1015 http://link.aps.org/doi/10.1103/PhysRevE.78.037301
http://arxiv.org/abs/0805.1015 http://link.aps.org/doi/10.1103/PhysRevE.78.037301
http://www.journals.cambridge.org/abstract{_}S0022112009993144
http://www.journals.cambridge.org/abstract{_}S0022112009993144


Bibliography

J N Shadid and R J Goldstein. Visualization of longitudinal convection roll instabilities in an

inclined enclosure heated from below. Journal of Fluid Mechanics, 215:61–84, 1990. ISSN

14697645. doi: 10.1017/S0022112090002555.

J D Skufca, James A Yorke, and Bruno Eckhardt. Edge of chaos in a parallel shear flow. Physical

Review Letters, 96:174101, may 2006. doi: 10.1103/PhysRevLett.96.174101.

Philippe R. Spalart, Robert D. Moser, and Michael M. Rogers. Spectral methods for the Navier-

Stokes equations with one infinite and two periodic directions. Journal of Computational

Physics, 96(2):297–324, 1991. ISSN 10902716. doi: 10.1016/0021-9991(91)90238-G.

Steven H Strogatz. Nonlinear Dynamics and Chaos with Student Solutions Manual: With

Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, 2018.

Priya Subramanian, Oliver Brausch, Karen E. Daniels, Eberhard Bodenschatz, Tobias M. Schnei-

der, and Werner Pesch. Spatio-temporal patterns in inclined layer convection. Journal

of Fluid Mechanics, 794:719–745, 2016. ISSN 0022-1120. doi: 10.1017/jfm.2016.186. URL

http://www.journals.cambridge.org/abstract{_}S0022112016001865.

Balachandra Suri, Jeffrey Tithof, Roman O. Grigoriev, and Michael F. Schatz. Forecasting Fluid

Flows Using the Geometry of Turbulence. Physical Review Letters, 118(11):1–5, 2017. ISSN

10797114. doi: 10.1103/PhysRevLett.118.114501.

H L Swinney and J P Gollub. The transition to turbulence. Physics Today, 31(8):41, 1978. ISSN

00319228. doi: 10.1063/1.2995142.

Randall Tagg, W Stuart Edwards, Harry L Swinney, and S Marcus. Nonlinear standing waves in

Couette-Taylor flow. Physical Review A, 39(7):3734–3738, 1989.

Nils Tillmark and P. Henrik Alfredsson. Experiments on transition in plane Couette flow. Jour-

nal of Fluid Mechanics, 235:89–102, 1992. ISSN 0022-1120. doi: 10.1017/S0022112092001046.

URL http://www.journals.cambridge.org/abstract{_}S0022112092001046.

L N Trefethen and D Bau. Numerical Linear Algebra. SIAM, 1997. ISBN 0898713617,

9780898713619.

T Tsukahara, Y Seki, H Kawamura, and D Tochio. DNS of Turbulent Channel Flow with very low

Reynolds Numbers. In Proceedings of the Fourth International Symposium on Turbulence

and Shear Flow Phenomena, pages 935–940, Williamsburg, VA, USA, 27-29 Jun., 2005. Begell

House Inc. URL http://www.tsfp-conference.org/proceedings/2005/tsfp4-ga-5.pdfhttps:

//arxiv.org/abs/1406.0248http://www.dl.begellhouse.com/references/3ce1b491115b5c16,

34d18f9c601fac9f,56d8f25b7ee6529a.html.

179

http://www.journals.cambridge.org/abstract{_}S0022112016001865
http://www.journals.cambridge.org/abstract{_}S0022112092001046
http://www.tsfp-conference.org/proceedings/2005/tsfp4-ga-5.pdf https://arxiv.org/abs/1406.0248 http://www.dl.begellhouse.com/references/3ce1b491115b5c16,34d18f9c601fac9f,56d8f25b7ee6529a.html
http://www.tsfp-conference.org/proceedings/2005/tsfp4-ga-5.pdf https://arxiv.org/abs/1406.0248 http://www.dl.begellhouse.com/references/3ce1b491115b5c16,34d18f9c601fac9f,56d8f25b7ee6529a.html
http://www.tsfp-conference.org/proceedings/2005/tsfp4-ga-5.pdf https://arxiv.org/abs/1406.0248 http://www.dl.begellhouse.com/references/3ce1b491115b5c16,34d18f9c601fac9f,56d8f25b7ee6529a.html


Bibliography

Laurette S. Tuckerman and Dwight Barkley. Bifurcation analysis of the Eckhaus in-

stability. Physica D: Nonlinear Phenomena, 46(1):57–86, oct 1990. ISSN 01672789.

doi: 10.1016/0167-2789(90)90113-4. URL http://linkinghub.elsevier.com/retrieve/pii/

0167278990901134.

Laurette S. Tuckerman and Dwight Barkley. Patterns and dynamics in transitional plane

Couette flow. Physics of Fluids, 23(4):041301, 2011. ISSN 10706631. doi: 10.1063/1.3580263.

Laurette S Tuckerman, Tobias Kreilos, Hecke Schrobsdorff, Tobias M Schneider, and John F

Gibson. Turbulent-laminar patterns in plane Poiseuille flow. Physics of Fluids, 26:114103,

2014. doi: 10.1063/1.4900874.

Laurette S. Tuckerman, Matthew Chantry, and Dwight Barkley. Patterns in Wall-Bounded

Shear Flows. Annual Review of Fluid Mechanics, 52(1):343–367, 2020. ISSN 0066-4189. doi:

10.1146/annurev-fluid-010719-060221.

L van Veen, G Kawahara, and M Atsushi. On Matrix-Free Computation of 2D Unstable Mani-

folds. SIAM Journal on Scientific Computing, 33(1):25–44, jan 2011. ISSN 1064-8275. doi:

10.1137/100789804. URL http://epubs.siam.org/doi/abs/10.1137/100789804.

Charles M. Vest and Vedat S. Arpaci. Stability of natural convection in a vertical slot. Journal of

Fluid Mechanics, 36(01):1, 1969. ISSN 0022-1120. doi: 10.1017/S0022112069001467. URL

http://www.journals.cambridge.org/abstract{_}S0022112069001467.

D Viswanath. Recurrent motions within plane Couette turbulence. Journal of Fluid Mechanics,

580:339–358, 2007. ISSN 0022-1120. doi: 10.1017/S0022112007005459.

F Waleffe. Three-dimensional coherent states in plane shear flows. Physical Review Letters, 81:

4140–4143, nov 1998. doi: 10.1103/PhysRevLett.81.4140.

Fabian Waleffe. On a self-sustaining process in shear flows. Physics of Fluids, 9(June

1996):883, 1997. ISSN 10706631. doi: 10.1063/1.869185. URL http://link.aip.org/link/

PHFLE6/v9/i4/p883/s1{&}Agg=doi{%}5Cnhttp://link.aip.org/link/PHFLE6/v9/i4/p883/

s1{%}5Cnpapers2://publication/uuid/96F1BE98-548D-491B-B6A0-41B444840F39.

Fabian Waleffe, Anakewit Boonkasame, Leslie M Smith, Fabian Waleffe, Anakewit Boonkasame,

and Leslie M Smith. Heat transport by coherent Rayleigh-Bénard convection Heat transport

by coherent Rayleigh-Bénard convection. Physics of Fluids, 051702(May), 2015. doi: 10.

1063/1.4919930.

S Weiss, G Seiden, and E Bodenschatz. Pattern formation in spatially forced thermal convection.

New Journal of Physics, 053010:14; 053010, 2012. ISSN 1367-2630. doi: 10.1088/1367-2630/

14/5/053010.

180

http://linkinghub.elsevier.com/retrieve/pii/0167278990901134
http://linkinghub.elsevier.com/retrieve/pii/0167278990901134
http://epubs.siam.org/doi/abs/10.1137/100789804
http://www.journals.cambridge.org/abstract{_}S0022112069001467
http://link.aip.org/link/PHFLE6/v9/i4/p883/s1{&}Agg=doi{%}5Cnhttp://link.aip.org/link/PHFLE6/v9/i4/p883/s1{%}5Cnpapers2://publication/uuid/96F1BE98-548D-491B-B6A0-41B444840F39
http://link.aip.org/link/PHFLE6/v9/i4/p883/s1{&}Agg=doi{%}5Cnhttp://link.aip.org/link/PHFLE6/v9/i4/p883/s1{%}5Cnpapers2://publication/uuid/96F1BE98-548D-491B-B6A0-41B444840F39
http://link.aip.org/link/PHFLE6/v9/i4/p883/s1{&}Agg=doi{%}5Cnhttp://link.aip.org/link/PHFLE6/v9/i4/p883/s1{%}5Cnpapers2://publication/uuid/96F1BE98-548D-491B-B6A0-41B444840F39


Bibliography

Xiangming Xiong, Jianjun Tao, Shiyi Chen, and Luca Brandt. Turbulent bands in plane-

Poiseuille flow at moderate Reynolds numbers. Physics of Fluids, 27(4):041702, 2015. ISSN

10897666. doi: 10.1063/1.4917173.

T Zang and M Y Hussaini. Numerical experiments on subcritical transition mechanisms. In

23rd Aerospace Sciences Meeting, Reston, Virigina, jan 1985. American Institute of Aeronau-

tics and Astronautics. doi: 10.2514/6.1985-296. URL http://arc.aiaa.org/doi/10.2514/6.

1985-296.

Thomas A. Zang. On the rotation and skew-symmetric forms for incompressible flow

simulations. Applied Numerical Mathematics, 7(1):27–40, 1991. ISSN 01689274. doi:

10.1016/0168-9274(91)90102-6.

181

http://arc.aiaa.org/doi/10.2514/6.1985-296
http://arc.aiaa.org/doi/10.2514/6.1985-296




Acknowledgements

Doing a PhD is most of all a relationship between a person and a problem. I went into such a

relationship hoping to understand a problem in-depth and to make my contribution. Thank

you, Tobias, for providing the perfect environment for exactly this experience. You offered

me a problem that I have enjoyed every single day of my PhD. Moreover, I am very grateful

for the time in a growing lab in which team-work is so important, for your trust when I got

challenged on multiple levels, for explaining me writing, and for all the inspiring scientific and

non-scientific discussions with you. It was a great pleasure to be your student.

I am very thankful for the scientific input that I received from Prof. Laurette Tuckerman and

Prof. Edgar Knobloch during several conferences and workshops, in emails and at my thesis

defense. I also thank Prof. François Gallaire for examining my thesis, and even more for many

wonderful LFMI-ECPS activities over the years of my PhD. My gratitude also goes to Prof.

William Curtin for presiding over the jury of the thesis defense. I thank Prof. John Gibson and

Massimiliano Culpo for the discussions and the collaborative work on Channelflow 2.0.

I had the privilege to work together with many friends at the ECPS lab. I am very grateful to

Tobias Kreilos who, during my first year, taught me everything I know about Channelflow and

paved the way to make this a successful thesis. I thank Priya Subramanian who turned from a

former office mate to a collaborator and who was supporting me throughout my PhD. I had the

luck to have Sajjad Azimi as my PhD companion. Together, we started and shared all offices

and problems with each other. Thank you, Sajjad, for your company, wisdom and support

in all these years. I thank Simon, Alessia, Emilio, Omid, Geoffroy, Mirko, Ayşe and Hecke for
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