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A gyrokinetic Coulomb collision operator is derived, which is particularly useful to describe
the plasma dynamics at the periphery region of magnetic confinement fusion devices. The
derived operator is able to describe collisions occurring in distribution functions arbitrarily
far from equilibrium with variations on spatial scales at and below the particle Larmor
radius. A multipole expansion of the Rosenbluth potentials is used in order to derive the
dependence of the full Coulomb collision operator on the particle gyroangle. The full
Coulomb collision operator is then expressed in gyrocentre phase-space coordinates, and a
closed formula for its gyroaverage in terms of the moments of the gyrocenter distribution
function in a form ready to be numerically implemented is provided. Furthermore, the
collision operator is projected onto a Hermite-Laguerre velocity space polynomial basis
and expansions in the small electron-to-ion mass ratio are provided.

1. Introduction

The plasma periphery, which encompasses the edge and the scrape-off layer regions,
plays a central role in determining the overall performance of a fusion device, as it regulates
the overall plasma confinement, it controls the plasma-wall interactions, it is responsible
for power exhaust, and it governs the plasma refueling and the removal of fusion ashes
(Ricci 2015). Understanding the plasma dynamics in the periphery is therefore crucial for
the success of the whole fusion program (Connor et al. 1998).

While the plasma dynamics in the scrape-off layer has been described mainly using
drift-reduced fluid models valid at low frequencies compared to the ion cyclotron frequency,
w < §2;, and in the limits kA ppe < 1 and k) p; < 1, i.e. short electron mean free path
in comparison to the parallel wavelength and long perpendicular wavelengths with respect
to the Larmor radius (Dudson et al. 2009; Tamain et al. 2009; Ricci et al. 2012; Halpern
et al. 2016; Stegmeir et al. 2016; Zhu et al. 2018; Paruta et al. 2018), these approximations
are often marginal near the separatrix and inside it, i.e. in the edge region. In fact, even
though turbulence is still dominated by low-frequency fluctuations, the plasma in the
edge is hotter and less collisional than in the scrape-off layer and the use of a fluid model
becomes questionable. Moreover, in the edge region, small scale k; p; ~ 1 fluctuations
are important (Hahm et al. 2009). This is especially relevant in the high-temperature
tokamak H-mode regime (Zweben et al. 2007), the regime of operation relevant for ITER
and future devices. Despite recent progress (Chang et al. 2017; Shi et al. 2017; Pan et al.
2018), overcoming the limitation of the drift-reduced fluid models in the description of
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the tokamak periphery region by using a gyrokinetic model valid at k) p; ~ 1 has proven
to be exceptionally demanding. Among the numerous challenges, the effort is undermined
by the lack of a proper collisional gyrokinetic model for the periphery.

In fact, with respect to the core, due to the lower temperature values and associated
high collisionality, the use of a gyrokinetic model to simulate the plasma dynamics in the
tokamak periphery requires an accurate collision operator. This is necessary as collisions
set the level of neoclassical transport and strongly influence the turbulent dynamics by
affecting the linear growth rate and nonlinear evolution of turbulent modes (Barnes et al.
2009).

Since the first formulations of the gyrokinetic theory, there have been significant
research efforts to take collisions into account (Catto & Tsang 1977; McCoy et al. 1981;
Start 2002; Brizard 2004; Abel et al. 2008b; Barnes et al. 2009; Li & Ernst 2011; Dorf
et al. 2012; Esteve et al. 2015; Hakim et al. 2019; Pan & Ernst 2019). The first effort
devoted to a gyrokinetic collision operator can be traced back to the work of Catto
& Tsang (1977), later improved by Abel et al. (2008a) by adding the necessary terms
needed to ensure non-negative entropy production. The result of this effort is a linearized
gyrokinetic collision operator that contains pitch-angle scattering effects and retains
important conservation properties. A linearized gyrokinetic Coulomb collision operator
derived from first principles was then presented in Li & Ernst (2011) and Madsen (2013).
However, as turbulence in the tokamak periphery is essentially nonlinear, the relative level
of fluctuations in this region being of order unity (Scott 2002), and the level of collisions
is not sufficient for a local thermalization, the distribution function may significantly
deviate from a local Maxwellian distribution (Tskhakaya 2012). Therefore, a nonlinear
formulation of the gyrokinetic Coulomb collision operator is crucial to adequately describe
the dynamics in the periphery. Only recently, several theoretical studies have emerged
in order to derive non-linearized collisional gyrokinetic operators that keep conservation
laws in their differential form. In particular, we mention the recent Poisson bracket
formulations of the full nonlinear Coulomb collision operator (Brizard 2004; Sugama et al.
2015; Burby et al. 2015). While the formulation of these operators represent significant
progress, the presence of a six-dimensional phase-space integral in these expressions makes
their numerical implementation still extremely difficult.

In this work, the Coulomb gyrokinetic collision operator is derived in a form that can be
efficiently implemented in numerical simulation codes as it involves only integrals over the
two gyrokinetic velocity coordinates. The derivation of the full Coulomb collision operator
is based on a multipole expansion of the Rosenbluth potentials. This allows us to write the
Coulomb collision operator in terms of moments of the distribution function and apply
the gyroaverage operator to the resulting expansion. The Coulomb collision operator is
then expressed in terms of two-dimensional velocity integrals of the distribution function.
We show that the gyroangle dependence of the expansion coefficients, given in terms of
scalar spherical harmonics, allows for analytical gyroaveraging integrations at arbitrary
values of the perpendicular wavevector. Furthermore, motivated by recent work based on
a pseudo-spectral approach to the gyrokinetic equation (Mandell et al. 2018; Frei et al.
2019), the collision operator is projected onto a Hermite-Laguerre polynomial basis, and
is expressed in terms of moments of the distribution function on the same basis. The
set of moment-hierarchy equations can then be rigorously closed by using systematic
techniques [such as the semi-collisional closure (Zocco & Schekochihin 2011; Jorge et al.
2017)] without requiring ad-hoc truncation of infinite series.

This paper is organized as follows. Section 2 derives the gyrokinetic equation and
Section 3 presents the multipole expansion of the Coulomb collision operator. In Section 4,
the Coulomb operator is ported to a gyrocenter coordinate system, while Section 5 projects
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the collision operator onto a Hermite-Laguerre polynomial basis to obtain a closed-form
expression of the Coulomb collision operator in terms of the moments of the distribution
function on the same basis. The gyrokinetic collision operator for unlike-species is presented
in Section 6 using an expansion based on the smallness of the electron-to-ion mass ratio.
The conclusions follow.

2. Gyrokinetic Model

The evolution of the distribution function f, = f,(x,Vv) is given by the Boltzmann
equation

Ofa o Ofa 8fa
R ZO fas o), (2.1)

with C(fa, f») the Coulomb (also known as Landau) collision operator (Landau 1936;
Rosenbluth et al. 1957). This is an operator of the Fokker-Planck type, derived from first
principles, and valid in the common case where small-angle Coulomb collisions dominate.
Its expression is given by

82Gb Maq aHb
C(fas fo) = abz oor {&)J <81};€811ij> -2 <1 + mb) Mfa] ) (2.2)

with

_ fb(vl) /
Hb—/ ‘V—V’|dv’ (23)

and
Gy = /fb(vl)|v —v'lav’, (2.4)

the Rosenbluth potentials satisfying V2@, = 2H, and V2H, = —4r f, (Rosenbluth et al.
1957). In Eq. (2.2), Loy = qaqb Z\op/(8me3m2) = Vabvf’ha/nb is introduced, where A\, and
vap are the Coulomb logarithm and the collision frequency between species a and b
respectively, vina = /2T, /M, is the thermal speed, and g, and m, are the charge and
the mass of particles of species a, a = e, 1.

In the present paper we consider a plasma with properties that satisfy the gyrokinetic
ordering (Brizard & Mishchenko 2009; Frei et al. 2019). More precisely, denoting typical
turbulent frequencies as w ~ |9y logn| ~ |0 log T.| with n. and T, the electron density and
temperature respectively, and typical wavenumbers k = kb + k. , being k ~ |V logn,| ~
|Vlog Te| and b = B/B the magnetic field unit vector, we assume

ve| K

€~ . "k <1, (2.5)
where ¢ = /T, /m; is the sound speed, ps; = ¢;/(2; the sound Larmor radius, 2; = eB/m;
the ion gyrofrequency, and vg = E x B/B? the E x B drift velocity with E = —V¢ — 9; A
the electric field. As strong radial electric fields are known to play a role in the tokamak
edge (particularly in the H-mode pedestal), and large scale fluctuations are the ones at
play in the tokamak scrape-off layer, we split the electrostatic potential as ¢ = ¢g + ¢
(Dimits et al. 1992; Qin et al. 2006; Frei et al. 2019), i.e. into a possibly large-scale
drift-kinetic component, ¢, satisfying

edo

€

~1, (2.6)
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and its small-amplitude gyrokinetic, ¢, component

ﬂ ~e5 L 1. (2.7)
Po
A similar decomposition into large and small scale fluctuations is applied to the magnetic
vector potential A = Ao+ A, with |[A1|/|Ag| ~ €s5. Both ¢¢ and ¢; are assumed to yield
a similar contribution to the total electric field

E~Vigo~Vidr. (2.8)
Therefore, by ordering typical gradient lengths of ¢; to be comparable to ps, we set
N DY (2.9)
¢1

which, using Egs. (2.7) and (2.8), constraints typical gradient lengths of ¢y to be much
larger than ps, as

v
i R (2.10)
%o
In the following, we set €5 ~ €, which, using Eq. (2.5), yields
ey epy
k1ps ~ ~ €. 2.11
1p T. T. € ( )

The scale length Lg ~ Ry of the equilibrium magnetic field (with Ry the major radius of
the tokamak device), is ordered by the small parameter eg ~ ps/Lp. We note that the
collision operator developed here is valid for both ez ~ €2 and e ~ €3, with the second
case being more of interest for the periphery since the plasma temperature is lower than
the tokamak core (Hahm et al. 2009). Finally, the collision frequency is ordered as
2N €, ~ €%, (2.12)
K3

with v; = v;; the ion-ion collision frequency. For T, ~ T, the ordering in Eq. (2.12) implies
that kH)\mfpe ~ kH)\mfpi ~ ]ﬁ_ps/e, with /\mfpa = Utha/l/w

By taking advantage of the ordering in Egs. (2.5-2.7) and Eq. (2.12), the gyrokinetic
model effectively removes the fast time scale associated with the cyclotron motion and
reduces the dimensionality of the kinetic equation from six phase-space variables, i.e.
(x,Vv), to five. While linear and nonlinear gyrokinetic equations of motion were originally
derived using recursive techniques (Taylor & Hastie 1968; Rutherford & Frieman 1968;
Catto 1978), more recent derivations of the gyrokinetic equation based on Hamiltonian Lie
perturbation theory (Cary 1981) ensure the existence of phase-space volume and magnetic
moment conservation laws (Hahm 1988; Brizard & Hahm 2007; Hahm et al. 2009; Frei
et al. 2019). The Hamiltonian derivations are carried out in two steps. In the first step,
small-scale electromagnetic fluctuations with perpendicular wavelengths comparable to
the particle Larmor radius (¢; and Aj;) are neglected (Cary & Brizard 2009). Within
this approximation, the coordinate transformation from particle phase-space coordinates
(x,V) to guiding-center coordinates Z = (R, v||, i1, 6) is derived, where R is the guiding-
center, v the parallel velocity, ;1 the magnetic moment, and 6 the gyroangle. The second
step introduces small-scale and small-amplitude electromagnetic fluctuations, ¢; and
A ;. For this purpose, a gyrocenter coordinate system Z = (ﬁ,@u,ﬁ, ) is constructed
perturbatively from the guiding-center coordinates Z via a transformation T of the form

Z=TZ=17+¢eZs+ .., (2.13)
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where Z; contains terms proportional to ¢; and Ay, such that w=Tu = p+ esp + ...,
remains an adiabatic invariant [see, e.g., Brizard & Hahm (2007)]. This allows us to reduce
the number of phase-space variables in the kinetic Boltzmann equation describing the
evolution of the particle distribution function from six to five, simplifying the analytical
and numerical treatment of magnetized plasma systems.

More precisely, in order to simplify and remove the gyroangle dependence of the
Boltzmann equation, the distribution function f,(x,v) is first expressed in terms of the
guiding-center coordinates Z by defining the guiding centre distribution function Fy(Z) as

Fo(Z) = fo(x(Z),v(Z)). (2.14)
The coordinate transformation v(Z) is given by
v = v b+vpge + v.'(cosfe; + sinfes) = v [cos pb + sinp(cos fe; + sinfey)], (2.15)

with (b, e1, es) a fixed right-handed coordinate set, vgg = —V¢q the drift-kinetic E x B
drift, cosp = v /v the cosine of the pitch angle and 6 the gyroangle. The magnetic
moment y is defined as

’2

Mg |
= 2.16
p= g (2.16)
whereas the particle position x(Z) is written as
x =R+ pg, (2.17)
with
2mq :
Pa = pa(R, 11, 0) = TZBM(— sin fe; + cos fes) (2.18)
4a

the Larmor radius and R the guiding-center of the particle. The Jacobian of the guiding-
center transformation of Eqs. (2.15-2.17) is given by B[ /ma = (B/ma)(14+b -V x vp/Qa+
vyb -V x b/f2,) (Cary & Brizard 2009). We note that, in a weak-flow regime where
vg is absent from Eq. (2.15), the calculation that follows remains valid, except for
the Jacobian of the guiding-center transformation B‘T, which should be replaced by
B = (B/mg)(1+vb-V xb/§2,).

To account for the small scale fluctuations and magnetic inhomogeneity, the gyrokinetic
distribution function F,(Z) is then defined as (Brizard & Hahm 2007)

E(Z) = Fa(z): TFa(Z)v (219)

with the coordinate transformation between Z and Z given perturbatively by Eq. (2.13).
Indeed, using the chain rule to rewrite the Boltzmann equation, Eq. (2.1), in terms of
gyrocenter Z coordinates, we obtain
0F, - OF, _
7 — = C(F,, Iy). 2.20
o 2 g~ DO T (2:20)

We now introduce the gyroaverage operator (...)g defined by

Xwr = % ; ﬂx(Z)d@ (2.21)

where all gyrocenter coordinates Z but  are kept fixed during the integration. By applying
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the gyroaverage operator to Eq. (2.20), the gyrokinetic equation is obtained

0 — = OF, _
5 (Fa)g + <z - 51; >R => (C(Fo. F))g- (2.22)

b

Equation (2.22) can be further simplified by noting that, in the gyrokinetic framework, the
transformation in Eq. (2.13) is constructed in such a way that the gyrocenter equations

of motion, i.e. the equations that determine Z = (R, vf‘, 1, ), are gyroangle independent

and that 7z is an adiabatic invariant satisfying 7 = 0 (Brizard & Hahm 2007). Therefore,
the gyrokinetic equation in Eq. (2.22) can be written as

0 — - O{F)= . O{F)= I
5 (Fo)g +R- <aR>R + 7 <W|>R = ;<C(Fa7Fb)>ﬁ. (2.23)

In order to further simplify Eq. (2.23), we estimate the order of magnitude of the
gyrophase dependent part of the distribution function F, = F, — <E>§7 where F, obeys
Eq. (2.20) and <Fa>§ obeys Eq. (2.23). For this purpose, we note that the equation for the
evolution of F, = F,, — <E>ﬁ can be obtained by subtracting Eq. (2.23) from Eq. (2.20),
yielding

oF, - 0F, _ 0F, -0F, _ o
R.- 2o 5% L 9% _NTO(FELF) - (C(F,Fy))=. 2.24
ot 9R e ov; o8 Zb: (Fo, ) = (C(Fa, Fi))gy (224)

To lowest order, é@gﬁa ~ 2,F, and 0; ~ R- Vg~ UT@W ~ €£2;. Therefore, the leading
order estimate of Eq. (2.24) gives

Rxg L [ e )~ (€ (B ] 7 029

Using the fact that C(F,, Fy) ~ v F,, together with Eq. (2.12), and expanding F, as
F, = <Fa>ﬁ+ e, Fa1 + ..., we find that

E T"L 3/2 e Tz 3/2 e
e o () Me e, n () Me 2. (2.26)
<Fe>ﬁ T, m; T, my;
and
ﬁ Vi 2
e~ — ~E, ~E. (2.27)
(Fiyg ‘%

showing that, up to second order in €, the gyroangle dependence of the distribution
function can be neglected in Eq. (2.23). We remark that a similar estimate for the
gyrophase dependent part of the guiding-center distribution function was found in Jorge
et al. (2017).

We now evaluate the magnitude of the collisional term in Eq. (2.24). Using the expansion
C(F,, Fy) = Co(Fy, Fy) + 5C1(F,, Fy) + ... with Co(F,, ) ~ voF,, and noting that the
first order gyrocenter transformation Z; = Z — Z + O(€2) in Eq. (2.13) is mass dependent,
i.e. Zie ~ \/me/m;Zy; [see, e.g., Brizard & Hahm (2007)], the magnitude of the Coulomb
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collision operator for electrons can be estimated as

C(F67E) ~ Vefe ~/ i eugife +0 (6,165!21'?5) ~ \/ i GQ‘QiFC +0 (GS‘QiFC) .
Me Me
(2.28)
Thus, the third order term in the expansion in Eq. (2.28) does not contain a /m;/m.
factor, in contrast with its lower order counterpart. A similar argument holds for the ions,

yielding

C(F;, Fy) ~ v;F; ~ 6,92 F; + O (e,6s2F;) ~ €2, F; + O (2, F) . (2.29)

Equations (2.28) and (2.29) show that the lowest order collision operator Cy(Fy, F}) is, in
fact, O(e?). Therefore, the gyrokinetic equation valid up to second order in ¢, considered
in a large number of edge gyrokinetic models [see, e.g., Qin et al. (2006, 2007); Hahm
et al. (2009); Frei et al. (2019)], can thus be written as

9 =
5 (Fa)g TR

O

;. —
i >ﬁ+7”w Z(CO (Fa)gs (Fo)g))g:  (2:30)

assuming R and UTI to be at least O(e?) accurate. We note that although only the lowest

order in €5 collision operator Co(< >R , <Fb>R is used in Eq. (2.30), all orders in k ps
are kept.

3. Multipole Expansion of the Coulomb Collision Operator

The goal of this section is to find a suitable basis to expand f, such that the Coulomb
operator in Eq. (2.2) can be cast as a function of moments of f,. This first step considerably
simplifies the derivation of the gyrokinetic collision operator. We start by noting that the
Rosenbluth potential Hj in Eq. (2.3) is analogous to the expression of the electrostatic
potential due to a charge distribution, a similarity already noted by Rosenbluth et al.
(1957). This fact allows us to make use of known electrostatic expansion techniques
(Jackson 1998) to perform a multipole expansion of the Rosenbluth potentials. We first
Taylor expand the factor 1/|v — v/| in Eq. (2.3) around v =0 if v < v’ or around v/ =0

if v > v/, yielding
- v < v,
1 ! (‘3vl ’

|V_V/|_ OO 1 /
- ' : l ? , v<v.

where we used the identity 9y (1/|v — v/|)y=0 = —0y/(1/v") and where we denote the
inner product between all the [ indices of two [-rank tensors, T% and T}, as T} - T}. Both
v < v and v > v’ cases are included in order to take into account the fact that fi,(v’) is,
in general, finite over the entire velocity space v’. Denoting Y!(v) the spherical harmonic

tensor (Weinert 1980)
. B (71)1,021%*1 g ll
YO =g \av) v (8:2)

(3.1)
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we obtain the following expression for Hy
o (20 — 1 I . o
- ; </v>v’ 1o(¥') v Y(vdv'+ v folv) (v')2i+1 Y (Vv ) .

s

(3.3)

In order to simplify Eq. (3.3), we note that the tensor Y!(v) = Yoiﬂ ~(v) is symmetric
and totally traceless, i.e. traceless between any combination of two of its indices. Symmetry

arises from the fact that any couple of indices in Yl ( ) is interchangeable as the velocity

derivatives commute for v # 0. The totally tracelesb feature (ie. Y, Yl, ,(v) =0and the
same for any other pair of indices), stems from the fact that the contraction between any
two indices in V! 5..~(v) leads to the multiplicative factor V2 = -0y (1/v), which vanishes
for v # 0 (we note that Y'(v) vanishes in the limit v = 0). Furthermore, by defining the
tensor (v)hg as the traceless symmetric counterpart of (v)! [e.g., (v)3g = vv — Iv?/3
with I the identity matrix|, we replace the tensors (v/)! and (v)! in Eq. (3.3) by their

traceless symmetric counterpart (v/)ig and (v)ig respectively

> 21—1"
oy B (] el vima s [ S e,
1=0 V>

(3.4)
as they differ only by terms proportional to the identity matrix that vanish when summed
with Y!(v) and Y!(v'). In fact for the | = 2 case we have (v — (v)%g) - Y?(v) =
(v?/3)I-Y2(v) = (v?/3) Y., Y2, =0, and similarly for [ > 2. In addition, following the
convention in Snider (2017), scalars (I = 0) and vectors (I = 1) are considered to be
traceless symmetric quantities. Finally, we relate the tensors (v)ig and Y!(v). For [ = 0
and [ = 1, we have Y°(v/) =1 = (v/)%g and Y}(v/) = v/ = (V/)1g. For [ = 2, Eq. (3.2)
gives

,U/2

Y2(v)=vv — ?I = (V)% (3.5)

The results obtained for [ = 0,1, and 2 can be generalized, i.e. (v/)ig = Y!(v’) as proved
by induction (Weinert 1980). The Rosenbluth potential H}, can therefore be written as

o0

2l B 1 1 / [ / / Yl(vl) !

=2 ; [ V) {(Uz)ul/z e fr(V)Y (v)av' + . fo(v )[(v/)2]1+1/2 dv

(3.6)

The first term in Eq. (3.6) can be regarded as the potential due to the charge distribution

f»(v") inside a sphere of radius v, while the second term is the potential due to a finite

charge distribution f,(v’) at v’ > v.

We now look for an expansion of f, that allows us to perform the integrals in Eq. (3.6)

analytically by writing Hj; as a sum of velocity moments of f,. We consider the basis
functions (Hirshman & Sigmar 1976)

Y*(v) = Y (v) L2 (02), (3.7)

with Li:rl/ ?(v) an associated Laguerre polynomial (Abramowitz et al. 1965), i.e

L3 Z LL o™, (3.8)



Nonlinear gyrokinetic Coulomb collision operator 9

where
(D)1 +k+1/2)!

Liom = (k—m)!(l+m+1/2)lm!"

(3.9)

The basis Y*(v) is orthogonal, being the orthogonality relation given by (Banach &
Piekarski 1989; Snider 2017)

/€7U2Yl,k/ (V)Ylk(v)dv -k = 5”/516]@/71'3/20'2'1‘”6, (310)

with T an arbitrary symmetric and traceless tensor, and O’;c the normalization constant

N+ k+1/2)!

20(1+ 1/2)1k! (8:11)

ol =

A proof that Y (v) is a complete basis, i.e. that each [ and k element of Y'*(v) is linearly
independent and that a linear combination of its elements spans any smooth function
f(v), can be found in Banach & Piekarski (1989), where the equivalence between Grad’s
moment expansion in tensorial Hermite polynomials (which forms a complete basis) and
Y'*(v) is shown. We then write f, as

& Mlk
_ yie (Y o) e 3.12
fb be Z;O (Uthb O_é ) ( )

with fas, a Maxwellian distribution function

2

np =
= ————-¢ "inb, 3.13
fare ot (3.13)

According to Eq. (3.10), with T'* = Mék, the coefficients Mék are obtained by taking
velocity moments of f;, of the form

Mk = nib/f,,(v)ylk (") dv. (3.14)

Uthb
Finally, we note that Eq. (3.12) allows us to retain only the | = k = 0 moment when the
plasma is in thermal equilibrium.

Plugging the expansion for f;, given by Eq. (3.12) into Eq. (3.6), we obtain the following
expression

Yl 0 o ’ ’ ’ ’
X <(”) / e " LL T2 () +1>/2dx/Yl(ﬁ')Yl (8')do" - ML *
0

(1+1)/2
Ly
o0 ’ !
+x§/2Yl(@)-/ e‘zLﬁ:’l/Q(x)dx/Yl(@’)Yl (@’)da’.Mﬁ,’f), (3.15)
Tp
where we define the normalized velocity z, = v?/v3,, the solid angle o such that

dv = v?dvdo, and use the relation Y!(v) = v'Y!(9) with v = vi (Weinert 1980).
Applying the orthogonality relation of Eq. (3.10) for k£ = 0, and expanding the associated
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Laguerre polynomials using Eq. (3.8), we write H as
27’Lb Z Z Ll Yl Mlk
Uthb k 241 —|— 1

1 1 /wb —a mtl+1/2 l/2/oO -
X — | ——= e Tam dx +x e x™dx |, (3.16)
f( (+1/2 | S

where the identity

(20 — 1)!! 2 1
—_— = = 3.17
201 +1/2)!  mw2A+1’ (3.17)
is used to simplify Eq. (3.16).
We note that the expression of Hy in Eq. (3.16) corresponds to the one in Ji & Held
(2006), having replaced the Y!(v) tensors by the P!(v) tensors defined by the recursion
relation [see Eq. (14) of Ji & Held (2006)]

PHl(v) =vP(v) — —Pl(v), (3.18)

with P%(v) = 1 and P!(v) = v. We can indeed prove that Y!(v) = P!(v) by deriving
the tensor Y!(v) using Eq. (3.2). This yields

_ 1)\l l +1
Y0 = @ D et T

ov (20— 1! Vvl Qv+l
B 2l+1 U2l+1(—1)l 8l 1 (_1)l+lv2(l+1)+1 al-}-l 1
T2 V@ —Dn vl QI+ avitly
20+ 1
- lt [vY'(v) = YT (v)], (3.19)
v

which is the same recursion relation present in Eq. (3.18). Since Y%(v) = P%(v) and
Y!(v) = P!(v), the proof is complete.
The integrals in Eq. (3.16) can be put in terms of upper

1 o
% = —/ dze 2z F=1/2 (3.20)
RV A
and lower
It = L dre%gF=1/2) (3.21)
VT Ja,
incomplete gamma functions (Abramowitz et al. 1965), yielding
_ 2mp (0) - MLk I.2|_l+2m+2 1/2 y2m+1
rmh 3.22
U mZ::O ol 2l+1 g2 Ty s (3.22)

A procedure similar to the one used to obtain Eq. (3.22) can be followed for the second
Rosenbluth potential G, by expanding the distribution function f; appearing in G
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according to Eq. (3.12), therefore obtaining

2nb ) Mlk
2 Z o

vthb —0 Gk:
204+2m+2
1 L + l/212m+3
20 -1\ LU-1/2 '
b
Having derived a closed-form expression for the Rosenbluth potentials, we now turn to
the full Coulomb collision operator. We first note that, although the Rosenbluth potentials
Hp and Gy, are linear functions of fj, the Coulomb collision operator is, in fact, bilinear
in f, and f,. In order to rewrite the Coulomb collision operator in Eq. (2.2) in terms of a

single spherical harmonic tensor Y!(v), we make use of the following identity between
symmetric traceless tensors (Ji & Held 2009)

2l4+2m—+4
1 (I 2

l/2+1 2m+1
20+ 3 | 072 N )

(3.23)

min(l,n)—u
[Yl u( )Mlk] [Yn u( )Mnk] Z dl w,n— qu+n 2(]+u)( )(Mlk Jtu an)
§=0

TS

(3.24)
where ™ is the n-fold inner product [e.g., for the matrix A = A;;, (A1 A);; = Y-, ApiArj).
The dé-’" coefficient can be written in terms of the t;’" coefficient

fAn In!(—=2)7 (20 4 2n — 25)!(1 + n)!
7T @+ 20)5 0= i — )T +n— )

(3.25)

as

h
A DG L | R i (3.26)

Jrl Zhey J1=3 k=1

In Eq. (3.26), the summation range involves the integer partitions of j, i.e., the
decomposition of j into different sums of h positive integers, here labeled as ji, with k
ranging from 1 to h (e.g. for j = 3, we obtain for h = 2 the terms j; = 2 and j, = 1,
and for h = 3 we obtain j; = jo» = j3 = 1). Expanding f, and f, using Eq. (3.12), the
expression for the Rosenbluth potentials in Eqs. (3.22) and (3.23), and the identity in
Eq. (3.24), the collision operator in Eq. (2.2) can be rewritten in terms of products of
Mk and MIF as

) = s 3> 33 L i i (3:27)

ag
l,k,n,q=0 m=0r=0 Uk q
with
min(2,l,n) min(l,n)—u
lkmngqr __ lmnr, 2 l—un—u~xsl+n—2(i+u) (5 lk it+u ngq
Cab = E Ve (v7) E d; Y (D) - (Ma STEM) )TS.
u=0 =0
(3.28)

The quantity V*Zlbsr consists of a linear combination of I i and I' integrals and its
derivatives, which can be written as linear combinations of the error function and its

derivatives. Their expressions are reported in Ji & Held (2009).
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4. Gyrokinetic Coulomb Collision Operator

In Section 3, the Coulomb collision operator is cast in terms of velocity moments of
the multipole expansion of the particle distribution functions f, and f,. We now express
it in terms of the gyrokinetic distribution functions <E> and <E> As a first step, the
gyroangle dependence of the basis functions Y'¥ is found explicitly by using a coordinate
transformation from the particle phase-space coordinates (x,v) to the guiding-center
coordinate system Z. This allows us to decouple the fast gyromotion time associated with
the gyroangle # from the typical turbulence time scales. The multipole moments M'* and
M!F can then be written in terms of moments of the guiding-center distribution function
(F,) and (Fp) for arbitrary values of k) ps. As a second step, the gyrocenter coordinate
system Z is introduced by using the coordinate transformation 7" in Eq. (2.13). As shown
in Section 2, for a gyrokinetic equation up to second order accurate in €5, only the lowest
order collision operator Cy needs to be retained. This allows us to straightforwardly obtain
the gyrokinetic collision operator from the guiding-center one by a simple coordinate
relabeling.

We first derive the polar and azimuthal angle (gyroangle) dependence of the Y'(v)
tensor in terms of scalar spherical harmonics. This is useful to analytically perform the
gyroaverage of the collision operator in the Boltzmann equation, Eq. (2.30). For this
purpose, as a first step, we show that the Laplacian of Y!(v) vanishes, i.e. that Y!(v) are
harmonic tensors. By applying the operator V2 to Y'(v), and recalling that V2 (1/v) =0

for v # 0, we obtain
a\'1 o\

v (Z) e ()L 2

as can be proved by induction (Weinert 1980). The angular dependence of Y!(v) can now
be found by expressing the Laplacian of Eq. (4.1) in spherical coordinates. Using the fact
that Y!(v) = v'Y!(9), we obtain

2(=1)(21 + 1) +!

ViYi(v) = @ — 1!

since

0=V2Y!v) = V2['Y! (d)]

=Y!(d) (82 + 26@) ot — ! T2LAY (D), (4.3)

where L? is the angular part of the operator V2 multiplied by v?

1 9 0 1 02
2 _ 9 (. O o
L= sin ¢ Oy (Sm(paga) + sin @2 962’ (44)

with ¢ and 6 chosen, respectively, as the pitch angle and the gyroangle variables, both
defined in Eq. (2.15). Evaluating the v derivatives in Eq. (4.3), the following differential
equation for Y'(v) is obtained

LAY (0) =11 + 1) Y (0). (4.5)

We identify Eq. (4.5) as the eigenvalue equation for the scalar spherical harmonics Y;,, (¢, 0)
(Arfken et al. 2013), which can be written in terms of associated Legendre polynomials
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P (cos ) as (Abramowitz et al. 1965)

Vi, 0) = <—1>m\/ P (s ™, (46)

with

am

P ) = (1 -2

and Pj(x) = (d'/dz")[(z? — 1)!]/(211!) a Legendre polynomial. Therefore, using Eq. (4.5),

and denoting e/™ the basis elements of Y!(v) (an elementary derivation of the basis
tensors e/™ is shown in Appendix A), we write Y!(v) as

[P ()], (4.7)

l

2773/2l‘
Y100 = [ gy 3 Vil 06 @8)

Having derived the gyroangle dependence of the Y!(v) tensors, we now compute the fluid
moments M in terms of v and g moments of the guiding-center distribution function
(F,). In order to perform the velocity integration in the definition of the moments M* in
Eq. (3.14) at arbitrary &k, p in guiding-center phase-space coordinates, we use the identity

v) = [ f(x',v)d(x — x')dx’. By imposing x" = R + p, writing the volume element in
phase-space as dx'dv = (B} /m)dRdv)dudf, and using Eq. (2.14), we obtain

na MY (x /F (R, v, M,Q)Y”“< v

Vtha

B*
) d(x—R-— Pa)ﬁ“dede,udH. (4.9)

from Eq. (3.14). Expressing v = v(Z), as shown by Eq. (2.15), and performing the integral
over R in Eq. (4.9), it follows that

V(X - Paﬂf\h/h 9)

Vtha

Ik Ik Bj
naM,' (x) = /Fa(x — Pa, V), 11, 0)Y Edvudud& (4.10)

The orderings in Egs. (2.26) and (2.27) for the guiding-center distribution function Fy,
allows us to approximate F,, ~ (F,)p (Jorge et al. 2017), effectively neglecting €? effects in
M!* hence in the collision operator C(f,, f). To make further analytical progress, and in
line with previous gyrokinetic literature (Li & Ernst 2011; Pan & Ernst 2019), we represent
Fo(R, v, 1, 0) by its Fourier transform F,(k, v, u,0) = fFa(R,vH,u,G)e*ik'RdR, and

write

X = pa7v\|7M59)

Vtha

. y B*
] oikex ,—ikepa H“dkdvn dpdo.

(4.11)
By aligning the k coordinate system in the integral of Eq. (4.11) with the axes (b, e, e2),
i.e. k = kb + k1 (cosfe; +sinfles), we write exp(—ik - p) = exp(—ikpcosf). We then
use the Jacobi-Anger expansion (Andrews 1992)

naMflk(X) _ / <Fa(k,v”,,u, 9)>RYlk |:V(

oo

o—ikipcosd _ Z (—i)P T (K p)e 70, (4.12)

p=—o00
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with J, the Bessel function of order p, and rewrite Eq. (4.11) as

oo

na M (x) = Z (_1)p/Jp(kLP) (Fa(k, vy, 1,0) ) g et
= ; (4.13)
— pasv, 1, 0)1 . B
< Yk {V(X Z vy #:9) e ZPHJdkdv|‘dud0.
tha m

The velocity v in the argument of Y'* in Eq. (4.13) is then expanded as
V(X = pa, V), 1, 0) = v(x,v), 1, 0) + O(ep). (4.14)

The second term in Eq. (4.14) introduces eg < € terms in the collision operator and is
therefore neglected. An example of a numerical implementation using a similar Fourier
representation can be found in Pan & Ernst (2019).

Using Eq. (4.8) to express Y'*(v) in terms of spherical harmonics, we perform the
gyroangle integration in Eq. (4.13). By rewriting the spherical harmonics Y;,,(p,0) in
terms of associated Legendre polynomials P/"(cos ¢) using Eq. (4.6), the gyroaverage of
the product Y*(v /v, )e"? can be performed, yielding

o0
maMEG) = 3 (17 [ (kspa) (Bl ) g
p==o0 (4.15)

\ B
x <Y“c <V> e_”"9> L dxdvdp2n,
Vtha m
l
<Ym( v >e—we> Lz+1/z( v )( ) /2]
Vtha Vtha Utha l - 1/2)

U
0+

We note that, the p = 0 case of Eq. (4.16) corresponds to the gyroaveraged formulas in Ji
et al. (2009, 2013), Ji & Held (2014) used to derive closures for fluid models at zeroth
order in €. Finally, by defining the Bessel-Fourier operator

with

(4.16)

Pl (cos )€™ 6 -

mfl

Jm|Fa] = /Jm(l@pa) (Fa(k, v, s 9)>R ek, (4.17)

the expression for the fluid moments M!¥ in terms of coupled v and g moments of the
guiding-center distribution function (F,)g is obtained

5/2 !
MG =\t 2 1AM ) (1.18)

-1
with
Ik . 1+1/2 B\T
M) = [ nlEao L @) Yin (0,00 Loy (4.19)

Equation (4.18) can now be used to express the collision operator C(f,, f3) in terms of
v and p integrals of (F,). Using Eqs. (4.8), (3.27) and (3.28), and defining

Eﬁ)’nt l+n*2j v, (elS J ent)TSa (420)
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we can write the collision operator in Eqs. (3.27) and (3.28) as a function of the M,
moments, i.e.

min(2,l,n) min(l,n)—u l4+n—2j—2u
lkmngr __ l—u,n—u ln Isnt
2SS e, 3 US
u=0 j=0 s=—lt=—n v=—(I+n—2j—2u) (4.21)
(V%) nq
X )/l-l—n—Qj—Qu ’U((pv 0) N Mas(X)Mbt (X)7
with

n 1 8713/2Inl(l + n — 2j)! (422)

a . = - . .
i =i\ 1+ 1/2) (0 + 1/2)1(1 +n — 25 + 1/2)!

We now focus on the gyroaverage of the collision operator in Eq. (4.21) with the

gyroaverage operation performed at constant R. We first note that the gyroangle 6

dependence in cgzm"qr is present through the spherical harmonic Y;4,_2;_24 »(¢,6) and

through the fluid moments MX and M} as the latter are functions of x = R + p,. To
make the gyroangle dependence explicit, we write both M and M e in Fourier space as

ME ()M (x) = / dkdk'e" MR (1) My (K el epathpa), (4.23)
Using the Jacobi-Anger expansion of Eq. (4.12), we find that

(Vi MU OM ) = [ e I RALl (1 A0

21+1(l_m)' m = m i m)a
x ?mpz (cos) > (=1 I (k1 po) Tprm(Kipa),  (4.24)

p=—00

with o the azimuthal angle of the k’ vector, i.e., the angle between k/, and k. The
gyroaveraged collision operator at arbitrary k, p is therefore given by

<C(Fa,Fb R= faM Z Z ZLkm Z]LT < fl/zmnqr>R7 (425)

l,k,n,q=0m=0r=0
with

min(2,l,n) min(l,n)—u l+n—2j—2u

lkmngr o l—u,n—u ln lsnt
AN DI DI )2 SIS ST
u=0 j=0

s=—lt=—ny=—(l4+n—25—2u)

Pl oy (cos oWl (0%) [ MU () MG ) 0nO ™

X Z )P0t 1k p,) Ty iy (K| pa)dkdk’, (4.26)
p=—00
and
o [20—45 (1 =25 — o)
by = v 4.2
j Z\/ i (1—2j + o) (4.27)

We note that, if only first order &k, p terms are kept in the Fourier-Bessel operator of
Eq. (4.17), the collision operator in Eq. (4.25) reduces to the drift-kinetic collision operator
found in Jorge et al. (2017).

In Eq. (4.25), the gyroaveraged collision operator is cast in terms of v) and y moments
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of the guiding-center distribution function (F,) for arbitrary values of k, p. We now
apply the transformation T, introduced in Eq. (2.13), to Eq. (4.25) in order to write
the gyroaveraged collision operator in terms of ¥ and 7z moments of the gyrocenter

distribution function <E> As shown in Section 2, only the zeroth order terms in

the es expansion of <C (F,, Fb)>— are needed in order to adequately describe collisional
processes in the gyrokinetic framework. Therefore, using Eq. (2.13), we apply the zeroth
order transformations Z ~ Z and F,(Z) = TF, (Z) F,(Z) to the collision operator
(C(F,, Fy)) in Eq. (4.25), yielding

(C(Fa, Fy))g = famt Z Z ZLkm 7;< lkmn(]r>ﬁ’ (4.28)

l,k,n,q=0 m=0r=0
with

min(2,l,n) min(l,n)—u l+n—2j—2u

_lkmngr o l—u,n—u ln lsnt
@)= X X e, Sy e
u=0 j=0

s=—lt=—ny=—(l+n—2j5—2u)

X béizvan 2524 (7| /O)V. iZLbZT //\/laS Ittt
S (PR T (k5 (KK (4.29)
p=—00

where p, = po(R, 11, 0), 0° —UH—i—QBu/m and

—lk

_ By
ME = / Il Fal0 L (0 i (2,0) Loy d (4.30)

The collision operator in Eq. (4.28) represents the gyrokinetic full Coulomb collision
operator that can be used in gyrokinetic models that are up to O(e%) accurate. In Eq. (4.28),
the integral-differential character of the C'(f,, f») operator is replaced by two-dimensional
integrals of the gyrocenter distribution function over the velocity coordinates v and z.
We note that, in practice, a truncation of the series present in Eqgs. (4.28) and (4.29)
requires a numerical study in order to assess their convergence.

5. Hermite-Laguerre Expansion of the Coulomb Operator

In this section, we expand the distribution function into an orthogonal Hermite-Laguerre
polynomial basis and compute the Hermite-Laguerre moments of the Coulomb collision
operator in Eq. (4.28). An expansion of the drift-kinetic (Jorge et al. 2017) and gyrokinetic
(Mandell et al. 2018; Frei et al. 2019) equation in Hermite-Laguerre polynomials has
been recently introduced, showing that this is an advantageous approach to the study of
plasma waves and instabilities (Jorge et al. 2018, 2019). A key reason for using a basis of
Hermite-Laguerre polynomials in gyrokinetics is that these polynomials are orthogonal
with respect to a Maxwellian, and can be directly related to the Bessel functions used in
evaluating gyroaverage operators such as the ones present in Egs. (4.29) and (4.30). We
therefore expand <E>ﬁ as

- ij
<Fa>*: fklazi/;H (§||G)L' (§2 a) ) (5'1)
R o D) p' p J 1
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where H,, are physicists’ Hermite polynomials of order p defined by the Rodrigues’ formula

P
2 dP

Hy,(z) = (—1)Pe dxpe_’” , (5.2)
and normalized via
/ duH,(x)Hy (x)e™ = 2pI/Tbyy, (5.3)
and L; the Laguerre polynomials of order j defined by the Rodrigues’ formula
e &
Lj(x) = ﬁ@(e z’), (5.4)
and orthonormal with respect to the weight e™*
/ d.’l?Lj (l‘)Lj/(l‘)e_x = 6jjl. (55)
0
In Eq. (5.1), we introduce the normalized parallel velocity
- Y
Sllg = , 5.6
I Utha ( )
and the perpendicular velocity coordinate
, 7B
Sia = ?a. (57)

Due to the orthogonality of the Hermite-Laguerre polynomial basis, the coefficients NP7
of the expansion in Eq. (5.1) can be computed as

i [ Hp (ja) L (Bla) (Fa)g B, . =
N :/ P ngpz Rm—advudﬁdé. (5.8)

We note that the integrand of sz in Eq. (5.8) contains the multiplicative factor B/my,
as opposed to the Jacobian containing the factor BIT /mg. In the following, we also use

*

the Hermite-Laguerre moments of <E>ﬁ with BH in the integrand instead of B. These
are denoted as N, i.e.

i [ Hp (o) Lj (1) (Fa)
no=f Noz

. b- . . L
:sz(l—&— VQXVE)Jr\;’g};b-va(\/p+1N§+”+\/i)N§”),
(5.9)

= Bil _
R _Ldv,dudf
Ma

while in the weak flow regime the term proportional to b -V x vg/f2, in Eq. (5.9) is set
to zero. 4

In order to express the collision operator in terms of the moments NZJ given in Eq. (5.8)
and evaluate its Hermite-Laguerre moments, we first consider the gyrokinetic moments
Mffm and write the integral that defines them in Eq. (4.30) as a function of the gyrocenter
moments WZJ of Eq. (5.8). As a first step, we project both the Fourier-Bessel operator
jm[Fa] and the spherical harmonics Y}, on the Hermite-Laguerre basis. We remark that
the @ and &k dependence in the Fourier-Bessel operator j,,, Eq. (4.17), can be decomposed
by introducing pipe = Vihe/ 2. and noting that |p,| = /EB/Tuptha = SiaPtha- This
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allows the use of the following identity between Bessel and Legendre functions (Gradshteyn
& Ryzhik 2007)

L|m‘(§2 )
T (2045 10) = opblmlsMe—te §7 20 oal p2r (5.10)
+ ;) (Im| +7)!

with b, = k) ptha/2, 00 = 1 and o, = sgn(m)™ for m # 0. The Fourier-Bessel operator

in Eq. (4.17), with the identity in Eq. (5.10) and the Hermite-Laguerre expansion of
Eq. (5.1), can then be written as

— SHa Sla)L (SLa Sla pJ m+2r —b 7kx
SP0 3 9ppr 1 LR LR AL

p=0 j=0 r=0 (
5.11)
As a second step, we consider
m (2010 —m)
Yim(p,0) = (=1) I Ul (cos ). (5.12)

which are used in the definition in Eq. (4.6). In order to expand the associated Legendre
polynomials P/"(cos ¢) appearing in Eq. (5.12) in a Hermite-Laguerre basis, we generalize
the basis transformation between a Legendre-Associated Laguerre and a Hermite-Laguerre
basis presented in Jorge et al. (2017) to a transformation between an Associated Legendre-
Associated Laguerre and a Hermite-Laguerre basis, that is

1 _ ,2 1+2k k+[1/2] _ _ m/2

U pm (U1 /2 pj ua nB\ (B
—P — | L E E T Hp L — — .
’Uil&ha ! ( v ) g (Utha) tom ! Ta T(l

p=0 j=0
‘ (5.13)
For the derivation and expression of the T}, = coefficients, see Appendix B. The inverse

. . _1\lkm
transformation coefficients (T 1)pj are defined as

— _ _ m p+2j j+p/2 — .
g (M EB\ (B 2 Z” Lij ”m 7' pm (Y1) 12 o .
P\ e ) P\ T, T, Pj viha ! 7 k vy
(5.14)

The gyrocenter moments ﬂfﬁn in Eq. (4.30) can then be rewritten using the identities in
Egs. (5.11) and (5.13) and

m—+r+j

L™ (z) Z dm, Ly (5.15)

with the d7 . coeflicients given by

mjs

r J s
A=Y "N LI V2LV 4 gy 4 s+ m) (5.16)
7‘1:0j1:0 31:0

yielding the following expression

oo 142k k+[1/2] m4r+u

=33 Y Y M N opietme i, (5.17)

g=0 h=0 u=0 s=0
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where we defined

hus zjlillcqfnd;zs V 2pp 21 + 1 m
Mlkmq = (_1) m + l
9)! (I +m)

(5.18)

Using the form for ./\/lam in Eq. (5.17), the collision operator in Eq. (4.28) can therefore
be expressed in terms of Hermite-Laguerre moments NP/ of the distribution function. We
note that the moments ﬂi’jn in Eq. (5.17) reduce to the ones in Jorge et al. (2017) in
the lowest order drift-kinetic limit k) pype = 0.

We now take Hermite-Laguerre moments of the collision operator <C (F,, E)>, ie. we
evaluate

H S a L 5 a B* n
oS0 Ly Gaat) B o i, (5.19)
2ppl mq

CH®) = [(CF.)g

Writing the gyroaveraged collision operator (C(Fy, F)) in Eq. (4.28) using Eqgs. (5.17)
and (4.29), and expanding the Bessel functions J, (k1 p,) and Jpym (k| po) using Eq. (5.10),

the following form for the <’“2m"qr> term appearing in (C(F,, Fb)> is obtained

min(2,l,n) min(l,n)—u [+n—2i—2u oo

CREED D D VD> > [ ol )

i=0 d=—1l—n+2i4+2u z=0 p,p’=0

Pl () S LR L G (02)e R
v

*abu
(5.20)
In Eq. (5.20), we defined the DZZ:ZZZLP, term
Ik / dp’ dl el e b b Ik
ptkmnar k k/ Esn Bz D it+u N mnqr k K 591
abuidzpp’ ( 821 t;n i+ud (p+ 2) (Z + d+p) abuidz ( ) ( )
with BPv? = ppt22pptvt2s and b, = k| pina/2, while the convolution operator

N”;Z;Zg’“(k k') is given by

a

N (e ) = (=1) el DR, (1) My (), (5.22)
with /\/l , the moments of the distribution function defined in Eq. (5.17).
Flnadly7 the result in Eq. (5.20) is used in Eq. (5.19) in order to find the Hermite-

Laguerre moments C?/ of the full Coulomb collision operator expressed in Eq. (4.28).
This yields

qu "

Cop = Z ZZ b = Calom: (5.23)

l,k,n,q=0m=0r=0

with

min(2,l,n) min(l,n)—u  |4+n—2i—2u

Coliim (e, ') = Z > > Z Desiy (KNI, (5.24)

=0 d=—1—n+2i4+2u z,p,p’=0
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and

B*
Ilm,nr — z z —
T= [ fart Pl oo (0000 ) (510) (58,52 LR L) Ly
(5.25)
The integral factor I can be performed analytically by first rewriting the product of two
Laguerre polynomials as a single one using

r+j

L™ (x Z dy Ly ( (5.26)
with

r]s - Z Z Z erll/QLZI 1/2L 1/2(7n1 +_]1 +Sl) (527)

1= 0]1—0 51—0
expressing the resulting Hermite-Laguerre basis in terms of Legendre-Associated Laguerre
using Eq. (5.14), and writing the phase-space volume (Bjj/m)dv|d[i as v2dvd¢ with
£ =7 /v. This yields
p+z+j g+p' p+2g g+ [p/2]

td Z+d std st Im,nr (5 + d)' 6l+n—2i—2u s
/ by = 2
Z Z Z Z Jhd hg )pg C*abu (S _ d)' 47T(S—|— 1/2) (5 8)

h=0 g=0 s=0 t=0

Ji & Held (2009) present an analytical closed expression ready to be numerically
implemented of the factor C*'mm" — ffMal/lm’m(vz)Lme(vQ)vsdv. We note that

*abu *abu
the long-wavelength limit can be found by setting d = z = 0 in the collision operator
Eq. (5.24). This yields the Hermite-Laguerre moments of the collision operator moments

found in Jorge et al. (2017).

6. Small Mass-Ratio Approximation

In this section, we simplify the electron-ion and the ion-electron collision operator in
Eq. (2.2) by taking advantage of the small electron-to-ion mass ratio m./m;, and derive
their expressions in the gyrokinetic regime. We first consider the electron-ion collision
operator.

In (x,v) phase-space coordinates, the electron-ion Coulomb collision operator can
be greatly simplified by taking advantage of the fact that the ion thermal speed, is
small in comparison to the electron thermal speed, for T, ~ T;. To first order in m./m;,
the electron-ion Coulomb collision operator, also called Lorentz pitch-angle scattering
operator, can be written as (Helander & Sigmar 2005)

Cei _ niLei 6 . |:1a.fe _ & <Ce . afp>:| ’ (61)

v, Oce |ceOc. ¢ Oce

with ¢, = v/vine. We expand f. according to Eq. (3.12). We note that the expansion
in Eq. (3.12) is an eigenbasis of the pitch-angle scattering operator C,; with eigenvalue
[(14+1) (Ji & Held 2008). Therefore, we write

feM Z z l —|— 1) Ll+1/2 (Cg) Yl(ce) . Mék(x). (62)

k
v3 l
Ik the® \/ O

We now Fourier transform the moments MY in Eq. (6.2) as M*(R) = [ M¥(k )eik Rk
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and write the gyroaveraged collision operator C¢; as

KR niLe; (1 +1 ik
(Ceiyg = — / de™ T foar D55 ( W)Lé“” (c2) (Y'(ee)e™ ) g MU (k). (6.3)
1.k e-e oy,

Using the Jacobi-Anger expansion of Eq. (4.12), Eq. (5.10), the inverse basis transformation
Eq. (5.14), and the identities J_,(z) = (=1)PJ,(x) and

Ly (@) = 2_: ("I e (6.4)

we obtain

ko : ' A2 (I—m) ime™ (mA4r—j—1)!
(Yi(v)er Z ZZZZ 201 =1/2)V (L +m)! (m+7r)! (r — j)!(m —1)!

m=—1r=0 j=0 s=0 t=0

X g (T3 B2 e ekt P (cos ) P (cos ) Ly /%(c2), (6.5)

with b = k) pne/2. The collision operator in Eq. (6.3) represents the gyrokinetic electron-
ion collision operator.

Equation (6.5) provides an expression of the pitch-angle scattering operator (Ce;) in
Eq. (6.3) suitable for projection onto a Hermite-Laguerre basis, i.e.

‘ Hy (az) Li (5) B u piz“ﬂim (T )30
cri - / (Cp) L Aene L dadd = 2 N Jpg Vthe gk (g6
A /2pp = — A /210
where we define
I = / (Cut) L P(cos ) L2 (2)2de.d cos . (6.7)

An analytical form for the integral factor I'¥ can be derived using the expression for (C;),
Eq. (6.3), and Eq. (6.5), yielding

11500 = - Y0 " D g e 3y >yt

u,v Vthe Vv o m=—u r=0 ¢=0 s=0 t=0
u! (u — m)‘ imbngrm (m —|—.7‘ — 7 — 1)!1?&1)[%;“ (6.8)
2¢(u—1/2)! (u+m)! (m+7)! (r —)!(m —1)!
with T340 and I'% defined by
sSuv l S —x U+v —
Tl — / L2 () L2 () g o) 21 gy (6.9)
and
. ! dx
1= [ PP @R @Y. (6.10)
—1

respectively. The electron fluid moments M!* can be cast in terms of Hermite-Laguerre

—lk
moments N, using the expressions in Egs. (4.18), (5.9), and (5.17). The factor It5%
can be analytically evaluated by expanding the associated Laguerre polynomials using
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Eq. (3.8), which leads to

Iisw — Z Z Lkml Li,,,(m1+me + (I +u+v)/2 = 1) (6.11)

mi1= 0m2 0

Similarly, the factor integral I&5 can be calculated using an extended version of Gaunt’s
formula (Gaunt 1929), yielding (Mavromatis & Alassar 1999)

e (I [ (IR NS T e

We note that, in Eq. (6.12), the Wigner 3-j symbol (jl J2 I3 ) ig related to the
mi1 Mmo M3

Clebsch-Gordan coefficients (j1mijama|jzms) via (Olver et al. 2010)

Ji J2 J3 (=1)fr—d2=ma ' ’
(ml ma m3> - W (F1majama|js(—ms3)) ,

with the Clebsch-Gordan coefficients given by

(6.13)

(j1+ 72 +j3+1)!
x v/ (j3 + ms)!(jz — m3)1(j1 — m1)!(j1 + ma)!(jz — m2)!(js — ma)!
(=1
. zk: El(j1 + j2 — J3 — k)1 — ma — K)!(j2 + ma — k)!
1

X ) 6.14
(js — J2 +m1 + k)3 — j1 — ma + k)! (6.14)

. . . 273 + 1)(j3 + 41 — 72)1(J3 — J1 + J2)'(j1 + jo — j3)!
<j1m132m2\]3m3>:5m3 m1+m2\/( J3 )(13 J1 J2) (]3 N ]2) (]1 J2 ]3)

where the summation in Eq. (6.14) is extended over all integers k that make every factorial
in the sum nonnegative (Bohm & Loewe 1993).

We now turn to the ion-electron collision operator Cj.. To first order in me/m;, this is
given by (Helander & Sigmar 2005)

Cie = Vei% 0 ( fz T 8fl> (615)
m; OV

m; Ov

where the electron-ion friction force is neglected for simplicity. We simplify Eq. (6.15) by
using Eq. (2.27), therefore approximating the distribution function f; by its gyroaveraged
component f; ~ <fi>§, and retaining the lowest-order terms in the €5 expansion. This
allows us to convert the C;. operator in Eq. (6.15) to the gyrocenter variables Z using
the chain rule at lowest order in €5, i.e. to express Eq. (6.15) in Z coordinates using
the guiding-center transformation in Eqs. (2.15) to (2.17) and approximate Z ~ Z. The
velocity derivatives can be written as a function of Z using the chain rule, yielding

o0(Fi)g _, 0(Fi)g [2maa 0 (Fi)g 1 =

where we define ¢ = (cosfe; + sinfle;) and a = ¢ x b = (—sinfle; + cosfey). The
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ion-electron collision operator can therefore be written as

_ 6<F1>ﬁ 78 <F1>ﬁ \/ﬁa-VR —
3 <F2>ﬁ + v 1) +2n B - m; (2 <F1>ﬁ

Te 82 <F’L >ﬁ 2mlﬁ 82 <F1 >ﬁ a- vﬁa . Vﬁ o
+m< v YT Tom T 2 (Fi)x

Me
Cie = Ves
mg

2m2,u 0 <Fi>ﬁ m; 0 <Fi>ﬁ
-2 = — 6.17
V52 Ve R T (6.17)
We now Fourier transform both 7, and <F > and gyroaverage Cj., yielding
m [ F, 0 (F))e
e [ goenor gy OFe ) 0y
<Cw>R Velmi /e [< 1>R 8’UH + 2u on
T. (k' 02 Fz = 2 f& Fz = 18 FZ =
i 8vH B on B 0n
T.(k') (Fi)g _ _
;Li )Z<2(2>2I{ [Jo(K Pk + Jo (K, pi)kk : (e1e1 — ezes)]
T.(k') 2miv, O (Fi)g
— k- Di , 1
m; exiJi(kL7i) By on (6.18)
where we have used the identities <aeik/'pi >7 = iJi1(k pi)es and <aa€ik/'pi >ﬁ =

(1/2)[Jo(K' 77) (e1e1 + ezeq)+ Jo (K Pi) (e1€1 — ezes)]. Finally, we take Hermite-Laguerre
moments of the gyroaveraged ion-electron collision operator (Cj.)g in Eq. (6.18), using
the expansion of <Fi>ﬁ in Eq. (5.1), yielding

. Me '(k+k/) R . _p? Te (k' b2r r+j i
e = v [ ¢ |t Z P\
r UEE gL ip? 26,0
vjs pthz lpCks . . *lk
+Z 22: STV Kk : (eje; — ezes) | | N (K), (6.19)
with A% ,g given by
AV = 258,011 — (p+ 25)01p0k; — V/P(p — 1)1p—20%;, (6.20)
and Bfkjrs by
. k2 s—1 s—2
Blpk]rs Vpp—1) 5lp 90ks + W — 2(3 + 23)5lp5ki + Z 25010k
i=0 i=0 (6.21)
+ik - es éh 7 (1 )5 — 5010k a].

7. Conclusion

In this work, a formulation of the nonlinear gyrokinetic Coulomb collision operator is
derived, providing an extension of a previously derived nonlinear Coulomb drift-kinetic
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collision operator to the gyrokinetic regime. This constitutes a key element necessary to
perform quantitative studies of turbulence, flows, and, in general, of the plasma dynamics
in the periphery of magnetized fusion devices. The gyroaveraged collision operator is cast
in terms of parallel and perpendicular velocity integrals of the gyroaveraged distribution
function at arbitrary k, ps, yielding the formula in Eq. (4.28). In order to provide an
analytical formulation of the Coulomb collision operator ready to be used in pseudospectral
formulations of the gyrokinetic equation for distribution functions arbitrarily far from
equilibrium and for an arbitrary collisionality regime, the Hermite-Laguerre moments of
the gyroaveraged collision operator are evaluated, yielding Eq. (5.23). Furthermore, the
electron-to-ion mass ratio is used to simplify the form of the electron-ion and ion-electron
collision operators, yielding Eq. (6.6) and Eq. (6.19), respectively.

We conclude by noting that the present collision operator is derived by porting the
Coulomb operator to the gyrocenter phase-space by using a framework valid up to second
order in the expansion parameter €, yielding second order accurate momentum and energy
conservation laws. The use of the techniques developed here to analytically gyroaverage
the Coulomb operator and obtain its projection onto an orthogonal polynomial basis
should, in principle, be applicable to collision operators of the Fokker-Planck type that
add the necessary correction terms in order to ensure exact conservation laws (Brizard
2004; Sugama et al. 2015; Burby et al. 2015).
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Appendix A. Basis Tensors

In this appendix, we derive the form of the basis tensors e/ used in the definition of

Y!(v) in Eq. (4.8). We start with the [ = 1 case, for which Eq. (4.8) yields

YI(V) =V = \/gv Z Ylm((ba g)elm' (A 1)

The spherical basis vectors e!™ can then be derived from Eq. (A 1) by expressing the
vector v in spherical coordinates as

v = v (sin ¢ cos fe, + sin ¢ sin fe, + cos ge. ), (A2)
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and using the identities for the spherical harmonics

Vasinge ", m=—1,
Ylm(¢v 0) = \/ 2 2 o COS d)a m = 0 (A 3)
-\ 5= 3 singe?, m =1,
therefore obtaining
%7 m=—1,
elm =93 €z, m = 01 (A 4)
_eztiey =1
V2 o

We now construct spherical basis tensors e/ from the spherical basis vectors e!™

leveraging the techniques developed for the angular momentum formalism in quantum
mechanics (Zettili & Zahed 2009; Snider 2017). As a first step, we note that the basis

vectors e!™ are eigenvectors of the angular momentum matrix G
0 -1 0
G,=i|l1 0 0], (Ab)
0 0 O
with eigenvalue m, that is
G, -e'™ =me'™. (A6)

As a second step, we note that the relationship between the basis vectors e, for a = (z, y, 2)
and the angular momentum matrices G, is given by

Gy = —ie, - €, (A7)

with e the standard Levi-Civita tensor. In index notation, Eq. (A7) can be written as

3
—iz (€a); Ejki- (A8)

The raising G4 and lowering G_ operators (corresponding to the ladder operators in
quantum mechanics), defined by

G =G, +iG, (A9)
allows us to obtain the basis vectors e'*! from e'? using
Giel? = e+ (A 10)
In addition, we have that
1-1 _ 2 11
e = (G-)%e . (A11)

We can now define the spherical tensor basis e/ that define the irreducible tensors Y*.
We start with the spherical basis tensor

e” — ellell ell7 (A 12)

formed by the product of [ basis vectors e'!. Similarly to Y!(v), this tensor is of rank
[, symmetric, and totally traceless, as e'! - e!' = 0. Furthermore, we note that e/ is an
eigenvector with eigenvalue [ of the angular momentum tensor G, with G, a tensor of
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rank 2/ defined by
[Gé‘} aias...a;bibs.. Z { albl azb2"'6albz + 6a1b1 [Ga]asz ~'~5albl
Gk (A 13)
+... + GaybyOasby - [Ga]albl} .

The remaining basis tensor elements €™ can be obtained by applying the tensorial
lowering operator Gt = G, — iGé to e'!, namely
Im (L +m)! AT
e =/——— (G_ e, (A14)
= (=)
with m = -1, -l +1,...,—1,0,1, ..., and (Gl,-l)l_m e’ a tensor of order [ built by the

application of the G* -! operator to ! I —m times. The normalization factor in Eq. (A 14)
is obtained by requiring that the contravariant e!™ and the covariant e!, basis tensors
form an orthonormal basis, i.e.

R (A 15)
In order to find a covariant basis el , we start With the case [ = 1 and note that the set
of vectors el, = (e!™)* = (—1)7”e1_m with (el )* the complex conjugate of el satisfies
Eq. (A 15). We therefore define e!, = (e/™)*, and use Eq. (A 15) to normahze e!™. For
computational purposes, we note that the tensor e!™ can also be written as a function of
the basis vectors e!™ as (Snider 2017)

L™
elm = Niym Z aizn (ell>m+n(elfl)n(elO)lfmfwz}TS7 (A 16)
n=0
where N, = /(1 + m)!(l —m)12I=m /(2)! and a!™ = 1!/[2"n!(m + n)!(l — m — 2n)!].

Appendix B. Basis Transformation

In this section, we derive a closed-form expression for the Tl’,)cjm and (T—1) g}m coeflicients
defined in Egs. (5.13) and (5.14). By multiplying Eq. (5.13) by a Hermite and a Laguerre

polynomial and by an exponential of the form e‘iz7 and integrating over the whole v,

and 7 space, we obtain the following integral expression for T}

—2 = —2
Ua v +1/2 [V Ylja vl
= g | () 6 () m () ()« 5
fim = 2yt | o7 ) ) ) e
B1

We first write the integrand in Eq. (B1) in terms of £ = 7)/v and ¥ coordinates using
the basis transformation in Eq. (5.14), yielding

- :pf (VL) .
lkm = = (l—|—]€+1/2)' Uk’

(B2)

x/ P (5)@/(5)@/% xngLmHWLZH/Q(ma)LZ,Hm(xa)d:ca,
-1 (1=9)? 0

where we used the fact that (T~ = TH /m2Pplk!(l +1/2)/(k 41+ 1/2)! (Jorge et al.
2017). The ¢ integral in Eq. (B2) is performed by expanding P, as a finite sum of the
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form

cixs, (B3)

Il
w
M-
o

with the coefficients ¢/, = 2![(1+s—1)/2]!/[s!(I — s)!((s —1 —1)/2)!], and using the relation
between associated Legendre functions P/ (x) and Legendre polynomials P;(x)
d™P,
P () = (1) (1 - a2y O, (B4)
dx™
The x integral in Eq. (B 2) is performed by using the expansion of the associated Laguerre
polynomials in Eq. (3.8). The T}}? = coefficient can then be written as

p+25 j+|p/2] k

. '+ 1/2)k" /
le;cjm: Z Z Tl[’)i’ l/—l:i;fl/ 1/2] Z Z Z ZLkWnLl/mz

V=0 k'= =0 m2=0 51=0 s2=0
| | S1+s2—m /
cs,Cs, s [14(-1) ] I+ —m+1),
_ | B5
2 (sy—m)! s1+s3+1—m M1 +me + 2 (B5)

The inverse transformation coefficients (T’l)g;m defined by Eq. (5.14) can be found
similarly, yielding

_ 2pl/mkY (1 4+ 1/2)(1—m)!,
T hlkm — T . B
(T (k+ 14+ 1211 +m)!  ~thm (B6)
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