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The white matter architecture of the brain imparts a distinct
signature on neuronal coactivation patterns. Interregional pro-
jections promote synchrony among distant neuronal populations,
giving rise to richly patterned functional networks. A variety
of statistical, communication, and biophysical models have been
proposed to study the relationship between brain structure and
function, but the link is not yet known. In the present report
we seek to relate the structural and functional connection pro-
files of individual brain areas. We apply a simple multilinear
model that incorporates information about spatial proximity,
routing, and diffusion between brain regions to predict their
functional connectivity. We find that structure–function rela-
tionships vary markedly across the neocortex. Structure and
function correspond closely in unimodal, primary sensory, and
motor regions, but diverge in transmodal cortex, particularly the
default mode and salience networks. The divergence between
structure and function systematically follows functional and
cytoarchitectonic hierarchies. Altogether, the present results
demonstrate that structural and functional networks do not align
uniformly across the brain, but gradually uncouple in higher-order
polysensory areas.

connectome | structure–function | cortical gradient

Intricate connection patterns among neural elements form a
complex hierarchical network that promotes signaling and

molecular transport (1, 2). Neural elements have a pronounced
tendency to form local cliques and tightly coupled communi-
ties with common functional properties (3); a small proportion
of long-distance projections allows signals to be sampled and
integrated from these specialized domains (4–6). Perpetual inter-
actions via the white matter “connectome” manifest as richly
patterned neural activity and are thought to support perception,
cognition, and action (7).

What is the link between structure and function in brain
networks? Relating the organization of physical connections
to patterns of functional interactions is a key question in sys-
tems neuroscience. A number of methods have been used
to address this link, including statistical models (8, 9), com-
munication models (10–12), and biophysical models (13–16).
The focus has traditionally been on using whole-brain struc-
tural connectivity to predict whole-brain functional connec-
tivity, with the assumption that a common mechanism oper-
ates across the entire network. These methods have proved
insightful and generally yield moderate fits to empirical func-
tional connectivity patterns, from ∼25% to 50% of the variance
explained (17).

Nevertheless, structure and function may not be related in
exactly the same way across the whole brain. Recent evidence
points to a fundamental organizing principle for macroscale
functional interactions (18). Namely, a hierarchy that spans
from unimodal primary areas to polysensory transmodal areas
traces a continuous sensory-fugal gradient, culminating in the
default mode network (19, 20). This representational gradient
may reflect microstructural variations, showing significant asso-

ciations with intracortical myelination (21) and laminar differen-
tiation (22). A prominent account posits that rapid evolutionary
expansion of association cortices effectively “untethers” poly-
sensory regions from molecular signaling gradients and canon-
ical sensory-motor activity cascades, resulting in fundamentally
different structure–function relationships along the unimodal–
transmodal hierarchy (23). Altogether, this work opens the pos-
sibility that structure and function may not be related in exactly
the same way across the whole brain, but potentially converge or
diverge in specific areas.

Here we address the relationship between structure and func-
tion by focusing on connection profiles of individual brain
regions. We first reconstruct structural and functional networks
from diffusion MRI (dMRI) and resting-state functional MRI
(fMRI) in a cohort of 40 healthy participants. We then apply a
simple multilinear model that uses information about a region’s
geometric and structural network embedding to predict its func-
tional network embedding. The method allows us to ask how
closely structure and function correspond in individual regions
and the extent to which this correspondence reflects affilia-
tion with cognitive systems, cytoarchitecture, and functional
hierarchies.
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Results
Structural and functional networks were reconstructed as
follows:

Structural Networks. Structural and functional connectivities
were derived from N =40 healthy control participants (source:
Lausanne University Hospital) (24). Structural connectivity was
estimated from diffusion spectrum imaging. Adjacency matrices
were reconstructed using deterministic streamline tractography.
A group-consensus structural connectivity matrix was assembled
using a consistency- and length-based procedure (11, 25–27).

Functional Networks. Functional connectivity was estimated in
the same healthy individuals using resting-state functional MRI
(rs-fMRI). Functional connections were defined as zero-lag
Pearson correlations among regional time courses. A group-
consensus functional connectivity matrix was estimated as the
mean connectivity of pairwise connections across individuals.

Initial data exploration was performed at the highest parcella-
tion resolution (1,000 nodes), using group consensus structural
and functional networks (see Materials and Methods for more
details). Analyses were subsequently repeated at other resolu-
tions and for individual participants and in an independently
collected dataset.

To estimate the correspondence between local structure and
function, we constructed a multilinear regression model that
relates node-wise structural and functional connectional profiles
(Fig. 1). For a given node i , the dependent variable is the resting-
state functional connectivity between node i and all other nodes
in the network j 6= i . The predictor variables are the geometric
and structural relationships between i and j , including Euclidean
distance, path length, and communicability. The observations or
samples are the individual i , j relationships. Model parameters
(regression coefficients for each of the 3 predictors) are then
estimated via ordinary least squares. Goodness of fit for each
node i , representing the correspondence between structural and
functional profiles for that node, is quantified by the adjusted R2

i

between observed and predicted functional connectivity (here-
after referred to simply as R2). The use of a multilinear model
to relate structure and function is conceptually similar to the

method previously reported by Goñi et al. (10) (also refs. 9
and 28), with the important exception that the present model
focuses on connection profiles of individual regions rather than
whole-brain connectivity.

Convergent and Divergent Structure–Function Relationships across
Neocortex. The correspondence between structural and func-
tional connection profiles is highly variable across neocortex.
Fig. 2A shows the histogram of R2 values from each of the
node-wise multilinear models. Mean R2 =0.30 (median R2 =
0.30), roughly concordant with previous reports that used sim-
ilar models to predict whole-network functional connectivity
(10). However, the values vary considerably, from R2 =0.04 to
R2 =0.62 (interquartile range = 0.18), indicating that for some
regions there is a strong correspondence between structural net-
work embedding and function, while for others there is little
evidence of any such correspondence.

We next examine the anatomical distribution of structure–
function R2 values. To highlight regions that show little cor-
respondence, node size and color are inversely proportional to
their R2 (Fig. 2B). The map shows a highly organized and hemi-
spherically symmetric spatial arrangement. Brain regions with
least structure–function correspondence include medial pari-
etal structures (precuneus, posterior cingulate), lateral parietal
and temporal cortices, insular cortex, and anterior cingulate
cortex. Conversely, primary sensory regions, including occipital
and paracentral cortices, show relatively high structure–function
correspondence.

It is possible that low R2 values are observed in some areas
because they have either too many or too few direct connections.
To examine this possibility, we correlated regional R2 values
with the structural degree and functional strength of each node
(Fig. 2C). In both cases the correlations were low (structural,
R=0.06, P =0.07; functional, R=0.05, P =0.14), suggesting
that regional variations in structure–function correspondence
were not trivially driven by structural or functional centrality.
We subsequently repeated these analyses for all 5 resolutions
of the Lausanne atlas. The results are shown in SI Appendix,
Fig. S1 and are consistent across resolutions. We also repli-
cated these findings in an independently collected dataset at

Fig. 1. Node-wise structure–function relationships. Local, node-wise structure–function relationships are estimated by fitting a multilinear regression
model for each node separately. For a given node i, the response or dependent variable is the functional connectivity between node i and node
j 6= i. The predictor or independent variables are the geometric and structural relationships between i and j, including the Euclidean distance, path
length, and communicability. The “observations” are individual i, j relationships. Model parameters (intercept b0 and regression coefficients b1, b2,
and b3) are then estimated by ordinary least squares. Goodness of fit for each node i is quantified by R2

i between observed and predicted functional
connectivity.
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Fig. 2. Convergent and divergent structure–function relationships across neocortex. (A) Local structure–function correspondence, estimated by node-wise
R2 from the multilinear model. The histogram shows a wide distribution of R2 values across 1,000 nodes at the highest resolution. (B) The spatial distribution
of structure–function correspondence. Nodes are colored and sized in inverse proportion to R2; nodes with weaker structure–function correspondence are
larger. High correspondence is observed in primary sensory and motor cortices, while lower correspondence is observed in transmodal cortex. (C) Correlation
between structural and functional centrality and structure–function correspondence. Shown are scatter plots between node-wise R2 and structural and func-
tional centrality, estimated by binary degree and weighted strength, respectively. The low correlations suggest that the correspondence between structure
and function does not trivially depend on the structural or functional connectedness of a node. For the same results at other parcellation resolutions, see SI
Appendix, Fig. S1.

resolutions 2, 3, and 4 (Human Connectome Project; SI
Appendix, Fig. S2). The spatial patterns of R2 values are visu-
ally similar (SI Appendix, Fig. S2A) and significantly correlated
(r = 0.77, P =0.0001; 0.72, P < 10−4; and 0.67, P < 10−4; SI
Appendix, Fig. S2B).

Finally, structure–function R2 values were benchmarked
against 3 populations of surrogate networks (SI Appendix, Fig.
S3). Surrogate networks included rewired networks that ran-
domize both topology and geometry (29), repositioned networks
that randomize geometry but not topology (30), and cost-neutral
rewired networks that randomize topology but not geometry (6,
31, 32). In all cases, the structure–function R2 in the empirical
networks significantly exceeded the null R2 values observed in
the surrogate networks.

Structure–Function Relationships Follow Functional and Cytoarchi-
tectonic Hierarchies. The spatial distribution of R2 values sug-
gests that structure–function correspondence may be circum-
scribed by functional systems or cytoarchitectonic attributes. To
address this question, we applied 2 partitions: 1) resting-state
networks described by Yeo et al. (33) and 2) cytoarchitectonic
classes described by von Economo and Koskinas (34–36). The
former groups brain regions according to how similar their time
courses are and the latter groups regions according to how
similar they are in terms of cell morphology.

We first calculated the mean R2 for each network or class. To
assess the extent to which these means are determined by the
partition and not trivial differences in size, coverage, or symme-
try, we used a spherical projection null model that permutes class
positions while preserving spatial autocorrelation (37). Network
or class labels were randomly rotated and mean R2 values were
recomputed (10,000 repetitions). The network- or class-specific
mean R2 was then expressed as a z score relative to this null dis-
tribution, which we refer to as the “spin test” throughout the rest
of this report.

There is a gradual divergence between structure and function
moving from unimodal to transmodal cortex. Fig. 3 shows the
z-scored R2 for each resting-state network (red) and cytoarchi-
tectonic class (blue). Positive values indicate that the structure–
function relationship is stronger than expected by chance, while
negative values indicate that the structure–function relationship
is weaker than expected by chance. Consistent with the intuition
developed in the previous section, statistically significant diver-
gence between structure and function is observed in polysensory
or transmodal cortex, namely the default mode (P =0.0006) and
ventral attention (P =0.012) networks and association cortex
class (ac2; P =0.0001). The reverse is true for primary unimodal
cortex, where there is a significant convergence between struc-

ture and function (visual network, P =0.001; primary/secondary
sensory class, P < 10−4).

Structure and Function Systematically Diverge along a Macroscale
Functional Gradient. Recent studies suggest a universal organi-
zational principle whereby brain regions are situated along a
continuous gradient or hierarchy, ranging from primary sensory
and motor regions to transmodal regions (18, 38). It is therefore
possible that the patterns of structure–function convergence and
divergence recapitulate this hierarchy.

We first derived a macroscale functional gradient for the
present dataset. The correlation-based functional network was
converted to a transition probability matrix and subjected to
singular-value decomposition, a method known as diffusion map
embedding (39) (see Materials and Methods for more details).
The first eigenvector of the matrix, which we refer to as a
“gradient,” spans primary unimodal cortex on one end and trans-
modal cortex on the other (Fig. 4A). Critically, the map bears a
strong resemblance to the vertex-wise map originally reported by
Margulies et al. (18).

We then assess the relationship between structure–function
R2 for a given region and its position along the macroscale
functional gradient. Fig. 4B shows that the 2 are anticorre-
lated (Spearman R=−0.48). Comparison to an autocorrelation-
preserving spherical projection null model demonstrates that the
anticorrelation is statistically significant (37) (Fig. 4C; P < 10−4).
In other words, structure and function closely correspond in uni-
modal cortex, but diverge as one moves up the hierarchy. At the
apex of the hierarchy (transmodal cortex), there is much less
correspondence between structural and functional connection
profiles.

Alternative Predictors and Individual Participants. As a final step,
we ask 2 important questions. First, how sensitive are the over-
all results to choice of predictors? Thus far, we focused on 2
canonical network metrics, one related to shortest-path rout-
ing and the other related to diffusion. Although theoretically
driven, the choice of these 2 measures is arbitrary and there
exist several other network-theoretic statistics that also cap-
ture the potential for 2 nodes to exchange signals with each
other (40), including alternative forms of diffusion (10, 41, 42),
contagion (11), parallel exchange via path ensembles (43), and
navigation (30).

We therefore repeated the analysis shown above using a mult-
ilinear model with a greater number of predictors [Euclidean
distance, path length, and communicability as before and adding
search information, path transitivity (10, 44–46)]. We note 2 key
results. First, the overall model fit does not change appreciably,
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Fig. 3. Structure–function tethering across cognitive systems and cytoarchitectonic classes. Node-wise R2 values are averaged according to their member-
ship in resting-state networks or cytoarchitectonic classes. To determine whether the mean value for each network or class is statistically significant, a null
distribution is constructed by spherical projection and rotation (10,000 repetitions). The network- or class-specific mean R2 is then expressed as a z score rela-
tive to this null distribution. Statistically significant networks/classes are shown in color; nonsignificant networks/classes are shown in gray. Yeo networks: da,
dorsal attention; dm, default mode; fp, frontoparietal; lim, limbic; sm, somatomotor; va, ventral attention; vis, visual. von Economo classes: ac1, association
cortex; ac2, association cortex; ic, insular cortex; lb, limbic regions; pm, primary motor cortex; ps, primary sensory cortex; pss, primary/secondary sensory.

with the mean R2 =0.33 (median R2 =0.33 and SD = 0.12).
This is unsurprising, given the well-known multicollinearity
among graph measures (47). More importantly, the spatial distri-
bution of R2 values is highly correlated with those produced by a
multilinear model with fewer predictors (R=0.98, P < 10−5),
suggesting little practical benefit for including additional pre-
dictors. The relative contribution of each variable, estimated
using single-predictor R2, stepwise regression, and standardized
β values, is shown in SI Appendix, Fig. S4.

The second question is, To what extent can comparable effects
be observed in individual participants? In an effort to amplify
the signal-to-noise ratio we initially performed all analyses on
group-representative structural and functional networks, and it
is unclear whether the systematic divergence between structure
and function is robust across individuals. We therefore fitted a
multilinear model to each individual participant and estimated
regional R2 values as before. We then correlated the individual-
level R2 pattern with the group-level R2 pattern. The individual-
to-group correlation R is moderate (mean R=0.33, median R=
0.32, 95% CI [0.07 0.50]), but statistically significant (P < 0.05
in 36/40 participants), suggesting considerable consistency across
individuals.

Disentangling Topology and Geometry. Given that the Euclidean
distance is the single most informative predictor by multiple cri-
teria (SI Appendix, Figs. S3 and S4), we sought to disentangle the
contribution of topology and geometry to the prediction of func-
tional connectivity. SI Appendix, Fig. S5A shows the distribution
of R2 values for models using only topological or geometric pre-
dictors (blue) vs. the model using all predictors (red). In both
cases, the distribution is shifted to the left, suggesting that both
topology and geometry contribute to prediction of functional
connectivity. SI Appendix, Fig. S5B shows node-wise R2 values
of pure topological and geometric models against the combined
model, with the identity line shown in red. In both cases, the R2

values are correlated but the point clouds lie below the iden-
tity line, suggesting that the combined model outperforms the
topological and geometric models for most nodes. Finally, SI
Appendix, Fig. S5C shows the node-wise R2 values for the geo-
metric and topological models, demonstrating that the geometric
model yields greater prediction for 696/1,000 nodes (69.6%),
while the topological model yields greater prediction for 304/100
nodes (30.4%).

Given the prominence of spatial proximity as a predictor,
it is possible that connection profiles of unimodal areas are
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Fig. 4. Structure–function divergence across large-scale functional network gradients. Large-scale functional network gradients were identified by applying
diffusion map embedding to the normalized graph Laplacian of the correlation matrix. (A) The first gradient runs from primary, unimodal cortex to trans-
modal cortex and resembles the vertex-wise map originally reported by Margulies et al. (18). (B) Node-wise structure–function R2 values are anticorrelated
with positions along this gradient, suggesting that structure and function closely correspond in unimodal cortex but diverge in transmodal cortex. (C) Red:
empirical Spearman correlation between the first gradient and structure–function R2 values. Blue: null distribution of Spearman correlation coefficients
derived using spherical projections.

more spatially constrained, while transmodal areas are more
spatially distributed (48). Although we ruled out the possibility
that regional differences in total structural degree or functional
strength could be driving the observed patterns (Fig. 2C), we
pursued the idea that there could be regional variation in con-
nection length and density. For each node, we constructed a
histogram of connection lengths to other nodes in the net-
work (10 equal-width bins, spanning 0 to 170 mm). We then
plotted these histograms for both structural connectivity (the
number of structural connections) and functional connectivity
(mean correlation) (SI Appendix, Fig. S6). Nodes are ordered
by their position along the unimodal–transmodal axis or gradi-
ent. The key observation is that there is no systematic interaction
between gradient position, connection length, and connection
strength.

Discussion
The present report demonstrates variation in the extent to
which structure and function correspond in human cortical
networks. The relationship between structural and functional
connection profiles appears to follow an overarching cognitive-
representational and cytoarchitectural hierarchy, becoming
increasingly untethered as one moves toward the transmodal
cortex at the apex.

Localized Structure–Function Relationships. Our results contribute
to a growing effort to understand structure and function from a
more localized perspective. There is a rich literature on predict-
ing function from structure at the whole-network level, including
direct edge-to-edge comparisons (49, 50), multivariate statistical
models (8, 9), network-theoretic models (10–12, 30, 51), and bio-
physical models (14–16). We find that the relationship is not uni-
form throughout the whole network, but may instead vary across
brain regions. This is consistent with the notion that individual
areas possess distinct connectional (52, 53) and spectral activa-
tion “fingerprints” (54). High-density precision mapping studies
suggest that functional organization and regional boundaries
may also be highly individualized (55, 56).

For the present analysis we chose 2 predictors that cover
the extremes of a putative communication spectrum (40), one
reflecting routing of information and the other reflecting diffu-
sion. The extent to which signaling is centralized or decentralized
is an exciting open question (30, 57). For instance, individual
areas may broadcast information differently from one another,
while large-scale systems may utilize different forwarding pro-

tocols or frequency channels (58). Our results open the possi-
bility that communication mechanisms may be multiplexed, with
multiple protocols operating in parallel (10).

It is noteworthy that simple Euclidean distance was a power-
ful predictor. The probability of structural connectivity (31, 59)
and the magnitude of functional connectivity between areas both
decrease with spatial separation (60, 61). Indeed, many topo-
logical attributes of brain networks can be accounted for by
simple generative mechanisms that minimize interareal wiring
cost (62, 63) (also refs. 27 and 64). Our results are consistent
with this notion, showing that the spatial embedding of brain
regions is the most informative predictor of their functional
interactions.

The prominence of geometry raises the possibility that sys-
tematic deviations between structure and function could be
driven by differences in distances spanned by individual regional
connection fingerprints (6, 48). For instance, transmodal asso-
ciation networks are typically more spatially distributed than
unimodal networks, resulting in more spatially distributed con-
nection patterns. Thus, spatial proximity may better explain
functional connection patterns in unimodal networks compared
to transmodal networks. SI Appendix, Fig. S4 supports this pos-
sibility, showing that spatial proximity greatly contributes to the
structure–function correspondence in the visual system. At the
same time, we find little evidence of systematic regional differ-
ences in structural or functional connection length and density
profiles (SI Appendix, Fig. S6). Altogether, the present results
demonstrate that spatial proximity makes an important contri-
bution to structure–function relationships, making the deviation
between structure and function in transmodal areas all the more
interesting.

Functional and Cytoarchitectonic Hierarchies. More generally, our
findings contribute to an emerging literature that emphasizes
macroscopic spatial gradients as a primary organizing princi-
ple (19, 20, 38, 65). Smooth variation across cortex has been
observed in gene expression (66), cytoarchitecture (67), myeloar-
chitecture (21), cortical thickness (68), structural connectivity
(69), and functional connectivity (18). The increasing complexity
of cortical microcircuitry along this hierarchical gradient, ranging
from primary sensory to transmodal cortex, is thought to support
increasingly integrative internal representations and functions.

Our findings suggest that a consequence of hierarchical
microscale organization is a gradual decoupling of macroscale
structure and function. In primary sensory areas we find a close
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correspondence between structural and functional connection
profiles, but at the apex of the hierarchy—corresponding to the
default mode and salience networks—the 2 diverge considerably.
The polyfunctional hubs that occupy this end of the gradient are
thus more likely to participate in multiple networks and explore
a wider dynamic repertoire (70, 71). How the correspondence
between node-level structure and function relates to individual
differences in behavior is an exciting question for future work
(72). A related question is whether structure and function remain
untethered during task performance.

Why do structural and functional networks come untethered?
One theory posits that rapid evolutionary expansion of the corti-
cal mantle may have shifted underlying microcircuit organization
away from serial bottom–up activity cascades in primary sensory-
motor regions (23). Filling the gaps between these primary
sensory-motor anchors are association areas marked by parallel
and reentrant pathways, lacking obvious hierarchical organiza-
tion (73). This reconfiguration effectively releases the association
cortex from strong constraints imposed by early activity cas-
cades (23), promoting polysensory integration (19), control, and
higher cognitive functions that transcend simple sensory-motor
exchange, such as internal mentation.

The reconfiguration of local microcircuitry may thus con-
tribute to greater signal variance in transmodal cortex. In par-
ticular, shifts in structure–function relationships mirror patterns
of laminar differentiation (20, 22). In primary areas with strong
differentiation there is a strong correspondence between struc-
ture and function, while in transmodal cortex—with weaker
laminar differentiation—the structure–function relationship is
also weaker. In a recent modeling study, Wang et al. (74)
allowed microscale-related parameters of a biophysical model
to differ between brain regions. The best-fitting model was
characterized by strong recurrent connections and excitatory
subcortical input in sensorimotor regions; conversely, default
network regions had weak recurrent connections and exci-
tatory subcortical inputs (74). Complementary results were
reported by Demirtaş et al. (75), who found that biophysical
models could be fitted to functional connectivity much bet-
ter if they were informed by hierarchical heterogeneity, esti-
mated from T1w/T2w ratios. Thus, a richer local cytoarchitec-
ture in transmodal cortex—supporting increasingly autonomous
and spontaneous dynamics—may potentially render macroscale
structural metrics less effective overall in predicting functional
interactions (76).

Indeed, one explanation for the observed divergence of struc-
ture and function could be that the 2 are related but that the
methods typically used to define structural and functional con-
nectivity may obscure such relationships in transmodal areas.
For example, the conventional static and dyadic representation
of functional connectivity employed here may not adequately
capture the dynamic character of functional interactions (77) or
the possibility of higher-order interactions (78). We have pre-
viously suggested that the network embedding of polysensory
association areas places them in an optimal position to simulta-
neously receive signals originating from multiple sources across
the network (11, 79). Thus, extensive mixing of diverse signals
at the top of the hierarchy may engender less predictable func-
tional relationships and wider discrepancy between structure and
function.

Methodological Considerations. The present results are subject
to several important methodological limitations and considera-
tions. First, structural connectivity is estimated using streamline
tractography on diffusion-weighted imaging, a method known
to be susceptible to systematic false positives and false neg-
atives (80–82). For instance, many transmodal regions identi-
fied as having low structure–function correspondence occupy
lateral positions and are known to participate in multiple

transcallosal fibers. In addition, diffusion-weighted imaging may
create systematically uncertain estimates of structural connectiv-
ity in regions with highly developed supragranular layers (such
as AC2) or in agranular cortex (such as I). It is therefore
possible that regional variation in structure–function correspon-
dence is partly explained by regional variation in tractography
performance.

A similar set of concerns exists for reconstruction of functional
networks. For example, previous reports have found evidence
that functional connectivity may also be more variable in hetero-
modal or transmodal cortex (83). Moreover, we operationalized
functional connectivity in terms of conventional linear zero-lag
Pearson correlations, eschewing the possibility that transmodal
regions participate in more complex, higher-order interactions.
It is also possible that the scrubbing procedure used to control
motion artifact could potentially suppress true functional inter-
actions and influence regional difference in structure–function
coupling. Altogether, it is possible that there exist promi-
nent structure–function relationships in transmodal cortex, but
that the present methodology systematically underrepresents
or mischaracterizes structural and/or functional connectivity in
these regions, manifesting as a lower correspondence between
structural and functional connectivity.

Another concern is that our results are based on parcellated
data, a methodological approach that assumes that brain regions
can be mapped to identical spatial locations in every partic-
ipant. Recent evidence from precision-mapping studies, using
repeated measurements in single individuals, suggests that func-
tional boundaries can systematically vary across individuals and
that this is particularly true in higher-order, transmodal cortex
(55, 56).

Finally, it is important to acknowledge that the present multi-
linear model or models violate a basic assumption of regression
models, namely that the observations (regional connection pro-
files) are not independent. Each observation represents a dyadic
(i , j ) relationship that is drawn from a graph that represents the
brain, a system we know to be spatially contiguous and assume
to be connected. The expected effect is that parameter esti-
mates and goodness-of-fit metrics will therefore be biased. For
this reason, we only use structure–function R2 as a relative met-
ric to compare the correspondence of structure and function
across a set of nodes, each of which is estimated under the same
conditions.

Materials and Methods
Data Acquisition. We performed all analyses in 2 datasets. The main (dis-
covery) dataset was collected at the Department of Radiology, University
Hospital Center and University of Lausanne (LAU) (n = 40). We also included
a replication cohort from the Human Connectome Project (HCP) (n = 215)
(84). Structural connectivity was reconstructed from diffusion-weighted
imaging: diffusion spectrum imaging (DSI) for LAU and high-angular res-
olution diffusion imaging (HARDI) for HCP. Although dataset LAU had
fewer participants, we selected it as the discovery dataset because of
the quality of the DSI sequence. Below we describe the acquisition, pro-
cessing, and connectome reconstruction procedure for each dataset in
more detail.
LAU. A total of n = 40 healthy young adults (16 females, 25.3± 4.9 y old)
were scanned at the Department of Radiology, University Hospital Center
and University of Lausanne. Informed consent was obtained from all partic-
ipants and the protocol was approved by the Ethics Committee of Clinical
Research of the Faculty of Biology and Medicine, University of Lausanne.
The scans were performed in a 3-T MRI scanner (Trio; Siemens Medical),
using a 32-channel head coil. The protocol included 1) a magnetization-
prepared rapid acquisition gradient echo (MPRAGE) sequence sensitive to
white/gray matter contrast (1 mm in-plane resolution, 1.2 mm slice thick-
ness), 2) a DSI sequence (128 diffusion-weighted volumes and a single b0
volume, maximum b-value 8,000 s/mm2, 2.2× 2.2× 3.0 mm voxel size), and
3) a gradient echo echo-planar imaging (EPI) sequence sensitive to blood-
oxygen-level-dependent (BOLD) contrast (3.3 mm in-plane resolution and
slice thickness with a 0.3-mm gap, TR 1,920 ms, resulting in 280 images per

21224 | www.pnas.org/cgi/doi/10.1073/pnas.1903403116 Vázquez-Rodrı́guez et al.

D
ow

nl
oa

de
d 

at
 E

P
F

L 
Li

br
ar

y 
on

 M
ar

ch
 1

2,
 2

02
1 

https://www.pnas.org/cgi/doi/10.1073/pnas.1903403116


N
EU

RO
SC

IE
N

CE

participant). Participants were not subject to any overt task demands during
the fMRI scan.
HCP. A total of n = 215 healthy young adults (112 females, 29.7± 3.4 y
old) were scanned as part of the HCP Q3 release (84, 85). Participant
recruitment procedures and informed consent forms, including consent
to share deidentified data, were previously approved by the Washington
University Institutional Review Board as part of the HCP. MRI data were
acquired on the HCP’s custom 3-T Siemens Skyra with a 32-channel head
coil. The protocol included 1) a 3D-MPRAGE sequence, 2) a HARDI sequence,
and 3) a multiband accelerated 2D-BOLD EPI sequence sensitive to BOLD
contrast. For more details regarding the acquisition protocol see refs. 84
and 85.

Structural Network Reconstruction. Gray matter was parcellated into 68 cor-
tical nodes according to the Desikan–Killiany atlas (86). These regions of
interest were then further divided into 4 additional, increasingly finer-
grained resolutions, comprising 114, 219, 448, and 1,000 approximately
equally sized nodes (87). Structural connectivity was estimated for indi-
vidual participants using deterministic streamline tractography. The pro-
cedure was implemented in the Connectome Mapping Toolkit (88), initi-
ating 32 streamline propagations per diffusion direction for each white
matter voxel.

To mitigate concerns about inconsistencies in reconstruction of indi-
vidual participant connectomes (89, 90), as well as the sensitive depen-
dence of network measures on false positives and false negatives (81),
we adopted a group-consensus approach (25, 63, 80). In constructing a
consensus adjacency matrix, we sought to preserve 1) the density and
2) the edge-length distribution of the individual participant matrices
(11, 25, 27).

We first collated the extant edges in the individual participant matrices
and binned them according to length. The number of bins was determined
heuristically, as the square root of the mean binary density across partic-
ipants. The most frequently occurring edges were then selected for each
bin. If the mean number of edges across participants in a particular bin
is equal to k, we selected the k edges of that length that occur most fre-
quently across participants. To ensure that interhemispheric edges are not
underrepresented, we carried out this procedure separately for inter- and
intrahemispheric edges. The binary densities for the final whole-brain matri-
ces were 28.1%, 20.3%, 12.0%, 5.9%, and 2.4% for resolutions 1 to 5,
respectively.

Functional Network Reconstruction. Functional MRI data were preprocessed
using procedures designed to facilitate subsequent network exploration
(91). fMRI volumes were corrected for physiological variables, including
regression of white matter, cerebrospinal fluid, and motion (3 trans-
lations and 3 rotations, estimated by rigid body coregistration). BOLD
time series were then subjected to a low-pass filter (temporal Gaussian
filter with full width at half maximum equal to 1.92 s). The first 4
time points were excluded from subsequent analysis to allow the time
series to stabilize. Motion “scrubbing” was performed as described by
Power et al. (91). The data were parcellated according to the same
atlas used for structural networks (87). Individual functional connectiv-
ity matrices were defined as zero-lag Pearson correlation among the
fMRI BOLD time series. A group-consensus functional connectivity matrix
was estimated as the mean connectivity of pairwise connections across
individuals.

Multilinear Model. A multiple-regression model was used to predict the
functional connection profile of every node, using a set of geometric
and structural connection profile predictors of the same node (Fig. 1).
The predictors were 1) the Euclidean distance between node centroids,
2) path length between nodes, and 3) communicability between nodes.
Path length and communicability were both estimated from the bina-
rized structural connectome. Path length refers to the shortest contiguous
sequence of edges between 2 nodes. Communicability (Cij) between 2 nodes
i and j is defined as the weighted sum of all paths and walks between
those nodes (92). For a binary adjacency matrix A, communicability is
defined as

Cij =

∞∑
n=0

[An]ij

n!
= [eA

]ij [1]

with walks of length n normalized by n!, ensuring that shorter, more
direct walks contribute more than longer walks. Path length was imple-
mented using the Brain Connectivity Toolbox (https://sites.google.com/site/
bctnet/) (93).

The regression model was then constructed for each node i,

FCi = b0 + b1EUi + b2PLi + b3COi , [2]

where the response variable FCi is the set of functional connections between
i and all other nodes, and the predictor variables are the Euclidean dis-
tance (EUi), structural path length (PLi), and structural communicability (COi)
between i and all other nodes in the network. The regression coefficients b1,
b2, and b3, as well as the intercept b0, were then solved by ordinary least
squares (function fitlm.m in MATLAB 2016a).

Diffusion Map Embedding. Diffusion map embedding is a nonlinear dimen-
sionality reduction algorithm (39). The algorithm seeks to project a set
of embeddings into a lower-dimensional Euclidean space. Briefly, the
similarity matrix among a set of points (in our case, the correlation
matrix representing functional connectivity) is treated as a graph, and
the goal of the procedure is to identify points that are proximal to one
another on the graph. In other words, 2 points are close together if
there are many relatively short paths connecting them. A diffusion oper-
ator, representing an ergodic Markov chain on the network, is formed
by taking the normalized graph Laplacian of the matrix. The new coor-
dinate space is described by the eigenvectors of the diffusion operator.
In keeping with previous reports that applied the method to functional
networks, we set the diffusion rate α= 0.5 (18, 94), which approx-
imates the Fokker–Planck diffusion. The procedure was implemented
using the Dimensionality Reduction Toolbox (https://lvdmaaten.github.io/
drtoolbox/) (95).

Null Models. To assess the relationship between regional structure–function
R2 values and network membership or gradient position, we applied
a recently developed null model that preserves the spatial embedding
and autocorrelation of our parcellations (37). We first created a surface-
based representation of our parcellations by applying the Lausanne atlas
to the FreeSurfer fsaverage surface using files obtained from the Con-
nectome Mapper toolkit (https://github.com/LTS5/cmp) (88). We used the
spherical projection of the fsaverage surface to define spatial coordinates
for each parcel by selecting the vertex closest to the center of mass
of each parcel. Vertices were projected to a sphere, randomly rotated,
and reassigned to the closest parcel (10,000 repetitions). The procedure
was performed for one hemisphere and mirrored in the other, as pro-
scribed by Alexander-Bloch et al. (37). The procedure was performed
at the parcel resolution rather than the vertex resolution to avoid up-
sampling the structure–function R2 statistic, which is estimated at the
parcel level.

Regional structure–function R2 values were additionally benchmarked
against 3 populations of null networks (10,000 repetitions each): rewired
networks, cost-neutral rewired networks, and repositioned networks.
Rewired networks were generated by randomly swapping pairs of edges
(10 swaps per edge). The procedure preserves network size, density,
and degree sequence, but systematically destroys network topology (29).
Cost-neutral rewired networks additionally preserve the edge-length dis-
tribution (i.e., geometry) of the network, (6, 31, 32). Finally, spatially
repositioned networks were generated by randomly permuting the x,
y, z location of network nodes, disrupting the geometry of the net-
work but preserving its topology (30). The first 2 models embody the
null hypothesis that network statistics (e.g., regional SC-FC R2) do not
depend on network topology. The last model embodies the null hypoth-
esis that network statistics do not depend on network geometry/spatial
embedding.

Data Availability. The Lausanne dataset is available at https://zenodo.org/
record/2872624#.XOJqE99fhmM (24). The Human Connectome project
dataset is available at https://www.humanconnectome.org/study/hcp-
young-adult. Code used to conduct the reported analyses is available at
https://github.com/netneurolab or https://doi.org/10.5281/zenodo.2580387.

ACKNOWLEDGMENTS. We thank Dr. Alessandra Griffa for collecting, pre-
processing, and sharing the Lausanne dataset. We also thank Drs. František
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