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Abstract We propose a new self-adaptive and double-loop smoothing algorithm to solve

composite, nonsmooth, and constrained convex optimization problems. Our algorithm is

based on Nesterov’s smoothing technique via general Bregman distance functions. It self-

adaptively selects the number of iterations in the inner loop to achieve a desired complexity

bound without requiring to set the accuracy a priori as in variants of Augmented Lagrangian

methods (ALM). We prove O
(
1
k

)
-convergence rate on the last iterate of the outer sequence

for both unconstrained and constrained settings in contrast to ergodic rates which are com-

mon in ALM as well as alternating direction method-of-multipliers literature. Compared

to existing inexact ALM or quadratic penalty methods, our analysis does not rely on the

worst-case bounds of the subproblem solved by the inner loop. Therefore, our algorithm can

be viewed as a restarting technique applied to the ASGARD method in [60] but with rigor-

ous theoretical guarantees or as an inexact ALM with explicit inner loop termination rules

and adaptive parameters. Our algorithm only requires to initialize the parameters once, and

automatically updates them during the iteration process without tuning. We illustrate the

superiority of our methods via several examples as compared to the state-of-the-art.
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1 Introduction

Problem settings: We study the following nonsmooth composite convex
minimization template:

P ? := min
x∈Rp

{
P (x) := f(x) + g(Ax)

}
, (1)

where both f : Rp → R ∪ {+∞} and g : Rn → R ∪ {+∞} are proper, closed,
and nonsmooth convex functions, and A : Rp → Rn is a linear operator.

In addition, we assume that g is Lipschitz continuous when restricted to its
domain (see Assumption 1). This assumption covers many important cases:
1. g is Lipschitz continuous on Rn, i.e. there exists Mg ∈ (0,+∞) such that
|g(x)− g(y)| ≤Mg‖x− y‖ for any x, y ∈ Rn.

2. g := δb+K, the indicator of b + K, where b ∈ Rn is given and K is a given
nonempty, closed, and convex set in Rn. In this case, (1) automatically
covers the following constrained convex problem:

f? := min
x∈Rp

{
f(x) s.t. Ax− b ∈ K

}
. (2)

In particular, if K = {0n}, then Ax− b ∈ K reduces to Ax = b.
3. g is a polyhedral function, i.e. its epigraph is a polyhedron.

Our goals: Our goal is to design new adaptive primal-dual methods to solve
both (1) and (2) that have low per-iteration complexity cost, i.e., they only
require the proximal operators of f and g, and matrix-vector multiplications
Ax and A>y, while having the best-known non-averaging convergence rates.

We require that both problems are convex and satisfy strong duality as-
sumptions. We do not assume that the problems are strongly convex or smooth.

Composite vs. constrained settings: For the general setting (1), under
different choices of f and g, it covers a wide range of applications from dif-
ferent fields including compressive sensing, image and signal processing, ma-
chine learning, statistics, operations research, and optimal control. Classical
and well-known examples such as LASSO, square-root LASSO, support vector
machines, image denoising and deblurring, and matrix completion can be cast
into (1), see, e.g., [10,18,53,67] for some concrete examples.

For the setting (2), we do not impose any restriction on K. Hence, it cov-
ers a large class of constrained problems including equality and inequality
constraints. When K is a given cone (e.g., Rn+, second-order cone, or symmet-
ric positive semidefinite cone), problem (2) covers also problems with cone
constraints such as linear programming, second-order cone, and semidefinite
programming. Although the theory for (1) as well as for (2) are well devel-
oped, various numerical methods for solving these problems rely on different
structure assumptions and do not have a unified analysis: cf., Section 5.

Related works: Under only convexity and zero duality gap assumptions, the
state-of-the-art methods for solving (1) include primal-dual first-order meth-
ods (PDFOM) [2,13], and augmented Lagrangian-based algorithms [5,34,56].
While PDFOM directly tackles problem (1), the augmented Lagrangian-based
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framework (ALM) and its variants solve (1) via a constrained reformulation
as follows (or using other forms):

P ? := min
x∈Rp,z∈Rn

{
P (x, z) := f(x) + g(z) s.t. Ax− z = 0

}
. (3)

Alternating direction method of multipliers (ADMM) [25,62] is another (and
perhaps the most) successful method to solve (3). ADMM can be viewed as
a variant of the ALM framework [10]. In other words, ADMM can be viewed
as an approximation to ALM by alternating between x and z to break the
computational bottleneck in the primal subproblem. Inexact and linearized
variants enhance the scalability of ALM and ADMM for the same problem
template [52,68,69].

While ADMM and PDFOM and their variants work really well in practice,
their best-known convergence rate is O

(
1
k

)
under only convexity and zero

duality gap assumptions, where k is the iteration counter. Moreover, such a
rate is achieved via an ergodic sense (i.e., using an averaging sequence or a
weighted averaging sequence) [13,14,20,21,41,42,57].

In stark contrast, empirical evidence shows that averaging sequences in
PDFOM and ALM exhibit the theoretical worst case rate O

(
1
k

)
in practice

compared to the last iterate of the algorithm (see Subsection 4.1 for a con-
crete example), which is superior and often locally linear in many examples.1

However, for these methods, last iterate generally has convergence guarantees

but has much slower rate guarantees, e.g., O
(

1√
k

)
-rates [21].

Recently, [60] proposed an accelerated, smoothed gap reduction (ASGARD)
framework to solve nonsmooth convex optimization problems. ASGARD com-
bines acceleration, smoothing, and homotopy techniques to handle both un-
constrained and constrained nonsmooth problems, including (1).

One notable feature of ASGARD is a non-ergodic optimalO
(

1
k

)
rate on the

objective residual, and feasibility violation in the constrained settings. More-
over, this method only requires one proximal operator of f , one matrix-vector
multiplication, and one adjoint operator per iteration. When f is separable,
the algorithm can be naturally parallelized. However, as also noted in [60],
ASGARD needs restarting to be competitive with state-of-the-art methods
such as ADMM and PDFOM in practice. This is not surprising since empiri-
cal evidence [29,32,51,58] has shown that restarting significantly improves the
actual convergence rate in practice. While there exists theory to support the
restarting strategies in accelerated gradient-type methods, supporting theory
of these strategies are not yet investigated in primal-dual methods.

Contributions: In this paper, we introduce an analysis framework for restart-
ing ASGARD and prove the same worst-caseO

(
1
k

)
rate in a non-ergodic sense.

While doing so, we identify that restarting ASGARD corresponds to an in-
exact ALM algorithm in the constrained case. In contrast to existing works
on this front, our method has explicit inner-loop termination rules and does

1 There exist examples showing arbitrarily slow convergence rate of ADMM, see, e.g., [21].
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not need to set a horizon (i.e., the maximum number of inner iterations or a
predefined inner loop accuracy) for the algorithm.

As a result, we present a method which has the guarantees on the last
iterate compared to ALM/ADMM methods and extend the guarantees of AS-
GARD to the restarting case which significantly improves the practical perfor-
mance. In addition, we allow general Bregman distances to be used for smooth-
ing and proximal operators in contrast to the original ASGARD scheme. A
more thorough discussion and comparison between our method and existing
state-of-the-arts is deferred to Section 5 for the sake of presentation.

More concretely, our contributions can be summarized as follows.
(a) We propose a new self-adaptive, double-loop smoothing algorithm to solve

nonsmooth convex optimization problems of the form (1). Our algorithm
is based on Nesterov’s smoothing technique via general Bregman distance
functions. It self-adaptively selects the number of iterations in the inner
loop to achieve a desired complexity bound without requiring the accuracy
a priori as in variants of ALM. Compared to ASGARD [60], it incorporates
restarts, updates the dual center, and can work with general Bregman
distances instead of only Lipschitz gradient distances.

(b) We prove O
(

1
k

)
-convergence rate on the last iterate of the outer sequence

for both unconstrained and constrained settings in contrast to ergodic rates
which are common in ALM/ADMM literature. This rate is known to be
optimal [46,49,66] under just convexity and strong duality assumptions
and when k is not sufficiently large. Compared to existing inexact ALM or
quadratic penalty methods such as [43,70], our analysis does not rely on the
worst-case bounds of the subproblem solved by the inner loop. Therefore,
our algorithm can be viewed as a restarting technique applied to ASGARD
but with rigorous theoretical guarantees or as an inexact ALM with explicit
inner loop termination rules and adaptive parameters.

(c) As an upshot, we customize our algorithm to solve general constrained
problems of the form (2). We prove the same O

(
1
k

)
-convergence rate guar-

antee on both the objective residual |f(xk) − f(x?)| and the feasibility
distK

(
Axk − b

)
. This rate is given on the last iterate of the outer sequence.

Our algorithm is a primal-dual method, which can solve composite convex
problem with linear operators as in Chambolle-Pock’s method [13]. It only
requires one proximal operator of f and g∗, one matrix-vector multiplication
and one adjoint for each iteration. It is parallelizable when f is separable, i.e.,
f(x) =

∑N
i=1 fi(x[i]). Under this structure, our method has more advantages

than ADMM and Chambolle-Pock’s method. In the algorithm, we provide
explicit rules to update all algorithmic parameters. We also note that these
updates can be modified to trade-off between the primal or the dual progress.
Since the parameters in ASGARD [60] are decreasing making its step-size
smaller at each iteration, the restarting schemes developed in this paper reset
these parameters to preserve large step-size at each outer-loop iteration.

Paper organization: The rest of this paper is organized as follows. Section
2 recalls some mathematical background and the ASGARD algorithm in

[60]. Section 3 presents our main result with algorithm and its convergence
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guarantee. We study both unconstrained and constrained cases. Section 3.4
shows an extension of our method to three composite objective functions with
linearization on potentially smooth terms. In Section 4, we provide seven
numerical examples to test our algorithm against state-of-the arts. Section 5
compares our method and existing algorithms in the literature.

2 Mathematical tools

We review some key ingredients for the design of our primal-dual methods.

Notation: We denote the norm in primal space X as ‖ · ‖X and the norm in
dual space Y as ‖ · ‖Y . Their dual norms are denoted as ‖ · ‖X ,∗ and ‖ · ‖Y,∗,
respectively. Given a positive real number a, bac denotes the largest integer
that is less than or equal to a.

For a given nonempty, closed, and convex set K, we denote its indicator
function as δK(x) = 0, if x ∈ K, δK(x) = +∞, otherwise; and its support
function as sK(y) = supx∈K〈x, y〉. We define the normal cone of K as NK(x) :=
{w ∈ Rn | 〈w, y − x〉 ≥ 0, y ∈ K} if x ∈ K; NK(x) := ∅, otherwise. We also
define Ko := {w ∈ Rn | 〈w, x〉 ≤ 1, x ∈ K} as the polar set of K. If K is a
convex cone, then Ko = −K∗, where K∗ := {w ∈ Rn | 〈w, x〉 ≥ 0, x ∈ K} the
dual cone of K.

Given a proper, closed, and convex function f , we use dom(f) to denote
its domain and ∂f(x) to denote its subdifferential at x. When the function is
differentiable, we denote its gradient at x as ∇f(x). The Fenchel conjugate of a
function f is defined as f∗(y) := supx {〈x, y〉 − f(x)}. We say that f : X → R
has Lipschitz gradient if it satisfies ‖∇f(x)−∇f(y)‖X ,∗ ≤ Lf ‖x− y‖X , for
any x, y ∈ X . We say that f is Lipschitz continuous on X with a Lipschitz
constant Mf ∈ [0,+∞) if |f(x)− f(y)| ≤Mf‖x− y‖ for any x, y ∈ X .

Given a proper, closed, and convex function f : Rp → R∪{+∞}, proxf (x) :=

argminu
{
f(u) + (1/2)‖u− x‖2X

}
is called the proximal operator of f . We say

that f is “proximally tractable” if proxf can be computed efficiently, e.g., in
a closed form, or by a polynomial algorithm. By Moreau’s identity, we have
proxγf (x) + γproxf∗/γ(γ−1x) = x for any x ∈ dom(f).

2.1 Primal-dual formulation

Dual problem and min-max formulation: Associated with the primal
problem (1), we also consider the corresponding dual problem:

D? := min
y∈Rn

{
D(y) := f∗(−A>y) + g∗(y)

}
, (4)

where f∗ and g∗ are the Fenchel conjugates of f and g, respectively. Clearly,
we can write the pair (1)-(4) in the following min-max saddle point problem:

min
x∈Rp

max
y∈Rn

{
L(x, y) := f(x) + 〈Ax, y〉 − g∗(y)

}
. (5)

Under mild and standard assumptions, this min-max problem is solvable and
achieves zero duality gap, i.e., P ? + D? = 0. In particular, the dual problem



6 Quoc Tran-Dinh et al.

of (2) can be written as follows:

D? := min
y∈Rn

{
D(y) := f∗(−AT y) + 〈b, y〉+ sK(y)

}
, (6)

where sK(y) = supx∈K〈y, x〉 is the support function of K. Compared to (4),
we have g∗(y) = 〈b, y〉+ sK(y) = sb+K(y). Let X ? and Y? be the solution sets
of the primal problem (1) (or (2)) and dual problem (4) (or (6)), respectively.

Fundamental assumptions: Throughout this paper, we will develop meth-
ods for solving (1) and (2). We propose a unified set of assumptions that covers
unconstrained and constrained problems.

Assumption 1. We impose the following assumption on (1):
1. The solution set X ? of (1) is nonempty.
2. Both f and g are proper, closed, and convex.
3. The function g is Lipschitz continuous its domain: there exists M̂g ∈

(0,+∞) such that |g(x)− g(y)| ≤ M̂g‖x− y‖ for any x, y ∈ dom(g).
4. The Slater condition ri (dom(f)) ∩ {x ∈ Rp | Ax ∈ ri (dom(g))} 6= ∅ holds,

where ri (X ) is the relative interior of X .

The details of Slater conditions can be found in, e.g., [2]. Assumption 1 covers
the case of equality constraint, i.e., g = δ{b}, cone constraints, i.e. g = δK
as in (2), where K is a convex cone, Lipschitz continuous functions, i.e. g
is globally Lipschitz continuous, and combinations thereof. It guarantees the
strong duality of (1) and (4) to hold.

Optimality conditions: Associated with the primal and dual problems (1)-
(4), we have the following optimality conditions:

0 ∈ ∂f(x?) +A>∂g(Ax?) and 0 ∈ −A∂f∗(−A>y?) + ∂g∗(y?).

We can write this optimality condition into the following KKT condition:

0 ∈ ∂f(x?) +A>y? and 0 ∈ −Ax? + ∂g∗(y?). (7)

For the constrained problem (2) these conditions are written as

0 ∈ ∂f(x?) +A>y?, Ax? − b ∈ K, and y? ∈ NK (Ax? − b) ,

where NK(·) is the normal cone of K defined above. If K is a closed, pointed,
and convex cone, then NK ≡ −K∗ the dual cone of K. In this case, y? ∈ −K∗.

2.2 Bregman distances and generalized proximal operators

In the sequel, we will use Bregman distances for smoothing and computing
proximal operators. Therefore, we give basic properties on Bregman distances.

Let pZ be µp-strongly convex, continuous, and differentiable on Z with the
strong convexity µp = 1, where Z = dom(pZ). We call pZ a proximity function
(or prox-function). We define the Bregman distance induced by pZ as

bZ(x, y) := pZ(x)− pZ(y)− 〈∇pZ(y), x− y〉, ∀x, y ∈ Z.
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As special cases, if we choose pZ(x) = 1
2‖x‖

2
2, then bZ(x, y) = 1

2‖x− y‖
2
2, the

standard Euclidean distance square. If we choose pZ(x) :=
∑
i xi ln(xi), the

entropy function, then bZ(x, y) :=
∑
i xi ln

(
xi
yi

)
− xi + yi, the so-called KL

divergence. Moreover, it is obvious that bZ(x, y) ≥ 1
2‖x− y‖

2
Z for all x, y ∈ Z.

When a Bregman distance bZ has Lipschitz continuous gradient, we denote its
Lipschitz constant by LbZ . We refer to [16,24,35] for several concrete examples
of Bregman divergences.

2.3 Nesterov’s smoothing technique

We focus on Nesterov’s smoothing technique with general Bregman distances
[4,49] as follows. Since g in (1) is possibly nonsmooth, we smooth it by

gβ(u; ẏ) := max
y∈Y

{
〈u, y〉 − g∗(y)− βbY(y, ẏ)

}
, (8)

where ẏ ∈ Rn is a given center point, and β > 0 is a smoothness parameter.
The function gβ(·; ẏ) is convex and smooth, its gradient is given by

∇gβ(u; ẏ) = y∗β(u; ẏ) = argmin
y∈Y

{
g∗(y)− 〈u, y〉+ βbY(y, ẏ)

}
. (9)

Clearly, ∇gβ(·; ẏ) is Lipschitz continuous with the Lipschitz constant Lgβ = 1
β .

Moreover, we have

gβ(u; ẏ) ≤ g(u) ≤ gβ(u; ẏ) + βDY , (10)

where DY := sup {bY(y, ẏ) | y ∈ dom(g∗)} is the prox-diameter of g∗. Here,
DY is finite if and only if g is Lipschitz continuous with the Lipschitz constant
Lg :=

√
2DY , i.e., |g(u) − g(v)| ≤

√
2DY‖u − v‖ for all u, v ∈ dom(g) due to

[7, Proposition 4.4.6].
If we choose bY(y, ẏ) = 1

2‖y − ẏ‖
2
2, then we can write y∗β(u; ẏ) as:

∇gβ(u; ẏ) = arg min
y∈Rn

{
g∗(y)− 〈u, y〉+ β

2 ‖y − ẏ‖
2
}

= proxg∗/β

(
ẏ + 1

βu
)
. (11)

Smoothing techniques are widely used in the literature, including [4,8,9,22,
44]. The idea of smoothing is to approximate the original problem (1) by a
(partially) smoothed problem. For example, in our setting, we smooth g and
consider the following smoothed problem:

P ?β := min
x∈Rp

{
Pβ(x; ẏ) := f(x) + gβ(Ax; ẏ)

}
. (12)

We define the following generalized proximal operator with Bregman distance
dX induced by a prox-function qX :

PdXθf (u, y) := argmin
v∈X

{
f(v) + 〈y, v − u〉+ 1

θdX (v, u)
}
. (13)

Given that the Bregman distance dX is defined in X and bY is defined in Y,
we define the following operator norm of A:
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‖A‖ := max
x∈Rp

{‖Ax‖Y,∗
‖x‖X

}
. (14)

Different from [4,9,22,44,49], our strategy allows one to update the smooth-
ness parameter β gradually at each iteration. Similar work can be found in [8,
48], which are also essentially different from ours as discussed in Section 5.

3 Main results: Self-Adaptive Double-Loop ASGARD

In this section, we develop a self-adaptive double-loop accelerated smoothed
primal-dual gap reduction algorithm to solve (1) and (2). We first present
the complete algorithm. Next, we provide its convergence analysis. Then, we
specify our algorithm to handle the constrained setting (2). Finally, we extend
our method to handle (1) with the sum of three objective functions where the
third function has Lipschitz gradient.

3.1 The algorithm and its convergence guarantee

Main idea: The proposed algorithm consists of two loops:
– The inner loop performs an accelerated proximal gradient (APG) scheme

[61] to solve the smoothed problem (12) for a fixed β, which is different from
[60], where β is updated at each iteration. We note that in the constrained
case, the smoothed problem (12) is the augmented Lagrangian.

– The outer loop can be considered as a restarting step and simultaneously
decreases the smoothness parameter β.

The intuition behind our new strategy lies on the fact that when applied
to (12) with a fixed β, APG gets O

(
1
k2

)
rate, whereas ASGARD as presented

in [60] controls the parameters in such a way that the algorithm gets O
(

1
k

)
rate throughout its execution. The idea is to take the advantage of the faster
rate of APG for the inner loop while carefully adjusting the number of in-
ner iterations and the smoothness parameter to get the same overall O

(
1
k

)
rate with better practical performance. Our analysis also gives insights on the
heuristic restart strategy outlined in [60]. For the sake of presentation and
its flexibility for using Bregman distances in proximal operators, we choose
Tseng’s variant of APG [61]. However, we can replace by another scheme such
as FISTA [3]. We adaptively determine the number of inner iterations at each
outer iteration. Therefore, there is no need to tune this parameter. The outer
loop gradually decreases the smoothness parameter β such that the algorithm
is still guaranteed to converge to the true solution of (1) or (2).

The algorithm: The complete algorithm is presented in Algorithm 1.
Algorithm 1 uses APG with Option 1 at Step 8. This step requires one sub-

problem in ỹk+1, one proxf of f , one matrix-vector multiplication Ax and its

adjoint A>y at each iteration. Hence, Algorithm 1 has the same per-iteration
complexity as ASGARD, except for the extra step, Step 14, where we update
the dual center ẏs at each outer loop iteration. In general, the number of outer
iterations is small as it is the number of restarting steps. Hence, Step 14 does
not significantly increase the overall computational cost of the entire algorithm.
Note that x̄k+1 computed at Step 9 using Option 1 is a weighted averaging
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Algorithm 1 (Self-Adaptive Double Loop ASGARD Algorithm)

1: Initialization:

2: Choose β0 > 0, ω > 1, a positive integer m0 ≥ 1, x̄0 ∈ Rp, and ẏ0 ∈ Rn.

3: Choose a Bregman distance bY for y and dX for x.

4: Set K0 ← 0, x̂0 ← x̄0, and τ0 := 1.

5: For s = 0 to Smax − 1, perform:

6: For j := 0 to ms − 1 perform

7: Set k ← Ks + j.

8: Update


x̃k ← (1− τk)x̄k + τkx̂

k

ỹk+1 ← argmin
y∈Y

{
g∗(y)− 〈Ax̃k, y〉+ βsbY(y, ẏs)

}
x̂k+1 ← PdXγkf

(
x̂k, A>ỹk+1

)
with γk ← βs

‖A‖2τk .

9: Update x̄k+1 using one of the following two options:[
x̄k+1 ← x̃k + τk(x̂k+1 − x̂k) (Option 1: Averaging step)

x̄k+1 ← PdXβsf/‖A‖2
(
x̃k, A>ỹk+1

)
(Option 2: Proximal step).

10: Update τk ← 2
k−Ks+2 .

11: End For

12: Update Ks+1 ← Ks +ms.

13: Restart x̄Ks+1 ← x̂Ks+1 ≡ x̂Ks+ms .
14: Restart ẏs+1 ← prox 1

βs
g∗

(
ẏs + 1

βs
Ax̄Ks+1

)
.

15: Restart τKs+1
← 1.

16: Set ms+1 ← bω(ms + 1) + 1c − 1.

17: Set βs+1 ← βs(ms+1+1)

ω
√
ms+1(ms+1+3)

18: End For

step. To avoid this averaging, we can choose Option 2, which requires an
additional generalized proximal operator of f .

We can replace Step 8 of Algorithm 1 by the following FISTA step:
ỹk+1 ← argmin

y∈Y

{
g∗(y)− 〈Ax̃k, y〉+ βsbY(y, ẏs)

}
x̄k+1 ← PdXγkf

(
x̃k, A>ỹk+1

)
with γk ← βs

‖A‖2

x̃k+1 ← x̄k+1 + (1−τk)τk+1

τk
(x̄k+1 − x̄k).

(15)

However, we need to replace the general Bregman distance dX by an Euclidean
distance dX (·, ẋ) := 1

2‖ · −ẋ‖
2. The scheme (15) allows us to compute x̄k

through PdXγkf (·) instead of a weighted averaging step as with Option 1.
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Comparison between ASGARD [60] and Algorithm 1: When design-
ing Algorithm 1, we focused on improving the practical efficiency of ASGARD
while retaining the O

(
1
k

)
-worst-case rate on the last primal iterate for the

objective residual and feasibility violation. To achieve this goal, we introduced
several fundamental changes to the algorithm.

Firstly, ASGARD only works with the Euclidean distance in the primal
space while Algorithm 1 works with any Bregman distance.

Secondly, accelerated proximal gradient or (15) serves as a sub-routine
from Step 6 to Step 11 in Algorithm 1 when βk is fixed at βs, while (15) is
intertwined with updates of βk in ASGARD.

Thirdly, as we discussed earlier, the parameter τk in ASGARD is gradually
decreased to zero, making its performance to be slow. Algorithm 1 allows one
to reset τ back to one at Step 15 making use of larger step-sizes at Steps 8 and
9. We can view Algorithm 1 as applying a multiple stage strategy to ASGARD,
where we rerun ASGARD at a new but better initial point at each stage s.

Finally, Algorithm 1 can be the basis for a unified framework, where we
replace the inner loop with any other accelerated schemes such as stochastic
and coordinate descent variants.

The following lemma provides a key estimate for the optimality condition
of (2), whose proof is given in Appendix 6.2.

Lemma 3.1. Suppose that bY has an LbY -Lipschitz gradient, LbY ∈ (0,+∞]

and that g is M̂g-Lipschitz on its domain. Let (x?, y?) be a saddle point of the
Lagrange function of (1) and

Sβ(x̄, ẏ) := max
y∈Rn

{
f(x̄) + 〈y,Ax〉− g∗(y)−βbY(y, ẏ)− f(x?)− g(Ax?)

}
. (16)

Let βb := βLbY , ȳ∗β = y∗β(Ax̄, ẏ), and z̄ a projection of Ax̄ onto dom(g). If
either LbY < +∞ or DY < +∞, then we have



f(x̄) + g(z̄)− P ? ≥ −‖y?‖Y distY,∗ (Ax̄,dom(g))

f(x̄) + g(z̄)− P ? ≤ Sβ(x̄, ẏ)

+ βmin
{
DY , (2M̂g + ‖ẏ‖Y)‖∇ybY(ȳ∗β , ẏ)‖Y,∗

}
distY,∗ (Ax̄, dom(g)) ≤ β‖∇ybY(ȳ∗β , ẏ)‖Y,∗

≤ βb
[
‖y? − ẏ‖Y +

√
‖y? − ẏ‖2Y + 2

βb
Sβ(x̄, ẏ)

]
.

(17)

Now, we are ready to state the main convergence result in the following
theorem, whose proof is given in Appendix 7.

Theorem 3.1. Assume that Assumption 1 holds. Let
{
x̄Ks

}
be the sequence

generated by Algorithm 1 and z̄Ks be the projection of Ax̄Ks onto dom(g). If
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either LbY < +∞ or DY < +∞, then we have

f(x̄Ks) + g(z̄Ks)− P ? ≥ −‖y?‖Y distY,∗
(
Ax̄Ks ,dom(g)

)
f(x̄Ks) + g(z̄Ks)− P ? ≤ ωκ0R

2
0

ρ0 [(ω − 1)Ks + κ0]
+

β0ωκ0C
?
0

(ω − 1)Ks + κ0

distY,∗
(
Ax̄Ks ,dom(g)

)
≤
β0LbYωκ0(

√
2 + 2)R0

ρ0[(ω − 1)Ks + κ0]
,

(18)

where y? is any dual solution of (4), and

ρ0 := β0

(
1− 1

(ω−1)m0

)
κ0 := m0 + ω

ω−1

R0 :=
[

4‖A‖2
(m0+1)2 dX (x?, x̄0) +

β2
0m0(m0+3)
(m0+1)2 bY(y?, ẏ0)

]1/2
C?0 := min

{
DY , (

√
2 + 2)

LbYR0

ρ0

[
2M̂g + ‖y?‖Y +

√
2R0

ρ0

]}
.

Consequently, Algorithm 1 achieves an O
(

1
Ks

)
convergence rate in a non-

ergodic sense: the objective satisfies |f(x̄Ks) + g(z̄Ks) − P ?| ≤ O
(

1
Ks

)
and

the constraints satisfy distY,∗
(
Ax̄Ks ,dom(g)

)
≤ O

(
1
Ks

)
.

Remark 3.1. We make a few remarks about Theorem 3.1.
– The smoothness parameter β is only updated at the outer loop but with

a geometric rate, depending on the factor parameter ω. We can select
different ω to observe its performance in particular applications.

– The convergence rate is given at the last iterate instead of the averaged
sequence as often seen in other primal-dual methods [13,52,57,68].

– In the case where g is Lipschitz continuous (DY < +∞), we can choose any
dual prox-function. Indeed, as distY,∗

(
Ax̄Ks ,dom(g)

)
= 0, we do not need

the third inequality and we can choose bY such that LbY = +∞. Moreover,
z̄Ks = Ax̄Ks . Hence, f(x̄Ks) + g(z̄Ks) = f(x̄Ks) + g(Ax̄Ks) = P (x̄Ks). See
Corollary 3.2 below.

– When Y is unbounded, i.e. DY = +∞ (for instance when there are con-
straints), we need to choose a smooth prox-function for the dual problem.
We develop this case in detail in Subsection 3.2.

– Evaluating the projection of a vector onto dom(g) is usually a simple task
when proxg has an explicit form.

– The convergence rate depends on both the prox-distance between x̄0 to x?

and ẏ0 to y?.

Remark 3.2. By using (42) in our analysis, we can show that the approx-
imated objective sequence

{
f(x̄Ks) + g(z̄Ks)

}
converges to P ? at the rate of

O
(

1
k

)
for any k ≥ 1 instead of k = Ks at the outer loop only.

– If we use the averaging step of APG, then x̄k is computed via a weighted
averaging step of the inner loop.
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– However, if we use the proximal step in APG or the FISTA scheme (15),
then x̄k is computed through the generalized proximal operator PdXβsf/‖A‖2 .

This rate is fully non-ergodic for both inner and outer loops.

3.2 Application to constrained convex optimization

In this subsection, we specify Algorithm 1 to solve the constrained problem
(2). First, we choose the Bregman distance used in smoothing for the dual
variables to have Lipschitz gradient. Under this condition, we have

bY(y, ẏ) ≤
LbY

2
‖y − ẏ‖2Y . (19)

Let us define g(Ax) := δK(Ax− b) the indicator function of K, where the set
K is such that Slater’s condition in Assumption 1 holds. Then, we can write

g(Ax) := sup
y∈Rn

{〈Ax− b, y〉 − sK(y)} , (20)

where sK(y) := supu∈K〈y, u〉 is the support function of K. In this case, the
smooth function gβ(Ax; ẏ) becomes

gβ(Ax; ẏ) := max
y∈Rn

{
〈Ax− b, y〉 − sK(y)− βbY(y, ẏ)

}
. (21)

Example 3.1. Assume that we choose bY(x, ẋ) = 1
2‖x− ẋ‖

2
2. Then

gβ(Ax; ẏ) =
1

2β
distK (Ax− b+ βẏ)

2 − β

2
‖ẏ‖2. (22)

Moreover, the solution y∗β(Ax; ẏ) of the maximization problem in (21) is

y∗β(Ax; ẏ) = ẏ + 1
β (Ax− b− projK (Ax− b+ βẏ)) , (23)

where projK (·) denotes the projection onto K.

In particular, if K is a cone, then y∗β(Ax; ẏ) = proj−K∗
(
ẏ + 1

β (Ax− b)
)

,

where K∗ is the dual cone of K. The dual step for computing ỹk at the second
line of Step 8 of Algorithm 1 becomes

ỹk+1 ← ẏs + 1
βs

(
Ax̃k − b− projK

(
Ax̃k − b+ βsẏ

s
))

(24)

= 1
βs

proj−K∗
(
Ax̃k − b+ βsẏ

s
)
.

In this case, we can apply Theorem 3.1 to (2) with g(z̄Ks+1) = 0, DY =

+∞, and M̂g = 0 to obtain the following corollary.

Corollary 3.1. Assume that Assumption 1 holds and that g(z) := δK(z− b).
Let us choose bY such that LbY < +∞. Let

{
x̄Ks

}
be the sequence generated by

Algorithm 1 and z̄Ks be the projection of Ax̄Ks onto dom(g). Then, we have

f(x̄Ks)− P ? ≥ −‖y?‖Y distY,∗
(
Ax̄Ks ,dom(g)

)
f(x̄Ks)− P ? ≤ ωκ0

(ω − 1)Ks + κ0

[
R2

0

ρ0
+ (
√

2 + 2)
β0LbYR0

ρ0

(
‖y?‖Y +

√
2R0

ρ0

)]
distY,∗

(
Ax̄Ks ,dom(g)

)
≤
β0LbYωκ0(

√
2 + 2)R0

ρ0[(ω − 1)Ks + κ0]
,
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where y? is any dual solution of (6), and ρ0, κ0 and R0 are defined as in
Theorem 3.1.

3.3 Application to Lipschitz convex optimization

If g is globally Lipschitz on Rn, then we recover the framework of [49]. In this
case, dom(g) = Rn and distY,∗

(
Ax̄Ks ,dom(g)

)
= 0. Moreover, DY < +∞.

Theorem 3.1 simplifies as follows.

Corollary 3.2. Assume that Assumption 1 holds and g is Mg-globally Lips-
chitz continuous. Let

{
x̄Ks

}
be the sequence generated by Algorithm 1. Then

0 ≤ f(x̄Ks) + g(Ax̄Ks)− P ? ≤ ωκ0

(ω − 1)Ks + κ0

[
R2

0

ρ0
+ β0DY

]
, (25)

where ρ0, κ0 and R0 are defined as in Theorem 3.1.

3.4 Extension to composite case with three objective terms

It is straightforward to apply Algorithm 1 in the presence of a smooth term
in the objective. The problem template we focus on in this section is

F ? := min
x∈Rp

{
F (x) := f(x) + g(Ax) + h(x)

}
, (26)

where f and g are as described in Assumption 1 and h is a differentiable
function with Lh-Lipschitz gradient. In this case, only Step 8 in Algoritm 1
needs to be modified as follows (see also in [50]):

x̂k+1 ← PdXγkf
(
x̂k,∇h(x̃k) +A>ỹk+1

)
with γk ← βs

τk(‖A‖2+βsLh) .

Note that this modification only changes the analysis of the inner loop as in [50]
which does not affect our analysis of the outer loop. In addition, using Lh in
the stepsize is not restrictive. When the Lipschitz constant is not known, line
search strategies can be employed, see [50] for more details. The convergence
of this variant is still guaranteed by Theorem 3.1 but the quantity R2

0 will
depend on Lh. We omit the details of this result here for succinctness.

4 Numerical experiments

We will test standard ASGARD [60,50], ASGARD with restart [60,50] and
standard Chambolle-Pock’s algorithm [13] on the following problems. Note
that when there is a smooth term in the objective, we use the version of
Chambolle-Pock which linearizes the smooth term, which is also known in the
literature as Vu-Condat’s algorithm [63,19]. We only compare with HOPS [70]
in the first example because it does not apply to Basis pursuit, sparse subspace
clustering, linear programming and Markowitz’s portfolio optimization prob-
lems due to the unboundedness of the dual domain. For the `1-SVM example,
we observed it to be extremely slow and difficult to tune for different datasets.
In all the experiments, we have used the standard bY(y1, y2) = 1

2‖y1 − y2‖22
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and dX (x1, x2) = 1
2‖x1− x2‖22 for smoothing and computing the proximal op-

erators for fair comparison with other methods which do not allow Bregman
distances. In the sequel, we refer to our algorithm as ASGARD-DL, and we
only run Option 1 at Step 9. In some cases, we also compare with ADMM and
its variants.

The parameters are set as follows. For Chambolle-Pock’s method, we set
its step-sizes σ := 1

‖A‖ and τ := 0.9999
‖A‖2σ , where A is the linear operator in (1).

For ASGARD-DL, we choose ω := 1.2 and m0 := 6 which gives us comparable
performance. For restarting ASGARD, we set the restarting frequency to be
s = 10 in all experiments.

4.1 Convergence guarantees: Ergodic vs. Non-ergodic

ALM, ADMM and Chambolle-Pock methods have the convergence rate guar-
antees in an ergodic sense. That is, they have the rate guarantees only on the
averaged iterate sequence. In contrast, our guarantees are for the last iterate
of the algorithm. To illustrate the importance between these two, we consider
two synthetic problems in this section. The first one is a square root LASSO
problem widely studied in the literature, which is given by:

F ? := min
x∈Rp

{
F (x) := ‖Ax− b‖2 + λ‖x‖1

}
,

where A ∈ Rn×p is generated using a Gaussian distribution and is normalized
such that column norms are equal to 1. Given a groundtruth vector x\, we
generate the observations as b = Ax\+σn, where n is a noise vector generated
by a standard Gaussian distribution and σ = 0.01. We set λ = 0.03 which is
tuned to get a good recovery of x\.

In this experiment, we test the ergodic and non-ergodic variants of Lin-
earized ADMM (in the sense that the augmented term in the Lagrangian is
linearized) [30] and Chambolle-Pock’s algorithm [13], as well as the primal
dual homotopy smoothing method HOPS [70]. The methods in [30,13] have
convergence guarantees for their last iterates, however, their rate guarantees
only apply to the averaged sequence. Moreover, they are very successful to
solve this type of problems as can be seen from the literature. The behavior
of the algorithms is given in Figure 1.

As can be seen in Figure 1, last iterates of Linearized ADMM and Cham-
bolle Pock’s algorithms seem to have the best performance. However, the aver-
aged iterates for which the methods have the rate guarantees shows the slowest
convergence behavior. Our method has the same rate as restarted ASGARD
which does not have any convergence guarantees.

As can be observed in Figure 1, the performance of HOPS shows too much
fluctuation with different datasets. We suspect that the reason is that HOPS
requires 3 separate parameters which are very difficult to tune, so a parameter
set that is working well for one dataset performs very poorly for another. Note
that we are using the same set of parameters for different datasets for all the
algorithms. HOPS requires knowing ε0 ≥ F (x0) − F ? which we bound using
the fact that F ? ≥ 0 and we set ε0 = F (x0). The second parameter is the
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Fig. 1 Performance of 5 algorithms for solving square root LASSO problem. Left: σ =
0.1, λ = 0.04, Right: σ = 0.01, λ = 0.03

rate at which they decrease the smoothness parameter, which is similar to
the ω parameter in our algorithm. The last parameter is the number of inner
iterations they need to run which is constant across the run of the method. For
Algorithm 1 in contrast, we only require setting the initial parameters for the
inner iteration and smoothness parameter and we use homotopy to set them
for further iterations. As we illustrate, we have obtained a similar performance
across different datasets with the same set of parameters for our method.

To illustrate the behavior of the last iterates of Linearized ADMM and
Chambolle Pock’s algorithm, we consider a degenerate linear program which
is also studied in [60]:

min
x∈Rp

{
h(x) := 2xp |

p−1∑
k=1

xk = 1, xp −
p−1∑
k=1

xk = 0 (2 ≤ j ≤ n), xp ≥ 0
}
.

The second inequality is repeated n− 1 times which causes the problem to be
degenerate. We define the linear constraint as

Ax :=
[ p−1∑
k=1

xk, xp −
p−1∑
k=1

xk, · · · , xp −
p−1∑
k=1

xk

]>
.

We have b := (1, 0, · · · , 0)
> ∈ Rn. We map the problem to our template in (26)

as f(x) := δ{xp≥0}(xp), g(x) := δ{b}(Ax), and h(x) := 2xp. For this problem,
we pick p = 10 and n = 200.

In addition to Linearized ADMM and Chambolle-Pock’s algorithm, we also
include linearized ALM [30] to solve this example. The result of this test is
given in Figure 2, where F (x) = h(x).

As can be seen from Figure 2, Linearized ADMM, Linearized ALM and
Chambolle-Pock’s algorithm can get extremely slow where our algorithm and
ASGARD with restart makes progress and converges to optimal value with a
very high accuracy, and beyond the theoretical rate guarantee.
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Fig. 2 Performance of 6 algorithms for solving the degenerate linear program.

4.2 Basis Pursuit for recovering Bag-of-Words of text documents

We first consider a basis pursuit problem which is used in signal/image pro-
cessing, statistics, and machine learning [17,23,12]:

min
x∈Rp

{
F (x) := ‖x‖1 | Ax = b

}
, (27)

where A ∈ Rn×p and b ∈ Rn. This problem clearly fits into our template (1)
by mapping f(·) = ‖ · ‖1 and g(·) = δ{b}(·). It is also a special case of (2) with
K = {0}. Proximal operators of both terms are given in a closed form.

We apply this model to text processing. In [1], the authors proposed using
basis pursuit formulation to obtain bag-of-words representation from the uni-
gram embedding representation of a text. The setting can be briefly described
as the following: For any word w, there exists a word vector vw ∈ Rn. For
a given text document {w1, · · · , wT }, one defines the unigram embedding as∑T
i=1 vwi . It is easy to see that unigram embeddings can be written as a linear

system Ax where A ∈ Rn×p contains vwi in the ith column and x ∈ Rp is
the bag-of-words vector which counts the number of occurances of words in a
text. This application is considered in text processing applications to obtain
the original text document given the unigram embeddings [65].

For this experiment, we have used the movie review dataset of [40]. We have
selected 4 different documents and computed the unigram embeddings using
pre-trained word embeddings from GloVe [54] with n = 50 as the dimension of
the word vectors and restricted the vocabulary size to p = 10, 000 for getting
faster results with all algorithms.

We have applied 4 methods to solve (27) for 4 different documents. Here,
the parameter β0 in ASGARD, ASGARD-restart, and ASGARD-DL is set
to β0 := 10‖A‖. Note that this choice is not optimal, but give us reasonable
results in all test. The results are compiled in Figure 3.

As we can observe from Figure 3, our new algorithm works quite well and
is comparable with state-of-the-art methods for low accuracy. It outperforms
them if we run the algorithms long enough to get more accurate solutions
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Fig. 3 Performance of 4 algorithms for solving basis pursuit for 4 text documents.
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than ε = 10−5 both in objective residual and feasibility. Note that (27) is fully
nonsmooth, and A is non-orthogonal. If we apply ADMM to solve (27), then
it requires to solve a general convex subproblem, or a linear system, which has
higher per-iteration complexity than four methods we used in this example.

4.3 The `1-Regularized Least Absolute Deviation Problem (LAD)

Our second example is the `1-regularized least absolute deviation regression
problem, also known as LAD-Lasso in the literature. It is known that when the
noise has a heavy tailed distribution such as Laplace distribution, LAD-Lasso
is more robust to the outliers [64]. The optimization model of this problem is

min
x∈Rp

{
F (x) := ‖Ax− b‖1 + λ ‖x‖1

}
,

where A ∈ Rn×p is generated according to a normal distribution and the noise
n ∈ Rn is generated by Laplace(0, 1) distribution. We generate an observed
vector b := Ax\ + σn, where σ := 0.1 and x\ is a s-sparse vector of ground-
truth. We choose λ := 1/n for the regularization parameter, which gives us a
good recovery of x\.

This problem fits to our template by setting f(·) := λ‖ · ‖1 and g(·) =
‖ · −b‖1. We set β0 in ASGARD, ASGARD-restart, and ASGARD-DL as
β0 := 100‖A‖. We generated three problem instances of the size n := 340r,
p := 1000r, s := 100r, where s is the sparsity level, and r = 1, 2, 3 for the
first, second and third instances, respectively. We present the results of this
example in Figure 4.
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Fig. 4 Performance of 4 algorithms for LAD-Lasso problem in 3 different realization of
varying problem size.

As we can see from Figure 4 that, with the same per-iteration complexity,
our method significantly outperforms the other algorithms after accuracy 10−4.
It beats other algorithms after a couple of hundred iterations and continues
to decrease the objective values. Although this problem is fully nonsmooth,
heuristic restart such as in ASGARD still improves the performance of the
non-restart one, but does not significant outperform.

4.4 Support Vector Machines

Our next example is the following primal support vector machines (SVM)
problem in binary classification. Instead of classical models, we consider the
following `1-regularized nonsmooth hinge loss as proposed in [71]:
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min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

max {0, 1− bi〈ai, x〉}+ λ‖x‖1
}
, (28)

where ai ∈ Rp are the feature vectors and bi ∈ {−1,+1} are the labels for
i = 1, · · · , n. We can cast (28) into our template by setting f(·) := λ‖ · ‖1 and

g(Ax) =
1

n

n∑
i=1

max{0, 1− bi〈ai, x〉} = max
y∈[0,1]n

〈y,Ax+
1

n
1〉,

where A := − 1
n

[
b1a1, b2a2, · · · , bnan

]>
and 1 is a vector of all ones. Clearly,

the proximal operator of g is simply a projection onto [0, 1]n.

We use 10 different datasets from libsvm [15] to test four different algo-
rithms. The initial value β0 in ASGARD, ASGARD-restart, and ASGARD-DL
is set to β0 := 0.1‖A‖. But for covtype dataset, we used β0 := 0.01‖A‖. The
details about the datasets are given in Table 1. We test 4 algorithms on these

Table 1 Datasets used for classification.

Data set Training size Number of features

w1a 2,477 300
w2a 3,470 300
w3a 4,912 300
w4a 7,366 300
w5a 9,888 300
w6a 17,188 300
w7a 24,692 300
w8a 49,749 300
rcv1 20,242 47,236
covtype 581,012 54

ten datasets. The results of the first 8 problems are given in Figure 5, and the
results of the two last problems are in Figure 6.

We again observe that Algorithm 1 significantly outperform the other
methods. Since these algorithms have the same per-iteration complexity, it
is sufficient to compare them in terms of iteration numbers. Although all the
algorithms have O

(
1
k

)
-worst-case convergence rate, due to its double-loop,

Algorithm 1 performs much better than the others, especially for high accu-
rate solutions. This is not surprise. The double-loop allows Algorithm 1 to use
large stepsize by frequently restarting τk and βk, while ASGARD gradually
decreases these parameters to zero, and Chambolle-Pock’s method fixes the
step-size. Note that the O

(
1
k

)
rate of Chambolle-Pock’s method is achieved

via the averaging sequence, which is often much slower than the last iteration
as we showed in Figures 5 and 6.

4.5 Markowitz Portfolio Optimization

We consider a classical example from Markowitz portfolio optimization [11].
The setting we consider here aims at maximizing the expected return for a
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Fig. 5 Performance of 4 algorithms for the `1-regularized SVM problem on {w1a, · · · , w8a}.
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Fig. 6 Performance of 4 algorithms for the `1-regularized SVM problem on {rcv1, covtype}.

given risk level. Assume that we are given a vector ρ ∈ Rn, where ρ is composed
of expected returns from n assets. This problem can be formulated as

max
x∈Rp

{
ρ>x | x ∈ 4, E

[
|(ai − ρ)>x|2

]
≤ ε
}
, (29)

For our setting, we use empirical sample average instead of the expectation
and convert the problem to a minimization problem by negating the objective:

min
x∈Rp

{
−〈ρ, x〉 | x ∈ 4, 1

p‖Ax‖
2
2 ≤ ε

}
, (30)
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where A = [(a1 − ρ), (a2 − ρ), . . . , (an − ρ)]>. We map this problem to our
template (26) by mapping f(·) := δ4(·), g(·) := δ{‖·‖2≤√pε}(·), and h(x) :=

−〈ρ, x〉. One key step of primal-dual algorithms is computing the projection
onto an `2-norm ball and on a simplex. Here, the complexity of simplex pro-
jection is O(p log p).

As before, we apply 4 algorithms to solve (29). We use 4 datasets that are
also considered in [6]. The details about the datasets are given in Table 2.

Table 2 Portfolio optimization datasets and parameters of algorithms.

The size of datasets Parameters used in 4 algorithms.

Datasets n p ε in (30) β0 RF ω ms τ σ

DJIA 507 30 0.002 ‖A‖ 10 1.1 11 1
‖A‖

1
‖A‖

NYSE 5651 36 0.02 100‖A‖ 10 1.1 11 1
‖A‖

1
‖A‖

SP500 1276 25 0.02 100‖A‖ 10 1.2 6 1
‖A‖

1
‖A‖

TSE 1258 88 0.002 100‖A‖ 10 1.1 11 1
‖A‖

1
‖A‖

We summarized the parameters that we used for these algorithms in Ta-
ble 2, where β0 is common to ASGARD, ASGARD-restart, our algorithm,
restart frequency (RF) is specific to ASGARD-restart, ω and ms are specific
to our algorithm and τ and σ are specific to Chambolle-Pock’s algorithm.

We have tested 4 algorithms on 4 real datasets and the results are compiled
in Figure 7. As can be seen, except for SP500 dataset, Algorithm 1 significantly
outperforms the other methods and shows a much faster practical performance
than O

(
1
k

)
guarantee. For SP500 dataset, ASGARD-restart algorithm shows

a comparable performance to our method. However, as discussed in [60], the
effect of restarting to ASGARD method is not understood theoretically. Our
algorithm theoretically preserves the best-known O

(
1
k

)
guarantee while per-

forming as fast as, and most of the times faster than the heuristic restarting
ASGARD method.

4.6 Sparse Subspace Clustering

In the last example, we consider the following sparse subspace clustering prob-
lem which has broad applications in machine learning, computer vision and im-
age processing. This problem is studied extensively in the literature [27,26,55].
In this problem setting, we assume that there exist n points {x1, x2, · · · , xn} ∈
Rp lying in the union of subspaces in Rp. We form a matrix X ∈ Rp×n by
stacking {x1, x2, · · · , xn} as the columns. With this notation, each point can
be represented as

xj = Xcj + ej , s.t. [cj ]j = 0 and 1
>cj = 1.

where cj ∈ Rn represents the coefficients to represent point xj ∈ Rp as an
affine combination of other points, ej ∈ Rp is the representation error and
1 ∈ Rn is a vector of 1’s.
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Fig. 7 Performance of 4 algorithms for Markowitz portfolio optimization problem on 4 real
datasets.



An Adaptive Primal-Dual Framework for Nonsmooth Convex Minimization 23

This formulation can be represented compactly by stacking cj to the jth

column of matrix C as follows:

X = CX s.t. diag(C) = 0, C>1 = 1. (31)

The optimization problem that we will tackle in this subsection is referred to
as an SSC-Lasso problem in the literature, and is written as

min
C∈Rn×n

{
‖C‖1 + λ

2 ‖X − CX‖
2 | diag(C) = 0, C>1 = 1

}
. (32)

In [26] and [27], ADMM is used to solve (32) and recently, [55] proposed an
efficient implementation of ADMM and an application of standard acceler-
ated proximal scheme to this setting. One drawback of applying accelerated
proximal schemes to (32) is the evaluation of the proximal operator of an
`1-norm over the linear constraint C>1 = 1. This requires additional com-
putation cost of log(n)pn2. We fit (32) into our template (26) by defining
f(·) := ‖ · ‖1 + δ{diag(·)=0}(·), g(·) := δ{〈·,1〉=1}(·), and h(·) = λ

2 ‖X −X(·)‖2. If
we apply Algorithm 1 to solve this reformulation, then no extra computation
cost is incurred as in accelerated proximal gradient methods.

We use a classic benchmark Extended Yale B dataset [31] to test the sparse
subspace clustering problem (32). This dataset contains face pictures of 38
individuals taken under 64 different environmental conditions. As previous
works, we use downsampled images of size 48 × 42 pixels which correspond
to p = 2016. We ran experiments with ADMM, TFOCS, and our method
ASGARD-DL. We note that our method includes tuning parameters similar
to ADMM. We use β0 :=

√
‖M‖, where M(C) = C>1. We randomly selected

m = 2, 3, 5 clusters and ran 3 trials for each case. We have used the imple-
mentation of ADMM [27,26] and TFOCS [55] provided by the authors of [55,
27,26]. For fair comparison, since per iteration cost of our method is smaller,
we ran ADMM and TFOCS for 500 iterations and our method 2000 iterations
and saved their runtimes. Then, we determined the minimum of the runtimes
and fetch the results for all the methods corresponding to the same time. We
used objective value and clustering error as comparison measures as [55].

We can see from Table 3 that our method consistently outperforms other
methods in terms of objective values, and has similar performance in terms of
the clustering error. We present our algorithm as another candidate for solving
the classical sparse subspace clustering problem with a lower per iteration cost
than previous approaches ADMM and TFOCS and similar performance.

4.7 Obtaining moderate and high accuracy solutions

Our aim is to show that our ASGARD-DL, Algorithm 1, can reasonably
achieve moderate (ε = 10−4) and high (ε = 10−6) accuracies for some chal-
lenging nonsmooth problems. This is not often the case in first-order primal-
dual methods. We check the KKT conditions in (7) evaluated at the iter-
ates of the algorithm. More precisely, since (7) is equivalent to proxγf (x? −
γA>y?) = 0 and proxβg∗(y

? + βAx?) = 0 for any γ > 0 and β > 0, we
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Table 3 Comparison of 3 methods on the SSC-Lasso problem with m = 2, 3, 5 clusters and
3 independent trials of each.

Problem ADMM TFOCS ASGARD-DL

(n = 2)-objective-trial 1 236.5653 226.4371 225.7578
(n = 2)-Clustering error-trial 1 0.0312 0.0391 0.0391

(n = 2)-objective-trial 2 200.3710 192.2985 191.5177
(n = 2)-Clustering error-trial 2 0.0234 0.0469 0.0469

(n = 2)-objective-trial 3 197.2510 188.7655 188.1555
(n = 2)-Clustering error-trial 3 0.0703 0.0938 0.0938

(n = 3)-objective-trial 1 329.9188 320.9690 319.5887
(n = 3)-Clustering error-trial 1 0.0156 0.0156 0.0312

(n = 3)-objective-trial 2 341.1980 330.6395 329.5704
(n = 3)-Clustering error-trial 2 0.0729 0.0677 0.0677

(n = 3)-objective-trial 3 398.8778 389.3963 388.0739
(n = 3)-Clustering error-trial 3 0.4375 0.3594 0.3646

(n = 5)-objective-trial 1 549.8250 530.0340 526.1905
(n = 5)-Clustering error-trial 1 0.1625 0.1156 0.0906

(n = 5)-objective-trial 2 482.8483 467.0535 461.6563
(n = 5)-Clustering error-trial 2 0.2188 0.1125 0.1562

(n = 5)-objective-trial 3 1029.5459 1017.7089 1025.6752
(n = 5)-Clustering error-trial 3 0.3156 0.3469 0.3156

compute the distance γk‖x̂k+1 − x̂k‖ according to Step 8 in Algorithm 1 that
presents an approximation of proxγf (x?− γA>y?) = 0. Similarly, we compute
βs‖ỹk+1 − ẏs‖ according to Step 8 in Algorithm 1 that presents an approxi-
mation of proxβg∗(y

? + βAx?) = 0. In our experiments, we used the condition

max
{
γk‖x̂k+1 − x̂k‖, βs‖ỹk+1 − ẏs‖

}
≤ ε to terminate the algorithm. A simi-

lar condition was also used in ASGARD and CP. Our experiment was run on
a MacBook Pro. Laptop with 2.7 GHz Intel Core i5 and 16GB memory.

Table 4 The computational time and total number of iterations of three algorithms for
solving (27) to achieve 10−4 and 10−6 accuracy level on the KKT condition (7).

Computational Time (seconds) The total number of iterations
Problem ASGARD-R ASGARD-DL CP ASGARD-R ASGARD-DL CP

KKT error ≤ 10−4

S5 44.052 27.576 8.437 144630 93475 29125
S6 55.277 57.820 21.938 160230 202740 78545
S19 10 52.692 51.464 37.392 171060 172485 126800
S20 9 41.750 36.175 20.129 159870 117125 68110

KKT error ≤ 10−6

S5 - 122.766 240.996 - 419005 830005
S6 - 108.458 - - 380905 -
S19 10 - 104.169 - - 353620 -
S20 9 - 89.566 287.387 - 304560 976325

Firstly, we tested three algorithms: ASGARD-R, our ASGARD-DL, and
CP on 4 real datasets of the basis pursuit problem (27) as an instance of
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the constrained setting (2). We set the maximum number of iterations in all
algorithms at 106. To be fair, we also carefully tuned the step-size σ of the CP
for one problem and used that value for 4 datasets. Since ASGARD could not
achieve 10−4 accuracy after 106 iterations, we did not report the results. The
final results are reported in Table 4, where “-” shows that the algorithm could
not reach the desired accuracy after 106 iterations. From Table 4, we observed
that CP can reach 10−4 accuracy faster than ASGARD-DL. ASGARD-R can
also reach 10−4 accuracy, but it is slower than ASGARD-DL. However, with a
higher accuracy, i.e., 10−6, ASGARD-DL can reach this accuracy in 4 datasets,
while ASGARD-R fails in all cases and CP fails with 2/4 datasets. Moreover,
the number of iterations in the two successful cases in CP is much higher than
that of ASGARD-DL.

Next, we tested four algorithms: ASGARD, ASGARD-R, our ASGARD-
DL, and CP on 10 real datasets of the support vector machine problem (28)
as an instance of the composite form (1). We used the same setting as in the
previous test, and the results are reported in Table 5.

Table 5 The computational time and total number of iterations of three algorithms for
solving (28) to achieve 10−4 and 10−6 accuracy level on the KKT condition (7).

Computational Time (seconds) The total number of iterations
Prob. ASGARD ASGARD-R ASGARD-DL CP ASGARD ASGARD-R ASGARD-DL CP

KKT error ≤ 10−4

w1a 18.880 0.231 0.453 0.705 133440 1575 4335 6445
w2a 20.524 0.305 0.505 1.360 116095 1590 3480 9715
w3a 17.369 0.283 0.391 1.403 100320 1410 2440 10065
w4a 60.305 0.317 0.833 1.284 261780 1245 4145 6990
w5a 79.265 0.409 1.029 4.085 288290 1350 4060 17640
w6a 208.476 0.599 1.803 4.731 491465 1215 4430 12525
w7a 269.159 0.736 2.250 5.652 430840 1005 3635 8955
w8a 715.254 1.199 4.513 8.389 486135 690 3045 5470
rcv1 - 3.777 7.660 8.417 100000 210 1085 1355

covtype 1304.755 26.321 30.378 42.574 58015 1170 1380 1870
KKT error ≤ 10−6

w1a 102.919 8.403 5.496 6.942 785915 65280 54915 69325
w2a 101.371 6.464 5.244 20.529 598780 36945 37290 149995
w3a 175.270 4.888 2.532 13.587 990150 26070 16380 93940
w4a - 11.362 6.110 28.481 - 48345 30900 156100
w5a - 14.867 10.130 31.317 - 51795 41005 136775
w6a - 15.817 10.298 79.060 - 35715 26030 207400
w7a - 27.216 13.700 187.070 - 41205 23035 246765
w8a - 84.382 40.811 453.838 - 53730 27930 290575
rcv1 - 82.550 80.690 159.554 - 17910 18935 34185

covtype - 433.162 1247.115 571.864 - 19170 56465 27255

In this test, ASGARD fails to reach 10−4 accuracy in one problem: rcv1,
and 10−6 accuracy in the 7 last problems, while other three methods all
achieve these accuracy levels. This is not surprise since ASGARD has O

(
1
k

)
-

convergence rate. For 10−4 accuracy, ASGARD-R seems to work well and
slightly outperformed ASGARD-DL and CP. However, for higher accuracy,
10−6, ASGARD-R becomes slower than ASGARD-DL. ASGARD-DL outper-
forms CP in both cases: 10−4 and 10−6 accuracies. Note that the KKT condi-
tion (7) tested in this experiment measures the maximum error of the primal
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and dual optimality conditions at the same time, while in our previous ex-
periments, we only focused on the primal objective residual for the composite
form (1), and both the primal objective residual and the primal feasibility for
the constrained setting (2), but not on the dual optimality condition.

5 Further discussion and comparison with previous work

Theory and numerical methods for solving (1) and (2) are well-studied in the
literature. Due to such a large proportion of solution methods, we only focus
on some recent works that are the most related to our method developed in
this paper. We briefly survey these results to highlight the similarities and
differences with our work.

In [49], Nesterov proposed combining smoothing technique and acceler-
ated gradient methods to obtain O

(
1
ε

)
-iteration complexity to obtain an ε-

approximate solution to (1). However, this method requires ε to be predefined,
and both primal and dual domains are bounded. In addition, the step-size of
the underlying gradient-type scheme is proportional to ε, which is often small.
This leads to a poor performance in early iterations. In [48], Nesterov intro-
duced an excessive gap technique to develop new algorithms that allow the
smoothness parameter to be adaptively updated. Nevertheless, these methods
still require both primal and dual domains to be bounded, and one additional
proximal operator for every two iterations.

In [13,14], A. Chambolle and T. Pock proposed a primal-dual algorithm
to solve (1) that achieves O

(
1
k

)
-convergence rate. This rate is guaranteed on a

gap function and also requires both primal and dual domains to be bounded,
which is unfortunately not applicable to (2). In addition, the guarantee of
their methods relies on ergodic or weighted averaging sequences. Note that,
in sparse and low-rank optimization and image processing, taking averaging
sequence unfortunately destroys desired structures of approximate solutions.
In addition, as also presented with numerical evidence, averaging sequences
perform poorly in practice.

In [70], the authors proposed a homotopy algorithm called Homotopy
Smoothing algorithm (HOPS) which also essentially relies on Nesterov’s smooth-
ing technique [49]. HOPS employs a similar strategy to ours in the sense of
having a double loop structure. However, this method suffers from several
drawbacks. First, it only applies to unconstrained problems as in (1), but not
to (2) due to the unboundedness of the dual domain. Second, it requires know-
ing ε0 = P (x0) − P (x?) to be able to set the initial smoothness parameter.
Third, HOPS requires tuning the number of inner iterations and the rate at
which the smoothness parameter is going to be reduced. The alternative of
HOPS to alleviate this issue requires a bounded primal domain which further
restricts the usage of their method.

For constrained problem (2), among different methods, augmented La-
grangian (ALM), alternating direction method of multipliers (ADMM), al-
ternating minimization algorithms (AMA), and penalty methods are the most
popular. Inexact augmented Lagrangian methods (iALM) [37,45,69] relies on
a double loop structure similar to our method. However, termination rules for



An Adaptive Primal-Dual Framework for Nonsmooth Convex Minimization 27

T
a
b
le

6
S

u
m

m
a
ry

o
f

a
lg

o
ri

th
m

s
th

a
t

re
q
u

ir
e

tw
o

p
ro

x
im

a
l

o
p

er
a
to

rs
ea

ch
it

er
a
ti

o
n

.
N

o
te

th
a
t
z
k

:=
∑ K k=

1
w
k
x
k

w
h

er
e

K
is

th
e

m
a
x
im

u
m

n
u

m
b

er
o
f

it
er

a
ti

o
n

s
a
n

d
w
k

a
re

th
e

w
ei

g
h
ts

.
F

o
r

so
lv

in
g

th
e

u
n

co
n

st
ra

in
ed

p
ro

b
le

m
w

it
h

A
L

M
/
A

D
M

M
m

et
h

o
d

s,
w

e
sp

li
t

th
e

p
ro

b
le

m
.

P
ra

ct
ic

a
li
ty

co
lu

m
n

re
fe

rs
to

w
h

et
h

er
u

si
n

g
th

e
it

er
a
te

in
th

e
co

n
v
er

g
en

ce
ra

te
g
iv

es
a

fa
st

p
ra

ct
ic

a
l

p
er

fo
rm

a
n

ce
o
r

n
o
t.

A
lg

o
ri

th
m

g
is

L
ip

sc
h

it
z

g
=
δ {
b
}

T
y
p

e
o
f

ra
te

S
et
ε

P
ra

ct
ic

a
li
ty

N
es

te
ro

v
[4

9
]

P
(x
k
)
−
P
?
≤
O
( m

a
x
( ε,

1
ε
k
2

))
N

o
t

a
p

p
li
ca

b
le

N
o
n
-e
r
g
o
d
ic

Y
es

N
o

C
h

a
m

b
o
ll
e-

P
o
ck

[1
3
]

G
(z
k
)
≤
O
( 1 k)

C
o
n
v
er

g
en

ce
E

rg
o
d

ic
N
o

N
o

L
in

ea
ri

ze
d

A
L

M
[6

8
]

P
(z
k
)
−
P
?
≤
O
( 1 k)

|f
(z
k
)
−
f
?
|≤
O
( 1 k

)
‖A
x
−
b‖
≤
O
( 1 k

)
E

rg
o
d

ic
N
o

N
o

In
ex

a
ct

A
L

M
[6

9
]

P
(z
k
)
−
P
?
≤
O

(m
a
x

(ε
k
,β
k
))

|f
(z
k
)
−
f
?
|≤
O

(m
a
x

(ε
k

+
β
k
))

‖A
x
−
b‖
≤
O

(β
k
)

N
o
n
-e
r
g
o
d
ic

Y
es

N
o

L
in

ea
ri

ze
d

A
D

M
M

[6
8
]

P
(z
k 1
,z
k 2
)
−
P
?

=
O
( 1 k)

|f
1
(z
k 1
)

+
f
2
(z
k 2
)
−
f
? 1
−
f
? 2
|≤
O
( 1 k

)
‖A

1
z
k 1

+
A

2
z
k 2
−
b‖
≤
O
( 1 k

)
E

rg
o
d

ic
N
o

N
o

A
S

G
A

R
D

[6
0
]

P
(x
k
)
−
P
?
≤
O
( 1 k)

|f
(x
k
)
−
f
?
|≤
O
( 1 k

)
‖A
x
k
−
b‖
≤
O
( 1 k

)
N
o
n
-e
r
g
o
d
ic

N
o

N
o

T
h

is
p

a
p

er
(A

lg
o
ri

th
m

1
)

P
(x
k
)
−
P
?
≤
O
( 1 k)

|f
(x
k
)
−
f
?
|≤
O
( 1 k

)
‖A
x
k
−
b‖
≤
O
( 1 k

)
N
o
n
-e
r
g
o
d
ic

N
o

Y
e
s



28 Quoc Tran-Dinh et al.

these methods require the desired accuracy ε to be set a priori. In addition,
in practice, it is not easy to check when the inner problem is solved to an
εk-accuracy in the k-th iteration. Such an estimate is often derived from the
worst-case complexity bound of the underlying solution method, and therefore,
the corresponding algorithm is not efficient in practice.

While ADMM works really well and is widely used in practice, AMA is
rarely used and requires additional conditions to converge. The best-known
convergence rate of ADMM and its variants such as linearized ADMM and
preconditioned ADMM is O

(
1
k

)
under standard assumptions [33,41,42,52,

68]. Moreover, this rate is given in an ergodic sense, and examples show that
such a rate is optimal. See [10] for more information about the behavior of
ADMM. In practice, however, the ergodic rate is rather pessimistic, which is
much slower than the last iterate sequence (see Subsection 4.1 as an example).
So far, we are not aware of any work showing an O

(
1
k

)
-rate of the standard

ADMM or its linearized and preconditioned ADMM in the last iterate. A
recent work [39] combined preconditioned/linearized ADMM and Nesterov’s
accelerated schemes to achieve an O

(
1
k

)
-non-ergodic convergence rate.

Penalty methods use a quadratic penalty term to move the constraints
to the objective and solve the subproblems by changing the penalty param-
eter [36,43]. Similar to iALM, these methods also do not have clear imple-
mentable termination rules for the inner loop. In addition, they do not involve
dual variables. Therefore, they are often less competitive with primal-dual
methods. A recent work [59] proposed a new alternating quadratic penalty
algorithm to solve (2) that has the same O

(
1
k

)
-non-ergodic convergence rate

as in this paper. Nevertheless, this method is completely different from this
paper and does not have an update on the dual center.

Compared to our previous work [60], ASGARD, our new algorithm shares
some similarities but also has several differences. First, it has inner and outer
loops but the guarantee is on the overall iterations. Second, it works with
any Bregman divergence induced by a general prox-function when solving (1),
while ASGARD only works with the Bregman distances induced by a strongly
convex and Lipschitz gradient prox-function. This excludes some important
Bregman divergences such as the Kullback-Leibler (KL) divergence. Third, our
algorithm allows us to use different norms while computing proximal opera-
tors, compared to ASGARD which works with only Euclidean norms. Fourth,
it automatically restarts both the primal and dual variables as well as the
parameters. It also has a rigorous convergence guarantee, while the practical
restarting variant of ASGARD does not have convergence guarantee.

We developed a novel analysis for our double loop structured smoothing
algorithm which allowed us to derive flexible rules for parameters in both
unconstrained and constrained problems, in contrast to [70]. Our analysis gives
insights on the heuristic restarting strategies in [60] as well as on the number
of inner iterations in the algorithm. It also gives explicit number of iterations
for the inner subproblems and does not require to predefine the horizon as
opposed to iALM. Table 7 summarizes the key differences between different
methods we have discussed in this paper.
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Table 7 A comparison with previous work (β is a smoothness parameter defined in (8)).

ADMM/iALM Penalty / HOPS / ASGARD This work

Constant or adaptive β. Analytically drive β to 0. Analytically drive β to 0.

Update the dual center. Do not move the dual
center.

Update the dual center.

Theory is driven by the
convergence in the dual.

Do not analyze the con-
vergence of the dual.

Only analyze the stabil-
ity of the primal-dual se-
quence.

Inner problems are solved
inexactly.

Inner problems are solved
inexactly.

Only ensure stability for
the number of inner itera-
tions and smoothness pa-
rameter.
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6 Appendix: The proof of technical results

This appendix provides the missing proof of the results in the main text.

6.1 The proof of Example 3.1.

In this example, we have bY(y, ẏ) = 1
2‖y − ẏ‖

2. First, from the definition (21)
of gβ(Ax; ẏ), by using the definition of sK, we write

gβ(Ax; ẏ) = min
u∈K

max
y∈Rn

{〈Ax− b− u, y〉 − βbY(y, ẏ)}

= min
u∈K

max
y∈Rn

{
〈Ax− b− u, y〉 − β

2 ‖y − ẏ‖
2
}
.

The optimality condition of the max problem on the right hand side of the
previous inequality is Ax−b−u−β(y−ẏ) = 0, which implies y = ẏ+ 1

β (Ax−b−
u). In this case, 〈Ax−b−u, y〉− β

2 ‖y−ẏ‖
2 = 1

2β ‖Ax−b−u‖
2+〈ẏ, Ax−b−u〉 =

1
2β ‖Ax− b− u+ βẏ‖2 − β

2 ‖ẏ‖
2. Hence, we obtain

gβ(Ax; ẏ) = min
u∈K

{
1

2β ‖u− (Ax− b+ βẏ)‖2
}
− β

2 ‖ẏ‖
2

= 1
2βdistK (Ax− b+ βẏ)

2 − β
2 ‖ẏ‖

2,

which is (22). In addition, this implies u = projK (Ax− b+ βẏ). Hence, we
obtain y∗β(Ax; ẏ) = ẏ+ 1

β (Ax− b−u) = ẏ+ 1
β (Ax− b− projK (Ax− b+ βẏ)),

which is exactly (23).
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If K is a cone, then using Moreau’s decomposition [2, Theorem 6.30], we
can show that

Ax− b+ βẏ − projK (Ax− b+ βẏ) = projK◦ (Ax− b+ βẏ) ,

where K◦ is the polar set of K. Since K is a cone, K◦ = −K∗, where K∗ is the

dual cone of K. Hence, we have y∗β(Ax; ẏ) = proj−K∗
(
ẏ + 1

β (Ax− b)
)

. �

6.2 The proof of Lemma 3.1: Optimality bounds.

The proof of Lemma 3.1 is based on the following lemma.

Lemma 6.1. Suppose that bY has an LbY -Lipschitz gradient such that LbY ∈
(0,+∞). Let (x?, y?) be a saddle point of the Lagrange function of (1) and

Sβ(x̄, ẏ) := max
y∈Rn

{
f(x̄) + 〈y,Ax〉 − g∗(y)− βbY(y, ẏ)− f(x?)− g(Ax?)

}
.

Let βb := βLbY and ȳ∗β := y∗β(Ax̄, ẏ). Then, we have

f(x̄) + g
(
Ax̄− β∇ybY(ȳ∗β , ẏ)

)
− P ? ≥ −β ‖y?‖Y ‖∇ybY(ȳ∗β , ẏ)‖Y,∗

f(x̄) + g
(
Ax̄− β∇ybY(ȳ∗β , ẏ)

)
− P ? ≤ Sβ(x̄, ẏ) + β ‖ẏ‖Y ‖∇ybY(ȳ∗β , ẏ)‖Y,∗

distY,∗ (Ax̄,dom(g)) ≤ β‖∇ybY(ȳ∗β , ẏ)‖Y,∗

≤ βb
[
‖y? − ẏ‖Y +

(
‖y? − ẏ‖2Y + 2

βb
Sβ(x̄, ẏ)

)1/2]
Proof. First, from the KKT condition (7) we have y? ∈ ∂g(Ax?). Using this
expression, we can show that

f(x̄) + g
(
Ax̄− β∇ybY(ȳ∗β , ẏ)

)
− f(x?)− g(Ax?)

≥ 〈−A>y?, x̄− x?〉+ 〈y?, Ax̄− β∇ybY(ȳ∗β , ẏ)−Ax?〉
= −β〈y?,∇ybY(ȳ∗β , ẏ)〉 (33)

≥ −β‖y?‖Y‖∇ybY(ȳ∗β , ẏ)‖Y,∗,

which proves the first estimate in Lemma 6.1.
Next, we consider optimality condition of

ȳ∗β := argmin
y

{
〈Ax̄, y〉 − g∗(y)− βbY(y, ẏ)

}
as follows:

0 ∈ −Ax̄+ β∇ybY(ȳ∗β , ẏ) + ∂g∗(ȳ∗β).

This implies that ȳ∗β ∈ ∂g(Ax̄ − β∇ybY(ȳ∗β , ẏ)), and in particular we have
Ax̄− β∇ybY(ȳ∗β , ẏ) ∈ dom(g). Hence, we obtain

distY,∗ (Ax̄, dom(g)) ≤ β‖∇ybY(ȳ∗β , ẏ)‖Y,∗. (34)
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Now, using the equality of the Fenchel-Young inequality and the definition of
gβ(Ax̄, ẏ), one can show that

f(x̄) + g
(
Ax̄− β∇ybY(ȳ∗β , ẏ)

)
− f(x?)− g(Ax?)

= Sβ(x̄, ẏ) + g
(
Ax̄− β∇ybY(ȳ∗β , ẏ)

)
− gβ(Ax̄, ẏ)

= Sβ(x̄, ẏ) + 〈ȳ∗β , Ax̄− β∇ybY(ȳ∗β , ẏ)〉 − g∗(ȳ∗β)

− 〈Ax̄, ȳ∗β〉+ g∗(ȳ∗β) + βbY(ȳ∗β , ẏ)

= Sβ(x̄, ẏ)− β〈ȳ∗β ,∇ybY(ȳ∗β , ẏ)〉+ βbY(ȳ∗β , ẏ)

≤ Sβ(x̄, ẏ)− β〈ẏ,∇ybY(ȳ∗β , ẏ)〉 − β

2LbY
‖∇ybY(ȳ∗β , ẏ)‖2Y,∗, (35)

where we used the following bound in the last inequality of (35):

0 = bY(ẏ, ẏ) ≥ bY(ȳ∗β , ẏ) + 〈∇ybY(ȳ∗β , ẏ), ẏ − ȳ∗β〉+
1

2LbY
‖∇ybY(ȳ∗β , ẏ)‖2Y,∗.

The second inequality of Lemma 6.1 follows directly from (35) using the
Cauchy-Schwartz inequality.

Finally, combining (35) and (33), we obtain

0 ≤ Sβ(x̄, ẏ) + β〈y? − ẏ,∇ybY(ȳ∗β , ẏ)〉 − β

2LbY
‖∇ybY(ȳ∗β , ẏ)‖2Y,∗

≤ Sβ(x̄, ẏ) + β ‖y? − ẏ‖Y ‖∇ybY(ȳ∗β , ẏ)‖Y,∗ −
β

2LbY
‖∇ybY(ȳ∗β , ẏ)‖2Y,∗.

Solving the quadratic inequation 0 ≤ Sβ(x̄, ẏ) + β‖y? − ẏ‖Y t − β
2LbY

t2 in

t := ‖∇ybY(ȳ∗β , ẏ)‖Y,∗ ≥ 0, we deduce that

‖∇ybY(ȳ∗β , ẏ)‖Y,∗ ≤ LbY
[
‖y? − ẏ‖Y +

(
‖y? − ẏ‖2Y + 2

βLbY
Sβ(x̄, ẏ)

)1/2]
.

Substituting this estimate into (34), we obtain the last estimate of Lemma
6.1.

Proof of Lemma 3.1. The third inequality of (17) directly follows from
Lemma 6.1. Note that it is void if LbY = +∞. The first inequality of (17) is
proved with the same arguments as the first inequality of Lemma 6.1. For the
second inequality, we have two cases:

1. If LbY < +∞, then we can use Lemma 6.1 to get

f(x̄) + g(z̄)− P ? ≤ f(x̄) + g
(
Ax̄− β∇ybY(ȳ∗β , ẏ)

)
− P ?

+ M̂g‖z̄ −Ax̄+ β∇ybY(ȳ∗β , ẏ)‖Y,∗
≤ Sβ(x̄, ẏ) + β(2M̂g + ‖ẏ‖Y)‖∇ybY(ȳ∗β , ẏ)‖Y,∗,
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where we used the triangle inequality and definition of projection to get

‖z̄ −Ax̄ + β∇ybY(ȳ∗β , ẏ)‖Y,∗
≤ ‖z̄ −Ax̄‖+ ‖Ax̄−Ax̄+ β∇ybY(ȳ∗β , ẏ)‖Y,∗
≤ 2‖Ax̄−Ax̄+ β∇ybY(ȳ∗β , ẏ)‖Y,∗.

2. If DY < +∞, then g is Lipschitz continuous and dom(g) = Rn. Hence,

f(x̄) + g(z̄)− P ? = f(x̄) + g(Ax̄)− P ?

= Sβ(x̄, ẏ) + g(Ax̄)− hβ(Ax̄, ẏ) ≤ Sβ(x̄, ẏ) + βDY .

Combining both bounds we get the second inequality of (17).

7 The proof of Theorem 3.1: Convergence of Algorithm 1

We present the full proof of Theorem 3.1 in this section.
One-stage inequality. With the same argument as in [61], we can prove the
following estimate at the k-th iteration at the stage s of the outer loop, i.e.,
Ks ≤ k < Ks+1 := Ks +ms, of Algorithm 1:

Sβs(x̄
k+1; ẏs) +

τ2
k‖A‖

2

βs
dX (x?, x̂k+1) ≤ (1− τk)Sβs(x̄

k; ẏs)

+
τ2
k‖A‖

2

βs
dX (x?, x̂k),

(36)

where Sβ(x̄; ẏ) := Pβ(x̄; ẏ)−P (x?). Note that this estimate remains true if we
use APG with Option 2. In order to use FISTA as an inner loop solver, instead
of APG, we need a quadratic prox-function for the primal space. Except from
this technical detail, the inequality remains the same.

Next, by strong convexity of bY(·, ẏ), the optimality condition of gβ-subproblem
and convexity of g∗(·), we have

gβ(Ax̄; ẏ) = max
y∈Rn

{〈Ax̄, y〉 − g∗(y)− βbY(y, ẏ)}

≥ 〈Ax̄, y?〉 − g∗(y?)− βbY(y?, ẏ) + βbY(y?, y∗β(Ax̄; ẏ)). (37)

Now, from the optimality condition of (1), we have −A>y? ∈ ∂f(x?). Using
this inclusion and convexity of f , we can derive

f(x̄) ≥ f(x?) + 〈−A>y?, x̄− x?〉. (38)

Combining (37) and (38), we get

Sβ(x̄; ẏ) = Pβ(x̄; ẏ)− P (x?) = f(x̄) + gβ(Ax̄; ẏ)− (f(x?) + g(Ax?))

≥ −βbY(y?, ẏ) + βbY(y?, y∗β(Ax̄; ẏ)).
(39)

From (36), for Ks ≤ k ≤ Ks +ms − 1 we obtain

1
τ2
k
Sβs(x̄

k+1; ẏs) + ‖A‖2
βs

dX (x?, x̂k+1) ≤ 1−τk
τ2
k
Sβs(x̄

k; ẏs) + ‖A‖2
βs

dX (x?, x̂k). (40)
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By (39), we have βbY(y?, ẏ) + Sβ(x̄; ẏ) ≥ 0. Let us define Ds
k := Sβs(x̄

k; ẏs) +
βsbY(y?, ẏs). By adding 1

τ2
k
βsbY(y?, ẏs) to both sides of (40) and using the

definition of Ds
k, we obtain

1
τ2
k
Ds
k+1+ ‖A‖

2

βs
dX (x?, x̂k+1) ≤ (1−τk)

τ2
k

Ds
k+ ‖A‖

2

βs
dX (x?, x̂k)+ βs

τk
bY(y?, ẏs). (41)

Let us choose τk = 2
k−Ks+2 . Then, it is clear that τKs = 1. Moreover, 1−τk

τ2
k

=

(k−Ks+2)(k−Ks)
4 ≤ (k−Ks+1)2

4 = 1
τ2
k−1

. In this case, we can overestimate (41) as

1
τ2
k
Ds
k+1 + ‖A‖

2

βs
dX (x?, x̂k+1) ≤ 1

τ2
k−1

Ds
k + ‖A‖

2

βs
dX (x?, x̂k) + βs

τk
bY(y?, ẏs). (42)

Taking a telescope from k = Ks + 1 to k = Ks+1 − 1 = Ks + ms − 1 of (42)
and reuse (41) for k = Ks, we obtain

Ds
Ks+1

+
τ2
Ks+1−1‖A‖

2

βs
dX (x?, x̂Ks+1) ≤

τ2
Ks+1−1(1−τKs )

τ2
Ks

Ds
Ks

+
τ2
Ks+1−1‖A‖

2

βs
dX (x?, x̂Ks) + βsτ

2
Ks+1−1bY(y?, ẏs)

∑Ks+ms−1
j=Ks

1
τj

(i)

≤
τ2
Ks+1−1‖A‖

2

βs
dX (x?, x̂Ks) + βsτ

2
Ks+1−1bY(y?, ẏs)

∑Ks+ms−1
j=Ks

1
τj
,

where (i) holds since τKs = 1. Since τk = 2
k−Ks+2 , we have τKs+1−1 = 2

ms+1

and
∑Ks+ms−1
j=Ks

1
τj

= ms(ms+3)
4 . Using this relation, the last estimate leads to

Ds
Ks+1

+ 4‖A‖2
(ms+1)2βs

dX (x?, x̂Ks+1) ≤ 4‖A‖2
(ms+1)2βs

dX (x?, x̂Ks) + βsms(ms+3)
(ms+1)2 bY(y?, ẏs).

Since Ds
Ks+1

= Sβs(x̄
Ks+1 ; ẏs) + βsbY(y?, ẏs) ≥ βsbY(y?, y∗βs(Ax̄

Ks+1 ; ẏs)) =

βsbY(y?, ẏs+1), the last estimate leads to

βsbY(y?, ẏs+1) + 4‖A‖2
(ms+1)2βs

dX (x?, x̂Ks+1) ≤ 4‖A‖2
(ms+1)2βs

dX (x?, x̂Ks)

+ βs(ms+3)
(ms+1)2 bY(y?, ẏs). (43)

The s-stage inequality. Using the update rule ms+1 ← bω(ms + 1) + 1c− 1
at Step 16 of Algorithm 1, we have

ω(ms + 1) ≤ ms+1 + 1 ≤ ω(ms + 1) + 1. (44)

Hence, recursively applying this inequality, one can get

m0ω
s ≤ (m0 + 1)ωs − 1 ≤ ms ≤

(
m0 + ω

ω−1

)
ωs − ω

ω−1 ≤ κ0ω
s, (45)

where κ0 := m0 + ω
ω−1 > 0.

From βs+1 := βs(ms+1+1)

ω
√
ms+1(ms+1+3)

at Step 17 of Algorithm 1, we get βs+1 ≤
βs
ω ≤

β0

ωs+1 . Next, we need to lower bound βs. Clearly, for ms ≥ 1, we have

ms+1+1√
ms+1(ms+1+3)

≥ 1− 1
ms+1

≥ 0.
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In this case, we can estimate βs+1 = βs(ms+1+1)

ω
√
ms+1(ms+1+3)

≥ βs
ω

(
1− 1

ms+1

)
=

βs
ω −

βs
ms+1ω

. Substituting (45) on ms+1 and βs into this inequality, we obtain

βs+1 ≥ βs
ω −

c0
ω2s+1 , where c0 := β0

ωm0
.

This condition leads to ωβs+1 + c0
ω2s ≥ βs. By induction, we can show that

ωsβs + c0
∑s−1
j=0

1
ωj ≥ β0, which leads to

βs ≥ 1
ωs

(
β0 − c0ω(ωs−1)

(ω−1)ωs

)
≥ β0

(
1− 1

m0(ω−1)

)
1
ωs . (46)

Here, we use the fact that

ρ0 := β0 −
c0ω(ωs − 1)

(ω − 1)ωs
≥ β0 −

c0ω

ω − 1
= β0

(
1− 1

m0(ω − 1)

)
> 0

since m0 >
1

ω−1 . This condition gives us a lower bound on βs.

Now, from the update rule of βs+1 again, we have
ω2β2

s+1ms+1(ms+1+3)

(ms+1+1)2 = β2
s

and ω2

(ms+1+1)2 ≤
1

(ms+1)2 as in (44). Plugging these estimates into (43), we

obtain

4‖A‖2
(ms+1+1)2 dX (x?, x̂Ks+1) +

β2
s+1ms+1(ms+1+3)

(ms+1+1)2 bY(y?, ẏs+1) ≤
1
ω2

[
4‖A‖2

(ms+1)2 dX (x?, x̂Ks) +
β2
sms(ms+3)
(ms+1)2 bY(y?, ẏs)

]
. (47)

By induction and using that x̂0 = x̄0, we obtain

4‖A‖2
(ms+1)2 dX (x?, x̂Ks) +

β2
sms(ms+3)
(ms+1)2 bY(y?, ẏs) ≤ 1

ω2s

[
4‖A‖2

(m0+1)2 dX (x?, x̄0)

+
β2
0m0(m0+3)
(m0+1)2 bY(y?, ẏ0)

]
.

(48)

Since ms(ms + 3) ≥ ms − 1, combining (48) and (43), we obtain

Sβs(x̄
Ks+1 ; ẏs) ≤ 1

βsω2s

[
4‖A‖2

(m0+1)2 dX (x?, x̄0) +
β2
0m0(m0+3)
(m0+1)2 bY(y?, ẏ0)

]
≤ R2

0

βsω2s , (49)

where R0 :=
[

4‖A‖2
(m0+1)2 dX (x?, x̄0) +

β2
0m0(m0+3)
(m0+1)2 bY(y?, ẏ0)

]1/2
.

Using ms ≤ κ0ω
s in (45) to estimate the total number of iterations Ks+1

of Algorithm 1 as

Ks+1 =
s∑
i=0

mi ≤ κ0

s∑
i=0

ωi = κ0

(
ωs+1−1
ω−1

)
.

This condition leads to ωs ≥ (ω−1)Ks+1+κ0

ωκ0
. We use this to bound ωs via the

number of iterations Ks+1, and denote ρ0 := β0

(
1− 1

m0(ω−1)

)
> 0.
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Using (45) and (46) of βs and ms into (49), we obtain

Sβs(x̄
Ks+1 ; ẏs) ≤ R2

0

ρ0ωs
≤ ωκ0R

2
0

ρ0[(ω−1)Ks+1+κ0] . (50)

Our next step is using (48) to bound ‖ẏs − y?‖Y . Clearly,
β2
sms(ms+3)
(ms+1)2 =

β2
s−1

ω2 ≥ ρ20
ω2s by (46). Using (48), and strong convexity of bY with respect to

the given norm, we can show that

1
2‖ẏ

s − y?‖2Y ≤ bY(y?, ẏs) ≤ R2
0

ρ20
. (51)

The first estimate of (18). Let us denote z̄Ks the projection of Ax̄Ks onto
dom(g). Using Lemma 3.1, and we write

f(x̄Ks) + g(z̄Ks)− P ? ≥ −‖y?‖Y distY,∗
(
Ax̄Ks ,dom(g)

)
,

which is the first estimate of (18).

The third estimate of (18). We define βb,s := βsLbY . Using Lemma 3.1,
we have

distY,∗
(
Ax̄Ks+1 ,dom(g)

)
≤ βs‖∇ybY(y∗β(Ax̄Ks+1 , ẏs), ẏs)‖Y,∗

≤ βb,s
[
‖y? − ẏs‖Y +

(
‖y? − ẏs‖2Y + 2

βb,s
Sβs(x̄

Ks+1 , ẏs)
)1/2]

.

We note that, by using (46) and (49), we can bound
2Sβs (x̄Ks+1 ;ẏs)

βs
≤ 2R2

0

ρ20
.

Using this upper bound and (51) we obtain

distY,∗
(
Ax̄Ks ,dom(g)

)
≤ βb,s−1

(√
2R0

ρ0
+
[
(2 + 2

LbY
)
R2

0

ρ20

]1/2)
≤ (
√

2+2)β0LbYωκ0R0

ρ0[(ω−1)Ks+κ0] ,

which is the third bound of (18).

The second estimate of (18). Using Lemma 3.1, we have

f(x̄Ks+1) + g(z̄Ks+1)− P ? ≤ Sβs(x̄Ks+1 , ẏs)

+ βs min
{
DY , (2M̂g + ‖ẏs‖Y)‖∇ybY(ẏs+1, ẏs)‖Y,∗

}
≤ ωκ0R

2
0

ρ0[(ω−1)Ks+1+κ0]

+ min

{
DY ,

(
√

2+2)LbYR0

ρ0

[
2M̂g + ‖y?‖Y +

√
2R0

ρ0

]}
β0ωκ0

(ω−1)Ks+1+κ0
,

which implies the second estimate of (18) by substituting s+ 1 by s. �
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