
Reducing Metadata Leakage from Encrypted Files and

Communication with PURBs

Kirill Nikitin∗† , Ludovic Barman∗† , Wouter Lueks† , Matthew Underwood, Jean-Pierre
Hubaux† , and Bryan Ford†

†École polytechnique fédérale de Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract

Most encrypted data formats leak metadata via their
plaintext headers, such as format version, encryption
schemes used, number of recipients who can decrypt
the data, and even the recipients’ identities. This
leakage can pose security and privacy risks to users,
e.g., by revealing the full membership of a group
of collaborators from a single encrypted e-mail, or
by enabling an eavesdropper to fingerprint the pre-
cise encryption software version and configuration
the sender used.
We propose that future encrypted data formats im-
prove security and privacy hygiene by producing
Padded Uniform Random Blobs or PURBs: cipher-
texts indistinguishable from random bit strings to
anyone without a decryption key. A PURB’s content
leaks nothing at all, even the application that created
it, and is padded such that even its length leaks as
little as possible.
Encoding and decoding ciphertexts with no cleartext
markers presents efficiency challenges, however. We
present cryptographically agile encodings enabling le-
gitimate recipients to decrypt a PURB efficiently,
even when encrypted for any number of recipients’
public keys and/or passwords, and when these public
keys are from different cryptographic suites. PURBs
employ Padmé, a novel padding scheme that lim-
its information leakage via ciphertexts of maximum
lengthM to a practical optimum of O(log logM) bits,
comparable to padding to a power of two, but with
lower overhead of at most 12% and decreasing with
larger payloads.

*Share first authorship.

1 Introduction

Traditional encryption schemes and protocols aim to
protect only their data payload, leaving related meta-
data exposed. Formats such as PGP [64] reveal in
cleartext headers the public keys of the intended re-
cipients, the algorithm used for encryption, and the
actual length of the payload. Secure-communication
protocols similarly leak information during key and
algorithm agreement. The TLS handshake [45], for
example, leaks in cleartext the protocol version, cho-
sen cipher suite, and the public keys of the parties.
This metadata exposure is traditionally assumed not
to be security-sensitive, but important for the recip-
ient’s decryption efficiency.

Research has consistently shown, however, that at-
tackers can exploit metadata to infer sensitive infor-
mation about communication content. In particular,
an attacker may be able to fingerprint users [40, 52]
and the applications they use use [63]. Using traffic
analysis [17], an attacker may be able to infer web-
sites a user visited [17, 39, 21, 56, 57] or videos a
user watched [43, 50, 44]. On VoIP, metadata can be
used to infer the geo-location [35], the spoken lan-
guage [61], or the voice activity of users [15]. Side-
channel leaks from data compression [32] facilitate
several attacks on SSL [48, 25, 5]. The lack of proper
padding might enable an active attacker to learn
the length of the user’s password from TLS [53] or
QUIC [1] traffic. In social networks, metadata can be
used to draw conclusions about users’ actions [26],
whereas telephone metadata has been shown to be
sufficient for user re-identification and for determin-
ing home locations [36]. Furthermore, by observing
the format of packets, oppressive regimes can infer
which technology is used and use this information
for the purposes of incrimination or censorship. Most

1

TCP packets that Tor sends, for example, are 586
bytes due to its standard cell size [27].

As a step towards countering these privacy threats,
we propose that encrypted data formats should pro-
duce Padded Uniform Random Blobs or PURBs: ci-
phertexts designed to protect all encryption meta-
data. A PURB encrypts application content and
metadata into a single blob that is indistinguishable
from a random string, and is padded to minimize
information leakage via its length while minimizing
space overhead. Unlike traditional formats, a PURB
does not leak the encryption schemes used, who or
how many recipients can decrypt it, or what appli-
cation or software version created it. While simple
in concept, because PURBs by definition contain no
cleartext structure or markers, encoding and decod-
ing them efficiently presents practical challenges.

This paper’s first key contribution is Multi-
Suite PURB or MsPURB, a cryptographically ag-
ile PURB encoding scheme that supports any num-
ber of recipients, who can use either shared pass-
words or public-private key pairs utilizing multiple
cryptographic suites. The main technical challenge
is providing efficient decryption to recipients with-
out leaving any cleartext markers. If efficiency was
of no concern, the sender could simply discard all
metadata and expect the recipient to parse and trial-
decrypt the payload using every possible format ver-
sion, structure, and cipher suite. Real-world adop-
tion requires both decryption efficiency and cryp-
tographic agility, however. MsPURB combines a
variable-length header containing encrypted meta-
data with a symmetrically-encrypted payload. The
header’s structure enables efficient decoding by le-
gitimate recipients via a small number of trial de-
cryptions. MsPURB facilitates the seamless addition
and removal of supported cipher suites, while leak-
ing no information to third parties without a decryp-
tion key. We construct our scheme starting with the
standard construction of the Integrated Encryption
Scheme (IES) [2] and use the ideas of multi-recipient
public-key encryption [34, 7] as a part of the multi-
recipient development.

To reduce information leakage from data lengths,
this paper’s second main contribution is Padmé, a
padding scheme that groups encrypted PURBs into
indistinguishability sets whose visible lengths are rep-
resentable as limited-precision floating-point num-
bers. Like obvious alternatives such as padding to
the next power of two, Padmé reduces maximum in-
formation leakage to O(log logM) bits, where M is

the maximum length of encrypted blob a user or ap-
plication produces. Padmé greatly reduces constant-
factor overhead with respect to obvious alternatives,
however, enlarging files by at most +12%, and less as
file size increases.

In our evaluation, creating a MsPURB ciphertext
takes 235 ms for 100 recipients on consumer-grade
hardware using 10 different cipher suites, and takes
only 8 ms for the common single-recipient single-suite
scenario. Our implementation is in pure Go without
assembly optimizations that might speed up public-
key operations. Because the MsPURB design limits
the number of costly public-key operations, however,
decoding performance is comparable to PGP, and is
almost independent of the number of recipients (up
to 10,000).

Analysis of real-world data sets show that many
objects are trivially identifiable by their unique sizes
without padding, or even after padding to a fixed
block size (e.g., that of a block cipher or a Tor cell).
We show that Padmé can significantly reduce the
number of objects uniquely identifiable by their sizes:
from 83% to 3% for 56k Ubuntu packages, from 87%
to 3% for 191k Youtube videos, from 45% to 8% for
848k hard-drive user files, and from 68% to 6% for
2.8k websites from the Alexa top 1M list. This much
stronger leakage protection incurs an average space
overhead of only 3%.

In summary, our main contributions are as follows:

• We introduce MsPURB, a novel encrypted data
format that reveals no metadata information to
observers without decryption keys, while effi-
ciently supporting multiple recipients and cipher
suites.

• We introduce Padmé, a padding scheme that
asymptotically minimizes information leakage
from data lengths while also limiting size over-
heads.

• We implement these encoding and padding
schemes, evaluating the former’s performance
against PGP and the latter’s efficiency on real-
world data.

2 Motivation and Background

We first offer example scenarios in which PURBs
may be useful, and summarize the Integrated Encryp-
tion Scheme that we later use as a design starting
point.

2

2.1 Motivation and Applications

Our goal is to define a generic method applicable to
most of the common data-encryption scenarios such
that the techniques are flexible to the application
type, to the cryptographic algorithms used, and to
the number of participants involved. We also seek to
enhance plausible deniability such that a user can
deny that a PURB is created by a given application
or that the user owns the key to decrypt it. We envi-
sion several immediate applications that could benefit
from using PURBs.

E-mail Protection. E-mail systems traditionally
use PGP or S/MIME for encryption. Their packet
formats [14], however, exposes format version, en-
cryption methods, number and public-key identities
of the recipients, and public-key algorithms used. In
addition, the payload is padded only to the block
size of a symmetric-key algorithm used, which does
not provide “size privacy”, as we show in §5.3. Us-
ing PURBs for encrypted e-mail could minimize this
metadata leakage. Furthermore, as e-mail traffic is
normally sparse, the moderate overhead PURBs in-
cur can easily be accommodated.

Initiation of Cryptographic Protocols. In most
cryptographic protocols, initial cipher suite negoti-
ation, handshaking, and key exchange are normally
performed unencrypted. In TLS 1.2 [20], an eaves-
dropper who monitors a connection from the start
can learn many details such as cryptographic schemes
used. The unencrypted Server Name Indication (SNI)
enables an eavesdropper to determine which specific
web site a client is connected to among the sites
hosted by the same server. The eavesdropper can also
fingerprint the client [46] or distinguish censorship-
circumvention tools that try to mimic TLS traf-
fic [29, 23]. TLS 1.3 [45] takes a few protective mea-
sures: e.g., less unencrypted metadata during the
handshake, and an experimental extension for en-
crypted SNI [47, 45]. These measures are only par-
tial, however, and leave other metadata, such as pro-
tocol version number, cipher suites, and public keys,
still visible. PURBs could facilitate fully-encrypted
handshaking from the start, provided a client already
knows at least one public key and cipher suite the
server supports. Clients might cache this information
from prior connections, or obtain it out-of-band while
finding the server, e.g., via DNS-based authentica-
tion [28].

Encrypted Disk Volumes. VeraCrypt [30] uses a
block cipher to turn a disk partition into an encrypted

volume where the partition’s free space is filled with
random bits. For plausible deniability and coercion
protection, VeraCrypt supports so-called hidden vol-
umes: an encrypted volume whose content and meta-
data is indistinguishable from the free space of a pri-
mary encrypted volume hosting the hidden volume.
This protection is limited, however, because a pri-
mary volume can host only a single hidden volume.
A potential coercer might therefore assume by default
that the coercee has a hidden volume, and interpret
a claim of non-possession of the decryption keys as a
refusal to provide them. PURBs might enhance co-
ercion protection by enabling an encrypted volume to
contain any number of hidden volumes, facilitating a
stronger “N + 1” defense. Even if a coercee reveals
up to N “decoy” volumes, the coercer cannot know
whether there are any more.

2.2 Integrated Encryption Scheme

The Integrated Encryption Scheme (IES) [2] is a hy-
brid encryption scheme that enables the encryption
of arbitrary message strings (unlike ElGamal, which
requires the message to be a group element), and
offers flexibility in underlying primitives. To send
an encrypted message, a sender first generates an
ephemeral Diffie-Hellman key pair and uses the pub-
lic key of the recipient to derive a shared secret. The
choice of the Diffie-Hellman group is flexible, e.g.,
multiplicative groups of integers or elliptic curves.
The sender then relies on a cryptographic hash func-
tion to derive the shared keys used to encrypt the
message with a symmetric-key cipher and to com-
pute a MAC using the encrypt-then-MAC approach.
The resulting ciphertext is structured as shown in
Figure 1.

pks enc(M) σmac

Figure 1: Ciphertext output of the Integrated Encryp-
tion Scheme where pks is an ephemeral public key of
the sender, and σmac and enc(M) are generated using
the DH-derived keys.

3 Hiding Encryption Metadata

This section addresses the challenges of encoding and
decoding Padded Uniform Random Blobs or PURBs
in a flexible, efficient, and cryptographically agile
way. We first cover notation, system and threat mod-
els, followed by a sequence of strawman approaches

3

that address different challenges on the path towards
the full MsPURB scheme. We start with a scheme
where ciphertexts are encrypted with a shared secret
and addressed to a single recipient. We then improve
it to support public-key operations with a single cip-
her suite, and finally to multiple recipients and mul-
tiple cipher suites.

3.1 Preliminaries

Let λ be a standard security parameter. We use $

to indicate randomness,
$← to denote random sam-

pling, ‖ to denote string concatenation and —value—
to denote the bit-length of “value”. We write PPT
as an abbreviation for probabilistic polynomial-time.
Let Π = (E ,D) be an ind$-cca2-secure authenticated-
encryption (AE) scheme [8] where EK(m) and DK(c)
are encryption and decryption algorithms, respec-
tively, given a messagem, a ciphertext c, and a keyK.
Let MAC = (M,V) be strongly unforgeable Message
Authentication Code (MAC) generation and verifica-
tion algorithms. An authentication tag generated by
MAC must be indistinguishable from a random bit
string.

Let G be a cyclic finite group of prime order p
generated by the group element g where the gap-
CDH problem is hard to solve (e.g., an elliptic curve
or a multiplicative group of integers modulo a large
prime). Let Hide : G(1λ) → {0, 1}λ be a mapping
that encodes a group element of G to a binary string
that is indistinguishable from a uniform random bit
string (e.g., Elligator [10], Elligator Squared [51, 3]).
Let Unhide: {0, 1}λ → G(1λ) be the counterpart to
Hide that decodes a binary string into a group ele-
ment of G.

Let H : G → {0, 1}2λ and Ĥ : {0, 1}∗ → {0, 1}2λ
be two distinct cryptographic hash functions. Let
PBKDF : {salt, password} → {0, 1}2λ be a secure
password-based key-derivation function [41, 11, 33], a
“slow” hash function that converts a salt and a pass-
word into a bit string that can be used as a key for
symmetric encryption.

3.1.1 System Model

Let data be an application-level unit of data (e.g., a
file or network message). A sender wants to send an
encrypted version of data to one or more recipients.
We consider two main approaches for secure data ex-
changes:

(1) Via pre-shared secrets, where the sender shares
with the recipients long-term one-to-one passphrases

Ŝ1, ..., Ŝr that the participants can use in a password-
hashing scheme to derive ephemeral secrets S1, ..., Sr.

(2) Via public-key cryptography, where sender and
recipients derive ephemeral secrets Zi = H(Xyi) =
H(Yi

x) using a hash function H. Here (x,X = gx)
denotes the sender’s one-time (private, public) key
pair and (yi, Yi = gyi) is the key pair of recipient
i ∈ 1, ..., r.

In both scenarios, the sender uses ephemeral se-
crets S1, ..., Sr or Z1, ..., Zr to encrypt (parts of)
the PURB header using an authenticated encryption
(AE) scheme.

We refer to a tuple S = 〈G, p, g, Hide(·),Π,H, Ĥ〉
used in the PURB generation as a cipher suite. This
can be considered similar to the notion of a cipher
suite in TLS [20]. Replacing any component of a suite
(e.g., the group) results in a different cipher suite.

3.1.2 Threat Model and Security Goals

We will consider two different types of computation-
ally bounded adversaries:

1. An outsider adversary who does not hold a pri-
vate key or a password valid for decryption;

2. An insider adversary who is a “curious” and ac-
tive legitimate recipient with a valid decryption
key.

Both adversaries are adaptive.

Naturally, the latter adversary has more power, e.g.,
she can recover the plaintext payload. Hence, we con-
sider different security goals given the adversary type:

1. We seek ind$-cca2 security against the outsider
adversary, i.e., the encoded content and all meta-
data must be indistinguishable from random bits
under an adaptive chosen-ciphertext attack;

2. We seek recipient privacy [4] against the insider
adversary under a chosen-plaintext attack, i.e.,
a recipient must not be able to determine the
identities of the ciphertext’s other recipients.

Recipient privacy is a generalization of the key indis-
tinguishability notion [6] where an adversary is un-
able to determine whether a given public key has been
used for a given encryption.

3.1.3 System Goals

We wish to achieve two system goals beyond security:
• PURBs must provide cryptographic agility.

They should accommodate either one or multi-
ple recipients, allow encryption for each recipient
using a shared password or a public key, and sup-
port different cipher suites. Adding new cipher

4

suites must be seamless and must not affect or
break backward compatibility with other cipher
suites.
• PURBs’ encoding and decoding must be “rea-

sonably” efficient. In particular, the number of
expensive public-key operations should be min-
imized, and padding must not impose excessive
space overhead.

3.2 Encryption to a Single Passphrase

We begin with a simple strawman PURB encod-
ing format allowing a sender to encrypt data using
a single long-term passphrase Ŝ shared with a sin-
gle recipient (e.g., out-of-band via a secure chan-
nel). The sender and recipient use an agreed-upon
cipher suite defining the scheme’s components. The
sender first generates a fresh symmetric session key K
and computes the PURB payload as EK(data). The
sender then generates a random salt and derives the
ephemeral secret S = PBKDF(salt, Ŝ). The sender next
creates an entry point (EP) containing the session
key K, the position of the payload and potentially
other metadata. The sender then encrypts the EP
using S. Finally, the sender concatenates the three
segments to form the PURB as shown in Figure 2.

salt ES(K ‖ meta) EK(data)

entry point payload

Figure 2: A PURB addressed to a single recipient
and encrypted with a passphrase-derived ephemeral
secret S.

3.3 Single Public Key, Single Suite

We often prefer to use public-key cryptography, in-
stead of pre-shared secrets, to establish secure com-
munication or encrypt data at rest. Typically the
sender or initiator indicates in the file’s cleartext
metadata which public key this file is encrypted for
(e.g., in PGP), or else parties exchange public-key
certificates in cleartext during communication setup
(e.g., in TLS). Both approaches generally leak the re-
ceiver’s identity. We address this use case with a sec-
ond strawman PURB encoding format that builds
on the last by enabling the decryption of an entry
point EP using a private key.

To expand our scheme to the public-key scenario,
we adopt the idea of a hybrid asymmetric-symmetric

scheme from the IES (see §2.2). Let (y, Y) denote
the recipient’s key pair. The sender generates an
ephemeral key pair (x,X), computes the ephemeral
secret Z = H(Y x), then proceeds as before, except it
encrypts K and associated metadata with Z instead
of S. The sender replaces the salt in the PURB with
her encoded ephemeral public key Hide(X), where
Hide(·) maps a group element to a uniform random
bit string. The resulting PURB structure is shown in
Figure 3.

Hide(X) EZ(K ‖ meta) EK(data)

encoded pk entry point payload

Figure 3: A PURB addressed to a single recipient
that uses a public key Y , where X is the public key
of the sender and Z = H(Y x) is the ephemeral secret.

3.4 Multiple Public Keys, Single Suite

We often wish to encrypt a message to several re-
cipients, e.g., in multicast communication or mobile
group chat. We hence add support for encrypting one
message under multiple public keys that are of the
same suite.

As the first step, we adopt the idea of multi-
recipient public-key encryption [34, 7] where the
sender generates a single key pair and uses it to de-
rive an ephemeral secret with each of the intended
recipients. The sender creates one entry point per re-
cipient. These entry points contain the same session
key and metadata but are encrypted with different
ephemeral secrets.

As a PURB’s purpose is to prevent metadata leak-
age, including the number of recipients, a PURB can-
not reveal how many entry points exist in the header.
Yet a legitimate recipient needs to have a way to enu-
merate possible candidates for her entry point. Hence,
the primary challenge is to find a space-efficient lay-
out of entry points—with no cleartext markers—such
that the recipients are able to find their segments ef-
ficiently.

Linear Table. The most space-efficient approach is
to place entry points sequentially. In fact, OpenPGP
suggests a similar approach for achieving better pri-
vacy [14, Section 5.1]. However, in this case, decryp-
tion is inefficient: the recipients have to attempt se-
quentially to decrypt each potential entry point, be-

5

fore finding their own or reaching the end of the
PURB.

Fixed Hash Tables. A more computationally-
efficient approach is to use a hash table of a fixed size.
The sender creates a hash table and places each en-
crypted entry point there, identifying the correspond-
ing position by hashing an ephemeral secret. Once all
the entry points are placed, the remaining slots are
filled with random bit strings, hence a third-party is
unable to deduce the number of recipients. The upper
bound, corresponding to the size of the hash table,
is public information. This approach, however, yields
significant space overhead: in the common case of a
single recipient, all the unpopulated slots are filled
with random bits but still transmitted. This approach
also has the downside of imposing an artificial limit
on the number of recipients.

Expanding Hash Tables. We therefore include not
one but a sequence of hash tables whose sizes are
consecutive powers of two. Immediately following the
encoded public key, the sender encodes a hash table
of length one, followed (if needed) by a hash table
of length two, one of length four, etc., until all the
entry points are placed. Unpopulated slots are filled
with random bits. To decrypt a PURB, a recipient
decodes the public key X, derives the ephemeral se-
cret, computes the hash index in the first table (which
is always zero), and tries to decrypt the correspond-
ing entry point. On failure, the recipient moves to the
second hash table, seeks the correct position and tries
again, and so on.

Definitions. We now formalize this scheme. Let r be
the number of recipients and (y1, Y1), . . . , (yr, Yr) be
their corresponding key pairs. The sender generates a
fresh key pair (x,X) and computes one ephemeral se-
cret ki = H(Yi

x) per recipient. The sender uses a sec-
ond hash function Ĥ to derive independent encryption
keys as Zi = Ĥ(“key” ‖ ki) and position keys as Pi =
Ĥ(“pos” ‖ ki). Then the sender encrypts the data and
creates r entry points EZ1(K,meta), ..., EZr (K,meta).
The position of an entry in a hash table j is (Pi
mod 2j). The sender iteratively tries to place an entry
point in HT0 (hash table 0), then in HT1, and so on,
until placement succeeds (i.e., no collision occurs). If
placement fails in the last existing hash table HTj,
the sender appends another hash table HT(j + 1) of
size 2j+1 and places the entry point there. An exam-
ple of a PURB encrypted for five recipients is illus-
trated in Figure 4.

encoded pk HT0 HT1 HT2 payload

Hide(X) EZ1(K) EZ3(K) EZ4(K) EK(data)

EZ2(K) random

EZ5(K)

random

Figure 4: A PURB with hash tables of increasing
sizes (HT0, HT1, HT2). Five and two slots of the
hash tables are filled with entry points and random
bit strings respectively. The metadata “meta” in the
entry points is omitted from the figure. Hash-table
entries are put one after another in the byte repre-
sentation of a PURB.

To decode, a recipient reads the public key; de-
rives the ephemeral secret ki, the encryption key Zi
and the position key Pi; and iteratively tries match-
ing positions in hash tables until the decryption of
the entry point succeeds. Although the recipient does
not initially know the number of hash tables in a
PURB, the recipient needs to do only a single ex-
pensive public-key operation, and the rest are inex-
pensive symmetric-key decryption trials. In the worst
case of a small message encrypted to many recipients,
or a non-recipient searching for a nonexistent entry
point, the total number of trial decryptions required
is logarithmic in the PURB’s size.

In the common case of a single recipient, only a
single hash table of size 1 exists, and the header is
compact. With r recipients, the worst-case compact-
ness is having r hash tables (if each insertion leads
to a collision), which happens with exponentially de-
creasing probability. The expected number of trial
decryptions is log2 r.

3.5 Multiple Public Keys and Suites

In the real world, not all data recipients’ keys might
use the same cipher suite. For example, users might
prefer different key lengths or might use public-key
algorithms in different groups. Further, we must be
able to introduce new cipher suites gradually, of-
ten requiring larger and differently-structured keys
and ciphertexts, while preserving interoperability and
compatibility with old cipher suites. We therefore
build on the above strawman schemes to produce
Multi-Suite PURB or MsPURB, which offers crypto-
graphic agility by supporting the encryption of data
for multiple different cipher suites.

6

When a PURB is multi-suite encrypted, the recip-
ients need a way to learn whether a given suite has
been used and where the encoded public key of this
suite is located in the PURB. There are two obvious
approaches to enabling recipients to locate encoded
public keys for multiple cipher suites: to pack the
public keys linearly at the beginning of a PURB, or
to define a fixed byte position for each cipher suite.
Both approaches incur undesirable overhead. In the
former case, the recipients have to check all possi-
ble byte ranges, performing an expensive public-key
operation for each. The latter approach results in
significant space overhead and lack of agility, as un-
used fixed positions must be filled with random bits,
and adding new cipher suites requires either assigning
progressively larger fixed positions or compatibility-
breaking position changes to existing suites.

Set of Standard Positions. To address this chal-
lenge, we introduce a set of standard byte posi-
tions per suite. These sets are public and stan-
dardized for all PURBs. The set refers to po-
sitions where the suite’s public key could be
in the PURB. For instance, let us consider
a suite PURB X25519 AES128GCM SHA256. We can
define—arbitrarily for now—the set of positions as
{0, 64, 128, 1024}. As the length of the encoded pub-
lic key is fully defined by the suite (32 bytes here,
as Curve25519 is used), the recipients will iteratively
try to decode a public key at [0:32), then [64:96), etc.

If the sender wants to encode a PURB for two
suites A and B, she needs to find one position in
each set such that the public keys do not overlap.
For instance, if setA = {0, 128, 256} and setB =
{0, 32, 64, 128}, and the public keys’ lengths are 64
and 32, respectively, one possible choice would be to
put the public key for suite A in [0:64), and the pub-
lic key for suite B in [64:96). All suites typically have
position 0 in their set, so that in the common case
of a PURB encoded for only one suite, the encoded
public key is at the beginning of the PURB for maxi-
mum space efficiency. Figure 5 illustrates an example
encoding. With well-designed sets, in which each new
cipher suite is assigned at least one position not over-
lapping with those assigned to prior suites, the sender
can encode a PURB for any subset of the suites. We
address efficiency hereunder, and provide a concrete
example with real suites in Appendix B.

Overlapping Layers. One challenge is that suites
might indicate different lengths for both their pub-
lic keys and entry points. An encoder can easily ac-
commodate this requirement by processing each suite

encoded pkA HT0 HT1 HT2 payload

Hide(XA) rnd Hide(XB) EZ2(K) EK(data)

EZ1(K) random

EZ3(K)

random

Figure 5: Example of a PURB encoded for three pub-
lic keys in two suites (suite A and B). The sender
generates one ephemeral key pair per suite (XA and
XB). In this example, XA is placed at the first al-
lowed position, and XB moves to the second allowed
position (since the first position is taken by suite A).
Those positions are public and fixed for each suite.
HT0 cannot be used for storing an entry point, as XA

partially occupies it; HT0 is considered “full” and the
entry point is placed in subsequent hash tables - here
HT1.

used in a PURB as an independent logical layer.
Conceptually, each layer is composed of the public
key and the entry-point hash tables for the recipi-
ents that use a given suite, and all suites’ layers over-
lap. To place the layers, an encoder first initializes
a byte layout for the PURB. Then, she reserves in
the byte layout the positions for the public keys of
each suite used. Finally, she fills the hash tables of
each suite with corresponding entry points. She iden-
tifies whether a given hash-table slot can be filled by
checking the byte layout; the bytes might already be
occupied by an entry point of the same or a differ-
ent suite or one of the public keys. The hash tables
for each suite start immediately after the suite public
key’s first possible position. Thus, upon reception of
a PURB, a decoder knows exactly where to start de-
cryption trials. The payload is placed right after the
last encoded public key or hash table, and its start
position is recorded in the meta in each entry point.

Decoding Efficiency. We have not yet achieved our
decoding efficiency goal, however: the recipient must
perform several expensive public-key operations for
each cipher suite, one for each potential position un-
til the correct position is found. We reduce this over-
head to a single public-key operation per suite by re-
moving the recipient’s need to know in which of the
suite positions the public key was actually placed.
To accomplish this, a sender XORs bytes at all the
suite positions and places the result into one of them.
The sender first constructs the whole PURB as be-

7

fore, then she substitutes the bytes of the already-
written encoded public key with the XOR of bytes at
all the defined suite positions (if they do not exceed
the PURB length), which could even correspond to
encrypted payload. To decode a PURB, a recipient
starts by reading and XORing the values at all the po-
sitions defined for a suite. This results in an encoded
public key, if that suite was used in this PURB.

Encryption Flexibility. Although multiple cipher
suites can be used in a PURB, so far these suites
must agree on one payload encryption scheme, as a
payload appears only once. To lift this constraint,
we decouple encryption schemes for entry points
and payloads. An entry-point encryption scheme is
a part of a cipher suite, whereas a payload encryp-
tion scheme is indicated separately in the metadata
“meta” in each entry point.

3.6 Non-malleability

Our encoding scheme MsPURB so far ensures in-
tegrity only of the payload and the entry point a de-
coder uses. If the entry points of other recipients or
random-byte fillings are malformed, a decoder will
not detect this. If an attacker obtains access to a de-
coding oracle, he can randomly flip bits in an inter-
cepted PURB, query the oracle on decoding validity,
and learn the structure of the PURB including the
exact length of the payload. An example of exploit-
ing malleability is the Efail attacks [42], which tamper
with PGP- or S/MIME-encrypted e-mails to achieve
exfiltration of the plaintext.

To protect PURBs from undetected modification,
we add integrity protection to MsPURB using a
MAC algorithm. A sender derives independent en-
cryption Kenc = Ĥ(“enc” ‖ K) and MAC Kmac =
Ĥ(“mac” ‖ K) keys from the encapsulated key K,
and uses Kmac to compute an authentication tag over
a full PURB as the final encoding step. The sender
records the utilized MAC algorithm in the meta in
the entry points, along with the payload encryption
scheme that now does not need to be authenticated.
The sender places the tag at the very end of the
PURB, which covers the entire PURB including en-
coded public keys, entry point hash tables, payload
ciphertext, and any padding required.

Because the final authentication tag covers the en-
tire PURB, the sender must calculate it after all
other PURB content is finalized, including the XOR-
encoding of all the suites’ public key positions. Filling
in the tag would present a problem, however, if the

tag’s position happened to overlap with one of the
public key positions of some cipher suite, because fill-
ing in the tag would corrupt the suite’s XOR-encoded
public key. To handle this situation, the sender is
responsible for ensuring that the authentication tag
does not fall into any of the possible public key posi-
tions for the cipher suites in use.

To encode a PURB, a sender prepares entry points,
lays out the header, encrypts the payload, adds
padding (see §4), and computes the PURB’s total
length. If any of the byte positions of the authenti-
cation tag to be appended overlap with public key
positions, the sender increases the padding to next
bracket, until the public-key positions and the tag are
disjoint. The sender proceeds with XOR-encoding all
suites’ public keys, and computing and appending the
tag. Upon receipt of a PURB, a decoder computes
the potential public keys, finds and decrypts her en-
try point, learns the decryption scheme and the MAC
algorithm with the size of its tag. She then verifies the
PURB’s integrity and decrypts the payload.

3.7 Complete Algorithms

We summarize the encoding scheme by giving de-
tailed algorithms. We begin by defining helper
HdrPURB algorithms that encode and decode a
PURB header’s data for a single cipher suite.
We then use these algorithms in defining the final
MsPURB encoding scheme.

Recall the notion of a cipher suite S =
〈G, p, g, Hide(·),Π,H, Ĥ〉, where G is a cyclic group
of order p generated by g; Hide is a mapping: G →
{0, 1}λ; Π = (E ,D) is an authenticated-encryption
scheme; and H : G→ {0, 1}2λ, Ĥ : {0, 1}∗ → {0, 1}2λ
are two distinct cryptographic hash functions. Let sk
and pk be a private key and a public key, respec-
tively, for 〈G, p, g〉 defined in a cipher suite. We then
define the full HdrPURB and MsPURB algorithms
as follows:

Algorithms HdrPURB.
HdrPURB.Encap(R,S) → (τ, k1, . . . , kr): Given a set

of public keys R = {pk1 = Y1, . . . , pkr = Yr} of a
suite S:

(1) Pick a fresh x ∈ Zp and compute X = gx

where p, g are defined in S.
(2) Derive k1 = H(Y x1), . . . , kr = H(Y xr).
(3) Map X to a uniform string τX = Hide(X).
(4) Output an encoded public key τ = τX and

k1, . . . , kr.

8

HdrPURB.Decap(sk(S), τ) → k: Given a private key
sk = y of a suite S and an encoded public key τ :
(1) Retrieve X = Unhide(τ).
(2) Compute and output k = H(Xy).

Algorithms MsPURB.
MsPURB.Setup(1λ)→ S: Initialize a cipher suite S =
〈G, p, g, Hide(·),Π,H, Ĥ〉.

MsPURB.KeyGen(S) → (sk, pk): Given a suite S =
〈G, p, g, . . .〉, pick x ∈ Zp and compute X = gx.
Output (sk = x, pk = X).

MsPURB.Enc(R,m) → c: Given a set of public keys
of an indicated suite R = {pk1(S1), . . . , pkr(Sr)}
and a message m:
(1) Pick an appropriate symmetric-key encryp-

tion scheme (Enc,Dec) with key length λK ,
a MAC algorithm MAC = (M,V), and a hash
function H′ : {0, 1}∗ → {0, 1}λK such that the
key length λK matches the security level of
the most conservative suite.

(2) Group R into R1, . . . , Rn, s.t. all public keys
in a group Ri share the same suite Si. Let
ri = |Ri|.

(3) For each Ri:
(a) Run (τi, k1, . . . , kri) =

HdrPURB.Encap(Ri, Si);
(b) Compute entry-point keys keysi = (Z1 =

Ĥ(“key” ‖ k1), . . . , Zri = Ĥ(“key” ‖ kri))
and positions auxi = (P1 = Ĥ(“pos” ‖
k1), . . . , Pri = Ĥ(“pos” ‖ kri)).

(4) Pick K
$← {0, 1}λK .

(5) Record (Enc,Dec), MAC and H′ in meta.
(6) Compute a payload key Kenc = H′(“enc” ‖

K) and a MAC key Kmac = H′(“mac” ‖ K).
(7) Obtain cpayload = EncKenc

(m).
(8) Run c′ ← Layout(τ1, . . . , τn, keys1, . . . ,

keysn, aux1, . . . , auxn, S1, . . . , Sn,K,meta, cpayload)
(see Algorithm 2 on page 23).

(9) Derive an authentication tag σ = MKmac
(c′)

and output c = c′ ‖ σ.
MsPURB.Dec(sk(S), c) → m/⊥: Given a private key
sk of a suite S and a ciphertext c:
(1) Look up the possible positions of a public key

defined by S and XOR bytes at all the posi-
tions to obtain the encoded public key τ .

(2) Run k ← HdrPURB.Decap(sk, τ).
(3) Derive Z = Ĥ(“key” ‖ k) and P = Ĥ(“pos” ‖

k).
(4) Parse c as growing hash tables and, using the

secret Z as the key, trial-decrypt the entries
defined by P to obtain K ‖ meta. If no de-
cryption is successful, return ⊥.

(5) Look up the hash function H′, a MAC =
(M,V) algorithm and the length of MAC out-
put tag σ from meta. Parse c as 〈c′ ‖ σ〉. Derive
Kmac = H′(“mac” ‖ K) and run VKmac

(c′, σ).
On failure, return ⊥.

(6) Derive Kenc = H′(“enc” ‖ K), read the
start and the end of the payload from meta
(it is written by Layout) to parse c′ as
〈hdr ‖ cpayload ‖ padding〉, and return
DecKenc

(cpayload) where Dec is the payload de-
cryption algorithm specified in meta.

Theorem 1. If for each cipher suite S = 〈G, p, g,
Hide(·),Π,H, Ĥ〉 used in a PURB we have that: the
gap-CDH problem is hard relative to G, Hide maps
group elements in G to uniform random strings, Π is
ind$-cca2-secure, and H, Ĥ and H′ are modeled as a
random oracle; and moreover that MAC is strongly
unforgeable with its MACs being indistinguishable
from random, and the scheme for payload encryption
(Enc,Dec) is ind$-cpa-secure, then MsPURB is ind$-
cca2-secure against an outsider adversary.

Proof. See Appendix D.2.

Theorem 1 also implies that an outsider adversary
cannot break recipient privacy under an ind$-cca2 at-
tack, as long as the two possible sets of recipients
N0, N1 induce the same distribution on the length of
a PURB.

Theorem 2. If for each cipher suite S = 〈G, p, g,
Hide(·),Π,H, Ĥ〉, used in a PURB we have that: the
gap-CDH problem is hard relative to G, Hide maps
group elements in G to uniform random strings, Π is
ind$-cca2-secure, H and Ĥ are modeled as a random
oracle, and the order in which cipher suites are used
for encoding is fixed; then MsPURB is recipient-
private against an ind$-cpa insider adversary.

Proof. See Appendix D.3.

3.8 Practical Considerations

Cryptographic agility (i.e., changing the encryption
scheme) for the payload is provided by the meta-
data embedded in the entry points. For entry points
themselves, we recall that the recipient uses trial-
decryption and iteratively tests suites from a known,
public, ordered list. To add a new suite, it suffices
to add it to this list. With this technique, a PURB
does not need version numbers. There is, however, a
trade-off between the number of supported suites and
the maximum decryption time. It is important that

9

a sender follows the fixed order of the cipher suites
during encoding because a varying order might result
in a different header length, given the same set of re-
cipients and sender’s ephemeral keys, which could be
used by an insider adversary.

If a nonce-based authenticated-encryption scheme
is used for entry points, a sender needs to include a
distinct random nonce as a part of entry-point cipher-
text (the nonce of each entry point must be unique
per PURB). Some schemes, e.g., AES-GCM [9], have
been shown to retain their security when the same
nonce is reused with different keys. When such a
scheme is used, there can be a single global nonce to
reuse by each entry point. However, generalizing this
approach of a global nonce to any scheme requires
further analysis.

Hardening Recipient Privacy. The given instan-
tiation of MsPURB provides recipient privacy only
under a chosen-plaintext attack. If information about
decryption success is leaked, an insider adversary
could learn identities of other recipients of a PURB
by altering the header, recomputing the MAC, and
querying candidates. A possible approach to achiev-
ing ind$-cca2 recipient privacy is to sign a complete
PURB using a strongly existentially unforgeable sig-
nature scheme and to store the verification key in
each entry point, as similarly done in the broadcast-
encryption scheme by Barth et al. [4]. This approach,
however, requires adaptation to the multi-suite set-
tings, and it will result in a significant increase of the
header size and decrease in efficiency. We leave this
question for future work.

Limitations. The MsPURB scheme above is not
secure against quantum computers, as it relies on
discrete logarithm hardness. It is theoretically possi-
ble to substitute IES-based key encapsulation with a
quantum-resistant variant to achieve quantum ind$-
cca2 security. The requirements for substitution are
ind$-cca2 security and compactness (it must be pos-
sible to securely reuse sender’s public key to derive
shared secrets with multiple recipients). Furthermore,
as MsPURB is non-interactive, they do not offer for-
ward secrecy.

Simply by looking at the sizes (of the header for
a malicious insider, or the total size for a malicious
outsider), an adversary can infer a bound on the to-
tal number of recipients. We partially address this
with padding in §4. However, no reasonable padding
scheme can perfectly hide this information. If this is
a problem in practice, we suggest adding dummy re-
cipients.

Protecting concrete implementations against tim-
ing attacks is a highly challenging task. The two fol-
lowing properties are required for basic hardening.
First, the implementations of PURBs should always
attempt to decrypt all potential entry points using
all the recipient’s suites. Second, decryption errors of
any source as well as inability to recover the payload
should be processed in constant time and always re-
turn ⊥.

4 Limiting Leakage via Length

The encoding scheme presented above in §3 produces
blobs of data that are indistinguishable from random
bit-strings of the same length, thus leaking no infor-
mation to the adversary directly via their content.
The length itself, however, might indirectly reveal
information about the content. Such leakage is al-
ready used extensively in traffic-analysis attacks, e.g.,
website fingerprinting [39, 21, 56, 57], video iden-
tification [43, 50, 44], and VoIP traffic fingerprint-
ing [61, 15]. Although solutions involving application-
or network-level padding are numerous, they are typ-
ically designed for a specific problem domain, and the
more basic problem of length-leaking ciphertexts re-
mains. In any practical solution, some leakage is un-
avoidable. We show, however, that typical approaches
such as padding to the size of a block cipher are fun-
damentally insufficient for efficiently hiding the plain-
text length effectively, especially for plaintexts that
may vary in size by orders of magnitude.

We introduce Padmé, a novel padding scheme
designed for, though not restricted to, encoding
PURBs. Padmé reduces length leakage for a wide
range of encrypted data types, ensuring asymptot-
ically lower leakage of O(log logM), rather than
O(logM) for common stream- and block-cipher-
encrypted data. Padmé’s space overhead is moder-
ate, always less than 12% and decreasing with file
size. The intuition behind Padmé is to pad ob-
jects to lengths representable as limited-precision
floating-point numbers. A Padmé length is con-
strained in particular to have no more significant
bits (i.e., information) in its mantissa than in its
exponent. This constraint limits information leak-
age to at most double that of conservatively padding
to the next power of two, while reducing over-
head through logarithmically-increasing precision for
larger objects.

Many defenses already exist for specific scenarios,
e.g., against website fingerprinting [21, 58]. Padmé

10

does not attempt to compete with tailored solutions
in their domains. Instead, Padmé aims for a sub-
stantial increase in application-independent length
leakage protection as a generic measure of secu-
rity/privacy hygiene.

4.1 Design Criterion

We design Padmé again using intermediate straw-
man approaches for clarity. To compare these
straightforward alternatives with our proposal, we de-
fine a game where an adversary guesses the plaintext
behind a padded encrypted blob. This game is in-
spired by related work such as defending against a
perfect attacker [58].

Padding Game. Let P denote a collection of plain-
text objects of maximum length M : e.g., data, doc-
uments, or application data units. An honest user
chooses a plaintext p ∈ P , then pads and encodes
it into a PURB c. The adversary knows almost ev-
erything: all possible plaintexts P , the PURB c and
the parameters used to generate it, such as schemes
and number of recipients. The adversary lacks only
the private inputs and decryption keys for c. The ad-
versary’s goal is to guess the plaintext p based on the
observed PURB c of length |c|.
Design Goals. Our goal in designing the padding
function is to manage both space overhead from
padding and maximum information leaked to the ad-
versary.

4.2 Definitions

Overhead. Let c be a padded ciphertext result-
ing from PURB-encoding plaintext p. For sim-
plicity we focus here purely on overhead incurred
by padding, by assuming an unrealistic, “perfectly-
efficient” PURB encoding that (unlike MsPURB)
incurs no space overhead for encryption metadata.
We define the additive overhead of |c| over |p| to be
|c|−|p|, the number of extra bytes added by padding.

The multiplicative overhead of padding is |c|−|p||p| , the

relative fraction by which |c| expands |p|.
Leakage. Let P be a finite space of plaintexts of
maximum length M . Let f : N → N be a padding
function that yields the padded size |c| given a plain-
text length |p|, for p ∈ P . The image of f is a set R
of padded lengths that f can produce from plaintexts
p ∈ P .
We quantify the leakage of padding function f in

terms of the number of elements in R. More precisely,
we define the leakage as the number of bits (amount of
information entropy) required to distinguish a unique
element of R, which is dlog2 |R|e. Intuitively, a func-
tion that pads everything to a constant size larger
than all plaintexts (e.g., f(p) = 1 Tb) leaks no in-
formation to the adversary, because |R| = 1 (and
observing |c| = 1 Tb leaks no information about the
plaintext), whereas more fine-grained padding func-
tions leak more bits.

4.3 Strawman Padding Approaches

We first explore two strawman designs, based on
different padding functions f . A padding function
that offers any useful protection cannot be one-to-
one, otherwise the adversary could trivially invert it
and recover |p|. We also exclude randomized padding
schemes for simplicity, and because in practice ad-
versaries can typically cancel out and defeat random
padding factors statistically over many observations.
Therefore, only padding functions that group many
plaintext lengths into fewer padded ciphertexts are of
interest in our analysis.

Strawman 1: Fixed-Size Blocks. We first con-
sider a padding function f(L) = b · dL/be, where b
is a block size in bytes. This is how objects often
get “padded” by default in practice, e.g., in block ci-
phers or Tor cells. In this case, the PURB’s size is
a multiple of b, the maximum additive overhead in-
curred is b−1 bytes, and the leakage is dlog2 M/be =
O(logM), where M is the maximum plaintext size.

In practice, when plaintext sizes differ by orders of
magnitude, there is no good value for b that serves
all plaintexts well. For instance, consider b = 1 MB.
Padding small files and network messages would in-
cur a large overhead: e.g., padding Tor’s 512 B cells
to 1 MB would incur overheads of 2000×. In con-
trast, padding a 700 MB movie with at most 1 MB of
chaff would add only a little confusion to the adver-
sary, as this movie may still be readily distinguishable
from others by length. To reduce information leakage
asymptotically over a vast range of cleartext sizes,
therefore, padding must depend on plaintext size.

Strawman 2: Padding to Powers of 2. The next
step is to pad to varying-size blocks, which is the ba-
sis for our actual scheme. The intuition is that for
small plaintexts, the blocks are small too, yielding
modest overhead, whereas for larger files, blocks are
larger and group more plaintext lengths together, im-
proving leakage asymptotically. A simple approach is

11

to pad plaintexts into buckets bi of size varying as a
power of some base, e.g., two, so bi = 2i. The padding
function is thus f(L) = 2dlog2 Le. We call this straw-
man NextP2.

Because NextP2 pads plaintexts of maximum
length M into at most dlog2Me buckets, the image R
of f contains only O(logM) elements. This represents
only O(log logM) bits of entropy or information leak-
age, a major asymptotic improvement over fixed-size
blocks.

The maximum overhead is substantial, however, al-
most +100%: e.g., a 17 GB Blu-Ray movie would be
padded into 32 GB.

Using powers of another base x > 2, we reduce
leakage further at a cost of more overhead: e.g.,
padding to the nearest power of 3 incurs overhead up
to +200%, with less leakage but still O(log logM).
We could reduce overhead by using a fractional base
1 < x < 2, but fractional exponents are cumbersome
in practical padding functions we would prefer to be
simple and operate only on integers. Although this
second strawman succeeds in achieving asymptoti-
cally lower leakage than padding to fixed-size blocks,
it is less attractive in practice due to high overhead
when x ≥ 2 and due to computation complexity when
1 < x < 2.

4.4 Padmé

We now describe our padding scheme Padmé, which
limits information leakage about the length of the
plaintext for wide range of encrypted data sizes. Sim-
ilarly to the previous strawman, Padmé also asymp-
totically leaks O(log logM) bits of information, but
its overhead is much lower (at most 12% and decreas-
ing with L).

Intuition. In NextP2, any permissible padded
length L has the form L = 2n. We can therefore
represent L as a binary floating-point number with
a blog2 nc + 1-bit exponent and a mantissa of zero,
i.e., no fractional bits.

In Padmé, we similarly represent a permissible
padded length as a binary floating-point number,
but we allow a non-zero mantissa at most as long
as the exponent (see Figure 6). This approach dou-
bles the number of bits used to represent an allowed
padded length – hence doubling absolute leakage via
length – but allows for more fine-grained buckets,
reducing overhead. Padmé asymptotically leaks the
same number of bits as NextP2, differing only by
a constant factor of 2, but reduces space overhead

blog2 nc + 1-bit exponent 0-bit mantissa

In the strawman NextP2, the allowed length L = 2n

can be represented as a binary floating-point number
with a blog(n) + 1c bits of exponent and no mantissa.

blog2 nc + 1-bit exponent blog2 nc + 1-bit mantissa

Figure 6: Padmé represents lengths as floating-point
numbers, allowing the mantissa to be of at most
blog2 nc+ 1 bits.

103 104 105 106

original size L [B]

0

20

40

60

80

100

p
ad
d
in
g
ov
er
h
ea
d
[%

]

PadMé

Next power of 2

Figure 7: Maximum multiplicative expansion over-
head with respect to the plaintext size L. The näıve
approach to pad to the next power of two has
a constant maximum overhead of 100%, whereas
Padmé’s maximum overhead decreases with L, fol-
lowing 1

2 log2 L
.

by almost 10× (from +100% to +12%). More im-
portantly, the multiplicative expansion overhead de-
creases with L (see Figure 7).

Algorithm. To compute the padded size L′ = f(L),
ensuring that its floating-point representation fits in
at most 2× blog2 nc+ 1 bits, we require the last E −
S bits of L′ to be 0. E = blog2 Lc is the value of
the exponent, and S = blog2Ec + 1 is the size of
the exponent’s binary representation. The reason for
the substraction will become clear later. For now, we
demonstrate how E and S are computed in Table 1.

Recall that Padmé requires the mantissa’s bit
length to be no longer than that of the exponent.
In Table 1, for the value L = 9 the mantissa is longer
than the exponent: it is “too precise” and therefore
not a permitted padded length. The value 10 is per-
mitted, however, so a 9 byte-long ciphertext is padded
to 10 bytes.

12

Table 1: The IEEE floating-point representations of 8,
9 and 10. The value 8 has 1 bit of mantissa (the initial
1 is omitted), and 2 bits of exponents; 9 has a 3-bits
mantissa and a 2-bit exponent, while the value 10 as 2
bits of mantissa and exponents. Padmé enforces the
mantissa to be no longer than the exponent, hence 9
gets rounded up to the next permitted length 10.

L L E S IEEE representation
8 0b1000 3 2 0b1.0 * 2ˆ0b11
9 0b1001 3 2 0b1.001 * 2ˆ0b11
10 0b1010 3 2 0b1.01 * 2ˆ0b11

To understand why Padmé requires the low E−S
bits to be 0, notice that forcing all the last E bits
to 0 is equivalent to padding to a power of two. In
comparison, Padmé allows S extra bits to represent
the padded size, with S defined as the bit length of
the exponent.

Algorithm 1 specifies the Padmé function pre-
cisely.

Algorithm 1: Padmé

Data: length of content L
Result: length of padded content L′

E ← blog2 Lc // L’s floating-point exponent

S ← blog2Ec+ 1 // # of bits to represent E

z ← E − S // # of low bits to set to 0

m← (1� z)− 1 // mask of z 1’s in LSB

// round up using mask m to clear last z bits

L′ ← (L+m) & ∼m

Leakage and Overhead. By design, if the max-
imum plaintext size is M , Padmé’s leakage is
O(log logM) bits, the length of the binary represen-
tation of the largest plaintext. As we fix E−S bits to
0 and round up, the maximum overhead is 2E−S − 1.
We can estimate the maximum multiplicative over-
head as follows:

max overhead =
2E−S − 1

L
<

2E−S

L

≈ 2blog2 Lc−blog2 log2 Lc−1

L

≈ 1

2 · 2log2 log2 L

=
1

2 log2 L
(1)

Thus, Padmé’s maximum multiplicative overhead
decreases with respect to the file size L. The max-

imum overhead is +11.11%, when padding a 9-byte
file into 10 bytes. For bigger files, the overhead is
smaller.

On Optimality. There is no clear sweet spot on the
leakage-to-overhead curve. We could easily force the
last 1

2 (E−S) bits to be 0 instead of the last E−S bits,
for example, to reduce overhead and increase leakage.
Still, what matters in practice is the relationship be-
tween L and the overhead. We show in §5.3 how this
choice performs with various real-world datasets.

5 Evaluation

Our evaluation is two-fold. First, we show the per-
formance and overhead of the PURB encoding and
decoding. Second, using several datasets, we show
how Padmé facilitates hiding information about data
length.

5.1 Implementation

We implemented a prototype of the PURB encoding
and padding schemes in Go. The implementation fol-
lows the algorithms in §3.7, and it consists of 2 kLOC.
Our implementation relies on the open-source Kyber
library1 for cryptographic operations. The code is de-
signed to be easy to integrate with existing applica-
tions. The code is still proof-of-concept, however, and
has not yet gone through rigorous analysis and hard-
ening, in particular against timing attacks.

Reproducibility. All the datasets, the source code
for PURBs and Padmé, as well as scripts for re-
producing all experiments, are available in the main
repository2.

5.2 Performance of the PURB Encod-
ing

The main question we answer in the evaluation of
the encoding scheme is whether it has a reason-
able cost, in terms of both time and space overhead,
and whether it scales gracefully with an increasing
number of recipients and/or cipher suites. First, we
measure the average CPU time required to encode
and decode a PURB. Then, we compare the decod-
ing performance with the performance of plain and
anonymized OpenPGP schemes described below. Fi-
nally, we show how the compactness of the header

1https://github.com/dedis/kyber
2https://github.com/dedis/purb

13

https://github.com/dedis/kyber
https://github.com/dedis/purb

changes with multiple recipients and suites, as a per-
centage of useful bits in the header.

Anonymized PGP. In standard PGP, the
identity—more precisely, the public key ID—of
the recipient is embedded in the header of the
encrypted blob. This plaintext marker speeds up
decryption, but enables a third party to enumerate
all data recipients. In the so-called anonymized
or “hidden” version of PGP [14, Section 5.1], this
key ID is substituted with zeros. In this case, the
recipient sequentially tries the encrypted entries of
the header with her keys. We use the hidden PGP
variant as a comparison for PURBs, which also does
not indicate key IDs in the header but uses a more
efficient structure. The hidden PGP variant still
leaks the cipher suites used, the total length, and
other plaintext markers (version number, etc.).

5.2.1 Methodology

We ran the encoding experiments on a consumer-
grade laptop, with a quad-core 2.2 GHz Intel Core
i7 processor and 16 GB of RAM, using Go 1.12.5. To
compare with an OpenPGP implementation, we use
and modify Keybase’s fork3 of the default Golang
crypto library4, as the fork adds support for the
ECDH scheme on Curve25519.

We further modify Keybase’s implementation to
add the support for the anonymized OpenPGP
scheme. All the encoding experiments use a PURB
suite based on the Curve25519 elliptic-curve group,
AES128-GCM for entry point encryption and
SHA256 for hashing. We also apply the global nonce
optimization, as discussed in §3.8. For experiments
needing more than one suite, we use copies the above
suite to ensure homogeneity across timing experi-
ments. The payload size in each experiment is 1 KB.
For each data point, we generate a new set of keys,
one per recipient. We measure each data point 20
times, using fresh randomness each time, and depict
the median value and the standard deviation.

5.2.2 Results

Encoding Performance. In this experiment, we
first evaluate how the time required to encode a
PURB changes with a growing number of recipients
and cipher suites, and second, how the main compu-
tational components contribute to this duration. We

3https://github.com/keybase/go-crypto
4https://github.com/golang/crypto

divide the total encoding time into three components.
The first is authenticated encryption of entry points.
The second is the generation and Elligator encoding
of sender’s public keys, one per suite. A public key
is derived by multiplying a base point with a freshly
generated private key (scalar). If the resultant pub-
lic key is not encodable, which happens in half of
the cases, a new key is generated. Point multiplica-
tion dominates this component, constituting ≈ 90%
of the total time. The third is the derivation of a
shared secret with each recipient, essentially a single
point-multiplication per recipient. Other significant
components of the total encoding duration are pay-
load encryption, MAC computation and layout com-
position. We consider cases using one, three or ten
cipher suites. When more than one cipher suite is
used, the recipients are equally divided among them.

Figure 8a shows that in the case of a single recipi-
ent, the generation of a public key and the computa-
tion of a shared secret dominate the total time and
both take ≈ 2 ms. As expected, computing shared se-
crets starts dominating the total time when the num-
ber of recipients grows, whereas the duration of the
public-key generation only depends on a number of
cipher suites used. The encoding is arguably efficient
for most cases of communication, as even with hun-
dred recipients and ten suites, the time for creating
a PURB is 235 ms.

Decoding Performance. We measure the worst-
case CPU time required to decipher a standard PGP
message, a PGP message with hidden recipients, a
flat PURB that has a flat layout of entry points with-
out hash tables, and a standard PURB. We use the
Curve25519 suite in all the PGP and PURB schemes.

Figure 8b shows the results. The OpenPGP library
uses the assembly-optimized Go elliptic library for
point multiplication, hence the multiplication takes
≈ 0.05–0.1 ms there, while it takes ≈ 2–3 ms in Ky-
ber. This results in a significant difference in abso-
lute values for small numbers of recipients. But our
primary interest is the dynamics of total duration.
The time increase for anonymous PGP is linear be-
cause, in the worst case, a decoder has to derive as
many shared secrets as there are recipients. PURBs
in contrast exhibit almost constant time, requiring
only a single multiplication regardless of the number
of recipients. A decoder still has to perform multiple
entry-point trial decryptions, but one such operation
would account for only ≈ 0.3% of the total time in the
single-recipient, single-suite scenario. The advantage
of using hash tables, and hence logarithmically less

14

https://github.com/keybase/go-crypto
https://github.com/golang/crypto

1 3 10 100
Number of Recipients

10−2

10−1

100

101

102

103

104
C
P
U
ti
m
e
[m

s]

EncHeader
KeyGen
SharedSecrets
Total time

1 suite
3 suites
10 suites

(a) The CPU cost of encoding a PURB given the number
of recipients and of cipher suites. EncHeader: encryption
of entry points; KeyGen: generation and hiding of public
keys; SharedSecrets: computation of shared secrets.

100 101 102 103 104

Number of Recipients

10−1

100

101

102

D
ec
od
in
g
ti
m
e
[m

s]

A
ss
em

b
ly
-

op
ti
m
iz
at
io
n

PGP standard

PGP hidden

PURBs flat

PURBs standard

(b) The worst-case CPU cost of decoding for PGP, PGP
with hidden recipients, PURBs without hash tables (flat),
and standard PURBs.

Figure 8: Performance of the PURBs encoding.

100 101 102

Number of Recipients

0

20

40

60

80

100

P
er
ce
nt
ag
e
of

u
se
fu
l
b
it
s
in

th
e
h
ea
d
er

[%
]

1 Suite

3 Suites

10 Suites

Figure 9: Compactness of the PURB header (% of
non-random bits).

symmetric-key operations, is illustrated by the dif-
ference between PURBs standard and PURBs flat,
which is noticeable after 100 recipients and will be-
come more pronounced if point multiplication is op-
timized.

Header Compactness. Compared with placing the
header elements linearly, our expanding hash table
design is less compact, but enables more efficient de-
coding. Figure 8b shows an example of this trade-off,
PGP hidden versus PURBs standard.

In Figure 9, we show the compactness, or the per-
centage of the PURB header that is filled with actual
data, with respect to the number of recipients and
cipher suites. Not surprisingly, an increasing number
of recipients and/or suites increases the collisions and
reduces compactness: 45% for 100 recipients and 1
suite, 36% for 100 recipients and 10 suites. In the
most common case of having one recipient in one
suite, however, the header is perfectly compact. Fi-
nally, there is a trade-off between compactness and
efficient decryption. We can easily increase compact-
ness by resolving entry point hash table collisions lin-
early, instead of directly moving to the next hash ta-
ble. The downside is that the recipient has more entry
points to try.

5.3 Performance of Padmé Padding

In evaluating a padding scheme, one important met-
ric is overhead incurred in terms of bits added to the
plaintexts. By design, Padmé’s overhead is bounded
by 1

2·log2 L
. As discussed in §4.4, Padmé does not es-

cape the typical overhead-to-leakage trade-off, hence
Padmé’s novelty does not lie in this tradeoff. Rather,
the novelty lies in the practical relation between L
and the overhead. Padmé’s overhead is moderate, at
most +12% and much less for large PURBs.

A more interesting question is how effectively, given
an arbitrary collection of plaintexts P , Padmé hides

15

Table 2: Datasets used in the evaluation of anonymity
provided by Padmé.

Dataset # of objects
Ubuntu packages 56,517
YouTube videos 191,250
File collections 3,027,460
Alexa top 1M Websites 2,627

which plaintext is padded. Padmé was designed to
work with an arbritrary collection of plaintexts P . It
remains to be seen how Padmé performs when ap-
plied to a specific set of plaintexts P , i.e., with a dis-
tribution coming from the real world, and to establish
how well it groups files into sets of identical length.
In the next section, we experiment with four datasets
made of various objects: a collection of Ubuntu pack-
ages, a set of YouTube videos, a set of user files, and
a set of Alexa Top 1M websites.

5.3.1 Datasets and Methodology

The Ubuntu dataset contains 56,517 unique packages,
parsed from the official repository of a live Ubuntu
16.04 instance. As packages can be referenced in mul-
tiple repositories, we filtered the list by name and ar-
chitecture. The reason for padding Ubuntu software
updates is that the knowledge of updates enables a lo-
cal eavesdropper to build a list of packages and their
versions that are installed on a machine. If some of
the packages are outdated and have known vulnera-
bilities, an adversary might use it as an attack vector.
A percentage of software updates still occurs over un-
encrypted connections, which is still an issue; but en-
crypted connections to software-update repositories
also expose which distribution and the kind of up-
date being done (security / restricted5 / multiverse6

/ etc). We hope that this unnecessary leakage will
disappear in the near future.

The YouTube dataset contains 191,250 unique
videos, obtained by iteratively querying the YouTube
API. One semantic video is generally represented
by 2 − 5 .webm files, which corresponds to various
video qualities. Hence, each object in the dataset is
a unique (video, quality) pair. We use this dataset
as if the videos were downloaded in bulk rather
than streamed; that is, we pad the video as a sin-
gle file. The argument for padding YouTube videos
as whole files is that, as shown by related work
[43, 50, 44], variable-bitrate encoding combined with

5Contains proprietary software and drivers.
6Contains software restricted by copyright.

streaming leak which video is being watched. If
YouTube wanted to protect the privacy of its users,
it could re-encode everything to constant-bitrate en-
coding and still stream it, but then the total length
of the stream would still leak information. Alter-
natively, it could adopt a model similar to that of
the iTunes store, where videos have variable bit-rate
but are bulk-downloaded; but again, the total down-
loaded length would leak information, requiring some
padding. Hence, we explore how unique the YouTube
videos are by length with and without padding.

The files dataset was constituted by collecting
the file sizes in the home directories (‘~user/’) of
10 co-workers and contains 3,027,460 of both per-
sonal files and configuration files. These files were
collected on machines running Fedora, Arch, and
Mac OS X. The argument for analyzing the unique-
ness of those files is not to encrypt each file individ-
ually – there is no point in hiding the metadata of a
file if the file’s location exposes everything about it,
e.g. ‘~user/.ssh’ – but rather to quantify the privacy
gain when padding those objects.

Finally, the Alexa dataset is made of 2,627 web-
sites from the Alexa Top 1M list. The size of each
website is the sum of all the resources loaded by
the webpage, which has been recorded by piloting a
‘chrome-headless’ instance with a script, mimicking
real browsing. One reason for padding whole web-
sites – as opposed to padding individual resources –
is that related work in website fingerprinting showed
the importance of the total downloaded size [21]. The
effectiveness of Padmé when padding individual re-
sources, or for instance bursts [58], is left as interest-
ing future work.

5.3.2 Evaluation of Padmé

The distribution of the objects sizes for all the
datasets is shown in Figure 10. Intuitively, it is harder
for an efficient padding scheme to build groups of
same-sized files when there are large objects in the
dataset. Therefore, we expect the last 5% to 10% of
the four datasets to remain somewhat unique, even
after padding.

For each dataset, we analyze the anonymity set
size of each object. To compute this metric, we group
objects by their size, and report the distribution of
the sizes of these groups. A large number of small
groups indicate that many objects are easily iden-
tifiable. For each dataset, we compare three differ-
ent approaches: the NextP2 strawman, Padmé, and
padding to a fixed block size of 512B, like a Tor cell.

16

102 104 106 108 1010 1012

Size of objects [bits]

0

20

40

60

80

100

P
er
ce
nt
ile

alexa

youtube

files home

ubuntu packages

Figure 10: Distribution of the sizes of the objects in
each dataset.

The anonymity metrics are shown in Figure 11, and
the respective overheads are shown in Table 3.

For all these datasets, despite containing very dif-
ferent objects, a large percentage of objects have a
unique size: 87% in the case of YouTube video (Fig-
ure 11a), 45% in the case of files (Figure 11b), 83% in
the case of Ubuntu packages (Figure 11c), and 68%
in the case of Websites Figure 11d). These charac-
teristics persist in traditional block-cipher encryption
(blue dashed curves) where objects are padded only
to a block size. Even after being padded to 512 bytes,
the size of a Tor cell, most object sizes remain as
unique as in the unpadded case. We observe similar
results when padding to 256 bits, the typical block
size for AES (not plotted).

NextP2 (red dotted curves) provides the best
anonymity: in the YouTube and Ubuntu datasets
(Figures 11a and 11c), there is no single object that
remains unique with respect to its size; all belong to
groups of at least 10 objects. We cannot generalize
this statement, of course, as shown by the other two
datasets (Figures 11b and 11d). In general, we see a
massive improvement with respect to the unpadded
case. Recall that this padding scheme is impractically
costly, adding +100% to the size in the worst case
and +50% in mean. In Table 3, we see that the mean
overhead is of +45%.

Finally, we see the anonymity provided by Padmé
(green solid curves). By design, Padmé has an ac-
ceptable maximum overhead (maximum +12% and
decreasing). In three of the four datasets, there is a
constant difference between our expensive reference
point NextP2 and Padmé; despite having a decreas-
ing overhead with respect to L, unlike NextP2. This
means that although larger files have proportionally
less protection (i.e., less padding in percentage) with

Table 3: Analysis of the overhead, in percentage, of
various padding approaches. In the first column, we
use b = 512B as block size.

Dataset Fixed block size Next power of 2 Padmé
YouTube 0.01 44.12 2.23
files 40.15 44.18 3.64
Ubuntu 14.09 43.21 3.12
Alexa 36.71 47.12 3.07

Padmé, this is not critical, as these files are more
rare and are harder to protect efficiently, even with a
näıve and costly approach. When we observe the per-
centage of uniquely identifiable objects (objects that
trivially reveal their plaintext given our perfect ad-
versary), we see a significant drop by using Padmé:
from 83% to 3% for the Ubuntu dataset, from 87%
to 3% for the Youtube dataset, from 45% to 8% for
the files dataset and from 68% to 6% for the Alexa
dataset. In Table 3, we see that the mean overhead of
Padmé is around 3%, more than an order of magni-
tude smaller than NextP2. We also see how using a
fixed block size can yield high overhead in percentage,
in addition to insufficient protection.

6 Related Work

The closest related work PURBs build on is Broad-
cast Encryption [4, 13, 19, 22, 24], which formalizes
the security notion behind a ciphertext for multi-
ple recipients. In particular, the most relevant notion
in (Private) Broadcast Encryption is Recipient Pri-
vacy [4], in which an adversary cannot tell whether a
public key is a valid recipient for a given ciphertext.
PURBs goes further by enabling multiple simulta-
neous suites, while achieving indistinguishably from
random bits in the ind$-cca2 model. PURBs also ad-
dresses size leakage.

Traffic morphing [62] is a method for hiding the
traffic of a specific application by masking it as traf-
fic of another application and imitating the corre-
sponding packet distribution. The tools built upon
this method can be standalone [55] or use the con-
cept of Tor pluggable transport [37, 59, 60] that is
applied to preventing Tor traffic from being identified
and censored [12]. There are two fundamental differ-
ences with PURBs. First, PURBs focus on a single
unit of data; we do not yet explore the question of the
time distribution of multiple PURBs. Second, traffic-
morphing systems, in most cases, try to mimic a spe-

17

(a) Dataset ‘YouTube’:

100 101 102 103 104

Anonymity set size

0

20

40

60

80

100

P
er
ce
nt
ile

Unpadded

Tor cell (512B)

Padmé

Next power of 2

(b) Dataset ‘files’:

100 101 102 103 104 105

Anonymity set size

0

20

40

60

80

100

P
er
ce
nt
ile

Unpadded

Tor cell (512B)

Padmé

Next power of 2

(c) Dataset ‘Ubuntu’:

100 101 102 103 104

Anonymity set size

0

20

40

60

80

100

P
er
ce
nt
ile

Unpadded

Tor cell (512B)

Padmé

Next power of 2

(d) Dataset ‘Alexa’:

100 101 102

Anonymity set size

0

20

40

60

80

100

P
er
ce
nt
ile

Unpadded

Tor cell (512B)

Padmé

Next power of 2

Figure 11: Analysis of the anonymity provided by var-
ious padding approaches: NextP2, Padmé, padding
with a constant block size and no padding. We
measure for each object with how many other ob-
jects it becomes indistinguishable after being padded,
and plot the distribution. NextP2 provides better
anonymity, at the cost of a drastically higher over-
head (at most +100% instead of +12%). Overheads
are shown in Table 3.

cific transport and sometimes are designed to only
hide the traffic of one given tool, whereas PURBs
are universal and arguably adaptable to any under-
lying application. Moreover, it has been argued that
most traffic-morphing tools do not achieve unobserv-
ability in real-world settings due to discrepancies be-
tween their implementations and the systems that
they try to imitate, because of the uncovered behavior
of side protocols, error handling, responses to prob-
ing, etc. [29, 54, 23]. We believe that for a wide class
of applications, using pseudo-random uniform blobs,
either alone or in combination with other lower-level
tools, is a potential solution in a different direction.

Traffic analysis aims at inferring the contents of en-
crypted communication by analyzing metadata. The
most well-studied application of it is website finger-
printing [39, 21, 56, 57], but it has also been ap-
plied to video identification [43, 50, 44] and VoIP
traffic [61, 15]. In website fingerprinting over Tor,
research has repeatedly showed that the total web-
site size is the feature that helps an adversary the
most [16, 38, 21]. In particular, Dyer et al. [21] show
the necessity of padding the whole website, as op-
posed to individual packets, to prevent an adver-
sary from identifying a website by its observed total
size. They also systematized the existing padding ap-
proaches. Wang et al. [58] propose deterministic and
randomized padding strategies tailored for padding
Tor traffic against a perfect attacker, which inspired
our §4.

Finally, Sphinx [18] is an encrypted packet format
for mix networks with the goal of minimizing the in-
formation revealed to the adversary. Sphinx shares
similarities with PURBs in its binary format (e.g.,
the presence of a group element followed by a ci-
phertext). Unlike PURBs, however, it supports only
one cipher suite, and one direct recipient (but several
nested ones, due to the nature of mix networks). To
the best of our knowledge, PURBs is the first solu-
tion that hides all metadata while providing crypto-
graphic agility.

7 Conclusion

Conventional encrypted data formats leak informa-
tion, via both unencrypted metadata and ciphertext
length, that may be used by attackers to infer sensi-
tive information via techniques such as traffic analysis
and website fingerprinting. We have argued that this
metadata leakage is not necessary, and as evidence
have presented PURBs, a generic approach for de-

18

signing encrypted data formats that do not leak any-
thing at all, except for the padded length of the ci-
phertexts, to anyone without the decryption keys. We
have shown that despite having no cleartext header,
PURBs can be efficiently encoded and decoded, and
can simultaneously support multiple public keys and
cipher suites. Finally, we have introduced Padmé, a
padding scheme that reduces the length leakage of
ciphertexts and has a modest overhead decreasing
with file size. Padmé performs significantly better
than classic padding schemes with fixed block size
in terms of anonymity, and its overhead is asymp-
totically lower than using exponentially increasing
padding.

Acknowledgments

We are thankful to our anonymous reviewers and
our meticulous proof shepherd Markulf Kohlweiss for
their constructive and thorough feedback that has
helped us to improve this paper. We also thank Enis
Ceyhun Alp, Cristina Basescu, Kelong Cong, Philipp
Jovanovic, Apostolos Pyrgelis and Henry Corrigan-
Gibbs for their helpful comments and suggestions,
and Holly B. Cogliati for text editing. This project
was supported in part by grant #2017-201 of the
Strategic Focal Area “Personalized Health and Re-
lated Technologies (PHRT)” of the ETH Domain and
by grants from the AXA Research Fund, Handshake,
and the Swiss Data Science Center.

References

[1] Ring-road: Leaking sensitive data in security
protocols. http://www.ringroadbug.com/.

[2] Michel Abdalla, Mihir Bellare, and Phillip Ro-
gaway. The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In Cryptographers’
Track at the RSA Conference, pages 143–158,
2001.

[3] Diego F Aranha, Pierre-Alain Fouque, Chen
Qian, Mehdi Tibouchi, and Jean-Christophe Za-
palowicz. Binary Elligator Squared. In Interna-
tional Workshop on Selected Areas in Cryptog-
raphy, pages 20–37, 2014.

[4] Adam Barth, Dan Boneh, and Brent Waters.
Privacy in Encrypted Content Distribution Us-
ing Private Broadcast Encryption. In Inter-

national Conference on Financial Cryptography
and Data Security, pages 52–64, 2006.

[5] Tal Be’ery and Amichai Shulman. A Perfect
CRIME? Only TIME Will Tell. Black Hat Eu-
rope, 2013.

[6] Mihir Bellare, Alexandra Boldyreva, Anand De-
sai, and David Pointcheval. Key-Privacy in
Public-Key Encryption. In Advances in Cryptol-
ogy – ASIACRYPT 2001, pages 566–582, 2001.

[7] Mihir Bellare, Alexandra Boldyreva, Kaoru
Kurosawa, and Jessica Staddon. Multi-Recipient
Encryption Schemes: Efficient Constructions
and Their Security. IEEE Transactions on In-
formation Theory, 53(11):3927–3943, 2007.

[8] Mihir Bellare and Chanathip Namprempre. Au-
thenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition
Paradigm. Journal of Cryptology, 21(4):469–491,
2008.

[9] Mihir Bellare and Björn Tackmann. The
Multi-user Security of Authenticated Encryp-
tion: AES-GCM in TLS 1.3. In Annual Inter-
national Cryptology Conference, pages 247–276,
2016.

[10] Daniel J Bernstein, Mike Hamburg, Anna Kras-
nova, and Tanja Lange. Elligator: Elliptic-curve
points indistinguishable from uniform random
strings. In ACM Conference on Computer and
Communications Security, CCS ’13, 2013.

[11] Alex Biryukov, Daniel Dinu, and Dmitry
Khovratovich. Argon2: New Generation of
Memory-Hard Functions for Password Hashing
and Other Applications. Technical report, 2015.

[12] Tor Blog. Tor at the heart:
Bridges and pluggable transports.
https://blog.torproject.org/tor-heart-bridges-
and-pluggable-transports, Dec 2016.

[13] Dan Boneh, Craig Gentry, and Brent Waters.
Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In Ad-
vances in Cryptology – CRYPTO, pages 258–
275, 2005.

[14] J. Callas, L. Donnerhacke, H. Finney, D. Shaw,
and R. Thayer. OpenPGP Message Format.
RFC 4880, Nov 2007.

19

http://www.ringroadbug.com/
http://web.cs.ucdavis.edu/~rogaway/papers/dhies.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/dhies.pdf
https://eprint.iacr.org/2014/486.pdf
https://www.cs.utexas.edu/~bwaters/publications/papers/privatebe.pdf
https://www.cs.utexas.edu/~bwaters/publications/papers/privatebe.pdf
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://iacr.org/archive/asiacrypt2001/22480568.pdf
https://iacr.org/archive/asiacrypt2001/22480568.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bbks.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bbks.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bbks.pdf
https://eprint.iacr.org/2000/025.pdf
https://eprint.iacr.org/2000/025.pdf
https://eprint.iacr.org/2000/025.pdf
https://eprint.iacr.org/2000/025.pdf
https://www.iacr.org/archive/crypto2016/98140241/98140241.pdf
https://www.iacr.org/archive/crypto2016/98140241/98140241.pdf
https://www.iacr.org/archive/crypto2016/98140241/98140241.pdf
https://elligator.cr.yp.to/elligator-20130828.pdf
https://elligator.cr.yp.to/elligator-20130828.pdf
https://elligator.cr.yp.to/elligator-20130828.pdf
https://password-hashing.net/argon2-specs.pdf
https://password-hashing.net/argon2-specs.pdf
https://password-hashing.net/argon2-specs.pdf
https://blog.torproject.org/tor-heart-bridges-and-pluggable-transports
https://blog.torproject.org/tor-heart-bridges-and-pluggable-transports
https://iacr.org/archive/crypto2005/36210252/36210252.pdf
https://iacr.org/archive/crypto2005/36210252/36210252.pdf
https://tools.ietf.org/html/rfc4880

[15] Yu-Chun Chang, Kuan-Ta Chen, Chen-Chi Wu,
and Chin-Laung Lei. Inferring speech activity
from encrypted Skype traffic. In IEEE Global
Telecommunications Conference, GLOBECOM,
pages 1–5, 2008.

[16] Giovanni Cherubin, Jamie Hayes, and Marc
Juarez. Website Fingerprinting Defenses at the
Application Layer. In Privacy Enhancing Tech-
nologies Symposium, PETS ’17, pages 2:186–
2:203, 2017.

[17] George Danezis and Richard Clayton. Introduc-
ing Traffic Analysis. 2007.

[18] George Danezis and Ian Goldberg. Sphinx: A
Compact and Provably Secure Mix Format. In
IEEE Symposium on Security and Privacy, S&P
’09, pages 269–282, 2009.

[19] Cécile Delerablée. Identity-Based Broadcast En-
cryption with Constant Size Ciphertexts and
Private Keys. In International Conference on
the Theory and Application of Cryptology and
Information Security, pages 200–215, 2007.

[20] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246,
Aug 2008.

[21] Kevin P Dyer, Scott E Coull, Thomas Risten-
part, and Thomas Shrimpton. Peek-a-Boo, I Still
See You: Why Efficient Traffic Analysis Counter-
measures Fail. In IEEE Symposium on Security
and Privacy, S&P ’12, pages 332–346, 2012.

[22] Nelly Fazio and Irippuge Milinda Perera.
Outsider-Anonymous Broadcast Encryption
with Sublinear Ciphertexts. In International
Workshop on Public Key Cryptography, pages
225–242, 2012.

[23] Sergey Frolov and Eric Wustrow. The use of
TLS in Censorship Circumvention. In Network
and Distributed System Security (NDSS) Sym-
posium, 2019.

[24] Craig Gentry and Brent Waters. Adaptive Se-
curity in Broadcast Encryption Systems (with
Short Ciphertexts). In Antoine Joux, editor,
Annual International Conference on the Theory
and Applications of Cryptographic Techniques,
pages 171–188, 2009.

[25] Yoel Gluck, Neal Harris, and Angelo Prado.
BREACH: reviving the CRIME attack. Black
Hat USA, 2013.

[26] B. Greschbach, G. Kreitz, and S. Buchegger.
The devil is in the metadata 2014 – New pri-
vacy challenges in Decentralised Online Social
Networks. In IEEE International Conference
on Pervasive Computing and Communications
Workshops, pages 333–339, March 2012.

[27] Dominik Herrmann, Rolf Wendolsky, and
Hannes Federrath. Website Fingerprinting: At-
tacking Popular Privacy Enhancing Technologies
with the Multinomial Näıve-bayes Classifier. In
ACM Workshop on Cloud Computing Security,
CCSW ’09, pages 31–42, 2009.

[28] P. Hoffman and J. Schlyter. The DNS-Based Au-
thentication of Named Entities (DANE) Trans-
port Layer Security (TLS) Protocol: TLSA. RFC
6698, August 2012.

[29] Amir Houmansadr, Chad Brubaker, and Vitaly
Shmatikov. The parrot is dead: Observing un-
observable network communications. In IEEE
Symposium on Security and Privacy, S&P ’13,
pages 65–79, 2013.

[30] IDRIX. Veracrypt.
https://www.veracrypt.fr/en/Home.html.

[31] Jonathan Katz and Yehuda Lindell. Introduction
to modern cryptography. CRC press, 2014.

[32] John Kelsey. Compression and information leak-
age of plaintext. In International Workshop
on Fast Software Encryption, Lecture Notes in
Computer Science, pages 263–276, 2002.

[33] Hugo Krawczyk. Cryptographic extraction and
key derivation: The HKDF scheme. In Annual
Cryptology Conference, pages 631–648, 2010.

[34] Kaoru Kurosawa. Multi-recipient public-key en-
cryption with shortened ciphertext. In Interna-
tional Workshop on Public Key Cryptography,
pages 48–63, 2002.

[35] Stevens Le Blond, Chao Zhang, Arnaud Legout,
Keith Ross, and Walid Dabbous. I Know Where
You Are and What You Are Sharing: Exploit-
ing P2P Communications to Invade Users’ Pri-
vacy. In ACM SIGCOMM Conference on Inter-
net Measurement Conference, IMC ’11, 2011.

20

http://dirl.iis.sinica.edu.tw/pub/chang08_speech.pdf
http://dirl.iis.sinica.edu.tw/pub/chang08_speech.pdf
https://petsymposium.org/2017/papers/issue2/paper54-2017-2-source.pdf
https://petsymposium.org/2017/papers/issue2/paper54-2017-2-source.pdf
https://www.cl.cam.ac.uk/~rnc1/TAIntro-book.pdf
https://www.cl.cam.ac.uk/~rnc1/TAIntro-book.pdf
https://cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf
https://cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf
https://www.iacr.org/archive/asiacrypt2007/48330198/48330198.pdf
https://www.iacr.org/archive/asiacrypt2007/48330198/48330198.pdf
https://www.iacr.org/archive/asiacrypt2007/48330198/48330198.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://kpdyer.com/publications/oakland2012-peekaboo.pdf
https://kpdyer.com/publications/oakland2012-peekaboo.pdf
https://kpdyer.com/publications/oakland2012-peekaboo.pdf
https://www.milinda-perera.com/pdf/FaPe12a.pdf
https://www.milinda-perera.com/pdf/FaPe12a.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-2-1_Frolov_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-2-1_Frolov_paper.pdf
https://eprint.iacr.org/2008/268.pdf
https://eprint.iacr.org/2008/268.pdf
https://eprint.iacr.org/2008/268.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
https://pdfs.semanticscholar.org/a334/35bb523e314c3bc250368c07acaaef3e9bce.pdf
https://pdfs.semanticscholar.org/a334/35bb523e314c3bc250368c07acaaef3e9bce.pdf
https://pdfs.semanticscholar.org/a334/35bb523e314c3bc250368c07acaaef3e9bce.pdf
http://www.cs.jhu.edu/~sdoshi/jhuisi650/papers/spimacs/SPIMACS_CD/ccsw/p31.pdf
http://www.cs.jhu.edu/~sdoshi/jhuisi650/papers/spimacs/SPIMACS_CD/ccsw/p31.pdf
http://www.cs.jhu.edu/~sdoshi/jhuisi650/papers/spimacs/SPIMACS_CD/ccsw/p31.pdf
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6698
https://www.cs.cornell.edu/~shmat/shmat_oak13parrot.pdf
https://www.cs.cornell.edu/~shmat/shmat_oak13parrot.pdf
https://www.veracrypt.fr/en/Home.html
https://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf
https://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf
https://www.iacr.org/archive/crypto2010/62230625/62230625.pdf
https://www.iacr.org/archive/crypto2010/62230625/62230625.pdf
https://conferences.sigcomm.org/imc/2011/docs/p45.pdf
https://conferences.sigcomm.org/imc/2011/docs/p45.pdf
https://conferences.sigcomm.org/imc/2011/docs/p45.pdf
https://conferences.sigcomm.org/imc/2011/docs/p45.pdf

[36] Jonathan Mayer, Patrick Mutchler, and John C.
Mitchell. Evaluating the privacy properties of
telephone metadata. Proceedings of the National
Academy of Sciences, 113(20):5536–5541, 2016.

[37] Hooman Mohajeri Moghaddam, Baiyu Li,
Mohammad Derakhshani, and Ian Goldberg.
SkypeMorph: Protocol Obfuscation for Tor
Bridges. In ACM Conference on Computer and
Communications Security, CCS ’12, pages 97–
108, 2012.

[38] Rebekah Overdorf, Mark Juarez, Gunes Acar,
Rachel Greenstadt, and Claudia Diaz. How
Unique is Your .onion?: An Analysis of the Fin-
gerprintability of Tor Onion Services. In ACM
Conference on Computer and Communications
Security, CCS ’17, pages 2021–2036, 2017.

[39] Andriy Panchenko, Lukas Niessen, Andreas Zin-
nen, and Thomas Engel. Website fingerprinting
in onion routing based anonymization networks.
In ACM Workshop on Workshop on Privacy in
the Electronic Society, pages 103–114, 2011.

[40] Jeffrey Pang, Ben Greenstein, Ramakrishna
Gummadi, Srinivasan Seshan, and David
Wetherall. 802.11 User Fingerprinting. In ACM
International Conference on Mobile Computing
and Networking, MobiCom ’07, pages 99–110,
2007.

[41] Colin Percival. Stronger key derivation via se-
quential memory-hard functions. Self-published,
pages 1–16, 2009.

[42] Damian Poddebniak, Christian Dresen, Jens
Müller, Fabian Ising, Sebastian Schinzel, Si-
mon Friedberger, Juraj Somorovsky, and Jörg
Schwenk. Efail: Breaking S/MIME and
OpenPGP Email Encryption using Exfiltration
Channels. In USENIX Security Symposium,
USENIX ’18, 2018.

[43] Andrew Reed and Benjamin Klimkowski. Leaky
streams: Identifying variable bitrate DASH
videos streamed over encrypted 802.11n connec-
tions. In IEEE Consumer Communications &
Networking Conference (CCNC), pages 1107–
1112, 2016.

[44] Andrew Reed and Michael Kranch. Identifying
HTTPS-protected Netflix videos in real-time. In
ACM Conference on Data and Application Se-
curity and Privacy, pages 361–368, 2017.

[45] E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.3. RFC 8446, Aug
2018.

[46] Ivan Ristić. HTTP client finger-
printing using ssl handshake analysis.
https://blog.ivanristic.com/2009/06/http-
client-fingerprinting-using-ssl-handshake-
analysis.html, Jun 2009.

[47] Tom Ritter and Daniel Kahn Gillmor. Protect-
ing the TLS Handshake. IETF Interim, May
2014.

[48] Juliano Rizzo and Thai Duong. The CRIME
attack. Ekoparty, 2012.

[49] Phillip Rogaway. Nonce-based symmetric en-
cryption. In International Workshop on Fast
Software Encryption, pages 348–358, 2004.

[50] Roei Schuster, Vitaly Shmatikov, and Eran
Tromer. Beauty and the Burst: Remote Identifi-
cation of Encrypted Video Streams. In USENIX
Security Symposium, USENIX ’17, pages 1357–
1374, 2017.

[51] Mehdi Tibouchi. Elligator squared: Uniform
points on elliptic curves of prime order as uni-
form random strings. In International Confer-
ence on Financial Cryptography and Data Secu-
rity, pages 139–156, 2014.

[52] Thiago Valverde. Bad life ad-
vice - replay attacks against https.
http://blog.valverde.me/2015/12/07/bad-
life-advice/, Dec 2015.

[53] Guido Vranken. HTTPS Bicycle Attack.
https://guidovranken.com/2015/12/30/https-
bicycle-attack/, Dec 2015.

[54] Liang Wang, Kevin P Dyer, Aditya Akella,
Thomas Ristenpart, and Thomas Shrimpton.
Seeing through network-protocol obfuscation. In
ACM Conference on Computer and Communi-
cations Security, CCS ’15, 2015.

[55] Qiyan Wang, Xun Gong, Giang TK Nguyen,
Amir Houmansadr, and Nikita Borisov. Cen-
sorspoofer: asymmetric communication using IP
spoofing for censorship-resistant web browsing.
In ACM Conference on Computer and Commu-
nications Security, pages 121–132, 2012.

21

http://www.pnas.org/content/113/20/5536
http://www.pnas.org/content/113/20/5536
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-08.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-08.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2776.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2776.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2776.pdf
https://anonymous-proxy-servers.net/paper/wpes11-panchenko.pdf
https://anonymous-proxy-servers.net/paper/wpes11-panchenko.pdf
http://www.cs.yale.edu/homes/ramki/mobicom07.pdf
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
https://efail.de/efail-attack-paper.pdf
https://efail.de/efail-attack-paper.pdf
https://efail.de/efail-attack-paper.pdf
http://andrewreed.io/pubs/CCNC2016_Reed_Klimkowski_Identifying_VBR_DASH.pdf
http://andrewreed.io/pubs/CCNC2016_Reed_Klimkowski_Identifying_VBR_DASH.pdf
http://andrewreed.io/pubs/CCNC2016_Reed_Klimkowski_Identifying_VBR_DASH.pdf
http://andrewreed.io/pubs/CCNC2016_Reed_Klimkowski_Identifying_VBR_DASH.pdf
http://andrewreed.io/pubs/CODASPY2017_Reed_Kranch_Identifying_HTTPS_Netflix.pdf
http://andrewreed.io/pubs/CODASPY2017_Reed_Kranch_Identifying_HTTPS_Netflix.pdf
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://datatracker.ietf.org/meeting/interim-2014-tls-01/materials/slides-interim-2014-tls-1-3
https://datatracker.ietf.org/meeting/interim-2014-tls-01/materials/slides-interim-2014-tls-1-3
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU
https://iacr.org/archive/fse2004/30170349/30170349.pdf
https://iacr.org/archive/fse2004/30170349/30170349.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster
https://eprint.iacr.org/2014/043.pdf
https://eprint.iacr.org/2014/043.pdf
https://eprint.iacr.org/2014/043.pdf
http://blog.valverde.me/2015/12/07/bad-life-advice/
http://blog.valverde.me/2015/12/07/bad-life-advice/
https://guidovranken.com/2015/12/30/https-bicycle-attack/
https://guidovranken.com/2015/12/30/https-bicycle-attack/
https://kpdyer.com/publications/ccs2015-measurement.pdf
http://www.cs.wichita.edu/~jadliwala/CS898AB/classpapers/week4/censorspoofer.pdf
http://www.cs.wichita.edu/~jadliwala/CS898AB/classpapers/week4/censorspoofer.pdf
http://www.cs.wichita.edu/~jadliwala/CS898AB/classpapers/week4/censorspoofer.pdf

[56] Tao Wang and Ian Goldberg. Improved Website
Fingerprinting on Tor. In ACM Workshop on
Workshop on Privacy in the Electronic Society,
pages 201–212, 2013.

[57] Tao Wang and Ian Goldberg. On realistically at-
tacking Tor with website fingerprinting. In Pri-
vacy Enhancing Technologies Symposium, PETS
’16, pages 4:21–4:36, 2016.

[58] Tao Wang and Ian Goldberg. Walkie-Talkie: An
Efficient Defense Against Passive Website Fin-
gerprinting Attacks. In USENIX Security Sym-
posium, USENIX ’17, pages 1375–1390, 2017.

[59] Zachary Weinberg, Jeffrey Wang, Vinod Yeg-
neswaran, Linda Briesemeister, Steven Cheung,
Frank Wang, and Dan Boneh. StegoTorus: a
camouflage proxy for the Tor anonymity system.
In ACM Conference on Computer and Commu-
nications Security, pages 109–120, 2012.

[60] Philipp Winter, Tobias Pulls, and Juergen Fuss.
ScrambleSuit: A polymorphic network protocol
to circumvent censorship. In ACM Workshop on
Workshop on Privacy in the Electronic Society,
pages 213–224, 2013.

[61] Charles V Wright, Lucas Ballard, Fabian Mon-
rose, and Gerald M Masson. Language identi-
fication of encrypted VoIP traffic: Alejandra y
Roberto or Alice and Bob? In USENIX Security
Symposium, USENIX ’07, pages 43–54, 2007.

[62] Charles V. Wright, Scott E. Coull, and Fabian
Monrose. Traffic Morphing: An Efficient Defense
Against Statistical Traffic Analysis. In Network
and Distributed Security Symposium, pages 237–
250, 2009.

[63] Fan Zhang, Wenbo He, Xue Liu, and Patrick G.
Bridges. Inferring Users’ Online Activities
Through Traffic Analysis. In ACM Conference
on Wireless Network Security, WiSec ’11, pages
59–70, 2011.

[64] Philip R. Zimmermann. The Official PGP
User’s Guide. MIT Press, Cambridge, MA, USA,
1995.

A Layout

Algorithm 2 presents the Layout algorithm a sender
uses in step (8) of MsPURB.Enc. Layout arranges a
PURB’s components in a continuous byte array.

Notation. We denote by a[i : j] ← b, the op-
eration of copying the bits of b at the positions
a[i], a[i + 1], · · · a[j − 1]. When written like this, b
always has correct length of j − i bits, and we as-
sume i < j. If, before an operation a[i : j] ← b,
|a| < j, we first grow a to length j. We sometimes
write a[i :] ← b instead of a[i : |b|] ← b. We use a
“reservation array”, which is an array with a method
array.isFree(start,end) that returns True if and only
if none of the bits array[i], array[i+ 1], · · · array[j−1]
were previously assigned a value, and False otherwise.

B Positions for Public Keys

This section provides an example of possible sets of al-
lowed public key positions for the suites in the PURB
encoding. We emphasize that finding an optimal set
of positions was not the focus of this work. The in-
tention is merely to show that such sets exist and to
offer a concrete example (which is used for the com-
pactness experiment, Figure 9).

Example. We use the required and recommended
suites in the latest draft of TLS 1.3 [45] as an example
of suites a PURB could theoretically support. The
suites and groups are shown in Table 4.

The PURB concept of “suite” combines both
“suite” and “group” in TLS. For instance, a PURB
suite could be PURB AES 128 GCM SHA 256-
SECP256R1. We show possible PURB suites in Ta-

ble 6. For the sake of simplicity, we introduce aliases
in the table, and will further refer to those suites as
suite A-F. In Table 5, we show a possible assignment.
For instance, if only suites A and C are used, the pub-
lic key for A would be placed in [0, 64], while value
in [96, 160] is changed so that the XOR of [0, 64] and
[96, 160] equals the key for B. Note that a sender must
respect the suite order A-F during encoding. We pro-
vide a simple python script to design such sets in the
code repository.

C Default Schemes for Payload

In addition to PURB suites, a list of suitable candi-
dates for a payload encryption scheme (Enc,Dec), a
MAC algorithm MAC, and a hash function H′ must

22

https://www.cypherpunks.ca/~iang/pubs/webfingerprint-wpes.pdf
https://www.cypherpunks.ca/~iang/pubs/webfingerprint-wpes.pdf
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0027/popets-2016-0027.pdf
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0027/popets-2016-0027.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-wang-tao.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-wang-tao.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-wang-tao.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.6473&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.6473&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.436.2629&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.436.2629&rep=rep1&type=pdf
https://www.usenix.org/legacy/events/sec07/tech/full_papers/wright/wright.pdf
https://www.usenix.org/legacy/events/sec07/tech/full_papers/wright/wright.pdf
https://www.usenix.org/legacy/events/sec07/tech/full_papers/wright/wright.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/wright.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/wright.pdf
http://www.math.unipd.it/~conti/teaching/CNS1415/atpapers/Profiling/profiling.pdf
http://www.math.unipd.it/~conti/teaching/CNS1415/atpapers/Profiling/profiling.pdf

Algorithm 2: Layout

// τi is an encoded public key of a suite Si

// keysi = 〈Z1, . . . , Zr〉 are entry-point keys

// auxi = 〈P1, . . . , Pr〉 are entry-point positions

// SuiteAllowedPositions are public values

Input : 〈τ1, . . . , τn〉, 〈keys1, . . . , keysn〉, 〈aux1, . . . , auxn〉,
〈S1, . . . , Sn〉, K, meta, cpayload,
SuiteAllowedPositions

Output: byte[]

// determine public-key positions for each suite

1 layout = []; // public-key and entry-point assignments

2 pubkey pos = []; // chosen primary position per suite

3 pubkey fixed = []; // all positions fixed so far

4 foreach τi in 〈τ1, . . . , τn〉 do
// decide suite’s primary public key position

5 for pos ∈ SuiteAllowedPositions(Si) do
6 if pubkey fixed.isFree(pos.start, pos.end) then
7 pubkey pos.append(〈τi, pos〉);
8 layout[pos.start:pos.end] ← τi;

9 break;

10 end

11 end

// later suites cannot modify these positions

// without disrupting this suite’s XOR

12 for pos ∈ SuiteAllowedPositions(Si) do
13 pubkey fixed[pos.start:pos.end] ← ‘F’;

14 end

15 end

// reserve entry-point positions in hash tables

16 entrypoints = [];

17 foreach auxi in 〈aux1, . . . , auxn〉 do
18 while auxi not empty do
19 P ← auxi.pop();

20 ht len = 1; // length of current hash table

21 ht pos = 0; // position of this hash table

22 while True do

23 index = P mod ht len; // selected entry

24 start = ht pos + index * entrypoint len;
25 end = start + entrypoint len;

26 if layout.isFree(start, end) then

27 layout[start:end]
$← {0, 1}end-start;

28 entrypoints.append(〈start, end, Si〉);
29 break;

30 end

// if not free, double table size

31 ht pos += ht len * entrypoint len;

32 ht len *= 2;

33 end

34 end

35 end

// fill empty space in the layout with random bits

36 foreach start, end ¡ layout.end do

37 if layout.isFree(start, end) then

38 layout[start:end]
$← {0, 1}end-start

39 end

40 end

// place the payload just past the header layout

41 meta.payload start = —layout—;
42 meta.payload end = —layout— + —cpayload—;

// fill entry-point reservations with ciphertexts

43 foreach keysi in 〈keys1, . . . , keysn〉 do
44 while keysi not empty do

45 Z = keysi.pop();
46 〈start, end, S〉 ← entrypoints.pop();

// Encrypt an entry point

47 e← EZ(K ‖ meta);
48 layout[start:end] ← e;

49 end

50 end

// compute the padding and append it to layout

51 purb len ← Padmé (—layout— + —cpayload— + mac len);

52 mac pos ← purb len - mac len;

53 while not pubkey fixed.isFree(mac pos, purb len) do
// MAC mustn’t overlap public-key positions:

// if so, we pad to the next Padmé size

54 purb len ← Padmé (purb len + 1);
55 mac pos ← purb len - mac len;

56 end

57 padding len ← mac pos - meta.payload end;

58 padding
$← {0, 1}padding len; // random padding

59 layout.append(cpayload ‖ padding);

// XOR suites’ public key positions into primary

60 for (τi, pos) ∈ pubkey pos do
61 buffer = τi;

62 for altpos ∈ SuiteAllowedPositions(Si) do
63 buffer = buffer ⊕ layout[altpos.start : altpos.end];
64 end

65 layout[pos.start:pos.end] ← buffer;
// now

⊕
SuiteAllowedPositions(Si) = τi

66 end

67 return layout

23

Table 4: Suites and groups described in the latest
draft of TLS 1.3.

Symmetric/Hash Algorithms
TLS AES 128 GCM SHA256 Required
TLS AES 256 GCM SHA384 Recomm
TLS CHACHA20 POLY1305 SHA256 Recomm
TLS AES 128 CCM SHA256 Optional
TLS AES 128 CCM 8 SHA256 Optional
Key Exchange Groups
secp256r1 Required
x25519 Recomm
secp384r1 Optional
secp521r1 Optional
x448 Optional
ffdhe2048 Optional
ffdhe3072 Optional
ffdhe4096 Optional
ffdhe6144 Optional
ffdhe8192 Optional

Table 5: Example of Allowed Positions per suite.
Here, the algorithm simply finds any mapping so that
each suite can coexist in a PURB. The receiver must
XOR the values at all possible positions of a suite to
obtain an encoded public key..

Suite Possible positions
A {0}
B {0, 64}
C {0, 96}
D {0, 32, 64, 160}
E {0, 64, 128, 192}
F {0, 32, 64, 96, 128, 256}

be determined and standardized. This list can be
seamlessly updated with time, as an encoder makes
the choice and records it in meta on per-PURB ba-
sis. The chosen schemes are shared by all the suites
included in the PURB, hence these schemes must
match the security level of the suite with the high-
est bit-wise security. An example of suitable candi-
dates, given the suites from Table 6, is (Enc,Dec) =
AES256-CBC, MAC = HMAC-SHA384, and H′ =
SHA3-384.

D Security Proofs

This section contains the proofs of the security prop-
erties provided by MsPURB.

D.1 Preliminaries

Before diving into proving the security of our scheme,
we define what it means to be ind-cca2- and ind$-
cca2-secure for the primitives that MsPURB builds
upon.

Key-Encapsulation Mechanism (KEM). Fol-
lowing the definition from Katz & Lindell [31], we
begin by defining KEM as a tuple of PPT algorithms.

Syntax KEM.
KEM.Setup(1λ) → S: Given a security parameter λ,

initialize a cipher suite S.
KEM.KeyGen(S) → (sk, pk): Given a cipher suite S,

generate a (private, public) key pair.
KEM.Encap(pk)→ (c, k): Given a public key pk, out-

put a ciphertext c and a key k.
KEM.Decap(sk, c)→ k/⊥: Given a private key sk and

a ciphertext c, output a key k or a special symbol
⊥ denoting failure.

Consider an ind-cca2 security game against an
adaptive adversary A:

Game KEM.
The KEM ind-cca2 game for a security parameter λ
is between a challenger and an adaptive adversary A.
It proceeds along the following phases.
Init: The challenger and adversary take λ as in-

put. The adversary outputs a cipher suite S it
wants to attack. The challenger verifies that S is
a valid cipher suite, i.e., that it a valid output
of KEM.Setup(1λ). The challenger aborts, and sets

b?
$← {0, 1} if S is not valid.

Setup: The challenger runs (sk, pk) ←
KEM.KeyGen(S) and gives pk to A.

24

Table 6: PURB Suites. “Suite A” is a shorthand for the first suite.

Alias PURB Suite Public key [B] EntryPoint [B]
A PURB AES 128 GCM SHA 256 SECP256R1 64 48
B PURB AES 128 GCM SHA 256 X25519 32 48
C PURB AES 256 GCM SHA 384 SECP256R1 64 80
D PURB AES 256 GCM SHA 384 X25519 32 80
E PURB CHACHA20 POLY1305 SHA 256 SECP256R1 64 64
F PURB CHACHA20 POLY1305 SHA 256 X25519 32 64

Phase 1: A can make decapsulation queries
qDecap(c) with ciphertexts c of its choice, to the
challenger who responds with KEM.Decap(sk, c).

Challenge: The challenger runs (c?, k0) ←
KEM.Encap(pk) and generates k1

$← {0, 1}|k0|. The

challenger picks b
$← {0, 1} and sends 〈c?, kb〉 to A.

Phase 2: A continues querying qDecap(c) with the
restriction that c 6= c?.

Guess:A outputs its guess b? for b and wins if b? = b.

We define A’s advantage in this game as:

Advcca2KEM,A(1λ) = 2
∣∣Pr[b = b?]− 1

2

∣∣ .
We say that a KEM is ind-cca2-secure if
Advcca2KEM,A(1λ) is negligible in the security parameter.

Definition 3. We that a KEM is perfectly correct if
for all (sk, pk)← KEM.KeyGen(S) and for all (c, k)←
KEM.Encap(pk) we have k = KEM.Decap(sk, c).

Instantiation IES-KEM.
We instantiate a KEM based on the Integrated En-
cryption Scheme [2] (see §2.2 for details).

IES.Setup(1λ): Initialize a cipher suite S =
〈G, p, g,H〉, where G is a cyclic group of order p
and generated by g, and H : G→ {0, 1}2λ is a hash
function.

IES.KeyGen(S): Pick x ∈ Zp, compute X = gx, and
output (sk = x, pk = X).

IES.Encap(pk): Given pk = Y , pick x ∈ Zp, compute
X = gx, and output 〈c = X, k = H(Y x)〉.

IES.Decap(sk, c): Given sk = y and c = X, output a
key k = H(Xy).

Theorem 4 (Theorem 11.22 [31] and Section 7 [2]).
If the gap-CDH problem is hard relative to G, and H
is modeled as a random oracle, then IES-KEM is an
ind-cca2-secure KEM.

Multi-Suite Broadcast Encryption. We consider
MsPURB as a multi-suite broadcast encryption
(MSBE) scheme extending the single-suite setting by
Barth et al. [13].

Syntax MSBE.
MSBE.Setup(1λ)→ S: Given a security parameter λ,

initialize a cipher suite S.

MSBE.KeyGen(S)→ (sk, pk): Given a cipher suite S,
generate a (private, public) key pair.

MSBE.Enc(R,m) → c: Given a set of public keys
R = {pk1, . . . , pkr} with corresponding cipher
suites S1, . . . , Sr and a message m, generate a ci-
phertext c.

MSBE.Dec(sk, c)→ m/⊥: Given a private key sk and
the ciphertext c, return a message m or ⊥ if c does
not decrypt correctly.

Note that MsPURB as described in §3.7 satis-
fies the syntax of a multi-suite broadcast encryption
scheme.

Barth et al. [4] define the security of broadcast en-
cryption schemes under adaptive chosen-chiphertext
attack for single-suite schemes. Here, we adjust this
definition to the multi-suite setting, and instead re-
quire that the ciphertext is indistinguishable from a
random string (ind$-cca2).

Game MSBE.
The MSBE ind$-cca2 game for a security parameter
λ is between a challenger and an adversary A. It pro-
ceeds along the following phases.

Init: The challenger and adversary take λ as input.
The adversary outputs a number of recipients r and
corresponding cipher suites S1, . . . , Sr it wants to
attack. Let s be the number of unique cipher suites.
The challenger verifies, for each i ∈ {1, . . . , r}, that
Si is a valid cipher suite, i.e., that it is a valid
output of MSBE.Setup(1λ). The challenger aborts,

and sets b?
$← {0, 1} if the suites are not all valid.

Setup: The challenger generates private-public key
pairs for each recipient i given by A by running
(ski, pki) ← MSBE.KeyGen(Si) and gives R =
{pk1, . . . , pkr} to A.

Phase 1: A can make decryption queries qDec(pki, c)
to the challenger for any pki ∈ R and any cipher-

25

text c of its choice. The challenger replies with
MSBE.Dec(ski, c).

Challenge: A outputs m?. The challenger generates

c0 = MSBE.Enc(R,m?) and c1
$← {0, 1}|c0|. The

challenger picks b
$← {0, 1} and sends c? = cb to A.

Phase 2: A continues making decryption queries
qDec(pki, c) with a restriction that c 6= c?.

Guess:A outputs its guess b? for b and wins if b? = b.

We define A’s advantage in this game as:

Advcca2-outmsbe,A (1λ) = 2
∣∣Pr[b = b?]− 1

2

∣∣ .
We say that a MSBE scheme is ind$-cca2-secure if
Advcca2-outmsbe,A (1λ) is negligible in the security parameter.

Finally, we require that the MAC scheme is strongly
unforgeable under an adaptive chosen-message at-
tack and outputs tags that are indistinguishable from
random. A MAC scheme is given by the algorithms
MAC.KeyGen,M, and V, where MAC.KeyGen(1λ)
outputs a key Kmac. To compute a tag on the mes-
sage m, run σ = MKmac(m). The verification algo-
rithm VKmac

(m,σ) outputs > if σ is a valid tag on the
message m and ⊥ otherwise. We formalize the strong
unforgeability and indistinguishability properties us-
ing the following simple games.

Game MAC-sforge.
The MAC-sforge game for a security parameter λ is
between a challenger and an adversary A.

Setup: The challenger and adversary take λ as in-
put. The challenger generates a MAC key Kmac ←
MAC.KeyGen(1λ).

Challenge: The adversary A is given oracle access
to the oracles M(·) and V(·). On a query M(m)
the challenger returns σ =MKmac(m). On a query
V(m,σ) the challenger returns VKmac

(m,σ).

Output: A eventually outputs a message-tag pair
(m,σ). A wins if VKmac

(m,σ) = 1 and A has not
made a query M(m) that returned σ.

We define A’s advantage in this game as:

AdvsufMAC,A(1λ) = Pr[A wins].

We say that a MAC scheme is strongly un-
forgeable under adaptive chosen-message attacks if
AdvsufMAC,A(1λ) is negligible in the security parameter.

Game MAC-IND$.
The MAC-IND$ game is between a challenger and an
adversary A.

Setup: The challenger and adversary take λ as in-
put. The challenger generates a MAC key Kmac ←
MAC.KeyGen(1λ) and picks a bit b

$← {0, 1}.
Challenge: The adversary outputs a message m.

The challenger computes σ0 = MKmac(m) and

σ1
$← {0, 1}|σ0| and returns σb.

Output: The adversary outputs its guess b? of b, and
wins if b? = b.

We define A’s advantage in this game as:

Advind$MAC,A(1λ) = 2
∣∣Pr[b = b?]− 1

2

∣∣ .
We say that the tags of a MAC scheme are indistin-
guishable from random if Advind$MAC,A(1λ) is negligible
in the security parameter.

D.2 Proof of Theorem 1

We prove the ind$-cca2 security of MsPURB as
an MSBE scheme. More precisely, we will show that
there exists adversaries B1, . . . ,B5 such that

Advcca2-outmsbe,A (1λ) ≤ r
(
Advcca2KEM,B1

(1λ) + Advind$-cca2Π,B2
(1λ)

)
+

AdvsufMAC,B3
(1λ) + Advind$MAC,B4

(1λ)+

Advind$-cpa(Enc,Dec),B5
(1λ).

Thus, given our assumptions, Advcca2-outmsbe,A (1λ) is indeed
negligible in λ. To do so we use a sequence of games.
This sequence of games step by step transforms from
the situation where b = 0 in the ind$-cca2 game of
MSBE, i.e., the adversary receives the real cipher-
text, to b = 1, i.e., the adversary receives a random
string.

Game G0.
This game is as the original MSBE ind$-cca2 game
where b = 0.

Game G1.
As in G0, but the challenger will no longer call
HdrPURB.Decap to derive the keys ki on ciphertexts
derived from the challenge ciphertext c?. In particu-
lar, for every recipient pki using a suite Sj , we store
(X?

j , k
?
i) when constructing the PURB headers for the

challenge ciphertext. Then, when receiving a decryp-
tion query for a recipient qDec(pki(Sj), c), we proceed
by following MsPURB.Dec. If the encoded public key
τ recovered in step (1) of MsPURB.Dec is such that
Unhide(τ) = X?

j , then we use ki = k?i (as stored when
creating the challenge ciphertext) directly, rather

26

than computing ki = HdrPURB.Decap(yi, τ) in step
(3) of MsPURB.Dec. If the encoded public key τ does
not match X?

j , then the challenger proceeds as before.

Game G2.
As in G1, but we change how the keys k?1 , . . . , k

?
r

for the challenge ciphertext are computed in
HdrPURB.Encap. Rather than computing k?i =
H(Y xi) as in step (2) of HdrPURB.Encap, we set

k?i
$← {0, 1}λH for all the keys, where λH is the bit-

length of the corresponding hash function H. Recall
that as per the changes inG1, the challenger will store
k?i generated in this way, and use them directly (with-
out calling HdrPURB.Decap) when asked to decrypt
variants of the challenge ciphertext.

Game G3.
Let ei be the encrypted entry point under key Zi (de-
rived from ki) for recipient i computed in line 47 of
Layout (step (8) of MsPURB.Enc). The game goes
as in G2, but for the challenge ciphertext, the chal-
lenger saves the mapping of the challenge entry points
and the encapsulated key K? with metadata meta?:
(e?i , k

?
i ,K

? ‖ meta?). If the challenger receives a de-
cryption query qDec(pki(Si), c) it proceeds as before,
except when it should decrypt e?i using key k?i in step
(4) of MsPURB.Dec. In that case, it acts as if the
decryption returned K? ‖ meta?.

Game G4.
As in G3, but the challenger replaces e?1, . . . , e

?
r in

the challenge ciphertext with random strings of the
appropriate length. Note that per the change in G3,
the challenger will not try to decrypt these e?i , but
will recover K? and meta? directly instead.

Game G5.
As in G4, but the challenger replies differently to
the queries qDec(pki(Si), c) where c is not equal the
challenge ciphertext c? but the encoded public key τ
recovered in step (1) of MsPURB.Dec is such that
Unhide(τ) = X?

j and ei = e?i . In this case, the
challenger replies with ⊥ directly, without running
VKmac

(·) (step (5) of MsPURB.Dec).

Game G6.
As in G5, but the challenger replaces the integrity tag
in the challenge ciphertext in step (9) of MsPURB.Enc
with a random string of the same length.

Game G7.
As in G6, but the challenger replaces the encrypted
payload cpayload in the challenge ciphertext in step (7)
of MsPURB.Enc with a random string of the same
length.

Conclusion. As of G7, all ciphertexts in the PURBs
header, the payload encryption and the MAC have
been replaced by random strings. The open slots in
the hash tables are always filled with random bits.
Finally, the encoded keys τ = Hide(X) are indistin-
guishable from random strings as well, since the keys
X are random. Therefore, the PURB ciphertexts c
are indeed indistinguishable from random strings, as
in the MSBE game with b = 1.

Proof. Let Wi be the event that A outputs b? = 1 in
game Gi. We aim to show that

Advcca2-outmsbe,A (1λ) =
∣∣Pr[b? = 1 | b = 0]− Pr[b? = 1 | b = 1]

∣∣
=

∣∣Pr[W0]− Pr[W7]
∣∣

is negligible. To do so, we show that each of the
steps in the sequence of games is negligible, i.e., that∣∣Pr[Wi]−Pr[Wi+1]

∣∣ is negligible. The result then fol-
lows from the triangle inequality.

G0 <–> G1.
As long as the KEMs are perfectly correct, the games
G0 and G1 are identical. Therefore:∣∣Pr[W0]− Pr[W1]

∣∣ = 0.

G1 <–> G2.
We show that the games G1 and G2 are indistinguish-
able using a hybrid argument on the number of re-
cipients r. Consider the hybrid games Hi where the
first i recipients use random keys k1, . . . , ki as in G2,
whereas the remaining r−i recipients use the real keys
ki+1, . . . , kr as in G1. Then G1 = H0 and G2 = Hr.

We prove that A cannot distinguish Hj−1 from Hj .

Let Sj = 〈G, p, g, Hide(·),Π,H, Ĥ〉, be the suite cor-
responding to recipient j. Suppose A can distinguish
Hj−1 from Hj , then we can build a distinguisher B
against the ind$-cca2 security of the IES KEM for the
suite S′j = 〈G, p, g,H〉. Recall that B receives, from
its ind$-cca2-KEM challenger,
• a public key Y ;

• a challenge 〈X?, k?〉, where depending on bit b
$←

{0, 1}, we have k? = H(Y x
?

) if b = 0 or k?
$←

{0, 1}λH if b = 1 (where λH is the bit-length of
H);

• access to a Decap(·) oracle for all but X?.
At the start of the game, B will set pkj = Y , so
that the public key of recipient j matches that of its
IES KEM challenger. Note that B does not know the
corresponding private key yj . For all other recipients
i, B sets (ski = yi, pki = Yi) = MsPURB.KeyGen(Si).

27

The distinguisher B will use its challenge (X?, k?)
to construct the challenge ciphertext for A. In par-
ticular, when running HdrPURB.Encap for a suite Sj ,
it sets X = X? in step (1) of HdrPURB.Encap. More-
over, for recipient j it will use kj = k?. For all other
recipients i with corresponding suites Si it proceeds
as follows when computing ki in HdrPURB.Encap.

• If i < j, then it sets ki
$← {0, 1}λH for appropri-

ate λH ;
• If i > j and the suite Si for user i is the same

as suite Sj for user j, then it sets ki = H(X?yi);
and
• If i > j, but Sj 6= Si, then it computes ki as per

steps (1) and (2) of HdrPURB.Encap.
Thereafter, B continues running MsPURB.Enc as be-
fore.

Whenever B receives a decryption query for a user
pki, it proceeds as before. When it receives a decryp-
tion query for user pkj , it uses its IES-KEM Decap
oracle in step (2) of HdrPURB.Decap. Note that B is
not allowed to call Decap(·) on X?, but as per the
changes in G1, it will directly use k? for user pkj if
HdrPURB.Decap recovers X? in step (1).

If b = 0 in B’s IES KEM challenge, then recipient
j’s key kj = H(Y x

?

), and hence B perfectly simulates
Hj−1. If b = 1 in B’s IES KEM challenge, then j’s

key kj
$← {0, 1}λH and, hence, B perfectly simulates

Hj . If A distinguishes Hj−1 from Hj then B breaks
the ind$-cca2-KEM security of IES. Hence, Hj−1 and
Hj are indistinguishable. Repeating this argument r
times shows that G1 and G2 are indistinguishable.
More precisely:∣∣Pr[W1]− Pr[W2]

∣∣ ≤ r · Advcca2KEM,A(1λ).

G0 <–> G1.
By perfect correctness of the authentication encryp-
tion scheme, we have that for all keys k and messages
m that Dk(Ek(m)) = m, thus, games G2 and G3 are
identical. Therefore:∣∣Pr[W2]− Pr[W3]

∣∣ = 0.

G3 <–> G4.
Similarly to the proof above, consider the hybrid
games Hi where the first i entry points are sub-
stituted with random strings e1, . . . , ei as in G4,
whereas the remaining r − i are the actual encryp-
tions as in G3. Then G3 = H0 and G4 = Hr. We
show that A cannot distinguish Hj−1 from Hj . Let

Sj = 〈G, p, g, Hide(·),Π,H, Ĥ〉, be the suite corre-
sponding to recipient j. We show that if A distin-

guishes Hj−1 from Hj then we can build a distin-
guisher B against the ind$-cca2 security of Π. B re-
ceives from its ind$-cca2 challenger:
• a challenge ciphertext e?, in response to an en-

cryption call with a message m such that, de-
pending on the bit b ∈ {0, 1}, we have that
e? = EZ(m) if b = 0 or e? is a random string
if b = 1;

• a decryption oracle DZ(·).
When constructing the challenge ciphertext, B calls

its challenge oracle with K ‖ meta to obtain e?, and
then sets e?j = e? for user j’s entry point (in line 47 of
Layout). We note that in the random oracle the real
encryption key Zj = Ĥ(“key” ‖ kj) is independent
from adversary A’s view, so we can replace it with
the random key of the ind$-cca2 challenger. For other
users i it proceeds as follows:
• If i < j, it sets e?i to a random string of appro-

priate length.
• If i > j, it computes e?i as per line 47 of Layout.
Thereafter, B answers decryption queries as before.

Except that whenever, B derives key kj for user j, it
will use its decryption oracle DZ(·). Note that in par-
ticular, because of the changes in G3, B will not make
DZ(·) queries on e?i from the challenge ciphertext c?.

If b = 0, B simulatesHj−1, and if b = 1, it simulates
Hj . Therefore, if A distinguishes between Hj−1 and
Hj , then B breaks the ind$-cca2 security of Π. To
show that G3 is indistinguishable from G4, repeat
this argument r times. More precisely:∣∣Pr[W3]− Pr[W4]

∣∣ ≤ r · Advind$-cca2Π,A (1λ).

G4 <–> G5.
The challenger’s actions in G4 and G5 only differ if
A could create a decryption request qDec(pki(Si), c)
where Unhide(τ) = X?

i , ei = e?i , and the integrity tag
σ is valid but c is different from c? (recall A is not
allowed to query c? itself). We show that if A can
cause the challenger to output ⊥ incorrectly, then
we can build a simulator B that breaks the strong
unforgeability of MAC.

Assume a simulator B that tries to win an unforge-
ability game. Simulator B receives access to the ora-
clesM(·) and V(·), and needs to output a pair (c, σ),
such that VKmac

(c, σ) returns true.
Simulator B now proceeds as follows. When creat-

ing the challenge ciphertext c?, it does not compute
σ in step (9) of MsPURB.Enc using K?, but instead
uses its oracle M and sets σ =M(c′). Note that be-
cause of the random oracle model for H′ and the fact
that A’s view is independent of K?, this change of
Kmac remains undetected.

28

Whenever A makes a decryption query
qDec(pki(Si), c) B proceeds as before, except
when it derives the key K∗. In that case it runs
V(c′, σ) to use its oracle to verify the MAC in step
(5) of MsPURB.Dec. If V(c′, σ) returns > then B
outputs (c′, σ) as its forgery (by construction, c′ was
not queried to the MAC oracle M(·)).

Therefore, A cannot make queries that cause the
challenger to incorrectly output ⊥, and therefore the
two games are indistinguishable, provided MAC is
strongly unforgeable. More precisely:∣∣Pr[W4]− Pr[W5]

∣∣ ≤ AdvsufMAC,A(1λ).

G5 <–> G6.
If A can distinguish between G5 and G6, then we
can build a distinguisher B that breaks the indistin-
guishability from random bits (MAC-IND$) of MAC.

Distinguisher B proceeds as follows to compute the
challenge ciphertext c?. It proceeds as before, except
that in step (9) of MsPURB.Enc, it submits c′ to its
challenge oracle to receive a tag τ?. It then sets τ = τ?

and proceeds to construct the PURB ciphertext.
Note that as per the changes before, B never needs

to verify a MAC under the key that was used to create
τ? for the challenge ciphertext. Moreover, as before,
A’s view is independent of the K?, so also this change
of Kmac remains undetected.

If b = 0, B simulates G5, and if b = 1, B simu-
lates G6. Hence, if A can distinguish between these
two games, B breaks the MAC-IND$ game. More pre-
cisely: ∣∣Pr[W5]− Pr[W6]

∣∣ ≤ Advind$MAC,A(1λ).

G6 <–> G7.
If A can distinguish between G6 and G7, then we
can build a distinguisher B that breaks the ind$-cpa
property of (Enc,Dec). In the ind$-cpa game [49], B
receives:
• a challenge ciphertext cpayload = cb, s.t. c0 =

EncKenc
(m) on a chosen-by-B m, c1

$← {0, 1}|c0|,
and b

$← {0, 1}.
B runs MsPURB.Dec as before to create a challenge
for A, except that B uses the ind$-cpa challenge ci-
phertext cpayload in step (7), instead of encrypting, as
B does not know Kenc. As before, A’s view is inde-
pendent of K?, so also this change of Kenc remains
undetected.
B answers decryption queries qDec(pki(Si), c) from

A as before. In particular
• if Unhide(τ) = X?

i and ei = e?i , B returns ⊥ as
per the changes in G5;

• Otherwise, B runs MsPURB.Dec(·).
If b = 0, B simulatesG6, and, if b = 1, B simulatesG7.
Hence, if A can distinguish between these two games,
B can break the the ind$-cpa property of (Enc,Dec).
More precisely:∣∣Pr[W6]− Pr[W7]

∣∣ ≤ Advind$-cpa(Enc,Dec),A(1λ).

Combining the individual inequalities we find that
there exists adversaries B1, . . . ,B5 such that

Advcca2-outmsbe,A (1λ) ≤ r
(
Advcca2KEM,B1

(1λ) + Advind$-cca2Π,B2
(1λ)

)
+

AdvsufMAC,B3
(1λ) + Advind$MAC,B4

(1λ)+

Advind$-cpa(Enc,Dec),B5
(1λ),

completing the proof.

D.3 Proof of Theorem 2

For our MsPURB ind$-cpa recipient-privacy game,
we take inspiration from the single-suite recipient-
privacy game defined by Barth et al. [4], but we re-
state it in the ind$-cpa setting.

Game Recipient-Privacy.
The game is between a challenger and an adversary
A, and proceeds along the following phases:
Init: The challenger and adversary take λ as input.

The adversary outputs a number of recipients r and
corresponding cipher suites S1, . . . , Sr it wants to
attack. Let s be the number of unique cipher suites.
The challenger verifies, for each i ∈ {1, . . . , r}, that
Si is a valid cipher suite, i.e., that it a valid out-
put of MSBE.Setup(1λ). The challenger aborts, and

sets b?
$← {0, 1} if the suites are not all valid.

Adversary A then outputs two sets of recipients
N0, N1 ⊆ {1, . . . , n} such that |N0| = |N1| = r,
and the number of users in N0 and N1 using suite
Sj is the same.

Setup: For each i ∈ 1, . . . , n given by A, the
challenger runs (ski, pki) ← MsPURB.KeyGen(Si),
where Si is previously chosen by A. The chal-
lenger gives two sets R0 = {pk0

1, . . . , pk
0
r} and

R1 = {pk1
1, . . . , pk

1
r} to A, where R0, R1 are the

generated public keys of the recipients N0, N1 re-
spectively. The challenger also gives to A all ski
that correspond to i ∈ N0 ∩N1.

Challenge: A outputs m?. The challenger gen-
erates c0 = MsPURB.Enc(R0,m

?) and c1 =
MsPURB.Enc(R1,m

?). The challenger flips a coin

b
$← {0, 1} and sends c? = cb to A.

Guess:A outputs its guess b? for b and wins if b? = b.

29

We define A’s advantage in this game as:

Advcpa-inmsbe,A(1λ) = 2
∣∣Pr[b = b?]− 1

2

∣∣ .
We say that a MSBE scheme is cpa-secure against
insiders if Advcpa-inmsbe,A(1λ) is negligible in the security
parameter.

The conditions on N0 and N1 in the game ensure
that A cannot trivially win by looking at the size of
the ciphertext. PURBs allows for suites with different
groups (resulting in different size encodings of the cor-
responding IES public key) and for suites to use dif-
ferent authenticated encryption schemes (that could
result in different sizes of encrypted entry points).
Since PURBs must encode groups and entry points
into the header, we mandate that for each suite the
number of recipients is the same in N0 and N1. This
assumption is similar to requiring equal-size sets of
recipients in a challenge game for single-suite broad-
cast encryption [4]. As in broadcast encryption, if this
requirement is an issue, a sender can add dummy re-
cipients to avoid structural leakage to an insider ad-
versary.

We will show that

Advcpa-inmsbe,A(1λ) ≤ 2d · Advcca2KEM,B(1λ),

where d is the number of recipients in which N0 and
N1 differ.

Proof. Similarly to Barth et al. [4], we prove recipient
privacy when the sets R0 and R1 differ only by one
public key in one suite. The general case follows by a
hybrid argument. Consider the following games:

Game G0.
This game is as the original recipient-privacy ind$-
cpa game where b = 0 and pki = R0 \ R1, pkj =
R1 \R0, where the public keys pki and pkj are of the
same suite S.

Game G1.
As in G0, but we change how a key k?i correspond-
ing to the recipient i is computed in HdrPURB.Encap
for the challenge ciphertext. Instead of computing
k?i = H(Y xi) (where Yi = pki) as in step (2) of

HdrPURB.Encap, we set k?i
$← {0, 1}λH . As the chal-

lenger generates fresh public keys for each encryption
query and thus a fresh key ki, and does not have to
answer decryption queries, it does not need to mem-
orize k?i .

Game G2.
As in G1, but we change the random sampling k?i

in HdrPURB.Encap for the challenge ciphertext with
k?i = H(Y xj) = k?j where Yj = pkj . The game now
is the original recipient-privacy ind$-cpa game where
b = 1.

Conclusion. G0 represents the recipient-privacy
game with b = 0 and G2 recipient-privacy game with
b = 1. If A cannot distinguish between G0 and G2, A
does not have an advantage in winning the recipient-
privacy game.

Let Wi be the event that A outputs b? = 1 in game
Gi.

G0 <–> G1.
If A can distinguish between G0 and G1, we can build
a distinguisher B against the ind$-cca2 security of the
IES KEM. Recall that B receives, from its ind$-cca2-
KEM challenger,
• a public key Y ;

• a challenge 〈X?, k?〉, where depending on bit b
$←

{0, 1}, we have k? = H(Y x
?

) if b = 0 or k?
$←

{0, 1}l(λ) if b = 1;
• access to a Decap(·) oracle for all but X?.

At the start of the game, B will set pki = Y , so that
the public key of recipient i matches that of its IES
KEM challenger. Note that B does not know the cor-
responding private key yi. For all other recipients h,
B sets (skh = yh, pkh = Yh) = MsPURB.KeyGen(Sh).
As A plays an ind$-cpa game, B does not need to use
the Decap(·) oracle (in fact, for ind$-cpa recipient pri-
vacy ind$-cpa security of the IES KEM suffices).

If b = 0 in the IES-KEM challenge, then B sim-
ulates G0, and, If b = 1, B simulates G1. Hence, if
A distinguishes between G0 and G1, B wins in the
ind$-cca2 IES-KEM game. Therefore:

|Pr[W0]− Pr[W1]| ≤ Advcca2KEM,B(1λ)

G1 <–> G2.
The proof follows the same steps as the proof of G0

¡–¿ G1. Therefore:

|Pr[W0]− Pr[W1]| ≤ Advcca2KEM,B(1λ).

Let d be the number of recipients that differ in N0

and N1. Then by repeating the above two steps d
times in a hybrid argument, we find that:

Advcpa-inmsbe,A(1λ) ≤ 2d · Advcca2KEM,B(1λ),

as desired.

30

	Introduction
	Motivation and Background
	Motivation and Applications
	Integrated Encryption Scheme

	Hiding Encryption Metadata
	Preliminaries
	System Model
	Threat Model and Security Goals
	System Goals

	Encryption to a Single Passphrase
	Single Public Key, Single Suite
	Multiple Public Keys, Single Suite
	Multiple Public Keys and Suites
	Non-malleability
	Complete Algorithms
	Practical Considerations

	Limiting Leakage via Length
	Design Criterion
	Definitions
	Strawman Padding Approaches
	Padmé

	Evaluation
	Implementation
	Performance of the PURB Encoding
	Methodology
	Results

	Performance of Padmé Padding
	Datasets and Methodology
	Evaluation of Padmé

	Related Work
	Conclusion
	Layout
	Positions for Public Keys
	Default Schemes for Payload
	Security Proofs
	Preliminaries
	Proof of Theorem 1
	Proof of Theorem 2

