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Abstract

We are witnessing a rise in the popularity of using artificial neural networks in many fields
of science and technology. Deep neural networks in particular have shown impressive
classification performance on a number of challenging benchmarks, generally in well
controlled settings. However it is equally important that these classifiers satisfy robustness
guarantees when they are deployed in uncontrolled (noise-prone) and possibly hostile
environments. In other words, small perturbations applied to the samples should not yield
significant loss to the performance of the classifier. Unfortunately, deep neural network
classifiers are shown to be intriguingly vulnerable to perturbations and it is relatively
easy to design noise that can change the estimated label of the classifier. The study of
this high-dimensional phenomenon is a challenging task, and requires the development of
new algorithmic tools, as well as theoretical and experimental analysis in order to identify
the key factors driving the robustness properties of deep networks. This is exactly the
focus of this PhD thesis.

First, we propose a computationally efficient yet accurate method to generate minimal
perturbations that fool deep neural networks. It permits to reliably quantify the robustness
of classifiers and compare different architectures. We further propose a systematic
algorithm for computing universal (image-agnostic) and very small perturbation vectors
that cause natural images to be misclassified with high probability. The vulnerability
to universal perturbations is particularly important in security-critical applications of
deep neural networks, and our algorithm shows that these systems are quite vulnerable
to noise that is designed with only limited knowledge about test samples or classification
architectures.

Next, we study the geometry of the classifier’s decision boundary in order to explain the
adversarial vulnerability of deep networks. Specifically, we establish precise theoretical
bounds on the robustness of classifiers in a novel semi-random noise regime that generalizes
both the adversarial and the random perturbation regimes. We show in particular that
the robustness of deep networks to universal perturbations is driven by a key property
of the curvature of their decision boundaries. Our analysis therefore suggests ways to
improve the robustness properties of these classifiers to adversarial perturbations.

Finally, we build on the geometric insights derived in this thesis in order to improve the
robustness properties of state-of-the-art image classifiers. We leverage a fundamental
property in the curvature of the decision boundary of deep networks, and propose a
method to detect small adversarial perturbations in images, and to recover the labels
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of perturbed images. To achieve inherently robust classifiers, we further propose an
alternative to the common adversarial training strategy, where we directly minimize
the curvature of the classifier. This leads to adversarial robustness that is on par with
adversarial training. Our proposed regularizer is thus an important step towards designing
robust image classification systems.

In summary, we demonstrate in this thesis a new geometric approach to the problem
of the adversarial vulnerability of deep networks, and provide novel quantitative and
qualitative results that precisely describe the behavior of classifiers in adversarial settings.
Our results in this thesis contribute to the understanding of the fundamental properties
of state-of-the-art image classifiers that eventually will bring important benefits in safety-
critical applications such as in self-driving cars, autonomous robots, and medical imaging.

Keywords: image classification, robustness, adversarial examples, decision boundary,

deep neural networks, universal perturbations, curvature regularization, autonomous
systems.
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Résumé

Nous assistons & une augmentation de la popularité des réseaux de neurones artificiels
dans de nombreux domaines de la science et de la technologie. Les réseaux profonds
en particulier ont montré des performances de classification impressionnantes pour un
certain nombre de taches difficiles, généralement dans des environnements bien controlés.
Cependant, il est également important que ces systémes satisfassent des garanties de
robustesse lorsqu’ils sont déployés dans des environnements non controlés (sujets au
bruit) et éventuellement hostiles. En d’autres termes, de petites perturbations appliquées
aux échantillons ne doivent pas entrainer de réduction significative des performances du
systéme. Malheureusement, il a été démontré que les réseaux profonds sont extrémement
vulnérables aux perturbations, et il est relativement facile de concevoir un bruit pouvant
modifier la classe estimée par ces méthodes. L’étude de ce phénoméne en hautes dimensions
est une tache difficile qui nécessite le développement de nouveaux outils algorithmiques,
ainsi que des analyses théoriques et expérimentales, afin d’identifier les facteurs clés qui
déterminent les propriétés de robustesse des réseaux profonds. C’est exactement 1’objet
de cette thése.

Premiérement, nous proposons une méthode peu cotiteuse en temps de calcul, mais précise,
pour générer des perturbations minimales qui trompent les réseaux de neurones profonds.
Cette méthode permet de quantifier de maniére fiable la robustesse des classifieurs et de
comparer différentes architectures. Nous proposons de plus un algorithme pour calculer
de maniére systématique des perturbations universelles (pas directement liées aux images
a disposition) et de trés petite magnitude, qui entrainent une classification erronée des
images naturelles avec une forte probabilité. La vulnérabilité aux perturbations universelles
est particuliérement importante pour les applications des réseaux de neurones profonds
pour lesquelles la sécurité est un aspect critique. Notre algorithme montre que ces systémes
sont trés vulnérables a un bruit congu avec une connaissance limitée des échantillons de
test ou des architectures de classification.

Ensuite, nous étudions la géométrie de la frontiére de décision du classifieur afin d’expliquer
la vulnérabilité des réseaux profonds aux échantillons adverses. Plus précisément, nous
établissons des bornes théoriques précises sur la robustesse des classifieurs dans un nouveau
régime de bruit semi-aléatoire généralisant & la fois les régimes de perturbations adverses
et aléatoires. Nous montrons en particulier que la robustesse des réseaux profonds face
aux perturbations universelles est déterminée par une propriété clé de la courbure de leurs
frontiéres de décision. Notre analyse suggére donc des moyens d’améliorer les propriétés
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Résumé

de robustesse de ces classifieurs aux perturbations adverses.

Enfin, nous exploitons les connaissances géométriques présentées dans cette thése afin
d’améliorer les propriétés de robustesse des classifieurs de ’état de I’art. Nous exploitons
une propriété fondamentale de la courbure de la frontiére de décision des réseaux profonds
et proposons une méthode permettant de détecter les petites perturbations adverses dans
les images et de retrouver les classes des images perturbées. Pour réaliser des classifieurs
intrinséquement robustes, nous proposons une alternative a la stratégie répandue d’en-
trainement adverse, dans laquelle nous minimisons directement la courbure du classifieur.
Cela meéne & une robustesse aux échantillons adverses comparable & un entrainement
adverse qui constitue 1’état de I'art. Le régularisateur que nous proposons est donc une
étape importante dans la conception de systémes robustes pour la classification d’images.
En résumé, nous présentons dans cette thése une nouvelle approche géométrique du
probléme de la vulnérabilité des réseaux profonds aux échantillons adverses. Nous four-
nissons de nouveaux résultats quantitatifs et qualitatifs qui décrivent précisément le
comportement des classifieurs dans des contextes adverses. Nos résultats dans cette thése
contribuent & la compréhension des propriétés fondamentales des classifieurs d’images de
I’état de ’art, et contribueront de maniére importante aux applications ou la sécurité est
un élément critique, teles que les voitures et robots autonomes, et I'imagerie médicale.

Mots-clés : classification d’images, robustesse, échantillons adverses, frontiéres de déci-
sion, réseaux de neurones profonds, perturbations universelles, régularisation de courbure,
systémes autonomes.
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Il Introduction

“I don’t know what’s the matter with people: they don’t learn by understanding; they learn by
some other way - by rote, or something. Their knowledge is so fragile!”
— Richard Feynman

In practice, the generalization performance of a classifier is determined by measuring
the so-called test accuracy, that is the classifier’s performance on a set of held-out data
samples. While the performance of the classifier in the presence of noise is a highly
desired property in many real-world applications, the test accuracy does not fully reflect
the classifier’s performance in noisy and possibly hostile environments.

In particular, nowadays, image classifiers are widely used in safety-critical applications
such as autonomous driving and face identification, hence it is extremely important to
ensure that they show a robust performance in the worst-case scenarios. These scenarios
can be due to either rare events or adversarial manipulations caused by malicious agents.
To achieve robust image classification, image classifiers should ideally learn the underlying
“concepts” which distinguish different classes. For example, given an image of a cat,
corrupting a few pixels should not alter the decision of the classifier, as the image still
represents a cat. Furthermore, we would generally want an image classifier to maintain
its output if the changes are not perceptible to human eye, and hence, to be at least as
robust as human visual system. Moreover, supervised image classification can be used to
identify important features to explain the relationship between a class label and the data
distribution. However, without being robust to small modifications, it can be misleading
to employ image classifiers to learn the distinguishing factors between different classes.
Such important problem can be an obstacle in achieving “interpretable machine learning”
algorithms.



Chapter 1. Introduction

1.1 Adversarial robustness

In the recent years, deep neural networks have shown impressive classification performance
(i.e., the test accuracy) on a diverse set of visual tasks. When deployed in real-world
(noise-prone) environments, it is equally important that these classifiers maintain their
performance. Intriguingly, it has been shown that these classifiers are indeed quite
vulnerable to small and imperceptible manipulations of their input. In particular, they
are shown to be extremely vulnerable to the so-called adversarial examples. As it is
first introduced in the seminal work of [86], an adversarial example for a network can
be informally defined as “...an imperceptible non-random perturbation to a test image,
[which] arbitrarily changes the network’s prediction...”. Imperceptibility, as one of the
key elements of this definition, is extremely difficult to be mathematically defined. In
addition to being subjective, the imperceptibility can be interpreted in different ways for
different types of data. It therefore results in a level of arbitrariness in the definition
of adversarial examples in the literature. Despite of that, one common choice in the
literature is to constrain the £,-norm of perturbations as a proxy for the perceptibility. In
that, to find imperceptible perturbations, one should seek perturbations with the smallest
{p-norm. Minimizing the f,-norm to find adversarial perturbations has the advantage
of providing some degree of flexibility to cover a wide range of perturbations, thanks
to the parameter p. For example, sparse and uniformly bounded perturbations can be
defined using ¢; and £, norms respectively. Furthermore, minimal £,-norm definition of
adversarial perturbations allow us to perform theoretical analysis such as finding bounds
on the magnitude of these perturbations via the concentration of measure inequalities.

Among many possible adversarial manipulations of the data, we primarily focus on
additive perturbations as the simplest form of adversarial manipulations. As we will see,
a geometric interpretation of additive adversarial perturbations permits us to study the
local geometry of the decision boundary of deep neural network classifiers. Formally, for
an image = € R? and a given classifier with C classes f : R? — {1,2,...,C}, one can
define the £)-norm adversarial perturbation as

argmin |||,
st. f(x) # flx+7). (1.1)

We choose this definition of adversarial perturbations throughout this manuscript unless
it is stated otherwise.

There are many controversial open questions pertaining to the adversarial robustness of
deep neural networks. Some authors argue in favour of the simplicity of deep learning
models as the reason behind adversarial vulnerability [35]. On the contrary, some
suggest that deep networks’ excessive complexity harms their robustness to adversarial
manipulations [86]. Furthermore, there is no established relation between the architecture
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of deep neural networks and their robustness properties. Even more, there are some
evidence suggesting that there is a fundamental limit on the robustness of deep networks,
and due to high dimensionality, one cannot achieve an arbitrary robust classifier with
the current architectures while still maintaining a high accuracy. On the practical side,
building robust classifiers seems to be an extremely challenging problem [2]. In this thesis,
we provide a novel geometric perspective on the problem of the adversarial vulnerability

of deep neural networks to address some of these questions.

1.2 A geometric perspective on the robustness

The main theme of this thesis is to give a geometric perspective on the problem of the
adversarial vulnerability of deep neural networks trained to solve image classification tasks.
Our general goal is to exploit the connection between the adversarial robustness and the
geometry of the decision boundary of deep networks, first to study various properties
of adversarial perturbations, and secondly to propose novel geometry-inspired methods
to evaluate and/or improve the robustness properties of deep neural networks. Our
contribution in this thesis is a step towards improving the reliability of image classifiers
and achieving better robustness properties in various classification tasks. In addition, our
analysis contributes to a better understanding of the behaviour of deep neural networks,
which are often seen as “black-box” models.

We are broadly interested in three aspects of adversarial perturbations:

e Efficiently computing them in high-dimensional classification problems in order to
be able to compare robustness of different classifiers.

e Using these perturbations to study geometric properties of deep image classifiers.

e Developing methods to detect adversarial perturbations and/or to improve the
robustness properties of deep networks.

Fast yet accurate methods to compute adversarial perturbations are needed to reliably
evaluate the classifiers robustness properties. Such methods can also facilitate the study of
the geometric properties of deep image classifiers. To this end, we provide computationally
efficient yet accurate algorithms to find minimal £,-norm adversarial examples. We also
propose a novel image-agnostic noise regime which exploits the geometric properties of deep
image classifiers. Image-agnostic perturbations can be a real threat for security-critical

applications.

The adversarial perturbations are not always harmful! They can be used as a powerful
tool to study various geometric and topological properties of the decision regions of deep
networks. In this thesis, we will demonstrate how effective adversarial perturbations are

3
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in identifying the geometric properties of the decision boundary of deep image classifiers.
Despite the fact that the analysis of the “shape” of the decision regions of these high-
dimensional classifiers is generally intractable, we , for the first time, develop algorithms
using adversarial perturbations to empirically study some of the topological properties of
the decision regions of state-of-the-art deep networks.

Based on the developed algorithms and the geometric analysis, we propose efficient
methods to improve the robustness properties of state-of-the-art image classifiers. In
particular, we propose a geometric regularization technique which significantly improves
the adversarial robustness to constrained the £,-norm perturbations. Moreover, we show
that the geometric properties of the decision boundary of classifiers can be successfully
used to detect the minimal £,-norm perturbations.

We should note that, besides image classifiers, the problem of the robustness to adversarial
manipulations is equally important for other vision tasks such as semantic segmentation,
object tracking, depth estimation, etc. As a first step towards understanding the robustness
properties of deep networks, we however focus on the analysis and the quantification of
the image classifiers’ robustness to adversarial perturbations. It should be noted that
although our focus is on images, our geometric approach can be easily extended to other
modalities of data.

1.3 Thesis outline

The thesis is organized into three main parts: 1) Algorithms and techniques, 2) Geometric
analysis, 3) Applications. We start, in Part I, by introducing the necessary algorithmic
tools to study the robustness properties of deep image classifiers. Our proposed algorithms
can be employed to efficiently evaluate and benchmark the robustness of classifiers in
multiple settings. They further constitute our tools to analyse the local geometry of
state-of-the-art classifiers. In Part II, we provide theoretical analysis of different types
of adversarial perturbations. Based on the methods developed in Part I, we support
these theoretical findings with the experiments on state-of-the-art deep networks. Our
theoretical analysis sheds light on some of intriguing properties of deep neural networks,
and suggest ways to improve their robustness to adversarial perturbations. Finally, Part
IIT will be dedicated to demonstrate some applications of the methods and the analysis
developed in the first two parts of this thesis.

In Chapter 2, we review some prior works related to the problem of adversarial robustness
of image classifiers.

In Chapter 3, we study the problem of evaluating the robustness of image classifiers
and in particular state-of-the-art deep neural networks. We show that despite the non-
convexity of Eq. (1.1) that defines adversarial perturbations, it can be efficiently and
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accurately solved using an iterative linearization of the classifier’s decision function.
Extensive experimental evaluations show the effectiveness of our method for computation
of perturbations on high-dimensional image classification tasks. Furthermore, to perform
data augmentation, adversarial examples generated using our accurate method are shown
to be more effective compared to less accurate methods. We conclude this chapter
by demonstrating the flexibility of the proposed algorithm in exploring the space of
adversarial examples to generate structured perturbations.

Next, in Chapter 4, we introduce image-agnostic adversarial perturbations, coined “uni-
versal perturbations”, for deep image classifiers. In contrast with typical adversarial
perturbations defined in Eq. (1.1), universal perturbations do not depend on individual
input images. We propose a greedy algorithm to generate these perturbations to fool
state-of-the-art natural image classifiers. Though they are originally generated to transfer
across different images, they surprisingly generalize well across different architectures.

The general focus of Part II is to study and quantify the local geometry of deep classifiers
in order to explain the existence of adversarial perturbations. In Chapter 5, we study
the hypothesis that “having a flat decision boundary causes deep networks to become
vulnerable to adversarial perturbations”. To do so, we introduce a novel semi-random
noise regime, which generalizes random and adversarial perturbations. Semi-random
noise regime permits us to explore the space of adversarial examples in the vicinity of a
given datapoint, and to study the effect of flatness of decision boundary on the existence
of adversarial perturbations. We particularly establish precise bounds on the robustness
of classifiers to semi-random noise that depend on the curvature of the classifier’s decision
boundary. We conclude Chapter 5 with the experimental results showing that our
theoretical estimates are very accurately satisfied by state-of-the-art deep image classifiers,
which provides evidence in favour of the aforementioned “flatness” hypothesis.

In Chapter 6, we analyze theoretically the robustness of classifiers to universal pertur-
bations, under two geometrical decision boundary models: locally flat and curved. The
former corresponds to the previously mentioned “flatness” hypothesis, and it guarantees
the existence of universal perturbations, provided the normal vectors in the vicinity of
datapoints are correlated. The curved model instead relates the robustness to universal
perturbations, to the existence of a shared subspace along which the decision boundary is
highly curved. We empirically verify both assumptions for deep networks, and we show
that the curved model better explains the vulnerability of deep networks to universal
perturbations.

Chapter 7 is focused on studying the geometry and topology of the decision regions of
deep image classifiers. We demonstrate how adversarial perturbations can be used to
examine the local geometry of classifiers. Specifically, we resolve the seeming contradiction
between the observations in Chapter 5 and 6 regarding the geometry of state-of-the-art
networks by a thorough analysis of the curvature of their decision boundary, and thus
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provide a more complete picture of the geometry of decision boundary in the vicinity
of images. In particular, we empirically show that the decision boundaries learned by
deep image classifiers are flat along most directions, and that some curved directions
are shared across datapoints. Furthermore, we provide a method to study topological
properties of classifiers in particular path-connectedness of decision regions. We finally
leverage an observation on the asymmetry in the local curvature of image classifiers, and
propose an effective method for detecting adversarially perturbed samples. This shows
that the study of the geometry of state-of-the-art deep networks is not only the key from
an analysis perspective, but it can also lead to the methods to improve their robustness
properties.

Finally in Chapter 8, we demonstrate the advantage of our geometric analysis in developing
efficient regularizers for improving robustness of deep networks. In particular, we provide
theoretical and empirical evidence showing the existence of a strong link between the
curvature of classifiers, in the vicinity of datapoints, and their robustness to adversarial
perturbations. More specifically, we analyse the geometry of adversarial training, i.e., data
augmentation with adversarial examples, and show that adversarial training significantly
decreases the curvature of the loss landscape of deep networks with respect to the input.
On the other hand, encouraging small curvatures significantly improves the robustness of
deep networks and even achieves performance on par with adversarial training. Contrary
to prior works attributing the adversarial vulnerability of deep classifiers to their “excessive
linearity”, our result somewhat surprisingly shows that one needs to decrease curvature
(or increase the “linearity”) to improve the robustness.

In summary, we develop a set of scalable yet accurate algorithmic tools to experimentally
and theoretically analyse the geometric characteristics of the decision boundaries induced
by state-of-the-art classifiers. This analysis does not only highlights the important geo-
metric factors pertaining to the robustness properties of classifiers, but more importantly,
it also leads to more robust classification systems.



1 Related work

In this chapter, we review some of the relevant works from the literature that are linked
to the problems studied in this thesis. We start in Section 2.1 by giving a brief summary
of the significant works that triggered the fundamental research questions related to
adversarial robustness of image classifiers. In Section 2.2, we particularly focus on the
methods to evaluate the robustness properties of deep neural networks. Next, we review
related works that study the geometric properties of these classifiers in Section 2.3. Finally,
in Section 2.4, we focus on the major efforts in improving the robustness properties of
image classifiers.

2.1 Adversarial robustness of deep networks

Deep neural network architectures have achieved state-of-the-art performance in solving
complex learning tasks. In particular, they have shown an astounding performance
on challenging visual classification benchmarks [38, 49, 88, 51]. Despite this success,
many fundamental, and often intriguing, properties of these data representation learning
algorithms are still not understood. One of such intriguing properties of deep networks
is their robustness to various forms of perturbations. In the seminal work of [86], the
phenomenon of adversarial vulnerability of deep neural networks was first introduced. The
authors particularly showed that deep network image classifiers are susceptible to small
well-sought additive perturbations in the data, coined adversarial perturbations, even if
they achieve a high generalization performance. Surprisingly, the resulting perturbed data
, called adversarial examples, are indistinguishable from the original data to the human
eye. In [86], for a given classifier k and a given input image x € [0,1]%, an adversarial
example is found by solving a series of the following optimization problems — for different
values of C' — using a quasi-Newton optimization algorithm [10]:

min J(x + 7, t) + C||7||2
s

st. x4 re0,1]?
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where J(x,t) is the cost used to train the classifier, and ¢ is a target label different than
the original label of . Despite the surprising effectiveness of this method in finding
imperceptible adversarial perturbations, it is not scalable to high dimensional image
classification tasks, and hence not a suitable method to study the robustness properties
of state-of-the-art image classifiers in general. More importantly, such practical difficulty
may give the false impression that adversarial examples are of zero-measure in the input
space, as it is speculated in [86].

The introduction of Fast Gradient Sign method (FGSM) in 35| showed that adversarial
examples can be found almost effortlessly for state-of-the-art image classifiers. This
method computes adversarial examples by going in the direction of the sign of the
gradient of the loss function J:

e sign (Vg (loss(z, k(x)))) , (2.1)

where k(x) is the target label associated with @, and € is the £-norm of the perturbation.
Despite its efficiency, this one-step algorithm provides only a coarse approximation of the
minimal perturbation vectors, therefore it is not a reliable tool in studying the worst-case
robustness properties of deep neural networks.

We finally note that while adversarial attacks for Support Vector Machine (SVM) classifiers
has been introduced in 7], the study of the robustness properties of deep neural network
classifiers has become an active area of research mostly since the seminal work of [86].

2.2 Evaluating robustness of deep networks

Additive perturbations. Robustness of classifiers to additive perturbations, either
random or adversarial noise, is highly desired in many real-world applications of deep
neural networks. Therefore, computationally efficient yet accurate methods are essential
in order to study and evaluate the robustness properties of these networks. The methods
proposed in [86, 35| to find adversarial examples either are computationally expensive or
provide an inaccurate estimation of the robustness of classifiers.

Besides the methods mentioned in the previous section, many other methods have been
developed to generate structured and unstructured additive adversarial perturbations.
Such carefully crafted perturbations are generally estimated by solving an optimization
problem. In [5], finding adversarial perturbations for ReLU networks is cast as a linear
program. The authors of [50] propose an iterative version of the algorithm presented
in [35]. In [13], adversarial perturbations are found by converting the constrained
optimization problem defined in (1.1) to an unconstrained one. Moreover, additive
adversarial perturbations for deep neural networks can be generated to also manipulate
their internal representations [81]. While such an adversarial example is visually similar
to one image, its corresponding internal representation is extremely similar to another

8
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image, from a different class. In [4], a generative network is used to generate additive
adversarial perturbations.

In some applications, evaluating the robustness of classifiers to perturbations with certain
structures, such as sparsity, may be required. Sparse additive perturbations have thus
been studied in the literature. In |75], a saliency-based method is proposed to perturb
a few pixels of the input to fool an image classifier. Evolutionary algorithms, in [84],
are also shown to be effective in generating sparse perturbations. However, neither of
these methods are scalable to high-dimensional classification tasks. Recently, a geometry-
inspired and computationally efficient method to find sparse perturbations is proposed
in [66].

Band-limited perturbations, as another type of structured perturbations, are first studied
in [29]. Such perturbations shed light on the robustness of deep neural networks in differ-
ent frequency bands. In particular, in [100], it has been shown that the low-frequency
perturbations computed for one network transfer better than their high-frequency coun-
terparts to a different network. Such property concerns the black-box robustness of deep
networks, as we will see later in this chapter.

Beside the challenge of evaluating the robustness of image classifiers to additive perturba-
tions, evaluating the robustness properties can become even more challenging in more
general settings.

Non-additive perturbations. Adversarial examples can be generated in more sophis-
ticated ways rather than by merely adding a perturbation vector to the datapoints. Such
non-additive perturbations, such as geometric transformations, are more likely to occur
in real-world scenarios. Most of such manipulations cannot be modelled by additive
perturbations, and their efficient computation requires more sophisticated optimization
techniques. Furthermore, £),-norms become ineffective in measuring the robustness of deep
networks to non-additive perturbations. In particular, the problem of finding the minimal
geometric transformation that fools image classifiers is studied in [27, 46]. They provided
quantitative measure of the robustness of classifiers to geometric transformations. Some
have assessed the robustness of deep neural networks to other perturbation regimes such
occlusions [82, 28, 25|, and deformations |28, 45, 96]. Compared to additive perturbations,
invariance to these natural nuisances play a more important role in building classifiers

used in real-world applications.

Black-box perturbations. Evaluating the robustness of classifiers in black-box set-
tings, where an adversary has only a partial knowledge of the classifiers, is extremely
important from the security point of view. The robustness of classifiers when the ad-
versary has only access to a surrogate model is examined in [7]. One of the intriguing

9
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properties of adversarial examples is their transferability across different models [86].
In that, an adversarial example computed for one network can cause misclassification
in another network. Transferability of adversarial examples can be exploited to devise
efficient black-box attacks [57, 100]. Even worse, when the adversary has only access to
the classifier’s decision, query-based methods can be used to craft adversarial examples [8].
Though query-based methods to attack classifiers are generally computationally expensive,
some prior information can be exploited to reduce the number of the queries in order to
attack deep neural networks [41, 58].

Finally note that while we focus in this thesis on adversarial examples for image classifi-
cation, such examples exist for other visual tasks such as object detection and semantic
segmentation [17], and other modalities of data such as text [23] and speech [11].

2.3 Geometric analysis of image classifiers

Understanding the causes of the adversarial vulnerability of deep neural networks has
been an active and controversial area of research. The seminal work of [86] attributed
the adversarial instability to the large Lipschitz constant associated to the internal
representations of deep neural networks which creates “blind-spots” in the classifier. On
the contrary, in [87], the authors empirically show that adversarial examples are not
isolated points, but rather occupy dense regions of the input space. As opposed to [86],
where adversarial vulnerability is attributed to “excessive complexity” of deep networks,
in [35], the “excessive linearity” of these networks are thought to be responsible for such
vulnerabilities.

In an attempt to theoretically analyse the geometric properties pertaining to the adversar-
ial vulnerability, the authors in [26] studied the problem of adversarial perturbations on
some simple families of classifiers, and provided upper bounds on the robustness of these
classifiers. They concluded that even linear classifiers trained on high-dimensional data
are highly susceptible to adversarial perturbations. By pursuing a geometric approach,
in [89], the authors provide a new explanation for the existence of adversarial examples
based on the tilting of the decision boundary with respect to the data manifold.

While the geometry of classification regions and decision functions induced by traditional
classifiers (such as linear and kernel SVM) is fairly well understood, the same fundamental
geometric properties are to a large extent unknown for state-of-the-art deep neural
networks. Yet, to understand the recent success of deep neural networks and potentially
address their weaknesses (such as their instability to perturbations), an understanding of
these geometric properties remains primordial.

The geometric and topological properties of deep neural networks can be studied either in
the input space or in the weight space of these networks. In [16, 21, 15, 22|, the geometry

10
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of the optimization landscape in the weight space is studied; in particular, generalization of
deep networks is shown to be intimately related to geometric properties of the optimization
landscape (e.g., width of a minima). Related to our work, in [34], the authors study the
optimization landscape of deep neural networks, where the connectedness of solutions
with low error is shown in the weight space. An algorithm is provided to assess the
nature of this connection in the weight space; empirical evidence supports the existence
of “easy” paths between trained models. We follow here a similar goal to that of [34], but
are interested instead in the connectivity of deep networks in the input space (and not
the weight space). Finally, we note that graph-based techniques have been proposed in
[64, 3] to analyze the classification regions of shallow neural networks; we rather focus in
this thesis on the new generation of deep neural networks, which have shown remarkable
performance.

The geometric properties of the decision boundary and classification regions of deep
networks have comparatively received little attention. Closer to our work, in [76], the
authors employ tools from Riemannian geometry to study the expressivity of random
deep neural networks. In particular, the largest principal curvatures are shown to increase
exponentially with the depth; the decision boundaries hence become more complex with
depth. We however provide in this thesis a complementary analysis of the decision
boundary, where the curvature of the decision boundary along all directions are analyzed
(and not only in the direction of largest curvature). One of the contributions of this
thesis is to provide both theoretical and empirical analyses to characterize the adversarial
robustness of deep networks using the geometry of their decision boundary, and leverage
them to improve the robustness of deep neural networks to adversarial perturbations.

2.4 Improving robustness of deep networks

In general, robust classification can be achieved either by detecting adversarial examples
or by making data samples further from the decision boundary of the classifier. There
has been a large body of work on designing more robust deep classifiers. These works can
be broadly categorized as follows.

Adversarial training. One of the earliest attempts to build more robust classifiers is
called “adversarial training” where, naively, the training data is augmented with adversarial
examples [86, 35]. Different versions of adversarial training have been developed since
then. The connection between adversarial training and Robust Optimization (RO) has
been highlighted in [1]. One of the risks of using adversarial training is that it can cause
the classifier to overfit to specific types of adversarial examples. However, in [70], it is
shown that adversarial training using minimal ¢, perturbations (as defined in (1.1)) is
more effective than using FGSM samples [35]. As another solution to avoid overfitting,
adversarial training using attacks on an ensemble of networks is suggested in [90]. At
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Chapter 2. Related work

the time of writing this thesis, surprisingly, the most effective scheme to improve the
robustness is shown to be the adversarial training proposed in [62], where the adversarial
examples generated by the method of [50] are used.

Denoising-based methods. The simple idea behind denoising-based methods is to
mitigate the effect of adversarial perturbations by removing the noise from the input
image either by applying input transformations such as foeviation mechanism [60], JPEG
compression [19], and quantization [37]| or by learning a denoising operator |72]. Similarly
to the input image, denoising techniques can also be applied to the internal representations
of the network [55].

Regularization-based methods. Increasing the stability of the classifier has been
one of the favourite methods to improve the adversarial robustness. In [36], the authors
introduced a smoothness penalty in the training procedure that tries to boost the
robustness of the classifier via penalizing the norm of the gradient in each layer. Many
other works have attempted to improve the robustness using the gradient or the full
Jacobian regularization (61, 78, 42]. In [18, 97|, regularizing the spectral properties of
individual convolutional filters has been proposed to improve robustness. Inspired by
SVMs, large-margin deep neural networks have been introduced in [24]. It is worth to
note that most of these methods penalize the classifier to have a small Lipschitz constant,
which, generally, might significantly harm its generalization performance. In this thesis,
we however introduce a promising second-order regularization technique that can perform
as well as adversarial training.

Detection-based methods. In parallel, for some applications of image classification,
it might be enough to detect adversarial examples instead of improving the robustness
of the classifier. To do so, detector networks can be trained to distinguish adversarial
examples from clean images [65]. Using Bayesian uncertainty estimation, model confidence
can be investigated to detect adversarial examples [32]. However, in [12], it has been
shown that many detection methods can be easily by-passed, and even if they successfully
detect all the known adversarial attacks, they still remain susceptible to new unknown
attacks.

It should be noted that many of the proposed methods to improve the robustness obscure
the model rather than make the model truly robust against all attacks [92, 2|. One method
however stands out, adversarial training, which has shown to be empirically robust against
all designed attacks. One of our contributions in this thesis is to provide an analysis of this
phenomenon, and propose a regularization strategy, which mimics the effect of adversarial
training. Our method, while being computationally less expensive, can achieve close to
state-of-the-art adversarial performance in some standard classification benchmarks.

12
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2.5 Summary

We summarize the main points of this chapter, in the light of the contributions of this
thesis and upcoming challenges:

e Deep neural networks are shown to be extremely vulnerable to adversarial manipu-
lations. Different methods have been developed to assess their robustness properties
in various adversarial settings; however, many of these methods lack either the
scalability or the accuracy. One of the goals of this thesis is to provide scalable
methods to accurately evaluate the robustness of deep networks to adversarial
perturbations.

e Due to the complexity and the high-dimensionality of deep neural networks, their
geometric properties have rather received little attention. We here provide a
thorough study on the geometry of deep networks to shed light on their robustness
properties.

e Designing methods to increase the robustness of deep networks is an active area of
research. However, despite all the efforts so far, no satisfactory solution yet exists to
achieve sufficiently robust image classifiers for many image classification benchmarks.
In this thesis, we take a step towards understanding the key elements contributing
to the success of some of the best known methods to improve robustness properties
of deep networks.
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81 Adversarial perturbations

)

“Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things.’

— Isaac Newton

3.1 Introduction

In this chapter, we propose a fast yet accurate algorithm to estimate the robustness of deep
image classifiers to additive adversarial perturbations. Additive adversarial perturbations
are small perturbations sought to change the estimated label of the classifier. Deep
neural networks are shown to be unstable to very small and often imperceptible additive
adversarial perturbations [86]. However, the method originally provided in [86] does not
scale well to high-dimensional datasets. An accurate method for finding the adversarial
perturbations is thus useful to study and compare the robustness properties of different
image classifiers. Furthermore, as we will see later in this chapter, thanks to the proximity
of datapoints to the decision boundary of deep neural networks, an accurate algorithm to
find adversarial perturbations can be employed to study the geometric properties of the
decision boundary of deep networks in the vicinity of datapoints.

We propose an efficient algorithm called DeepFool to compute minimal perturbations of
deep image classifiers. Since one can find such perturbations in closed-form for linear
classifiers, the main idea behind DeepFool is to iteratively linearize the classifier’s decision
function, and therefore reduce the problem of finding minimal perturbations to a series of
closed-form update rules. Through extensive experimental comparisons, we show that 1)
our method computes adversarial perturbations more reliably and efficiently than some of

Part of this chapter has been published in

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016,

Alhussein Fawzi*, Seyed Moosavi-Dezfooli*, and Pascal Frossard. Robustness of classifiers: from
adversarial to random noise. In Neural Information Processing Systems (NIPS), 2016. (*: Equal
contribution)
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Chapter 3. Adversarial perturbations

the existing methods 2) augmenting training data with adversarial examples significantly
increases the robustness to adversarial perturbations. Furthermore, we demonstrate the
flexibility of the DeepFool algorithm to study the robustness of deep neural networks in
more general settings.

The rest of this chapter is organised as follows. In Section 3.2, we introduce our computa-
tionally efficient algorithm, called DeepFool, to find minimal adversarial perturbations,
and provide experimental results to compare the proposed optimisation method, for
computing the robustness, to other existing methods. In Section 3.3, we provide an
efficient and accurate way to enhance the robustness performance of deep networks by
proper fine-tuning. Finally in Section 3.4, we provide variants of DeepFool to study
adversarial perturbations confined in a subspace.

3.2 DeepFool

We recall that, for a given classifier, we define an adversarial perturbation as the minimal
perturbation 7, in the sense of the ¢,-norm, that is sufficient to change the estimated
label! k(z):

~

A(w; k) := min ||r||, subject to k(z + r) # k(z), (3.1)

where x is an image and k(z) is the estimated label. We call A(; k) the robustness of k
at point x.

Since a multiclass classifier can be viewed as an aggregation of binary classifiers, we first
propose the algorithm for binary classifiers. That is, we assume here k(x) = sign(f(z)),
where f is an arbitrary scalar-valued image classification function f: R™ — R. We also
denote by . £ {x : f(x) = 0} the level set at zero of f. We begin by analyzing the case
where f is an affine classifier f(z) = w’x + b, and then derive the general algorithm,
which can be applied to any differentiable binary classifier f.

3.2.1 Binary classifiers

In the case where the classifier f is affine, it can easily be seen that the robustness
of f at point xg, A(xo; f)?, is equal to the distance from x to the separating affine
hyperplane .# = {z : w'x + b= 0} (Fig. 3.1). The minimal perturbation to change the
classifier’s decision corresponds to the orthogonal projection of &y onto .#. It is given by

! Throughout this thesis, perturbation vectors sending a datapoint exactly to the boundary are assumed
to change the estimated label of the classifier.

2F}"om now on, we refer toa classifier either by f or its corresponding discrete mapping k. Therefore,
paav(k) = paav(f) and A(z; k) = A(z; f).
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f(x)>0

f(x) <0
F

Figure 3.1 — Adversarial examples for a linear binary classifier.

the closed-form formula:

r«(xo) := argmin ||r||2 subject to sign(f(xo + 1)) # sign(f(xo)) (3.2)
f (o)

o wl3

Assuming now that f is a general differentiable binary classifier, we adopt an iterative
procedure to estimate the robustness A(xg; f). Specifically, at each iteration, f is
linearized around the current point x; and the minimal perturbation of the linearized
classifier is computed as

argmin |72 subject to f(a;) + Vf(z;)Tr; = 0. (3.3)

The perturbation r; at iteration ¢ of the algorithm is computed using the closed form
solution in Eq. (3.3), and the next iterate x;; is updated. The algorithm stops when ;4
changes sign of the classifier. The DeepFool algorithm for binary classifiers is summarized
in Algorithm 1 and a geometric illustration of the method is shown in Fig. 3.2.

Algorithm 1 DeepFool for binary classifiers

input: Image x, classifier f.
output: Perturbation 7.
Initialize &y < x, i + 0.
while sign(f(x;)) = sign(f(xo)) do
ri e~ VI @),
Tit1 & T + T,
141+ 1.
end while
return © =) . 7;.

In practice, the above algorithm can often converge to a point on the zero level set .%. In
order to reach the other side of the classification boundary, the final perturbation vector #
is multiplied by a constant 1+ 7, with n < 1. In our experiments, we have used n = 0.02.
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Chapter 3. Adversarial perturbations

Figure 3.2 — Illustration of Algorithm 1 for n = 2. Assume xy € R™. The green plane is the
graph of @ — f(x0) + Vf(x0)? (x — o), which is tangent to the classifier function (wire-
framed graph) « + f(x). The orange line indicates where f(xq) + V. f(x0)” (x — 20) = 0.
a1 is obtained from xg by projecting @y on the orange hyperplane of R™.

3.2.2 Multi-class classifiers

We now extend the DeepFool method to the multiclass case. The most common used
scheme for multiclass classifiers is one-vs-all. Hence, we also propose our method based
on this classification scheme. In this scheme, the classifier has ¢ outputs where ¢ is
the number of classes. Therefore, a classifier can be defined as f : R” — R¢ and the
classification is done by the following mapping;:

k(x) = argl?aax fr(x), (3.4)

where fi(x) is the output of f(x) that corresponds to the k" class. Similarly to the
binary case, we first present the proposed approach for the linear case and then we
generalize it to other classifiers.

Affine multiclass classifier

Let f(x) be an affine classifier, i.e., f(x) = W'z + b for a given W and b. Since the
mapping k is the outcome of a one-vs-all classification scheme, the minimal perturbation
to fool the classifier can be rewritten as follows

arg min ||7||2
r (3.5)

st 3w, (xo+7) + b > w,|

k(mo)(mo +7r)+ bic(

:1:0)’

where wy, is the k™' column of W. Geometrically, the above problem corresponds to the
computation of the distance between xg and the complement of the convex polyhedron P,

P= {2 fym (@) = fil@)}. (3.6)
k=1
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3.2. DeepFool

Figure 3.3 — For x( belonging to class 4, let %, = {x : fi(x) — fs(x) = 0}. These
hyperplanes are depicted in solid lines and the boundary of P is shown in green dotted
line.

where @ is located inside P. We denote this distance by dist(xq, P¢). The polyhedron P
defines the region of the space where f outputs the label /%(:L'O). This setting is depicted
in Fig. 3.3. The solution to the problem in Eq. (3.5) can be computed in closed form as
follows. Define [(xg) to be the closest hyperplane of the boundary of P (e.g. I(z) = 3 in

~

Fig. 3.3). Formally, I(x() can be computed as follows

. T ®0) = S (Z0)
[(xg) = arg min

(3.7)
kth(mo) Wk~ Wiy ll2

The minimum perturbation 7.(xo) is the vector that projects @y on the hyperplane
indexed by [(x), i.e.,

f[(mo) (zo) — fig(mo) (zo)

r«(xo) = ('wi(mo) - wk(mo)). (3.8)

2
||wi(ﬂ30) N wif(ﬂlo)”2
In other words, we find the closest projection of g on faces of P.

General classifier

We now extend the DeepFool algorithm to the general case of multiclass differentiable
classifiers. For general non-linear classifiers, the set P in Eq. (3.6) that describes the region
of the space where the classifier outputs label l%(a:o) is no longer a polyhedron. Following
the explained iterative linearization procedure in the binary case, we approximate the set
P at iteration i by a polyhedron P

k=1

We then approximate, at iteration 4, the distance between x; and the complement of
P, dist(x;, P°), by dist(azi,l—:’ic). Specifically, at each iteration of the algorithm, the
perturbation vector that reaches the boundary of the polyhedron P, is computed, and the
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Chapter 3. Adversarial perturbations

Figure 3.4 — For & belonging to class 4, let F), = {x : fy(z) — fa(x) = 0}. The linearized
zero level sets are shown in dashed lines and the boundary of the polyhedron P, in green.

current estimate is updated. A schematic representation of the linearization of the decision
boundary is shown in Fig. 3.4. The method is given in Algorithm 2. It should be noted
that the proposed algorithm operates in a greedy way and is not guaranteed to converge
to the optimal perturbation in (3.1). However, we have observed in practice that our
algorithm yields very small perturbations which are believed to be good approximations

of the minimal perturbation.

Algorithm 2 DeepFool: multi-class case

1: input: Image «, classifier f.
2: output: Perturbation 7.
3:
4: Initialier xo < x, 1< 0.
5: while k(;r:i)A: ]{(ZB()) do
6: for k # k(xp) do
T wy, < V fi(xi) — Vf]}(wo)(mi)
8: Ii  fr(xi) — f/}(wo)(a’i)
9: end for
10: [ + argmi ; kA
' N CON A
. . A
12: Tip1 < T; + 14

13: 1—1+1
14: end while
15 return # =) .7

It should be noted that the optimization strategy of DeepFool is strongly tied to existing
optimization techniques. In the binary case, it can be seen as Newton’s iterative algorithm
for finding roots of a nonlinear system of equations in the underdetermined case [80].
This algorithm is known as the normal flow method. The convergence analysis of this
optimization technique can be found for example in [94]. Our algorithm in the binary
case can alternatively be seen as a gradient descent algorithm with an adaptive step size

22



3.2. DeepFool

that is automatically chosen at each iteration. The linearization in Algorithm 2 is also
similar to a sequential convex programming where the constraints are linearized at each
step.

3.2.3 Experiments

Setup

We now test our DeepFool algorithm on deep convolutional neural networks architectures
applied to MNIST, CIFAR-10, and ImageNet image classification datasets. We consider
the following deep neural network architectures:

e MNIST: A two-layer fully connected network, and a two-layer LeNet convolua-
tional neural network architecture [53|. Both networks are trained with SGD with
momentum using the MatConvNet [93] package.

e CIFAR-10: We trained a three-layer LeNet architecture, as well as a Network In
Network (NIN) architecture [56].

e ILSVRC 2012: We used CaffeNet [44] and GoogLeNet [85] pre-trained models.

In order to evaluate the robustness to adversarial perturbations of a classifier f, we
compute the average robustness paqy(f), defined by

puan(f) = Z” all (3.10)

[ 2 Tl

where 7(x) is the estimated minimal perturbation obtained using DeepFool, and 2
denotes the test set?.

We compare the proposed DeepFool approach to state-of-the-art techniques to compute
adversarial perturbations in [86] and [35]. The method in [86] solves a series of penalized
optimization problems to find the minimal perturbation, whereas 35| estimates the
minimal perturbation by taking the sign of the gradient

7(x) = esign (VzJ(0,x,y)),

with J the cost used to train the neural network, @ is the model parameters, and y is the
label of . The method is called Fast Gradient Sign Method (FGSM). In practice, in the
absence of general rules to choose the parameter €, we chose the smallest € such that 90%
of the data are misclassified after perturbation.?

3For ILSVRC2012, we used the validation data.
4Using this method, we observed empirically that one cannot reach 100% misclassification rate on
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Chapter 3. Adversarial perturbations

Table 3.1 — The adversarial robustness of different classifiers on different datasets. The
time required to compute one sample for each method is given in the time columns. The
times are computed on a Mid-2015 MacBook Pro without CUDA support. The asterisk
marks determines the values computed using a GTX 750 Ti GPU.

ﬁadv ﬁadv ﬁadv

Classifier Test error (Ours) time [35] time I86] time
MNIST
LeNet 1% 2.0x 107! 110 ms 1.0 20 ms 25x107Y  >4s

FC500-150-10 1.7% 11x107Y  50ms 3.9x107' 10ms 1.2x107!' >2s
CIFAR-10

NIN 11.5% 23%x1072 1100ms 1.2x107' 180 ms 24x1072 >50s

LeNet 22.6% 3.0x1072  220ms 1.3x107! 50ms 3.9x1072 >Ts

ImageNet

CaffeNet 42.6% 2.7x107% 510 ms* 3.5x 1072 50 ms* - -

GoogLeNet 31.3% 1.9x107% 800 ms* 4.7x 1072 80 ms* - -
Results

We report in Table 3.1 the accuracy and average robustness p,qv of each classifier computed
using different methods. We also show the running time required for each method to

compute one adversarial sample.

It can be seen that DeepFool estimates smaller perturbations (hence closer to minimal
perturbation defined in (3.1)) than the ones computed using the competitive approaches.
For example, the average perturbation obtained using DeepFool is 5 times lower than the
one estimated with [35]. On the ILSVRC2012 challenge dataset, the average perturbation
is one order of magnitude smaller compared to the fast gradient method. It should be
noted moreover that the proposed approach also yields slightly smaller perturbation
vectors than the method in [86]. The proposed approach is hence more accurate in
detecting directions that can potentially fool neural networks. As a result, DeepFool
can be used as a valuable tool to accurately assess the robustness of classifiers. On the
cost aspect, the proposed approach is substantially faster than the standard method
proposed in [86]. In fact, while the approach [86] involves a costly minimization of a
series of objective functions, we observed empirically that DeepFool converges in a few
iterations (i.e., less than 3) to a perturbation vector that fools the classifier. Hence, the
proposed approach reaches a more accurate perturbation vector compared to state-of-the-
art methods, while being computationally efficient. This makes it readily suitable to be
used as a baseline method to estimate the robustness of very deep neural networks on
large-scale datasets. In that context, we provide the first quantitative evaluation of the

some datasets. In fact, even by increasing e to be very large, this method can fail in misclassifying all
samples.
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robustness of state-of-the-art classifiers on the large-scale ImageNet dataset. It can be
seen that despite their very good test accuracy, these methods are extremely unstable
to adversarial perturbations: a perturbation that is 1000 smaller in magnitude than the
original image is sufficient to fool state-of-the-art deep neural networks.

Figure 3.5 — An example of adversarial perturbations. First row: the original image @ that
is classified as k(z)=“whale". Second row: the image 47 classified as k(x4 r)=“turtle"
and the corresponding perturbation r computed by DeepFool. Third row: the image
classified as “turtle" and the corresponding perturbation computed by the fast gradient
sign method (FGMS) [35]. DeepFool leads to a smaller perturbation.

We illustrate in Fig. 3.5 perturbed images generated by the fast gradient sign and DeepFool.
It can be observed that the proposed method generates adversarial perturbations which
are hardly perceptible, while the fast gradient sign method outputs a perturbation image
with higher norm.

It should be noted that, when perturbations are measured using the £, norm, the above
conclusions remain unchanged: DeepFool yields adversarial perturbations that are smaller
(hence closer to the optimum) compared to other methods for computing adversarial
examples. Table 3.2 reports the £, robustness to adversarial perturbations measured by

5. (f) = Iél > e ”Tl;mn)im, where 7 () is computed respectively using DeepFool (with

p = 00, see Section 3.4.1), and the Fast gradient sign method for MNIST and CIFAR-10
tasks.
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Table 3.2 — Values of po5, for four different networks based on DeepFool (smallest [
perturbation) and fast gradient sign method with 90% of misclassification.

Classifier DeepFool FGSM |35]
MNIST

LeNet 0.10 0.26
FC500-150-10 0.04 0.11
CIFAR-10

NiN 0.008 0.024
LeNet 0.015 0.028

3.3 Adversarial training using DeepFool

In this section, we fine-tune the networks of Table 3.1 on adversarial examples to build
more robust classifiers for the MNIST and CIFAR-10 tasks. Specifically, for each network,
we performed two experiments: (i) Fine-tuning the network on DeepFool’s adversarial
examples, (ii) Fine-tuning the network on the fast gradient sign adversarial examples. We
fine-tune the networks by performing 5 additional epochs, with a 50% decreased learning
rate only on the perturbed training set. For each experiment, the same training data was
used through all 5 extra epochs. For the sake of completeness, we also performed 5 extra
epochs on the original data. The evolution of p,qy for the different fine-tuning strategies
is shown in Figures 3.6a to 3.6d, where the robustness pqqy i estimated using DeepFool,
since this is the most accurate method, as shown in Table 3.1. Observe that fine-tuning
with DeepFool adversarial examples significantly increases the robustness of the networks
to adversarial perturbations even after one extra epoch. For example, the robustness of
the networks on MNIST is improved by 50% and NIN’s robustness is increased by about
40%. On the other hand, quite surprisingly, the method in [35] can lead to a decreased
robustness to adversarial perturbations of the network. We hypothesize that this behavior
is due to the fact that perturbations estimated using the fast gradient sign method are
much larger than minimal adversarial perturbations. Fine-tuning the network with overly
perturbed images decreases the robustness of the networks to adversarial perturbations.
To verify this hypothesis, we compare in Fig. 3.7 the adversarial robustness of a network
that is fine-tuned with the adversarial examples obtained using DeepFool, where norms
of perturbations have been deliberately multiplied by o = 1,2, 3. Interestingly, we see
that by magnifying the norms of the adversarial perturbations, the robustness of the
fine-tuned network is decreased. This might explain why overly perturbed images decrease
the robustness of MNIST networks: these perturbations can really change the class of the
digits, hence fine-tuning based on these examples can lead to a drop of the robustness (for
an illustration, see Fig. 3.8). This lends credence to our hypothesis, and further shows
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M DeepFool M FGSM M Clean M DeepFool  MFGSM M Clean
0.26 0.15
0.13
0.22 .
g $0.11
QU
0.18 0.09
0.14 0.07
0 1 2 3 4 5 0 1 2 3 4 5

Number of extra epochs

(a) Effect of fine-tuning on adversarial ex-
amples computed by two different methods
for LeNet on MNIST.

Number of extra epochs

(b) Effect of fine-tuning on adversarial ex-
amples computed by two different methods
for a fully-connected network on MNIST.

W DeepFool M FGSM [ Clean M DeepFool M FGSM M Clean
0.04
0.04
0.036 0.035
£0.032 e
0.03
0.028
0.024
0.025
0 1 2 3 4 5 0 1 2 3 4 5

Number of extra epochs Number of extra epochs

(d) Effect of fine-tuning on adversarial ex-
amples computed by two different methods
for LeNet on CIFAR-10.

(c) Effect of fine-tuning on adversarial ex-
amples computed by two different methods
for NIN on CIFAR-10.

Figure 3.6

the importance of designing accurate methods to compute minimal perturbations.

Table 3.3 lists the accuracies of the fine-tuned networks. It can be seen that fine-tuning
with DeepFool can improve the accuracy of the networks. Conversely, fine-tuning with
the approach in [35] has led to a decrease of the test accuracy in all our experiments.
This confirms the explanation that the fast gradient sign method outputs overly perturbed
images that lead to images that are unlikely to occur in the test data. Hence, it decreases
the performance of the method as it acts as a regularizer that does not represent the
distribution of the original data. This effect is analogous to geometric data augmentation
schemes, where large transformations of the original samples have a counter-productive

effect on generalization.?

"While the authors of [35] reported an increased generalization performance on the MNIST task (from
0.94% to 0.84%) using adversarial regularization, it should be noted that the their experimental setup is
significantly different as [35] trained the network based on a modified cost function, while we performed
straightforward fine-tuning.
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Figure 3.7 — Fine-tuning based on magnified DeepFool’s adversarial perturbations.

R/ RN

Figure 3.8 — From “1" to “7" : original image classified as “1" and the DeepFool perturbed

images classified as “7" using different values of a.

Table 3.3 — The test error of networks after the fine-tuning on adversarial examples (after
five epochs). Each columns correspond to a different type of augmented perturbation.

Classifier DeepFool FGSM [35] Baseline
MNIST

LeNet 0.8% 4.4% 1%
FC500-150-10 1.5% 4.9% 1.7%
CIFAR-10

NIN 11.2% 21.2% 11.5%
LeNet 20.0% 28.6% 22.6%

The importance of minimal perturbations

To emphasize the importance of an accurate estimation of the minimal perturbation, we

now show that using approximate methods can lead to wrong conclusions regarding the

adversarial robustness of networks. We fine-tune the NiN classifier on the fast gradient

sign adversarial examples. We follow the procedure described earlier but this time, we
decreased the learning rate by 90%. We have evaluated the adversarial robustness of this
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network at different extra epochs using DeepFool and the fast gradient sign method. As
one can see in Fig. 3.9, the red plot exaggerates the effect of training on the adversarial
examples. Moreover, it is not sensitive enough to demonstrate the loss of robustness at
the first extra epoch. These observations confirm that using an accurate tool to measure
the robustness of classifiers is crucial to derive conclusions about the robustness of deep
networks.

Il DeepFool [l FGSM

-
N

-
o

Normalized robustness

0.8
0 1 2 3 4 5

Number of extra epochs

Figure 3.9 — How the adversarial robustness is judged by different methods. Both plots
correspond to a network fine-tuned on DeepFool adversarial examples, however, its
robustness is evaluated differently using DeepFool and FGSM. The values are normalized
by the corresponding p.q4vs of the original network.

3.4 Variants of DeepFool

3.4.1 Extending DeepFool to ¢/, norm

In this chapter, we have measured the perturbations using the £5 norm. Our framework
is however not limited to this choice, and the proposed algorithm can simply be adapted
to find minimal adversarial perturbations for any ¢, norm (p € [1,00)). To do so, the
update steps in line 10 and 11 in Algorithm 2 must be respectively substituted by the

following updates

/
[ + arg min |ff€| : (3.11)
k#k(z0) [willq
e ,
i ol @ sien(w)), (312
Wrlq

l
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where ® is the pointwise product and ¢ = 1)%1.6 In particular, when p = oo (i.e., the
supremum norm /), these update steps become

| /]

- arg min (3.13)
k+k(xo) H k:Hl
f/
ri ”‘ ,|’| sign(w ’) (3.14)

3.4.2 Subspace-constrained DeepFool

The DeepFool algorithm developed in the previous sections can be used to find adversarial
perturbations confined in a low dimensional subspace. Let S be an arbitrary subspace of
R? of dimension m. Define T5 to be the perturbation in & of minimal />-norm that is
required to change the estimated label of k£ at xg:

r(x0) = arg min |72 subject to k(xo + 1) # k(o). (3.15)
res

We recall that Algorithm 2 iteratively linearizes the classifier’s decision function. Therefore,
one can extend it, in the case where the perturbations are confined in a subspace S of
dimension m, by modifying Eq. 3.7 and 3.8 into

[Fi(@0) = Fy(ay) (@0)]

5 (Pswie — Pswy,, ). (3.16)

rs(@o) =
HPS’wk* — Pka(mo) N

where k* satisfies

[F(@0) = fi g0 (@0)

HPg’wk — Pgwk(

k* = arg min

(3.17)

o) 9

Here, Pgs is the orthogonal projector onto the subspace §. The resulting algorithm is
provided in Algorithm 3. Similarly to Eq. (3.10), one can define the robustness in a given
subspace as:

H] ||2
P E . 3.18

ze il

We note that, while the full gradients of the classification functions fj with respect to the
input are required in order to compute the unconstrained perturbation (namely, when
S = R%), we only require the projections of the gradients onto the subspace S for estimating

5To see this, one can apply Holder’s inequality to obtain a lower bound on the £, norm of the
perturbation.
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Algorithm 3 Computing minimal perturbation in a subspace S

1: input: Image @, classifier f, orthogonal projector Ps onto S.
2: output: Perturbation 7s.

3: Initialize xg < x, i < 0.

4: while k(x;) = k(x) do

5. for k # k(xg) do

6: wy, = Vfi(@i) — Vf]}(wo)(fni)
T: fr = Te(@i) = fiay) (%)

8: end for /

% K argmingpq,) ||4PL{Z|;||;

10: T — %Pgwg*

11: Tip] <X, + 715

12: 14— 1+1
13: end while
14: return rs =) . r;

the subspace perturbation in Algorithm 3. Informally speaking, the computation of the
subspace constrained perturbation requires less information about the classifier. This
property, especially when m < d, can be exploited to design computationally efficient
black-box attacks.

Application I: spectral robustness

Subspace constrained perturbations can be used to study the robustness properties of
deep networks to band-limited adversarial perturbations, where the subspace constitutes
of 2-dimensional Discrete Cosine Transform (DCT) basis vectors. Let s;; denote the
vectorized version of the inverse DCT transform of an image of a delta function located
at the position (7, j) of the image. The span of a subset of s;;s (for diffferent values of 4
and j) forms a subspace S. For an image of dimensions 224 x 224, in order to study the
robustness of deep networks in different frequency bands, we choose subspaces Sy as:

Sj, = span {sij : HOJ : LJOJ — ki, j < 224} , (3.19)

where each S, corresponds to a frequency band, and higher ¢ indicates higher frequencies.
An example of the resulted perturbations for three different subspaces Sy, S1g, and Sag
are depicted in Fig. 3.10. For each case, the algorithm misclassified the original image
(Polaroid Camera) as a Dial Phone. We observe that for the low frequency subspace
So, the perturbation is imperceptible, and thus the robustness seems to be low. For the
case of the middle frequency subspace Si1g, we see a slight difference in the texture of the
picture, which indicates that the robustness is increasing while we move away from the
low frequencies. This observation is justified by the last, high frequency subspace So,
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DeepFool
S10 : (unconstrained)

Perturbed image

Perturbation

Figure 3.10 — The original image is classified as “boat house” while all three perturbed
images in the first row are classified as “jeep”. The second row shows the corresponding
perturbations.

where the perturbation is perceptible and thus the robustness is higher. One can quantify
the previous observation by computing the average robustness (over multiple images) for
each §;. To do so, we define the following measure:

m ~S

Padv

=4/ 3.20
! d Padv ( )

For a randomly chosen subspace S (see Chapter 5), the value of v should be close to
1. We compute v for 1000 randomly selected images from the ImageNet validation set
on a pre-trained ResNet-50 network. As seen in Fig. 3.11, the average robustness for
low frequency perturbations is quite low, while it increases as the perturbations live in
higher frequency bands, which justifies our previous qualitative observation. Therefore,
surprisingly, deep networks trained on natural images seem to be really robust to high
frequency perturbations. This behaviour is in contrast with the defense mechanisms which
try to remove adversarial perturbations by treating them as high frequency noise [19, 37].

Application II: watermarking

Algorithm 3 can be used to generate structured additive adversarial perturbations. As
an example, we now show a simple demonstration of the vulnerability of classifiers to
subspace adversarial perturbations in Fig. 3.12, where a structured message is hidden
in the image and causes data misclassification. Specifically, we consider S to be the
span of random translated and scaled versions of words “NIPS”, “SPAIN” and “2016”
in an image, such that [4/m| = 228. The resulting perturbations in the subspace are
therefore linear combinations of these words with different intensities. The perturbed
image xo 4+ r§ shown in Fig. 3.12 (c) is clearly indistinguishable from Fig. 3.12 (a). This
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Figure 3.11 — The values of v with respect to the subspaces S; for a ResNet-50 network
trained on the ImageNet dataset. The dashed line corresponds to the expected value of ~
for a random subspace of dimension ¢ (see Chapter 5).

(a) Classified as “Potflower” (b) Perturbation (c) Classified as “Pineapple”

Figure 3.12 — A fooling hidden message. S is the span of random translations and scales
of the words “NIPS”, “SPAIN” and “2016”.

shows that imperceptibly small structured messages can be added to an image to cause
misclassification.

The potential of Algorithm 3 extends beyond crafting adversarial attacks. In Chapter 5,
by means of the so-called semi-random noise regime, we show how this algorithm can be
employed to study the geometry of the decision boundary of deep neural networks.

3.5 Conclusion

In this chapter, we proposed an algorithm, DeepFool, to compute adversarial examples
that fool state-of-the-art image classifiers. It is based on an iterative linearization of the
classifier to generate minimal perturbations that are sufficient to change classification
labels. We provided extensive experimental evidence on three datasets and eight classifiers,
showing the superiority of the proposed method over state-of-the-art methods to compute
adversarial perturbations, as well as the efficiency of the proposed approach. Thanks to
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its accurate estimation of the adversarial perturbations, the proposed DeepFool algorithm
provides an efficient and accurate way to evaluate the robustness of classifiers and to
enhance their performance by proper fine-tuning.

We demonstrated the flexibility of our proposed algorithm by introducing two simple
yet efficient modifications of DeepFool: ¢,-DeepFool and subspace-DeepFool algorithms.
Using subspace-DeepFool, we particularly showed that deep networks are surprisingly
more vulnerable to lower frequency adversarial perturbations. Furthermore, DeepFool can
successfully be used in generating highly structured perturbation vectors. The accuracy
and the computational efficiency of DeepFool permits us to use it, in the rest of this
thesis, as an essential tool to characterise the geometric properties of the robustness of
deep networks.

We finally note that DeepFool has widely been used as a method to evaluate the robustness
of classifiers. Furthermore, according to independent benchmarks [77], it has been shown
to outperform other adversarial attack methods in computing minimal ¢s-norm adversarial
perturbations on large-scale datasets.

One intriguing feature of adversarial perturbations computed using DeepFool and other
adversarial attack methods is that they can to some extent be transferred across different
architectures [86]. However, these input-dependent perturbations do not necessarily
transfer well across different images. The question of the existence of input-independent
perturbations thus remains open. Hence in the next chapter, we investigate this ques-
tion and provide an iterative algorithm based on DeepFool to find image-independent
adversarial perturbations, which significantly generalise across different images and even
different architectures.
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%Y Universal adversarial perturbations

“Real knowledge is to know the extent of one’s ignorance.”

— Confucius

4.1 Introduction

In the previous chapter, we proposed proposed a fast but computationally efficient method
to generate minimal adversarial perturbations fooling state-of-the-art classifiers. While
such perturbations are principally sought for a specific classifier, they can surprisingly
fool other classifiers trained on the same dataset [86]. In this chapter, we are however
interested to see to what extent adversarial perturbations can become independent from
the input. In other words, can we find a single small image perturbation that fools a
state-of-the-art deep neural network classifier on all natural images?

We show here the existence of quasi-imperceptible universal perturbation vectors that
lead to misclassify natural images with high probability. Specifically, by adding such a
quasi-imperceptible perturbation to natural images, the label estimated by the deep neural
network is changed with high probability (see Fig. 4.1). Such perturbations are dubbed
universal, as they are image-agnostic. The existence of these perturbations is problematic
when the classifier is deployed in real-world (and possibly hostile) environments, as they
can be exploited by adversaries to break the classifier. Indeed, the perturbation process
involves the mere addition of one very small perturbation to all natural images, and can
be relatively straightforward to implement by adversaries in real-world environments,
while being relatively difficult to detect as such perturbations are very small and thus do
not significantly affect data distributions.

To find image-agnostic perturbations, we propose an algorithm which seeks a universal

Part of this chapter has been published in

Seyed-Mohsen Moosavi-Dezfooli*, Alhussein Fawzi*, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017. (*: Equal contribution)

35



Chapter 4. Universal adversarial perturbations
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Flagpole Labrador

Tibetan mastiff

Lycaenid

Figure 4.1 — When added to a natural image, a universal perturbation image causes the
image to be misclassified by the deep neural network with high probability. Left images:
Original natural images. The labels are shown on top of each arrow. Central image:
Universal perturbation. Right images: Perturbed images. The estimated labels of the
perturbed images are shown on top of each arrow.

perturbation for a set of training points, and proceeds by aggregating atomic perturbation
vectors that send successive datapoints to the decision boundary of the classifier. We
show their remarkable generalization property, as perturbations computed for a rather
small set of training points fool new images with high probability. Furthermore, such
perturbations are not only universal across images, but also generalize well across deep
neural networks. As a result, these perturbations are therefore doubly universal, both

with respect to the data and the network architectures.

Universal vs. adversarial perturbations. A fundamental property of adversarial
perturbations is their intrinsic dependence on datapoints: the perturbations are specifically
crafted for each data point independently. As a result, the computation of an adversarial
perturbation for a new data point requires solving a data-dependent optimization problem
from scratch, which uses the full knowledge of the classification model. This is different
from the universal perturbation considered in this chapter, as we seek a single perturbation
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vector that fools the network on most natural images. Perturbing a new datapoint then
only involves the mere addition of the universal perturbation to the image (and does not
require solving an optimization problem/gradient computation). Finally, we emphasize
that our notion of universal perturbation differs from the generalization of adversarial
perturbations studied in [86], where perturbations computed on the MNIST task were
shown to generalize well across different models. Instead, we examine the existence of
universal perturbations that are common to most data points belonging to the data
distribution.

The organization of this chapter is as follows: in Section 4.2, we introduce a naive iterative
algorithm to find universal perturbations for deep neural networks using only a small
subset of training images. In Section 4.3, we empirically analyse some of the key properties
of these universal perturbations. Finally in Section 4.5, we study the effectiveness of a
simple adversarial training scheme to improve the robustness of classifiers to universal
perturbations.

4.2 Universal perturbations for deep networks

We formalize in this section the notion of universal perturbations, and propose a method
for estimating such perturbations. Let u denote a distribution of images in R?, and k
define a classification function that outputs for each image € R? an estimated label
l;:(a:) The main focus is to seek perturbation vectors v € R? that fool the classifier k on
almost all datapoints sampled from p. That is, we seek a vector v such that

k(x + v) # k(x) for “most” @ ~ .

We coin such a perturbation universal, as it represents a fixed image-agnostic perturbation
that causes label change for most images sampled from the data distribution p. We focus
here on the case where the distribution p represents the set of natural images, hence
containing a huge amount of variability. In that context, we examine the existence of
small universal perturbations (in terms of the ¢, norm with p € [1,00)) that misclassify
most images. The goal is therefore to find v that satisfies the following two constraints:

Lol <€,
2. P (l;:(me'v) # l%(m)) >1-0.
@~

The parameter & controls the magnitude of the perturbation vector v, and d quantifies
the desired fooling rate for all images sampled from the distribution pu.

Algorithm. Let X = {@1,...,2,} be a set of images sampled from the distribution
p. Our proposed algorithm seeks a universal perturbation v, such that ||v||, < ¢, while
fooling most images in X. The algorithm proceeds iteratively over the data in X and
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R
K
%,
Figure 4.2 — Schematic representation of the proposed algorithm used to compute

universal perturbations. In this illustration, data points x1, €2 and xg are super-imposed,
and the classification regions %; (i.e., regions of constant estimated label) are shown
in different colors. Our algorithm proceeds by aggregating sequentially the minimal
perturbations sending the current perturbed points x; + v outside of the corresponding
classification region %;.

gradually builds the universal perturbation (see Fig. 4.2). At each iteration, the minimal
perturbation Aw; that sends the current perturbed point, @; + v, to the decision boundary
of the classifier is computed, and aggregated to the current instance of the universal
perturbation. In more details, provided the current universal perturbation v does not
fool data point x;, we seek the extra perturbation Awv; with minimal norm that allows to
fool data point «; by solving the following optimization problem:

Av; + argmin ||7||2 s.t. k(z; +v + 1) £ k(x;). (4.1)
a

To ensure that the constraint ||v||, < ¢ is satisfied, the updated universal perturbation is
further projected on the £, ball of radius { and centered at 0. That is, let P, ¢ be the
projection operator defined as follows:

Ppe(v) = argmin ||v — v’||2 subject to [|[v'||, < &.
,U/

Then, our update rule is given by v < P, ¢(v + Av;). Several passes on the data set
X are performed to improve the quality of the universal perturbation. The algorithm
is terminated when the empirical “fooling rate” on the perturbed data set X, := {1 +
v,...,&;m + v} exceeds the target threshold 1 — . That is, we stop the algorithm
whenever Err(X,) := % S L i) (a) = 1 — 0. The detailed algorithm is provided
in Algorithm 4. Interestingly, in practice, the number of data points m in X need not
be large to compute a universal perturbation that is valid for the whole distribution pu.
In particular, we can set m to be much smaller than the number of training points (see

Section 4.3).
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Algorithm 4 Computation of universal perturbations.

1: input: Data points X, classifier k, desired ¢, norm of the perturbation &, desired
accuracy on perturbed samples 6.

2: output: Universal perturbation vector v.
3: Initialize v + 0.
4: while Err(X,) <1-¢ do
5: for each datapoint «; € X do
6: if k(x; +v) = k(x;) then
7 Compute the minimal perturbation that sends x; + v to the decision
boundary:
Av; + argmin ||r||2 s.t. k(z; + v + r) # k(x;).
r
8: Update the perturbation:
v Ppe(v+ Avy).
9: end if
10: end for

11: end while

The proposed algorithm involves solving at most m instances of the optimization problem
in Eq. (4.1) for each pass. While this optimization problem is not convex when kis a
standard classifier (e.g., a deep neural network), several efficient approximate methods
have been devised for solving this problem [86, 70, 40]. We use in the following the
approach in [70] for its efficency. It should further be noticed that the objective of
Algorithm 4 is not to find the smallest universal perturbation that fools most data points
sampled from the distribution, but rather to find one such perturbation with sufficiently
small norm. In particular, different random shufflings of the set X naturally lead to a
diverse set of universal perturbations v satisfying the required constraints. The proposed
algorithm can therefore be leveraged to generate multiple universal perturbations for a

deep neural network (see next section for visual examples).

Note that Algorithm 4 can be seen as a stochastic algorithm with a mini-batch size of 1.
In general, such algorithms can have a very high variance and they might never converge
to a solution. However, as we see in Table 4.1, our proposed algorithm manages to find
solutions for state-of-the-art image classifiers.

We now analyze the robustness of state-of-the-art deep neural network classifiers to uni-
versal perturbations using Algorithm 4. We assess the estimated universal perturbations
for different recent deep neural networks on the ILSVRC 2012 [79] validation set (50,000
images), and report the fooling ratio, that is the proportion of images that change labels
when perturbed by our universal perturbation. Results are reported for p = 2 and p = oo,
where we respectively set £ = 2000 and £ = 10. These numerical values were chosen

39



Chapter 4. Universal adversarial perturbations

Table 4.1 — Fooling ratios on the set X, and the validation set.

CaffeNet VGG-F VGG-16 VGG-19 GoogleNet RN-152

[44] [14] [83] [83] [85] [38]
p=2
X 85.4% 85.9% 90.7% 86.9% 82.9% 89.7%
Val. 85.6% 87.0% 90.3% 84.5% 82.0% 88.5%
P =00
X 93.1% 93.8% 78.5% 77.8% 80.8% 85.4%
Val. 93.3% 93.7% 78.3% 77.8% 78.9% 84.0%

in order to obtain a perturbation whose norm is significantly smaller than the image
norms, such that the perturbation is quasi-imperceptible when added to natural images!.
Results are listed in Table 4.1. Each result is reported on the set X, which is used to
compute the perturbation, as well as on the validation set (that is not used in the process
of the computation of the universal perturbation). Observe that for all networks, the
universal perturbation achieves very high fooling rates on the validation set. Specifically,
the universal perturbations computed for CaffeNet and VGG-F fool more than 90% of
the validation set (for p = 00). In other words, for any natural image in the validation
set, the mere addition of our universal perturbation fools the classifier more than 9 times
out of 10. This result is moreover not specific to such architectures, as we can also find
universal perturbations that cause VGG, GoogleNet and ResNet classifiers to be fooled
on natural images with probability edging 80%.

These results have an element of surprise, as they show the existence of single universal
perturbation vectors that cause natural images to be misclassified with high probability,
albeit being quasi-imperceptible to humans. To verify this latter claim, we show visual
examples of perturbed images in Fig. 4.3a, where the GoogLeNet architecture is used.
These images are either taken from the ILSVRC 2012 validation set, or captured using a
mobile phone camera. Observe that in most cases, the universal perturbation is quasi-
imperceptible, yet this powerful image-agnostic perturbation is able to misclassify any
image with high probability for state-of-the-art classifiers. We visualize the universal
perturbations corresponding to different networks in Fig. 4.4.

4.3 Properties of universal perturbations

We now analyse some of the properties of universal perturbations generated using Algo-
rithm 4.

!For comparison, the average 2 and £, norm of an image in the validation set is respectively ~ 5 x 10*
and =~ 250.

40



4.3. Properties of universal perturbations

African grey
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common newt carousel grey fox macaw three-toed sloth macaw

(a) Examples of perturbed images and their corresponding labels. The first 8 images belong to
the ILSVRC 2012 validation set, and the last 4 are images taken by a mobile phone camera.

killer whale

pot Arabian camel coffeepot

(b) Original images. The first 8 images belong to the ILSVRC 2012 validation set, and the last 4
are images taken by a mobile phone camera.

Bouvier des Flandres ski mask

European fire salamander toyshop

Figure 4.3

(d) VGG-19 (e) GoogLeNet (f) ResNet-152

Figure 4.4 — Universal perturbations computed for different deep neural network ar-
chitectures. Images generated with p = oo, £ = 10. The pixel values are scaled for
visibility.
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4.3.1 Diversity of universal perturbations

It should be noted that universal perturbations are not unique, as many different universal
perturbations (all satisfying the two required constraints) can be generated for the same
network. In Fig. 4.5, we visualize five different universal perturbations obtained by using
different random shufflings in X. Observe that such universal perturbations are different,
although they exhibit a similar pattern. This is moreover confirmed by computing the
normalized inner products between two pairs of perturbation images, as the normalized
inner products do not exceed 0.1, which shows that one can find diverse universal
perturbations.

Figure 4.5 — Diversity of universal perturbations for the GoogLeNet architecture. The
five perturbations are generated using different random shufflings of the set X. Note that
the normalized inner products for any pair of universal perturbations does not exceed 0.1,
which highlights the diversity of such perturbations.

4.3.2 Effect of the size of training set X

While the above universal perturbations are computed for a set X of 10,000 images from
the training set (i.e., in average 10 images per class), we now examine the influence of the
size of X on the quality of the universal perturbation. We show in Fig. 4.6 the fooling
rates obtained on the validation set for different sizes of X for GoogLeNet. Note for
example that with a set X containing only 500 images, we can fool more than 30% of the
images on the validation set. This result is significant when compared to the number of
classes in ImageNet (1000), as it shows that we can fool a large set of unseen images, even
when using a set X containing less than one image per class! The universal perturbations
computed using Algorithm 4 have therefore a remarkable generalization power over unseen
data points, and can be computed on a very small set of training images.

4.3.3 Cross-model universality

While the computed perturbations are universal across unseen data points, we now examine
their cross-model universality. That is, we study to which extent universal perturbations
computed for a specific architecture (e.g., VGG-19) are also valid for another architecture
(e.g., GoogLeNet). Table 4.2 displays a matrix summarizing the universality of such
perturbations across six different architectures. For each architecture, we compute a
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Fooling rate (%)
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Figure 4.6 — Fooling ratio on the validation set versus the size of X. Note that even
when the universal perturbation is computed on a very small set X (compared to training
and validation sets), the fooling ratio on validation set is large.

universal perturbation and report the fooling ratios on all other architectures; we report
these in the rows of Table 4.2. Observe that, for some architectures, the universal
perturbations generalize very well across other architectures. For example, universal
perturbations computed for the VGG-19 network have a fooling ratio above 53% for all
other tested architectures. This result shows that our universal perturbations are, to
some extent, doubly-universal as they generalize well across data points and very different
architectures. It should be noted that, in [86], adversarial perturbations were previously
shown to generalize well, to some extent, across different neural networks on the MNIST
problem. Our results are however different, as we show the generalizability of universal
perturbations across different architectures on the ImageNet data set. This result shows
that such perturbations are of practical relevance, as they generalize well across data
points and architectures. In particular, in order to fool a new image on an unknown
neural network, a simple addition of a universal perturbation computed on the VGG-19
architecture is likely to misclassify the data point.

4.3.4 Visualization of the effect of universal perturbations

To gain insights on the effect of universal perturbations on natural images, we now visualize
the distribution of labels on the ImageNet validation set. Specifically, we build a directed
graph G = (V, E), whose vertices denote the labels, and directed edges e = (i — j)
indicate that the majority of images of class i are fooled into label j when applying the
universal perturbation. The existence of edges i — j therefore suggests that the preferred
fooling label for images of class i is j. We construct this graph for GoogleNet, and
visualize the full graph in Fig. 4.7. The visualization of this graph shows a very peculiar
topology. In particular, the graph is a union of disjoint components, where all edges in
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Table 4.2 — Generalizability of the universal perturbations across different networks. The
percentages indicate the fooling rates. The rows indicate the architecture for which the
universal perturbations is computed, and the columns indicate the architecture for which
the fooling rate is reported.

VGG-F CaffeNet GoogleNet VGG-16 VGG-19 ResNet-152

VGG-F 93.7% 71.8% 48.4% 42.1% 42.1% 474 %
CaffeNet 74.0% 93.3% 47.7% 39.9% 39.9% 48.0%
GoogLeNet  46.2% 43.8% 78.9% 39.2% 39.8% 45.5%
VGG-16 63.4% 55.8% 56.5% 78.3% 73.1% 63.4%
VGG-19 64.0% 57.2% 53.6% 73.5% 77.8% 58.0%
ResNet-152  46.3% 46.3% 50.5% 47.0% 45.5% 84.0%

one component mostly connect to one target label. See Fig. 4.8 for an illustration of two
connected components. This visualization clearly shows the existence of several dominant
labels, and that universal perturbations mostly make natural images classified with such
labels. We hypothesize that these dominant labels occupy large regions in the image
space, and therefore represent good candidate labels for fooling most natural images.
Note that these dominant labels are automatically found and are not imposed a priori in

the computation of perturbations.

4.4 Comparison with other types of perturbations

The goal of this section is to analyze and explain the high vulnerability of deep neural
network classifiers to universal perturbations. To understand the unique characteristics
of universal perturbations, we first compare such perturbations with other types of
perturbations, namely i) random perturbation, ii) adversarial perturbation computed for
a randomly picked sample (computed using the DF and FGS methods respectively in
[70] and [35]), iii) sum of adversarial perturbations over X, and iv) mean of the images
(or ImageNet bias). For each perturbation, we depict a phase transition graph in Fig.
4.9 showing the fooling rate on the validation set with respect to the £5 norm of the
perturbation. Different perturbation norms are achieved by scaling accordingly each
perturbation with a multiplicative factor to have the target norm. Note that the universal
perturbation is computed for & = 2000, and also scaled accordingly.

Observe that the proposed universal perturbation quickly reaches very high fooling rates,
even when the perturbation is constrained to be of small norm. For example, the universal
perturbation computed using Algorithm 4 achieves a fooling rate of 85% when the £5 norm
is constrained to & = 2000, while other perturbations (e.g., adversarial perturbations)
achieve much smaller ratios for comparable norms. In particular, random vectors sampled
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Figure 4.7 — Graph representing the relation between original and perturbed labels. Note

that “dominant labels” appear systematically. Please zoom for readability. Isolated nodes
are removed from this visualization for readability.

uniformly from the sphere of radius of 2000 only fool 10% of the validation set. The
large difference between universal and random perturbations suggests that the universal
perturbation exploits some geometric correlations between different parts of the decision
boundary of the classifier. In fact, if the orientations of the decision boundary in the
neighborhood of different data points were completely uncorrelated (and independent

45



Chapter 4. Universal adversarial perturbations

window shade

leopard nematode microwave
dining table
: ¢ash machine television
slide rule
dowitcher refrigerator
mosquitonet tray
space shuttle ‘t grey owl 4
computerkeyboard
platypus _ pencil box
. quilt
fountain
wardrobe .
plate rack
digital clock

Arctic fox medicine chest envelope

Figure 4.8 — Two connected components of the graph G = (V, E), where the vertices are
the set of labels, and directed edges ¢ — j indicate that most images of class i are fooled
into class j.

of the distance to the decision boundary), the norm of the best universal perturbation
would be comparable to that of a random perturbation. Note that the latter quantity
is well understood (see [29]), as the norm of the random perturbation required to fool
a specific data point precisely behaves as ©(v/d||r|2), where d is the dimension of the
input space, and ||7||2 is the distance between the data point and the decision boundary
(or equivalently, the norm of the smallest adversarial perturbation). For the considered
ImageNet classification task, this quantity is equal to v/d||r||2 =~ 2 x 104, for most data
points, which is at least one order of magnitude larger than the universal perturbation
(£ = 2000). This substantial difference between random and universal perturbations
thereby suggests redundancies in the geometry of the decision boundaries that we further
explore in Chapter 6.

4.5 Defense against universal perturbations

We now examine the effect of adversarial training the networks with universally perturbed
images. We use the VGG-F architecture, and fine-tune the network based on a modified
training set where universal perturbations are added to a fraction of (clean) training
samples: for each training point, a universal perturbation is added with probability 0.5,
and the original sample is preserved with probability 0.5.

We use a slightly modified notion of universal perturbations, where the direction of the
universal vector v is fixed for all data points, while its magnitude is adaptive. That is,
for each data point «, we consider the perturbed point & + awv, where « is the smallest
coefficient that fools the classifier. We observed that this feed-backing strategy is less
prone to overfitting than the strategy where the universal perturbation is simply added
to all training points. To account for the diversity of universal perturbations, we pre-
compute a pool of 10 different universal perturbations and add perturbations to the
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Figure 4.9 — Comparison between fooling rates of different perturbations. Experiments
performed on the CaffeNet architecture.

training samples randomly from this pool. The network is fine-tuned by training 5 extra
epochs on the modified training set.

To assess the effect of fine-tuning on the robustness of the network, we compute a
new universal perturbation for the fine-tuned network (with p = co and § = 10), and
report the fooling rate of the network. After 5 extra epochs, the fooling rate on the
validation set is 76.2%, which shows an improvement with respect to the original network
(93.7%, see Table 4.1).2 Despite this improvement, the fine-tuned network remains largely
vulnerable to small universal perturbations. We therefore repeated the above procedure
(i.e., computation of a pool of 10 universal perturbations for the fine-tuned network,
fine-tuning of the new network based on the modified training set for 5 epochs), and we
obtained a new fooling ratio of 80.0%. In general, the repetition of this procedure for a
fixed number of times did not yield any improvement over the 76.2% ratio obtained after
one step of fine-tuning. Hence, while fine-tuning the network leads to an improvement in
the robustness, this simple solution does not fully immune against universal perturbations.

4.6 Conclusions

We showed the existence of small universal perturbations that can fool state-of-the-art
classifiers on natural images. We proposed an iterative algorithm to generate universal
perturbations, and highlighted several properties of such perturbations. In particular, we
showed that universal perturbations generalize well across different classification models,

2This fine-tuning procedure moreover led to a minor increase in the error rate on the validation set,
which might be due to a slight overfitting of the perturbed data.
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resulting in doubly-universal perturbations (image-agnostic, network-agnostic).

Similar to normal adversarial perturbations, universal perturbations are not limited to
image classification tasks, and they can be an issue for other visual recognition tasks,
such as semantic segmentation [39], and even for non-visual modalities such as textual
data [6]. Furthermore, there exist efficient methods to find universal perturbations
without requiring any training datapoints |73, 47|. These and other features of such
image-independent perturbations make them a real threat for security- and safety-critical
applications of deep neural networks.

The existence of universal perturbations contests our understanding of the geometry of
the decision boundary of deep networks, and contributes to a better understanding of such
systems. Specifically, in Chapter 6, we will provide sufficient geometric conditions for the
existence of such image-agnostic perturbations. In particular, we show that the correlation
between different regions of the decision boundary partially explains the vulnerability
of deep networks to universal perturbations. Furthermore, deep networks with a curved
decision boundary can be even more susceptible to such perturbations.
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5] Geometric analysis with adversarial
perturbations

)

“It is through science that we prove, but through intuition that we discover.’

— Henri Poincaré

5.1 Introduction

The existence of extremely small adversarial perturbations causing misclassification of
input data, and that they can potentially be transferred well across different models and
datapoints, reveal important properties of the decision boundary of deep neural networks.
Studying the geometry of classifiers thus helps us understand and explain the underlying
reasons of the adversarial vulnerability of deep classifiers, and can lead to building more
robust classifiers. Furthermore, the geometric properties of the decision boundary of deep
network can be exploited to develop scalable methods in order to assess the adversarial
vulnerability of deep classifiers.

In this chapter and the next, we quantify the link between robustness properties of deep
networks and the geometry of their decision boundary in the vicinity of data samples.We
first point to the inherent connection between adversarial perturbations and the local
geometry of the decision boundary of deep networks. We then study the hypothesis
that the decision boundary is almost flat in the vicinity of data samples, and how this
hypothesis leads to vulnerability to adversarial perturbations. In particular, we support
the “flatness” hypothesis by introducing the semi-random adversarial perturbations, and
derive bounds on the adversarial perturbations of low curvature (locally flat) classifiers.

The chapter is organized as follows. In Section 5.2, we explain the intuitive link between
robustness to adversarial perturbations and the local geometry of the decision boundary of
classifiers. We introduce the notion of robustness to semi-random noise in Section 5.3. In

Part of this chapter has been published in
Alhussein Fawzi*, Seyed Moosavi-Dezfooli*, and Pascal Frossard. Robustness of classifiers: from
adversarial to random noise. In Neural Information Processing Systems (NIPS), 2016.
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Section 5.4, we characterize the robustness of linear classifiers to random and semi-random
noise, and we then extend it to general non-linear classifiers, provided the curvature
of the decision boundary is kept small, in Section 5.5. In Section 5.6, experimental
results are presented, where our theoretical results are shown to be accurately satisfied
by state-of-the-art deep neural networks on various sets of data.

5.2 Adversarial robustness and the geometry of classifiers

The study of robustness allows us to derive insights about the classifiers, and more
precisely about the geometry of the classification function acting on the high dimensional
input space. We recall that f : R? — R denotes our L-class classifier, and we denote by
f1,..., fr the L probabilities associated to each class by the classifier. Specifically, for a
given datapoint = € RY, the estimated label is obtained by k(z) = arg max;, fi(x), where
fu(x) is the k™ component of f(x) that corresponds to the k* class. For deep neural
networks, the functions f; represent the outputs of the last layer in the network (generally
the softmax layer). Note that the classifier f can be seen as a mapping that partitions the
input space R? into classification regions, each of which has a constant estimated label
(i.e., k(-) is constant for each such region). The decision boundary B of the classifier is
defined as the union of the boundaries of such classification regions. Additive adversarial
perturbations are inherently related with the geometry of the decision boundary. This
link relies on the following simple observation

Observation 1 (Geometric interpretation of adversarial perturbation). Let & € R?, and
r* (@) be the adversarial perturbation, defined as the minimizer of

r*(x) = arg min |7, st k(z+7) # k(z), (5.1)

with p = 2. Then, we have:

1. |7} 4, (x)||2 measures the Euclidean distance from x to the closest point on the
decision boundary B.

2. The wvector %, (x) is orthogonal to the decision boundary of the classifier, at
x+rt ().

adv

These two geometric properties are illustrated in Fig. 5.1. Note that these geometric
properties are specific to the 5 norm. The high instability of classifiers to adversarial
perturbations, which we highlighted in the previous chapters, shows that natural images
lie very close to the classifier’s decision boundary. While this result is key to understanding

Section 5.2 has been published in
Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. The robustness of deep
networks: A geometrical perspective. IEEE Signal Processing Magazine, 34(6):50-62, 2017.
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Figure 5.1 — 7}, denotes the adversarial perturbation of « (with p = 2). Note that v},
is orthogonal to the decision boundary B and ||r}, |2 = dist(x, B).

adv

the geometry of the datapoints with regards to the classifier’s decision boundary, it does not
provide any insights on the shape of the decision boundary. A local geometric description
of the decision boundary (in the vicinity of «) is rather captured by the direction of
T2, (), due to the orthogonality property of adversarial perturbations highlighted in the
previous observation. In the rest of this chapter, we introduce a new set of perturbations,
called semi-random noise, to study the shape of decision boundary in the vicinity of
datapoints. Specifically, the magnitude of such perturbations allow us to infer the average
curvature of the decision boundary in a neighborhood of data samples. Moreover, the
existence of semi-random perturbations is a strong indication that the space of adversarial
examples in the vicinity of datapoints are quite rich, and unlike previous speculations
(e.g., in [86]) they are not “blind-spots” of the decision regions of classifiers.

5.3 Semi-random noise regime

In this chapter, we are interested in quantifying the robustness of f with respect to adver-
sarial perturbations confined in a low-dimensional subspace S, as defined in Section 3.4.2
of Chapter 3. It allows us to explore the space of possible adversarial perturbations for a
given datapoint. To do so, we define rs to be the perturbation in § of minimal norm
that is required to change the estimated label of f at x.!

r(o) = argmin r; s.t k(o + 1) # k(o). (5.2)
re

! Perturbation vectors sending a datapoint exactly to the boundary are assumed to change the estimated
label of the classifier.
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Note that r%(x0) can be equivalently written

rs(zo) = ar§€%11n 7)o s.t. Tk # k(zo) : fulzo +7) > i) (@0 £ 7). (5.3)
When § = R, 7*(xg) := 75, (w0) is the adversarial (or worst-case) perturbation defined in
[86], which corresponds to the (unconstrained) perturbation of minimal norm that changes
the label of the datapoint xy. In other words, ||r*(x¢)||2 corresponds to the minimal
distance from g to the classifier boundary. In the case where S C R%, only perturbations
along & are allowed. The robustness of f at xy along S is naturally measured by the norm
|lrs(xo)||2. Different choices for S permit to study the robustness of f in two different
regimes:

¢ Random noise regime: This corresponds to the case where § is a one-dimensional
subspace (m = 1) with direction v, where v is a random vector sampled uniformly
from the unit sphere S¢~'. Writing it explicitly, we study in this regime the
robustness quantity defined by miny |¢] s.t. Ik # k(xo), fr(xo+tv) > ffc(mo)(:no—&—tv),

where v is a vector sampled uniformly at random from the unit sphere S,

e Semi-random noise regime: In this case, the subspace S is chosen randomly,
but can be of arbitrary dimension m.? We use the semi-random terminology as the
subspace is chosen randomly, and the smallest vector that causes misclassification
is then sought in the subspace. It should be noted that the random noise regime is
a special case of the semi-random regime with a subspace of dimension m = 1. We
differentiate nevertheless between these two regimes for clarity.

We first establish relations between the robustness in the random and semi-random
regimes on the one hand, and the robustness to adversarial perturbations ||7*(x)||2 on
the other hand. We recall that the latter quantity captures the distance from xg to the
classifier boundary, and is therefore a key quantity in the analysis of robustness.

In the following analysis, we fix &y to be a datapoint classified as l;‘(mg). To simplify
the notation, we remove the explicit dependence on x( in our notations (e.g., we use r3
instead of r§(xo) and k instead of l%(a:o)), and it should be implicitly understood that all
our quantities pertain to the fixed datapoint xg.

5.4 Robustness of affine classifiers

We first assume that f is an affine classifier, i.e., f(x) = W'ax + b for a given W =
[wi...wy] and b € RE.

2A random subspace is defined as the span of m statistically independent vectors drawn uniformly at
random from S?7!,

o4



5.4. Robustness of affine classifiers

W (i(6,m) MG(0,m)
10*

10°
102

10’

200 400 600 800 1000
m

Figure 5.2 — (1(m, d) and (2(m, d) in function of m [§ = 0.05] .

The following result shows a precise relation between the robustness to semi-random
noise, [|r§||2 and the robustness to adversarial perturbations, ||7*|2.

Theorem 1. Let § > 0, S be a random m-dimensional subspace of R?, and f be a L-class
affine classifier. Let

~ - (5.4)

. d) <1+2 n(1/%) 2111(1/5))1’

Co(m, ) = <max ((1/6)52/m, 1= /21— 52/m)>>_1 . (5.5)

The following inequalities hold between the robustness to semi-random noise | r5||2, and
the robustness to adversarial perturbations ||r*||a:

\/C1(m,<5)\/z\lr*llz <|rsllz < \/Cz(mﬁ)\/zllr*!!z? (5.6)

with probability exceeding 1 — 2(L + 1)J.

The proof can be found in the appendix. Our upper and lower bounds depend on the
functions (j(m,d) and (2(m,d) that control the inequality constants (for m, § fixed).
It should be noted that (1(m,d) and (2(m,d) are independent of the data dimension
d. Fig. 5.2 shows the plots of (1(m,d) and (2(m, ) as functions of m, for a fixed . It
should be noted that for sufficiently large m, (1(m,d) and (2(m,d) are very close to 1
(e.g., (1(m,d) and (2(m,d) belong to the interval [0.8,1.3] for m > 250 in the settings of
Fig. 5.2). The interval [(1(m,d), (2(m, d)] is however (unavoidably) larger when m = 1.
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The result in Theorem 1 shows that in the random and semi-random noise regimes, the
robustness to noise is precisely related to ||r*||2 by a factor of \/d/m. Specifically, in the
random noise regime (m = 1), the magnitude of the noise required to misclassify the
datapoint behaves as ©(V/d|7*||2) with high probability, with constants in the interval
[€1(1,6),¢2(1,0)]. Our results therefore show that, in high dimensional classification
settings, affine classifiers can be robust to random noise, even if the datapoint lies very
close to the decision boundary (i.e., ||r*||2 is small). In the semi-random noise regime with
m sufficiently large (e.g., m > 250), we have ||r%||a &2 \/4/m||r*||2 with high probability,
as the constants (1(m,d) = (2(m,d) ~ 1 for sufficiently large m. Our bounds therefore
“interpolate” between the random noise regime, which behaves as v/d||7*||2, and the
worst-case noise ||7*||2. More importantly, the square root dependence is also notable
here, as it shows that the semi-random robustness can remain small even in regimes where
m is chosen to be a very small fraction of d. For example, choosing a small subspace of
dimension m = 0.01d results in semi-random robustness of 10||7*||2 with high probability,
which might still not be perceptible in complex visual tasks. Hence, for semi-random
noise that is mostly random and only mildly adversarial (i.e., the subspace dimension is
small), affine classifiers remain vulnerable to such noise.

5.5 Robustness of general classifiers

5.5.1 Curvature of the decision boundary

We now consider the general case where f is a nonlinear classifier. We derive relations
between the random and semi-random robustness ||r%||2 and worst-case robustness ||r*||2
using properties of the classifier’s boundary. Let i and j be two arbitrary classes; we
define the pairwise boundary %; ; as the boundary of the binary classifier where only
classes 7 and j are considered. Formally, the decision boundary is given by %; ; :== {x €
R : f;(z) — f;(z) = 0}. The boundary %; ; separates between two regions of R%, namely
R; and R;, where the estimated label of the binary classifier is respectively i and j.

We assume for the purpose of this analysis that the boundary %; ; is smooth. We are
now interested in the geometric properties of the boundary, namely its curvature. Many
notions of curvature can be defined on hypersurfaces [54]. In the simple case of a curve in a
two-dimensional space, the curvature is defined as the inverse of the radius of the so-called
oscullating circle. One way to define curvature for high-dimensional hypersurfaces is by
taking normal sections of the hypersurface, and measuring the curvature of the resulting
planar curve (see Fig. 5.3). We however introduce a notion of curvature that is specifically
suited to the analysis of the decision boundary of a classifier. Informally, our curvature
captures the global bending of the decision boundary by inscribing balls in the regions
separated by the decision boundary. For a given p € %; ;, we define g; | ;(p) to be the
radius of the largest open ball included in the region R; that intersects with %; ; at p;
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(a) (b)

Figure 5.3 - (a) Normal section of the boundary %; ; with respect to plane U = span(n,u),
where 7 is the normal to the boundary at p, and w is an arbitrary in the tangent space
Tp(%; ;). (b) Hllustration of the quantities introduced for the definition of the curvature
of the decision boundary.

ie.,
g; 1 ;(P) = sup {||lz — pl2 : B(z, ||z - pll2) C Ri}, (5.7)
z€Rd

where B(z, ||z —p)||2) is the open ball in R? of center z and radius ||z —p||2. An illustration
of this quantity in two dimensions is provided in Fig. 5.3 (b). It is not hard to see that
any ball B(z*,||z* — pl|2) centered in z* and included in R; will have its tangent space
at p coincide with the tangent of the decision boundary at the same point.

It should further be noted that the definition in Eq. (5.7) is not symmetric in i and j.
We therefore define the following symmetric quantity g; ;(p), where the worst-case ball
inscribed in any of the two regions R; and R; is considered:

gi.j(p) = min (¢; | ;(p), 45 :(p)) -

To measure the global curvature, the worst-case radius is taken over all points on the
decision boundary, i.e., ¢(%; ;) = infpeg, . ¢ij(p). The curvature (%, ;) is then defined
as the inverse of the worst-case radius: x(%; ;) = Yq(%:,)-

In the case of affine classifiers, we have x(%; ;) = 0, as it is possible to inscribe balls
of infinite radius inside each region of the space. When the classification boundary is a
union of (sufficiently distant) spheres with equal radius R, the curvature x(%; ;) = !/R.
In general, the quantity ~(%; ;) provides an intuitive way of describing the nonlinearity
of the decision boundary by fitting balls inside the classification regions.

5.5.2 Robustness to random and semi-random noise

We now establish bounds on the robustness to random and semi-random noise in the
binary classification case. Let &y be a datapoint classified as k = k(o). We first study the
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binary classification problem, where only classes k and k € {1,..., L}\{k} are considered.
To simplify the notation, we let %y := %kjc be the decision boundary between classes
k and k. In the case of the binary classification problem where classes k and k are
considered, the semi-random perturbation defined in Eq. (5.3) can be re-written as
follows:

rg = argrfslin 7]l2 s.t. fr(zo +7) > fi(z0 + 7). (5.8)
re

The worst case perturbation (obtained with & = RY) is denoted by =*. It should be noted
that the global quantities r5 and r* are obtained from r§ and r* by taking the vectors
with minimum norm over all classes k.

&l

]2 in function of the

The following result gives upper and lower bounds on the ratio
curvature of the boundary separating class k and k.

Theorem 2. Let S be a random m-dimensional subspace of RY. Let k = r(By).
Assuming that the curvature satisfies

C m

k< ——
= Ga(m, d)|[rF]l2 d

(5.9)

the following inequality holds between the semi-random robustness ||r&||l2 and the adver-
sarial robustness ||r¥||s:

k
<1 - C1||7’k\211C2;i) @\/Z < ’|‘|:,§”z < <1 +cg||rk|ygncgi> \/E\/z (5.10)

with probability larger than 1 — 46. We recall that ¢ = (1(m, ) and (2 = (2(m, ) are
defined in Eq. (5.4, 5.5). The constants are C' = 0.2,C7 = 0.625,Cy = 2.25.

The proof can be found in the appendix. This result shows that the bounds relating the
robustness to random and semi-random noise to the worst-case robustness can be extended
to nonlinear classifiers, provided the curvature of the boundary (%) is sufficiently small.
In the case of linear classifiers, we have k(%)) = 0, and we recover the result for affine
classifiers from Theorem 1.

To extend this result to multi-class classification, special care has to be taken. In particular,
if k denotes a class that has no boundary with class k, |7#||2 can be very large and the
previous curvature condition is not satisfied. It is therefore crucial to exclude such classes
that have no boundary in common with class ];‘, or more generally, boundaries that are
far from class k. We define the set A of excluded classes k where [|7¥||o is large

A=k k] > 1.45/Glm, 5>\/Zur*\2}. (5.11)

o8



5.6. Experiments

Note that A is independent of S, and depends only on d, m and d. Moreover, the
constants in (5.11) were chosen for simplicity of exposition.

Assuming a curvature constraint only on the close enough classes, the following result
establishes a simplified relation between ||7%||2 and [|r*|2.

Corollary 1. Let S be a random m-dimensional subspace of RY. Assume that, for all
k ¢ A, the curvature condition in Eq. (5.9) holds. Then, we have

d d
0.875\/C1(m,5)\/;||r*||2 < |r%ll2 < 1.45\/Co(m, 5)\/;”7»*”2 (5.12)

with probability larger than 1 — 4(L + 2)0.

Under the curvature condition in (5.9) on the boundaries between k and classes in
{1,2,..., L} — A, our result shows that the robustness to random and semi-random
noise exhibits the same behavior that has been observed earlier for linear classifiers in
Theorem 1. In particular, ||7%||2 is precisely related to the adversarial robustness |72
by a factor of \/%. In the random regime (m = 1), this factor becomes v/d, and
shows that in high dimensional classification problems, classifiers with sufficiently flat
boundaries are much more robust to random noise than to adversarial noise. However, in
the semi-random, the factor is \/% and shows that robustness to semi-random noise
might not be achieved even if m is chosen to be a tiny fraction of d. In other words, if a
classifier is highly vulnerable to adversarial perturbations, then it is also vulnerable to
noise that is overwhelmingly random and only mildly adversarial.

It is important to note that the curvature condition in Corollary 1 is not an assumption on
the curvature of the global decision boundary, but rather an assumption on the decision
boundaries between pairs of classes. The distinction here is significant, as junction points
where two decision boundaries meet might actually have a very large (or infinite) curvature
(even in linear classification settings), and the curvature condition in Corollary 1 typically
does not hold for this global curvature definition. We refer to our experimental section
for a visualization of this phenomenon.

5.6 Experiments

We now evaluate the robustness of different image classifiers to random and semi-random
perturbations, and assess the accuracy of our bounds on various datasets and state-of-
the-art classifiers. Specifically, our theoretical results show that the robustness ||r%(x)]|2
of classifiers satisfying the curvature property precisely behaves as \//m||r*(x)|l2. We
first check the accuracy of these results in different classification settings. For a given
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Table 5.1 — B(f;m) for different classifiers f and different subspace dimensions m. The
VGG-F and VGG-19 are respectively introduced in [14, 83|.

m/d
1/4 1/16 1/36 1/64 1/100

MNIST

LeNet 1.00+0.06 1.01+0.12 1.03+0.20 1.01+0.26 1.05+0.34
CIFAR-10

LeNet 1.01+0.03 1.024+0.07 1.04+0.10 1.06+0.14 1.10£0.19
ImageNet

VGG-F 1.00£0.01 1.024+0.02 1.034+0.04 1.03£0.05 1.04+0.06
VGG-19 1.00+£0.01 1.02£0.03 1.02+0.05 1.03+0.06 1.044+0.08

classifier f and subspace dimension m, we define

Z ||7'3 €z ||2
.’13

mej

B(f;m)

where § is chosen randomly for each sample x and Z denotes the test set. This quantity
provides indication to the accuracy of our J%Hr )||2 estimate of the robustness, and
should ideally be equal to 1 (for sufficiently large m). Since § is a random quantity
(because of §), we report both its mean and standard deviation for different networks in

Table 5.1.

It should be noted that finding ||7%||2 and ||r*||2 involves solving the optimization problem
in (5.2). We use Algorithm 3 proposed in Chapter 3 to find subspace minimal perturbations.
For each network, we estimate the expectation by averaging B(f;m) on 1000 random

samples, with S also chosen randomly for each sample.

Observe that S is suprisingly close to 1, even when m is a small fraction of d. This
shows that our quantitative analysis provide very accurate estimates of the robustness
to semi-random noise. We visualize the robustness to random noise, semi-random noise
(with m = 10) and worst-case perturbations on a sample image in Fig. 5.4. While random
noise is clearly perceptible due to the v/d ~ 400 factor, semi-random noise becomes
much less perceptible even with a relatively small value of m = 10, thanks to the 1/\/m
factor that attenuates the required noise to misclassify the datapoint. It should be noted
that the robustness of neural networks to adversarial perturbations has previously been
observed empirically in [86], but we provide here a quantitative and generic explanation

for this phenomenon.

The high accuracy of our bounds for different state-of-the-art classifiers, and different
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Figure 5.4 — (a) Original image classified as “Cauliflower”. Fooling perturbations for
VGG-F network: (b) Random noise, (c) Semi-random perturbation with m = 10, (d)
Worst-case perturbation, all wrongly classified as “Artichoke”.

datasets suggest that the decision boundaries of these classifiers have limited curvature
k(Ay), as this is a key assumption of our theoretical findings. To support the validity
of this curvature hypothesis in practice, we visualize two-dimensional sections of the
classifiers’ boundary in Fig. 5.5 in three different settings. Note that we have opted here
for a visualization strategy rather than the numerical estimation of (%), as the latter
quantity is difficult to approximate in practice in high dimensional problems. In Fig. 5.5,
xg is chosen randomly from the test set for each data set, and the decision boundaries are
shown in the plane spanned by r* and r§, where S is a random direction (i.e., m = 1).
Different colors on the boundary correspond to boundaries with different classes. It can
be observed that the curvature of the boundary is very small except at “junction” points
where the boundary of two different classes intersect. Our curvature assumption, which
only assumes a bound on the curvature of the decision boundary between pairs of classes
l%(a:o) and k (but not on the global decision boundary that contains junctions with high
curvature) is therefore adequate to the decision boundaries of state-of-the-art classifiers
according to Fig. 5.5. Interestingly, the assumption in Corollary 1 is satisfied by taking
to be an empirical estimate of the curvature of the planar curves in Fig. 5.5 (a) for the
dimension of the subspace being a wery small fraction of d; e.g., m = 1073d. While not
reflecting the curvature x(%y) that drives the assumption of our theoretical analysis, this
result still seems to suggest that the curvature assumption holds in practice.

5.7 A note on the flatness of the decision boundary

It can be observed that the decision boundaries of state-of-the-art deep neural networks
have a very low curvature on these two dimensional random cross-sections in Fig. 5.5. In
other words, these plots suggest that the decision boundary at the vicinity of & can be
locally well approximated by a hyperplane passing through x + 7} («) with the normal
vector 77, (). A related observation was qualitatively reported in [95].

In [35], it is hypothesized that state-of-the-art classifiers are “too linear”, leading to
decision boundaries with very small curvature, and further explaining the high instability
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(a) VGG-F (ImageNet) (b) LeNet (CIFAR) (c) LeNet (MNIST)

Figure 5.5 — Boundaries of three classifiers near randomly chosen samples. Axes are
normalized by the corresponding ||r*||2 as our assumption in the theoretical bound
depends on the product of ||r*||2k. Note the difference in range between z and y axes.
Note also that the range of horizontal axis in (c) is much smaller than the other two,
hence the illustrated boundary is more curved.

(a) (b)

Figure 5.6 — The contours of two highly non-linear functions with linear boundaries.
Specifically, the contours in the green and yellow regions represent the different (positive
and negative) level sets of g(z) (where g(z) = g1(x) — g2(x), the difference between class
1 and class 2 score). The decision boundary is defined as the region of the space where
g(x) = 0, and is indicated with a solid black line. Note that, although g is a highly
nonlinear function in these examples, the decision boundaries are flat.

of such classifiers to adversarial perturbations. To motivate the linearity hypothesis of
deep networks, the success of the Fast Gradient Sign method (which is exact for linear
classifiers) in finding adversarial perturbations is invoked. However, some recent works
challenge this linearity hypothesis; for example, in [81], the authors show that there
exist adversarial perturbations that cannot be explained with this hypothesis, and in
[89], the authors provide a new explanation based on the tilting of the decision boundary
with respect to the data manifold. We stress here that the low curvature of the decision
boundary does not, in general, imply that the function learned by the deep neural network
(as a function of the input image) is linear, or even approximately linear. Fig. 5.6 shows
illustrative examples of highly nonlinear functions resulting in flat decision boundaries.
Moreover, it should be noted that, while the decision boundary of deep networks are
very flat on random two dimensional cross-sections, these boundaries might not be flat
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(a) (b) () (d)

Figure 5.7 — Cross-sections of the decision boundary in the vicinity of data point z. (a),
(b), and (c) show decision boundaries with high curvature, while (d) shows the decision
boundary along a random normal section (with very small curvature). The correct class
and the neighboring classes are colored in green and orange respectively. The boundaries
between different classes are shown in solid black lines. x and y axes have the same scale.

on all cross-sections. That is, there exist directions in which the boundary are very
curved. Fig. 5.7 provides some illustrations of such cross-sections, where the decision
boundary has large curvature, and therefore significantly departs from the first order
linear approximation, suggested by the flatness of the decision boundary on random
sections in Fig. 5.5. Hence, these visualizations of the decision boundary strongly suggest
that the curvature along a small set of directions can be very large, and that the curvature
is relatively small along random directions in the input space. In Chapter 7, using a
numerical computation of the curvature, we empirically verify the sparsity of the curvature
profile for deep neural networks.

5.8 Conclusion

In this chapter, we precisely characterized the robustness of classifiers in a novel semi-
random noise regime that generalizes the random noise regime. Specifically, our bounds
relate the robustness in this regime to the robustness to adversarial perturbations. Our
bounds depend on the curvature of the decision boundary, the data dimension, and
the dimension of the subspace to which the perturbation belongs. Our results show, in
particular, that when the decision boundary has a small curvature, classifiers are robust
to random noise in high dimensional classification problems (even if the robustness to
adversarial perturbations is relatively small).

Moreover, for semi-random noise that is mostly random and only mildly adversarial (i.e.,
the subspace dimension is small), our results show that state-of-the-art classifiers remain
vulnerable to such perturbations as they have extremely small curvature along random
directions. However, such observation does not fully explain the vulnerability of classifiers
to universal perturbations introduced in Chapter 4. In fact, the directions where the
decision boundary is curved play a major role in explaining the robustness properties
of classifiers to universal perturbations. In the next chapter, we particularly show that
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in spite of having small curvatures in most of directions, there exist low-dimensional
subspaces where state-of-the-art deep networks have a rather high curvature. In other
words, though the decision boundary of deep classifiers is almost flat, there exist highly
curved directions along which universal perturbations can be sought.

We finally note that the result presented in this chapter for fs-norm perturbations has

similarly been extended to other £,-norm perturbations in [33].

64



(Geometric analysis with universal
perturbations

“Bveryone knows what a curve is, until he has studied enough mathematics to become confused
through the countless number of possible exceptions.”
— Felix Klein

6.1 Introduction

In Chapter 4, we empirically showed that state-of-the-art classifiers are vulnerable to
universal perturbations: there exist very small image-agnostic perturbations that cause
most natural images to be misclassified. To recall, universal perturbations fundamentally
differ from the semi-random noise regime introduced in the previous chapter, and exploit
essential properties of deep networks to misclassify most natural images with perturbations
of very small magnitude. Why are state-of-the-art classifiers highly vulnerable to these
specific directions in the input space? What do these directions represent? To answer
these questions, we follow a theoretical approach and find the causes of this vulnerability
in the geometry of the decision boundaries induced by deep neural networks. For deep
networks, we show that the key to answering these questions lies in the existence of
shared directions (across different datapoints) along which the decision boundary is highly
curved. This establishes fundamental connections between geometry and robustness to
universal perturbations, and thereby reveals new properties of the decision boundaries
induced by deep networks.

Our aim in this chapter is to derive an analysis of the vulnerability to universal pertur-
bations in terms of the geometric properties of the decision boundary. To this end, we

Part of this chapter has been published in

Seyed-Mohsen Moosavi-Dezfooli*, Alhussein Fawzi*, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017,

Seyed-Mohsen Moosavi-Dezfooli*, Alhussein Fawzi*, Omar Fawzi, Pascal Frossard, and Stefano Soatto.
Robustness of classifiers to universal perturbations: A geometric perspective. In Sizth International
Conference on Learning Representations, 2018. (*: Equal contribution)
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introduce two decision boundary models: 1) the locally flat model assumes that the first
order linear approximation of the decision boundary holds locally in the vicinity of the
natural images, and 2) the locally curved model provides a second order local description
of the decision boundary, and takes into account the curvature information.

Under the locally flat decision boundary model, we show that classifiers are vulnerable to
universal directions as long as the normals to the decision boundaries in the vicinity of
natural images are correlated (i.e., they approximately span a low dimensional space).
This result formalizes and proves some of the empirical observations made in Chapter 4.
On the other hand, under the locally curved decision boundary model, the robustness
to universal perturbations is instead driven by the curvature of the decision boundary;
we show that the existence of shared directions along which the decision boundary is
positively! curved implies the existence of very small universal perturbations.

For state-of-the-art deep networks, we show that the assumption of our theorem derived
for the locally curved model is satisfied, that is there actually exist shared directions along
which the decision boundary of deep neural networks are positively curved. Our theoretical
result consequently captures the large vulnerability of state-of-the-art deep networks
to universal perturbations. We finally show that the developed theoretical framework
provides a novel (geometric) method for computing universal perturbations, and further
explains some of the properties observed in Chapter 4 (e.g., diversity, transferability)
regarding the robustness to universal perturbations.

The rest of this chapter is organized as follows: we start by introducing the necessary
notations and definitions in Section 6.2. The flat model for the decision boundary of
classifiers is introduced in Section 6.3, and its validity to explain the existence of universal
perturbations in deep networks is studied in Section 6.3.1. In Section 6.4, we propose a
curved model for the decision boundary of classifiers, and we empirically show it better
explains the vulnerability of deep networks to universal perturbations.

6.2 Definitions and notations

Consider an L-class classifier f : R — RL. Given a datapoint € R? we define
the estimated label k(x) = arg max;, fi(x), where fi(x) is the kth component of f(x)
that corresponds to the k™ class. We define by u a distribution over natural images
in R?. The main focus of this chapter is to analyze the robustness of classifiers to
universal (image-agnostic) noise. Specifically, we define v to be a universal noise vector
if k(x4 v) # k() for “most” & ~ p. Formally, a perturbation v is (¢, §)-universal, if the

Throughout the chapter, the sign of the curvature is chosen according to the normal vector, and the
data point z, as illustrated in Fig. 6.5
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following two constraints are satisfied:

[vll2 < &,

H%mx+m¢k@»zl—&

This perturbation image v is coined “universal”, as it represents a fixed image-agnostic
perturbation that causes label change for a large fraction of images sampled from the
data distribution p. In Chapter 4, state-of-the-art classifiers have been shown to be
surprisingly vulnerable to this simple perturbation regime.

It should be noted that universal perturbations are different from adversarial perturbations
[86, 7], which are datapoint-specific perturbations that are sought to fool a specific image.
An adversarial perturbation is a solution to the following optimization problem

r(x) = arg min |7]|2 subject to k(x + 1) # k(x), (6.1)
rcR

which corresponds to the smallest additive perturbation that is necessary to change the
label of the classifier k for . From a geometric perspective, r(x) quantifies the distance
from x to the decision boundary (see Fig. 6.1a). In addition, due to the optimality
conditions of Eq. (6.1), r(x) is orthogonal to the decision boundary at & + r(x), as
illustrated in Fig. 6.1a.

In the remainder of the chapter, we analyze the robustness of classifiers to universal noise,
with respect to the geometry of the decision boundary of the classifier f. Formally, the
pairwise decision boundary, when restricting the classifier to class ¢ and j is defined by
B ={ze€R%: fi(z) — fj(2) = 0} (we omit the dependence of & on i, j for simplicity).
The decision boundary of the classifier hence corresponds to points in the input space
that are equally likely to be classified as i or j.

In the following sections, we introduce two models on the decision boundary, and quantify
in each case the robustness of such classifiers to universal perturbations. We then show
that the locally curved model better explains the vulnerability of deep networks to such
perturbations.

6.3 Robustness of classifiers with flat decision boundaries

We start here our analysis by assuming a locally flat decision boundary model, and analyze
the robustness of classifiers to universal perturbations under this decision boundary model.
We specifically study the existence of a universal direction v, such that

k(x4 v) # k(x) or k(z —v) # k(x), (6.2)
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Class 1

(a) Local geometry of the decision (b) Universal direction v of a linear
boundary. binary classifier.
Figure 6.1

where v is a vector of sufficiently small norm. It should be noted that a universal direction
(as opposed to a universal vector) is sought in Eq. (6.2), as this definition is more adapted
to the analysis of classifiers with locally flat decision boundaries. For example, while a
binary linear classifier has a universal direction that fools all the data points, only half of
the data points can be fooled with a universal vector (provided the classes are balanced)
(see Fig. 6.1b). We therefore consider this slightly modified definition in the remainder of
this section.

We start our analysis by introducing our local decision boundary model. For x € R,
note that « + r(x) belongs to the decision boundary and r(z) is normal to the decision
boundary at @ + r(x) (see Fig. 6.1a). A linear approximation of the decision boundary
of the classifier at @ + 7(x) is therefore given by « + {v : r(z)"v = ||r(x)||3}. Under
this approximation, the vector r(x) hence captures the local geometry of the decision
boundary in the vicinity of datapoint . We assume a local decision boundary model
in the vicinity of datapoints & ~ u, where the local classification region of & occurs in
the halfspace r(z)Tv < ||r(x)||3. Equivalently, we assume that outside of this half-space,
the classifier outputs a different label than l%(a:) However, since we are analyzing the
robustness to universal directions (and not vectors), we consider the following condition,
given by

Zi(x,p) : Vv € B(p), |r(z) v| > ||r(z)|I3

. . . . (6.3)
= k(x +v) # k(x) or k(x —v) # k(x).

where B(p) is a ball of radius p centered at 0. An illustration of this decision boundary
model is provided in Fig. 6.2a. It should be noted that linear classifiers satisfy this
decision boundary model, as their decision boundaries are globally flat. This local decision
boundary model is however more general, as we do not assume that the decision boundary
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is linear, but rather that the classification region in the vicinity of « is included in
x + {v : |r(x)Tv| < ||r(x)||3}. Moreover, it should be noted that the model being
assumed here is on the decision boundary of the classifier, and not an assumption on the
classification function f.2 Fig. 6.2a provides an example of nonlinear decision boundary
that satisfies this model.

In all the theoretical results of this chapter, we assume that ||r(x)||2 = 1, for all © ~ p,
for simplicity of the exposition. The results can be extended in a straightforward way to
the case where ||r(x)||2 takes different values for points sampled from p. The following
result shows that classifiers following the locally flat decision boundary model are not
robust to small universal perturbations, provided the normals to the decision boundary
(in the vicinity of datapoints) approximately belong to a low dimensional subspace of
dimension m < d.

Theorem 3. Let £ > 0,6 > 0. Let S be an m dimensional subspace such that
|Psr(zx)|l2 > 1 — & for almost all x ~ u,, where Ps is the projection operator on the
subspace. Assume moreover that Zs (x, p) holds for almost all  ~ p, with p = vVem/s(1—-¢).
Then, there ezists a universal noise vector v, such that ||v|j2 < p and

P (/%(m ) £ k(x) or k(z —v) £ 12;(93)) >1-4.

T

The proof can be found in supplementary material, and relies on the construction of a
universal perturbation through randomly sampling from S. The vulnerability of classifiers
to universal perturbations can be attributed to the shared geometric properties of the
classifier’s decision boundary in the vicinity of different data points. In the above theorem,
this shared geometric property across different data points is expressed in terms of
the normal vectors r(x). The necessary condition of the above theorem is specifically
that normal vectors r(x) to the decision boundary in the neighborhood of data points
approximately live in a subspace S of low dimension m < d. Under this assumption,
the above result shows the existence of universal perturbations of £5 norm of order y/m.
When m < d, Theorem 3 hence shows that very small (compared to random noise, which
scales as V/d [29]) universal perturbations misclassifying most data points can be found.

Remark 1. Theorem 3 can be readily applied to assess the robustness of multiclass linear
classifiers to universal perturbations. In fact, when f(x) = W'z, with W = [wy, ..., wz],
the normal vectors are equal to w; — wj, for 1 <14, < L,i # j. These normal vectors
exactly span a subspace of dimension L — 1. Hence, by applying the result with £ = 0,
and m = L — 1, we obtain that linear classifiers are vulnerable to universal noise, with
magnitude proportional to v/L — 1. In typical problems, we have L < d, which leads to
very small universal directions.

2The decision boundary 4 is the zero level set of the functions f; — f;. f can be a highly nonlinear
function of the inputs, even when the zero-level set & is locally flat in the vicinity of datapoints.
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Remark 2. Theorem 3 provides a partial explanation to the vulnerability of deep
networks, provided a locally flat decision boundary is assumed. Evidence in favor of this
assumption was given through visualization of randomly chosen cross-sections in [95, 29].
In addition, we show in Section 6.3.1 that normal vectors to the decision boundary of
deep networks (near data points) approximately span a subspace S of sufficiently small
dimension. However, unlike linear classifiers, the dimensionality of this subspace m is
typically larger than the the number of classes L, leading to large upper bounds on the
norm of the universal noise, under the flat decision boundary model.

We show in Section 6.4 that the second order information of the decision boundary
contains crucial information (curvature) that captures the high vulnerability to universal
perturbations. We verify this claim for state-of-the-art classifiers in Section 6.4.1.

(a) Flat decision boundary model (b) Curved decision boundary model
Zi(x, p). 2(x, p).

Figure 6.2 — Illustration of the decision boundary models considered in this chapter. (a):
For the flat decision boundary model, the set {v : |r(z)Tv| < ||r(z)||3} is illustrated
(stripe). Note that for v taken outside the stripe (i.e., in the grayed area), we have
k(x + v) # k(zx) or k(z — v) # k(z) in the p neighborhood. (b): For the curved decision
boundary model, the any vector v chosen in the grayed area is classified differently from

6.3.1 Experimental results

We first show that the normals to the decision boundary of state-of-the-art deep classifiers
span a low-dimensional subspace. To do so, for each image @ in the validation set, we
compute the adversarial perturbation vector 7(x) = arg min,. ||[7||2 s.t. k(x + r) # k(x).
It is easy to see that r(x) is normal to the decision boundary of the classifier (at  +7(x)).
The vector r(x) hence captures the local geometry of the decision boundary in the region
surrounding the data point . To quantify the correlation between different regions of
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the decision boundary of the classifier, we define the matrix

r(x1) r(xy)

V= el Tl

of normal vectors to the decision boundary in the vicinity of n data points in the validation
set. For binary linear classifiers, the decision boundary is a hyperplane, and N is of
rank 1, as all normal vectors are collinear. To capture more generally the correlations
in the decision boundary of complex classifiers, we compute the singular values of the
matrix V. The singular values of the matrix NV, computed for the CaffeNet architecture
are shown in Fig. 6.3. We further show in the same figure the singular values obtained
when the columns of N are sampled uniformly at random from the unit sphere. Observe
that, while the latter singular values have a slow decay, the singular values of N decay
quickly, which confirms the existence of large correlations and redundancies in the decision
boundary of deep networks. More precisely, this suggests the existence of a subspace Sy
of low dimension d’ (with d’ < d), that contains most normal vectors to the decision
boundary in regions surrounding natural images. We hypothesize that the existence of
universal perturbations fooling most natural images is partly due to the existence of such
a low-dimensional subspace that captures the correlations among different regions of the
decision boundary. In fact, this subspace “collects” normals to the decision boundary
in different regions, and perturbations belonging to this subspace are therefore likely to
fool datapoints. To verify this hypothesis, we choose a random vector of norm & = 2000
belonging to the subspace Sy spanned by the first 100 singular vectors, and compute its
fooling ratio on a different set of images (i.e., a set of images that have not been used to
compute the SVD). Such a perturbation can fool nearly 38% of these images, thereby
showing that a random direction in this well-sought subspace Sy significantly outperforms
random perturbations (we recall that such perturbations can only fool 10% of the data).
Fig. 6.4 illustrates the subspace Sy that captures the correlations in the decision boundary.
It should further be noted that the existence of this low dimensional subspace explains
the surprising generalization properties of universal perturbations observed in Chapter 4,
where one can build relatively generalizable universal perturbations with very few images.

The gap between the fooling rates obtained with the random vector strategy in Sy and
Algorithm 4 of Chapter 4, demonstrates that this simplified flat model of the decision
boundary fails to fully explain the large vulnerability of state-of-the-art deep neural
networks to universal perturbations.
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Figure 6.3 — Singular values of matrix N containing normal vectors to the decision
decision boundary.

Figure 6.4 — Illustration of the low dimensional subspace S containing normal vectors to
the decision boundary in regions surrounding natural images. For the purpose of this
illustration, we super-impose three data-points {:ci}?:l, and the adversarial perturbations
{r;}3_, that send the respective datapoints to the decision boundary {%;};_; are shown.
Note that {r;}3_; all live in the subspace Sy.
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6.4 Robustness of classifiers with curved decision bound-
aries

We now consider a model of the decision boundary in the vicinity of the data points that
allows to leverage the curvature of nonlinear classifiers. Under this decision boundary
model, we study the existence of universal perturbations satisfying k(x + v) # k(z) for
most x ~ M.S

Figure 6.5 — Link between robustness and curvature of the decision boundary. When the
decision boundary is positively curved (left), small universal perturbations are more likely
to fool the classifier.

We start by establishing an informal link between curvature of the decision boundary
and robustness to universal perturbations, that will be made clear later in this section.
As illustrated in Fig. 6.5, the norm of the required perturbation to change the label of
the classifier along a specific direction v is smaller if the decision boundary is positively
curved, than if the decision boundary is flat (or with negative curvature). It therefore
appears from Fig. 6.5 that the existence of universal perturbations (when the decision
boundary is curved) can be attributed to the existence of common directions where the
decision boundary is positively curved for many data points. In the remaining of this
section, we formally prove the existence of universal perturbations, when there exists
common positively curved directions of the decision boundary.

Recalling the definitions of Sec. 6.2, a quadratic approximation of the decision boundary
at z = x+7r(x) gives z+{v: (v—r(x) T Hy(v—7(x))+a,r(x)T (v—r(x)) = 0}, where
H . denotes the Hessian of F' at z, and a, = %, with F' = f; — f;. In this model,
the second order information (encoded in the Hessian matrix H) captures the curvature
of the decision boundary. We assume a local decision boundary model in the vicinity of
datapoints & ~ u, where the local classification region of ® is bounded by a quadratic
form. Formally, we assume that there exists p > 0 where the following condition holds

for almost all  ~ u:

9(x,p) : Vv € B(p),
(v—r@) H,(v—7(@)) + apr(@) (v —r(x) <0 = k(z+v) # k(z).

3Unlike for classifiers with locally flat decision boundaries, we now consider the problem of finding a
universal vector (as opposed to universal direction) that fools most of the data points. This corresponds
to the notion of universal perturbations first highlighted in [68].
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An illustration of this quadratic decision boundary model is shown in Fig. 6.2b. The
following result shows the existence of universal perturbations, provided a subspace &
exists where the decision boundary has positive curvature along most directions of S:

Theorem 4. Let k,0,5 > 0 and m € N. Assume that the quadratic decision boundary

model 2 (x, p) holds for almost all & ~ u, with p = 21%(2/6)/(1 + kY2 Let S be a
m dimensional subspace such that

P (Vu € R? a;luTH;(w)’vu > f<;||u||§) > 1—f for almost all © ~ p,

v~S

where HY®"Y = TITH,IT with II an orthonormal basis of span(r(x),v), and S denotes

the unit sphere in S. Then, there is a universal perturbation vector v such that ||v|j2 < p

and w]INDH (l;;(m +v) # I;;(m)) >1-6—-p.

AL

Figure 6.6 — Left: Normal section U of the decision boundary, along the plane spanned
by the normal vector r(x) and v. Right: Geometric interpretation of the assumption
in Theorem 4. Theorem 4 assumes that the decision boundary along normal sections
(r(x),v) is locally (in a p neighborhood) located inside a disk of radius 1/k. Note the
difference with respect to traditional notions of curvature, which express the curvature in
terms of the osculating circle at « + r(x). The assumption we use here is more “global”.

The above theorem quantifies the robustness of classifiers to universal perturbations in
terms of the curvature x of the decision boundary, along normal sections spanned by
r(x), and vectors v € S (see Fig. 6.6 (left) for an illustration of a normal section). Fig.
6.6 (right) provides a geometric illustration of the condition under which Theorem 4
holds. Provided a subspace S exists where the curvature of the decision boundary in
the vicinity of datapoints @ is positive (along directions in §), Theorem 4 shows that
universal perturbations can be found with a norm of approximately ’“—_n; + x~1/2. Hence,
when the curvature k is sufficiently large, the existence of small universal perturbations
is guaranteed with Theorem 4.4

4Theorem 4 should not be seen as a generalization of Theorem 3, as the models are distinct. In fact,
while the latter shows the existence of universal directions, the former bounds the existence of universal
perturbations.
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Remark 1. We stress that Theorem 4 does not assume that the decision boundary
is curved in the direction of all vectors in R%, but we rather assume the existence
of a subspace S where the decision boundary is positively curved (in the vicinity of
natural images x) along most directions in §. Moreover, it should be noted that, unlike
Theorem 3, where the normals to the decision boundary are assumed to belong to a low
dimensional subspace, no assumption is imposed on the normal vectors. Instead, we
assume the existence of a subspace S leading to positive curvature, for points on the

decision boundary in the vicinity of natural images.

Remark 2. Theorem 4 does not only predict the vulnerability of classifiers, but it also
provides a constructive way to find such universal perturbations. In fact, random vectors
sampled from the subspace S are predicted to be universal perturbations (see supp.
material for more details). Now, we show that this new construction works remarkably
well for deep networks, as predicted by our analysis.

6.4.1 Experimental results

We first evaluate the validity of the assumption of Theorem 4 for deep neural networks,
that is the existence of a low dimensional subspace where the decision boundary is
positively curved along most directions sampled from the subspace. To construct the
subspace, we find the directions that lead to large positive curvature in the vicinity of a
given set of training points {x1,...,x,}. We recall that principal directions v1,...,v4_1
at a point z on the decision boundary correspond to the eigenvectors (with nonzero
eigenvalue) of the matrix H., given by H. = PH,P, where P denotes the projection
operator on the tangent to the decision boundary at z, and H, denotes the Hessian of the
decision boundary function evaluated at z [54]. Common directions with large average
curvature at z; = @; +r(x;) (where r(x;) is the minimal perturbation defined in Eq. (6.1))
hence correspond to the eigenvectors of the average Hessian matrix H = n~! S H il
We therefore set our subspace, S, to be the span of the first m eigenvectors of H, and
show that the subspace constructed in this way satisfies the assumption of Theorem 4.
To determine whether the decision boundary is positively curved in most directions of
S (for unseen datapoints from the validation set), we compute the average curvature
across random directions in S, for points on the decision boundary, i.e. z = x + r(x);
the average curvature is formally given by

() — (Pv)TH,(Pv)
wsto) = 2, (i) (04

where S denotes the unit sphere in S.. In Fig. 6.9 (a), the average of Ks(x) across points
sampled from the validation set is shown (as well as the standard deviation) in function
of the subspace dimension m, for a LeNet architecture [52] trained on the CIFAR-10
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dataset.® Observe that when the dimension of the subspace is sufficiently small, the
average curvature is strongly oriented towards positive curvature, which empirically shows
the existence of this subspace S, where the decision boundary is positively curved for
most data points in the validation set. This empirical evidence hence suggests that the
assumption of Theorem 4 is satisfied, and that universal perturbations hence represent
random vectors sampled from this subspace S..

To show this strong link between the vulnerability of universal perturbations and the
positive curvature of the decision boundary, we now visualize normal sections of the decision
boundary of deep networks trained on ImageNet (CaffeNet [44] and ResNet-152 [38]) and
CIFAR-10 (LeNet [52] and ResNet-18 [38]) in the direction of their respective universal
perturbations.® Specifically, we visualize normal sections of the decision boundary in
the plane (r(x),v), where v is a universal perturbation computed using Algorithm 4 of
Chapter 4. The visualizations are shown in Fig. 6.7 and 6.8. Interestingly, the universal
perturbations belong to highly positively curved directions of the decision boundary,
despite the absence of any geometric constraint in the algorithm to compute universal
perturbations. To fool most data points, universal perturbations hence naturally seek
common directions of the embedding space, where the decision boundary is positively
curved. These directions lead to very small universal perturbations, as highlighted by
our analysis in Theorem 4. It should be noted that such highly curved directions of the
decision boundary are rare, as random normal sections are comparatively flat (see Fig.
6.7 and 6.8, second row). This is due to the fact that most principal curvatures are
approximately zero, for points sampled on the decision boundary in the vicinity of data
points.

Recall that Theorem 4 suggests a novel procedure to generate universal perturbations;
in fact, random perturbations from S, are predicted to be universal perturbations. To
assess the validity of this result, Fig. 6.9 (b) illustrates the fooling rate of the universal
perturbations (for the LeNet network on CIFAR-10) sampled uniformly at random from
the unit sphere in subspace S., and scaled to have a fixed norm (1/5th of the norm of the
random noise required to fool most data points). We assess the quality of such perturbation
by further indicating in Fig. 6.9 (b) the fooling rate of the universal perturbation computed
using the algorithm in Chapter 4. Observe that random perturbations sampled from
S. (with m small) provide very powerful universal perturbations, fooling nearly 85% of
data points from the validation set. This rate is comparable to that of the algorithm
in Chapter 4, while using much less training points (only n = 100, while at least 2,000
training points are required by the algorithm in Chapter 4). The very large fooling

5The LeNet architecture we used has two convolutional layers (filters of size 5) followed by three fully
connected layers. We used SGD for training, with a step size 0.01 and a momentum term of 0.9 and
weight decay of 10™%. The accuracy of the network on the test set is 78.4%.

For the networks on ImageNet, we used the Caffe pre-trained models https://github.com/BVLC/
caffe/wiki/Model-Zoo. The ResNet-18 architecture was trained on the CIFAR-10 task with stochastic
gradient descent with momentum and weight decay regularization. It achieves an accuracy on the test of
94.18%.
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6.4. Robustness of classifiers with curved decision boundaries
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Figure 6.7 — Visualization of normal cross-sections of the decision boundary, for CIFAR-10
(Left: LeNet, Right: ResNet-18). Top: Normal cross-sections along (r(x),v), where v is
the universal perturbation computed using Algorithm 4 in Chapter 4. Bottom: Normal
cross-sections along (r(x),v), where v is a random vector uniformly sampled from the
unit sphere in R
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Figure 6.8 — Visualization of normal cross-sections of the decision boundary, for ImageNet
(Left: ResNet-152, and Right: CaffeNet) Top: Normal cross-sections along (r(x),v),
where v is the universal perturbation computed using the algorithm in Chapter 4.
Bottom: Normal cross-sections along (r(x),v), where v is a random vector uniformly
sampled from the unit sphere in R

rates achieved with such a simple procedure (random generation in S;) confirms that the
curvature is the governing factor that controls the robustness of classifiers to universal
perturbations, as analyzed in Section 6.4. In fact, such high fooling rates cannot be
achieved by only using the model of Section 6.3 (neglecting the curvature information),
as illustrated in Fig. 6.9 (b). Specifically, by generating random perturbations from the
subspace Sy collecting normal vectors () (which is the procedure that is suggested by
Theorem 3 to compute universal perturbations, without taking into account second order
information), the best universal perturbation achieves a fooling rate of 65%, which is
significantly worse than if the curvature is used to craft the perturbation. It can be seen
that, similarly to Fig. 6.9 (b), the proposed approach of generating universal perturbations
through random sampling from the subspace S, achieves high fooling rates (comparable
to the algorithm in Chapter 4, and significantly higher than by using Sy).

Fig 6.10 illustrates a universal perturbation for ImageNet, corresponding to the maximally
curved shared direction (or in other words, the maximum eigenvalue of H computed
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Figure 6.9 — (a) Average curvature kg, averaged over 1000 validation datapoints, as a
function of the subspace dimension. (b) Fooling rate of universal perturbations (on an
unseen validation set) computed using random perturbations in 1) S.: the subspace of
positively curved directions, and 2) Sy: the subspace collecting normal vectors r(x).
The dotted line corresponds to the fooling rate using the algorithm in Chapter 4. Sy
corresponds to the largest singular vectors corresponding to the matrix gathering the
normal vectors r(x) in the training set (similar to the approach in [68]).

using n = 200 random samples).” The CaffeNet architecture is used, and Fig. 6.10
also represents sample perturbed images that fool the classifier. Just like the universal
perturbation computed using Algorithm 4 of Chapter 4, the perturbations are not very
perceptible, and lead to misclassification of most unseen images in the validation set. For
this example on ImageNet, the fooling rate of this perturbation is 67.2% on the validation
set. This is significantly larger than the fooling rate of the perturbation computed using
Sy only (38%), but lower than that of Algorithm 4 (85.4%). We hypothesize that this
gap for ImageNet is partially due to the small number of samples, which was made due
to computational restrictions.

y “
« -
S 7
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Figure 6.10 — Left column: Universal perturbation computed through random sampling
from S.. Second column to end: All images are (incorrectly) classified as “bubble”. The
CaffeNet architecture is used. Similarly to Chapter 4, the perturbation is constrained to
have /5 norm of 2, 000.

The existence of this subspace S, (and that universal perturbations are random vectors
in S.) further explains the high diversity of universal perturbations. Fig. 6.11 illustrates

"We used m = 1 in this experiment as the matrix H is prohibitively large for ImageNet.
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6.5. Transferability of universal perturbations

Figure 6.11 — Diversity of universal perturbations randomly sampled from the subspace
Sc. The normalized inner product between two perturbations is less than 0.1.

different universal perturbations for CIFAR-10 computed by sampling random directions
from S.. The diversity of such perturbations justifies why re-training with perturbed
images (as done in Section 4.5) does not significantly improve the robustness of such
networks, as other directions in S, can still lead to universal perturbations, even if the
network becomes robust to some directions.

6.5 Transferability of universal perturbations

It is interesting to note that the subspace S, is likely to be shared not only across
datapoints, but also different networks (to some extent). To support this claim, Fig. 6.12
shows the cosine of the principal angles between subspaces SF°Nt and SNV, computed
for LeNet and NiN [56] models. Note that the first principal angles between the two
subspaces are very small, leading to shared directions between the two subspaces.

W SN s SheNet B Two random subspaces
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Figure 6.12 — Cosine of principal angles between S-*Net and SNIN. For comparison,
cosine of angles between two random subspaces is also shown.

For networks trained on ImageNet, Fig. 6.13 shows examples of normal cross-sections of
the decision boundary across a fized direction in S, for the VGG-16 architecture (but
where S, is computed for CaffeNet). Note that the decision boundary across this fized
direction is positively curved for both networks, albeit computing this subspace for a
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Chapter 6. Geometric analysis with universal perturbations

Figure 6.13 — Transferability of the subspace S, across different networks. The first row
shows normal cross sections along a fixed direction in S, for VGG-16, with a subspace S,
computed with CaffeNet. Note the positive curvature in most cases. To provide a baseline
for comparison, the second row illustrates normal sections along random directions.

distinct network. The sharing of S, across different nets explains the transferability of
universal perturbations observed in Chapter 4.

6.6 Conclusion

In this chapter, we analyzed the robustness of classifiers to universal perturbations, under
two decision boundary models: Locally flat and curved. We showed that the first are
not robust to universal directions, provided the normal vectors in the vicinity of natural
images are correlated. While this model explains the vulnerability for e.g., linear classifiers,
this model discards the curvature information, which is essential to fully analyze the
robustness of deep nets to universal perturbations. The second, classifiers with curved
decision boundaries, are instead not robust to universal perturbations, provided the
existence of a shared subspace along which the decision boundary is positively curved
(for most directions). We empirically verify these assumptions for deep networks. Our
analysis hence explains the existence of universal perturbations, and further provides a
purely geometric approach for computing such perturbations, in addition to explaining
properties of perturbations, such as their diversity.

Our analysis hence shows that to construct classifiers that are robust to universal
perturbations, it is key to suppress this subspace of shared curved directions, which
can possibly be done through regularization of the objective function.

In Part III, we will show how geometric analysis can be deliberately used to construct
robust classifiers. The study of the curvature of classifiers can particularly lead to effective
geometric regularization techniques that significantly improve adversarial robustness
of state-of-the-art classifiers. Furthermore, one can find geometric characterizations of
adversarial examples based on the curvature of the decision boundary in order to devise
effective methods to detect adversarial examples.
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“Geometry is not true, it is advantageous.’

— Henri Poincaré

7.1 Introduction

In previous chapters, we provided geometric analysis of classifiers’ robustness to different
perturbation regimes. In particular, we showed in Chapter 5 that the vulnerability of deep
networks to semi-random perturbations suggests that their decision boundary possess a
small curvature. On the other hand, in Chapter 6, the existence of universal perturbations
is attributed to the high curvature of the decision boundary of deep networks. We resolve
this seeming paradox by providing a thorough empirical analysis of the local geometry
of the decision boundary of state-of-the-art deep networks. To perform such analysis,
we employ the algorithms developed in Part I in order to sample points on the decision
boundary of deep networks, in the vicinity of data samples. Besides using adversarial
perturbations to study the geometric properties of the decision boundary, we show an
application of adversarial perturbations in studying the connectedness of the decision
regions of deep networks.

In this chapter, we specifically view classification regions as topological spaces and decision
boundaries as hypersurfaces, and we examine their geometric properties. We first study
the classification regions induced by state-of-the-art deep networks, and provide empirical
evidence suggesting that these classification regions are connected; that is, there exists a
continuous path that remains in the region between any two points of the same label. Up
to our knowledge, this represents the first instance where the connectivity of classification
regions is empirically shown. Then, to study the complexity of the functions learned by

Part of this chapter has been published in

Alhussein Fawzi*, Seyed-Mohsen Moosavi-Dezfooli*, Pascal Frossard, and Stefano Soatto. Empirical
study of the topology and geometry of deep networks. In IEEE Conference on Computer Vision and
Pattern Recognition, 2018. (*: Equal contribution)
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the deep network, we analyze the curvature of their decision boundary. We empirically
show that

e The decision boundary in the vicinity of natural images is flat in most directions,
with only a very few directions that are significantly curved.

e We reveal the existence of a fundamental asymmetry in the decision boundary of
deep networks, whereby the decision boundary (near natural images z) is biased
towards negative curvatures.!

e Directions with significantly curved decision boundaries are shared between different
datapoints.

e We demonstrate the existence of a relation between the sensitivity of a classifier to
perturbations of the inputs, and these shared directions: a deep net is vulnerable
to perturbations along these directions, and is insensitive to perturbations along
the remaining directions.

We finally leverage the fundamental asymmetry of deep networks revealed in our analysis,
and propose an algorithm to detect natural images from imperceptibly similar images
with very small adversarial perturbations [86], as well as estimate the correct label of
these perturbed samples. We show that our purely geometric characterization of (small)
adversarial examples, which does not involve any re-training, is very effective to recognize
perturbed samples.

7.2 Definitions and notations

Let f: R? — RZ denote a L class classifier. Given a datapoint &g € R%, the estimated
label is obtained by k(xg) = argmax, fi(o), where fi(x) is the k™ component of
f(x) that corresponds to the k' class. The classifier f partitions the space R into
classification regions Rq, ..., Ry, of constant label. That is, for any & € R;, /2:(3:) =14. For
a neighboring class j, the pairwise decision boundary of the classifier (between these two
classes ¢ and j) is defined as the set Z = { z: F(z) =0}, where F(z) = fi(2z) — f;(z)
(we omit dependence on i,j for simplicity). The decision boundary defines a hypersurface
(of dimension d — 1) in R?. Note that for any point on the decision boundary z € 4, the
gradient VF(z) is orthogonal to the tangent space T(#) of # at z (see Fig. 7.5 (a) for
an illustration).

In this chapter, we are interested in studying the decision boundary of a deep neural
network in the vicinity of natural images. To do so, for a given point x, we define the

Throughout the chapter, the sign of the curvature is chosen according to the normal vector, and the
data point z, as illustrated in Fig. 7.8 (top).
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mapping r(x), given by

r(x) = argmin |72 subject to k(x + ) # k(z), (7.1)

reRd

which corresponds to the smallest perturbation required to misclassify image @. Note
that 7(a) corresponds geometrically to the vector of minimal norm required to reach the
decision boundary of the classifier, and is often dubbed an adversarial perturbation [86].
It should further be noted that, due to simple optimality conditions, (x) is orthogonal
to the decision boundary at @ + r(x).

In the remainder of this chapter, our goal is to analyze the geometric properties of
classification regions {R;} and decision boundaries & of deep networks. In particular, we
study the connectedness of classification regions in Sec. 7.3, and the curvature of decision
boundaries in Sec. 7.4, and draw a connection with the robustness of classifiers. We
then use the developed geometric insights, and propose a method in Sec. 7.5 to detect
artificially perturbed data points, and improve the robustness of classifiers.

7.3 Topology of classification regions

Do deep networks create shattered and disconnected classification regions, or on the
contrary, one large connected region per label (see Fig. 7.1a)? While ReLU networks
have an exponential number of linear regions (with respect to the number of layers) in
the input space [67], it remains unclear whether deep nets create one connected region
per class, or shatters a classification region around a large number of small connected
sets. In the following, we treat the regions R; as topological spaces, and study their path
connectness. We formally cast the problem of connectivity of classification regions as
follows: given any two data points @1, x2 € R;, does a continuous curve 7 : [0,1] = R;
exist, such that v(0) = @1,v(1) = 27 The problem is complex to address theoretically;
we therefore propose a heuristic method to study this question. To assess the connectivity
of regions, we propose a path finding algorithm between two points belonging to the
same classification region. That is, given two points @1, 2 € R?, our proposed approach
attempts to construct a piecewise linear path P that remains in the classification region.
The path P is represented as a finite set of anchor points (pg = @1, p1, - -, Pns Pnt1 = T2),
where a convex path is taken between two consecutive points. To find the path (i.e., the
anchor points), the algorithm first attempts to take a convex path between x; and xs;
when the path is not entirely included in the classification region, the path is modified by
projecting the midpoint p = (21 + @2)/2 onto the target classification region. The same
procedure is applied recursively on the two segments of the path (z1,p) and (a2, p) till
the whole path is entirely in the region. The algorithm is summarized in Algorithm 5. In
practice, the validity of a path P is checked empirically through a fine sampling of the
convex combinations of the consecutive anchor points. Specifically, we set in practice the
distance between sampled points to four orders of magnitude smaller than the distance
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Adversarial example

Random noise

Figure 7.1 — (a) Disconnected versus connected yet complex classification regions. (b)
All four images are classified as puma. There exists a path between two images classified
with the same label.

between the original two images.

Algorithm 5 Finding a path between two data points.

1: function FINDPATH(x,z5)

2 // input: Datapoints &, xy € R%.

3 // output: Path P represented by anchor points.

4 Ty — (X1 + 2)/2

5: if k(xm) # k(z1) then

6: 7 argmin,, ||7||s s.t. k(zm 4+ 1) = k(z))

7 Ty — Ty + 7

8 end if

oF P+ (x1,@m, T2)

10: // Check the validity of the path by sampling in the convex combinations of consecutive
anchor points

11: if P is a valid path then

12: return P

13: end if

14: Py <+ FINDPATH (21,21 )
15: Po < FINDPATH(@ 1, ,22)

16: P < concat (P, Pz)
17: return P
18: end function

The proposed approach is used to assess the connectivity of the CaffeNet architecture?
[44] on the ImageNet classification. To do so, we examine the existence of paths between

1. Two randomly sampled points from the validation set with the same estimated
label,

2. A randomly sampled point from the validation set, and an adversarially perturbed

2We tested other architectures (GoogLeNet, VGG-19, ResNet-152), and the results were similar to
CaffeNet. We therefore report only results on CaffeNet in this section.
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image [86]. That is, we consider &; to be an image from the validation set, and
To = X9 + T, where &5 corresponds to an image classified differently than 1. xo is
however classified similarly as @1, due to the targeted perturbation 7.

3. A randomly sampled point from the validation set, and a perturbed random point.
This is similar to scenario 2, but &9 is set to be a random image (i.e., an image
sampled uniformly at random from the sphere pS?~1, where p denotes the typical
norm of images).

Note that in all scenarios, we check the connectivity between two images that have
the same estimated label by the classifier (but not necessarily the same true label). In
particular, in scenario 2 and 3, 2 does not even visually correspond to an image of the
same class as 1 (but has the same estimated label as x; by the classifier). With this
setting, the geometric properties of the classification regions are analyzed independently
of the visual properties of the images. These scenarios are illustrated in Fig. 7.1b. For
each scenario, 1,000 pairs of points are considered, and the approach described above is
used to find the connecting path. Our results can be stated as follows:

1. In all three scenarios, evidence hints that a continuous path included in the
3

region always exists between points sampled from the same classification region.
2. Moreover, the continuous path connecting the points is approximately a straight
path.

The first result suggests that the classification regions created by deep neural networks
are connected in R?: deep nets create single large regions containing all points of the
same label. This goes against common belief, whereby classification regions are thought
to be disconnected, and to concentrate around data points. To further understand the
paths found by Algorithm 5, we show in Fig. 7.2 (right) an illustrative example of a path
connecting two data points 1 and x5 from the validation set (i.e., scenario 1). While this
nonstraight path connecting @, and a, is entirely included in the classification region,
observe that the convex path illustrated in Fig. 7.2 (left) is not a valid path. In practice,
the paths found by Algorithm 5 have, in average, 10 anchor points for the three scenarios.

Our second result provides an answer to the next natural question: how do the paths
connecting data points (and staying inside a classification region) “look like”? Specifically,
we show that two points in a classification region can be connected by an approximately
straight path. To quantify how the paths of Algorithm 5 deviate from the straight path,

3While not providing a formal certificate that the continuous path is entirely included in the classi-
fication region (as boundary regions can meander between neighbouring points in the continuum), we
believe the sampling procedure used to verify the connectedness of a region is conservative, especially in
the presence of regularizers that bound the curvature of the decision boundary (e.g., weight decay).

87



Chapter 7. Topology and geometry of decision regions
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Figure 7.2 — Classification regions (shown with different colors), and illustration of
different paths between images x1, 2. Left: Example where the convex path between
two datapoints is not entirely included in the classification region (note that the linear
path traverses 4 other regions, each depicted with a different color). The image is the
cross-section spanned by r(x1) (adversarial perturbation of @;) and &1 — x2. Images x;
and xo are natural images from the ILSVRC 12 validation set, and the CaffeNet deep
network is used. Right: Illustration of the classification regions along a nonconvex path;
observe that the path entirely remains in the same classification region. The illustration
is obtained by stitching cross-sections spanned by 7(x1) (vertical axis) and p; — p;y1
(two consecutive anchor points in the path P) (horizontal axis). It is shown broken to
emphasize that the horizontal axes are different. Angles between stitched cross-sections
are purely illustrative. On top of each anchor point (as well as @1, x2), image on the path
is visualized.
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Figure 7.3 — Empirical probability (y axis) that a convex combination of k samples (z
axis) from the same classification region stays in the region, for networks trained on
ImageNet. Samples are randomly chosen from the validation set.
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7.4. Curvature of the decision boundaries

Figure 7.4 — Schematic illustration in 2d of the properties of a classification region
of a deep net. A classification region is connected by an almost convex path, despite
classification regions being non-convex sets.

Values of D(p) ~ 1 indicate that the path p is close to a straight line. For the three
scenarios, we have an average deviation D(p) = 1 + 107*, which indicates that the
paths found in Algorithm 5 are slight deviations from the straight path. With this
very small deviation from the straight path, it is possible to connect arbitrary points in
classification regions.* This observation is intriguingly similar to that of [34], where it is
shown that solutions (in the weight space) achieving small error can be connected with
an approximately straight path. This suggests that the data space and weight space have
common properties; the specifics of this duality between these spaces is outside the scope
of this thesis and will be subject of future work.

Despite the existence of approximately straight paths connecting any pairs of points
in the classification regions, it is important to note that classification regions are not
convex bodies. In fact, Fig. 7.3 illustrates the estimated probability that random convex
combinations of k images x1, ..., x; € R; belong to R;. Observe that for the different
tested networks, random convex combinations of two images (i.e., case where k = 2)
belong with probability ~ 0.8 to the classification region. However, for larger k, this
probability gets much smaller, which implies that classification regions are not convex
bodies in R%. These results suggest that the classification regions of deep networks
extrapolate their classification regions in an approximately flat way between different
images (i.e., there exist near-convex paths between pairs of images of the same class), but
that the classification region is not a convex body. In a simplistic two-dimensional world,
a classification region satisfying these two constraints would look like Fig. 7.4.

In the next section, we explore the complexity of the boundaries of these classification
regions learned by deep networks, through their curvature property.

7.4 Curvature of the decision boundaries

We start with basic definitions of curvature. The normal curvature x(z,v) along a tangent
direction v € T;(Z) is defined as the curvature of the planar curve resulting from the

4Straight paths might not be entirely inside the classification region; tiny deviations are crucial to
guarantee that complete paths are inside the region.
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Figure 7.5 — (a) Normal section U of the decision boundary, along the plane spanned by
the normal vector VF(z) and v. (b) Principal curvatures for NiN and LeNet, computed
at a point z on the decision boundary in the vicinity of a natural image.

cross-section of Z along the two-dimensional normal plane spanning (VF(z),v) (see Fig.
7.5a for details). The curvature along a tangent vector v can be expressed in terms of
the Hessian matrix Hp of F' [54]:

vl Hpv

5% ) = LEVEETR

(7.2)
Principal directions correspond to the orthogonal directions in the tangent space max-
imizing the curvature k(z,v). Specifically, the I-th principal direction v; (and the
corresponding principal curvature x;) is obtained by maximizing k(z,v) with the con-
straint v; | vy ...v;_1. Alternatively, the principal curvatures correspond to the nonzero
eigenvalues of the matrix mPH P, where P is the projection operator on the
tangent space; i.e., P =1 — VF(z)VF(2)T.

We now analyze the curvature of the decision boundary of deep neural networks in the
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Figure 7.6 — (a) Average of p;(z) as a function of ¢ for different points z in the vicinity
of natural images. (b) Basis of S.

vicinity of natural images. We consider the LeNet and NiN [56] architectures trained on
the CIFAR-10 task, and show the principal curvatures of the decision boundary, in the
vicinity of 1,000 randomly chosen images from the validation set. Specifically, for a given
image x, the perturbed sample z =  + r(x) corresponds to the closest point to « on the
decision boundary. We then compute the principal curvatures at point z with Eq. 7.2.
The average profile of the principal curvatures (over 1,000 data points) is illustrated in
Fig. 7.5b. Observe that, for both networks, the large majority of principal curvatures
are approximately zero: along these principal directions, the decision boundary is almost
flat. Along the remaining principal directions, the decision boundary has (non-negligible)
positive or negative curvature. Interestingly, the principal curvature profile is asymmetric
towards negatively curved directions. We have consistently observed this asymmetry in
different settings: different datapoints, different networks (e.g., LeNet and NiN), and
even different datasets (CIFAR-10 and ImageNet, see Section 7.5 for more details), which
suggests that this property (negatively curved decision boundary) is not an artifact of
the experimental setting. In the next section, we leverage this characteristic asymmetry
of the decision boundaries of deep neural networks (in the vicinity of natural images) to
detect adversarial examples from clean examples.

While the above local analysis shows the existence of few directions along which the
decision boundary is curved, we now examine whether these directions are shared across
different datapoints, and relate these directions with the robustness of deep nets. To
estimate the shared common curved directions, we compute the largest principal directions
for a randomly chosen batch of 100 training samples and merge these directions into a
matrix M. We then estimate the common curved directions as the m largest singular
vectors of M that we denote by u1,...,u,;,. To assess whether the decision boundary
is curved in such directions, we then evaluate the curvature of the decision boundary
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in such directions for points z in the vicinity of unseen samples from the wvalidation set.
That is, for « in the validation set, and z = x + r(x), we compute

(2) = |ul PHp Pu,|
PREI= " (WTPHpPv|)

v~Sd—1

(7.3)

which measures how relatively curved is the decision boundary in direction w;, compared
to random directions sampled from the unit sphere in RY. When p;(2) > 1, this indicates
that w; constitutes a direction that significantly curves the decision boundary at z. Fig.
7.6a shows the average of p;(z) over 1,000 points z on the decision boundary in the
vicinity of unseen natural images, for the LeNet architecture on CIFAR-10. Note that the
directions w; (with ¢ sufficiently small) lead to universally curved directions across unseen
points. That is, the decision boundary is highly curved along such data-independent
directions. Note that, despite using a relatively small number of samples (i.e., 100 samples)
to compute the shared directions, these generalize well to unseen points. We illustrate
in Fig. 7.6b these directions wu;, along which decision boundary is universally curved in
the vicinity of natural images; interestingly, the first principal directions (i.e., directions
along which the decision boundary is highly curved) are very localized Gabor-like filters.
Through discriminative training, the deep neural network has implicitly learned to curve
the decision boundary along such directions, and preserve a flat decision boundary along
the orthogonal subspace.
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0.8

0.6

0.4

Misclassification rate

0.2

—

0.05 0.1 0.15 0.2 0.25 0.3 0.35
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Figure 7.7 — Misclassification rate (% of images that change labels) on the noisy validation
set, w.r.t. the noise magnitude (¢2 norm of noise divided by the typical norm of images).

Interestingly, the data-independent directions u; (where the decision boundary is highly
curved) are also tightly connected with the sensitivity of the classifier to perturbations.
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7.5. Detection of perturbed samples

Table 7.1 — Norm of projected perturbation on S, normalized by norm of perturbation:

HIHDi'TJQ, with v the perturbation. Larger values (i.e., closer to 1) indicate that the

perturbation has a larger component on subspace S.

Type of perturbation v  LeNet [53] NiN [56]

Random 0.25 0.25
Adversarial 0.64 0.60
To — X1 0.10 0.09
Va 0.22 0.24
To elucidate this relation, we construct a subspace S = span(uq,...,uy) containing

the first 200 shared curved directions. Then, we show in Fig. 7.7 the accuracy of the
CIFAR-10 LeNet model on a noisy validation set, where the noise either belongs to S, or
to S* (i.e., orthogonal of S). It can be observed that the deep network is much more
robust to noise orthogonal to S, than to noise in S. Hence, S also represents the subspace
of perturbations to which the classifier is highly vulnerable, while the classifier has learned
to be invariant to perturbations in S*+. To support this claim, we report in Table 7.1,
the norm of the projection of adversarial perturbations (computed using the method in
[70]) on the subspace S, and compare it to that of the projection of random noise onto S.
Note that for both networks under study, adversarial perturbations project well onto the
subspace § comparatively to random perturbations, which have a significant component
in St. In contrast, the perturbations obtained by taking the difference of two random
images belong overwhelmingly to S+, which agrees with the observation drawn in Sec.
7.3 whereby straight paths are likely to belong to the classification region. Finally, note
that the image gradient Va (directional change in the intensity in image x) also does not
have an important component in S, as the robustness to such directions is fundamental
to achieve invariance to small geometric deformations.®

The importance of the shared directions {u;}, where the decision boundary is curved,
hence goes beyond our curvature analysis, and capture the modes of sensitivity learned
by the deep network.

7.5 Detection of perturbed samples

State-of-the-art image classifiers are highly vulnerable to imperceptible adversarial per-
turbations [86, 7|. That is, adding a well-sought small perturbation to an image causes
state-of-the-art classifiers to misclassify. In this section, we leverage the asymmetry of the

®In fact, a first order Taylor approximation of a translated image (- 4+71,-+7) 8 x + 11 Ve z + =2V, x.
To achieve robustness to translations, a deep neural network hence needs to be locally invariant to
perturbations along the gradient directions.
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principal curvatures (illustrated in Fig. 7.5b), and propose a method to distinguish be-
tween original images, and images perturbed with small adversarial perturbations, as well
as improve the robustness of classifiers. For an element z on the decision boundary, denote
by (z) = 75 Z;j;ll k;i(z) the average of the principal curvatures. For points z sampled
in the vicinity of natural images, the profile of the principal curvature is asymmetric (see
Fig. 7.5b), leading to a negative average curvature; i.e., ®(z) < 0. In contrast, if @ is
now perturbed with an adversarial example (that is, we observe @pery =  + r(x) instead
of x), the average curvature at the vicinity of @per is instead positive, as schematically
illustrated in Fig. 7.8. Table 7.2 supports this observation empirically with adversarial
examples computed with the method in [70]. Note that for both networks, the asymmetry
of the principal curvatures allows to distinguish very accurately original samples from
perturbed samples using the sign of the curvature.® Based on this simple idea, we now
derive an algorithm for detecting adversarial perturbations.

Since the computation of all the principal curvatures is intractable for large-scale datasets,

we derive a tractable estimate of the average curvature. Note that the average curvature

R can be equivalently written as E (vTG(2)v), where G(z) = IVE(2)|; (T —
v~Sa—

VE(2)VF(2)")Hp(2)(I — VF(2)VF(2)T). In fact, we have

d—1 d—1
1
T T T
vNISEd—l (v G(z)v) = vNIsE;l—l (1} <'_1 KiUiv; ) ’U) b 2_1 Ki, (7.4)

where v; denote the principal directions. It therefore follows that the average curvature &

can be efficiently estimated using a sample estimate of E (vTG(2)v) (and without
v~S9—

requiring the full eigen-decomposition of G). To further make the approach of detecting
perturbed samples more practical, we approximate G(z) (for z on the decision boundary)
with G(z), assuming that @ is sufficiently close to the decision boundary.” This approxi-
mation avoids the computation of the closest point on the decision boundary z, for each
x.

We provide the details in Algorithm 6. Note that, in order to extend this approach to
multiclass classification, an empirical average is taken over the decision boundaries with
respect to all other classes. Moreover, while we have used a threshold of 0 to detect
adversarial examples from original data in the above explanation, a threshold parameter

5This idea might first appear counter-intuitive: if curvature is negative at the vicinity of data points,
then the curvature has to be positive for data points lying on the other side of the boundary! However,
natural data points are very “sparse” in R%; hence, two natural images never lie exactly opposite to
each other (from the two sides of the boundary). Instead, different data points lie at the vicinity of
very distinct parts of the decision boundary, which makes it possible to have negatively curved decision
boundary at the vicinity of all data points. See Fig. 7.1a (left) for an illustration of such a decision
boundary, with negative curvature at the vicinity of all points.

"The matrix G is never computed in practice, since only matrix vector multiplications of G are needed.
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T

® Tpert

Figure 7.8 — Schematic representation of normal sections in the vicinity of a natural image
(top), and perturbed image (bottom). The normal vector to the decision boundary is
indicated with an arrow.

Table 7.2 — Percentage of points on the boundary with positive (resp. negative) average
curvature, when sampled in the vicinity of natural images (resp. perturbed images).
CIFAR-10 dataset is used; results are computed on the test set.

LeNet NiN

% % > 0 for original samples 97%  91%
% ® < 0 for perturbed samples  96%  93%

t is used in practice (which controls the true positive vs. false positive tradeoff). Finally,
it should be noted that in addition to detecting whether an image is perturbed, the
algorithm also provides an estimate of the original label when a perturbed sample is
detected (the class leading to the highest positive curvature is returned).

We now test the proposed approach on different networks trained on the ImageNet dataset
[79], with adversarial examples computed using the approach in [70]. The latter approach
is used as it provides small and difficult to detect adversarial examples, as mentioned in
[65, 59]. Fig. 7.9 (left) shows the accuracy of the detection of Algorithm 6 on original
images with respect to the detection error on perturbed images, for varying values of

Algorithm 6 Detecting and denoising perturbed samples.

input: classifier f, sample «, threshold ¢.
output: boolean perturbed, recovered label label.
Set F; < fi — f; for i € [L].

Draw iid samples v, ..., v from the uniform distribution on S%1.
L T

1
5: Compute p T Z 'vaG F,Vj, where G, denotes the Hessian of F; projected on the

i=1 j=1

tangent space; i.e., Gp,(x) = |[VF(z)|; (I — VF(x)VF(z)")Hp,(x)(I — VF(x)VF(x)T).
6: if p < t then perturbed < false.

7: else perturbed < false and label < arg max Z]T=1 'vaGFi v;.
i€{1,...,L}

8: end if

95



Chapter 7. Topology and geometry of decision regions
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Figure 7.9 — True positives (i.e., detection accuracy on clean samples) vs. False positives
(i.e., detection error on perturbed samples) on the ImageNet classification task. Left:
Results reported for GoogLeNet, CaffeNet and VGG-19 architectures, with perturbations
computed using the approach in [70]. Right: Results reported for GoogLeNet, where
perturbations are scaled by a constant factor a = 1,2, 5.

the threshold ¢. For the three networks under test, the approach achieves very accurate
detection of adversarial examples (e.g., more than 95% accuracy on GoogLeNet with an
optimal threshold). Note first that the success of this strategy confirms the asymmetry
of the curvature of the decision boundary on the more complex setting of large-scale
networks trained on ImageNet. Moreover, this simple curvature-based detection strategy
outperforms the detection approach recently proposed in [59|. In addition, unlike other
approaches of detecting perturbed samples (or improving the robustness), our approach
only uses the characteristic geometry of the decision boundary of deep neural networks
(i.e., the curvature asymmetry), and does not involve any training/fine-tuning with
perturbed samples, as commonly done.

The proposed approach not only distinguishes original from perturbed samples, but it
also provides an estimate of the correct label, in the case a perturbed sample is detected.
Algorithm 6 correctly recovers the labels of perturbed samples with an accuracy of 92%,
88% and 74% respectively for GoogLeNet, CaffeNet and VGG-19, with ¢ = 0. This shows
that the proposed approach can be effectively used to denoise the perturbed samples, in
addition to their detection.

Finally, Fig. 7.9 (right) reports a similar graph to that of Fig. 7.9 (left) for the GoogLeNet
architecture, where the perturbations are now multiplied by a factor o > 1. Note that, as
« increases, the detection accuracy of our method decreases, as it heavily relies on local
geometric properties of the classifier (i.e., the curvature). Interestingly enough, [59, 65]
report that the regime where perturbations are very small (like those produced by [70])
are the hardest to detect; we therefore foresee that this geometric approach will be used
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along with other detection approaches, as it provides very accurate detection in a distinct
regime where traditional detectors do not work well (i.e., when the perturbations are very
small).

7.6 Conclusion

We analyzed in this chapter the geometry induced by deep neural network classifiers in
the input space. Specifically, we provided empirical evidence showing that classification
regions are connected. Next, to analyze the complexity of the functions learned by deep
networks, we provided an empirical analysis of the curvature of the decision boundaries.
We showed in particular that, in the vicinity of natural images, the decision boundaries
learned by deep networks are flat along most (but not all) directions, and that some
curved directions are shared across datapoints. We finally leveraged a fundamental
observation on the asymmetry in the curvature of deep nets, and proposed an algorithm
for detecting adversarially perturbed samples from original samples. This geometric
approach was shown to be very effective, when the perturbations are sufficiently small,
and that recovering the label was further possible using this algorithm. This shows that
the study of the geometry of state-of-the-art deep networks is not only key from an
analysis perspective, but it can also lead to classifiers with better properties.

Based on the analysis provided in this chapter, in [43], the curved directions of the decision
boundary of state-of-the-art classifiers are identified as “the directions which they use to
achieve their classification performance in the first place.” Therefore, they conclude that
the adversarial robustness and the generalization performance of deep networks are two

sides of the same coin.

In the next chapter, we introduce a different approach to exploit the curvature of state-
of-the-art deep classifiers in order to improve their robustness properties. We specifically
introduce a curvature-based regularizer that can resemble the effect of adversarial training
used in [35, 70, 62].
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)

“Nature always tends to act in the simplest way.’

— Daniel Bernoulli

8.1 Introduction

In addition to detect adversarial perturbations based on the curvature of the decision
boundary as studied in the previous chapter, the curvature can be used as a leverage to
improve the adversarial robustness of state-of-the-art deep networks. In this chapter, we
specifically establish a link between adversarial training, as one of the most successful
methods to improve robustness, and the curvature of the loss function and decision
boundaries of the classifier. Our analysis results in a regularization technique that can
significantly improve the robustness of state-of-the-art classifiers.

Adversarial training has recently been shown to be one of the most successful methods for
increasing the robustness to adversarial perturbations of deep neural networks [35, 70, 62].
This approach consists in training the classifier on perturbed samples, with the aim of
achieving higher robustness than a network trained on the original training set. Despite
the importance and popularity of this training mechanism, the effect of adversarial
training on the geometric properties of the classifier — its loss landscape with respect to
the input and decision boundaries — is not well understood. In particular, how do the
decision boundaries and loss landscapes of adversarially trained models compare to the
ones trained on the original dataset?

In this chapter, we analyze such properties and show that one of the main effects of
adversarial training is to induce a significant decrease in the curvature of the loss function
and decision boundaries of the classifier. More than that, we show that such a geometric

Part of this chapter has been published in

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard. Robustness
via curvature regularization, and vice versa. In IEEE Conference on Computer Vision and Pattern
Recognition, 2019.
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implication of adversarial training allows us to explain the high robustness of adversarially
trained models. To support this claim, we follow a synthesis approach, where a new
regularization strategy, Curvature Regularization (CURE), encouraging small curvature is
proposed and shown to achieve robustness levels that are comparable to that of adversarial
training. This highlights the importance of small curvature for improved robustness. In
more detail, our contributions are summarized as follows:

e We empirically show that adversarial training induces a significant decrease in the
curvature of the decision boundary and loss landscape in the input space.

e Using a quadratic approximation of the loss function, we establish upper and lower
bounds on the robustness to adversarial perturbations with respect to the curvature
of the loss. These bounds confirm the existence of a relation between low curvature
and high robustness.

e Inspired by the implications of adversarially trained networks on the curvature of
the loss function and our theoretical bounds, we propose an efficient regularizer
that encourages small curvatures. On standard datasets (CIFAR-10 and SVHN),
we show that the proposed regularizer leads to a significant boost of the robustness
of neural networks, comparable to that of adversarial training.

The latter step shows that the proposed regularizer can be seen as a more efficient
alternative to adversarial training. More importantly, it shows that the effect of adversarial
training on the curvature reduction is not a mere by-product, but rather a driving effect
that causes the robustness to increase. We stress here that the main focus of this chapter
is mainly on the latter — analyzing the geometry of adversarial training — rather than

outperforming adversarial training.

8.2 Geometric analysis of adversarial training

We start our analysis by inspecting the effect of adversarial training on the geometric
properties of the decision boundaries of classifiers. To do so, we first compare qualitatively
the decision boundaries of classifiers with and without adversarial training. Specifically,
we examine the effect of adversarial fine-tuning, which consists in fine-tuning a trained
network with a few extra epochs on adversarial examples.! We consider the CIFAR-10
[48] and SVHN |74] datasets, and use a ResNet-18 [38] architecture. For fine-tuning on
adversarial examples, we use DeepFool [70].

Fig. 8.1 illustrates normal cross-sections of the decision boundaries before and after
adversarial fine-tuning for classifiers trained on CIFAR-10 and SVHN datasets. Specifically,

"While adversarial fine-tuning is distinct from vanilla adversarial training, which consists in training
on adversarial images from scratch, we use an adversarially fine-tuned network in this chapter as it allows
to single out the effect of training on adversarial examples, as opposed to other uncontrolled phenomenon
happening in the course of vanilla adversarial training.
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> =
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(a) Original (CIFAR-10) (b) Finetuned (CIFAR-10)

S

(c) Original (SVHN) (d) Fine-tuned (SVHN)

Figure 8.1 — Random normal cross-sections of the decision boundary for ResNet-18
classifiers trained on CIFAR-10 (first row) and SVHN (second row). The first column is
for classifiers trained on the original dataset, and the second column shows the boundaries
after adversarial fine-tuning on 20 epochs for CIFAR-10 and 10 epochs for SVHN. The
green and red regions represent the correct class and incorrect classes, respectively. The
point at the center shows the datapoint, while the lines represent the different decision
boundaries (note that the red regions can include different incorrect classes).

the classification regions are shown in the plane spanned by (r,v), where r is the normal
to the decision boundary and v corresponds to a random direction.

In addition to inducing a larger distance between the data point and the decision boundary
(hence resulting in a higher robustness), observe that the decision regions of fine-tuned
networks are flatter and more regular. In particular, note that the curvature of the
decision boundaries decreased after fine-tuning.

To quantify this phenomenon, we now compute the curvature profile of the loss function
(with respect to the inputs) before and after adversarial fine-tuning. Formally, let ¢ denote
the function that represents the loss of the network with respect to the inputs; e.g., in the
case of cross-entropy, £(x) = XEnt(fs(x),y), where y is the true label of image x € R?,
and fg(x) denotes the logits.? The curvature profile corresponds to the set of eigenvalues

82€ dxd
i = <aﬂflan> < R

where x;,i = 1,...,d denote the input pixels. We stress on the fact that the above

of the Hessian matrix

2We omit the label y from ¢ for simplicity, as the label can be understood from the context.
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Hessian is with respect to the inputs, and not the weights of the network. To compute
these eigenvalues in practice, we note that Hessian vector products are given by the
following for any z;

Vi(x + hz) — Vi(x)

Hz = . for h — 0. (8.1)

We then proceed to a finite difference approximation by choosing a finite h in Eq. (8.1).
Besides being more efficient than generating the full Hessian matrix (which would be
prohibitive for high-dimensional datasets), the finite difference approach has the benefit of
measuring larger-scale variations of the gradient (where the scale is set using the parameter
h) in the neighborhood of the datapoint, rather than an infinitesimal point-wise curvature.
This is crucial in the setting of adversarial classification, where we analyze the loss function
in a small neighbourhood of data points, rather than the asymptotic regime h — 0 which
might capture very local (and not relevant) variations of the function.?

Intuitively, small eigenvalues (in absolute value) of H indicate a small curvature of the
graph of £ around x, hence implying that the classifier has a “locally linear” behaviour in
the vicinity of z. In contrast, large eigenvalues (in absolute value) imply a high curvature
of the loss function in the neighbourhood of image z. For example, in the case where the
eigenvalues are exactly zero, the function becomes locally linear, hence leading to a flat
decision surface.

Eigenvalue profile Eigenvalue profile
M Original M Adversarial M Original M Adversarial
4 15
3 1.0
2
0.5
1
0 0.0 sl
-1
-0.5
-2
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
(a) CIFAR-10 (b) SVHN

Figure 8.2 — Curvature profiles, which correspond to sorted eigenvalues of the Hessian,
of the original and the adversarially fine-tuned networks. Note that the number of
eigenvalues is equal to 32 x 32 x 3 = 3072, which corresponds to the number of input
dimensions. The ResNet-18 architecture is used.

We compute the curvature profile at 100 random test samples, and show the average
curvature in Fig. 8.2 for CIFAR-10 and SVHN datasets. Note that adversarial fine-tuning

3For example, using ReLU non-linearities result in a piecewise linear neural network as a function of
the inputs. This implies that the Hessian computed at the logits is exactly 0. This result is however very
local; using the finite-difference approximation, we focus on larger-scale neighbourhoods.
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(a) Original (b) Fine-tuned  (c) Original (d) Fine-tuned
(CIFAR-10) (CIFAR-10) (SVHN) (SVHN)

Figure 8.3 — Illustration of the negative of the loss function; i.e., —¢(s) for points s
belonging to a plane spanned by a normal direction r to the decision boundary, and
random direction v. The original sample is illustrated with a blue dot. The light blue
part of the surface corresponds to low loss (i.e., corresponding to the classification region
of the sample), and the red part corresponds to the high loss (i.e., adversarial region).

FGSM (.-DF PGD(7) PGD(20)

Original 38.0% 11.0% 0.5% 0.2%
Fine-tuned 61.0% 57.5%  57.2% 56.9%

Table 8.1 — Adversarial accuracies for original and fine-tuned network on CIFAR-10,
where adversarial examples are computed with different attacks; FGSM [35], DF [70] and
PGD [62|. Perturbations are constrained to have ¢, norm smaller than € = 4 (images
have pixel values in [0, 255]).

has led to a strong decrease in the curvature of the loss in the neighborhood of data
points. To further illustrate qualitatively this significant decrease in curvature due to
adversarial training, Fig. 8.3 shows the loss surface before and after adversarial training
along normal and random directions r and v. Observe that while the original network

has large curvature in certain directions, the effect of adversarial training is to “regularize’
the surface, resulting in a smoother, lower curvature (i.e., linear-like) loss.

We finally note that this effect of adversarial training on the loss surface has the following
somewhat paradoxical implication: while adversarially trained models are more robust
to adversarial perturbations (compared to original networks), they are also easier to
fool, in the sense that simple attacks are as effective as complex ones. This is in stark
contrast with original networks, where complex networks involving many gradient steps
(e.g., PGD(20)) are much more effective than simple methods (e.g., FGSM). See Table 8.1.
The comparatively small gap between the adversarial accuracies for different attacks
on adversarially trained models is a direct consequence of the significant decrease of
the curvature of the loss, thereby requiring a small number of gradient steps to find
adversarial perturbations.
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8.3 Analysis of the influence of curvature on robustness

While our results show that adversarial training leads to a decrease in the curvature of the
loss, the relation between adversarial robustness and curvature of the loss remains unclear.
To elucidate this relation, we consider a simple binary classification setting between class
1 and —1. Recall that £(-,1) denotes the function that represents the loss of the network
with respect to an input from class 1. For example, in the setting where the log-loss
is considered, we have ¢(x,1) = —log(p(z)), where p(z) denotes the output of softmax
corresponding to class 1. In that setting, = is classified as class 1 iff £(x, 1) <log(2). For
simplicity, we assume in our analysis that z belongs to class 1 without loss of generality,
and hence omit the second argument in ¢ in the rest of this section. We assume that
the function ¢ can be locally well approximated using a quadratic function; that is, for
“sufficiently small” r, we can write:

1
Uz +7) =~ l(x) + Vi(x)Tr + irTHr,

where V/(x) and H denote respectively the gradient and Hessian of ¢ at x. Let z be a
point classified as class 1; i.e., £(x) < t, where ¢ denotes the loss threshold (e.g., t = log(2)
for the log loss). For this datapoint x, we then define r* to be the minimal perturbation
in the ¢, sense*, which fools the classifier assuming the quadratic approximation holds;
that is,

1
r* = argmin ||r|| s.t. £(z) 4+ Ve(z)Tr + §TTH7“ > 1.
T

In the following result, we provide upper and lower bounds on the magnitude of r* with
respect to properties of the loss function at x.

Theorem 5. Let x be such that ¢ :=t —{(z) > 0, and let g = Vl(x). Assume that
V= Amax(H) >0, and let u be the eigenvector corresponding to v. Then, we have

2
M( 14+ X< —1) <7 (8.2)

v g1l

The above bounds can further be simplified to:

2

C C C
2w < ) < e (8.4)
l9IP g7l

lgll

4We use the ¢ norm for simplicity. Using the equivalence of norms in finite dimensional spaces, our
result allows us to also bound the magnitude of ¢, adversarial perturbations.
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Value of bounds
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Figure 8.4 — Illustration of upper and lower bounds in Eq. (8.2) and (8.3) on the robustness
with respect to curvature v. We have set ||V/(z)|| = 1,¢ = 1,V{(z)Tv = 0.5 in this
example.

Proof. Lower bound. Let a := ||r*||. We note that « satisfies
vV 9 T % 1 *\T *
—c—|—||g||a—|—§oz >—c+g'r +§(r) Hr* > 0.

Solving the above second-order inequality, we get a > H%” (, /1+ ”29% — 1) or a <
— lgll (, /1+ |\2gV||62 + 1> . However, since a > 0, the first inequality holds, which precisely

v

corresponds to the lower bound.

Upper bound. Let o > 0. Define r := au, and let us find the minimal || such that

1 2
—c+gTr+§rTH7‘: —c—l—agTu—i—% > 0.

We note that the above inequality holds for any |a| > |amin|, with

lgTul 2ve
‘Oémin| = > 1+ (gTu)2 —11.

Hence, we have that ||7*|| < |aunin|, which concludes the proof of the upper bound. The
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Figure 8.5 — Geometric illustration in 1d of the effect of curvature on the adversarial
robustness. Different loss functions (with varying curvatures) are illustrated at the vicinity
of data point zg, and xfﬁv indicate the points at which such losses exceed t (where ¢ is
the misclassification threshold). All curves have the same loss and gradient at z. Note
(4)

)-

that increasing curvature leads to smaller adversarial examples (i.e., smaller |z — x4,

simplified bounds are proven using the inequality 1+ 3 — % <Vvlitz<1+3. O

Remark 1. Increasing robustness with decreasing curvature. Note that upper
and lower bounds on the robustness in Eq. (8.2), (8.3) decrease with increasing curvature
v. To see this, Fig. 8.4 illustrates the dependence of the bounds on the curvature v. In
other words, under the second order approximation, this shows that small curvature (i.e.,
small eigenvalues of the Hessian) is beneficial to obtain classifiers with higher robustness
(when the other parameters are kept fixed). This is in line with our observations from
Section 8.2, where robust models are observed to have a smaller curvature than networks
trained on original data. Fig. 8.5 provides intuition to the decreasing robustness with
increasing curvature in a one-dimensional example.

Remark 2. Dependence on the gradient. In addition to the dependence on the
curvature v, note that the upper and lower bounds depend on the gradient V{(z). In
particular, these bounds decrease with the norm ||V£(z)|| (for a fixed direction). Hence,
under the second order approximation, this suggests that the robustness decreases with
larger gradients. However, as previously noted in [92, 2|, imposing small gradients might
provide a false sense of robustness. That is, while having small gradients can make it hard
for gradient-based methods to attack the network, the network can still be intrinsically
vulnerable to small perturbations.

Remark 3. Bound tightness. Note that the upper and lower bounds match (and
hence bounds are exact) when the gradient V() is collinear to the largest eigenvector u.

Interestingly, this condition seems to be approximately satisfied in practice, as the average
T
normalized inner product % for CIFAR-10 is equal to 0.43 before adversarial fine-

tuning, and 0.90 after fine-tuning (average over 1000 test points). This inner product is
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significantly larger than the inner product between two typical vectors uniformly sampled
from the sphere, which is approximately ﬁ ~ 0.02. Hence, the gradient aligns well
with the direction of largest curvature of the loss function in practice, which leads to
approximately tight bounds.

8.4 Improving robustness through curvature regularization

While adversarial training leads to a regularity of the loss in the vicinity of data points, it
remains unclear whether this regularity is the main effect of adversarial training, which
confers robustness to the network, or it is rather a byproduct of a more sophisticated
phenomenon. To answer this question, we follow here a synthesis approach, where we
derive a regularizer which mimics the effect of adversarial training on the loss function —
encouraging small curvatures.

Recall that H denotes the Hessian of the loss £ at datapoint . We denote by A1,..., A\g
the eigenvalues of H. Our aim is to penalize large eigenvalues of H; we therefore consider
a regularizer L, = ), p()\;), where p is a non-negative function, which we set to be
p(t) = t? to encourage all eigenvalues to be small. For this choice of p, L, corresponds to
the Frobenius norm of the matrix H. We further note that

Ly =Y p(\) = trace(p(H)) = E(="p(H)2) = E| H=|?, (8.5)

where the expectation is taken over z ~ N(0, I;). By using a finite difference approxi-

mation of the Hessian, we have Hz =~ w, where h denotes the discretization
step, and controls the scale on which we require the variation of the gradients to be small.

Hence, L, becomes
1
Ly = 5B ||V + hz) - Vi) (8.6)

The above regularizer involves computing an expectation over z ~ N (0, I1), and penalizes
large curvatures along all directions equally. Rather than approximating the above with an
empirical expectation of || Hz||? over isotropic directions drawn from N(0, I), we instead
select directions which are known to lead to high curvature (e.g., due to observation made
in Chapter 7 and [43]), and minimize the curvature along such chosen directions. The
latter approach is more efficient, as the computation of each matrix-vector product Hz
involves one backward pass; focusing on high-curvature directions is therefore essential to
minimize the overall curvature without having to go through each single direction in the
input space. This selective approach is all the more adapted to the very sparse nature of
curvature profiles we see in practice (see Fig. 8.2), where only a few eigenvalues are large.
This provides further motivation for identifying large curvature directions and penalizing
the curvature along such directions.
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In Chapter 7, gradient directions have been identified as high curvature directions. In
addition, empirical evidence reported in Section 8.3 (Remark 3) shows a large inner
product between the eigenvector corresponding to maximum eigenvalue and the gradient
direction; this provides further indication that the gradient is pointing in high curvature

directions, and is therefore a suitable candidate for z. We set in practice z = M,
[[sign(VE(2))]l
and finally consider the regualizer °
L, = ||Vl(z + hz) — V(z)|]?, (8.7)

where the % is absorbed by the regularization parameter. Our fine-tuning procedure
then corresponds to minimizing the regularized loss function ¢ + L, with respect to the
weight parameters, where v controls the weight of the regularization relative to the loss
term.

We stress that the proposed regularization approach significantly departs from adversarial
training. In particular, while adversarial training consists in minimizing the loss on
perturbed points (which involves solving an optimization problem), our approach here
consists in imposing regularity of the gradients on a sufficiently small scale (i.e., determined
by h). Previous works [62] have shown that adversarial training using a weak attack (such
as FGSM |[35], which involves a single gradient step) does not improve the robustness. We
show that our approach, which rather imposes gradient regularity (i.e., small curvature)
along such directions, does lead to a significant improvement in the robustness of the
network.

We use two pre-trained networks, ResNet-18 [38] and WResNet-28x10 [99], on the CIFAR-
10 and SVHN datasets, where the pixel values are in [0, 255]. For the optimization of the
regularized objective, we use the Adam optimizer with a decreasing learning rate between
[10~%, 1079] for a duration of 20 epochs starting from a pre-trained network. We linearly
increase the value of A from 0 to 1.5 during the first 5 epochs, and from there on, we
use a fixed value of h = 1.5. For ~, we set it to 4 and 8 for ResNet-18 and WResNet-28
respectively.

8.5 Experimental evaluations of CURE

We evaluate the regularized networks with a strong PGD attack of 20 iterations, as it
has been shown to outperform other adversarial attack algorithms [62]. The adversarial
accuracies of the regularized networks are reported in Table 8.2 for CIFAR-10, and in
Table 8.3 for SVHN. Moreover, the adversarial accuracy as a function of the perturbation
magnitude e is reported in Fig. 8.6.

5The choice of z o« V£(z) leads to almost identical results. We have chosen to set z o sign(V£(z)), as
we are testing the robustness of the classifier to /- perturbations. Hence, setting z be the sign of the
gradient is more relevant, as it constrains the z direction to belong to the hypercube of interest.
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Adversarial accuracy
M ResNet-18 Il WResNet-28x10
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Figure 8.6 — Adversarial accuracy versus perturbation magnitude e computed using
PGD(20), for ResNet-18 and WResNet-28x10 trained with CURE on CIFAR-10. See [62]
for the curve corresponding to adversarial training. Curve generated for 2000 random
test points.

Table 8.2 — Adversarial and clean accuracy for CIFAR-10 for original, regularized and
adversarially trained models. Performance is reported for ResNet and WideResNet models,
and the perturbations are computed using PGD(20). Perturbations are constrained to
have fo, norm less than € = 8 (where pixel values are in [0, 255]).

ResNet-18 WideResNet-28 x 10

Clean Adversarial Clean Adversarial
Normal training 94.9% 0.0% 94.6% 0.0%
CURE 81.2% 36.3% 83.1% 41.4%
Adversarial training [62] 79.4% 43.7% 87.3% 45.8%

Table 8.3 — Adversarial and clean accuracy for SVHN for original, regularized and
adversarially trained models. Performance is reported for a ResNet-18 model, and the
perturbations are computed using PGD(10) with € = 12.

ResNet-18

Clean Adversarial

Normal training 96.3% 0.9%
CURE 91.1% 28.4%
Adversarial training (reported in [9])  93% 33%
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Observe that, while networks trained on the original dataset are not robust to perturbations
as expected, performing 20 epochs of fine-tuning with the proposed regularizer leads to
a significant boost in adversarial performance. In particular, the performance with the
proposed regularizer is comparable to that of adversarial training reported in [62]. This
result hence shows the importance of the curvature decrease phenomenon described in

this chapter in explaining the success of adversarial training.

In addition to verifying our claim that small curvature confers robustness to the network
(and that it is the underlying effect in adversarial training), we note that the proposed
regularizer has practical value, as it is efficient to compute and can therefore be used as an
alternative to adversarial training. In fact, the proposed regularizer requires 2 backward
passes to compute, and is used in fine-tuning for 20 epochs. In contrast, one needs to run
adversarial training against a strong adversary in order to reach good robustness [62], and
start the adversarial training procedure from scratch. We note that strong adversaries
generally require around 10 backward passes, making the proposed regularization scheme
a more efficient alternative. We note however that the obtained results are slightly worse
than adversarial training; we hypothesize that this might be either due to higher order
effects in adversarial training not captured with our second order analysis or potentially
due to a sub-optimal choice of hyper-parameters v and h.

8.5.1 Stronger attacks and verifying the absence of gradient masking

To provide further evidence on the robustness of the network fine-tuned with CURE, we
attempt to find perturbations for the network with more complex attack algorithms. For
the WideResNet-28x10, we obtain an addversarial accuracy of 41.1% on the test set when
using PGD(40) and PGD(100). This is only slightly worse than the result reported in
Table 8.2 with PGD(20). This shows that increasing the complexity of the attack does
not lead to a significant decrease in the adversarial accuracy. Moreover, we evaluate the
model against a gradient-free optimization method (SPSA), similar to the methodology
used in [92], and obtained an adversarial accuracy of 44.5%. We compare moreover in
Fig. 8.7 the adversarial loss (which represents the difference between the logit scores
of the true and adversarial class) computed using SPSA and PGD for a batch of test
data points. Observe that both methods lead to comparable adversarial loss (except on a
few data points), hence further justifying that CURE truly improves the robustness, as
opposed to masking or obfuscating gradients. Hence, just like adversarial training which
was shown empirically to lead to networks that are robust to all tested attacks in [92, 2,
our experiments show that the regularized network has similar robustness properties.

8.5.2 Curvature and robustness

We now analyze the network obtained using CURE fine-tuning, and show that the obtained
network has similar geometric properties to the adversarially trained one. Fig. 8.8 shows
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SPSA vs PGD comparison

o N A~ O

Adv. loss using SPSA

-6 -4 -2 0 2 4 6
Adv. loss using PGD

Figure 8.7 — Analysis of gradient masking in a network trained with CURE. Adversarial
loss computed with SPSA (y-axis) vs. adversarial loss with PGD(100) (x-axis) on a
batch of 1000 datapoints. Adversarial loss corresponds to the difference of logits on
true and adversarial class. Each point in the scatter plot corresponds to a single test
sample. Negative loss indicates that the data point is misclassified. Points close to
the line y = z indicate that both attacks identified similar adversarial perturbations.
Points below the line, shown in red, indicate points for which SPSA identified stronger
adversarial perturbation than PGD. Note that overall, SPSA and PGD identified similarly
perturbations.

. @

r r

(a) ResNet-18  (b) WideResNet-28

Figure 8.8 — Similar plot to Fig. 8.3, but where the loss surfaces of the network obtained
with CURE are shown.
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the loss surface in a plane spanned by (r,v), where r and v denote respectively a normal
to the decision boundary and a random direction. Note that the loss surface obtained
with CURE is qualitatively very similar to the one obtained with adversarial training
(Fig. 8.3), whereby the loss has a more linear behavior in the vicinity of the data point.
Quantitatively, Fig. 8.9 compares the curvature profiles for the networks trained with
CURE and adversarial fine-tuning. Observe that both profiles are very similar.

Eigenvalue profile
B Adversarial training [l CURE M Original

0.06
0.04

0.02

-0.02

-0.04
0 500 1000 1500 2000 2500 3000

Figure 8.9 — Curvature profile for a network fine-tuned using adversarial training and
CURE. The ResNet-18 architecture on CIFAR-10 is used. For comparison, we also report
the profile for the original network (same as Fig. 8.2), where we clipped the values to fit
in the y range.

We also report the evolution of the adversarial accuracy and curvature quantities in
Fig. 8.10 during fine-tuning with CURE. Note that throughout the fine-tuning process,
the curvature decreases while the adversarial accuracy increases, which further shows the
link between robustness and curvature. Note also that, while we explicitly regularized
for ||[Hz|| (where z is a fixed direction for each data point) as a proxy for |H| r, the
network does show that the intended target |H || decreases in the course of training,
hence further suggesting that | Hz|| acts as an efficient proxy of the global curvature.

8.5.3 Qualitative evaluation of adversarial perturbations

We finally illustrate some adversarial examples in Fig. 8.11 for networks trained on SVHN.
Observe that the network trained with CURE exhibits visually meaningful adversarial
examples, as perturbed images do resemble images from the adversary class. A similar
observation for adversarially trained models has been made in [91].
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5]l [ Hz|l2 Adversarial accuracy
0.6
70 0.35
6.0 0.5 0.3
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Figure 8.10 — Evolution throughout the course of CURE fine-tuning for a ResNet-18
on CIFAR-10. The curves are averaged over 1000 datapoints. Left: estimate of
Frobenius norm , Middle: | Hz||, where z = sign(V4(x))/||sign(V4(x))||2 and Right:
adversarial accuracy computed using PGD(20). The Frobenius norm is estimated with
|H||% = E.ono,nllHz|?, where the expectation is approximated with an empirical
expectation over 100 samples z; ~ N (0, I).

Original image

CURE

Normal training

Figure 8.11 — Visualizations of perturbed images and perturbations on SVHN for the
ResNet-18 classifier. Note that the perturbed images corresponding to CURE are more
visually meaningful.

8.6 Conclusion

Guided by the analysis of the local geometry of deep networks introduced in the previous
chapters, we have provided empirical and theoretical evidence showing the existence of
a strong correlation between small curvature and robustness. To validate our analysis,
we proposed a new regularizer (CURE), which directly encourages small curvatures (in
other words, promotes local linearity). This regularizer is shown to significantly improve
the robustness of deep networks and even achieve performance that is comparable to
adversarial training. In light of prior works attributing the vulnerability of classifiers
to the “linearity of deep networks”, this result is somewhat surprising, as it shows that
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one needs to decrease the curvature (and not increase it) to improve the robustness.
In addition to validating the importance of controlling the curvature for improving the
robustness, the proposed regularizer also provides an efficient alternative to adversarial

training.
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Conclusion

9.1 Summary

In this thesis, we provided new powerful algorithmic tools to measure the robustness
properties of deep image classifiers. We have further used these tools to identify important
geometric properties of the decision boundary of deep classifiers and to explain their
vulnerability to adversarial perturbations. Our unique geometric analysis was also
employed to highlight some of the key elements of the robustness of deep networks. Our
analysis was further shown to be effective in building more robust image classifiers.

We first studied methods to quantify the robustness of classifiers to additive adversarial
perturbations. Although the computation of such perturbations for state-of-the-art
deep image classifiers requires solving a high-dimensional and non-convex optimization
problem, we showed through extensive experimental evaluations that this problem can
be addressed in a fast yet efficient way using our DeepFool algorithm. It efficiently
computes the minimal #5-norm adversarial perturbations for deep neural networks, and
can thus reliably quantify the robustness of such image classifiers. Furthermore, DeepFool
provides a general framework to design scalable algorithms to study the robustness
properties of classifiers to structured adversarial perturbations. Next, we showed that
the vulnerability of deep networks to adversarial manipulations is not limited to image-
dependent perturbations. Indeed, there exist universal perturbations, which are very
small image-agnostic perturbation vectors that cause natural images to be misclassified
with high probability. We proposed a simple algorithm for computing these perturbations,
and showed that state-of-the-art deep neural networks are highly vulnerable to such
perturbations, even if those are quasi-imperceptible to the human eye. The existence of
universal perturbations implies serious concerns regarding deploying image classifiers in
hostile environments.

Then, we moved to explain the vulnerability of deep image classifiers to adversarial and
universal perturbations through novel empirical and theoretical analyses of the geometry
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of these classifiers. Despite the fact that natural image classifiers are acting on high-
dimensional data, our analysis, facilitated by our powerful algorithmic tools, could quantify
some of the key geometric aspects contributing to the high vulnerability of these classifiers
to adversarial and universal perturbations. Specifically, we established theoretical bounds
on the robustness of classifiers to adversarial perturbations which depend on the curvature
of the classifier’s decision boundary. We particularly showed that having “almost flat”
decision boundaries can partially explain the adversarial instability of classifiers. We
further showed that the high curvature of the decision boundary of classifiers along a few
shared directions well explains the existence of universal perturbations for deep image
classifiers. Such understanding can potentially help us design geometric regularizers to
improve the robustness of classifiers to universal perturbations.

We then presented an application of our algorithmic tools to study the topological
properties of the decision regions of image classifiers. In particular, we proposed a simple
yet effective method to study the path-connectedness of classification regions created by
deep neural networks. Through a systematic empirical study, we showed that state-of-the-
art deep networks surprisingly learn connected classification regions. Such observation

questions our understanding of the expressive power of deep networks.

We finally demonstrated how to exploit curvature information to mitigate the adver-
sarial vulnerability of deep neural networks. We specifically showed how to leverage
a fundamental asymmetry property in the curvature of the decision boundary of deep
networks in order to detect images perturbed with minimal adversarial perturbations. We
showed the effectiveness of this purely geometric approach for detecting small adversarial
perturbations in images, and for recovering the labels of perturbed images.

Moreover, we provided a novel geometric characterization of the effect of adversarial
training on the robustness of state-of-the-art classifiers. We showed in particular that
adversarial training leads to a significant decrease in the curvature of the loss surface
with respect to inputs, leading to a drastically more "linear" behaviour of the network.
To further show the importance of reduced curvature for improving the robustness, we
proposed an efficient regularization, CURE, that directly minimises curvature of the loss
surface, and leads to adversarial robustness that is on par with adversarial training. Our
method seems to be a promising approach for building inherently more robust classifiers.

9.2 Future directions

To better evaluate the risk associated to the deployment of state-of-the-art classifiers
in real-world environments, it is crucial to assess their robustness properties beyond
mere additive perturbations. While our proposed algorithms efficiently compute additive
adversarial perturbations for state-of-the-art deep neural networks, designing a general
framework to efficiently assess the robustness to more realistic adversarial manipulations
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of data remains challenging. However, it would be possible to use the geometric properties
of deep networks as prior information to design efficient evaluation methods for non-
additive and black-box adversarial manipulations. The robustness to such adversarial
manipulations are highly desired in safety-critical applications of image classifiers in
real-world settings such as autonomous driving.

While we have identified some of the important geometric properties of the decision
boundary of deep networks, it is equally important to understand how different factors
involved in the process of training these networks — such as their architecture, optimizer,
loss function, etc. — affect the geometry of the decision boundary. Some of the observation
related to the geometric properties of deep neural networks, such as path-connectedness
and flatness of the decision boundary, are intriguingly similar to the observations made
for the optimization landscape of these networks (see e.g., [34, 15]). Though some recent
works (e.g., |98]) have established links between the robustness properties and the Hessian
(curvature information) of the optimization landscape of deep networks, the full extent of
the relation between the geometric properties of the input space and the optimization
landscape of these classifiers is to be explored. Furthermore, the surprising resemblance
of the geometric properties of deep neural networks to linear classifiers, such as flatness
of the decision boundary and connectedness of the decision regions, begs for a deeper
understanding of the expressive power of such non-linear functions in terms of their
geometry, and the fundamental aspects in which they are different from linear classifiers.

One of the ultimate goals of the analysis of the adversarial robustness is to build more
robust classifiers and eventually more robust autonomous agents. While adversarial
training has been shown to be one of the most successful methods to improve the
adversarial robustness of deep networks, we lack a thorough understanding of the key
factors behind its surprising effectiveness. Though our geometric analysis of adversarial
training has led to an effective regularizer, more computationally efficient methods are
needed in order to develop practical algorithms that improve the adversarial robustness in
very high-dimensional classification tasks (e.g., ImageNet). Furthermore, on the theoretical
side, despite the recent efforts to explain the potential trade-off between the adversarial
robustness and the generalization performance of deep networks (e.g., [43, 91]), the
question whether adversarial training achieves the best trade-off has remained unsolved.
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N A ppendix of Chapter 5

A.1 Proof of Theorem 1 (affine classifiers)

Lemma 1 ([20]). Let Y be a point chosen uniformly at random from the surface of
the d-dimensional sphere S*=1. Let the vector Z be the projection of Y onto its first m
coordinates, with m < d. Then,

1. If 8 < 1, then

P (||Z||% < 5;”) < g (1 n m)(dm)/Z <ep (D1 -p+mp).
(A1)

2. If B> 1, then

P12 ) <57 (14 m>(d_m)/2 <o (2 (1- 8+ 1mB)).
(A.2)

Lemma 2. Let v be a random vector uniformly drawn from the unit sphere S*~1, and
P, be the projection matriz onto the first m coordinates. Then,

m m
P (B1(8,m) % < 1Pl < Ba(6,m) 7 ) =125, (A.3)
with B1(8,m) = max((1/e)6%™,1—+/2(1 — 62/™m), and B (6, m) = 142 %%—w

Proof. Note first that the upper bound of Lemma 1 can be bounded as follows:

L B [d=m)/2 -
6m/2 (1 + ( y _Bn)lm> < IBm/Q exp <( 26)771) 7 (A4>
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using 1 + =z < exp(xz). We find § such that ™2 exp (%) < 4, or equivalently,

Bexp(l—p) < 62/™ Tt is easy to see that when § = %52/""”, the inequality holds. Note
however that %52/ ™ does not converge to 1 as m — oco. We therefore need to derive a
tighter bound for this regime. Using the inequality Sexp(l — ) <1 — %(1 — )2 for 0 <
B < 1, it follows that the inequality §exp(1l — ) < 82/ holds for B =1 — 1/2(1 — §2/m).
In this case, we have 1 — 1/2(1 — §2/™) — 1, as m — co. We take our lower bound to be
the max of both derived bounds (the latter is more appropriate for large m, whereas the
former is tighter for small m).

For B, note that the requirement Sexp(1 — ) < 62/ is equivalent to —In(3) + (8 —
1) > % In(1/0). By setting 8 = [2(d,m), this condition is equivalent to 2 In(1/9)

In(B2(d,m)) > 0, or equivalently, 2z — In(1 + 2z + 222) > 0, with z = 4/ % The
function z + 2z — In(1 + 2z + 222) > 0 is positive on RT. Hence, B2(d,m) satisfies
Bexp(l — B) < 6%™, which concludes the proof. O

We now prove our main theorem that we recall as follows:

Theorem 1. Let S be a random m-dimensional subspace of R®. The following inequalities

hold between the norms of semi-random perturbation rs and the worst-case perturbation

r*. Let (1(m,0) = m; and C2(m, §) = m

d d
8= |l* 2 - *112 < 8 — l* 2 A.
Cu(m, 0)—|r*llz < lIrsllz < Ga(m, ) —r™l2, (A.5)
with probability exceeding 1 — 2(L + 1)4.

Proof. For the linear case, 7* and 75 can be computed in closed form. We recall that, for
any subspace S, we have

Je(@0) = fi () (0)
2 (Pka‘ - Pswff(wo))v (A6)

[Pswi — Pswy, [l3

’,k
‘
0

where r"§ was defined in Eq. (5.8) in the main paper. In particular, when S = R?, we

have

o @) — fiay (@)

T
lwk — w0 13

('wk — w’;(mo))' (A?)

Let k # l%(aco). Define, for the sake of readability

i

15 = [ 1e@0) = fiay @0)

k — — -~
2" = wp — Wi
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Note that
"3 [Ps2z"l3
k2 k|2 (A.8)
Irsll3 (B

The projection of a fixed vector in S¢~! onto a random m dimensional subspace is
equivalent (up to a unitary transformation U) to the projection of a random vector
uniformly sampled from S?! into a fixed subspace. Let P,, be the projection onto the
first m coordinates. We have

IPs2"]3 = [UTP, U3 = [PrnUZ" 2, (A.9)

Hence, we have

[Psz"|3

= Py, (4.10)
EI A

where y is a random vector distributed uniformly in the unit sphere S*~!. We apply
Lemma 2, and obtain

m m
B (B1(m,8)% < [Puyl < Bo(m,0) %) = 1 - 25 (A11)
Hence,
1 d _ |lrk3 1 d}
P ——MmM— < < — > >1—26. A.12
{52<m,6>m— I+ = Ba(m, o) m | = (4.12)

Using the multi-class extension in Lemma 3, we conclude that

< @(m,a)i} > 1 - 9(L+1)6. (A.13)

Lemma 3 (Binary case to multiclass). Assume that, for all k € {1,..., L]}\{k(zo)}

k
p (z < lIrsllz u> >1-6. (A.14)
7|2

Then, we have

P (z < ‘,',TfH? < u> >1—(L+1)d. (A.15)
|2

. * D
Proof. Let p := argmin; ||7'||]2. Note that we have P (HTSHQ > u> <P (% > u) <.
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Moreover, we use a union bound to bound the the other bad event probability:

P <”r:§H2 < l> <P U{'T‘EHQ < z} < L6, (A.16)
[ AV

(A.17)
We conclude by using the fact that
(e lrsls L) o p (Il ) g (Il ) e
]2 ]2 ]2
O

A.2 Proof of Theorem 2 and Corollary 1 (nonlinear classi-
fiers)

First, we present an important geometric lemma and then use it to bound ||r%|[2. For the

sake of the general readability of the section, some auxiliary results are given in Section
A.2.

In the following result, we show that, when the curvature of a planar curve is constant
and sufficiently small, the distance between a point @ and the curve at a specific direction
6 is well approximated by the distance between @ and a straight line (see Fig. A.1 for an
illustration).

Lemma 4. Let v be a planar curve of constant curvature x. We denote by r the distance
between a point x and the curve . Denote moreover by T the tangent to v at the closest
point to x (see Fig. A.1). Let 0 be the angle between u and v as depicted in Fig. A.1.
We assume that rk < 1. We have

[y —xlla

—Cyretan?(0) <
[[e]l2

1 (A.19)

Moreover, if

0.2
tan?(9) < —,
TR

then, the following upper bound holds

| — (|

— 1 < Cyrrtan®(h). (A.20)
[[e]l2

We can set Ch = 0.625 and Cy = 2.25.

Proof of upper bound. We consider two distinct cases for the curve «. In the case where
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Figure A.1 — Bounding ||z, — ||z in terms of &.

7y is concave-shaped (Fig. A.1, right figure), we have

and the upper bound in Eq. (A.20) directly holds. We therefore focus on the case where
7y is convex-shaped as illustrated in the left figure of Fig. A.1. Define R := 1/x, one can
write using simple geometric inspection

R? = sin(0)r" + (R + r — 1’ cos(0))?, (A.21)

where 7’ = ||@, — x||2. The discriminant of the second order equation (with variable )
is equal to

A=4((R+7r)?cos’(0) — (2rR +1r?)).

We have A > 0 as 6 satisfies the two assumptions tan?() < 0.2R/r and r/R < 1. The
smallest solution of this second order equation is given as follows

" = (R4 7)cos(d) — /(R +r)2cos2(6) — 2Rr — r2. (A.22)

Using some simple algebraic manipulations, we obtain

! " R R 2Rr + 1?2
= cos(0) <<? + 1) cos?(6) — - cos2(0)\/l — taﬂ(@)T) . (A.23)

Using the inequality in Lemma 7 together with the two assumptions, we get

< r 2Rr—|—7’2>

cos(0) <cosQ(9) + g cos®(f) tan? () < 5]

2t 2\ 2 (A.24)
cos?(6) tan*() <%> )

Rl R=~

_l’_
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With simple trigonometric identities, the above expression can be simplified to

rs COST(H) <1 +3 <Sin;(0) + (S;i;((?) (1+ 27;3)2)) : (A.25)

We expand this quantity, and obtain

; (1+<Sm2(9) sin4(9)) r o, sin?(0) r? | sin}(0) 7“3>_ (A.26)

/
< _ Z Z
"= cos(6) 2 cos?(f) ) R " cos?(6) R? * 4 cos?(0) R3

Since sin?(#) tan?(#) = tan?(6) — sin?(f), we have

2 3
’ T 2 T T T

< Lrtan20) (2 + 2+ ). A2
T_cos(9)<+an()(R+R2+4R3>) (A.27)

According to the assumptions r/R < 1, therefore

! r 2 r
< 1+225¢ 0)— ). A2
"= cos(6) ( +2.25 tan'( )R) (A.28)
Since r/ cos(0) = ||ul|2, one can finally conclude on the upper bound
Iy =2la 3 5 95 tan?(a). (A.29)
[[e]l2
O

Proof of lower bound. When the curve is convex shaped (Fig. A.1 left), we have ||z, —
x||2 > ||ul|2, and the desired lower bound holds. We focus therefore on the case where
~ has a concave shape, and coincides with with v (see Fig. A.1 right). The following
equation holds using simple geometric arguments

R? = sin(0)r"* + (R — r + 1’ cos(0))%. (A.30)

where 1’ = ||xy — x||2. Solving this second order equation gives

' = —(R—r)cos(f) + /(R —r)2cos2(0) — r2 + 2Rr. (A.31)

After some algebraic manipulations, we get

— R R 2Rr —1r?
r= m (— (T — 1) 0052(9) + - COS2(9)\/1 + tan2(9)RQ) . (A.32)
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Using the inequality in Lemma 8, together with the fact that r« < 1, we obtain

r' >

r r—r?
cos(0) <COSQ(9) + %COSQ(G) tan?(6) <2RQR2>

B ECOS2(9) tan*(0) [2Rr —r? 2
r 2 2R? '

(A.33)

Using simple trigonometric identities, the above expression is simplified to

2 (1 (2 e () aa

When expanding it, we obtain

, T sin?(9)  sin*(9) \ r sin*() 72 sint(9) »3
= cos(6) (1 B ( > 20082(9)> R * 2cos?(0) R2  8cos?(0) R3> - (A35)

Since sin?(6) tan?(f) = tan?(f) — sin?(0), we have

> Cosr(e) (1 — tan®(0) <2; + ;;,))) : (A.36)

Using again the assumption r/R < 1, we obtain

' r 20\ "
> 1 —0.625tan”(0)— ) . A.
r_COS(0)< 065an()R) (A.37)
Since 7/ cos(f) = ||ul|2, one can rewrite it as
ey = llz _ > —0.6257+ tan®(), (A.38)
[[ee]l2
which completes the proof. O

We now use the previous lemma to bound the semi-random robustness of the classifier, i.e.
|7%||2, to the worst-case robustness ||7*||2 in the case where the curvature is sufficiently
small.

Theorem 2. Let S be a random m-dimensional subspace of R%. Define o := \/m/d, and

let k = K(ABy). Assuming that k < m, the following inequalities hold between

||"°§H2 and the worst-case perturbation Hrk||2

Gi(m.8) [ _ Cullrtllara(m,6)\* _ kI3 _ Ga(m,8) (| Collr*onca(m, 8)\®
1= < < +
o? o? I3 = o o

(A.39)
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Zo

Figure A.2 — Left: To prove the upper bound, we consider a ball B included in Ry that
intersects with the boundary at z*. Upper bounds on ||7%||2 derived when the boundary
is OB are also valid upper bounds for the real boundary %). Right: Normal section to
the decision boundary %), = 0B along the normal plane U = span (rg, rk). We denote
by ~ the normal section of boundary %y, along the plane U, and by Te« % the tangent
space to the sphere 0B at x*.

with probability larger than 1 — 46. The constants can be taken C = 0.2,C7 = 0.625,Cy =
2.25.

Proof of upper bound. Denote by x* the point belonging to the boundary % that is
closest to the original data point @y. By definition of the curvature k, there exists a point
z* such that the ball B centered at z* and of radius 1/k = ||z* — «*||2 is inscribed in the
region Ry, = {z € RY: fi(x) > fl;(mo)(m)} (see Fig. A.2 (a)).!

Observe that the worst-case perturbation along any subspace S that reaches the ball B is
larger than the perturbation along S that reaches the region Ry, as B C Rj. Therefore,
any upper bound derived when the boundary is the sphere of radius 1/k; i.e., Z, = 0B
is also a valid upper bound for boundary %y, (see Fig. A.2 (a)). It is therefore sufficient
to derive an upper bound in the worst case scenario where the boundary %, = 0B, and
we consider this case for the remainder of the proof of the upper bound.

We now consider the linear classifier whose boundary is tangent to % at «*. For the
random subspace S, we denote by rg the worst-case subspace perturbation for this
linear classifier. We then focus on the intersection between the boundary % and the
two-dimensional plane U spanned by the vectors r* and 7179—- This normal section of
the boundary cuts the ball B through its center as the tangent spaces of the decision

boundary and the ball coincide. See Fig. A.2 for a clarifying figure of this two-dimensional

_ ekl
B4

cross-section. We define the angle 0 as denoted in Fig. A.2, such that cos(é)

'For a fixed point «* on the boundary, the maximal radius 1 /K might not be achieved. To prove the
result in the general case where the supremum is not achieved, one can consider instead a sequence (kn)n
converging to s, such that the balls of radius 1/k, and intersecting the boundary at «* are included in
Ryi. The same proof and results follow by taking the limit on the bounds derived with ball of radius
1/kn.
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We apply our result on linear classifiers in Theorem 1 for the tangent classifier. We have

1 IrZ153 _ 1
— = < —(3(m,6), A.40
cos(6)2 k)3 — O‘2<2( ) ( )

with probability exceeding 1—268. Hence, using tan?() < (cos(f)) ! and the assumption
of the theorem, we deduce that

0.2

A 1
2(0) < — <
tan“(0) < a2<2(m’5) P

with probability exceeding 1 — 29. Note moreover that

0.2a2

k

réllok < —— < 1.

el AT

Hence, the assumptions of Lemma 4 hold with probability larger than 1 — 2. Using the
notations of Fig. A.2, we therefore obtain from Lemma 4

|z~ — |2

- — 1 < Cok||rF |2 tan?(0) (A.41)
Irs 2

with probability larger than 1 — 24.

A~ T2
Observe that ||z, — @oll2 > [|rk|l2, and that tan?(d) < ||||:i‘|‘|§. Hence, we obtain by
2
re-writing Eq. (A.41)
k(|2 T12Y2 1197112
p(lrslz {1+c2,<;urk|12”’°«z|§} Irsl2) 5y g5 (A.42)
17513 [ (W e |

Using the inequality in Eq. (A.40), we obtain

k|12 2
. (uw . {1+02ﬁ||rk||2<2<2w>} Cz(mﬁ)) 1

™13~ ? a?

which concludes the proof of the upper bound. O

Proof of the lower bound. We now consider the ball B’ of center z* and radius 1/xk =
|z* — *||2 that is included in the region Riawo)- Since the ball B’ is, by definition,
included in the region Ry, », the worst-case scenario for the lower bound on |7%||2 occurs
whenever the decision boundary %, coincides with the ball B’ (see Fig. A.3 (a)). We

consider this case in the remainder of the proof.
To derive the lower bound, we consider the cross-section U’ spanned by the vectors rg and
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Figure A.3 — Left: To prove the lower bound, we consider a ball B’ included in R,;,(wo) that

intersects with the boundary at *. Lower bounds on ||r&||s derived when the boundary
is the sphere 9B’ are also valid lower bounds for the real boundary %). Right: Cross
section of the problem along the plane U/’ = span (ré, rk). ~ denotes the normal section
of %, = B’ along the plane U’

r* (Fig. A.3 (b)). We have ||r¥||2x < 1; using the lower bound of Lemma 4, we obtain
K 205 &l
|| tan2(8) < —TsI2 (A.43)
[T — o2

for any S. Observe moreover that

N 1 12
tanQ(Q) < _ ||$T kx20||2
cos(0)2 15

Hence, the following bound holds:

2 k2
||€BT—$0||§< kT — ol[3 sl
27 = Zolly (1 _ ik 127 = 0ll2 )~  Imslls.

|7k 13 |7k 13 k13

Let r?s— denote the worst-case perturbation belonging to subspace S for the linear classifier
T Py Tt is not hard to see that 7 is collinear to % (see Lemma 6 for a proof). Hence,
we have 7“75— = T — xg. By applying our result on linear classifiers in Theorem 1 for the

tangent classifier T, %y, we have:

P <C1(ma 5) < ||r‘75:”% < C2(m7 5)) >1—26.

o TRz T a2

We therefore conclude that

2 k2
P (Cl(m, ) {1 Oyt 2T 5)} < ”7’5”2> > 1 - 26,
(07

a? B P

which concludes the proof of the lower bound.

The goal is now to extend the previous result, derived for binary classifiers, to the
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multiclass classification case. To do so, we show the following lemma.

Lemma 5 (Binary case to multiclass). Let p = argmin,; ||7%||2. Define the deterministic
set

A= {k el > 1.45v/G(m, 5>\/zur*ug} . (A.44)

Assume that, for all k € A°, we have

&l
P(l< <u)]>1-6. (A.45)

Tl T )

and that

P <||r§|2 > 1.45/Go(m, 5)\/5”""*”2) <t (A.46)

Then, we have

pli<lmsle o Ny - piysot (A.47)
[[7*]]2

Proof. Note first that
% P
p(”rf”Q Zu) gp({””s’2 Zu}) <5 (A.48)
[P ied P
We now focus on bounding the other bad event probability P (H:%H; < l). We have
751l ) ( ik 5112
P <1) =P (min [rklls = [rlls 512 < g
(!!7“*!2 EYRE S 12

+ 7 (g Ikl = gl 7512 < (.49

The first probability can be bounded as follows:

ok ey ISl |75 ]2
P <g§121£1 |rslle = Irslle, = <1) <P U <l| <L (A.50)

* *
7= A
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The second probability can also be bounded in the following way

: 175112 ~
P (g e = sl 752 < 1) <2 (i e = sl

[[7*[|2
=P (3k € A, |Irklls < |r52) (A.51)

Observe that, for k € A, we have [|rk[|y > [|r¥|y > 1.45«/(2(m,5)\/%|\r*H2. Hence, we

conclude that

: * TS d * *
P (qin I8l = Il 7512 <1) < (1-45v<2(m, Ay Ll < ||rs||2)

[[7*]]2
(A.52)
<P (1-45\/ Ca(m, 5)\/5”"“*”2 < ||7“g||2) <t.
(A.53)
O

Corollary 1. Let S be a random m-dimensional subspace of R%. Assume that, for all
k¢ A, we have

0.2 m
k(B |IT" |2 < ¥

o, 9) (A.54)

Then, we have

0.875\/C1(m,5)\/z sl s e 5)\/5 (A.55)

712

with probability larger than 1 — 4(L 4 2)4.

Proof. Using Theorem 2, we have that for all £ ¢ A, the result in Eq. (A.39) holds. We

simplify the result with the assumption x(%y)||r|l2 < 5 83 5 “. Hence, the bounds of

Theorem 2 are given as follows

Cl (m, 5)

2 _ I3 _ Go(m, o)
042

ST ST a2 (1+0.2C5)?, (A.56)

(1-0.201)

which leads to the following bounds:

d 2 H’i@”% d 2
Cl(m,5)ao.875 S H’I‘ng S Cg(m,é)al.lﬁ) y (A.57)

with probability exceeding 1 — 494.
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By using Lemma 5, together with the fact that ¢ = §, we obtain

[17*{|2

P (0.875\/C1(m, 5)\/5 < I7slla < 1.45v/Ca(m, 5)@) >1—4(L+2)0,

(A.58)

which concludes the proof. O

Useful results

Figure A.4 — The worst-case perturbation in the subspace S when the decision boundary
is OB and Ty+(0B) (denoted respectively by 75 and 77 ) are collinear.

Lemma 6. Let g € R%, and &* denote the closest point to &g on the sphere OB (see Fig.
A.4). Let Ty+(0B) be the tangent space to OB at &*. For an arbitrary subspace S, let rg
and 7‘? denote the worst-case perturbations of xy on the subspace S, when the decision
boundaries are respectively Tg«(OB) and 0B. Then, the two perturbations rg and r? are
collinear.

Proof. Assuming the center of the ball B is the origin, the points on the sphere 0B satisfy
equation: ||z||2 = R, where R denotes the radius. Hence, the perturbation 75 is given by

rE = argmin ||7||3 such that ||xo + Psr|? = R% (A.59)
reRd

By equating the gradient of Lagrangian of the above constrained optimization problem

to zero, we obtain the following necessary optimality condition
r+ APs(xo +Psr) =0.

It should further be noted that Pgrg = r? . Indeed, if rf had a component orthogonal
to S, the projection of rg onto § would have strictly lower 5 norm, while still satisfying
the condition in Eq.(A.59). Hence, the necessary condition of optimality becomes

(1+ A)r+ A\Pszg =0,
from which we conclude that rg is collinear to Psxy.
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It should further be noted that rg can be computed in closed form, and is collinear to
Ps(x* — @), which is itself collinear to xg, as the the center of the ball was assumed to
be the origin. This concludes the proof. O

Lemma 7. Ifz € [0,2(v/2 —1)],
2

\/1—:1,-21—%—% (A.60)

Lemma 8. Ifx >0,

8

Vitrz1+g-=. (A.61)
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B.1 Proof of Theorem 3
We use Lemma 2 of Appendix A to prove our result.

Theorem 3. Let £ > 0,6 > 0. Let § be an m dimensional subspace such that
P (||Psr(x)||2 > 1—&) =1, where Ps is the projection operator on the subspace. As-

xT~p

sume moreover that s (x, p) holds for almost all @ ~ p, with p = 5(7%. Then, there

exists a universal noise vector v, such that

[oll2 < p

and

Proof. Define S to be the unit sphere centered at 0 in the subspace S. Let p = 5(%‘/3,
and denote by pS the sphere scaled by p. We have

~

B, (7, (b +v) 2 k@) or ko —v) £ k(o))

vpS \ T
:wIEM <v£P>pS (l;‘(a: +v) # k(x) or k(z —v) # l%(m)))

&, (B ((Psr(@) + Powur(@))o] = (@)} > 0)).

where Pgorn denotes the projection operator on the orthogonal of S. Observe that
(Psormr(x)) v = 0. Note moreover that ||#(z)||3 = 1 by assumption. Hence, the above

133



Appendix B. Appendix of Chapter 6

expression simplifies to
g, (LB, ((Por(z)"s|-120))
xT~p \ vepS

= E (UQS(KPsr(w))TvI > p‘1)>

T

=2 (2 ([ = 7))

where we have used the assumption of the projection of r(x) on the subspace S. Hence,

it follows from Lemma 2 that

E ( P (ic(mﬂ;) £ Ji(x) or k(z — v) ;H};(a;))) >1-4.

'UNpS T

Hence, there exists a universal vector v of £ norm p such that

P (l%(a: +v) # k(z) or k(x —v) # l%(a:)) >1-4.

T

B.2 Proof of Theorem 4

Theorem 4. Let k > 0,0 > 0 and m € N. Assume that the quadratic decision boundary

model 2 (x, p) holds for almost all  ~ p, with p = 21%(2/5)/1_1 + w2 Let S be a
m dimensional subspace such that

P (Vu € RQ,agluTH;(m)’vu > m|]u\|g) >1—f for almost all © ~ p,

v~S

where H:(m)’v = T H,II with T1 an orthonormal basis of span(r(x),v), and S denotes

the unit sphere in S. Then, there is a universal perturbation vector v such that ||v|j2 < p
and P (l%(m+v) ;él%(m)) >1-5- 6.
Tp

Proof. Let & ~ u. We have

EREACEDITD))
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Using the assumptions of the theorem, we have

ay(pv — ) H.(pv — ) + 78 (pv — ) <0)

w2

<

IN

Kllpv — (3 + 77 (pv —7) <0) + 8

e

p(1 —28)vTr + kp® + (kK — 1) < 0) + 3
p(1—2r)v"r < —€) + IP’S (kp® + (k= 1) <€) + B,

<
w2

IN
Ra=ER =R N =R
»n

w2

IN

e

for € > 0. The goal is therefore to find p such that kp? + (k — 1) > ¢, together with
IF’S (p(l —2r)vlr < —e) < 6. Let p? = % Using the concentration of measure on the
v

sphere [63], we have

2
—€ me
P (vir<—— ) <2 S
oS <’” T—pu—%))— eXp< 2p2<1—2n>2>

To bound the above probability by d, we set € = C\/E’ where C' = y/21log(2/6). We

therefore choose p such that
PP =kt (Cpm_1/2 + 1)

The solution of this second order equation gives

Ok Im=Y2 4+ /k2C2m—1 + 451

< Cr7Im V2 4 5712,
5 hS

p =
Hence, for this choice of p, we have by construction

P (a;'(pv—r) H.(pv —7) + 7" (pv —7) < 0) <5+ B.

v~S
We therefore conclude that ES ( P (k‘( +v) # k: > — 6 — . This shows the
vp T
existence of a universal noise vector v ~ pS such that k: v) # k‘( ) with probability
larger than 1 — 6 — f3. O
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