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Abstract
Understanding the link between the brain’s anatomy and its function through computer

simulations of neural tissue models is a widely used approach in computational neuroscience.

This technique enables rapid prototyping and testing of hypotheses, allowing researchers to

bridge the scales of biological phenomena. Until recently, the constant trend of improvement

in computational power has supported an exponential growth in the scale and level of detail

of in silico experiments. However, a systematic characterization of the performance landscape

has not yet been carried out.

In this work we intend to capture intrinsic computational properties of the existing mod-

elling abstractions and answer questions about the intricate relationship between simulation

algorithms and modern hardware architecture. Our first contribution is a novel set of hardware-

agnostic metrics that enables us to bring focus to the heterogeneous landscape of brain tissue

models. We develop a methodology able to capture subtle differences between cell-based

models and quantify their impact on performance based on hardware features. We show that

lumping simulation experiments together by referring to numbers of neurons and synapses

without further detail hides fundamental differences in computational and hardware require-

ments across models. In addition to analysing different neuron representations, we investigate

the impact of biological heterogeneity on the performance of a cortical microcircuit model.

Our analysis indicates that while general-purpose computers have until now sustained high-

performance simulations of all brain tissue models, the next generation of in silico models

will require hardware tailored to the underlying abstraction. We find that all formalisms

saturate the memory bandwidth with a fairly small number of shared memory threads, but

the reasons behind this are quite different: conductance-based models are dominated by the

large memory traffic of clock-driven kernels, while current-based models are most affected

by event-driven execution and memory latency. In distributed simulations the latency of the

interconnect fabric is the root cause for a significant degradation in performance.

We argue that performance analyses such as ours are required to enable the next generation

of brain tissue simulations – or else scientific progress risks being hindered by the presence

of severe hardware bottlenecks. Our methodology provides a common tool to facilitate the

communication between modellers, developers and hardware designers in order to sustain

the larger memory and performance requirements of future brain tissue simulations.

Keywords Computational neuroscience, High-performance computing, Performance mod-

elling, Blue Brain Project, Hardware modelling, Neuronal modelling, in silico neuroscience
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Sommario
Comprendere il collegamento tra l’anatomia del cervello e il suo funzionamento attraverso

l’utilizzo di simulazioni al computer è ormai una tecnica ampiamente utilizzata nell’ambito

delle neuroscience computazionali. Questo metodo permette di formulare e testare rapida-

mente ipotesi scientifiche, dando ai ricercatori la possibilità di formare un collegamento tra

le diverse scale fisiche del fenomeno biologico. Il trend costante di crescita delle capacità

computazionali dei computer ha fino ad ora supportato una crescita esponenziale nel livello di

dettaglio degli esperimenti in silico. Tuttavia una caratterizzazione sistematica del panorama

delle prestazioni di queste simulazioni non è ancora stata condotta.

In questa tesi ci proponiamo di identificare le proprietà computazionali intrinseche ai modelli

di neuroni e rispondere a domande sulla relazione tra algoritmi di simulazione e architettura

dell’hardware. Il nostro primo contributo è un nuovo insieme di metriche agnostiche dell’hard-

ware per analizzare il panorama eterogeneo di modelli del tessuto cerebrale. Sviluppiamo poi

una metodologia capace di catturare sottili differenze tra modelli a livello cellulare e quantifi-

care il loro impatto sulla prestazione a partire da proprietà dell’hardware. Dimostriamo che

raggruppare esperimenti di simulazione riferendosi solamente al numero di neuroni e sinapsi

senza fornire ulteriori dettagli nasconde differenze fondamentali tra i requisiti computazionali

di modelli differenti. In aggiunta all’analisi di diversi formalismi investighiamo l’impatto della

variabilità biologica sulle prestazioni di un modello di microcircuito corticale.

La nostra analisi indica che, mentre i computer d’uso generale hanno potuto sostenere fino

ad ora simulazioni ad alta prestazione di tutti i modelli di tessuto cerebrale, la prossima

generazione di modelli in silico richiederà hardware concepito su misura. Dimostriamo che

tutti i formalismi per rappresentare un neurone saturano la larghezza di banda della memoria

utilizzando un numero di thread a memoria condivisa relativamente basso, ma le ragioni alla

base di ciò sono diverse: i modelli a base di conduttanza sono dominati da un grande traffico

di dati, mentre nei modelli a base di corrente i fattori chiave di prestazione sono la latenza

della memoria e l’esecuzione event-driven. Nelle simulazioni distribuite la latenza della rete

di connessione è la causa principale di una perdita di prestazioni.

Sosteniamo che analisi delle prestazioni come la nostra siano necessarie per consentire

lo sviluppo della prossima generazione di simulazioni del tessuto cerebrale, altrimenti il

progresso scientifico rischia di essere impedito da gravi limitazioni dell’hardware. La nostra

metodologia fornisce uno strumento comune per facilitare la comunicazione tra modellatori,

sviluppatori e disegnatori di hardware per poter sostenere i requisiti maggiori di memoria e

prestazioni delle simulazioni future di tessuto cerebrale.
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1 Introduction

1.1 Performance in brain tissue simulations

Cellular-level digital reconstructions and simulations of brain tissue electrophysiology have

become a widespread tool for neuroscientific discovery. Even though in silico experiments

cannot fully replace traditional in vitro or in vivo ones, it has been argued that they repre-

sent an indispensable contribution to the future of neuroscience (Einevoll et al., 2019; Fan

and Markram, 2019). However, the memory footprint and performance requirements for

simulating a brain represents an unprecedented challenge in the computational sciences.

For example, it has been projected that simulating a human-scale whole-cortex model could

require an exascale computer (Markram, 2012), while real-time simulations of such a system

could even be impossible with the current hardware solutions (Zenke and Gerstner, 2014).

Even a volume of cortical tissue as small as a cubic millimetre can contain several tens of

thousands of neurons and glia cells, orders of magnitude more synaptic connections and

several orders of magnitude more of proteins, neurotransmitters and signalling molecules.

Therefore it is perhaps not surprising that computer performance has been one of the major

limiting factors in the computational modelling and exploration of biological neural net-

works (Einevoll et al., 2019; Kotaleski and Blackwell, 2010; Markram, 2012). To overcome

this challenge computational neuroscientists have routinely employed high-performance

computing (HPC) techniques (Helias et al., 2012; Markram et al., 2015). These optimised

approaches have enabled researchers to probe the electrochemical properties of the brain

at an unprecedented scale (see e.g. Ananthanarayanan et al., 2009; Izhikevich and Edelman,

2008; Jordan et al., 2018; Nolte et al., 2018; Reimann et al., 2013). Several large-scale brain

tissue models leveraging HPC hardware have been published (see Chapter 2 for a review), but

achieving efficient, high-performance simulations still remains an open problem.

Much of the early increase in computational requirements of models and simulations have

been supported by Dennard scaling (Dennard et al., 1974) and Moore’s law (Moore, 1995), but

with chip-manufacturing technology reaching its limit and the consequent rise of multi-core

and heterogeneous architectures (Hardavellas et al., 2011; Simonite, 2016), computational
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Figure 1.1 – State of the art cellular-level simulations and performance. Supercomputers and
HPC architectures are begin used to conduct in silico experiments based on mathematical
models of neurons. A: examples of state-of-the-art brain tissue simulations based on different
underlying neuronal abstractions. Researchers typically report the number of neurons and
synapses in their simulations as a proxy for complexity of the problem. B: cluster size and
reported performance of published brain tissue simulations. Cluster size is measured in
number of parallel distributed ranks. Performance is measured in simulated seconds per
wallclock second to simulate the whole network. The marker size is proportional to the
number of neurons in the simulated network.

neuroscientists have been forced to develop more efficient algorithms and software to be

able to keep up with the increasing demands of modellers. Research efforts in the context

of simulation neuroscience have investigated the efficient utilization of modern multicore

processors (see e.g. Brette and Goodman, 2011; Eichner et al., 2009; Kumbhar et al., 2016,

2018), parallel computing (see e.g. Helias et al., 2012; Morrison et al., 2005; Ovcharenko et al.,

2015), accelerators (see e.g. Brette and Goodman, 2012; Fidjeland et al., 2009; Knight and

Nowotny, 2018) and brain-inspired hardware (see e.g. Benjamin et al., 2014; Indiveri et al.,

2011; Painkras et al., 2013).

Typically researchers report the number of neurons and synapses as a proxy for the complexity

of their model and compare it against the performance and amount of parallelism in the

simulation experiment as shown in Figure 1.1. However this does not paint the whole picture.

The wide variety of modelling scales and abstractions has led to a heterogeneous landscape of

brain tissue models, making it difficult to compare brain tissue simulations. Moreover, the

differences in hardware characteristics can lead to different interpretations of performance

results. Finally, the underlying mechanisms and reasons supporting a certain performance

are often overlooked or left unexplored.
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1.1. Performance in brain tissue simulations

It becomes clear that a detailed understanding of the performance properties of brain tissue

simulations and models represents a fundamental milestone in achieving a better compre-

hension of the brain’s electrophysiology and function. Some performance studies have been

conducted, but the large variability between modelling abstractions that is observed in the

neuroscientific literature is matched by an equally large variability in the simulation per-

formance. Researchers have investigated memory efficiency (Knight and Nowotny, 2018;

Kunkel et al., 2014), automatic generation of efficient kernel code (Kumbhar et al., 2019a;

Yavuz et al., 2016), vectorisation (Brette and Goodman, 2011), efficient communication of

spikes (see e.g. Ananthanarayanan and Modha, 2007; Hines et al., 2011; Navaridas et al., 2012),

splitting of complex neurons (Hines et al., 2008; Kozloski and Wagner, 2011), asynchronous

execution (Magalhães and Schürmann, 2019), and other optimisations. Simple performance

models have also been proposed for distributed point neuron networks (Peyser and Schenck,

2015; Schenck et al., 2014) or for relevant sub portions of the simulation algorithm (Ewart

et al., 2015).

Such work demonstrates the growing interest of the community in simulation performance,

but suffers from a few important drawbacks: it is hardware platform and use case specific, and

requires new benchmarks for every change in model or simulation configuration; it does not

immediately explain differences in performance across in silico models and experiments; it

provides very limited insight into which hardware features are the most relevant for simulation

performance; it does not generalize to new architectures and does not allow exploration of

new hardware solutions.

We have highlighted significant differences in the performance profiles of in silico models

falling within the same category of cellular level representations, but such differences have not

yet been thoroughly analysed and discussed. We believe that the situation calls for a better,

deeper understanding of how hardware capabilities intersect with brain tissue simulation

algorithms to determine their timely and efficient execution. This would empower computa-

tional neuroscientists to design more efficient in silico experiments and answer fundamental

questions about the future of computing architectures by fostering a stronger collaboration

between in silico modellers, developers and hardware specialists. We seek to fill the gap in

our understanding of the performance and computational properties of in silico brain tissue

simulations by developing an understanding of how neuronal abstractions, simulation algo-

rithms and hardware interact to determine performance. We take inspiration from the field of

performance modelling, which combines the representation of a simulation algorithm and

a hardware platform to produce insight and predictions on the runtime performance and

efficient utilization of resources (see e.g. Balsamo et al., 2004; Calotoiu et al., 2013; Pllana et al.,

2007; Williams et al., 2009), as shown in Figure 1.2.

The goal of this thesis is to lay the foundations for a constructive discussion on the compu-

tational properties and hardware features that determine the performance of brain tissue

simulations. Our first contribution is a structured review of the literature on brain tissue

simulations by means of a set of novel hardware-agnostic metrics that capture the most salient
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performance properties of a representative collection of in silico models and experiments. Our

second contribution is the development of an analytic performance modelling framework able

to combine a description of the simulation algorithm with hardware feature specifications

to obtain a runtime prediction based on a concrete understanding of the execution of the

simulation workflow on modern hardware. Finally, our third contribution is an analysis of

three modelling strategies that encompass most of the state-of-the-art brain tissue simula-

tion models based on the performance modelling method described before. Our analysis is

conducted along two axes: a wide-angle view of differences between modelling strategies and

their implications for simulation performance and a zoomed-in view of the effects of hetero-

geneity within a single model of a cortical microcircuit on the performance profile. Ultimately,

our work represents an effort to enable and foster cooperation between the communities of

neuroscientific modellers, software developers and hardware designers.

This thesis is structured as follows: Chapter 2 presents an extensive review of brain tissue

simulations and their performance, and introduces a hardware-agnostic metrics framework

to structure our understanding of the heterogeneous landscape of modelling and simulation

strategies. Chapter 3 establishes the connection with hardware properties through perfor-

mance modelling and explains the methods and challenges in understanding the performance

of in silico brain models; Chapter 4 develops a detailed analysis of the performance characteris-

tics and relevant hardware features of brain tissue simulations, with a focus on understanding

the commonalities and differences across models; Chapter 5 investigates the heterogeneity

in model parameters and computational properties within an in silico cortical microcircuit

model, analysing its impact on the computational characteristics of the simulation; and finally,

Chapter 6 summarises our main findings, discusses some limitations of our analysis and

suggests future strategies to overcome them.
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Figure 1.2 – A schematic view of a performance model applied to neuroscientific simulations.
A performance model takes as input a parametrized representation of the neuron model, the
connectivity, the simulation parameters, as well as a representation of the hardware platform
and the interconnect fabric, and combines this information into an analytic expression to
obtain insight on the performance bottlenecks and projections.
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2 Overview of brain tissue simulations
and performance

This chapter presents the state of the art in brain tissue simulations and performance mod-

elling. The purpose of this chapter is to highlight fundamental concepts that will be useful

in understanding and framing our work. To this end, we compile a list of representative

simulation use cases and introduce a novel set of hardware-agnostic metrics that capture

the most salient performance properties of brain tissue models. We use our framework to

give a structured review of the literature of brain tissue simulations from the point of view

of computational characteristics and performance implications on modern hardware. We

conclude with an overview of performance modelling techniques and a detailed review of

empirical performance studies applied to brain tissue simulations. While we do not provide

an exhaustive review, our main contribution is the distillation of the heterogeneous literature

in a structured form.

2.1 State of the art in brain tissue models and abstractions

Due to the multiscale nature of the brain, there exists an extremely large body of literature

on models that can qualitatively and quantitatively reproduce different aspects of the brain.

Modellers have addressed multiscale interactions in the brain by examining how molecular

mechanisms and pathways affect cell-level behaviours such as vesicle fusion (Shillcock, 2013),

synaptic plasticity (Kotaleski and Blackwell, 2010), and input sequence discrimination (Bhalla,

2017), how membrane potential and synaptic activity affect macro-scale behaviours such

as voltage sensitive dye fluorescence (Newton et al., 2016), and finally how neural activity

translates to cognitive function and complex behaviour (Falotico et al., 2017; Feldmeyer et al.,

2013; Stewart et al., 2012). In addition to explicitly taking into account interactions between

phenomena from multiple scales, there exists a multitude of modelling approaches focused on

a unique level of abstraction. We distinguish here five different levels: molecular, sub-cellular,

cellular, population and cognitive level. At the molecular level (Bhalla, 2014a), scientists

use molecular dynamics simulation to understand how nanoscale forces affect the way in

which proteins and other important molecules interact, for example in the process of vesicle

fusion (Shillcock, 2013). At the sub-cellular level, researchers frequently use a simplification
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process based on the well-mixed assumption to circumvent the explicit representation of

individual molecules or ions and model instead their concentration. This level of abstraction

was used to study the effect of inhomogeneous ion channel distribution on the neuronal

membrane (Poirazi et al., 2003) and to understand how signalling pathways within synapses

underlie long-lasting conservation of changes in synaptic efficacy at the heart of memory for-

mation (Hayer and Bhalla, 2005). At the cellular level, the computational unit is the individual

neuron and researchers study how synaptic connectivity and the membrane’s bioelectrical

properties affect the membrane potential of the cell. Within this formalism neurons can

be modelled either as points (Gerstner et al., 2014) or with full morphological detail (Rall,

1962) and can be assembled in cortical microcircuits that represent a unitary portion of brain

tissue (Calabrese and Woolley, 2015; Földy et al., 2005; Markram et al., 2015; Potjans and

Diesmann, 2012). At the population level, assemblies of multiple neurons that share certain

properties represent the modelling unit and only connectivity between populations is con-

sidered, grouping and simplifying synaptic connections between individual neurons. The

population abstraction has been used to model cognitive functions and learning (Eliasmith

et al., 2012), as well as in clinically relevant applications such as modelling brain tumour (Aerts

et al., 2018), while its coarse level of detail makes it an ideal candidate for coupling with signal-

averaging measurement methods such as EEG (Jansen and Rit, 1995; Wendling et al., 2003)

and voltage sensitive dyes (Markounikau et al., 2010). Finally, at the cognitive level scientists

are interested in modelling the causal relationship between observed stimuli and behaviour,

often employing statistical tools that have no direct relationship with their biological substrate.

Classical examples include Bayesian models (Penny, 2012), Markov models (Hintze et al., 2017)

and artificial neural networks (LeCun et al., 2015; Schmidhuber, 2015). Figure 2.1 summarises

the main scales of modelling.

This thesis was inspired by the work of Markram et al. (2015) and embedded in the Blue

Brain Project, therefore it is framed in the context of cellular-level approaches. This level of

abstraction allows for a faithful matching to a wide range of anatomical and electrophysio-

logical data (see e.g. Hagen et al., 2016, 2018; Markram et al., 2015; Potjans and Diesmann,

2012; Pozzorini et al., 2015) and presents an important challenge in terms of understanding

its computational properties, as the relationship between neuron models and performance

has not yet been fully understood. Therefore the cellular-level approach represents an ideal

ground to conduct our analysis. As a first step, we review in the following sections several

strategies for modelling individual neurons as well as for integrating their evolution in time.

2.1.1 Cellular-level modelling abstractions

Point neuron models that can qualitatively and quantitatively reproduce the phenomenol-

ogy of membrane potential fluctuations have been known for decades. One of the earliest

representations to be formalized and mathematically analysed is the Lapicque – or leaky

integrate and fire (LIF) – model (Lapicque, 1907), which treated the membrane as a resistor-

capacitor circuit with a spike generation mechanism every time the potential reaches a certain
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Figure 2.1 – Multiple scales of modelling and main abstractions for cellular models. At the
molecular scale scientists study the effects of nano-interactions between molecules on neu-
ronal activity. At the sub-cellular scale individual molecules are aggregated and the focus is
on chemical reactions and diffusion of ions in the cellular and extracellular mediums. At the
cellular scale synaptic connectivity and neurons’ electrophysiology are investigated. At the
population scale the main object of study are the firing dynamics of neuronal assemblies. At
the behavioural scale the main objective is to reproduce and understand the brain’s cognitive
functions. In this thesis we focus on the cellular level of abstraction. Within it, multiple
formalisms to represent neurons and synapses exist. Morphologically detailed models include
information about a neuron’s dendritic arborization, while point models focus on connectiv-
ity between neurons. G-based models use the electrical conductance of synaptic receptors
as the most representative abstraction of a synapse, while I-based models directly use the
synaptic current, and electrical synapses represent direct connections between the membrane
locations of two neurons.
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threshold. The LIF model has an extremely simple mathematical representation with a single

linear ordinary differential equation (ODE), but has nevertheless enjoyed widespread use and

applications (Gerstner et al., 2014; Tuckwell, 1988). The Hodgkin-Huxley model (Hodgkin and

Huxley, 1952) takes a more complex approach. It uses a system of nonlinear ODEs with four

unknowns to reproduce the phenomenon of rapid depolarisation and hyperpolarisation of

neuronal membranes – known as action potential –, by modelling contributions from fast,

depolarising sodium currents and slower, hyperpolarising potassium currents. A two-variable

simplification was conceived a few years later, at the price of a cubic nonlinearity and the loss

of interpretability of the individual current contributions (FitzHugh, 1961). More recently a

simple two-variable system of ODEs with only quadratic nonlinearity was sufficient to repli-

cate a wide range of spiking behaviours by careful tuning of its parameters (Izhikevich, 2003).

Taking a similar approach, a study introduced the two variable adaptive exponential integrate

and fire (AdEx) model (Brette and Gerstner, 2005) and another introduced the generalized in-

tegrate and fire (GIF) model (Pozzorini et al., 2013), which is a LIF model with a spike-triggered

current and a moving threshold, both capable of reproducing an extremely wide range of

observed spiking behaviours and amenable to automatic parameter fitting (Pozzorini et al.,

2015).

Compartmental models allow computational neuroscientists to include the morphological

details of dendritic arborization in their models (Bhalla, 2012). This field was pioneered by

the seminal work of Rall (1962) who, inspired by the beauty and complexity of the drawings

by Ramón y Cajal (1909), developed the mathematical formalism necessary to allow spatial

discretisation of neurons along the axial dimension. Based on this work, models of individual

fibres (Cooley and Dodge Jr, 1966), branched dendrites (Parnas and Segev, 1979) and whole

neurons (Traub et al., 1991) have been proposed. Compartmental models represent a dis-

cretisation of the cable equation (Thompson and Kelvin, 1855) and the use of this equation in

neuroscience has recently been revisited as an approximation of the Maxwell equations (Lind-

say et al., 2004). As a consequence of the reliability of axonal transmission, especially in the

cortex (Cox et al., 2000), a simplification is often made to simulate only the generation of an

action potential (AP) in the axonal initial segment and avoid computing the actual transmis-

sion to downstream synapses by assuming a reliable transmission at a constant speed. This

simplification allows reducing the computational burden by treating axonal transmission as a

simple time delay, without the need to store and update the states of the axonal compartments.

Citing scalability reasons, other groups have instead adopted the opposite strategy to simulate

axonal compartments (Kozloski and Wagner, 2011).

2.1.2 Strategies for solving the temporal dimension

A review by Brette et al. (2007) presented a comprehensive analysis of the algorithmic and

software simulation tools available to computational neuroscientists. They introduce several

key concepts useful for characterising and classifying in silico models, namely in terms of the

drivers for time-advancing, i.e. clock-driven or event-driven, and the current-based (I-based)
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or conductance-based (G-based) formalisms for the integration of synaptic events. In clock-

driven algorithms, operational kernels are performed regularly at fixed intervals of biological

time; while in event-driven algorithms kernels are performed only if and every time a specific

event occurs, typically in the form of receiving a spike. Differences in synaptic formalisms will

be explained in Section 2.1.3. Figure 2.1 summarises the main modelling formalisms at the

cellular level of abstraction.

Usually the analytical solution of the equations describing neuronal dynamics cannot be

obtained analytically and numerical methods must instead be employed (Mascagni et al.,

1989). For time-dependent ODEs comprising only of a linear and a constant term, the Expo-

nential Euler method exploits the fact that an analytical solution can be obtained to design

a first-order accurate time-stepping scheme (Bower and Beeman, 2012; MacGregor, 1987).

Rotter and Diesmann (1999) introduced an extension of this scheme that enables exact inte-

gration of the temporal dynamics of a wide range of neuron models over a fixed timestep grid.

For more general ODEs, the Runge-Kutta method has often been applied (see e.g. Gewaltig,

2015; Naud et al., 2008), but first order Euler schemes, both implicit and explicit, have also

been used (Carnevale and Hines, 2006) as well as more modern and complex numerical

schemes (see e.g. Hahne et al., 2015, 2017; Rempe and Chopp, 2006; Stewart and Bair, 2009).

When using an implicit time-stepping scheme in solving the partial differential equations

(PDE) associated with compartmental models, the resolution of a linear system is required

because of the coupling between neighbouring compartments. The work of Hines introduced

a scheme allowing to exploit linear-complexity methods to invert the corresponding matrix,

enabling a generation of fast and numerically stable morphologically detailed models (Hines,

1984). To overcome accuracy and performance limitations of the fixed timestep schemes,

adaptive timestep frameworks (Lytton and Hines, 2005) and hybrid explicit-implicit time

stepping schemes have also been proposed (Rempe and Chopp, 2006).

2.1.3 Simulation algorithm and core properties

In the following paragraphs, we give a brief overview of the fundamental concepts related to the

simulation algorithm underlying all in silico models and experiments. A detailed account of

the algorithmic steps is given in Appendix A. While presenting a full account of the simulation

workflows for all in silico models is out of the scope of this work, we focus on the similarities

and differences that are instrumental to grasping the challenges and results in the remainder

of this thesis, and refer the interested reader to (Brette et al., 2007; Carnevale and Hines, 2006;

Gerstner et al., 2014) for more details. We present the algorithmic skeletons in Figure 2.2.

All the brain tissue simulations considered here fall under the category of cellular-level spiking

neural network models. Within this modelling scale, the main biophysical phenomena of

interest are the Action Potential (AP) and the transmission of individual spikes. An AP is a

fast-dynamics event that is elicited when the membrane potential measured at the neuron’s

Axon Initial Segment (AIS) reaches a certain threshold. In modelling terms, the crossing of the
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Figure 2.2 – Algorithmic skeletons for I-based (left) and G-based formalisms(right). The
figure highlights the three main loops in both formalisms: an innermost loop in which every
single neuron is advanced by one timestep, a middle loop where time is stepped until a
minimum delay boundary is reached, and an outermost loop that usually corresponds to a
global synchronization timestep and interprocess spike exchange. Boxes in light grey are part
of the simulation algorithm and are shown for completeness, but are not considered in our
performance analysis as they do not constitute fundamental computational or communication
kernels.

threshold is denoted as a spike. The AP is often conceptualized as a travelling standing wave

moving along the axon, whose path crosses several synaptic locations. When the AP reaches

a synaptic location in the presynaptic neuron, neurotransmitter is released in the adjacent

extracellular volume. The neurotransmitter molecule binds to receptors in the postsynaptic

neuron, determining the opening of specific channels that allow the influx or outflux of

charged ions, ultimately causing a small variation in membrane potential at the postsynaptic

neuron. Given the all-or-none nature of AP, spikes are often modelled using an event-driven

formalism (Hines and Carnevale, 2004) mediated by a synaptic delay, although exceptions

have been explored in the literature (Kozloski and Wagner, 2011). An important optimisation

has been introduced by Morrison et al. (2005) when neurons communicate only via spikes: the

global synchronization phase to exchange spiking information across neurons need only be

performed every multiple of the minimum network delay period, denoted δmin, while within

this period the temporal dynamics of neurons may effectively be considered independent.

All the network models in our analysis can be interpreted as a graph, where nodes represent

neurons, and edges represent weighted connections or synapses. We use K to denote the

fan-in of neurons, i.e. the average number of incoming connections. For synapses there

exist two main strategies for mathematical representation: current-based synapses (denoted

hereinafter I-based) and conductance-based synapses (G-based). These correspond to the

CUBA and COBA synapse formalisms (Brette et al., 2007). In current-based synapses, the
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consequence of receiving a synaptic event is that a constant amount of current is injected

in the postsynaptic neuron. In modelling terms this amount is called the post-synaptic

current (PSC). In conductance-based synapses, on the other hand, the amount of current

injected in the postsynaptic neuron is variable for different spikes and depends on the synaptic

conductance through Ohm’s law. Thus, when a synaptic event is received by a G-based synapse,

the conductance – or a state variable from which the conductance can be computed – of that

synapse is updated by a fixed quantity. In addition to the chemical synapses described above,

neurons can also establish a direct connection between membranes known as an electrical

synapse or a gap junction.

While there are significant differences across models in the way in which the membrane

potential is modelled and integrated over time, all of the formalisms considered here have

some sort of nonlinear dynamics that is able to, under the right conditions, reproduce the

behaviour of the AP. However, different representations of neurons based on the level of mor-

phological detail exist: point neurons do not include any information from the dendritic

arborization of the neuron, while morphologically detailed neurons typically do. In terms of

data representation, point neuron models typically require a few state variables to represent

the membrane potential, while detailed models usually need at least one variable per compart-

ment for the membrane potential, plus a few more for every ion channel type associated to

that compartment – i.e. the spatial discretisation unit – making the total number of variables

that represent a neuron quite large. There is also heterogeneity in the data representation of

synapses depending on the underlying formalism: I-based synapses are represented by the

total post-synaptic current Isyn, while G-based synapses by their conductance gsyn.

The heterogeneity in morphological representations and synaptic formalisms leads to some

fundamental differences as well as some similarities across simulation strategies. Our analysis

is focused on fixed timestep integration methods based on the bulk synchronous-parallel

(BSP) formalism (Valiant, 1990). Figure 2.2 presents the main simulation algorithm for I-based

and G-based formalisms. A detailed account of all the phases in the simulation workflow is

provided in Appendix A. In the I-based simulation workflow, the effect of spikes is integrated

at the beginning of each timestep, then the state of all neurons is advanced by one timestep

by first numerically integrating the membrane equation and then updating the post synaptic

current (PSC). When all neurons have been advanced to a time that is a multiple of the δmin,

a global synchronization point occurs and neurons exchange spiking information. In the

G-based algorithm the integration and the communication of spikes happens in the same way,

but the algorithm to update neuron states is different (Hines, 1984). First, a loop through all

ion channel and synaptic types computes the current contributed by individual instances to

the neuron’s membrane equation. Then the membrane equation is solved numerically, and

finally the state variables of all the ion channel and synapse instances can be advanced in time,

once again through numerical integration. In the case of morphologically detailed neurons,

solving the membrane equation usually requires the inversion of a matrix, for which Hines

(1984) provided a linear-complexity algorithm.
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Figure 2.3 – Loop ordering optimisation. In the naïve implementation (top) the state of each
neuron is advanced by one timestep, then the next neuron is processed and also advanced by
one timestep, until all neurons have reached the same instant in time. In this implementation
there is no possibility for cache reuse, and data is always fetched from main memory at every
time iteration. In the loop ordering optimisation (bottom), the state of a neuron is advanced by
a whole minimum delay interval before the next neuron is processed. In this implementation,
data must only be fetched from main memory at the first time iteration, and we assume data
to be in the L3 cache during all subsequent iterations.

We conclude this section with the description of an important optimisation that promotes

data reuse. It is possible to swap the timestep and neuron loops, by having a single neuron ad-

vance multiple timesteps until it reaches a minimum delay boundary, before the next neuron’s

evolution is integrated in time. By updating a neuron’s state for multiple timesteps sequentially

it should be possible to temporarily store data in caches instead of main memory, as long as

a neuron’s memory traffic requirements and the number of spikes to be integrated by that

neuron are sufficiently low. We denote hereinafter this optimisation as the loop ordering

optimisation. Figure 2.3 presents a visual representation of this technique, highlighting the

source of data for each neuron’s update step. In the naïve implementation each neuron is

advanced only by a single timestep each time, therefore no reuse is possible because each

neuron will overwrite the caches with its own data. In the optimised implementation a neuron

is advanced by multiple timesteps, thus the relevant state data for that neuron is not overwrit-

ten from one timestep to the next, and can be stored in the cache. This optimisation was first

introduced in Plesser et al. (2007) and is built-in in modern simulators such as NEST (Gewaltig

and Diesmann, 2007) and Arbor (Akar et al., 2019b), while it can also be enabled through

proper configuration in CoreNEURON (Kumbhar et al., 2019b). In terms of implementation

effort, the loop ordering optimisation does not come for free. In particular, separate spike

event queues must be maintained for each neuron to enable efficient integration of synaptic

events.
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2.1.4 Notable examples of high performance brain tissue simulations

Coupling modelling efforts with high-performance computing (HPC) has allowed to overcome

limitations in the scale at which experiments are being conducted, such as measuring individ-

ual ionic currents and local field potentials from thousands of cells simultaneously (Reimann

et al., 2013), isolating different sources of noise (Nolte et al., 2018), or perturbing individual

spikes (Izhikevich and Edelman, 2008). As a consequence, HPC has enabled computational

neuroscientists to test hypotheses and study protocols with a faster turnaround than ever (Jor-

dan et al., 2018; Knight and Nowotny, 2018; Ovcharenko et al., 2015). Moreover, the process

of identifying strategic data and principles governing the brain’s organisation and function

lies at the heart of the modelling effort. Such an endeavour represents a very effective way to

understand the brain as a complex system, by inspecting the model when it fails to reproduce a

certain behaviour of interest (Fan and Markram, 2019; Reimann, 2014). Finally, the existence of

a validated computational model of the brain could allow, in the future, to reduce our reliance

on animal experiments as well as develop and validate disease treatments in silico (D’Angelo,

2014; Frackowiak and Markram, 2015).

The underlying complexity of the brain entails that the best simulation attempts to date are the

outcome of many years of collaborative efforts. Historically, one of the first simulations of the

mammalian thalamocortical system was presented by Izhikevich and Edelman (2008). Despite

being the first large-scale endeavour, this model was by no means simplistic and featured

stylized neuronal morphologies, short and long term synaptic plasticity, and data-constrained

random connectivity. Given the complexity of simulating brain systems, especially at the

scale of brain regions, big science initiatives have been developed that have the capability to

leverage unprecedented amounts of data made available by new technologies (De Garis et al.,

2010; Kandel et al., 2013). The Blue Brain Project (BBP) is a research initiative aimed at building

and simulating a biologically detailed digital reconstruction of the rodent brain (Markram,

2006; Markram et al., 2015). This endeavour is based on a data integration strategy consist-

ing of collecting fragmented neuroscientific data. Specifications for this reconstruction are

obtained by combining experimental data such as neuron morphologies and patch-clamp

recordings with digital reconstruction heuristics for single-cell parameter fitting (Van Geit

et al., 2008, 2016), cell connectivity (Iavarone et al., 2019; Reimann et al., 2015, 2019) and re-

constructed thalamic inputs (Iavarone et al., 2019) to obtain a cortical microcircuit (Markram

et al., 2015). The Human Brain Project is a European-wide initiative aimed at building the

research infrastructure necessary to advance neuroscience, medicine and computing in the

next decade (Markram, 2012). One of the main deliverables of this project is the Brain Simula-

tion Platform, a collaborative platform for the reconstruction and simulation of brain models.

The Allen Institute for Brain Science has recently developed BioNet (Gratiy et al., 2018), a

python framework for describing large-scale neural network experiments using the NEURON

simulator as backend that has been used in a model of layer 4 of mouse visual cortex (Arkhipov

et al., 2018).

Computer simulations are also being used as a primary tool for neuroscientific discovery. The
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transition from sleep to wakefulness (and vice versa) has been analysed using simulations

of computational models (Hill and Tononi, 2005), and more recently by explicitly modelling

neuromodulator release (Bazhenov et al., 2002). Simulations of neuromodulators have also

been used to investigate the relationship between persistent spiking and cognitive tasks in a

computational model of entorhinal cortex (Fransén et al., 2002). The microcircuit described

by Potjans and Diesmann (2012) has been extensively used to study the computational prop-

erties of a cortical column with a focus on learning and neuroplasticity, both in its original

version and as a basis for population models (Cain et al., 2016; Schwalger et al., 2017). Com-

puter models of chemical reaction pathways have been used to investigate the role of specific

signalling molecules in synaptic plasticity (Graupner and Brunel, 2007; Hayer and Bhalla,

2005), while multiscale models have been used to analyse the interactions of different levels

of signalling (Bhalla, 2014b). In addition to publicly funded research institutions, private

companies such as IBM have invested in developing functioning models of brain subsystems,

both to study how synaptic plasticity regulates neuronal responses (Kozloski, 2016; Kozloski

and Cecchi, 2010) and to develop the field of cognitive computing (Modha et al., 2011).

2.2 A structured view of the modelling landscape

2.2.1 A representative collection of in silico models and experiments

Several modelling abstractions and formalisms have been proposed in the literature of brain

tissue simulations, and for each one there can be different algorithms and implementations,

which have in turn been concretised in simulations on different hardware platforms. Upon

close inspection we have identified a collection of representative use cases that captures the

wide variety of cellular-level models in the literature. The identification and codification

of recurring algorithmic patterns was demonstrated successfully in the HPC domain with

Berkeley’s dwarves of computing (see Asanovic et al., 2006, 2009). Their analysis identified

and described twelve recurring computational patterns that can be considered the building

blocks of almost all HPC applications in the literature. This methodology was extended to

other computational fields such as big data (Fox et al., 2014), cloud computing (Phillips et al.,

2011), accelerator-based computing (Krommydas et al., 2016) and automatic symbolic com-

putation (Kaltofen, 2012), while a list of computational motifs in biological neural networks’

architectures was also compiled (Marcus et al., 2014). The review by Brette et al. (2007) applied

a similar approach to neuroscientific use cases, although their focus was on simulator software

and target applications, while ours is a general analysis of the most representative and widely

used models. We introduce below the in silico models and experiments at the basis of our char-

acterisation of the performance landscape. We focus on short to medium length simulations

of brain tissue, excluding long-term plasticity from our analysis. While long duration learning

experiments have a significant interest in the computational neuroscience community, we

narrow our analysis to simulations of the inference dynamics of neuronal circuits comparable

to the work of Markram et al. (2015). This choice still allows us to investigate meaningful

properties of neural network dynamics (see e.g. Brunel, 2000; del Mar Quiroga et al., 2016;
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Figure 2.4 – Summary of in silico models and experiments. Lines connect a model’s name with
its underlying neuron model, synaptic formalism and network topology. Grey lines stemming
from the C2 model were used to avoid intersecting lines that would have hindered the clarity
of the figure.

Markram et al., 2015; Reimann et al., 2013) and circumvents the large degree of complexity

added by the wide variety of long-term plasticity models and simulation experiments (see e.g.

Citri and Malenka, 2008; Frémaux and Gerstner, 2016; Markram et al., 2012; Rennó-Costa et al.,

2019). For each use case we highlight important modelling differences and similarities, and

summarise their main features in Figure 2.4. More information about the numerical values of

model parameters can be found in Table A.1 in Appendix A.

The Brunel model This in silico model is based on a randomly connected network exhibiting

the balanced excitation-inhibition property that can be observed in vivo in the mammalian

cortex (Brunel, 2000). While other connectivity strategies considered here also use random-

ness, the peculiarity of the Brunel model is that it is not constrained by experimental data nor

locality considerations, such that a neuron has equal chance of forming a connection with any

other neuron within the network. It uses the leaky integrate-and-fire model, a phenomeno-

logical point neuron model able to reproduce many types of electric neuronal behaviour,
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coupled with static (and possibly plastic) current-based synapses. We consider here a very

large-scale implementation that served as a proof of concept for the feasibility of human

brain-scale simulations (Helias et al., 2012; Kunkel et al., 2014), although we exclude synaptic

plasticity from their model. This large-scale in silico experiment contained 1.86×109 neurons

and 11.1× 1012 synapses, and was made possible by calculated software design decisions

and optimisations, and a parallel cluster comprising 82944 nodes. It is characterised by a

homogeneous set of parameters across neurons and synapses, large synaptic delays and a

very large number of incoming connections per neuron.

The Spaun model The Spaun in silico model is able to replicate human-like cognitive func-

tions using a spiking neural network (Eliasmith et al., 2012). It is based on the Semantic Pointer

Architecture (MacNeil and Eliasmith, 2011) and the Neural Engineering Framework (Eliasmith

and Anderson, 2004). A recent implementation on the neuromorphic substrate SpiNNaker

was also demonstrated (Mundy, 2016; Mundy et al., 2015). The architecture of Spaun was

inspired by the brain regions observed in the mammalian neocortex, but is ultimately engi-

neered to achieve its cognitive goal. It uses 2.5×106 IAF neurons and 60×109 synapses and

has been shown to learn tasks that require memory, classification and motor control. In terms

of modelling choices, Spaun uses a large time integration step, very lightweight neuron and

synapse models consisting of only a few parameters each and a few readout neurons with

extremely large numbers of incoming connections.

The C2 model This in silico model has been developed as part of the private industry’s

effort to establish itself in the domain of cognitive computing. It achieved a very large scale

simulation of 1.6× 109 neurons and 8.87× 1012 synapses over 147,456 CPUs in Lawrence

Livermore’s National Laboratory’s Dawn Blue Gene/P in 2009 (Ananthanarayanan et al., 2009).

It uses Izhikevic point neuron models (Izhikevich et al., 2004) and synapses with short-term

plasticity, and its connectivity was obtained from the CoCoMac dataset (Bakker et al., 2012)

by extracting connection probabilities. This model is characterised by the elimination of

synchronous, blocking collective communications in favour of asynchronous sending and

receiving of messages (Ananthanarayanan and Modha, 2007).

The Reconstructed model This in silico models is obtained by a detailed reconstruction of

a neocortical microcircuit, i.e. a functional unit of cortical tissue (Markram et al., 2015). This

model uses digitally reconstructed morphologically detailed neurons, with individual models

for ion channels and synapses whose distribution is obtained via a parameter fitting process

to reproduce electrophysiological data. Connectivity is implemented with G-based synapses

with short-term plasticity following the Tsodyks and Markram (1997) formalism, while the

connection probability is given by detecting touches between neurons and filtering them

according to biologically inspired rules (Reimann et al., 2015). This model requires a small time

integration step to properly account for the dynamics of fast ion channel currents. Moreover,
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the distributions of synaptic delays and number of incoming connections are quite dispersed

and exhibit low minimums and large maximums. A large-scale simulation of this model was

achieved using 28,672 CPUs on the Blue Gene/Q system at Jülich in 2015 (Ovcharenko et al.,

2015).

The Simplified model To tame the complexity of the Reconstructed model, a simplified

version was developed with similar connectivity patterns but different neuron and synapse

models (Rössert et al., 2016). In this in silico model, morphologically detailed neurons are

replaced with point generalized integrate-and-fire (GIF) neurons (Pozzorini et al., 2015). While

the G-based formalism for synapses is retained, the number of incoming connections per

neuron is restricted to a fixed number, where different connections are lumped together

according to their synaptic delay and distance from the soma. Thanks to the simplification

process, the timestep of this model can be increased compared to the original Reconstructed

one, and significantly less parameters are required to represent a neuron.

The Auditory model An extension of the Reconstructed model where some dendro-dendritic

connections between cells of the same type – Layer 2/3 Basket Cells – of the neocortex have

been instantiated using electrical synapses (gap junctions) (Amsalem et al., 2016). This study

replicated experimental findings in the auditory cortex that gap junctions affect the selectivity

of interneurons. This in silico model is based on complex morphologically detailed neurons,

and even though an explicit scheme can be used for the propagation of gap junction volt-

ages without introducing numerical instability, it requires a synchronization barrier at every

timestep.

We identify three main modelling families which contain all the in silico models cited above.

The Brunel, Spaun and C2 all fall under the category of I-based point neuron models. They

distinguish themselves based on the strategy for determining connectivity, but in terms of

overall algorithm structure they can be considered equivalent. For reference, the microcircuit

proposed by Potjans and Diesmann (2012) also belongs to this category. The Simplified model

is, to our knowledge, the only large-scale example of G-based point neuron in silico experiment.

Finally, the third category comprising the Reconstructed and Auditory models is the family of

G-based morphologically detailed abstractions. In this case, the difference between the two

models is simply the presence of electrical synapses, which determines a slight modification

in the interprocess communication patterns. These modelling families will constitute the

backbone of our performance analysis, and we summarise in Table 2.1 the main features of

each one.
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Table 2.1 – Summary of main algorithmic features.

point I-based point G-based detailed G-based

spike delivery update neuron
Isyn

update synapse
gsyn

update synapse
gsyn

current contribu-
tions

precomputed Isyn update Isyn, Iion

using Ohm’s
law A.5

update Isyn, Iion

of relevant matrix
element

voltage update solve small sys-
tem of ODE with
at most four equa-
tions

solve small sys-
tem of ODE with
at most four equa-
tions

invert linear sys-
tem matrix in
O(n) time using
Hines algorithm

ion channel and
synapse state up-
date

exponential de-
cay of Isyn

solve an ODE per
synapse instance

solve an ODE per
ion channel and
synapse instance

spike exchange delayed interpro-
cess communica-
tion every δmin

delayed interpro-
cess communica-
tion every δmin

delayed interpro-
cess communica-
tion every δmin

We summarise here the main algorithmic features of point I-based, point G-based and
detailed G-based algorithms. While a detailed I-based modelling of neurons could in
theory exist, it is not present in our list of in silico models and experiments and we are
not aware of any publications using it. These three formalisms represent the backbone
of all in silico models and experiments, but many variations exist, namely in the way
the communication phase is implemented. In the case of gap junctions, for example,
an additional communication phase is required at every time step. Another possibility
that has been explored in the literature is to abandon the event-driven representation of
synapses altogether, and model them as a continuously active process whose current
depends on the voltage of the presynaptic neuron (Kozloski and Wagner, 2011).
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2.2.2 Hardware-agnostic performance metrics

We now introduce a framework for characterising brain tissue simulations based on their

performance properties. Our approach is based on a set of hardware-agnostic metrics that

capture essential performance properties at the intersection between models and hardware.

The technique of using metrics to characterise applications has been widely used in studying

performance. A study focused on parallel applications identified a group of eleven metrics di-

vided in three categories: computation, communication and synchronization (Van Amesfoort

et al., 2010; van Amesfoort et al., 2012). Examples of such metrics include Arithmetic Intensity,

Memory Footprint, Length of Communication Messages, Number of Global Synchronizations,

and others. Other sets of partially overlapping metrics have been proposed (see e.g. Hoste and

Eeckhout, 2007; Strohmaier and Shan, 2004; Treibig et al., 2012). Finally, metrics have also

been applied to the assessment of high-performance computer systems and cloud infrastruc-

ture (see e.g. Furlani et al., 2013; Rodrigues et al., 2015). Our work distinguishes itself from

previous research because we propose a set of hardware-agnostic metrics based on extensive

use of domain knowledge. Our purpose is to provide a common tool that can be understood

and utilized by both computational neuroscientists and HPC developers.

Our framework projects the computational costs on three orthogonal dimensions: Memory,

Information Propagation and Sequential axis. In the first dimension, we consider aspects of

the model that can affect the memory footprint such as the number of parameters and degrees

of freedom required to represent a neuron. In the second dimension, we consider aspects tied

to communication of information between neurons, which can be related to hardware features

such as interconnect latency and bandwidth in a distributed network. Taking the point of

view of a connection, we consider properties such as how many times it can carry information

during one sequential iteration, how much information it carries and the topological structure

of the network connectivity. Finally, in the third dimension of computational complexity, we

consider aspects tied to sequential iterations which can be related to hardware features such

as single node performance, processor frequency and memory bandwidth.

Characterisation of the memory requirements of the elementary unit A first source of

complexity for neural networks arises from the memory requirements of the very large models

being used. As a first metric, we report the number of variables required to represent a single

unit of computation, namely one neuron and its connections, considering all the degrees

of freedom such as the membrane potential as well as the read-only parameters such as

time constants. We break down the unit size along three dimensions: number of variables to

represent a disconnected neuron (vars per neuron), number of variables to represent a single

connection (vars per connection), and number of connections per neuron (connections per

neuron). Each of these dimensions can have heterogeneity within a model so we report mean,

standard deviation and maximum values in Figure 2.5. Analysis of the neuron size in Figure 2.5

shows a clear trend: as more and more biological detail is included in the model, more variables

are required to represent neurons’ activation functions, but also more heterogeneity between
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Figure 2.5 – Breakdown of the unit size metric. This metric captures the memory footprint of
in silico models, broken down in three components: number of variables to represent a single
neuron (excluding synaptic connections), number of variables to represent a connection, and
number of connections per neuron. Orange dots represent mean values, red bars represent
standard deviation and green dots represent maximal values. The blue lines represent actual
samples from the model. Statistical distribution data was missing for the C2 model.

neuron models is observed. Moreover, we identify characteristics that are representative of

classes of models. Point neuron models are characterised by simple neurons and slightly more

complex synapses, and by a large number of connections per neuron but with a relatively

low heterogeneity. The Spaun model represents an extremal example with simple neurons

and very simple synapses and an extremely large number of connections per neuron. Finally,

detailed models are characterised by complex neurons, complex synapses and a medium-large

number of connections per neuron, with a high heterogeneity.

Characterization of parallel information propagation patterns We now consider the com-

putational costs associated with weak scaling and distributed architectures. We conduct our

analysis along three dimensions: how often, how much and to whom do neurons need to

communicate information. With a few notable exceptions (see e.g. Kozloski and Wagner,

2011) almost all the in silico models exploit synaptic delays to decouple communication and

computation (Plesser et al., 2007). To capture this property we define the coupling ratio in

Figure 2.6 as the ratio of the minimum network delay to the simulation timestep, i.e. δmin
∆t .

Secondly, we define the information transmitted by a connection in Figure 2.6 as the number of

variables being transmitted on average by a connection during a mindelay period, computed

by the formula f ×δmin × s, where f is the average firing frequency of neurons and s is the

number of variables to represent a spike. It is possible to estimate the number of variables

communicated per iteration with the formula coupling ratio × information transmitted by

a connection. As a third dimension of interest, we consider the structural topology of the

analysed networks. We compute the small-worldliness degree as defined by Humphries and
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Figure 2.6 – Information sharing metrics. A: Coupling ratio denotes the number of simulation
timesteps before a global synchronization point. B: Information transmitted by a connec-
tion the average number of variables transmitted via a connection during one minimum
delay period. C: Small-worldliness degree a value of 1 indicates random networks, large
values denote small-world networks. The asterisk in the C2 label indicates that the necessary
data was not available to us, so instead we took the reported values for the macaque cortex
from (Humphries and Gurney, 2008).

Gurney (2008): this value is equal to 1 for purely random networks, and becomes larger than 1

for networks exhibiting small-world characteristics (Watts and Strogatz, 1998).

Characterization of serial iterations We consider here sources of complexity that become

relevant in a strong scaling scenario, by looking at the serial timestepping iterations. There

are two ways in which the sequential complexity of a model can be reduced: by reducing the

number of iterations or by reducing the cost of a single iteration. We start by defining the

sequential compressibility limit in Figure 2.7 as the inverse of the timestep 1
∆t , i.e. the number

of iterations required to simulate one second of model time. Ideally we would continue by

counting the number of operations required to fully complete an iteration on a single neuron,

and use that as our second metric. Unfortunately, this value is ill-defined because the resolu-

tion of differential equations in the neuron and synapse models requires complex numerical

methods often based on non-elementary mathematical operations such as exponentials and

divisions. Instead, we define the iteration compressibility limit in Figure 2.7 as the number

of variables updated per neuron during an iteration and distinguish between clock-driven

and event-driven updates (Brette et al., 2007). It is possible to estimate the total sequential

computational cost by multiplying the sequential compressibility limit times the iteration

compressibility limit.
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Figure 2.7 – Serial iterations metrics. A: Sequential compressibility limit denotes the number
of time iterations required to simulate one second of biological time. B: Iteration compress-
ibility limit denotes the number of degrees of freedom updated in a δmin interval. Blue bars
represent clock-driven updates, orange bars represent (average) event-driven updates.

2.2.3 Characterization of modelling approaches

Analysis of the hardware-agnostic metrics allows us to characterise in silico models and experi-

ments based on their profile. For example, the Reconstructed model (Markram et al., 2015) has

a low coupling ratio (see Figure 2.6) and has very computationally-intensive neuron models

(see Figure 2.7). This makes it a good candidate for weak scaling on conventional distributed

architectures as demonstrated by its good weak scaling efficiency on the BlueGene/Q super-

computer (Ovcharenko et al., 2015). On the other hand, point neuron models were shown to

be communication bound (Ananthanarayanan and Modha, 2007), as can be inferred within

our framework from comparing the low-complexity neuron models in Figure 2.7 to the high

communication requirements in Figure 2.6, especially for the Brunel model. Our metrics

capture the fact that the Spaun and C2 models are characterised by predominantly event-

driven computations, high communication requirements and low heterogeneity between

neuron models, making them a good candidate for neuromorphic architectures (Cassidy et al.,

2014; Mundy et al., 2015). However, the implementation of these models on neuromorphic

frameworks is not always trivial and special techniques such as matrix rank factorization may

be required in order to overcome hardware limitations imposed on models with very high

connectivity such as Spaun (Mundy et al., 2015). A non-trivial finding that arises from our

analysis is the peculiarity of Spaun’s connectivity profile: it shares characteristics with artificial

neural networks (high connectivity readout neurons) and reconstructed biological neural

networks (small world network with large clustering coefficient). This connectivity profile may

explain the model’s ability to reproduce cognitive behaviour using biologically inspired neuron

and synapse models. We also observe that seemingly small changes to a model, for example

the addition of gap junctions, can also have a great impact in the communication pattern by

breaking the loosely-coupledness aspect as shown in Figure 2.6, and has lead researchers to

investigate novel algorithmic solutions to recover the communication pattern (Hahne et al.,
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2015).

From the point of view of computational costs, the explicit modelling of time sets a require-

ment on the number of iterations to complete one simulation because of the numerical

discretisation (see Figure 2.7), a limit that cannot be improved via strong scaling of hardware

resources, thus imposing a hard limit to real-time simulations (Zenke and Gerstner, 2014).

An interesting finding that arises from our analysis is the fact that simple models exhibit a

low sequential compressibility limit, a characteristic that could potentially confer them better

strong-scaling properties than detailed, reconstructed networks, which on the other hand

perform better in weak-scaling scenarios. Moreover, the spike formalism enables event-driven

simulations (Brette et al., 2007), and models that exploit event-driven algorithms will gen-

erally have a computational cost that scales with the network activity (Ananthanarayanan

and Modha, 2007), an effect that can be especially prominent on a SIMD architecture (Yavuz

et al., 2016). We work on the assumption that due to its regularity a mainly clock-driven algo-

rithm, on the other hand, does not require low-latency context switching, nor very powerful

branch prediction, nor complex control structures in hardware, and is therefore amenable

to an efficient implementation using throughput-optimized hardware. Furthermore, models

dominated by event-driven computations may be a good candidate for highly parallel, low

latency neuromorphic systems (Cassidy et al., 2014).

We have tried to include as many modelling abstractions and simulation strategies as possible

in our collection of in silico models and experiments, but ultimately were forced to exclude

some of them. Models of long-term synaptic plasticity would provide a complementary view of

the modelling strategies and computational properties in brain tissue simulations. The unpre-

dictable distribution of timesteps in adaptive timestepping methods (Lytton and Hines, 2005)

makes them particularly difficult to model within our framework, although they have been

shown to yield higher numerical accuracy and important performance benefits (Magalhaes

et al., 2019c). Spatial decomposition methods (Kozloski and Wagner, 2011) discard the event-

driven component entirely by explicitly modelling axonal transmission and synaptic boutons,

thus making them unfit for our metrics. Finally, including artificial neural networks (LeCun

et al., 2015; Schmidhuber, 2015) in our in silico models and experiments would give give an

interesting comparison in terms of performance requirements.

Our approach combining the categorisation of in silico models and experiments based on

their algorithmic properties with hardware-agnostic metrics that capture fundamental perfor-

mance properties has enabled us to obtain a structured characterisation of the heterogeneous

literature of brain tissue simulations. However, hardware-agnostic metrics lack a direct con-

nection with hardware features. Building on the insight and characterisation gained from our

hardware-agnostic analysis, we leverage analytic performance models as a bridge between

biological abstractions and hardware to obtain quantitative insight and predictions on the

performance of in silico models and experiments.
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2.3 State of the art in analytic performance modelling

Performance modelling is an empirical and theoretical effort to abstract relevant hardware and

software properties to obtain insight on the runtime and bottlenecks of a given application.

Its main goal has been stated to be “to maximise the amount of completed science per cost

and time unit” (Hoefler et al., 2011, p.2). Performance modelling can have different targets,

from optimising an application’s runtime, or tuning scheduling policies, to codesigning cus-

tom hardware. Moreover, it can be applied at different stages in the lifetime of a computer

system, from its design, deployment, testing and maintenance. Other computational sciences

have benefited from performance modelling, allowing to: assess and improve the resource

consumption and scalability of user applications (Balsamo et al., 2004); assess and improve

the scalability of third-party libraries (Shudler et al., 2015); establish a mapping of software

and hardware architectures to maximise performance (Narayanan and Seznec, 2015); drive

hardware purchase decisions (Calotoiu et al., 2013); drive hardware codesign (Navaridas et al.,

2012).

Performance models are often categorised in two main classes: black-box and white-box

approaches. Black-box models, based on the paradigm that the performance model should

ideally be unaware of the code and the underlying platform, have been developed to obtain

performance predictions even when detailed knowledge about the hardware or software is

lacking. Catwalk (Calotoiu et al., 2013; Wolf et al., 2014) is a black-box model based on interpo-

lating measured performance points with a set of model families and comparing the best fit to

the scaling expectations defined by the user, with the ultimate goal of detecting performance

bugs. Other researchers have proposed instead to use machine learning methods to predict

the performance based on many collected data points (Ipek et al., 2005; Lee et al., 2007).

Black-box models have a wide range of applicability, but wrong predictions may be rooted in

inappropriate fitting procedures and do not necessarily lead directly to better insight through

inference. White-box models, on the other hand, are based on known technical details of the

hardware and some assumptions about how the software executes. A widely known example

of a white-box approach is the Roofline model (Williams et al., 2009) but other approaches

exist (Herodotou, 2011; Velez et al., 2019). White-box models offer insight through failure, by

which a performance-aware developer can infer the presence of a performance bug by com-

paring the idealised expected performance of their program with the measurements. However,

white-box models can be quite difficult to apply to real-world applications with complex

behaviours, and it can also be difficult to distinguish situations in which the application has a

performance bug to situations in which the model is too idealized.

2.3.1 Performance modelling of single-node shared-memory applications

Memory bandwidth represents a bottleneck in parallel scaling of shared-memory applica-

tions when the rate of data transfer from main memory is much lower than the rate of data

consumption by the processor cores (Kagi et al., 1996). This represents a trade-off in terms
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of optimisation: one must be aware of the data requirements of the application to avoid

inefficient usage of hardware resources (Bailey et al., 2010; Hager and Wellein, 2010). A review

of shared-memory performance modelling compared several approaches but did not include

modern architectures and optimisations (Nechvatal, 1988) . To evaluate the cost of a shared

memory bus an analytic approach based on mean value analysis combined with simulation of

a processor with Instruction Level Parallelism (ILP) capabilities has been used (Sorin et al.,

2003, 1998), while an approach based on Petri nets allowed to explicitly model the mismatch

between processor and memory performance (Zuberek, 2018). Another analytic performance

model based on mean value analysis showed that memory contention represents an impor-

tant bottleneck in single-threaded applications with large memory requirements (Bardhan

and Menascé, 2014). Finally, the tradeoff between maximising resource usage and meeting

individual applications’ performance goals has been studied (Chen et al., 2012) and an analytic

performance model for caches based on queuing theory and application tracing has been

proposed (Agarwal et al., 1989).

Microarchitectural features of the CPU determine the maximum instruction throughput

that it can sustain. Optimizations such as pipelining, superscalar architecture, out-of-order

scheduling, speculative execution, etc. have sustained a constant growth in the performance

of CPUs (Hager and Wellein, 2010; Hennessy and Patterson, 2011). Given the complexity of

execution paths in modern CPU architectures, few attempts at analytic modelling have been

made. A very detailed model was developed to assist in the evaluation of design tradeoffs for

superscalar processors (Dubey et al., 1991), while the tradeoffs of out-of-order and in-order ex-

ecution and codesign tradeoffs in the power/performance design space have been investigated

based on insights from analytic modelling (Breughe et al., 2015; Esmaeilzadeh et al., 2012).

Focusing on the performance-critic exponential function, our work investigated the relation-

ship between polynomial evaluation algorithms and microarchitectural features (Ewart et al.,

2019). We were able to demonstrate that the latency and throughput of the exponential based

on simple algorithms could be captured by an analytic formula, but in the general case it was

impossible to establish a direct relationship between an algorithm’s set of instructions and its

performance characteristics. Due to the difficulty of capturing all the features of superscalar,

out-of-order processors in an analytic formula, cycle-accurate simulators such as RSIM (Pai

et al., 1997), SimpleScalar (Burger et al., 1996) and FastSim (Schnarr and Larus, 1998) have

been developed.

The analytic performance models mentioned above require extensive parametrization and

modelling efforts to deliver highly accurate performance predictions. While high accuracy is a

desirable property, the complexity of these models often leads to loss of interpretability and

generality. Other efforts have focused instead on clarity and explainability, for example using

a simple model to understand the cost of memory latency and bandwidth in big data applica-

tions (Clapp et al., 2015), or a more complex analytical model to explore the power limitations

in future multicore architectures (Esmaeilzadeh et al., 2012). The Roofline model (Williams

et al., 2009) is perhaps the most prominent example of white-box approaches focused on

simplicity. We give a brief introduction to this performance model in Appendix B.1.1. The
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Roofline model was recently used to show that artificial neural networks are heavily compute-

bound (Castelló et al., 2019). We applied the Roofline model to the Blue Gene/Q and IBM

Power 8 architecture and found that G-based current kernels in a detailed morphology model

were bounded by memory bandwidth, while the analysis for state kernels did not reach a

satisfying conclusion (Ewart et al., 2015; Ovcharenko et al., 2015). The ECM model (Hofmann

et al., 2017; Treibig and Hager, 2010) has a similar strategy of prioritizing inference over predic-

tion capability, but introduces several optimisations that make it more suitable for streaming

kernels. All our shared-memory performance models will be based on the ECM formalism,

which we describe in detail in Section 3.1 and Appendix.

2.3.2 Performance modelling of distributed applications

A common way to enhance the performance of simulations of brain tissue is to implement

a distributed algorithm. This simulation strategy allows one to distribute the dataset (i.e.

the neurons) over multiple compute nodes without a shared physical memory. Distributed

compute nodes, often referred to as ranks, can exchange information through message pass-

ing, a paradigm by which any compute node is allowed to send packets of information to

any other compute node through a shared network connection. In this work we focus on

implementations based on the Message Passing Interface (MPI) programming model, as it

reflects the de facto standard in the HPC community. The process of sending a message across

the network involves several steps, e.g. copying data to the network card, contacting the

switches, routing the message through several hops in the network, ensuring the receiver is

ready, and many others. All these steps have a performance cost associated with them, which

represents a trade-off with the benefits gained from the parallelism enabled by distributed

simulation approaches. Several approaches to modelling the performance of message-passing

communication based on the classification of recurring patterns have been proposed (see e.g.

Fortune and Wyllie, 1978; Karp and Ramachandran, 1990). While the characterisation of the

type of communication pattern is an essential step in understanding the performance, is not

sufficient to provide a quantitative prediction.

A fully black-box empirical approach enabled accurate performance predictions of MPI com-

munication runtime at the cost of forfeiting an explicit, explainable connection with the

underlying hardware (Calotoiu et al., 2013). This approach is based on automatically generat-

ing a scaling model by interpolating benchmark data with a set of candidate scaling functions,

and considering that the best fit represents the scaling behaviour of that subroutine. While

it has been demonstrated that this method possesses an excellent accuracy and generalizes

well to large scales, it lacks in explainability, for example in relating the values of the fitted

parameters to hardware characteristics. Other models based on interpolation have been

proposed, with similar advantages and drawbacks (Kerbyson et al., 2001; Martinez et al., 2010).

At extremely large scales, subtle properties of the networking hardware and software can

become bottlenecks, such as the maximum injection rate, the network contention, synchro-
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nization delays and others. In these cases, a very detailed modelling of every phase in the

communication process could be warranted. Approaches based on Discrete Event Simula-

tion (DES) have been developed which take as input the communication pattern and several

hardware parameters such as the network topology or the connection bandwidth, and output

a runtime prediction. Typically such models are implemented within the framework of a

simulator software, because it is often infeasible to perform the necessary calculations by

hand. Examples of such performance simulators include Performance Prophet (Pllana and

Fahringer, 2005), POSE (Wilmarth et al., 2005), the more recent CODES (Mubarak et al., 2016)

and others. While such methods provide a powerful predictive tool and explicitly take into

account hardware features, they do not produce as output an analytic expression, thus once

again hindering the explainability and interpretability of the results.

The SLOWER model is an example of an analytic approach focused on extreme scale simu-

lations (Sterling et al., 2014). In SLOWER, performance is modelled as the product of four

factors: efficiency, scalability, serial performance and rate of failure of resources. Another

example is the PAL model, based on both architecture specifications and synthetic bench-

marks (Kerbyson et al., 2001). Analytic performance models based on queueing theory have

been used to model client-server interactions (Petriu et al., 1994), to predict load imbalance in

workloads with a random component (Haring and Lüthi, 1996), to account for failure of proces-

sors (Weerasinghe et al., 2002) and to assess the cost/performance tradeoff intrinsic to parallel

simulations (Falsafi and Wood, 1997) Most of these models require excessive parametrization,

do not target the level of granularity of interest to us or are too specific to the target application.

To model the performance of interprocess communication in this thesis we use the LogGP

formalism (Alexandrov et al., 1997), which we explain in detail in Section 3.2 and Appendix B.4.

2.4 State of the art in empirical performance analysis of brain sim-

ulations

Performance analysis of in silico neuroscience simulations is an important topic of research,

and has the potential to affect the feasibility and our understanding of future brain simula-

tions (Einevoll et al., 2019). The fact that brain tissue is composed of millions of physically

and logically separate entities (neurons) that communicate through brief bursts of neuro-

transmitter release makes brain tissue simulations the ideal candidate for distributed memory

computing. Distributed memory parallelism has been implemented in all brain tissue sim-

ulation software packages (see e.g. Akar et al., 2019a; Ananthanarayanan and Modha, 2007;

Goddard and Hood, 1997; Kozloski and Wagner, 2011; Kumbhar et al., 2019b; Migliore et al.,

2006; Plesser et al., 2007; Zenke and Gerstner, 2014). In scaling to very large networks of

neurons, in silico neuroscientists soon realized that the interprocess communication was

becoming an important bottleneck, so simulation strategies using non-blocking communica-

tion (Ananthanarayanan and Modha, 2007), explicit-implicit numerical schemes (Kozloski

and Wagner, 2011) and selective sending (Hines et al., 2011) were introduced. The topic

of scalability is still being actively discussed now (Fernandez Musoles et al., 2019; Simula
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et al., 2019). A recent study on the theoretical limits of scalability concluded that brain-scale

simulations could be impossible on processor-based simulators (Végh, 2019). Finally, more

efficient representations of the connection infrastructure (Jordan et al., 2018; Kunkel et al.,

2014) and techniques for assembling the network in parallel (Ippen et al., 2017) have proven

to be essential in scaling simulation code to petascale and exascale regimes.

In the shared-memory framework, parallel threads execute the simulation algorithm con-

currently while having access to the same memory locations. Hybrid-parallelism, i.e. both

distributed and shared memory, is implemented into all state of the art simulators (Akar et al.,

2019a; Kumbhar et al., 2019b; Migliore et al., 2006; Plesser et al., 2007; Zenke and Gerstner,

2014), while few projects only support shared-memory parallelism (Stimberg et al., 2014; Vitay

et al., 2015). Shared-memory performance is of great interest in many use cases, ranging

from embarrassingly parallel parameter fitting experiments in detailed neurons (Bhalla and

Bower, 1993; Van Geit et al., 2016), simulations of medium-sized plastic networks (Zenke

and Gerstner, 2014), large-scale simulations of point neurons (Kunkel and Schenck, 2017)

and code-generation for detailed kernels (Kumbhar et al., 2019a). Since memory bandwidth

is a shared resource, as the parallelism increases it has the potential of becoming a bottle-

neck. For point neuron simulations memory bandwidth was shown to be a major factor for

performance and it was speculated to impose a severe limit to the strong scaling of plastic net-

works (Fox, 2013; Zenke and Gerstner, 2014). For compartmental neurons, their large memory

traffic requirements entail that they are particularly affected by bandwidth saturation (see

e.g. Kumbhar et al., 2019a,b), even in the case of sub-neuron level parallelism (Eichner et al.,

2009).

As a preliminary empirical shared-memory performance study, we investigated the impact of

the balance between memory bandwidth and computational requirements of detailed neuron

simulations on IBM’s Power8 architecture (Ewart et al., 2015). Our study found that over 80% of

runtime was spent in computing the states and currents of ion channels and synapses, but that

the performance profiles of these kernels was highly variable. We observed that peak Gflop/s

performance could not be achieved on any kernel type, but while for current kernels we could

impute this to a saturation of the memory bandwidth when using shared-memory parallelism,

it remained unclear why the peak performance of state kernels could not be achieved.

Modern CPU architectures expose yet another level of parallelism at the core-level, in the form

of Single Instruction Multiple Data (SIMD) vector units. Such units can perform multiples of

the same instruction concurrently and within the domain of high-performance computing are

often used to speed-up floating point operations. An analysis of the benefits of vectorisation

has been carried out for multiple modern hardware architectures in the context of morpho-

logically detailed models, showing that enforcing vectorisation with code generation can

give great benefits in terms of performance even over auto-vectorized code (Kumbhar et al.,

2019a). The kernels considered in their analysis, typical of the G-based formalism, represent

a large factor of the overall performance of morphologically detailed neurons and, due to

their intrinsic structure, are easily amenable to vectorisation. For point neuron simulations,
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significant speedup of the vectorized implementation over the scalar version can be obtained

although in this case significant programming effort was needed to conceive data structures

that allowed efficient vectorisation, in particular for handling of synaptic events (Brette and

Goodman, 2011). Strong scaling can be further improved in morphologically detailed models

by splitting neuron chunks across different parallel threads or processes (Eichner et al., 2009;

Hines et al., 2008). More recently a dramatic strong scaling speedup was obtained by exploiting

asynchronous execution and a per-neuron minimum communication delay (Magalhães and

Schürmann, 2019; Magalhaes et al., 2019a,b). Finally, modern CPUs are capable of improving

performance using hardware level optimisations such as Out-of-Order (OoO) scheduling,

Instruction Level Parallelism (ILP) and speculative execution (Hager and Wellein, 2010).

As hardware accelerators, specifically General Purpose Graphical Processing Units (GPGPUs),

have become more widespread and easier to program, several simulators have tried to leverage

the potentially large speedup promised by such devices, notably the NeMo library (Fidjeland

et al., 2009), the code generation framework GeNN (Yavuz et al., 2016), aNNarchy (Vitay

et al., 2015), and others (Scorcioni, 2010; Wang et al., 2011; Yudanov et al., 2010). We refer

the interested reader to (Brette and Goodman, 2012) for a review of the state of the art. The

performance analysis by Zenke and Gerstner (2014), despite being focused on a CPU imple-

mentation, concluded that accelerators or specialized hardware will be necessary to enable

real-time simulations of medium-sized networks of plastic neurons. However, although GPG-

PUs posses very general computing capabilities, their efficient execution relies on specific

programming and data access patterns, making them best suited to SIMD operations on

coalesced data. Simulations on GPGPUs outperform their CPU equivalent for medium-sized

networks, but not for small networks nor for very large ones (Yavuz et al., 2016). Moreover, the

GPGPU speedup obtained on the more computationally intensive Hodgkin-Huxley model

was larger than the speedup for the simpler Izhikevic model, and spiking activity also played a

role, with quiet networks being most suitable for GPGPUs while irregularly firing networks

yielding less performance improvement than expected (Yavuz et al., 2016). Other types of

accelerators have been considered in simulation neuroscience, from co-processors such as

Intel’s Xeon Phi (Kumbhar et al., 2016) to Field Programmable Gate Arrays (FPGAs) (Cheung

et al., 2012; Renaud-Le Masson et al., 2004). Such works are still in a preliminary exploratory

phase, and although systematic reviews are being conducted (see e.g. Maguire et al., 2007) it

remains unclear what are the best simulation strategies to fully exploit such heterogeneous

architectures.

All the simulation examples presented so far have been executed on either general-purpose

computers or hardware accelerators. In both cases, the underlying architecture has been

inspired by the seminal work of Von Neumann (1993), who defined a fetch-decode-execute

cycle where both the program and the data would be stored in a memory unit, conceptu-

ally and physically separated from the processing unit. This approach suffers from the so

called von Neumann bottleneck (Backus, 1978), which consists of the fact that performance

is dominated by the limited data transfer rate between the processing unit and the memory,

compared to the amount of memory required for the execution. Inspired by the massively
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parallel processing architecture of the brain researchers have developed neuromorphic archi-

tectures capable of solving several computing problems at high performance and low energy

consumption (Indiveri et al., 2011; Nelson and Bower, 1990; Thakur et al., 2018; Zeki, 2015).

Two approaches have demonstrated successful applications in the literature: the digital and

the analogue approach. In the digital approach, a massively parallel architecture of relatively

simple, low-energy digital cores is used. It should be noted that individual cores in this config-

uration typically still respect the von Neumann paradigm, while it is the massively parallel and

asynchronous nature of the whole architecture that distinguished it from conventional ap-

proaches. One of the main proponents of the digital neuromorphic strategy is the SpiNNaker

project (Sharp et al., 2011), which has been successfully applied to the simulation of a neural

microcircuit composed of 80,000 neurons and 0.3 billion synapses (van Albada et al., 2018).

However, a recent study concluded that careful GPGPUs implementations could compete with

digital neuromorphic hardware in terms of energy consumption and performance, while HPC

clusters remained the highest-performance but most energy demanding solution (Knight and

Nowotny, 2018). Industrial research centres have also been interested in digital neuromorphic

computing, such as IBM’s TrueNorth chip, able to deliver a real-time simulation of 1 million

neurons, 256 million synapses with an extremely low energy consumption (Cassidy et al., 2016,

2014) and Intel’s Loihi chip (Denton et al., 2014), even though these efforts are more often

aimed at solving machine learning tasks rather than simulating brain microcircuits. Analogue

neuromorphic chips take the complementary approach of trying to emulate electrophysi-

ological behaviours with electronic chips. The Spikey chip (Pfeil et al., 2013), based on an

analogue representation of neural circuits, was able to achieve simulations faster than real

time by a 103 factor (Wunderlich et al., 2018). Using a mixed analogue-digital approach, the

Neurogrid (Benjamin et al., 2014) project achieved a real-time simulation of 1 million neurons,

1 billion synapses consuming just under 3 W of power.
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neuron simulations

The contents of this chapter and related appendix are adapted from the following publi-

cations:

Francesco Cremonesi, Georg Hager, Gerhard Wellein, and Felix Schürmann. Analytic

performance modeling and analysis of detailed neuron simulations. The International

Journal of High Performance Computing Applications, 2019a. In review

Francesco Cremonesi and Felix Schürmann. Telling neuronal apples from oranges: ana-

lytical performance modeling of neural tissue simulations. Neuroinformatics, 2019. In

review

and include figures from

Timothée Ewart, Stuart Yates, Francesco Cremonesi, Pramod Kumbhar, Felix Schürmann,

and Fabien Delalondre. Performance evaluation of the IBM POWER8 architecture to sup-

port computational neuroscientific application using morphologically detailed neurons.

In Proc. 6th Int. Workshop on Perfomance Modeling, Benchmarking, and Simulation of

High Performance Computing Systems. ACM, 2015

Timothée Ewart, Francesco Cremonesi, Felix Schürmann, and Fabien Delalondre. Polyno-

mial evaluation on superscalar architecture, applied to the elementary function ex . ACM

Transactions on Mathematical Software (TOMS), 2019. In review

We have identified performance modelling as a tool to create a bridge between our descriptions

of in silico models’ algorithms and hardware properties. Our ultimate goal is to produce an

analytic method able to predict the performance of a given simulation, but we believe that the

challenges encountered in the process of building such a model represent an important driver

to advance our understanding of the relationship between hardware, modelling abstractions,

algorithms and performance. Therefore we present in this chapter the performance modelling

methods that we have developed and the challenges we encountered in understanding the

computational characteristics of brain tissue simulations. We divide our exposition in two
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main sections: modelling of the shared-memory execution and modelling of the interprocess

communication algorithm. As reference hardware architecture we consider the state-of-the-

art HPC cluster available to the Blue Brain Project composed of Intel Skylake nodes connected

via an Infiniband EDR fabric. An ECM model of the Skylake architecture had never been

published before. Our main contribution is the first analytic performance model of brain

tissue simulation algorithms able to cover multiple modelling abstractions as well as provide a

direct explanation of the relationship with hardware properties.

3.1 Analytic performance modelling of shared-memory brain tis-

sue simulation kernels

Among all the performance models we reviewed, we identify the Execution-Cache-Memory

(ECM) as providing the level of granularity and accuracy that best suits our needs. However,

several challenges prevent us from blindly applying the model as-is to our kernels. After a brief

introduction to the core formalism of the ECM model and to the relevant hardware features of

our reference architecture, we review these challenges and explain the process of extension

and validation required to understand the shared-memory performance of in silico models

and experiments. For a detailed explanation of the foundations of the ECM model, we invite

the interested reader to consult Appendix B.1.

Core concepts of the ECM formalism The ECM model uses a grey-box mixed approach com-

bining an analytic formulation with some phenomenological input, and outputs a runtime

prediction at the granularity of individual clock cycles (Treibig and Hager, 2010). Since its

introduction it has been refined and validated on modern Intel and AMD multicore architec-

tures (Hofmann et al., 2017, 2018; Stengel et al., 2015). To compute the ECM performance

model for serial execution one must first define several contributions to the runtime of a

given loop, such as: the in-core execution time assuming data is already loaded in registers

TOL , the time needed to load data into registers from the L1 cache TnOL , the data traffic time

between caches TL1L2,TL2L3 and the data traffic time from main memory TL3Mem . Data traffic

times are usually computed combining an estimation of the data traffic with the bandwidth of

the relevant data link. TOL and TnOL , on the other hand, can be computed by hand but are

typically extracted using code analysis tools such as Intel’s IACA (Intel, 2017). See Appendix B.1

for details. These contributions must be combined to obtain two quantities: Tcor e and Td at a ,

representing the time that the loop would spend in core execution if data were instantaneously

available, and the time required to move the data across the memory hierarchy, respectively.

One of the core assumptions of the ECM model is that these two quantities can overlap,

therefore single-thread runtime predictions can be obtained using the formula

T = max (Tcor e ,Td at a) . (3.1)
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Two shorthand notations are used to simplify the presentation of the model, one for the

individual contributions

{TOL ‖TnOL |TL1L2 |TL2L3 |TL3Mem} , (3.2)

and one for the runtime prediction, assuming that the dataset fits in different levels of the

cache hierarchy{
T L1 eT L2 eT L3 eT Mem

}
. (3.3)

The ECM model is based on the full-throughput assumption, thus neglecting any latency

effects in the execution. This assumption greatly simplifies the analysis by removing the need

for an extremely detailed understanding of the execution flow while at the same time providing

insight through failure for situations in which the program execution is the bottleneck. In this

context, a particular kernel will be categorised a core-bound if Tcor e > Td at a , and data-bound

otherwise. Note that these definitions apply to the serial execution. To obtain a performance

prediction for parallel execution, the ECM model assumes that performance scales linearly

with the number of threads, until a bottleneck from a shared serial resource is used, typically

the memory interface (Hofmann et al., 2015). The ECM also provides a formula for computing

the saturation point, i.e. the number of shared memory threads at which saturation of the

memory bandwidth occurs for a given kernel. Details for computing the ECM model for both

the serial and parallel execution, as well as for computing several quantities of interest from

the ECM model contributions, are provided in Appendix B.1.

Reference architecture: Skylake AVX512 Our reference architecture is the Intel(R) Xeon(R)

Gold 6140 Skylake processor, whose most salient characteristics are presented in Table 3.1.

The Intel Skylake (SKX) architecture presents a few peculiarities that had never been ac-

counted for in an ECM model before our work. Aside from microarchitectural features, the

two main novelties were the AVX512 vector registers and the L3 victim cache. We provide in

Appendix B.2 a detailed explanation of the necessary steps to extend the ECM model to this

new architecture. For validation and benchmarking we use the CoreNEURON implementation

as reference (Kumbhar et al., 2019b). To measure relevant performance metrics such as data

transfer through the memory hierarchy we used the likwid−perfctr tool from the well-established

LIKWID framework (Gruber et al., 2018; Treibig et al., 2010). All the benchmarks in the rest of

this work were executed multiple times under the same conditions (typically around 10 runs),

and we define the error (or margin of error) as:

error = 100×
∣∣predicted−median(measured)

∣∣
median(measured)

, (3.4)

where the median is taken over the benchmark runs. While this definition of error is the most

natural choice from a performance modelling perspective, we note that other definitions such

as e.g. based on the maximum difference might be more suitable to time-critical applications.
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value unit

CPU freq 2.3 GHz
Uncore freq 2.3 GHz
Peak DP performance (AVX512) 1324.8 Gflop/s
Mem BW 105 GB/s
LD/ST throughput 2 LD, 1 ST 1/cycle
L1-L2 BW per core 64 B/cycle
L2-L3 BW per core 2 × 16 B/cycle
AVX512 exp() throughput 1.5 cycle/scalar iter
AVX exp() throughput 3.5 cycle/scalar iter
SSE exp() throughput 6.7 cycle/scalar iter
scalar exp() throughput 15.1 cycle/scalar iter
scalar exp() latency 22.2 cycle/scalar iter

Table 3.1 – Hardware characteristics of reference architecture SKX.

Challenges in ECM modelling of brain tissue simulation kernels Computation of the ECM

model is based on intimate knowledge of the underlying implementation and data structures,

and must be validated thoroughly with a reference implementation. For this reason it was

not possible to provide an ECM model for all the in silico models and experiments listed in

Section 2.1. Instead, we decided to focus our analysis on three models chosen as representative

of the three main families of algorithms summarised in Table 2.1: point neuron I-based Brunel,

point neuron G-based Simplified, detailed morphology G-based Reconstructed. Within this

restricted subset of in silico models we found that significant extensions and adaptations of

the ECM were still required to obtain practical performance predictions as well as to analyse

performance properties. For example many ion channel and synapse kernels in the G-based

formalism are characterised by a large amount of indirect memory accesses, in particular

for detailed models where different elements of the matrix can be modified by these kernels.

In this case, we found that domain-specific knowledge about the data layout and modelling

abstraction allowed us to introduce heuristics to estimate the impact of indirect memory

accesses on performance (see Section 3.1.1 for a detailed description). Additionally, the

unpredictable nature of synapse activation in the spike delivery kernels results in random

accesses to memory. This data-access pattern falls squarely outside of the ECM’s design space,

nevertheless we show in Section 3.1.5 that using a combination of synthetic benchmarks and

domain-specific knowledge about spiking patterns we can establish meaningful bounds and

accurate predictions. Finally, knowledge about neuronal representations in detailed models

allows us to establish the performance properties of the Hines algorithm for solving the linear

system (see Section 3.1.2 for details).
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Algorithm 1 Ion channel current kernel pseudocode.

for each i ∈ ion channel instances do
v ← voltage from compartment . indirect read
e ← reversal potential of ionic species . indirect read
m ← ion channel state
gion ← conductance(m)
Iion ← gion(v −e)
update ionic currents . indirect write
update diagonal matrix elements . indirect write

end for

3.1.1 G-based kernels in a detailed neuron

To overcome challenges in the performance modelling of brain tissue simulation kernels

we leverage domain-specific knowledge about the data layout and the relationship between

modelled entities as a basis to define simplifying heuristics. Hereinafter, all our analysis will

be based on the reference CoreNEURON implementation (Kumbhar et al., 2019b). As a first

example we present in Figure 3.1 the salient features of data layout and algorithm for the

simulations of morphologically detailed G-based neurons. General aspects of the modelling

abstractions and simulation algorithm have already been described in Section 2.1.3 and

Appendix A. Morphologically detailed neurons are modelled as a tree of unbranched sections,

whose topology is represented by a vector of parent indices. Other relevant quantities such as

the membrane potential and the tridiagonal sparse matrix are represented by double precision

arrays with length equal to the number of compartments. More details about the matrix

representation are given in Section 3.1.2. Additionally, ion channel-specific and synapse-

specific quantities are held in separate data structures consisting of arrays of double precision

values in Structure-of-Arrays layout (SoA), indices to the corresponding compartments and, if

needed, pointers to other internal data structures.

Ion channels current kernels

Ion channel current kernels update the elements of the membrane equation matrix by com-

puting contributions from the ionic current of different chemical species. All kernels of this

type have a similar structure, which we present in Algorithm 1 as pseudocode. They are char-

acterised by two main features: low arithmetic intensity and scattered loads/stores. The latter

can present a modelling problem, but in practice we can obtain good accuracy using a few

heuristics based on domain-specific knowledge. In particular, as a first approximation one can

treat the indices in the voltage and ionic species arrays as perfectly contiguous (see _ni,_ion_idx

in Figure 3.1 as a justification). To compute the ECM we use the code for the Im current kernel

in Listing B.2 within Appendix B.3 as a representative example. In total, the kernel reads from

four double and two integer arrays, and writes to six double arrays, leading to 136 B of overall

data traffic per scalar iteration (this includes write-allocate transfers on store misses).
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Figure 3.1 – Neuron representation and data layout in a morphologically detailed G-based
model. A: Neurons are represented as a tree of unbranched sections, where each section
can be further split into compartments for numerical discretisation B: Each compartment is
numbered according to the schema in (Hines, 1984), and the tree structure is represented in
memory by an array of parent_index. Additional arrays are used to represent the neuron’s state
(e.g. vec_v holds the membrane potential of each compartment), and three arrays are used for
a sparse representation of the time integration matrix. Arrays of double precision values are
coloured in grey, while arrays of integer indices are white and contain some elements to give
an idea of their structure. C: Additionally, every compartment can be endowed with zero or
more ion channels or synapses, which require additional arrays to be represented. Branching
points (in grey) are treated as any other compartments for the purposes of linear algebra, but
cannot have any instances of ion channels or synapses. D: Ion channels (e.g., Im) either have
a single instance in all the compartments of a section, or do not have any instances at all
in that section. Synapses (e.g. AMPA) can have multiple instances per compartment and do
not need to be represented in all the compartments belonging to the same section. E: The
application’s workflow, excluding bookkeeping and parallel communication. First, the spike
delivery kernel is called only for all the events that have been generated by other neurons and
that have an effect on synapses of this neuron; then, at every timestep, the current, linear
algebra and state kernels are executed. Current kernels read information from the state of the
neuron and update the linear system’s matrix. Linear algebra solves the linear system using
a custom method and updates the state of the membrane potential. State kernels read the
membrane potential and update the state of all the ion channels and synapses.
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contributions predictions measurements

SSE {7.8‖5.5 |2.1 |5.5 |3.0} {7.8e7.8e13.1e16.1} (n/ae9.1±0.1e11.0±1.0e15.3±1.0)

AVX {7.3‖4.8 |2.1 |5.5 |3.0} {7.3e7.3e12.4e15.4} (n/ae8.7±0.1e11.4±0.0e15.0±1.2)

AVX512 {5.3‖3.0 |2.1 |5.5 |3.0} {5.3e5.3e10.6e13.6} (n/ae7.6±0.0e10.6±0.8e15.6±1.5)

Table 3.2 – ECM model and serial measurements per scalar iteration [cy/it] for the Im current

kernel. Measurements are reported using the notation median ± IQR.

Combining the data volume estimates with in-core predictions from IACA (using the full

throughput assumption) we generate the ECM model predictions for all levels of vectorisation

in Table 3.2. For all predictions, we use cycles per scalar iteration as unit of measure. Analysing

the assembly code we remark that the compiler is able to employ scatter/gather instructions

for this kernel on SKX. As expected, the model predicts that the performance of this strongly

data-bound kernel will degrade as the data resides farther from the core. Vectorization is not

beneficial at all except for AVX512 with data in L1, which can be attributed to the required

scalar load instructions when gather/scatter instructions are missing.

To validate the predictions we designed a serial benchmark that allowed fine-grained control

over the dataset size by removing all ion channels and synapses except Im from our dataset, but

still executing the complete application loop. The resulting dataset size was roughly 200 KB

for the L2 benchmark and 7 MB for the L3 benchmark. Due to overheads, it was impossible

to construct a benchmark for the L1 cache. We find that the ECM model delivers a satisfying

degree of accuracy for all cache and vectorisation levels.

We conclude that the Im current kernel, and ion channel current kernels in general, are data-

bound and limited solely by data transfer capabilities of the system across the memory hierar-

chy. Even for an in-memory dataset, wider data paths between the caches would thus improve

the performance of the kernel. The clock frequency will have a significant but weaker than

linear impact on the performance because memory transfer rates are only weakly dependent

on it.

Synaptic current kernels

Synaptic current kernels are particularly important for performance, and pose a modelling

challenge because of their complex chain of intra-loop dependencies, memory accesses and

presence of transcendental functions. As with their ion channel counterpart, they are charac-

terised by indirect accesses and high data-traffic requirements. Additionally, the excitatory

AMPA/NMDA synapses considered here include in their conductance function a model for

the dynamics of the M g 2+ block for the NMDA receptor which significantly increases the

arithmetic complexity. We present the pseudocode of synaptic current kernels in Algorithm 2.

To demonstrate the ECM model we use as an example the source code for the excitatory
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AMPA/NMDA synapse current in Listing B.3 within Appendix B.3. The expensive exponen-

tial and divides in this code are balanced by large data requirements. The kernel reads one

element each from eight double and two integer arrays, and writes one element each to nine

double arrays, which would amount to a traffic of 216 B per iteration. However, as shown in

Figure 3.1 the typical structure of the voltage and surface are index arrays is different from

the ion channel kernels. In particular, as a direct consequence of multiple synapse instances

being able to coexist within the same compartment, the voltage and surface area index arrays

often exhibit sequences of repeated elements. This means that subsequent iterations of the

kernel can exploit some temporal locality. To account for this we reduce the expected traffic

from these arrays by a weighting factor equal to the average length of a sequence of repeated

elements, which corresponds to the average number of synapses per compartment (3 in the

case of our benchmarks). Thus the updated data traffic estimate is 205 B through the complete

memory hierarchy.

To compute TOL the inverse throughput of the vectorized exponential operation from Table 3.1

must be added to the kernel runtime reported by IACA, and TnOL is derived from the retired

load instructions as usual. We then obtain the ECM predictions per scalar iteration in Table 3.3.

The analysis reveals a complex situation. The SSE code on SKX is predicted to be core-bound

as long as the data fits into any cache, and data-bound when data fits in memory. The AVX

and AVX512 code on SKX, however, become data-bound already in the L3 cache.

Again we used a benchmark dataset containing only synapses to validate the model, with a

size of roughly 500 KB for the L2 benchmark and 11 MB for the L3 benchmark. The model

predictions are optimistic compared to measurements by a 10–50% margin. Even though the

predictions are not all within a small accuracy window, the model still allows us to correctly

categorise the relevant bottlenecks, and is especially effective in capturing the fact that on SKX

with AVX512 the kernel is rather strongly data-bound. Given the complex inter-dependencies

between operations in the kernel, we speculate that a critical path might be invalidating the

full-throughput assumption of the ECM model. As a result from the analysis we conclude that,

for an in-memory dataset, the performance of the serial excitatory synapse current kernel

would improve significantly only if in-core execution and data transfers were enhanced at the

same time.

Algorithm 2 Synapse current kernel pseudocode.

for each s ∈ synapse instances do
v ← voltage from compartment . indirect read
m ← synapse state
gsyn ← conductance(m)
Isyn ← gsyn(v −e)
a ← surface area of compartment . indirect read
Isyn ← Isyn/a
update shadow vectors

end for
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contributions predictions measurements

SSE {21.6‖9.9 |3.2 |8.3 |4.5} {21.6e21.6e21.6e25.9} (n/ae31.3±0.1e31.4±0.1e32.2±0.0)

AVX {13.5‖7.0 |3.2 |8.3 |4.5} {13.5e13.5e18.5e23.0} (n/ae16.9±0.1e17.0±0.5e23.9±3.5)

AVX512 {7.2‖3.5 |3.2 |8.3 |4.5} {7.2e7.2e15.0e19.5} (n/ae10.9±0.1e13.5±0.8e25.1±1.9)

Table 3.3 – ECM model and serial measurements per scalar iteration [cy] for the excitatory
synapse current kernel. Measurements are reported using the notation median ± IQR.

Algorithm 3 Ion channel state kernel pseudocode.

for each i ∈ ion channel instances do
v ← voltage from compartment . indirect read
compute voltage-gated rates
solve ion state ODE based on rates

end for

Ion channels state kernels

During the execution of a state kernel, the state variables of an ion channel or a synapse are

integrated in time and advanced to the next timestep. Ion channel state kernels follow a simple

structure reported in Algorithm 3. Note that in this case the step of solving an ODE typically

requires the evaluation of one or more exp and several div functions.

Ion channel state kernels are characterised by a very large TOL contribution due to exponential

functions and division operations, combined with low data requirements. This gives reason

to expect a clearly core-bound situation. As an example, we compute the ECM model for the

Im state kernel in Listing B.4. In analogy with the previous ion channel example, we treat the

indices in the voltage array as contiguous. Therefore this kernel requires reading one element

each from one double and one integer array, and writing one element each to three double

arrays, amounting to a traffic of 60 B per iteration. On the other hand, the kernel needs three

exponential function evaluations and eight divides, of which some might be eliminated by

compiler optimisations (common subexpression elimination and substitution of multiple

divides by the same denominator for a reciprocal and several multiplications).

Again combining the IACA prediction with measured throughput data for exp() (see Table 3.1)

and the data delay we arrive at the ECM predictions per scalar iteration in Table 3.4. State

kernels can be considered as the polar opposite of current kernels in terms of their compu-

tational profile, and the model predicts that their performance will be independent of the

location of the working set in the memory hierarchy. According to the performance model

these kernels are dominated by the throughput of the exp function and the eight divides,

by comparable amounts; for instance, the SKX-AVX version spends 16 cycles in divides and

another 10.4 cycles in exp(). No optimisations concerning the divides are done by the compiler,

although the number of divides may be reduced to three by the methods mentioned above.

41



Chapter 3. Analytic performance modelling of neuron simulations

We validated our predictions with dataset sizes of 500 KB for the L2 benchmark and 5 MB for

the L3 benchmark. Except for the AVX kernels, for which the accuracy is more than satisfying,

the predictions are optimistic by between 15% and 35%. It must be stressed that when a loop is

strongly core bound and has a long critical path, the automatic out-of-order execution engine

in the hardware may have a hard time overlapping successive loop iterations. Since the ECM

model has no concept of this issue, predictions’ accuracy may be affected.

Despite all inaccuracies, the conclusion from the analysis is clear: faster exponential functions,

wider SIMD execution for divide instructions and a higher clock frequency would immediately

(and proportionally) boost the performance of the serial Im state kernel. In shared-memory

scaling the AVX and AVX512 versions will be able to eventually hit the memory bandwidth

limit, albeit at a larger number of cores than with the more data-bound kernels.

contributions predictions measurements

SSE {36.1‖6.0 |1.4 |3.2 |2.0} {36.1e36.1e36.1e36.1} (n/ae53.4±0.2e53.4±0.1e52.3±0.0)

AVX {26.4‖3.4 |1.4 |3.2 |2.0} {26.4e26.4e26.4e26.4} (n/ae29.9±0.1e29.9±0.1e28.8±0.0)

AVX512 {12.1‖1.9 |1.4 |3.2 |2.0} {12.1e12.1e12.1e12.1} (n/ae18.6±0.1e18.3±0.1e19.0±0.1)

Table 3.4 – ECM model and serial measurements per scalar iteration [cy] for Im state kernel.
Measurements are reported using the notation median ± IQR.

Synaptic state kernels

Synapse state kernels have computational properties similar to ion channel state kernels, i.e.,

a dominating in-core overlapping contribution due to exponentials and divides, coupled with

low data requirements. Their general structure is also similar, with one important difference:

the state update of synapses does not depend on the membrane potential of the compartment.

Algorithm 4 presents the corresponding pseudocode. Note that the step of solving an ODE

typically requires the evaluation of one or more exp and several div functions.

As an example, we compute the ECM model for the excitatory AMPA/NMDA synapse in

Listing B.10. This kernel reads one element each from four double arrays and updates one

element each from four other double arrays, thus totalling 96 B of data volume per iteration.

The ECM predictions per scalar iteration are listed in Table 3.5. An important observation to

be made here is that using the AVX2 instruction set was crucial to obtaining good performance

on Skylake. Indeed the exp function invoked by the AVX instruction set has a much worse

throughput (despite having the same vector width) and thus would significantly degrade

Algorithm 4 Synapse state kernel pseudocode.

for each s ∈ synapse instances do
solve synapse state ODE

end for
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Algorithm 5 Linear algebra pseudocode.

for each c ∈ reverse(compartments) do . triangularization
update diagonal element at parent location . indirect write
update rhs at parent location . indirect write

end for
for each c ∈ compartments do . backward substitution

update rhs of c using rhs of parent . indirect read
end for

the performance of this kernel. As expected, all other observations and conclusions are the

same as for the ion channel state kernels in the previous section. For the same reasons of

out-of-order scheduling, all predictions are optimistic by 20–30%.

contributions predictions measurements

SSE {34.8‖6.5 |1.5 |4.0 |2.1} {34.8e34.8e34.8e34.8} (n/ae45.7±0.0e45.7±0.0e44.9±0.0)

AVX {22.0‖3.8 |1.5 |4.0 |2.1} {22.0e22.0e22.0e22.0} (n/ae25.5±0.1e25.5±0.1e25.7±0.2)

AVX512 {9.7‖1.7 |1.5 |4.0 |2.1} {9.7e9.7e9.7e9.7} (n/ae13.1±0.1e13.4±0.2e13.7±0.2)

Table 3.5 – ECM model and serial measurements per scalar iteration [cy] for the excitatory
synapse state kernel. Measurements are reported using the notation median ± IQR.

3.1.2 Hines solver

The most common approach for time integration of morphologically detailed neurons is to use

an implicit method (typically backward-Euler or Crank-Nicolson) in order to take advantage

of its stability properties for stiff problems. A linear-complexity algorithm was introduced

by Hines (1984) to solve the quasi-tridiagonal system arising from the branched morphologies

of neurons, by reducing it to a quasi-tridiagonal problem (Thomas, 1949). This algorithm is

based on a sparse representation of the matrix using three arrays of values (vec_a,vec_b,vec_d

representing the upper, lower and diagonal of the matrix, respectively) and one array of

indices (parent_index). Throughout the simulation, the off-diagonal terms of the matrix remain

constant, while the right-hand side (rhs) and the diagonal elements are updated at every

timestep. The algorithm is structured in two main phases: triangularization and a backward

substitution. We report the pseudocode in Algorithm 5.

We use the code shown in Listing B.6 as a basis for the ECM model. We must tackle a few

challenges: indirect accesses make it difficult to estimate the data traffic, and dependencies

between loop iterations could break the full-throughput hypothesis. Moreover, an optimised

variant of the algorithm that exploits a permutation of node indices to maximise data locality

is executed by default by the simulation engine (Kumbhar et al., 2019b).1 For reasons of brevity

1See the open-source code at https://github.com/BlueBrain/CoreNEURON. This permutation of node indices
can be disabled with the command line argument –cell-permute 0.
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Figure 3.2 – Validation of ECM model for linear algebra kernel. Measured performance (mark-
ers) and predictions (lines) for the linear algebra kernel in Giga-compartments per second.
Dashed lines represent the model predictions in the optimistic full-throughput scenario.

of exposition we restrict our analysis to this optimised variant of the solver.

In order to give a runtime estimate we examine two corner-case scenarios. The first, optimistic

scenario assumes that indirect accesses can exploit spatial data locality in caches and thus

do not generate any additional memory traffic. The combined data traffic requirements

of triangularization and back-substitution then amount to reading one element each from

four double arrays and two integer arrays, and writing one element each to three double

arrays, i.e., 88 B per iteration. Considering the opposite extreme, it might happen that at every

branching point the value of parent_index[i] is so much smaller than i that this generates an

additional cache line of data traffic through the full memory hierarchy. We call this the worst-

case branching hypothesis, in which we adjust the memory traffic predictions by assuming

that every section boundary, i.e., the location of a potential discontinuity in the parent_index

array, requires a full cache line transfer of which only one variable will constitute useful data.

Considering that compartments are internally ordered to maximise data locality, we take the

optimistic scenario as a basis for our predictions.

Even though the dependencies between loop iterations could potentially break the full-

throughput hypothesis, considering that compartment indices are by default internally rear-

ranged to optimise data locality we still use the full throughput as a basis for our predictions.

It should be noted that indirect addressing and potential loop dependencies hinder vectori-

sation. IACA reports that the combined inverse throughput of triangularization and back

substitution amounts to 8.12 cycle/scalar iter and TnOL = 6 cycle/scalar iter. This leads to the

runtime predictions in Table 3.6.

We measured the performance of the linear algebra kernel on a specially designed dataset with

a very large number of cells and neither ion channels nor synapses, thus ensuring that the only
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data locality effects are intrinsic to the algorithm and not a consequence of a small dataset.

Our predictions based on the full-throughput hypothesis are validated by measurements of

both the performance (see Figure 3.2) and the memory traffic (see Table 3.8). This kernel

highlights very strongly an important feature of the SKX architecture: compared to previous

generations SKX has a much better divide unit able to deliver one result every 4 cycles. This

is reflected in the TOL prediction, although the triangularization kernel on SKX is actually

load bound by a small margin. The single-core median measurements are a little higher than

predicted but also prone to some statistical variation; the best measured value is very close to

the model. The only way to boost performance would be to enhance the performance of the

memory hierarchy (in serial mode) or the memory bandwidth (in parallel). Having more than

ten cores per chip would be a waste of transistors.

We remark that it remains unclear whether the node permutation optimisation is applicable in

all cases or suffers from some constraints, and that our full-throughput predictions heavily rely

on it. Therefore it may happen that, in some cases where it is impossible to reorder the nodes

effectively, our predictions would only provide an optimistic upper bound on performance.

3.1.3 Clock-driven point neuron kernels

We now demonstrate how to extend the ECM model to clock-driven kernels from the Simplified

and Brunel in silico models. For simplicity of exposition, from now on we only present

the ECM model for AVX512 vectorisation, i.e. the maximum level allowed by our reference

architecture. As with morphologically detailed neurons, domain-specific knowledge and an

intimate understanding of the data layout are required to obtain an accurate performance

description. We thus present in Figure 3.3 the characteristics of the G-based Simplified and

I-based Brunel necessary to achieve a satisfactory performance model.

The G-based Simplified model is implemented in the following way. We create single compart-

ment neurons endowed with a GIF process and 36 synapses as described in Section 2.1.3. We

still make use of the vec_v,vec_rhs,. . . arrays to represent the state of each neuron but now every

entry in this array corresponds to a distinct neuron. In the current kernels step, contributions

from the GIF and synapse instances update the vec_d array which can be thought of represent-

ing the terms of a diagonal matrix in which every row corresponds to a neuron. In the update

vec_v step, a simple backward Euler step consisting of a single division operation updates the

contributions T Mem
EC M measured T Mem

{8.1‖6.0 |1.4 |4.0 |1.9} 13.3 18.8±5.3

Table 3.6 – ECM model and serial measurements [cycle/scalar iter] for the linear algebra kernel.
Vectorization levels are not considered because indirect write accesses prevent vectorisation.
Measurements are reported using the notation median ± IQR.
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plified model. B1 single compartments are endowed with the GIF model and the appropriate
number of synapse instances. C1 each compartment contains exactly one instance of the GIF
model, and 36 synapse instances. D1 the vec_v (and similar) arrays are still used, such that the
voltage of the neuron is not contained within the GIF data structure, bur rather in the vec_v

array. E1 GIF and synapse instances are represented by index and double precision arrays. F1
The G-based simulation workflow, which, as opposed to the detailed model, does not require
the resolution of a linear system.
A2 I-based Brunel model. B2 compartments are endowed with a single instance of the IAF
model. The vec_v (and similar) arrays are not used. C2 each compartment contains exactly
a single instance of the IAF model, and nothing else. D2 the state of the neuron is wholly
contained in the IAF data structure. No index arrays are required. The implementation details
of the I-based simulation workflow are not represented as they are indistinguishable from
Figure 2.2.
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voltage of the neuron, and in the state kernels step the auxiliary GIF state variables and the

synaptic state variables are integrated in time. We summarise the clock-driven portions of the

Simplified model in Algorithm 6. For the sake of brevity we do not analyse in detail the perfor-

mance of the modified AMPA/NMDA synapse presented in (Rössert et al., 2016) as it bears a

high degree of similarity with the original AMPA/NMDA synapse analysed in Section 3.1.1, but

we still report its ECM model in Table 3.7 and the reference code in Listing B.9.

To compute the ECM model of GIF kernels we use as reference the code provided in Listings B.7

and B.8. The GIF current kernel requires reading from 12 double precision and 2 integer arrays

and writing to 8 double precision arrays, for a total traffic of 232B per scalar iteration, while

IACA reports a TOL = 6.9cycles and TnOL = 3.4cycles per scalar iteration. The GIF state kernel

requires reading from and writing to 6 double precision arrays for a total traffic of 144B per

scalar iteration, while IACA reports TOL = 19.5cycles to which we must add the cost of 6

exponentials and TnOL = 6.3cycles . The steps for computing the ECM model for the modified

AMPA/NMDA model are similar to those reported before, although we note that in this case

we know the exact length of repeated indices, which is equal to the fixed value of 36, i.e. the

number of synapses per neuron.

We base our implementation of the I-based Brunel model on the iaf_psc_alpha model of the

NEST simulator (Peyser and Schenck, 2015). For consistency reasons we still create single-

compartment neurons endowed with an IAF process, but we do not rely anymore on the

vec_v,vec_rhs,. . . arrays to describe the membrane potential. Instead the whole state of the IAF

neuron is contained in the IAF data structures. In the neuron update step and PSC contribu-

tions step (see Figure 2.2) we simply update the relevant variables. An exact time-integration

method is implemented exploiting the time-invariance of the coefficients of the ODEs that

describe the neuron’s evolution, such that several compute-intensive functions can be pre-

computed (Diesmann et al., 2001; Rotter and Diesmann, 1999). We neglect refractory periods

that follow a spike emission in this work, due to their infrequent occurrence under physiologi-

cal conditions and relatively low impact on performance. The pseudocode summarising the

main algorithmic steps is reported in Algorithm 7.

To compute the ECM model we use as reference the code provided in Listings B.13 and B.13.

The neuron update kernel requires reading from 11 and writing to 5 double precision arrays,

for a total traffic of 168B. IACA reports TOL = 2.4cycles and TnOL = 1.75cycles . The PSC kernel,

on the other hand, requires 80B of traffic and has TOL = 0.6cycles,TnOL = 0.4cycles.

Table 3.7 presents a summary of all ECM model contributions and predictions for all the

clock-driven kernels in the three in silico models considered here. For simplicity we present

here an aggregate of the ion channel and synapse kernels in the Reconstructed model, and

refer to Chapter 5 for a detailed validation of individual types.
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Algorithm 6 Pseudocode for clock-driven portions of Simplified model.

for each n ∈ neurons do . GIF current
v ← voltage from compartment . indirect read
η,γ← GIF state
Iη← current(η)
IG I F ← gG I F v + Iη
a ← surface area of compartment . indirect read
Isyn ← Isyn/a
update vec_d

end for
for each n ∈ neurons do . update vec_v

vec_v[n] /= vec_d[n]
end for
for each n ∈ neurons do . GIF state

η← solve ODE
γ← solve ODE

end for

Algorithm 7 Pseudocode for clock-driven portions of Brunel model.

for each n ∈ neurons do . IAF neuron update
Vm ← precomputed update step
Isyn ← exponential decay

end for
for each n ∈ neurons do . IAF PSC contributions

Isyn ← PSC× spike counter
clear spike counter

end for

kernel name TOL TnOL TL1L2 TL2L3 TMem T L1
EC M T L2

EC M T L3
EC M T Mem

EC M

B
iaf update 2.41 1.75 2.62 8.00 3.68 2.41 4.38 12.38 16.05
iaf psc 0.62 0.38 1.25 3.00 1.75 0.62 1.62 4.62 6.38

S

synapse current 7.44 3.50 3.51 9.03 4.92 7.44 7.44 16.03 20.95
gif current 9.88 3.38 3.75 11.00 5.26 9.88 9.88 18.12 23.38
synapse state 13.31 2.62 2.00 5.50 2.80 13.31 13.31 13.31 13.31
gif state 28.50 6.25 2.38 6.50 3.33 28.50 28.50 28.50 28.50

R

synapse current 7.20 3.50 3.21 8.33 4.50 7.20 7.20 15.04 19.54
ion channel current 4.68 2.56 1.92 5.07 2.70 4.68 4.68 9.55 12.25
linear algebra 8.10 6.00 1.40 4.00 1.90 8.10 8.10 11.40 13.30
synapse state 9.70 1.70 1.50 4.00 2.10 9.70 9.70 9.70 9.70
ion channel state 15.82 2.16 1.59 3.56 2.24 15.82 15.82 15.82 15.82

Table 3.7 – ECM model of clock-driven kernels of in silico models and experiments. For sim-
plicity, we only report the model based on the AVX512 vectorisation. The ECM contributions
and predictions are reported in cycles per scalar iteration. Horizontal lines distinguish the
three in silico models: Brunel (B), Simplified (S), Reconstructed (R).
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Figure 3.4 – Validation of performance model applied to clock-driven kernels of in silico
models. Performance is measured as Giga iterations per wallclock second for a single instance
of the kernel. The reference architecture is SKX with AVX512 vectorisation. Lines represent our
predictions using the ECM model, while markers represent median benchmark measurements.
Error bars represent the 25%-75% percentiles, but variability is so low that they are often
hidden. To improve readability we used dashed lines for state update kernels and solid lines
for current kernels. All benchmarks were designed with big enough datasets to ensure data
was always coming from DRAM. A,B,C Clock-driven kernels of the Brunel, Simplified and
Reconstructed model respectively.

3.1.4 Validation of clock-driven kernels

To validate our predictions we benchmarked and measured the serial and parallel runtime of

the individual kernels in a simulation that is representative of a typical workload. Due to over-

heads it was impossible to design benchmarks for the L2 and L3 caches for the point neuron

kernels described above. Therefore all the benchmarks presented here have a sufficiently large

dataset to only fit in DRAM. For all in silico models we validated our predictions for the serial

execution as well as for shared memory scaling. Validation results for the Brunel, Simplified

and Reconstructed model are presented in Figure 3.4 and Table 3.8. An important aspect to

take into account when reporting the benchmarked performance is dynamic frequency scal-

ing, by which the CPU can dynamically throttle the frequency to reduce power consumption

and prevent overheating. Even though we manually set the frequency using the LIKWID tool2

the CPU is still allowed to throttle it in case of overheating, especially when the AVX512 units

are being used. Therefore we scale all our performance measurements by the reported average

frequency during the execution of that kernel.

In the serial case, the prediction errors are all within 20-30% of the measured runtime. Obtain-

ing more accurate predictions is challenging, and the reasons for this can vary across kernels.

2By running the command likwid−set_Frequencies −f 2.3 −−umin 2.3 −−umax 2.3 before our benchmarks
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serial parallel memory volume
kernel name pred [cycles] meas [cycles] pred [cycles] meas [cycles] pred [B] meas [B]

B
iaf update 16.1 26.4±0.9 3.7 4.5±0.0 168 193.6±0.9
iaf psc 6.4 8.2±0.6 1.8 1.7±0.0 80 76.2±0.8

S

synapse current 21.0 28.9±1.8 4.9 4.9±0.1 224 225±1.7
gif current 23.4 33.7±1.7 5.3 6.0±0.2 232 237.1±12.7
synapse state 13.3 21.1±0.4 2.8 2.8±0.1 128 127.7±0.1
gif state 28.5 25.4±0.0 3.3 3.1±0.0 144 123±0.6

R

syn current 19.5 24.6±1.5 4.5 4.4±0.1 205 207.1±2.1
ion channel current 12.2 15.2±0.3 2.7 3.3±0.1 123 120.3±11.0
linear algebra 13.3 18.8±5.3 1.9 2.2±0.2 88 90.7±4.2
syn state 9.7 13.8±0.2 2.1 2.0±0.0 96 94.3±1.3
ion channel state 15.8 20.6±0.1 2.2 2.3±0.0 100 99.9±2.0

Table 3.8 – Validation of ECM performance model for clock-driven kernels from all in silico
models and experiments. Validation conducted using the SKX-AVX512 reference architecture.
The parallel column refers to full-chip shared memory parallelism (18 threads). Measurements
are shown as median values ± interquartile range from a dataset of 10 independent benchmark
executions. Runtime measurements and predictions are reported in cycles per scalar iteration.
Horizontal lines distinguish the three in silico models: Brunel (B), Simplified (S), Reconstructed
(R).

For G-based state kernels a long critical path in the loop kernel code could be weakening

the accuracy of our predictions due to a failure of the full throughput assumption, while

errors in the ion channel current predictions could be imputable to memory traffic overhead

due to indirect memory addressing. While it is still possible to obtain reasonably accurate

predictions for the state kernels, it must be noted that ultimately it is extremely hard to predict

the dynamic behaviour of the out-of-order engine in a complex, modern architecture. Finally,

given that most of the predictions in this case are optimistic, it is reasonable to assume that

performance limiting factors such as dynamic CPU throttling, as well as intrinsic factors such

as critical paths and instruction latencies, could be impacting the performance negatively.

Digging deeper into the complexity of the computer architecture to obtain more accurate

predictions is outside the scope of this thesis, whose purpose is to employ performance

modelling as a means of explaining bottlenecks and predicting future trends, not to implement

optimisations at the granularity of individual cycles. However, in a practical effort to optimise

performance-critical portions of the code we investigated different strategies for computing

the exp function based on polynomial evaluation (Ewart et al., 2019). We introduced the

factorization pattern as a general way to decompose a polynomial in a product of subfactors,

which under certain conditions could be computed independently if the architecture exposes

ILP. Figure 3.5 shows the results of our benchmarks based on different factorization patterns

and different polynomial evaluation algorithms. When we tried to predict the throughput and

latency of each combination, we found it to be extremely challenging. We concluded that
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Figure 3.5 – Empirical assessment of factorization patterns for the evaluation of the exp func-
tion. Taken from (Ewart et al., 2019). We show two possible factorization patterns to compute
a polynomial of degree 10 (left). We benchmarked all possible patterns, evaluating each
subpolynomial with different algorithms from the state of the art, on two Intel architectures
(right). Predicting the throughput and latency of each combination proved to be an extremely
challenging task.

architectures have become so complex that an approach based uniquely on comparing the

asymptotic complexity of the algorithm is not enough. Given the difficulty in predicting a

processor’s allocation of microarchitectural resources, benchmarks or code analysis tools are

mandatory to determine the best performing solution with high accuracy.

3.1.5 Spike delivery kernels

The spike delivery kernel is arguably the most distinguishing aspect of brain tissue simulations,

when compared to models of other biological or physical phenomena. In terms of algorithm

design, all state-of-the-art software use some sort of priority queue or ring buffer to store

synaptic events to be delivered within a timestep. For modelling and benchmarking, we

separate the operations related to the bookkeeping of events inside the queue from the actual

kernel execution, and we only consider the latter, because the scope of our analysis is restricted

to computational and communication kernels.

When a spike is received, the postsynaptic process must integrate its effects in the state

of the neuron or synapse. In I-based synapses this amounts to increasing a spike counter

by the relative weight of the connection, as shown in Algorithm 8. For G-based synapses

an equivalent quantal update of the synaptic states must be computed, a computationally

expensive procedure since the in silico models considered in this work all contain a short-term

plasticity model. As we did previously, we base our performance predictions on an actual

implementation of these algorithms shown in Listings B.11 and B.14 in Appendix B.3 for the
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G-based and I-based models respectively.

The spike delivery kernel is characterised by erratic memory accesses, because the order of

activation of synapses is unpredictable. We always consider the worst possible case in which

every spike to be delivered could not be cached and thus must come from main memory.

This approximation has a strong impact on our estimates of the memory traffic and the

scalability of the spike delivery kernel, notably in the strong scaling scenario, but we believe it

represents a valid heuristic because of the very low activation of individual synapses. Indeed,

given that physiological values of the firing frequency lie around 1 H z, this means that each

synapse would receive an event roughly once every 40000 time iterations, such that caches

implementing a LRU policy would most likely have gotten rid of the corresponding cache line

by then. Due to the erratic access, one is tempted to speculate that memory latency will be a

dominant factor in the performance of this kernel. Upon deeper analysis, we find that spike

delivery kernels are indeed affected by the latency of the memory system, albeit not dominated

by it. The reason is that while the CPU is handling the delivery of one spike, it has potentially

access to the information about the index of the next spikes to be handled, since it already

read several values from the spike events array. Thus the CPU is in principle able to schedule

as many memory accesses in advance as its queue of outstanding memory requests allows

it to, partially hiding the latency of processing individual spikes. This is different from the

classic purely latency bound kernels in which the CPU is only allowed to begin a loop iteration

after the previous one is fully completed. On the other hand, all the requests for data are non-

contiguous and therefore we expect that none of the pipelining and prefetching techniques are

very effective in hiding the latency of fetching the data. In terms of memory traffic we consider

two scenarios: a best-case one in which all synapses are activated in memory-contiguous

order and a worst-case scenario in which synapses are activated in random order.

Best-case scenario: an optimistic upper-bound on performance In the best-case scenario

we assume that the execution engine will be able to fully pipeline the execution and hide all

Algorithm 8 Spike delivery kernels: I-based spike delivery (top) and G-based spike delivery
(bottom).

for each e ∈ spike events do . I-based spike delivery
target, index ← e.info
w ← weights[index]
spike counter += w

end for
for each e ∈ spike events do . G-based spike delivery

target, index ← e.info
w ← weights[index]
compute quantal update
apply quantal update to state variables

end for
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contributions T Mem
EC M CP

G-based {57.8‖19.5 |3.2 |8.8 |4.5} 57.8 123.4

I-based {2‖1 |0.7 |2.3 |1.0} 5 15

Table 3.9 – Best-case ECM model of the spike delivery kernel. Vectorization levels are not
considered because indirect accesses prevent vectorisation. The CP prediction is actually for
the Haswell architecture (see text for details).

latencies. Note that this scenario is highly unlikely to appear in practice, and serves more as a

proof of concept and to establish a very optimistic upper bound on performance. Thus we

base our performance predictions for this scenario on either the full-throughput hypothesis

or a critical path. Given that the G-based delivery kernel requires a read-only transfer on

seven double arrays, three integer arrays and one pointer array, and an update or write/write-

allocate transfer on eight double arrays, we estimate a (best-case) memory traffic of 204 B per

iteration. On the other hand, the I-based kernel requires a read-only transfer on one double

array, three integer arrays and one pointer array, and a write transfer on one double array, thus

we estimate its (best-case) memory traffic to be 44 B per iteration. From IACA we learn that the

inverse throughput of the G-based kernel is 57.8 cycles/it, and TnOL is 19.5 cycles/it, while for

the I-based kernel we have TOL = 2cycles/it, TnOL = 1cycles/it. Similarly to the linear algebra

kernel, indirect accesses prevent vectorisation. Under the full-throughput assumption, this

leads to the single-thread predictions per iteration shown in Table 3.9. Given the complex

chain of interdependencies in the kernel, we suspect that a critical path (CP) effect could also

be present. A critical path here is defined as a sequence of instructions that, due to latencies

induced by either their data dependencies or their usage of microarchitectural resources,

invalidates the full-throughput hypothesis. This is an example of how insight can be gained

through the failure of the standard ECM model to provide accurate performance predictions.

Thus the CP values are also reported in Table 3.9.

In spite of the fact that this represents a particularly unlikely scenario, we designed a validation

benchmark based on the G-based kernel. We placed several thousands of synapses on the

same dendrite and activated them in order of instantiation, to ensure memory contiguity

of data. For the parallel execution, we duplicated our dataset 16 times and used 16 threads.

Assuming a CP-bound execution, this amounts to a parallel prediction of 7.7cycle per scalar

iteration, while the core-bound parallel prediction would be 4.5cycle, since saturation would

have occurred. We measured 122.1±0.5cycle for the serial execution, and 7.9±0.1cycle in

the parallel benchmark. These results point to the fact that the G-based spike delivery kernel

is CP-bound in the artificial best-case scenario.

Worst-case scenario: a realistic lower-bound In the worst-case memory access scenario

we assume that a full cache line of data needs to be brought in from memory for every data
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Algorithm 9 Synthetic benchmark mimicking the spike delivery access pattern.

spike event indices ← range(1,N)
random_shuffle(spike event indices)
initialize A,B arrays of size N
for each e ∈ spike events do

i ← e.index
A[i] = B[i]

end for

access. Note that because of write-allocate, every write operation counts as two accesses. To

build a performance model, we are now tasked with figuring out which memory accesses

are non-contiguous and thus represent a potential issue for performance. A first approach

would be to consider that every memory access, except those directly indexed by the loop

counter, could be non-contiguous. For example, in Listing B.11 this amounts to considering

every memory access except events[e],spike_event.target,spike_event.weight_index as non-contiguous.

For non-contiguous memory accesses, the predicted memory traffic is quite large because

we assume that a full cache line (64 B) must pulled from the memory even though only a

single double-precision variable (i.e. 8 B) would be required. Following this first approach, the

G-based kernel would required 25 non-contiguous data accesses, amounting to a predicted

worst-case memory traffic of 64×25 = 1472 B per iteration, while the I-based kernel, would

require 5 non-contiguous data accesses, leading to a total traffic of 320 B per iteration. While

this situation might be possible in theory, in practice we found that the measured memory

traffic is consistently lower than the above estimates. One reason for this could be that

memory accesses that are not tied to the synaptic instance, and thus are not directly performed

in random order in our benchmark, are better handled by the CPU. Thus we consider an

alternative hypothesis in which only accesses to synapse-specific data are non-contiguous.

This amounts to only counting accesses indexed by i in Listing B.11 and Listing B.14. In this

second hypothesis, the G-based kernel requires 22 non-contiguous data accesses for a total

of 1408 B per iteration, and the I-based kernel a meagre 2 accesses for a total of 128 B per

iteration. In benchmarks, we measure a memory traffic of 1396.9 ± 2.2 B per iteration for

the G-based kernel, and 149.3 ± 11.9 B for the I-based kernel, thus lending high credibility to

the second hypothesis that only variables tied to the synaptic instance represent a memory

latency issue. Figure 3.6B shows a validation of the estimated memory traffic against realistic

benchmarks.

Estimating the runtime proves to be a very challenging task. It is clear that the best-case

scenario is very unlikely to happen in practice, and while the CP could still be a bottleneck,

we suspect that memory latency may play an important role. One option would be to simply

multiply the memory latency by the number of accesses, but as we explained above the spike

delivery kernel is not fully bounded by memory latency. Measuring the memory latency of our

SKX machine with Intel’s MLC tool v3.6 (Viswanathan et al., 2018) yields a result of 93 ns, i.e.

214 cycles, which multiplied by the number of accesses would give a prediction of 5350 cycles
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for the G-based kernel and 642 cycles for the I-based kernel. These predictions are far too

pessimistic compared to the benchmark measurements, as will be shown below. Inspired by

the STREAM approach (McCalpin, 1995), we designed a synthetic benchmark that mimics the

memory access of the spike delivery kernel, without any computation, as shown in Algorithm 9.

For completeness, we tested variations of the number of independent write streams, i.e. the

code in Algorithm 9 has a single write stream to the A array. Our results indicate that there is

extremely high variability in the memory traffic and runtime measurements until a certain

critical size threshold is reached. Then the variability drops significantly, and the average

latency appears to stabilize around a value of roughly 20 cycle per memory access, regardless

of the number of write streams in the benchmark. We report the benchmark values in Table B.1

in Appendix B.3.

In the case of the G-based model, following the hypothesis that only the parameters tied to

the synaptic instance represent a memory latency problem, the procedure above leads us to

a single-thread prediction of 22×20 = 440 cycle per delivered spike, to be compared to the

benchmark measurement of 571.6 ± 14.9 cycle, which represents roughly a 23% error. For

multiple threads, we assume that the performance scales linearly with the number of threads

until the bottleneck of memory bandwidth is exhausted. At the maximum number of threads,

this amounts to a predicted runtime of 30.8 cycle per delivered spike, against benchmark

measurements of 45.0 ± 0.1 cycles, i.e. a 31% error. For the I-based model, we predict a serial

runtime of 40 cycle and measure 38.0 ± 1.8 cycles, giving a small error margin of 5%, while

at maximum thread we predict a runtime of 2.8 cycle and measure 2.8 ± 0.04. The memory

55



Chapter 3. Analytic performance modelling of neuron simulations

traffic estimates and the runtime estimates are all within an acceptable margin of error for

both models. Given the complexity introduced by the out-of-order execution and memory

access scheduling, we deem these predictions quite satisfactory. In Figure 3.6 we present the

predicted and measured performance and memory traffic for the spike delivery kernel.

3.1.6 Discussion

Within its design space, the ECM model yielded accurate predictions for the runtime of all

the simulation kernels in in silico brain tissue models. It must be stressed that some of these

kernels are rather intricate, with hundreds of machine instructions and many parallel data

streams. This confirms that analytic modelling is good for more than simple, educational

benchmark cases. We have also, for the first time, set up the ECM model for the Intel Skylake

architecture, whose cache hierarchy differs considerably from earlier Intel server CPUs. Our

analysis shows that the assumption of non-overlapping cache data transfers applies there as

well, including all data paths between main memory, the L2 cache and the victim L3.

As expected, the modelling error was larger in situations where the bottleneck was neither

streaming data access nor in-core instruction throughput. By making a few simplifying

assumptions we were still able to predict with good accuracy the performance of a kernel

with a complex memory access pattern and dependencies between loop iterations such as the

tridiagonal Hines solver (Hines, 1984). In cases where the bottleneck is suspected to be the

memory latency – such as the spike delivery kernels – the ECM model could only provide upper

and lower bounds, but by combining its formalism with a synthetic benchmark that mimics a

similar access pattern we were able to recover accurate serial and parallel runtime predictions.

Investigating the details of how microarchitectural features handle the peculiar access pattern

of the spike delivery kernel could be done via very detailed analytic modelling (see e.g. Tsuei

and Yamamoto, 2002), but is outside the scope of this work. Overall, the ECM model was

able to correctly identify the computational characteristics and thus the bottlenecks of all the

kernels under analysis.

We found that G-based ion channel current kernels from the detailed model are data-bound

while all state kernels are core-bound for all cache levels and all SIMD levels. The case of the

excitatory synapse current kernel was special in that the kernel was core-bound as long as the

dataset fits in the caches, but switched to data-bound when the data comes from memory. This

effect was most prominent when using AVX512. Moreover, we observed that wider SIMD units

were indeed capable of providing benefits in terms of reduced runtime but we also noticed

diminishing returns as the SIMD units grew wider. The importance of high-throughput exp

and div functions cannot be overrated, as was shown by a comparison with the Ivy Bridge

architecture (Cremonesi et al., 2019a).

There are a few shortcomings that hinder the comprehensive applicability of the ECM model

for all the kernels in brain tissue simulations. Long critical paths in the loop body, for example,

reduce the validity of the full throughput hypothesis. In this case, a more detailed analysis
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of the out-of-order execution, instruction-level parallelism and memory parallelism (see e.g.

Levinthal, 2014) could significantly improve the accuracy and performance insight of the

model. Automated code analysis tools such as the Open Source Architecture Code Analyzer

(OSACA) are planned to become a versatile substitute for IACA, which does not provide

CP predictions for modern Intel CPUs (Laukemann et al., 2018). Memory latency effects,

which have been extensively discussed above, reduce the applicability of the ECM model

and require special benchmarking to recover accurate predictions. Finally, runtime hardware

modifications such as CPU throttling must be properly accounted for in benchmarking, and

may hinder the practical relevance of our analysis for real-world simulations.

3.2 Performance modelling of interprocess communication

Among all the performance models for interprocess communication that we reviewed, the

LogP model family meets our criteria of targeting small to medium clusters and providing a

direct link with hardware features (Culler et al., 1993). The original LogP model was based on

single-byte messages and point-to-point communication. The LogGP model is an extension

that includes long messages and targets medium scale clusters up to thousands of parallel

processes (Alexandrov et al., 1997). Several other extensions have been proposed, such as

e.g. the LogGPO model in which the overhead term has a component that increases linearly

with the message size (Chen et al., 2009), or the LogGPS model which takes into account

performance penalizations due to synchronization of very large messages (Ino et al., 2001).

Eventually the LogGOPSim simulator was also developed allowing to automatically obtain a

performance predictions from a machine description file and a trace from an MPI execution

as input (Hoefler et al., 2010). In this thesis we focus on the LogGP model and consider that all

the other extensions to LogP fall outside of the scope of this work, although for generalizations

to extreme scales such as whole brain simulations, the all-encompassing LogGOPS model

might be a good candidate to overcome the fact that the LogGP’s design space is limited to

scales where synchronization is not an issue.

3.2.1 Modelling the interprocess communication in brain tissue models

Core concepts of the LogGP model In the LogGP model, the cost of sending a single message

of size m B is given by two contributions: a latency contribution corresponding to the time it

takes for the first byte of the message to reach its destination, and a bandwidth contribution

corresponding to the throughput at which messages can be communicated through the

interprocess network. The parameters in the LogGP model are:

• L is the network latency;

• o is the overhead from non-network operations;

• g is the inverse of the injection rate;
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parameter value unit

L 1.54 µs
oi 0.133 µs
os 4.59×10−5 µs/B
g 0.526 µs
G 1.42×10−4 µs/B
pL 0.593 µs
pG 1.875×10−4 µs/B

Table 3.10 – LogGP parameters for Infiniband EDR with HPE-MPI. These values were obtained
using the Netgauge tool (Hoefler et al., 2007a).

• G is the inverse of the network bandwidth;

• P is the number of processes involved in the communication.

One of the main insights in the LogGP model is that, under certain circumstances, CPU-side

operations such as copying of data can overlap with network-side operation such as data

sending. A detailed account of how to apply the LogGP model in a simple example is provided

in Appendix B.4.

Reference architecture: Infiniband EDR with HPE-MPI We focus our validation and analy-

sis to a representative example of an HPC network architecture: a vendor (HPE) optimised MPI

implementation over an Infiniband EDR 100 GB/s fabric. We consider cluster sizes of up to

∼ 102 distributed ranks to remain within the design space of the LogGP model. As discussed at

the end of this chapter, using more complex models would allow us to generalise to even larger

clusters, however we believe that our scaling conclusions would not be qualitatively changed

by considering larger distributed clusters. We use the Netgauge tool (Hoefler et al., 2007b)

to obtain the LogGP parameters reported in Table 3.10, although we found that a latency

and bandwidth penalty – denoted pL , pG – were necessary to account for a degradation in

performance for large messages. The reason for this degradation is unknown and was not

automatically detected by the Netgauge tool, but since details of the underlying communi-

cation protocol are not published, one can make at best an educated guess about possible

communication protocol switches. The reference architecture allows for both shared memory

and distributed parallelism. Throughout this work, we maintain the nomenclature of shared

memory threads and distributed ranks. When we use the generic term of parallel processes,

we make the assumption that shared memory parallelism capabilities are always exhausted

before distributed memory parallelism.

Spike exchange algorithm All the in silico models and experiments considered here are

based on the Bulk Synchronous Parallel (BSP) model (Valiant, 1990), which prescribes a clear
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Algorithm 10 Simulation algorithm with a focus on the spike exchange routine. This pseudo-
code contains the full simulation algorithm, but abstracts away the computation steps in the
call to a general function advance(neuron, t). The focus is instead on the parts relevant to
spike exchange.

for t0 = 0 ; t0 ≤ Tstop ; t0+= δmin do
clear spike_buf
for t = t0 ; t ≤ t0 +δmin ; t+=∆t do

for each neuron do
advance(neuron, t +∆t )
if neuron membrane potential crosses threshold then

spike_buf← (t +∆t , neuron ID);
end if

end for
end for

. Beginning of spike exchange
n ← len(spike_buf)
num_spikes← MPI_Allgather(n) . implicit barrier
recv_buf← MPI_Allgatherv(spike_buf,num_spikes)

. End of spike exchange
end for

distinction between an on-node computation phase (happening in a distributed parallel

fashion) and an inter-node communication phase. For brain tissue simulations, the inter-

node communication phase corresponds to the spike exchange step in Figure 2.2. In all the

widely-used state-of-the-art simulators, the spike exchange step is implemented by a blocking

collective call, typically the MPI_Allgatherv operation. This entails that all the parallel ranks have,

at the end of the communication step, knowledge of all the spikes produced by the simulation

during the last min-delay period. Recent work has shown that at extremely large scales, this

implementation can become prohibitively expensive in terms of memory requirements, and

proposed to use instead the Alltoall operation to deliver spikes only to the ranks where they

are required (Jordan et al., 2018). Other alternative implementations have been suggested,

using non-blocking point-to-point communication (Ananthanarayanan and Modha, 2007) or

spatial decomposition (Kozloski and Wagner, 2011). All these fall outside of the scope of our

performance models, which are focused on medium-to-large cluster sizes and widely used

software solutions.

We now describe the spike exchange algorithm using the CoreNEURON implementation (Kumb-

har et al., 2019b) as reference, although we believe the main characteristics of this algorithm

are quite general across different implementations. During the neuron computation loop, the

state of neurons is advanced by a δmin interval, making small steps of size ∆t . At each step, the

membrane potential of neurons is checked, and if it crosses a threshold a spike event is issued.

Each spike event is represented by a tuple (t ,neuron ID), where t is the time at which the spike

occurred and neuron ID is the identifier of the source neuron. These events are buffered in

an array until the δmin boundary is reached, then all parallel processes reach a barrier where
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they stop to synchronise. After all parallel processes have reached the barrier, the interprocess

spike exchange begins. First all distributed ranks exchange the number of spikes in their local

buffer via an MPI_Allgather operation. To account for the fact that different ranks might have

different numbers of spikes, the actual spike information is then communicated using an

MPI_Allgatherv operation. The receive buffer for this operation can be prepared just based on

the knowledge of how many spikes will be sent from each rank, already obtained from the first

step of the algorithm. We present in Algorithm 10 the simulation algorithm with a focus on

the spike exchange routine.

Spikes are represented by the (t ,neuron ID) tuple in widely used simulators such as NEU-

RON (Carnevale and Hines, 2006), CoreNEURON (Kumbhar et al., 2019b), NEST (Gewaltig and

Diesmann, 2007), and others. A common implementation is thus based on MPI compound

data types to define a spike type as an aggregate of a double-precision variable representing the

time of spike and an integer variable representing the ID of the source neuron. This implemen-

tation, however, can turn out to be unsatisfactory in terms of performance, in particular when

one tries to predict the runtime of a collective communication, because hidden data shuffling

and copy operations can take place (Carpen-Amarie et al., 2017). To address the performance

issues deriving from custom data types, we reimplemented the spike exchange operation to

perform two consecutive MPI_Allgatherv operations: the first on the array of timings and the

second on the array of source neuron IDs. In our experience, this reimplementation provides

both better performance and lower variability in benchmarks.

LogGP model of collective spike exchange The LogGP framework allows us to directly

model the latency of point-to-point communication using the formula (L+2oi )+ (G +2os)m,

where m is the message size. However, additional work is required to model collective com-

munication because different algorithms can be used to disseminate the messages across the

network during the Allgatherv operation. There are several implementations described in the

literature and which one is used can be changed at runtime according to a complex function

of the static network characteristics such as the topology as well as dynamic specifications

such as the message size and number of ranks involved (see Thakur et al., 2005). The most

widely-used implementations are: the ring algorithm in which the data from each rank is

sent around in a virtual ring of processors, the recursive doubling algorithm in which a binary

tree of pairwise exchanges is built, and the Bruck algorithm which generalizes the recursive

doubling to situations where the number of ranks is not exactly a power of 2. Unfortunately

the details of which algorithm is used and in which situation are proprietary information of

the providers of the MPI implementation in our reference architecture, therefore we do not

have access to such information. A review mentions however that the ring algorithm is the

most commonly used, especially for large messages, and thus we base our predictions on this

paradigm (Thakur et al., 2005). The formula for the LogGP model of the Allgatherv operation

in the case of recursive doubling has been published and can easily be extended to the ring

algorithm by noting that the total number of communicated bytes remains the same, while

the latency term scales linearly instead of logarithmically (Mamadou et al., 2006) . Therefore,
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we model the total latency to perform an Allgatherv operation among P parallel ranks with a

total message size of m as:

TAll g ather = (P −1)(L+2oi )+ P −1

P
(G +2os)(m −1), (3.5)

where we make the simplifying assumption that each rank contributes an equal portion of

data to the total message size. Therefore in our modelling and validation we always consider

that the number of spikes communicated by each rank is roughly homogeneous, such that the

above formula applies. In cases where there is significant variability in the number of spike

communicated by each rank, formula 3.5 provides an optimistic lower bound on the latency,

while a pessimistic upper bound could be given by:

TAll g ather = (P −1)(L+2oi )+ (P −1)(G +2os) max
r∈r anks

(mr −1), (3.6)

where mr represents the size of the portion of message sent by rank r .

Let us now consider a simulation of N neurons, each firing with average firing rate f , dis-

tributed over P parallel ranks. The total number of spikes generated by the whole network in

a minimum delay period will thus be N f δmin. Following our observation that much better

performance is obtained by splitting the communication of neuron IDs and the communi-

cation of spike times, we will thus model the spike exchange as two separate contributions:

in the communication of neuron IDs Tcomm,I D , each spike contributes mI D = 4B to the total

message, while in the communication of spike times Tcomm,t each spike contributes mt = 8B.

Using formula 3.5 as the average case, this leads us to the performance modelling prediction

of the spike exchange algorithm:

Tcomm = Tcomm,I D +Tcomm,t

= 2(P −1)(L+2oi )+ P −1

P
(G +2os)

[
N f δmin(mI D +mt )−1

]
.

(3.7)

Validation For validation, we first implemented a synthetic benchmark testing only the

Allgatherv operation for different message sizes and different cluster sizes. In this case the

underlying communicated type is not relevant, since only the total message size matters.

Figure 3.7 presents the results of this synthetic validation. The distinction between smaller

message sizes – where the performance penalties are not observed – and larger message sizes

is quite clear from the data. The model has a good overall agreement with the measured data,

rarely exceeding 10% relative error and often within the intrinsic variability of the data itself.

Moreover, our assumption that only the ring algorithm is used is justified because the latency

of small messages increases linearly, and not logarithmically, with the number of parallel ranks.

This grants an acceptable degree of confidence in our predictions, at least for small to medium

cluster sizes.

After this first validation, we tested our model in the actual simulation environment, by
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Figure 3.7 – Validation of LogGP model for interprocess communication using a synthetic
benchmark. Measurements and LogGP predictions for a synthetic benchmark involving just
a call to the MPI_Allgatherv communication routine with increasing message sizes. Note the
different limits on the y axis. The distinction between small and large messages is clear,
especially at larger numbers of parallel ranks, where there is a notable discontinuity in the
measured latency according to B.26. Our model, based on the assumption that the ring
algorithm is used, predicts the latency for both small and large messages with a reasonable
degree of accuracy.
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Figure 3.8 – Validation of LogGP model for interprocess spike exchange in the simulation
environment. Weak scaling of a CoreNEURON simulation where individual neurons are
contrived to emit a predetermined number of spikes per timestep. All neurons emit the
same number of spikes. Measurements are obtained by summing the contributions from
communicating the IDs of spiking neurons and the time of spiking Tcomm,I D +Tcomm,t , while
predictions are split in three regions according to message size as described in the text. Red
lines represent the model’s predictions, while blue markers represent the measured latency
averaged across parallel ranks. Error bars represent the minimum and maximum latency
across parallel ranks. The shaded area represents a 10% error w.r.t measurements.
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artificially contriving neurons to fire a predetermined amount of spikes at each time interval.

Results are presented in Figure 3.8. Computation of the LogGP predictions in this case requires

careful treatment of the message size. We identify three regions of interest: the first one where

the total message size is so small that the condition (m < 65P ) is satisfied for communication

of both the neuron IDs (integers) and the spike times (doubles); a second region where the

performance penalty is valid for the communication of the spike times, but not the neuron

IDs; a third region where the performance penalty applies to both communication phases. Our

model seems to have small optimistic bias, but overall it always falls within a 10% error region.

Interestingly, the data seems to have much less variability within the simulation environment,

compared to the synthetic benchmark in Figure 3.7. This could be due to the fact that small

load imbalances caused by randomness would be mitigated in the process of calling Allgatherv

twice.

Discussion The accuracy of the model’s predictions have been validated both for a syn-

thetic benchmark and within the simulation environment. This guarantees a high degree of

confidence in our performance analysis contained in the coming chapters. However, a few

considerations hinder the generality of our method. At large cluster sizes, synchronization

and messaging protocol changes may impact negatively our predictions. We consider our

validation sufficient to ensure that our quantitative and qualitative predictions hold a high

degree of generality. However, it should be stated that extreme variations in hardware spec-

ifications or cluster size would require a complete reparametrisation or even an extension

of the LogGP model. For example, if one wanted to extend our performance predictions to

brain-scale simulations distributed over large-scale clusters, more complex models such as

LogGOPS and possibly even an approach based on simulation (such as LogGOPSim) would

be required (Hoefler et al., 2010; Ino et al., 2001). Moreover, we have only considered the

implementation of spike exchange based on blocking collectives, but other strategies more

suited to larger scales are being considered in the literature, based namely on non-blocking

point-to-point or all-to-all collective communication (Ananthanarayanan and Modha, 2007;

Jordan et al., 2018). An extension of our model to cover these strategies would provide insight

on next-generation brain-scale distributed simulations.

For simplicity we have made the assumption that every rank must communicate the same

amount of spikes at every minimum delay interval. While this considerably simplifies our

analysis and provides an optimistic upper bound on performance, it is not realistic in practice.

Issues of load imbalance and synchronization may considerably worsen the performance

of the collective communication. However, without intimate knowledge of the underlying

algorithm it is impossible to model the effect of differences in the communicated message

size across ranks.

Finally, while the LogGP model is based on interpretable parameters that can be associated

with hardware features, the link is less clear than in the ECM model for shared-memory

execution. For example, the G parameter is associated with communication bandwidth,
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such that its nominal vendor value for EDR 100 should be 8×10−5µs/B . We measure G =
1.42×10−4µs/B , which is reasonably close, although it is not clear why there should be almost

a factor 2x difference. On the other hand, for the o parameter the link with hardware is not so

clear. While one might be tempted to associate it with memory bandwidth, the measured value

is a factor 4.8x smaller than the nominal DRAM bandwidth, indicating that other hardware

features might be more relevant.

Despite some of its shortcomings and limitations, we have presented a performance model

able to capture the main hardware bottlenecks and provide accurate performance predictions

in the context of brain tissue simulations distributed over clusters consisting of up to a few

hundred parallel nodes. We based our predictions on the state-of-the-art implementation

using blocking collective calls, at the core of most of the simulators available in the literature.

Combined with our performance model of shared-memory single-node execution, we now

possess a valuable tool to explain and predict the performance of brain tissue simulations

over a wide range of modelling abstractions and cluster configurations.
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4 Performance landscape of brain tis-
sue simulations

The contents of this chapter are adapted from the following publication:

Francesco Cremonesi and Felix Schürmann. Telling neuronal apples from oranges: ana-

lytical performance modeling of neural tissue simulations. Neuroinformatics, 2019. In

review

The large amount of research dedicated to understanding the performance of brain tissue sim-

ulations demonstrates the relevance of this topic to the community. We provide in this chapter

a quantitative appraisal of the performance landscape of brain tissue simulations based on

the modelling methods described in Chapter 3. Due to the high level of detail required by

our performance model, we restrict our analysis to three in silico models and experiments

representing the three broad categories of modelling abstractions: I-based point neurons,

G-based point neurons and G-based detailed neurons. We thus pick the Brunel, Simplified and

Reconstructed model from the list introduced in Chapter 2. While the Brunel and Simplified

models are composed of neurons that share the same computational characteristics, to cope

with the heterogeneity in the Reconstructed model we pick a Layer 5 thick-tufted pyramidal

cell as representative of the computational complexity of a detailed G-based neurons. In

Chapter 5 we will investigate further the variability of neuron models in the Reconstructed

microcircuit. We deliver a detailed analysis of the relationship between an in silico experiment,

the underlying neuron and connectivity model, the simulation algorithm and the hardware

platform being used. The performance modelling framework developed in Chapter 3 enables

us to expose current hardware bottlenecks and make projections for future brain tissue simula-

tions in different scaling regimes corresponding to different real world scenarios. Our analysis

allows us to not only verify common knowledge about performance bottlenecks, but also

uncover potential future challenges and complications in scaling to the next generation of

brain tissue simulations.
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flop Traffic [MB] Capacity [KB] Communication [B]

Brunel 2.3×105 1.0 2.7×102 12
Simplified 1.7×107 1.3×102 10 12
Reconstructed 8.5×109 3.1×104 2.9×103 12

Table 4.1 – Classical performance metrics for in silico models. We report an estimate of
the average number of flop per neuron to advance its state by 1 second of simulated time,
including event-driven computations and the ion channel and synapse kernels in the G-based
formalism. The memory Traffic is also defined as the data volume required to update the
state of a neuron, and all of its synapses and ion channels, for an interval of 1 second of
simulated time, while the memory Capacity is defined as the static memory footprint. The
requirements in this Table are computed considering only the data structures strictly relevant
to computation, thus neglecting overhead from implementation details such as MPI buffers,
data structure representation, memory padding, etc. The Communication metric is defined
as the size of the outgoing message emitted by a neuron firing at an average rate of f = 1H z
during one second.

4.1 Analysis of the performance landscape

In contrast with their artificial counterparts, models of biological neurons can be characterised

by a high level of complexity. We counted the average number of flop and data reads/writes

required per neuron update, and used this to estimate the memory traffic. Memory capacity

can also be roughly estimated by multiplying the number of state variables and synapses in

a neuron by 8 B, the size of a double-precision variable. A detailed analysis of the memory

footprint for the Brunel model has already been conducted (Kunkel et al., 2014). After applying

memory-saving optimisations, they report a memory footprint of 1 KB per neuron object

and 16 B per static synapse object, amounting to a total of 181 KB per neuron, reasonably

close to the 270 KB we report with our rough estimate. We present in Table 4.1 these classical

performance metrics that complement the hardware-agnostic approach introduced in Chap-

ter 2. As expected, the requirements in terms of number of operations and memory traffic

increase as the level of detail in the biological model increases, from I-based point neurons to

G-based detailed neurons. Interestingly, the memory capacity requirements are smaller in the

Simplified than in the Brunel model, which can be attributed directly to the Brunel’s extremely

high fan-in compared to the Simplified’s optimised value of 36 synapses per neuron. Despite

the interesting characterisation supported by these metrics, this approach is not sufficient to

deliver a satisfactory characterisation of performance. In the remainder of this chapter, we dig

deeper into these in silico models to reveal their fundamental performance properties using

the methods described in Chapter 3.

Based on the characterization in Singh et al. (1993) we consider five different simulation

regimes, arising from the combination of two axis. The first axis is defined by the strategy for

parallelisation: serial, shared-memory and distributed-memory. The second axis is defined
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Figure 4.1 – predicted serial performance characteristics of computational kernels in brain
tissue simulations. We predict the serial runtime of in silico models as a sum of their individual
kernels on the reference SKX-AVX512 architecture. A: Tcor e and Td at a components of the
clock-driven kernels from brain tissue simulations. The dashed black line delineates the
boundary between core-bound kernels (over the line) and data-bound kernels (under the
line). Marker type denotes the in silico model whence the kernel is taken, while marker size is
proportional to the relative importance of the kernel in the total runtime. B: breakdown of
serial runtime in different kernels.

by the strategy for scaling the problem size with the available hardware: maximum-filling or

constant problem size, as defined in (Singh et al., 1993) where maximum-filling corresponds

to the memory-constrained approach. In the rest of this work, we will also refer to memory-

constrained scaling as weak-scaling and constant problem-size scaling as strong-scaling. We

make an additional distinction between the regimes: in max-filling we ignore the loop ordering

optimisation and thus consider that simulation data must be fetched from main memory at

every time iteration; in constant problem size we introduce instead this optimisation, thereby

assuming that simulation data must be fetched from main memory only for the first iteration

within each minimum delay period, and from the L3 cache for all other iterations. In this

chapter the reference single-node architecture is Intel’s Skylake processor with AVX512 vectori-

sation, considered to be a prototypical example of state-of-the-art HPC microarchitectures.

For distributed simulations, the reference network architecture is a vendor-optimized HPE

implementation of the MPI standard over an Infiniband EDR 100 GB/s fabric.

4.1.1 Serial regime

Analysis of the serial regime can reveal important insights into a kernel’s computational

properties. At first we look at the core-bound or data-bound profiles by defining the two
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quantities:

Tcor e = TOL ,

Td at a = TnOL +TL1L2 +TL2L3 +TL3Mem .
(4.1)

From the definition of the ECM runtime prediction (3.1) we know that a kernel will be core-

bound if Tcor e > Td at a , data-bound otherwise. Figure 4.1 shows a scatter plot of these two

dimensions for the clock-driven kernels of the in silico models and experiments. Most kernels

lie in the data-bound regime, with the only exceptions being the core-bound ion channel state

kernels and the G-based synapse state kernels that lie on the boundary. To draw conclusions

about the overall models, we need to intersect this information with the relative importance

of the individual kernels on the overall runtime. The serial performance of G-based models is

dominated by the state and current kernels, in roughly equal parts. Thus we conclude that

G-based models are mainly data-bound. In the I-based model the most time consuming

kernel is the event-driven spike delivery. This implies that, while the clock-driven portion of

the I-based model is definitely data-bound, the serial performance of the whole neuron model

is severely affected by memory latency.

4.1.2 Shared memory max-filling

One of the most common simulation configurations involves scaling the number of neurons

until the memory capacity limit is reached. This configuration has been used as proof-of-

concept for brain tissue simulations to the scale of brain regions and even the full brain

and constitutes a fundamental tool for neuroscientists to simulate networks whose sizes

are representative of the neural systems they are studying (Ananthanarayanan et al., 2009;

Izhikevich and Edelman, 2008; Jordan et al., 2018).

Memory bandwidth limits shared-memory parallelism Modern architectures are typically

designed with memory bandwidth as the most relevant bottleneck for shared-memory paral-

lelism (McCalpin, 1995). This means that if all the shared memory parallel threads are used, it

is very likely that performance will be bounded by the memory bandwidth. Indeed, this has

been demonstrated to be the case for simulations of detailed neurons (Cremonesi et al., 2019a)

and strongly suspected in the case of point neurons (Zenke and Gerstner, 2014). To verify the

hypothesis that memory bandwidth could indeed be the main bottleneck in the maximum

filling regime we compute the memory bandwidth utilization for the three in silico models

considered in this work. Details for computing the memory bandwidth utilisation from the

ECM model are explained in Appendix B.1.4. The results are shown in Figure 4.2A. We find

that all models pass the threshold of 90% utilization well before all available parallel threads

are utilized, meaning that memory bandwidth is indeed a bottleneck in the maximum filling

scenario, under the assumption that data must be pulled from main memory at every time

iteration. Moreover, this also implies that the parallelism exposed by the architecture cannot

be fully exploited in the maximum filling regime. However, we surprisingly also find that,
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Figure 4.2 – Predicted shared-memory performance characteristics in the max-filling regime.
We predict the shared-memory runtime of in silico models as a sum of their individual kernels
on the reference SKX-AVX512 architecture. A Percentage of memory bandwidth utilization
defined in (B.14) as a function of the number of shared memory threads. The dashed black
line denotes the threshold of 90% utilization. B Predicted simulation performance measured
in biological seconds per wallclock second per neuron. We assume complete saturation of
the memory bandwidth. A performance prediction for a whole network simulation may be
obtained by dividing the predicted performance per neuron reported here by the number of
neurons in the network. Note the logarithmic scale on the y axis. The inset shows the percent
of the total runtime required by each kernel within a model’s simulation loop. C1 To mitigate
the effect of memory bandwidth saturation, a smart ordering of time and neuron loops is
implemented by state-of-the-art simulators, as shown in the diagram on the right. We plot
the number of threads required to reach saturation of memory bandwidth as a function of
the coupling ratio. C2 Bandwidth utilization when using the maximum parallelism allowed
by the reference architecture, as a percent of the theoretical peak bandwidth, as a function of
the coupling ratio. D): summarises the loop ordering optimisation to improve cache reuse
described in Section 2.1.3. The top shows the naïve implementation where each neuron is
advanced by a single timestep, while the bottom shows the optimised version in which a
neuron is advanced by several timesteps until it reaches a δmin boundary, thus enabling cache
reuse.
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regardless of the level of morphological detail, G-based models share a similar pattern of early

saturation while the I-based IAF model requires slightly more parallelism to achieve memory

bandwidth saturation. In G-based models this is explained by the dominance of synaptic

and ion channel current kernels which determine the early saturation pattern, whereas in

the I-based model the saturation is driven by the memory latency effect on the spike delivery

kernel.

State-of-the-art HPC memory chips can sustain fast simulations of the Brunel and Simpli-

fied models at full saturation From a practical point of view, in addition to analysing the

scaling behaviour of simulations, computational neuroscientists are also interested in predict-

ing the actual runtime for a given model. Therefore, we predict the simulation performance

for the three in silico models under the assumption that memory bandwidth is fully saturated.

The results are plotted in Figure 4.2B, and Table 4.1 reports the memory traffic requirements to

simulate one second of activity, alongside the predicted memory capacity. As unit of measure

for performance we chose simulated seconds per wallclock second per neuron, in order to

present our results in a way that is independent from the network size and the duration of

the simulation. Our results indicate that the modern, fast memory chips on the reference

architecture could be able to sustain faster-than-constant problem size simulations of up to

roughly 104 neurons in the Brunel model, and 103 neurons in the Simplified model, while

faster-than-constant problem size simulations of the Reconstructed model are predicted to be

theoretically possible only by a narrow margin, and in practice probably impossible. As an

important remark, these predictions only consider the computational and communication

kernels of an in silico model, and notably neglect event bookkeeping efforts, random numbers

generation and computation of stimuli. In a real world scenario, the empirically measured

performance of a model could be much smaller if the model’s execution is not dominated by

computational aspects.

Event-driven synaptic integration dominates I-based performance, while clock-driven ker-

nels dominate G-based performance. We also predict the breakdown of relative importance

of different kernels that constitute the simulation algorithm of a model, shown in the inset

of Figure 4.2B, allowing us to highlight some interesting differences between models. In the

maximum filling scenario the Reconstructed model is not dominated by a single kernel. In-

stead, synaptic and ionic current kernels constitute almost 60% of the execution time, while

state update kernels, which are commonly regarded as more costly, are a few points short of

taking up the remaining 40%. This has been extensively validated in our analysis and can be

explained by the fact that current kernels have stronger data requirements and lower compu-

tational requirements, and thus poorer performance when the bottleneck is constituted by the

memory bandwidth (Cremonesi et al., 2019a). The Simplified model is similarly dominated

by the computation of synaptic current kernels. Since the Simplified and the Reconstructed

model share the same G-based synaptic formalism, this can explain why some of their per-

formance properties are very similar, in spite of the fact that their representation of neurons’
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morphologies is extremely different. Conversely, the performance of the Brunel model is

determined for more that 60% by a single kernel: the event-driven integration of synaptic

events. In the following sections we explore in detail how this characteristic has an impact on

determining which hardware feature is most relevant for the performance of in silico models.

Ordering of loops to avoid memory bandwidth saturation. State-of-the-art simulators em-

ploy a specific ordering of the loops over neurons, timesteps (∆t ) and minimum network delay

steps (δmin) to minimise the impact of memory bandwidth by maximising data locality. This

optimisation was explained in Section 2.1.3 and is summarised in Figure 4.2D. Throughout this

work we make the conservative assumption that, when using the loop ordering optimisation,

data must be fetched from main memory on the first timestep and from the L3 cache on

consecutive timesteps. In special cases where the memory traffic requirements of a single

neuron are very low and the number of synaptic events integrated in a timestep is sufficiently

small, data could potentially come instead from higher levels in the hierarchy such as the

L2 cache; however for the sake of simplicity we make the assumption that reused data must

always be fetched from L3. The number of timesteps within a minimum delay period has of

course a great influence on the effectiveness of this strategy in terms of reducing pressure

on the memory bandwidth. To quantify this, we compute the number of threads to reach

saturation – nsatur – as defined in (B.12) and plot the results in Figure 4.2C1 as a function of

the coupling ratio defined by δmin
∆t . In G-based models, there is an almost linear relationship

between the coupling ratio and nsatur , indicating that investigating ways to increase the cou-

pling ratio could be highly beneficial for parallelism. Note that, in this regard, increasing the

coupling ratio by decreasing ∆t presents a performance tradeoff: it allows more parallelism

but increases the computational requirements (number of iterations) of the model. Conversely,

while the δmin is obviously a fixed parameter of the network that cannot be arbitrarily changed,

methods that experimented with a per-neuron delay, instead of a network-wide minimum

delay, demonstrated significant speedup (Magalhães and Schürmann, 2019). The relationship

between coupling ratio and nsatur for I-based models is bounded by a relatively small limit

of roughly nsatur ≤ 17, above which no additional parallelisation is predicted to provide any

benefit. This is explained by the fact the spike delivery kernel, in virtue of its event-driven

nature, is unaffected by the benefits of the coupling ratio. Since our assumption is that data

for this kernel must always come from main memory, as soon as it becomes the dominating

performance factor and it reaches saturation, it inhibits any benefit from parallelism. To

provide an example more concretely tied to hardware, we also predict the maximum memory

bandwidth utilization as a function of the coupling ratio. For G-based models this follows a

steep decline for small values of the coupling ratio, indicating that even just a few timesteps

exploiting data locality can provide great benefits in terms of shared memory scaling, while in

the case of the I-based model this decline is much slower, which could explain why the pub-

lished Brunel model (Kunkel et al., 2014) benefits from such a large value of the coupling ratio

while the Reconstructed and Simplified models have relatively lower values (see Figure 2.6).
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4.1.3 Distributed max-filling

To overcome the limit on network size imposed by the memory capacity of individual compute

nodes, computational neuroscientists have begun executing parallel distributed simulations

on a cluster of compute nodes. In the distributed maximum filling regime we still consider

that the memory capacity limit of each individual compute node will be maxed out, but we

introduce the possibility of increasing the number of interconnected compute nodes as a

means of increasing the computational power and capacity of the architecture. In terms

of scaling the problem size proportionally to the number of compute nodes, the fact that

we assume the memory capacity limit to be always maxed out translates to the concept of

weak scaling, on which we will base our analysis in this section. In this section we ignore the

loop-ordering optimisation described above and assume instead that the memory bandwidth

of individual compute nodes will always be saturated. In some sense, this represents an upper

bound on the achievable performance using shared-memory parallelism. We will lift the

memory saturation assumption in later sections.

Weak scaling properties and performance predictions of in silico models We predict the

performance of distributed simulations in a weak scaling, maximum filling scenario for dif-

ferent numbers of neurons per rank and all in silico models, using our performance model.

Results are presented in Figure 4.3A, where the solid lines correspond to 105 neurons per rank

while the dashed lines correspond to a small number of neurons per rank, computed such

that its memory footprint barely exceeds the 25MB of the reference architecture’s L3 cache;

smaller values would not be possible because they would break the memory bandwidth satu-

ration assumption. As expected, for a fixed configuration and a small cluster size the Brunel

model has the best predicted performance, beating by roughly a factor 10 the performance of

the Simplified model and roughly a factor 104 the performance of the Reconstructed model.

Interestingly, these differences are much less pronounced for large cluster sizes, where the

difference between the Brunel and Reconstructed model can be reduced to less than a factor

10. Networks with the largest numbers of neurons considered here possess excellent weak

scaling properties regardless of the underlying modelling abstraction, at least up to the cluster

sizes considered here. Conversely, only small networks of the Reconstructed model retain

the same quasi-optimal scaling behaviour, while both the Brunel and Simplified model suffer

from performance degradation at large cluster sizes, with the average rate of degradation

being significantly larger for the Brunel model.

Explaining weak scaling performance properties through bottleneck analysis Figure 4.3B

explains the degradation of performance by identifying the most relevant bottlenecks for

different configurations. Here a hardware bottleneck is defined as the most relevant hardware

feature as computed by our performance model. The methodology for computing hardware

bottlenecks is explained in detail in Appendix B.1.4. The first striking property revealed

by this analysis is that network bandwidth is never a bottleneck for the in silico models
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several values of the number of neurons per rank, ranging from the smallest number that
would exceed a typical L3 size of 25MB to 105 neurons per rank. The unit of performance
is simulated seconds per wallclock second to simulate the whole network. We make the as-
sumption of complete saturation of the memory bandwidth. B Hardware bottlenecks defined
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by a factor of 10x w.r.t the reference architecture. Shaded areas represent the speedup for
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considered here. Instead, large-scale simulations are dominated by the latency of the collective

communication. This points to the fact that investigating spike communication strategies

such as neighbourhood collectives (Jordan et al., 2018), non-blocking point-to-point schemes

(Ananthanarayanan and Modha, 2007) or asynchronous execution (Magalhaes et al., 2019b) is

essential to reach brain-scale simulations.

Distributed simulations of large networks can be improved by increasing memory band-

width, small networks by decreasing network latency The aforementioned bottleneck

analysis is useful to understand which is the most important hardware feature in a given

simulation configuration, but it does not provide any information about the relative im-

portance of the other features. Therefore we predict the speedup corresponding to a 10×
improvement of a single hardware feature, for different numbers of neurons per distributed

rank, as a function of the number of ranks. The results are plotted in Figure 4.3C, which

shows that at small cluster sizes all models would benefit from an improvement in the nodes’

memory bandwidth, but not from an improvement in network latency, while the situation

is reversed at large cluster sizes. The predicted speedup obtained by improving the memory

bandwidth degrades much faster for simulations with a small number of neurons per rank

versus a large number of neurons per rank, while the opposite is true for the speedup coming

from an improved network latency.

4.1.4 Shared memory constant problem size

Another widespread simulation regime is not focused on simulating the largest possible net-

work, but in simulating a fixed size network as fast as possible. We call this the constant

problem size regime, because that represents an ideal target for the performance of a simula-

tion. Currently, on the one hand it is unclear whether constant problem size is realistically

achievable on modern hardware (Zenke and Gerstner, 2014), and on the other hand special

hardware that breaks this limit by design has already been conceived and tested for small

networks (Aamir et al., 2018).

Memory bandwidth dominates the shared-memory strong scaling of Brunel and Simpli-

fied models, while a mix of hardware features influences the performance of the Recon-

structed model Given that it is possible to observe superlinear speedup as the dataset is

made increasingly small by virtue of it fitting into faster cache memory, we predict the per-

formance per neuron of all in silico models assuming the dataset could be fully contained in

different levels of the memory hierarchy. For simplicity, we neglect the fact that some of these

model and cache combinations are infeasible in practice, e.g., due to the memory footprint

of a single neuron in the Reconstructed model exceeding the L1 cache size. For DRAM, we

assume that the ordering of loops technique is used to avoid saturation of the memory band-

width, thus extending our analysis by discarding the saturation hypothesis made in previous

sections. For all performance predictions we assume that all available threads in the reference
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model performance (DRAM) speedup in L3 speedup in L2 speedup in L1

Brunel 3.9×104 2.5 8.7 33.9
Simplified 7.9×102 4.7 6.5 6.6
Reconstructed 3.9 1.8 2.4 2.4

Table 4.2 – Full-chip predicted performance, relaxing the saturation assumption. Predicted
performance is measured in simulated seconds per wallclock second per neuron. We do not
make the assumption of memory bandwidth saturation, and consider instead that all available
parallelism (18 threads) is used in the reference SKX AVX512 architecture.

architecture (18 in total) are being utilized. Results are reported in Table 4.2, where we give the

raw performance value when data is in DRAM, and the corresponding (superlinear) speedup

factor as the dataset becomes small enough to fit in higher levels of the cache hierarchy.

Figure 4.4 shows the predicted performance breakdown into simulation kernels as well as

hardware features for all in silico models, assuming that the dataset fits in different levels of

the memory hierarchy. When data is in the highest level of the cache hierarchy (L1), the most

important kernels for all models are state update kernels, and the most relevant hardware

feature is the CPU throughput. Additionally, in the G-based models the computation of the

exponential (for updating the synaptic states) constitutes a significant portion of the overall

execution time. As the dataset increases in size and is only able to fit in lower levels of the

cache (L2 or L3) the predicted performance of the G-based models remains quite stable

while that of the Brunel model degrades rapidly, although admittedly our model for the spike

delivery kernel in caches might be highly optimistic. In practice, this could be an indication

that the Brunel model is bounded by the data path while the G-based models are bounded

by the maximum achievable flop rate. Our breakdown analysis confirms this, although for

the reference architecture G-based models are best represented by a mix of core-bound and

data-bound kernels, especially when the dataset fits only in the L3 cache. Complementarily,

in G-based models the relative importance of the core-bound state update kernels gradually

loses weight in favour of data-bound current kernels, while in the Brunel model the weight of

the spike delivery kernel gradually increases, eventually becoming the most relevant kernel

in the execution, as data moves further away from the CPU. In spite of this technique, both

point neuron models are clearly dominated by the saturation of the memory bandwidth. In

particular, the fact that memory bandwidth is the only factor in determining the performance

of the Simplified model can be directly related to the fact that its coupling ratio has a value

of 1, as shown in Figure 2.6. The performance profile of the Reconstructed model is more

diverse, and while 60% of the execution time is still dominated by memory bandwidth, the

data transfers between the caches, arithmetic instructions, and throughput of exponential

function evaluations also take up a significant portion of the runtime. Again we stress that

this phenomenon is tightly linked to the hardware architecture used as reference, specifically

to its balance of compute power, memory bandwidth and number of threads. However, we
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can assume that the general application of these conclusions still holds as most modern

architectures are designed with a similar balance point (McCalpin, 1995).

4.1.5 Distributed constant problem size

An effective strategy for improving simulation performance or to handle larger networks is to

dedicate more hardware to the task, distributing the simulated neural network across multiple

compute nodes. For a fixed problem size, this translates to the concept of strong scaling. The

limits to strong scaling of medium sized plasticity networks have been empirically explored

in (Zenke and Gerstner, 2014). Here we generalize their analysis to other in silico models as

well as provide clear explanations for the causality of bottlenecks, backed by our performance

model.

Performance predictions for strong scaling of arbitrarily sized networks We predict the

performance and scaling bottlenecks of in silico models in a strong scaling scenario, using

our performance model, and present the results in Figure 4.5. As in the distributed maximum

filling scenario, the problem size has a major impact on performance, so we include several

possible sizes in our analysis. Some researchers have explored the possibility of splitting a

neuron across more than a single parallel process, such as the multisplit method (Hines et al.,

2008), branch-parallelism (Magalhaes et al., 2019a) and domain decomposition (Kozloski and

Wagner, 2011). We do not include such techniques in our analysis because their granularity

falls outside the scope of this work. In practice, this imposes a limit on how many distributed

ranks a given neural network could be scaled on because the limitation of one neuron per

distributed rank cannot be overcome. In Figure 4.5A we present raw performance predictions

for different network sizes in a strong scaling scenario. The dashed lines correspond to the

minimum network size such that strong scaling can be carried out until occupancy of the

full cluster, set here at 103 distributed ranks. For all in silico models, as long as the network

size is sufficiently large, the performance initially improves as we distribute the problem over

increasingly more ranks. However, for all in silico models there exists a threshold number of

ranks after which the benefits from adding hardware become less prominent. Scaling to larger

cluster sizes after this threshold can be counter-productive, and even result in performance

degradation. The threshold value itself is a function of the hardware architecture, in silico

model and problem size. Interestingly the striking differences in performance between in

silico models at small cluster sizes can be evened out quite significantly at large cluster sizes in

this scenario. For example, simulating a large Brunel network on 10 distributed ranks can be

roughly four orders of magnitude faster than a Reconstructed network on the same hardware,

but the difference between models goes down to two orders of magnitude at large cluster sizes.

Network latency and memory bandwidth are the main bottlenecks in strong scaling Fol-

lowing the same procedure of the maximum filling scenario we investigate the reasons for

performance degradation by plotting the most significant hardware bottlenecks for all com-
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Figure 4.4 – Predicted shared-memory runtime contributions from computational kernels and
hardware features. We assume a single node of the SKX architecture with AVX512 vectorisation
and using the maximum number of threads (18 threads). We do not make the assumption of
memory bandwidth saturation, but we assume that the loop ordering optimisation is used.
For each level of the cache hierarchy, we show the breakdown of the total runtime into compu-
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for the execution of non-memory access instructions in the core (excluding the exponential
function), exp for the computation of exponential function, Tload for the execution of memory
access instructions in the core, and the rest for the data traffic time of the relevant datapath.
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binations of network size and cluster size in Figure 4.5B. We assume that the loop ordering

optimisation is being used. Even though we do not make the explicit assumption of memory

bandwidth saturation, this hardware feature is still among the most relevant for all in silico

models (as was also shown in Figure 4.4). Moreover, network bandwidth is never the domi-

nating bottleneck for all in silico models and all configurations, while network latency always

becomes the most important bottleneck at large cluster sizes. At very small cluster sizes, we

recover the results from Figure 4.4.

Network latency gives significant performance improvements for point neuron models,

but no improvement in a single factor would be sufficient to increase performance in the

Reconstructed model To further investigate the relevant bottlenecks, we predict the ex-

pected speedup corresponding to a tenfold increase in a single hardware feature and present

the results in Figure 4.5C. Both point neuron models show a similar structure: an improve-

ment in the features of a single node such as CPU frequency or cache throughput yields an

improvement in performance only for very small networks, while a tenfold improvement in

network latency would guarantee a significant improvement in performance for networks

of all sizes and sufficiently large cluster sizes. The only difference between the two point

neuron models in this analysis are the benefits to be gained from improving the memory

bandwidth: while there would be almost no benefit for the Brunel I-based model, it has a

moderate influence in the performance of the Simplified G-based model, especially for large

networks. The situation for the Reconstructed model differs, and there is no single factor that

would result in a significant performance improvement at any network size, except for strong

scaling of very small networks where the CPU throughput is the dominating hardware feature.

This can be explained by the diversity of relevant hardware factors identified in Figure 4.4:

when a single hardware feature is improved, another bottleneck is quickly reached and the

total resulting performance improvement is suboptimal. For large cluster sizes the situation

normalizes to that of the other in silico models, and network latency becomes the dominant

factor, such that a tenfold increase results in a nearly-equivalent performance boost, especially

for small networks.

4.1.6 Dependence of performance on model parameters

Parameters of the in silico models have an important, yet often difficult to explain, impact on

performance. We test the impact of the firing frequency, minimum network delay and fan-in

using our performance model, and present the results in this section. We neglect the timestep

because it has a generally straightforward relationship with performance, and was omitted for

brevity.

Firing frequency’s differential effect on communication and computation Firing frequency

is commonly cited as one of the most impactful parameters on simulation performance (Yavuz

et al., 2016). In this work we consider it a parameter even though it usually cannot be explicitly
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Figure 4.5 – Performance characteristics of the distributed constant problem size regime. The
SKX AVX512 architecture with HPE Infiniband EDR is used as reference. A1,A2,A3 Recon-
structed G-based, Simplified G-based and Brunel I-based model, respectively. For all models,
we do not assume that memory bandwidth is saturated but we assume that the loop ordering
optimisation is used. A Predicted performance of the three in silico models in a strong-scaling
scenario. We consider different total network sizes. The dashed and solid lines represent
simulations with networks of 103 and 108 neurons respectively. The unit of performance is
simulated seconds per wallclock second to simulate the whole network. B Hardware bottle-
necks defined in (B.17) as a function of the total number of neurons (inverted y axis) and the
number of distributed ranks (x axis). The grey areas denote a configuration that would require
splitting of individual neurons. C Speedup predicted by the model when a single hardware
feature is improved by a factor of 10x w.r.t the reference architecture. Shaded areas represent
the speedup for different values of the total number of neurons, in the range described in A.
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Figure 4.6 – Effect of model parameters on performance. A Effect of firing frequency on
the performance of distributed simulations. A1 Median performance over 1000 randomly
generated simulation samples defined by number of neurons and number of distributed ranks.
The shaded area surrounding the total performance represents the 25th and 75th percentiles.
A2,A3,A4 Stacked plot of the mean relative contributions from hardware features, respectively
for the Brunel, Simplified and Reconstructed model. B Effect of δmin on the performance of
distributed simulations. B1 Median performance over 1000 randomly generated simulation
samples defined by number of neurons and number of distributed ranks. The shaded area
surrounding the total performance represents the 25th and 75th percentiles. B2,B3,B4 Stacked
plot of the mean relative contributions from hardware features. The range of acceptable values
for δmin changes across different in silico models because they were computed as multiples of
the model’s timestep. C Effect of fan-in K on the performance of distributed simulations. C1
Median performance over 1000 randomly generated simulation samples defined by number of
neurons and number of distributed ranks. The shaded area surrounding the total performance
represents the 25th and 75th percentiles. We assumed that the reference architecture had
infinite memory capacity. C2 Number of neurons able to fit in one GB, normalized by the
memory requirements of a model with 10 incoming synapses. C3 Contour plot of predicted
memory requirements of the connections table, as a function of the total number of neurons
(x axis) and the number of distributed ranks (y axis). The contour levels corresponding to 1KB,
1MB and 1GB are shown for different values of the fan-in.
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set by the user, and is instead an emerging property of the simulation. Figure 4.6A shows the

predictions of our performance model for the three in silico models, for values of the firing

frequency in a physiological range. To take into account the obvious fact that the total number

of neurons and distributed ranks can introduce a large variability in our predictions, we ran-

domly generate 1000 value pairs of [number of neurons, number of distributed ranks] and

plot the median predicted performance, additionally broken down into its two components

of inter-node communication and on-node computation. For the number of neurons we

consider values in the range [1,108] while for the number of ranks we consider values in the

range [1,103]; furthermore, we discard the few configurations for which the number of neurons

was randomly chosen to be smaller than the number of ranks, as that would imply the splitting

of neurons. We generate random numbers of neurons and ranks following a log-uniform

distribution, with the effect that all orders of magnitude are equally likely, thus introducing a

very large variability. Firing frequency has an effect on communication by changing the size of

the spike message as well as on computation by changing the amount of events that must be

integrated by neurons. In Figure 4.6A1 it is noticeable that there exists a threshold frequency

below which f does not affect performance, but once this threshold is passed firing frequency

becomes a primary factor, inducing a linear, almost unit-slope degradation in performance.

This effect is clearly visible in the Simplified model, and even more so in the Brunel models.

For the Reconstructed model this threshold value exists, but is so large that we can safely

assume that, in the median case, firing frequency has no effect on performance. To investigate

the reasons for performance degradation we look at the breakdown of relative importance of

different hardware features as a function of the firing frequency, plotted in Figure 4.6A1,A2,A3.

Similarly to before, we randomly generate 1000 couples of [number of neurons, number of

distributed ranks] but we plot the mean relative importance instead of the median to keep

the total constantly equal to 100%. Our analysis shows an interesting behaviour: as the firing

frequency becomes larger, the relative pressure on the memory bandwidth (and eventually

the network bandwidth) becomes larger, while the relative pressure on the network latency

becomes smaller. So not only there is more computation to be done as firing frequency gets

larger, but also the mix of hardware bottlenecks changes. This behaviour was observed em-

pirically not only on general-purpose CPUs (Zenke and Gerstner, 2014) but also on GPUs

which are additionally more susceptible to dynamic load balancing because of the extremely

large number of parallel cores (Yavuz et al., 2016) We remark that the large variability in the

performance predictions in Figure 4.6A1,B1,C1 can be at least partially explained by our choice

of sampling strategy as mentioned above.

Minimum network delay affects the relative importance of hardware features Another

parameter of interest is the minimum network delay, denoted δmin. In terms of communica-

tion, δmin affects the number of times that global communication must happen to simulate

one second of biological time, although it does not affect the total number of spikes communi-

cated. In terms of computation, assuming that the loop ordering strategy to minimise pressure

on the memory bandwidth is employed then δmin affects the number of time iterations in
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which data locality can be exploited. Figure 4.6B1 shows the predictions of our performance

model for the three in silico models, for different values of the minimum network delay. Since

this delay can only be an integer multiple of the timestep, we exploit the concept of coupling

ratio to define a range of plausible minimum delay values by setting a range of values for the

coupling ratio and obtaining the corresponding δmin by multiplication with ∆t . By looking at

the breakdown of performance, we see that larger δmin improves the performance of inter-

node communication but also, somewhat surprisingly, on-node computation. However, while

the communication performance seems to improve indefinitely, the improvement of on-node

computation saturates quite quickly. For the point neuron models, within the range of δmin

values considered here, there is a transition from a regime dominated by communication to

one dominated by computation, while the Reconstructed model is dominated by computation

for all δmin values. To investigate the reasons for changes in performance, we plot the break-

down of relative importance of different hardware features in Figure 4.6B1,B2,B3. In the case

of G-based models, larger δmin correspond to decreased pressure on the memory bandwidth

and network latency, and larger pressure on more scalable hardware features such as CPU

instruction throughput and caches throughput. This points to the fact that simulations based

on G-based models with a large δmin could strongly benefit from shared-memory parallelism.

On the other hand, a larger δmin in the I-based model results in decreased pressure on the

network latency, but a higher pressure on memory bandwidth.

Large fan-in can be advantageous for performance of point neuron models, but has almost

no effect on Reconstructed model Finally, we examine the effect of fan-in, defined as the

average number of incoming connections per neuron and denoted by K . This parameter has

subtle effects on performance that are difficult to analyse. For G-based models, a larger fan-in

technically means more synapses to simulate thus an expected degradation of performance.

Additionally, for all models a larger K determines an increase in event-driven computation,

thus once again an expected degradation of performance. These hypothesis are confirmed

in Figure 4.6C1, which shows that K does not affect communication but has a very strong

effect on the Reconstructed model. Unexpectedly, fan-in seems to only marginally affect the

performance of the Simplified model, in spite of it being a G-based model too. This can be

easily explained by the fixed number of synaptic instances in this model (28 excitatory and

8 inhibitory (Rössert et al., 2016)), such that much like the I-based Brunel model, ultimately

the fan-in affects only the average number of events a neuron must integrate within a certain

time period. Another important point should be made about the effect of fan-in, because

changing the number of connections of a neuron has an impact on the in silico model’s

memory requirements. Figure 4.6C2 shows the ratio of neurons that can fit in a Gigabyte of

memory, according to our performance model, as a function of fan-in. In a strong scaling

scenario, this information sheds new light on the conclusions above, because if only 1
x neurons

fit in a GB, this can result potentially in a x-fold increase in performance from parallelism

(disregarding potential communication bottlenecks). Therefore for the Brunel and Simplified

model it can be advantageous to have a large number of incoming connections per neuron,
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because the performance price paid is more than compensated by the required increase in

parallelism. Conversely, in the Reconstructed model, these two effects appear to balance out

almost evenly.

For very large scale simulations, another subtle effect of fan-in is represented by the size

of the connection table, an issue that was raised and investigated in (Kunkel et al., 2014).

The connections table of a given rank contains all the GIDs of presynaptic neurons that are

relevant for at least one neuron in that rank. The size of the connection table depends, among

other things, on K as well as the total number of neurons and number of distributed ranks.

In Figure 4.6C3 we plot the values of the expected total size of the connection table on the

(total number of neurons, number of distributed ranks)-plane as a contour plot, highlighting

the contours corresponding to a total size of 1KB, 1MB and 1GB. We report the formula for

completeness, even though it has already been published (see Kunkel et al., 2014):

N

(
1−

(
1− 1

N

) N K
P

)
, (4.2)

where N is the total number of neurons, K the number of incoming connections per neuron

and P the number of parallel processes. Although in some in silico models connectivity may

be determined by complex rules influenced by cell type and spatial locality, for simplicity

we compute here the expected size of the connections table assuming uniform connection

probability and random distribution of neurons across ranks. In a strong scaling scenario the

size of the connections table steadily decreases as the number of ranks increases, starting from

the minimum of two ranks required by a distributed simulation. This can be explained by the

fact that fixing the network size and increasing the number of ranks entails that there will be

less incoming connections to a given rank. In a weak scaling scenario, such as the maximum

filling regime, the size of the connections table transiently increases when the number of

distributed ranks is low, but at large scale reaches a constant value steady state determined

only by K .

4.2 Discussion of Performance Landscape and Future Projections

In this chapter we have delivered a quantitative characterisation of the performance properties

of different published in silico models at the core of state-of-the-art brain tissue simulations.

Using a grey-box model that combines biological and algorithmic properties with hardware

specifications we have identified performance bottlenecks under different simulation regimes,

corresponding to a variety of prototypical scientific questions that can be answered by simula-

tions of biological neural networks.

General purpose computing has sustained a diverse performance landscape up to now

Our results show that there exists a large diversity of performance profiles and bottlenecks

that shape the landscape of brain tissue simulations, corresponding to the diversity of sizes
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and scales at which research questions in simulation neuroscience can be asked. Thus, our

research highlights that the computational neuroscience community is currently greatly bene-

fiting from the adaptability of general purpose computing, exploiting the ease of development

and high performance capability to explore different areas of the modelling landscape.

Complex out-of-order cores enable high performance and efficiency in brain tissue neu-

ron models In the serial execution, we have shown that G-based models are dominated by

state and current kernels. Our analysis has highlighted that high-throughput exponential and

division functions and wide SIMD units enable high-performance simulation of G-based state

and current kernels (see also Section 3.1.6 and Cremonesi et al., 2019a). The fact that most

kernels have a data-bound profile on our AVX512 reference architecture is also an indication

that the performance gains in the core deriving from an out-of-order execution have been

pushed to the limit at this level of vectorisation, as is shown e.g. by the fact that G-based

synapse current kernel switches from a core-bound to a data-bound profile when data is in

memory. I-based neurons, on the other hand, are dominated by the spike delivery kernel, and

thus their performance is affected by memory latency. As we have observed, however, the

full cost of the memory is not paid by this kernel because of its peculiar data access pattern.

Therefore the ability of complex, out-of-order cores to exhibit instruction-level and memory-

level parallelism enables hiding the cost of memory latency and delivering high performance

serial simulations of I-based neurons.

Memory bandwidth and network latency severely limit maximum filling and constant prob-

lem size strong scaling Using a state-of-the-art HPC server CPU and cluster as a reference,

our analysis revealed that all the in silico models saturate the memory bandwidth using quite

a small number of shared memory threads. The high load on memory bandwidth imposed by

brain tissue simulations is also reflected in custom codesigned chips where low-resolution

synapses are used to minimise data traffic (Merolla et al., 2014; Pfeil et al., 2012). Even when

algorithmic improvements are put into place to mitigate this effect, we have identified that the

coupling ratio, a dimensionless number that counts the number of timesteps in a minimum

network delay period, strongly regulates the saturation of memory bandwidth and, in the

extreme case of the Simplified model analysed here, effectively prevents any benefit to be

gained from the effort of developing a more efficient algorithm. Additionally, we discovered

that it is not the level of morphological detail, but rather the formalism used to represent

synapses, that is the most important factor in explaining the memory bandwidth saturation

profile, with G-based models saturating much faster than the I-based model. In distributed

simulations we identified the network latency, and not the network bandwidth, as the major

bottleneck for scaling to very large networks or very large cluster sizes. This provides a new

motivation and justification for the extensive efforts in designing a specific communication

infrastructure for the SpiNNaker neuromorphic system (Navaridas et al., 2012).
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Loop ordering is essential to guarantee high parallel scalability in G-based neurons The

loop ordering optimisation is essential to enable cache reuse, which in turn greatly decreases

the memory bandwidth pressure and increases the saturation point of simulating neurons. In

G-based neurons where the memory saturation happens at the level of clock-driven kernels

this represents a paramount optimisation to achieve high performance. In cases where the

model specifications do not allow room for the loop-ordering optimisation, such as the Simpli-

fied model having a coupling ratio equal to 1, it might still be worth investigating whether the

benefits of reducing the timestep – i.e. higher numerical accuracy and better shared-memory

scalability – could outweigh the loss in performance due to the larger amount of work neces-

sary to simulate one second of activity. While the loop ordering optimisation pushes towards

processing a single neuron at a time, it should be noted that a tradeoff with vectorisation has

been recently highlighted because sufficiently many neurons must be grouped together to

enable efficient use of the vectorized computation units (Magalhaes et al., 2019a). Ultimately,

this leads us to the remark that the L3 cache size is a crucial hardware feature, as it must

be large enough to hold enough neurons for both vectorisation and maximum parallelism.

Finally, we expect the loop ordering optimisation to be less beneficial in the simulation of

I-based neuron, because the main driver for memory saturation is the event-driven spike

delivery kernel whose performance is independent from the relationship between timestep

and minimum network delay.

Model-specific features have a significant impact on performance Inspection of our per-

formance model allowed us to pinpoint which kernels, hardware specifications and model

parameters have the largest impact on performance. The Brunel model based on the I-based

formalism and IAF neurons is mainly bounded by the spike delivery kernel, which exhibits a

good shared-memory scaling behaviour and, in the case of extreme strong scaling, a strong

dependence on the inter-cache data paths for good performance. The two G-based mod-

els we analysed, i.e. Simplified and Reconstructed, have a similar shared-memory scaling

behaviour, mainly driven by the current kernels required to compute the contributions of

individual synapses (and ion channels) to the membrane potential equation. However, while

the Simplified model is 100% dominated by memory bandwidth, the morphologically detailed

Reconstructed model is dominated partially (around 40%) by other hardware components

such as caches and CPU throughput. Interestingly, differences between models are signifi-

cantly reduced when comparing the performance of distributed simulations of large networks.

This can be attributed to the fact that in this case the network latency is the dominant factor,

thus in the extreme situation where performance is only determined by communication, the

only differences between in silico models would be in terms of their minimum delay. It be-

comes clear that a performance model and a detailed performance analysis are fundamental

tools to disentangle the complex web of relationships between in silico models, their software

implementation and hardware concretisation.
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Static and dynamic model parameters affect performance in significant but subtle ways

Finally, we examined the impact of model parameters on the performance profiles described

above. We found that firing frequency, but surprisingly also minimum network delay, can

have a large impact on determining which hardware features may constitute a performance

bottleneck. For firing frequency it is obvious that larger values correspond to more operations

required by the simulation algorithm, and thus a lower performance, but our analysis shows

that different values of the firing frequency also change the relative importance of hardware

features. Interestingly we found that the minimum network delay, in spite of it not affecting

the total number of operations per simulated second, can have an effect on performance

simply by shifting the importance of the hardware bottlenecks. We also found that the average

number of incoming connections per neuron plays a subtle role in influencing performance.

Trivially, a larger fan-in increases the computational requirements of a single neuron. How-

ever, it also increases the memory capacity requirements, thus requiring a larger degree of

parallelism to handle the same network size. This creates a tradeoff between performance

degradation arising from larger computational requirements and performance improvement

from parallelism requirements.

Relevance of computational and communication kernels to whole-simulation performance

The scope of our work is limited to the computational and communication kernels in brain

tissue simulations, thus excluding from our analysis auxiliary algorithm phases such as gen-

eration of stimuli, random number generation and managing the queue of synaptic events.

While these kernels constitute necessary steps in the simulation of brain tissue, the goal of our

investigation is to study the performance properties related to the mathematical modelling of

neurons, and not implementation and hardware details such as the most efficient random

number generation strategy. Despite excluding some parts of the simulation algorithm, our

analysis still maintains a lot of relevance with regards to the overall simulation performance.

For G-based models several studies have shown that the combined runtime of ion channels,

synapses and spike delivery amounts to over 90% of the total simulation runtime, with linear

algebra contributing another 5% in the case of detailed models (Akar et al., 2019a; Ewart et al.,

2015; Kumbhar et al., 2019a; Rössert et al., 2016). In I-based models the relative impact of

handling queue events and spike delivery increases with parallelism and eventually domi-

nates the runtime (Schenck et al., 2014). Since their analysis does not distinguish between

these two operations, one cannot tell whether the degradation in performance comes from

the spike delivery kernel – which we consider in our analysis – or the management of the

queue. A similar study (Peyser and Schenck, 2015) found that spike delivery of plastic synapses

dominates the runtime of I-based point neuron simulations, even at large scale. They also

demonstrated high performance gains by switching off the buffering of random events, how-

ever this may be considered more of an implementation detail than an intrinsic property of

the model. Finally a GPGPU implementation (Yavuz et al., 2016) found that spike delivery

dominated the runtime in synchronous and asynchronous firing regimes, while the quiet

regime was dominated by random number generation. In distributed simulations at very
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large scales, communication has been found to dominate the runtime regardless of modelling

abstraction (Ananthanarayanan et al., 2009; Jordan et al., 2018; Ovcharenko et al., 2015). These

studies demonstrate that computational and communication kernels make up a significant

portion of the runtime of brain tissue simulations, and although our performance model could

be complemented with auxiliary algorithm phases, their exclusion from the analysis does not

hinder the validity and generality of our results.
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5 A case-study in the heterogeneous
performance of a cortical microcircuit

The contents of this chapter are adapted from the following publication:

Francesco Cremonesi, Pramod Kumbhar, and Felix Schürmann. Heterogeneity of perfor-

mance properties in the simulation of a cortical microcircuit. To be submitted, 2019b

At all physical scales, the brain is a fundamentally heterogeneous structure. Studies have

identified over ten thousand different protein types in the human brain (Ping et al., 2018), over

300 ion channel types solely in the inner ear of humans and mice (Gabashvili et al., 2007), tens

of different cell types in rat’s neocortex alone (Kanari et al., 2019; Narayanan et al., 2017) and in

the order of a hundred different cell types in the whole mouse brain (Hodge et al., 2018). This

diversity is reflected in the computational properties of in silico models that try to capture the

corresponding biological detail. Our analysis of hardware-agnostic metrics in Section 2.2.2

identified that the Reconstructed model is susceptible to a high degree of heterogeneity, and

we speculated that this would have an effect on performance. Moreover, our analysis of

the Power8 architecture and of different strategies for computing the exponential function

demonstrated that heterogeneity across hardware platforms influences performance in ways

that, without a systematic understanding such as the one offered by analytic performance

modelling, is difficult to explain (Ewart et al., 2015, 2019). Thus we believe that an in-depth

analysis of the heterogeneous performance profile of in silico models, viewed through the

performance modelling lens, is warranted.

The goal of this chapter is understanding how the intrinsic heterogeneity of biological sys-

tems interacts with other sources of heterogeneity such as modelling choices and hardware

platforms, and ultimately determines the efficiency of a given simulation setup. We choose

to focus on the Reconstructed microcircuit, because it offers multiple axis of heterogeneity,

as was captured by our hardware-agnostic metrics in Figure 2.5. In terms of performance,

we distinguish between static sources of heterogeneity, whose impact and nature is known

a priori, and dynamic sources of heterogeneity, tied to the temporal evolution of a specific

simulation. Examples of static heterogeneity include different neuron representations arising

from biological variability, such as different morphologies or connectivity patterns; differ-
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ences in the computational properties of modelling abstractions, such as data-bound or

compute-bound kernels; use of heterogeneous hardware such as CPU/GPU architectures. On

the other hand, dynamic sources of performance heterogeneity in brain tissue simulations

include differences in the workload of parallel processors due to irregular spiking behaviour

or event-driven simulation of neurons; differences in workload due to adaptive time-stepping;

unexpected workloads due to concurrent consumption of simulation data such as interactive

visualization.

In what follows, we use the performance modelling methods described in Chapter 3 to explore

to the best of the model’s capabilities the effect of heterogeneity on the performance of the

Reconstructed in silico model. The complexity and number of distinct simulation kernels

within the Reconstructed model makes pen-and-paper performance modelling a daunting

task. Therefore we develop a novel system that exploits the synergy of code generation and

automatic performance modelling to obtain runtime predictions for the clock-driven ion

channel and synaptic kernels in a cortical microcircuit model. To put this workflow in place

we extend the NMODL source-to-source compiler (Kumbhar et al., 2019a) by adding a new

code generation backend to output the performance-relevant loops within the simulation

kernels for analysis by the automatic performance modelling tool Kerncraft (Hammer et al.,

2017). With the addition of a post-processing step that accounts for parts of the loop that

were discarded in the code-generation process, we are able to automatically obtain the ECM

model for all the kernels in the microcircuit, which account for roughly 80% of the overall

execution time (Cremonesi et al., 2019a; Kumbhar et al., 2019a). This enables us to analyse the

heterogeneous distribution of performance properties at different levels of the modelling ab-

straction, in a bottom-up order: from individual simulation kernels, to individual neurons and

finally the whole network. Based on this analysis we are able to evaluate possible algorithmic

optimisations such as overlapping of kernels as well as identify future directions for hardware

codesign. At the network level, we are able to evaluate the impact of static and dynamic load

imbalance on simulations of networks of neurons on a cluster. An in-depth analysis of the

different sources of heterogeneity in a microcircuit model and their impact on simulation

performance has, to our knowledge, never been published.

5.1 Automatic performance modelling of ion channel and synapse

simulation kernels

Simulation neuroscientists curate repositories of ion channel and synapse models, such as e.g.

ModelDB (Hines et al., 2004) or the NeuroML database (Birgiolas et al., 2019), to allow sharing

of resources and replicability of in silico experiments. The Blue Brain repository (Ramaswamy

et al., 2015) contains roughly 100 models, of which around 20 are used currently in the cortical

microcircuit. These models are constantly being updated as more and more experimental

data is integrated in the digital reconstruction process. Because of the large number of models,

as well as their continuous development, it would be infeasible to manually construct a

performance model for each kernel. Instead, building on our validated approach by hand,
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Figure 5.1 – Automatic performance modelling workflow. Computational neuroscientists de-
velop models and specification for in silico experiments. To be able to simulate their models,
they write model files respecting precise grammar and syntax rules. In the typical simula-
tion workflow (top), the NMODL source-to-source compiler then translates these files into
compilable code, than can be assembled into a library and linked by the simulation engine.
Ultimately, scientists are able to simulate their models on a given hardware, obtain the cor-
responding results and if needed a performance profile of the execution. In the automatic
performance modelling workflow (bottom), the NMODL source-to-source compiler produces
kernel files that can be parsed by the Kerncraft tool. Such files can be used to automatically ob-
tain a performance prediction of the kernel based on the hardware representation. Ultimately,
runtime predictions can be compared against measurements for validation.

we leverage automatic tools as a way to reduce the performance modelling effort and enable

greater flexibility. We use the Kerncraft (Hammer et al., 2017) tool that is able to automatically

provide the ECM model for a particular kernel, based on code parsing and user-provided

hardware specifications. Even though Kerncraft can significantly simplify the performance

modelling endeavour, some effort is still required to transform the kernel code in a format

that is digestible by the tool. For this reason we demonstrate an extension of the NMODL

source-to-source compiler (Kumbhar et al., 2019a) to output kernel source code that can be

directly analysed by Kerncraft. This approach, summarised in Figure 5.1, allows for a seamless

integration approach from the computational scientist’s description of an ion channel or

synapse to the corresponding performance model and runtime predictions. Additionally, we

are able to easily close the validation loop from performance model to simulation, by using

the same NMODL tool to generate both the simulation code and the Kerncraft-transformed

equivalent.
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5.1.1 NMODL

Computational neuroscientists make extensive use of Domain Specific Languages to describe

various aspects of their modelling efforts. Prominent examples include NeuroML (Gleeson

et al., 2010), NineML (Raikov et al., 2011), NESTML (Plotnikov et al., 2016) and NMODL (Hines

and Carnevale, 2000; Kumbhar et al., 2019a). The Blue Brain Project maintains an implemen-

tation of the cortical microcircuit based on the NEURON/CoreNEURON simulator (Carnevale

and Hines, 2006), based on the NMODL language for the definition of ion channel and synapse

models. For this reason, we focus in this work on the NMODL language and the homonymous

source-to-source translator (Kumbhar et al., 2019a).

In a typical simulation workflow, scientists define new in silico models in files that respect

grammatical and syntactic rules defined by the NMODL language constructs. A source-to-

source compiler is then used to translate the user defined models into C/C++ code, which is

ultimately compiled into an executable library that is dynamically linked to the NEURON/-

CoreNEURON simulator. Historically the software responsible for source-to-source translation

was embedded in the NEURON releases. The new NMODL compiler is based on an internal

Abstract Syntax Tree (AST) representation (Kumbhar et al., 2019a). The internal representation

can be manipulated to perform static analysis on the model, and obtain valuable information

such as the number of variables and parameters, the data access patterns, the number of

operations per kernel, and so on. In the following, we demonstrate an extension of the code

generation backend to support analysis by the Kerncraft tool described below.

5.1.2 Kerncraft

Kerncraft (Hammer et al., 2015, 2017) is a performance modelling tool that allows one to

automatically construct Roofline and ECM models for simulation loops. Kerncraft performs

the required code and data transfer analysis from a well-formed loop code respecting a set

of constraints. In this work we find that it is possible to sidestep some of the syntactic and

data structure constraints imposed by the tool by implementing a post-processing step that

complements the output of Kerncraft, thus making it feasible to obtain reasonably accurate

performance predictions with low manual effort.

In brief, Kerncraft takes as input a .c file containing a definition of the constants and the

loop to be analysed, in a simple format such as the one shown in Listing 5.1 for the STREAM

triad kernel. Additionally, a machine specification file must be provided with information

about the peak bandwidth and flop performance, as well as detailed information about the

cache hierarchy. We base our analysis on the SKX-AVX512 machine described in the file

SkylakeSP_Gold−6148.yml distributed with Kerncraft, since it mirrors the specifications of the

SKX-AVX512 hardware used in the analysis presented in the previous chapters. Internally

Kerncraft produces an abstract syntax tree representing the simulation loop from which it

derived data access patterns. Additionally, a small binary executable is compiled to be used

with IACA in order to obtain accurate predictions for in-core execution. In our configuration,
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Listing 5.1 Example of Kerncraft input: STREAM triad.

#define N 10000
for ( i =0; i <N;++ i ) {

a [ i ] = b[ i ] + k* c [ i ] ;
}

Kerncraft outputs a file containing information about the kernel’s memory traffic, ECM model

contributions and other useful details.

5.1.3 Extensions of NMODL’s code generation backend for Kerncraft automatic
performance analysis

The types of operations allowed in a loop to enable automatic analysis by Kerncraft are

limited by a few constraints. We find that the constraints that mostly limit the out-of-the-box

application of the tool, in our case, are:

• only the code of the loop and the definition of constant variables may be contained in

the file;

• only primitive types and C-style array accesses are allowed;

• only single and double precision arrays are allowed;

• function calls are not allowed;

• indirect addressing is not allowed.

As the kernels generated by the NMODL compiler for simulations often contain C++ objects,

integer index arrays for indirect accessing and function calls to user and system libraries,

the limitations above make it impossible to directly use the simulation code for automatic

performance analysis. Therefore it becomes necessary to implement a code-generation

backend able to output Kerncraft-readable code, whilst remaining as faithful as possible to

the corresponding simulation code.

While satisfying the first two requirements is a simple matter of discarding unneeded lines of

code and potentially redefining some variables as C-style arrays, the other two constraints

require a significant amount of effort. To avoid function calls in the loops we employ two

complementary tactics. At first we invoke the source-to-source compiler using the −−inline

argument, which ensures that any calls to functions internally defined within the mod file

will be inlined. However, this proves not to be sufficient, because in many cases functions

from external libraries, namely exp,log from math libraries, are required for the resolution

of ODEs within the mod file. In these cases we must distinguish between single-argument

functions – e.g. exp – and multiple-argument functions such as pow. In the case of functions
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Listing 5.2 Elision of mathematical function calls and indirect addressing in code for Kerncraft
analysis. Original code (left) compared to modified code to enable parsing by Kerncraft (right).

// Single−argument function
y = a + exp ( −x/ tau ) ;

// Multiple−argument function
y = 10.*pow(4* x , b) ;

// Indirect addressing
ena [ i ] = ion_ena [ ion_indices [ i ] ] ;

// Single−argument function
y = a + (−x/ tau ) ; // increase exp counter

by 1

// Multiple−argument function
arg_1 = 4* x ;
arg_2 = b ;
y = 10.* arg_1 ; // increase pow counter by 1

// Indirect addressing
ena [ i ] = ion_ena [ i ] // elided 1 i n d i r e c t

access

taking a single argument, we simply discard the function’s name, but keep the evaluation of

the argument expression, and increment a counter that stores the information of how many

function calls have been elided in this way. For functions taking multiple arguments, we define

new local variables for each argument and assign them to the corresponding expression, then

we arbitrarily substitute the function call simply with one of its arguments. While both of

the approaches described here completely hinder the results from evaluating the expressions

containing the function calls, they have the property of maximally preserving the performance

properties, by making sure that argument expressions are still evaluated. Examples of dealing

with both single- and multiple-argument functions are provided in Listing 5.2. In a subsequent

post-processing step, the function counters are read and the ECM TOL estimate is updated

with the relevant throughput values, which can be obtained by benchmarking or tables such

as (Fog, 2017).

To avoid indirect addressing, we replace them by direct accesses as shown in Listing 5.2 and

again increase a counter to keep track of our transformations. In this case the post-processing

step is more complicated. Indeed, not only must we account for the additional memory traffic

due to reading the int index variable, we must integrate additional information about the

biological entity – i.e. ion channel or synapse – and the type of kernel – current or state –

whence the loop was extracted to inform the heuristics we developed in Section 3.1. Using

these heuristics we can adjust the memory traffic estimated by the Kerncraft tool, which

in turn allows us to update the TL1L2,TL2L3,TL3Mem ECM contributions in the performance

model. While it is true that such transformations lead to an incorrect estimate of TnOL that

cannot be corrected in a post-processing step, we find that the overall impact on the model’s

accuracy is low.
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kernel name type TOL TnOL TL1L2 TL2L3 TL3Mem

Ca_HVA2 current 1.06 0.75 3.38 9.00 4.96
Ca_LVAst current 1.06 0.75 3.38 9.00 4.96
Ih current 0.62 0.31 1.56 4.25 2.30
KdShu2007 current 0.97 0.62 2.69 7.25 3.95
K_Pst current 1.06 0.75 3.38 9.00 4.96
K_Tst current 2.54 0.62 3.38 9.00 4.96
Nap_Et2 current 3.10 2.02 4.50 12.50 6.61
NaTg current 3.11 2.02 4.50 12.50 6.61
ProbGABAAB_EMS current 1.69 1.12 3.12 8.50 4.59
ProbAMPANMDA_EMS current 15.86 1.01 3.25 8.50 4.78
SK_E2 current 2.36 1.40 3.81 10.25 5.60
SKv3_1 current 0.96 0.51 3.25 8.50 4.78
Ca_HVA2 state 19.44 1.12 3.38 8.00 5.24
Ca_LVAst state 18.88 1.00 2.38 6.00 3.69
Ih state 10.28 0.51 1.56 3.75 2.43
KdShu2007 state 9.85 0.44 1.81 4.25 2.82
K_Pst state 18.05 1.01 2.38 6.00 3.69
K_Tst state 19.84 1.01 2.38 6.00 3.69
Nap_Et2 state 27.30 2.01 4.50 11.50 6.99
NaTg state 25.12 2.39 5.00 13.50 7.35
ProbGABAAB_EMS state 1.61 1.12 1.69 4.75 2.48
ProbAMPANMDA_EMS state 1.61 1.12 1.69 4.75 2.48
SK_E2 state 6.65 0.69 2.06 6.25 3.03
SKv3_1 state 8.84 0.56 1.62 4.50 2.39

Table 5.1 – Automatically obtained ECM models for all cortical microcircuit kernels. All models
are based on the SKX AVX512 reference architecture. Quantities are expressed in cycles per
scalar iteration.

5.1.4 Automatically obtained ECM models of ion channel and synapse kernels

We apply the automatic performance modelling and post-processing workflow to the set

of ion channel and synapse kernels within the Reconstructed in silico model. In total, we

consider 24 kernels equally divided among current and state types. The obtained ECM models

are presented in Table 5.1, while the corresponding predictions for different levels of the

cache hierarchy are provided in the appendix Table C.1. For ion channels we confirm the

trends observed in Chapter 3: current kernels have low arithmetic intensity and scattered

loads/stores while state kernels have larger in-core components even at the maximum vector

register size. Excitatory synaptic current kernels are also characterised by the same boundary

behaviour observed in Chapter 3, causing a switch from a core-bound profile when data is in

the caches to a data-bound profile when data is in main memory, while inhibitory synaptic

currents are clearly data-bound. On the other hand, synaptic state kernels are characterised
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by a very low arithmetic intensity, in stark contrast with what we observed previously. This can

be traced back to a manual optimisation that is embedded in the description of the model’s

ODEs based on the observation that the dynamics are independent of external variables, and

thus it is possible to precompute the update value in the case of fixed timestep integration.

While in Chapter 3 our purpose was to remain as general as possible and therefore we did

not consider this optimisation, in this chapter we include it to give a concrete analysis of the

specific cortical model under consideration.

5.1.5 Validation

In order to validate the predictions, we developed a synthetic benchmark in which a single

dendrite is endowed with as many instances of a given channel are required to safely exceed

the L3 capacity of a single chip, thus ensuring that data resides in main memory. Then a

simulation is executed using the CoreNEURON software, adequately instrumented to be

able to measure the execution time of individual kernels at the granularity of cycles. The

benchmarks were run on the SKX-AVX512 machine described in Section B.2. We present the

main validation results in Table 5.2, and a detailed validation of the shared-memory scaling

predictions is provided in Figure C.2 in Appendix C.

Confirming the patterns we already saw in Section 3.1, serial and parallel predictions for the

data-traffic bound current kernels are satisfactorily correct, with errors always beneath the

30% threshold. For the compute-bound state kernels, both serial and parallel predictions are

always pessimistic by a factor between 20%-50%, with only three error peaks of almost a factor

2x between measurements and prediction. The higher error margin in the state kernels has

already been observed and can be explained by the difficulty in modelling the intricacies of

the out-of-order engine in our Skylake reference architecture (Cremonesi et al., 2019a), but

in the case of automatic modelling it could also be attributed to a mismatch between the

automatically generated object file analysed by IACA under the hood of the Kerncraft tool and

the compiled code for the benchmark. While we would have expected an higher accuracy in

the parallel predictions, especially compared to our pen-and-paper model from Chapter 3, we

speculate that the automatic modelling might be introducing some error in estimating the

memory traffic.

Overall we computed predictions of state and current kernels for 10 ion channel types and 2

synapse types, for 1,2,4,8,16,18 threads, for a total of 144 predictions, out of which over 80%

had an error margin below the 30% threshold. The error for the state kernels was in general

larger as shown in Figure 5.2 for the reasons of out-of-order scheduling discussed above but

none of the predictions exceeded an error margin of 50%. In total these predictions can be

considered satisfactory and while they could be improved by a deeper investigation in the

details of the Kerncraft tool, we are confident that for our purposes of capturing relevant

bottlenecks this level of accuracy is suitable.
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serial parallel
kernel name type pred meas error pred meas error

Ca_HVA2 cur 18.08 24.87±0.11 27.29 4.95 3.99±0.01 24.09
Ca_LVAst cur 18.08 24.08±0.14 24.90 4.95 3.99±0.01 24.03
Ih cur 8.42 11.77±0.07 28.49 2.29 2.16±0.01 6.12
KdShu2007 cur 14.51 20.20±0.14 28.16 3.94 3.13±0.01 26.12
K_Pst cur 18.08 25.11±0.11 27.98 4.95 4.00±0.01 23.92
K_Tst cur 17.95 23.51±0.19 23.62 4.95 4.00±0.01 23.74
Nap_Et2 cur 25.63 31.23±0.15 17.91 6.61 5.37±0.01 23.13
NaTg cur 25.63 30.85±0.18 16.91 6.61 5.37±0.03 23.11
ProbAMPANMDA_EMS cur 17.53 30.38±0.22 42.28 4.77 4.71±0.07 1.37
ProbGABAAB_EMS cur 17.34 30.12±0.15 42.42 4.59 4.48±0.01 2.60
SK_E2 cur 21.06 25.83±0.08 18.45 5.60 4.49±0.01 24.63
SKv3_1 cur 17.03 22.44±0.10 24.07 4.77 3.82±0.01 24.73
Ca_HVA2 state 19.43 26.96±1.42 27.92 5.24 4.27±0.08 22.66
Ca_LVAst state 18.87 25.70±1.34 26.58 3.69 2.90±0.07 26.86
Ih state 10.27 15.97±0.01 35.67 2.42 1.94±0.04 24.80
KdShu2007 state 9.85 11.37±0.01 13.43 2.81 2.27±0.04 23.79
K_Pst state 18.05 26.15±0.99 30.99 3.69 2.92±0.06 26.32
K_Tst state 19.83 22.77±0.92 12.91 3.69 2.90±0.06 27.02
Nap_Et2 state 27.30 49.12±0.12 44.42 6.99 5.59±0.09 24.95
NaTg state 28.23 47.01±0.16 39.94 7.34 6.32±0.05 16.16
ProbAMPANMDA_EMS state 10.04 10.76±0.09 6.71 2.48 2.01±0.01 23.19
ProbGABAAB_EMS state 10.04 10.70±0.07 6.18 2.48 2.03±0.03 21.67
SK_E2 state 12.03 17.62±0.03 31.73 3.03 2.06±0.03 46.96
SKv3_1 state 9.076 15.15±0.26 40.12 2.38 1.87±0.05 27.17

Table 5.2 – Validation of automatic ECM models (single-thread, data in memory). The data was
obtained by benchmarking individual channels as described in the text, using the SKX AVX512
reference architecture. The dataset was always large enough to fit in main memory. The unit
of measure for predictions and measurements is cycles per scalar iteration and measurement
data is shown as median ± IQR over 10 repetitions.
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Figure 5.2 – Cumulative distribution function of the automatic prediction error margin for
state and current kernels. All predictions for 1,2,4,8,16 and 18 threads were considered.
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Figure 5.3 – Serial performance profile of individual instances of ion channel and synapse
kernels. Left: result of K-means clustering of state and current kernels. Different colours
denote different clusters, while markers denote current and state kernels. The dashed line
separates compute-bound (over the line) from data-bound (under the line) kernels. Markers
corresponding to synaptic kernels are annotated with a black star (the two synaptic state
kernels are overlapping). Right: Inertia of the K-means algorithm as a function of the number
of clusters. Used to determine the optimal number of clusters (K=5) using the elbow method.

5.2 Heterogeneity in ion channel and synapse computational prop-

erties

We analyse the intrinsic performance properties of the computational kernels of individual

ion channels and synapses within the Reconstructed microcircuit model. Our analysis is

aimed at exposing the hardware bottlenecks and defining the performance characteristics of

each computational loop. This information is relevant not only to quantitatively describe the

performance of simulations of biological neurons, but it also allows us to explore algorithmic

optimisations – such as overlapping of compute and memory bound kernels – as well as

provide codesign directions – such as quantifying the ideal number of parallel cores – for

future architectures.

Using the ECM dimensions as a representation of a kernel’s computational properties, we

explore the variability in ion channel and synaptic models. We observe a large variability

in the TOL dimension (i.e. the in-core execution) and, as expected, a strong correlation

between TnOL , TL1L2, TL2L3, TL3Mem is observed (see Figure C.1 in Appendix C). These two

observations lead us to a dimensionality reduction strategy, and we only consider the two

dimensions Tcor e , Td at a defined in (4.1) to describe the computational properties of a kernel.

We plot the ion channel and synaptic kernels’ data on the two axis defined in (4.1) in Figure 5.3,

where the black bisector line distinguishes compute-bound from data-bound kernels. Marker

100



5.2. Heterogeneity in ion channel and synapse computational properties

types distinguish kernel types: circles for state and crosses for current kernels. All current

kernels lie well below the bisector line indicating that they should be considered data-bound.

The excitatory synapse current kernel (ProbAMPANMDA_EMS current) lies very close to the

boundary because its heavy data-traffic requirements are offset by the presence of several

compute-heavy functions such as div,exp. State kernels, on the other hand, all lie very closely

to the boundary or slightly over it, thus should be considered core-bound by a narrow margin.

For ion channel kernels we thus confirm our findings from Chapter 4 that current kernels

are mainly data-bound, while state kernels lie on the boundary. As we found in our analysis

on different levels of vectorisation in Chapter 3, this is a direct consequence of using the

maximum level of vectorisation – i.e. AVX512 – while smaller vector registers would result

in larger Tcor e components. This could also be interpreted as an indication that, keeping all

other parameters fixed, AVX512 is the maximum level of vectorisation that can still provide

significant runtime benefits. For synapse kernels we observe a different performance profile

in both the state and current kernel compared to the model examined in Chapter 4. In the

case of the current kernel, this is due to the fact that our previous model was an average of

the excitatory synapse and inhibitory synapse models, while in this chapter we keep them

separated. In the case of the state kernel, a manual optimisation has been built-into the

original model based on the observation that the state update does not depend on voltage,

and therefore can be pre-computed, effectively turning a core-bound kernel with several

evaluations of the exp function into a (faster) data-bound kernel. This example showcases

the tight relationship between biological models, their software implementation and their

performance profile, and reminds us that our analysis is conditioned on all of these aspects.

To gain better insight into the classes of kernels in our dataset, we also colour the kernels

in Figure 5.3 according to the result of applying the K-means clustering techniques. On the

right of Figure 5.3 we plot the K-means inertia as a function of the number of clusters. Using

the elbow method, we define 5 to be a satisfying amount of clusters (Ketchen and Shook,

1996). We interpret the clusters as follows: heavily data-bound kernels with long runtime,

slightly data-bound kernels with shorter runtime, and three boundary profiles distinguished

by their runtime (fast, slow and very slow). At a first approximation we observe that all heavily

data-bound kernels are of the current type, and all boundary kernels are of the state type (with

the only exception being the core-bound excitatory synapse current). The only group having a

mix of types is the slightly data-bound cluster.

5.2.1 Overlap of kernels having complementary performance properties

The analysis above presented a successful characterisation of ion channel and synapse kernels,

but does not include important details about the execution algorithm such as the order of ker-

nels and the potential for overlapping or concurrent execution. The reference implementation

in CoreNEURON is based on a loop over ion channel and synapses such that different types are

execute serially, but within a type parallelism at the instance level is exploited. An alternative

approach was investigated by analysing the dependency graph to exploit potential parallelism
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Chapter 5. A case-study in the heterogeneous performance of a cortical microcircuit

in the execution of independent kernels (Magalhaes et al., 2019b). Their analysis pointed to

an inefficiency in the state-of-the-art implementation: whenever the memory bandwidth is

not fully saturated, it could be used to fetch data for subsequent data-intensive kernels, and

conversely if a kernel’s execution is dominated by waiting for data from memory, the stalled

core could be used to perform operations for the compute-intensive kernels. We investigate

a static solution based on fusion of kernels with complementary performance properties.

The automatic code-generation tool leads potentially to a straightforward implementation by

fusing the code and data-structures for different kernels in the same file.

We now describe how to use the performance modelling method to estimate the potential

benefits from overlapping. Given that almost no data structures are shared between kernels,

we can safely estimate that the data traffic components of the fused kernel will be given by

the sum of the individual components. For the in-core contribution, the out-of-order engine

should be able to sustain a better throughput than the sum of the two sources, but since this is

hard to predict and impossible to guarantee, we take the conservative assumption that the TOL

of the fused kernel is given by the sum of the source components. These two considerations

enable the modelling of a fused kernel based on the ECM models of the two sources.

We define the benefit from overlapping as the ratio of the sum of the source runtime over the

runtime of the fused kernel:

S = T1 +T2

T f used
(5.1)

Figure 5.4 shows all possible fusions of two kernels, and the corresponding overlap benefit. Our

analysis shows that overlapping two current kernels, regardless of the underlying biological

entity, would provide virtually no benefit. Moreover, the maximum observed benefit happens

with the (Ih current, K_Tst state) combination with a 1.31x speedup. As a general rule, the

only combinations that provide a significant speedup are overlapping ion channel state with

ion channel current kernels, or overlapping ion channel state with synapse state kernels. The

benefits from overlapping ion channel state kernels are unclear, with a few select combinations

being able to deliver a speedup just under a factor 1.2x, but most combinations having a

runtime that is no better than the sum of the two source kernels. Finally, the performance

model predicts that overlapping synapse current kernels with ion channel state kernels only

provides benefits in the case of inhibitory synapses. This can be directly attributed to the

fact that the excitatory synapse current kernel is compute bound due to the presence of exp

function. We present a summary of the overlap benefits in Table 5.3. Given the potential risk

of numerical error when fusing kernels, we point out that the only completely safe option

would be the overlapping of synapse state kernels with select ion channel state kernels. In this

case, the largest benefit can be obtained with the (ProbAMPANMDA_EMS state, K_Tst state)

combination, yielding a 1.29x improvement factor.
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Figure 5.4 – Potential serial performance improvement from overlapping of different kernels.
Heatmap of the maximum theoretical benefit from overlapping kernels defined in 5.1. The
dark continuous lines separate current and state kernels, while the dashed lines separate ion
channel and synapse kernels.

current state
ion channel synapse ion channel synapse

current
ion channel bad bad good bad
synapse bad unclear bad

state
ion channel unclear good
synapse bad

Table 5.3 – Summary of predicted performance improvement from kernel overlap.
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Figure 5.5 – Distribution of predicted serial runtime of whole neurons as a function of the
memory hierarchy level where data resides. Runtime is measured in wallclock seconds to
simulate one second of biological time. The DRAM predictions are obtained neglecting the
optimised loop ordering, i.e. assuming that data must come from main memory at each
timestep iteration. Each histogram bar represents a 0.4s bin and refers to the axis on the left.
Red lines show the cumulative distribution function and refer to the axis on the right.

5.3 Heterogeneity in the performance properties of neurons

We complement our previous analysis on the performance properties of individual ion channel

and synapse kernels by considering additional information from the in silico model, i.e. by

considering the mix of ion channel and synapse instances in individual neurons. We intersect

the performance model of individual kernels with the information of the distribution of ion

channels and synapses in different neurons within the microcircuit. The goal of this section is

pointing out fundamental and intrinsic performance properties of neurons within the cortical

microcircuit, to extract general guidelines for software optimisation, hardware codesign and

efficient utilization of resources.
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L1 L2 L3 DRAM

min 0.067 0.077 0.111 0.133
median 0.999 1.123 1.553 1.849
max 5.909 6.580 8.965 10.667

Table 5.4 – Summary of distribution of predicted serial runtime. Runtime is measured in
wallclock seconds to simulate one second of biological time.

5.3.1 Serial performance

We examine the distribution of predicted serial runtime over neurons. In this context, the

predicted runtime of a neuron is defined as the sum of contributions from individual kernels

(i.e. from state and current kernels of ion channels and synapses), where each contribution

is given by the ECM prediction of that kernel multiplied by the number of instances of that

ion channel or synapse in the neuron. Thus for a neuron defined by a set of kernels {k}i and

corresponding number of instances ai , we have that:

T Mem(neur on) =∑
i

ai T Mem
i . (5.2)

Throughout this chapter we ignore the linear algebra and the spike delivery kernels because

our goal is to analyse the effect of the heterogeneity of ion channels and synapses on neurons’

performance. Thus in the rest of this chapter we will take the word neuron to define the sum of

its ion channel and synapse kernels. While this approach considerably simplifies the analysis,

we do not expect it to have a big impact on the outcome because, as we have shown, the

runtime is generally dominated by these kernels anyway.

At first we look at the distribution of predicted runtime for different levels of the cache hier-

archy, as shown in Figure 5.5. As expected the overall runtime increases as data resides in

lower levels of the cache. For example when data is in L1 only 10% of neurons have a runtime

larger than 2.3s wallclock seconds to simulate one biological second, while this percentage

rises to 34% when data is in DRAM. Table 5.4 reports minimum, median and maximum pre-

dicted runtime. Comparing L1 to DRAM there is almost a factor 2x increase in all runtimes,

indicating that cache locality affects all neurons in roughly the same way. However, we would

expect speedups of between 2.4x–3.4x just by comparing L1 bandwidth with DRAM bandwidth.

Finally, we observe an important tail of “slow” neurons when data resides in DRAM.

This type of performance profile in which performance improves with cache locality is typical

of data-bound kernels, however we do not observe the ideal speedup. We therefore examine

the Tcor e and Td at a contributions for neurons by computing the sum over all ion channel

and synapse kernels belonging to each cell. Note that while the runtime of a single kernel is

given by the maximum of its Tcor e and Td at a components, the runtime of the whole neuron

is given by the sum of the Tcor e or Td at a components. This can be explained by the process
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Figure 5.6 – Single-thread Tcor e and Td at a contributions by neuron. We computed the serial
Tcor e and Td at a per neuron to simulate one second of biological time, assuming data comes
from main memory at each timestep iteration. We report their values in wallclock seconds.
A boxplot of the difference Tcor e −Td at a in a serial execution. Negative values correspond
to neurons for which the time spent in data-bound kernels is larger than the time spent in
core-bound kernel. The whiskers in the boxplot are located at 1.5x the interquartile range,
and points outside of this interval are considered outliers. B a sample of the Tcor e and Td at a

components of 100 randomly selected neurons.

that leads to the computation of these two quantities. For a neuron defined by a set of kernels

{k}i and corresponding number of instances ai , let Tcor e,i be either equal to 0 if the kernel

was data-bound, or equal to the Tcor e value of the i t h kernel in the neuron, and respectively

for Td at a , such that for each individual kernel only one of Tcor e ,Td at a will be different than 0.

Then we have

Tcor e (neur on) =∑
i

ai Tcor e,i ,

Td at a(neur on) =∑
i

ai Td at a,i .
(5.3)

Figure 5.6A shows a boxplot of the difference Tcor e −Td at a , with positive values denoting

neurons in which the sum of Tcor e components from kernels was larger than the sum of Td at a

components. As we explained before, a positive difference does not imply that a neuron is core-

bound, rather it means that a larger portion of the neuron’s runtime is spent in core-bound

kernels rather than data-bound kernels. The distribution is quite strongly skewed towards the

Td at a component, with all the neurons having Td at a ≥ Tcor e , and almost half of the neurons

spending on average 1.3s of wallclock time longer in data traffic than in computation.

We are also interested in understanding the relationship between Tcor e and Td at a . We ran-

domly select a subset of neurons and plot the two components side-by-side in Figure 5.6B.
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Figure 5.8 – Number of compartments and
synapses co-vary. We plot the number of
compartments and synapses per neuron.
The boxplot present the distribution of the in-
dividual axis. The whiskers in the boxplot are
located at 1.5x the interquartile range, and
points outside of this interval are considered
outliers.

This plot highlights a possible correlation: neurons with a larger Tcor e seem to also have a

large Td at a . Computation of Pearson’s correlation coefficient yields ρ = 0.97, lending high

credibility to this hypothesis. We therefore fit a linear regression model to quantify the rela-

tionship between the core and data components. We find that within each neuron Td at a is

roughly six times larger than Tcor e , with a high score for the linear fit (r 2 = 0.89, see Figure 5.7).

This correlation suggests the existence of an underlying performance factor that determines

whether a neuron is a fast neuron (i.e. small runtime) or a slow one. We investigate the

relationship between the number of compartments, number of synapses and the predicted

runtime, motivated by the fact that these quantities are typically reported as a proxy for

complexity. We fit a linear model y = AX+b, with input X = [c|s], where c,s represent the

number of compartments and synapses respectively for each neuron, and output the predicted

serial runtime computed as the sum of all current and state kernels of that neuron when data

is in memory y. We compute the 20-fold cross-validation results, yielding high score and

accuracy, as reported in the first row of Table 5.5.

The number of compartments and synapses in a neuron strongly co-vary in the Reconstructed

model, as shown in Figure 5.8(Pearson’s ρ=0.94, p-value < 1e-10) . This can be easily explained

by the fact that, even though compartments can have different sizes, it is generally true that
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median r 2 IQR r 2 median MSE IQR MSE

aggregate
both 0.99 0.01 0.00 0.00
only synapses 0.95 0.05 0.03 0.03
only compartments 0.88 0.16 0.08 0.06

current
both 0.99 0.01 0.00 0.00
only synapses 0.97 0.03 0.01 0.01
only compartments 0.86 0.20 0.03 0.03

state
both 0.98 0.01 0.00 0.00
only synapses 0.91 0.10 0.01 0.01
only compartments 0.91 0.10 0.01 0.01

Table 5.5 – Summary of test-set metrics for submodels and full model. We considered state
and current kernels both as an aggregate, or separated. For each group, we fitted the predicted
wallclock time using either only the synapses, only the compartments, or both as a predictor.
For each combination we computed a 20-fold cross-validation, and report the r 2 score and
the Mean Square Error (MSE).

a large number of compartments is indicative of a large cell, in the sense of total dendritic

length. Since in the Reconstructed microcircuit synapses are formed where a presynaptic

axon touches a postsynaptic dendrite, this leads to the fact that in this in silico model larger

neurons have more synapses. Building on this information, we investigate whether only

one of the two factors is sufficient to explain the runtime. We therefore fit a linear model

using only the compartments (or synapses), but the resulting score and Mean Squared Error

(MSE) were both significantly reduced, and their variability increased (see second and third

line of the “aggregate” row in Table 5.5). We conclude that neglecting either the number of

compartments or the number of synapses leads to a model with larger bias and larger variance,

thus greatly reducing the explainability. In short, our results strongly indicate that both the

number of compartments and the number of synapses are required to explain the variability

in the runtime of morphologically detailed neurons.

We refine our analysis by looking at state kernels’ and current kernels’ runtimes separately. We

hypothesize that the runtime of state kernels is correlated with the number of compartments,

while the runtime of current kernels is correlated with the number of synapses. We therefore

fit separate linear models for the state and current kernels. In both cases, using the full model

including compartments and synapses leads to excellent scores and low prediction error,

confirming our results from before. Using only compartments to predict current kernels’

performance leads to a degraded model with larger bias and variance, while using synapses

preserves the goodness of fit of the model. This confirms our hypothesis that the variability in

the runtime of current kernels is best explained by the number of synapses. In state kernels,

on the other hand, the single-feature models display a similar loss in accuracy and score,

indicating that no single factor is dominant in determining the variability in the performance
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Figure 5.9 – Distribution of serial runtime properties of kernel families per neuron. We
computed the serial Tcor e and Td at a to simulate one second of biological time, assuming data
comes from main memory at each timestep iteration, for each neuron. We report their values
in wallclock seconds. A boxplot of the raw difference Tcor e −Td at a , separated by kernel type.
The whiskers in the boxplot are located at 1.5x the interquartile range, and points outside of
this interval are considered outliers. B boxplot of the relative impact of Tcor e over the total
runtime: Tcor e

Tcor e+Td at a
, separated by kernel type. The whiskers in the boxplot are located at 1.5x

the interquartile range, and points outside of this interval are considered outliers.

of state kernels. The results of 20-fold cross-validation of the fitted models are provided in the

“state” and “current” rows of Table 5.5.

Our analysis so far has established a direct relationship between the serial runtime of kernels

and variability in model parameters such as the number of compartments and synapses. How-

ever, we lack an understanding of the computational properties – i.e. core or data boundedness

– of state and current kernels in neurons. Figure 5.9A shows the distribution of Tcor e −Td at a

separated by biological entity (ion channel or synapse) and kernel type (current or state).

Each data point represents and aggregate of kernels of a given type and biological entity for a

single neuron. For example the first boxplot in Figure 5.9A demonstrates that for 50% of the

neurons, when computing ion channels’ currents, the runtime spent in traffic-bound kernels

is larger by roughly 0.4 s than in core-bound kernels. We draw the following conclusion: when

computing ion channel currents and synaptic currents and states, more runtime is spent in

traffic-bound kernels than in compute-bound kernels, while computing ion channel states

leads to a balanced profile. Although looking at the difference of Tcor e −Td at a highlights im-

portant information about the absolute time spent in the core-bound and data-bound regimes,

it remains unclear how this relates to the total runtime. In Figure 5.9B we plot the percent
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Figure 5.10 – Parallel speedup of individual ion channel and synapse instances. A Maximum
theoretically achievable speedup and predicted serial runtime for a single instance and a
single iteration of the kernel. Serial runtime is reported in ms to simulate one instance for one
second of biological time. In this version of the plot we assume that data must be fetched from
main memory at each iteration. B Maximum theoretically achievable speedup and predicted
serial runtime for a single instance of the kernel, but simulated for a whole second of biological
time, assuming the loop ordering technique minimising memory pressure is used.

of time spent in the core-bound regime over the total runtime for that specific combination.

While computing ion channel currents and synaptic currents and states, 100% of the time is

spent in the data-bound regime. On the other hand, half of the neurons spend more than 70%

of runtime in the core-bound regime when computing ionic states.

5.3.2 Shared memory parallel performance

We have identified the salient performance features of the serial simulation of neurons in the

Reconstructed microcircuit, but our performance analysis must be completed by accounting

for parallelism. As previously explained in Section B.1 the presence of a serial memory bottle-

neck leads to a saturation effect that imposes a bound on the maximum achievable speedup

using parallelism. We therefore compute the theoretical speedup (i.e. the saturation point)

as defined in (B.12) for all the kernels in the Reconstructed model. Figure 5.10A shows the

serial runtime and the corresponding maximum achievable speedup from parallelism for the

simulation of 1s of biological time for a single instance of state and current kernels. None of

the current kernels can achieve a larger speedup than roughly 4x and in general the maximum

achievable speedup does not exceed 6x.

Compared to the amount of parallelism exposed by modern architectures and future many-
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5.3. Heterogeneity in the performance properties of neurons

core architectures, which could reach hundreds of parallel threads, this represents a serious

drawback in performance. The loop ordering optimisation described in 2.1.3, which allows us

to increase the saturation point by exploiting cache reuse, has been conceived to overcome the

saturation problem. For the purposes of performance modelling we can reuse formula (B.12)

considering as an iteration not a single timestep but a whole mindelay, composed of one

timestep in which data comes from memory, and a sequence of timesteps in which data

comes from the L3 cache. For example, supposing ∆t = 0.025 ms and δmin = 0.1 ms, which are

the values for the Reconstructed in silico model, after the first iteration with data from DRAM

there are three more iterations with data from L3. This leads to the following modified ECM

model:

iteration definition ECM model

∆t {TOL ‖TnOL |TL1L2 |TL2L3 |TL3Mem}

δmin {4TOL ‖4TnOL |4TL1L2 |4TL2L3 |TL3Mem}

Figure 5.10B shows the wallclock time to simulate a single instance for one second of biological

time in a serial execution, and the corresponding speedup, when using the loop ordering

optimisation. The serial runtimes for some kernels are slightly improved by the reuse but

the largest effect is demonstrated in the speedup from parallelism. Despite the loop ordering

optimisation, current kernels still benefit significantly less than state kernels from parallelism,

with the average ideal speedup being around 12x for current kernels and around 15x for state

kernels. The largest speedup predicted by the model are around 22x for some ion channel state

kernels, which barely exceeds the number of parallel threads of our reference architecture.

Overall, a distinction becomes clear between highly parallelisable kernels (a subset of state

kernels) and moderately parallel kernels whose maximum speedup does not exceed 15x.

Analysing single kernels does not provide a complete understanding of the benefits from

parallelism, since during execution the global speedup will always be limited by the slowest

components in the simulation. We therefore look at the average memory bandwidth utilization,

defined for individual kernels in (B.16). We rework the definition of bandwidth utilization to

account for the fact that the unit of interest is a whole neuron. Therefore we define the average

bandwidth utilization of a neuron by the ratio of sums over kernels k of that neuron:

BWuti l =
∑
k

TL3Mem,k∑
k

T Mem
k

, (5.4)

which is equivalent to computing the average BWuti l of each kernel in the neuron, weighted

by the kernel’s execution time over the total runtime.

Figure 5.11 shows the distribution of the average bandwidth utilization per neuron. In total,

the memory bandwidth is saturated around 12 parallel threads, which can be considered a low

number compared to modern HPC architectures exposing tens of parallel cores. Moreover,

consistently with our earlier analysis we observe a large difference between early-saturating
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Figure 5.11 – Average bandwidth utilization per neuron. Utilization is measured as the ratio to
peak memory bandwidth, and is computed on a per-neuron basis using (5.4). The solid lines
represent the median across neurons, while the shaded areas represent the minimum and
maximum across neurons.

current kernels and late-saturating state kernels. Finally, the variability is quite low, with the

minimum and maximum across neurons being quite close to the median. None of the neurons

exhibit saturation (on average) until about 10 kernels, pointing to the fact that low amounts of

shared memory parallelism indeed provide significant benefits in the simulation of a detailed

cortical microcircuit.

From the point of view of hardware design, another analysis of parallel performance can be

conducted by considering the maximum achievable speedup. We thus compute the average

maximum achievable speedup per neuron by inverting (5.4), recovering a formula similar

to (B.13). This allows us to present essentially the same information from a different per-

spective, investigating the issue of memory saturation from the point of view of maximum

theoretical achievable speedup, rather than utilization. Figure 5.12 plots the theoretical maxi-

mum speedup versus the serial runtime to simulate one second of activity for each neuron.

There is a remarkably low variability in the potential speedup from parallelism, with all neu-

rons in the cortical microcircuit saturating the memory bandwidth at 13–14 shared memory

threads. While this means that in theory every neuron could be simulated in real time, in

practice the slowest neurons may not be accelerated much faster than that.

We summarise in Table 5.6 some relevant statistics of the predicted runtime of neurons at

different levels of parallelism. As expected, increasing the number of threads decreases the

overall average runtime and standard deviation. However, the relative variability – as measured

by the coefficient of variation σ
µ – remains constant. This is an indication that, in our case,

multithreading does not really seem to affect the performance variability, but rather only
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Figure 5.12 – Distribution over neurons of predicted serial runtime and theoretical maximum
speedup from shared memory parallelism. We predicted the serial runtime for each neuron,
assuming the loop ordering optimisation is being used. The runtime is measured in wallclock
seconds required to simulate one second of biological time. Then, for each neuron, we
computed the maximum theoretical speedup inverting (5.4), as described in Section B.1.3.
The scatter plot on the bottom left presents the joint distribution, while the two histograms
represent the marginal distributions.

the absolute performance values. Moreover, we can interpret this as a confirmation of our

findings that neurons’ scaling properties, in terms of saturation of memory bandwidth, are

quite homogeneous. At full saturation the average neuron displays a 13.5x speedup, while

the reported maximum represents a hard limit to the real-time factor achievable with this

hardware: short of changing the algorithm it would be impossible to run simulations faster

than 0.7x real-time. Considering that our analysis neglects the spike delivery and linear

algebra kernels, this could represent a significant limitation on the achievability of real-time

simulations for G-based detailed models on our reference Skylake hardware.

5.4 Load imbalance at the network level

In a parallel simulation it is important to ensure that each worker consumes similar amounts

of work, to avoid idle waiting time due to parallel processes waiting idly for others that still

have not finished. The inefficiency due to a inhomogeneous distribution of workloads is called
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mean std dev coeff var min 25-% median 75-% max

serial 1.998 1.342 0.672 0.117 1.119 1.628 2.349 9.391
4 threads 0.499 0.335 0.672 0.029 0.280 0.407 0.587 2.348
18 threads 0.149 0.100 0.672 0.009 0.083 0.121 0.175 0.698
saturation 0.148 0.099 0.673 0.009 0.083 0.120 0.174 0.695

Table 5.6 – Statistics on the predicted runtime of individual neurons. Data is always assumed
to come from DRAM. Units are wallclock seconds to simulate one second of biological time.

load balancing, and is known to be a NP-hard problem to solve (Garey and Johnson, 1978).

Load imbalance can be especially important in the simulation of detailed neurons for two

reasons: the dispersion of the distribution of neurons’ runtime and the comparatively large

relative weight of individual neurons’ runtime over the total simulation. The high degree of

heterogeneity identified first in the metrics in Figure 2.5 and secondly in the distribution of

runtime in Figure 5.5 can be considered the culprit of why the load balancing problem is

difficult to solve in a microcircuit.

The problem of ensuring good load balance in brain tissue simulations has been studied em-

pirically. In strong scaling of morphologically detailed neurons, Hines et al. (2008) suggested a

method to split larger neurons across multiple processes, to allow branch-based balancing

with smaller neurons. A more aggressive splitting of neurons at the granularity of branches

and the exploitation of an asynchronous runtime to dynamically dispatch execution to idle

workers was also investigated (Magalhaes et al., 2019a). Important load balancing issues in

the simulation of small networks of detailed neurons on many-core processors have been

highlighted (Kumbhar et al., 2018), and a review found that load balancing plays a key role

in obtaining good performance in the simulation of point neurons on a distributed cluster

of GPUs (Nair et al., 2015). Additionally, irregular spiking behaviour was found to have a

detrimental effect to performance on GPUs (Yavuz et al., 2016).

5.4.1 Static load balance

Static load imbalance is determined purely by non-dynamic properties, and remains constant

throughout the execution. It can be mitigated through a load balancing algorithm that pre-

scribes a strategy for distributing neurons across parallel workers. We base our analysis on the

Least Processing Time (LPT) algorithm (Graham, 1969), which is the underlying strategy used

by our reference simulator CoreNEURON (Kumbhar et al., 2019b). In short, the LPT algorithm

is based on a preconditioned greedy approach, as detailed in Algorithm 11.

When simulating a full microcircuit, we expect the importance of static load imbalance to

increase as the level of parallelism grows. We consider in this section only strong-scaling

experiments, since in weak scaling all workers have by definition the same amount of work.
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5.4. Load imbalance at the network level

Algorithm 11 Pseudo-code for the LPT algorithm applied to load balancing of neurons.

NC ← list of neuron complexities
W ← list of workers
sor t (NC ) in descending order
for n ∈ NC do

w ← ar g mi n W
assi g n(n → w)

end for

Moreover, expanding our previous analysis, we consider here distributed parallelism in addi-

tion to shared-memory parallelism. Thus we introduce the concept of Parallel Process, which

can be either a distributed rank or a shared-memory thread. Hereinafter, when we only report

the number of parallel processes, we assume that all distributed machines are filled at full

shared-memory capacity, such that two parallel processes on the same node communicate

via shared memory parallelism, while parallel processes on different nodes communicate

via message passing.. Taking the example of our reference architecture SKX-AVX512, which

exposes 18 parallel threads, when we report 36 parallel processes it should be understood as 2

distributed ranks, 18 shared-memory threads per rank.

Figure 5.13 reports the impact of load imbalance on simulation runtime by considering

two quantities: the relative load imbalance and the absolute runtime. Load imbalance can

become a significant portion of the total simulation runtime when strong scaling a relatively

small network of 1024 neurons. When the number of neurons per parallel process is smaller

than a threshold value of roughly four, the relative load imbalance becomes larger than 10%,

eventually reaching almost 40% when there is only one neuron per parallel process. Moreover,

static load imbalance always reaches almost the same weight as the computation runtime in

the extreme case of a single neuron per parallel process. This can be easily explained by the

fact that, in this configuration, the performance is simply given by the slowest parallel process,

while the load imbalance is defined as the difference between the slowest and the fastest.

This phenomenon is present also for strong scaling of larger networks (note the different y

scales in Figure 5.13). An important difference with regards to the small network use case is

evident here: relative load imbalance in this case never exceeds a few percentage points of

overall runtime. This can be readily explained by the fact that in the extreme strong-scaling

configuration consisting of only a few neurons per parallel process, communication takes over

and becomes the dominant performance factor. Given that load imbalance cannot exceed

the computation time, if communication is the dominant factor than load imbalance must a

fortiori have a relatively low impact. In the largest network considered here, consisting of 105

neurons, load imbalance never exceeds 1% of total runtime.
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Figure 5.13 – Static load imbalance in a distributed simulation of a detailed microcircuit.
Relative load imbalance (top) as a percentage of computation time (brown line), communi-
cation time (green line) and total runtime (light blue line); Absolute wallclock time (bottom)
for computation (brown line), communication (green line), total (light blue line) and load
imbalance (purple line) measured in wallclock seconds to simulate one biological second. We
plot relative and absolute load imbalance for strong scaling a small network of ∼ 103 neurons
(left), a microcircuit of ∼ 104 neurons (centre) and a large network of ∼ 105 neurons (right).
Note the different scales on all y and x axis.

5.4.2 Dynamic load balance

In the course of a simulation, neurons produce spikes through a stochastic process that can

hardly be anticipated a priori. This can have a load imbalance effect if, for example, by chance

the number of spikes to be processed by a parallel worker is significantly larger than the

number of spikes processed by the others. We present here a method based on probability

theory to estimate the load imbalance – i.e. the difference in number of spikes to be processed

by parallel workers – as a function of the number of workers, the number of neurons, their

connectivity and their firing frequency.

The spike load imbalance distribution Let us consider a number P of workers, where each

worker’s load W is defined as the number of spikes it must process in a given time period.

For tractability, we make the customary assumption that spikes are generated by indepen-
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P = 2 P = 8 P = 64 P = 512
N f E [Λ] V ar [Λ] E [Λ] V ar [Λ] E [Λ] V ar [Λ] E [Λ] V ar [Λ]

100 4.35 11.06 4.54 1.21 2.63 0.45 1.59 0.28
1000 13.81 109.17 15.22 10.75 9.86 2.09 3.98 0.43

10000 43.70 1090.30 48.34 105.65 32.01 19.08 14.24 2.79
100000 138.20 10901.57 152.93 1054.63 101.46 188.88 46.47 16.22

Table 5.7 – Distribution of load imbalance under several configurations. We report the average
load imbalance E [Λ] and the variance V ar [Λ] for the distribution defined in (5.5), under
different simulation configurations. E [Λ] is measured in numbers of events generated during
a minimum delay interval. N denotes the total number of neurons in the network, P the
number of parallel processes, f the average firing frequency of the neurons in Hz. The fan-in
K and minimum network delay δmin were considered constant K = 3000, δmin = 0.1ms.

dent Poisson processes. Setting N as the number of neurons in the whole network, K the

average number of incoming connections per neuron, and neglecting the fact that neurons

can form multiple connections, a good first approximation is to assume that the spikes to

be processed by the N
P neurons belonging to the same parallel process are given by W i.i.d,

W ∼ Poi sson( N K
P f δmin), where f is the average firing frequency and δmin the minimum

network delay.

We define the dynamic load imbalance as

Λ= max
P

W −mi n
P

W. (5.5)

It can be shown that the load imbalance distribution can be expressed in terms of the joint

distributions of the maximum and the minimum by:

Pr (Λ= k) =
∞∑

x=k
Pr (max

P
W = x,mi n

P
W = x −k), (5.6)

with k ≥ 0 and the joint distribution itself given by

Pr (max
P

W = x,mi n
P

W = x−k) =


[FW (x)−FW (x −1)]P k = 0,

[FW (x)−FW (x −k −1)]P + [FW (x −1)−FW (x −k)]P . . .

· · ·− [FW (x)−FW (x −k)]P − [FW (x −1)−FW (x −k −1)]P k > 0,

(5.7)

where FW is the cumulative distribution function of W . We report the necessary mathematical

steps to reach this formulation in Appendix D. We report the expected value and variance of

the load imbalance Λ in Table 5.7 under various configurations. For example, in a simulation

of a network of 1000 neurons firing at 1Hz using over 64 parallel processes (either distributed
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Figure 5.14 – Dynamic load imbalance arising from spike delivery. We plot the dynamic load
imbalance defined in (5.5), multiplied by the wallclock time required to integrate a synaptic
event. Thus the unit of measure is wallclock seconds of load imbalance over a simulation
of one second of biological time. The solid lines represent the average values (over time or
multiple iterations), while the shaded areas represent one standard deviation from the mean.
For strong scaling (left) we considered a microcircuit simulation of ∼ 104 neurons, with fan-in
K = 3000 and minimum network delay δmin = 0.1 ms, at various firing frequencies (darker
colours denote higher frequencies). For weak scaling (right) we considered a scenario with 2
neurons per parallel process, fan-in K = 3000 and minimum network delay δmin = 0.1 ms, at
various firing frequencies (darker colours denote higher frequencies).

ranks or shared memory threads) the average load imbalance, in terms of difference of number

of events to be processed, will be about 10. From (5.5) we can obtain the average distribution

of the load imbalance in the simulation of one biological second by multiplying the load

imbalance (measured as a the difference in number of events), times 1
δmin

(the number of

mindelay intervals in a second), times the cost of processing one spike, which in our case was

taken to be 30.8 cycle from Section 3.1.5.

Dynamic load imbalance in a microcircuit simulation We present the results of our method

for estimating dynamic load imbalance in Figure 5.14. In the strong scaling case we observe

an inverted-U shape: as the number of parallel processes increases, the load imbalance

initially increases, reaches a maximum point and then slowly decays to almost zero. This

can be intuitively explained by comparing sources of variability. At small parallel processes

counts, our model for load imbalance is equivalent to drawing a small number of samples

from Poisson variables with large parameters. Thus the variability is large, and the work per

process is large. As the number of parallel processes increases, two effects are competing:

we are drawing more samples, thus making it more likely to see extremal values – i.e. larger

maximums and lower minimums – but at the same time the parameter of the Poisson process
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is decreasing, thus decreasing the variability. Our computations show that the latter effect

rapidly becomes dominant, and the load imbalance decays towards zero. In terms of firing

frequency, as expected larger frequencies lead to more imbalance, but the effect does not

seem to be linear, as for example a tenfold increase in average firing frequency only results in

a roughly 4x increase in imbalance. The runtime values should be compared to the simulation

runtime in Figure 5.13: for example, when using 64 parallel processes the simulation runtime

is roughly 50s to simulate one second of biological time, while the dynamic load imbalance is

around 0.02s, i.e. less than 0.1%. Even in the most extreme scenarios, static load imbalance far

outweighs dynamic load imbalance in the simulation of a microcircuit. Note that the relative

weight of dynamic load imbalance to simulation runtime is highly affected by the network

size. However, we found that even for small networks of roughly 1K neurons dynamic load

imbalance never exceeded 1% of the total runtime, whereas we demonstrated before that

static load imbalance can reach up to 40% of total runtime.

In the weak scaling case the dynamic load imbalance grows indefinitely, as shown in Fig-

ure 5.14. Also in this case firing frequency has a direct, but sublinear, relationship. While we do

not show a direct comparison to runtime, once again dynamic load imbalance never exceeds

a few percentage points of the runtime to simulate a neuron. Thus we have shown that in

both the weak and strong scaling case, dynamic load imbalance is highly unlikely to play an

important role in determining the performance of the Reconstructed model. This is in stark

contrast with other neuron abstractions, and in particular point neurons with plasticity, where

it has been speculated that dynamic load imbalance plays a role in the degradation of strong

scaling parallel performance (Zenke and Gerstner, 2014).

5.5 Discussion

In this chapter we demonstrated the use of our methods to analyse the performance properties

of the simulation of a morphologically detailed cortical column within the Reconstructed in

silico model. To cope with the wide variety of ion channel and synapse models, we leveraged

Kerncraft (Hammer et al., 2017) – an automatic performance modelling tool – by extending the

NMODL source-to-source compiler (Kumbhar et al., 2019a) with a code generation backend

compatible with Kerncraft requirements. We showed that by using a post-processing step that

complements the automatic performance model generated by Kerncraft, it is possible to obtain

an acceptable level of accuracy for almost all performance predictions. We make extensive

use of the inference properties of the ECM model to analyse the intrinsic heterogeneity

of performance properties of the Reconstructed model. A performance analysis with this

level of detail had never been conducted before in the context of simulations of G-based

morphologically detailed neurons. Our analytical assessment has confirmed several findings

from our previous analysis in Chapter 4. In particular, we find once again that G-based

neurons are dominated by data-bound kernels and saturate the memory bandwidth with a

low number of threads in a shared-memory scenario. Moreover, we reconfirm the importance

of cache reuse enabled by the loop ordering optimisation for scalability of the shared-memory
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execution.

Classification of current and state kernels G-based kernels in the cortical microcircuit

model can be classified in five groups according to their serial performance profile: a heavily

data-bound group containing exclusively current kernels, a mixed group of slightly data-bound

kernels and three groups on the compute-data boundary containing almost exclusively state

kernels. Using this information we explore fusing of kernels with different performance profiles

as a possible way to maximise resource efficiency. However, we find only few combinations of

kernels that would be able to provide a performance benefit. Moreover our analysis shows

that, taking into account practical limitations to this technique, the estimated speedup from

fusion for the best possible combination would be around 1.3x. We conclude that while this

technique could improve efficiency, the tradeoff in performance gains versus development

effort would probably not be favourable.

Characterization of serial performance of G-based detailed neurons The performance

profile of G-based detailed neurons is essentially dominated by data-bound kernels, with the

Td at a component of neurons being on average six times larger than Tcor e . Despite all neurons

sharing a similar bottleneck, the runtimes of individual neurons have significant variability,

especially when data is in main memory. This variability in serial runtime can be explained

by considering both the number of synapses and number of compartments in a neuron, but

not by considering them individually. Digging deeper, we find that the number of synapses

accounts for a large portion of the variability in the execution of current kernels, while state

kernels are affected in equal measure by compartments and synapses.

Characterization of parallel performance of G-based detailed neurons The analysis of

individual kernels reveals that, unless the loop ordering optimisation is implemented, only

very small performance gains can be obtained via parallelism. When this optimisation is

implemented, we observe a large gap between highly and moderately parallelisable kernels.

Ion channel and synaptic kernels are not all present in equal quantities, and looking at their

relative importance by analysing their specific mix within neurons is a more realistic approach

than looking at individual kernels. In this context we find a strikingly small variability in the

parallel speedup achievable by neurons, between 13–14x for all kinds of neurons regardless of

morphology, electrical type or circuit function. In conclusion, our results point to the fact that

while morphologically detailed neurons can indeed benefit from shared memory parallelism,

the saturation effect becomes prominent at a comparatively small number of shared memory

threads, thus hindering the full exploitation of future many-core architectures.

Heterogeneous neurons have homogeneous serial performance profiles The distributions

of the number of compartments and the number of synapses per neuron are extremely dis-

persed and have many outliers, demonstrating a significant degree of heterogeneity in the
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distribution of neuron models. However, our analysis shows that neurons within the recon-

structed microcircuit are all data-bound in the serial execution, and saturate the memory

bandwidth at roughly the same number of shared memory threads, indicating that the biologi-

cal variability is not reflected in heterogeneous performance profiles. While detailed G-based

neuron models have a rather homogeneous performance profile, their runtimes are quite

heterogeneous and reflect the variability in the number of channels and synapses.

Load balancing has differential effects according to network size Motivated by the fact

that a long tail of complex neurons in the distribution of runtime could pose a significant

load balancing problem, we examine the possible static and dynamic load imbalance that

could arise due to variability of neurons and of spikes. We show that using the LPT load

balancing algorithm in a BSP framework leads to negligible static load imbalance, except

in the case of strong scaling of small networks of neurons. We also conduct an analysis of

heterogeneity due to irregular spiking activity. We find that dynamic load imbalance due

to irregular spiking activity is 1-3 orders of magnitude smaller than the runtime to simulate

even a single detailed neuron, such that its relative impact on simulation runtime is hardly

noticeable on our reference HPC CPU architecture. Regardless of this result, dynamic load

imbalance represents an interesting and challenging topic to investigate and can lead to

non-negligible effects in the simulation of simpler neurons or on highly parallel architectures.

Our methodology can in principle be extended to cover both cases.

Throughput-optimized SIMD architectures may suffer from static load balance issues Given

that we have identified a high degree of similarity in the performance profiles of neurons, one

might consider whether high-throughput SIMD architectures such as e.g. GPGPUs would

constitute a good candidate for accelerating simulations of detailed neurons. In this case,

however, heterogeneity in the morphologies as well as in the distribution of ion channels

and synapses could constitute a major hindrance to efficient utilization of such architectures

(see (Kumbhar and Hines, 2016; Kumbhar et al., 2018), even though we do not exclude it might

increase performance overall. Moreover, GPGPUs typically have limited memory capacity, and

our analysis shows that strong scaling small networks to large degrees of parallelism can incur

in significant static load imbalance.

Neuromorphic hardware may suffer from dynamic load imbalance On the other hand,

experimental architectures such as neuromorphic chips offer a high degree of parallelism

and a fast, efficient communication network. One of the principles of neuromorphic chips

is to minimise overprovisioning of single cores by assigning them small amounts of work,

and exploiting an extremely distributed architecture to maximise performance. Since neu-

romorphic chips are typically designed with scalability in mind, they do not suffer from the

limited memory capacity of GPUs. However, we argue that slower individual cores could lead

to a larger static and dynamic load imbalance problem. The reason is that simpler cores with
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smaller memory capacity are less capable of amortizing the static load imbalance costs, and

the lack of a pipelined architecture able to expose ILP would suffer greatly from dynamic load

imbalance. In conclusion, our analysis points to the fact that HPC distributed architectures

composed of a low-latency communication network and high-frequency out-of-order chips

exposing moderate amounts of shared-memory parallelism represent the ideal architecture

for high-performance simulations of detailed G-based models.

5.5.1 Limitations and future work

We have shown the impact on performance of heterogeneity originating from several sources.

However, it was impossible to include all the sources listed at the beginning of this chapter in

our analysis. From the perspective of modelling in computational neuroscience, important

load imbalance effects can arise from using an adaptive timestep method for the time inte-

gration of the membrane equation (Magalhaes et al., 2019c). Given the high unpredictability

of timestep sizes and their variations depending on the evolution of the whole simulation,

as of right now it was impossible to include such methods in our analysis. Additionally, al-

though we have tried to infer the properties of performance on hardware accelerators and

heterogeneous platforms, our model does not yet include hardware architectures other than

CPUs. As such we are unable to deliver a full characterisation of the performance profile and

load imbalance risks on such architectures. An extension of our performance model to other

hardware architectures would provide great benefits in terms of completeness and scope of

our analysis.
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6 Discussion

This work was motivated by the realization that the simulation neuroscience community

lacked a systematic, quantitative understanding of the computational characteristics of brain

tissue simulations, and their performance implications for modern hardware. With this goal

in mind, we compiled a list of simulation use cases representative of trends in the literature,

which we dubbed the in silico models and experiments. We used hardware-agnostic metrics

to characterise the main properties of these use cases, finding differences and unexpected

similarities among them. However, this description lacked a direct link with hardware, and

thus predictive and inference power, so we decided to use performance modelling techniques

allowing us to convolve our high-level descriptions with hardware properties to obtain a quan-

titative characterisation of performance. We selected a subset of three highly representative in

silico models and we built a fully fledged performance model based on modern HPC hard-

ware, able to account for several factors such as CPU characteristics, memory bandwidth and

capacity, interconnect network, and more. The model’s ability to deliver accurate predictions

allowed us to validate it in a set of benchmarks, but the real value of our approach was in

the model’s explainability and inference properties. By dissecting and analysing in detail the

model’s parameters, we were able to reach the characterisation of brain tissue simulations

described below, allowing us to pinpoint similarities and differences across in silico models’

algorithms and their implications for performance.

The main contributions of this thesis are as follows. First we conducted an extensive literature

review of the state of the art in brain tissue modelling and performance-related aspects. To

introduce structure in the complex landscape of brain tissue simulations we identified a novel

set of hardware-agnostic metrics allowing us to capture the key characteristics of an in silico

model. We used these metrics to dissect the performance properties of a collection of in silico

models and experiments representative of the different modelling and simulation approaches

in the literature. We then intersected in silico model descriptions with hardware on two axes.

For the single-node performance axis we introduced an abstraction of the Skylake architecture

based on the ECM model that had never been published before. We extended the ECM

formalism and overcome certain of its limitations by making extensive use of domain-specific
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knowledge to obtain the first analytic performance model of brain tissue simulation kernels on

a single node with shared-memory parallelism. For the communication axis we leveraged the

LogGP model to obtain the first description of the performance of interprocess spike exchange

providing a direct link with interconnect hardware characteristics. Using the performance

modelling methods developed above we complemented our analysis of the state of the art with

a quantitative assessment of the salient performance properties and hardware bottlenecks of

in silicomodels and experiments. We then implemented a workflow based on code generation

and machine analysis able to automatically build a performance model for arbitrary neuron

abstractions. To our knowledge, an analysis of the performance of G-based detailed models

was never conducted at this level of granularity and detail. Our approach allowed us to focus

our investigation both on the wide breadth of modelling abstractions and on the heterogeneity

intrinsic to a single cortical microcircuit. By inspecting the parameters and outputs of the

performance models models we were able to validate and confirm common knowledge – such

as the importance of fast memory bandwidth and interconnect hardware in simulations of

large neural networks – but also shed new light on the properties of the simulation algorithms

and identify future codesign directions. More importantly, our methods enabled us to gain a

deep understanding of the relationship between intrinsic features of different in silico models

and their performance on various hardware architectures.

6.1 Computational characteristics of brain tissue simulations

During the course of our investigation, we identified three main features of brain tissue simu-

lation algorithms, namely: clock-driven update kernels, event-driven spike delivery and loose

temporal coupling. The presence of these three characteristics and the way in which they are

combined is specific to brain tissue simulations and generates their unique computational

fingerprint. To our knowledge, an in-depth analysis of how these characteristics affect perfor-

mance and efficient use of hardware has never been conducted, nor is it possible to find the

same combination of algorithmic features outside of the field of simulation neuroscience.

Event-driven spike delivery Believed to be the neural substrate of thought, event-driven

spike delivery is undoubtedly one of the main identifying features of brain tissue models. In

spite of its undisputed functional purpose, theoretical analysis and empirical measurements

show that this phase of brain tissue simulations has an impact on performance only for certain

types of neuronal abstractions, namely current-based (I-based) models, while conductance-

based (G-based) models are usually dominated by clock-driven kernels even over a wide range

of parameter values and cluster configurations. More importantly, the spike delivery kernel

possesses a unique performance profile that has not yet been fully understood. Its main

feature is the dynamic indirect access pattern which introduces a latency cost, large memory

traffic overhead and prevents vectorisation on modern architectures. Our analysis has been

able to establish performance bounds for this kernel, and while benchmarks show that its

serial runtime is slower than the kernel’s theoretical throughput, and even slower than its
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critical path predictions, it is definitely not fully bounded by the memory latency. We have

also confirmed the hypothesis that this kernel’s performance scales linearly with the number

of shared memory threads until the memory saturation bottleneck is hit. In the saturated

bandwidth regime, this kernel’s large memory traffic requirements are responsible for almost

70% of an I-based model’s performance.

Clock-driven kernels Clock-driven kernels represent the main driver of performance in

G-based models and still constitute a significant portion of I-based models’ runtime. We

have shown that the serial performance of these kernels is characterised by a high degree

of heterogeneity both across and within neuronal abstractions. All the clock-driven kernels

of I-based models that we considered turned out to be data-bound in the serial case, while

the G-based point neuron model was characterised by data-bound current kernels and state

kernels with a boundary profile. In the morphologically detailed G-based model, we observed

a large variability across ion channel and synapse kernels although the profiles of each family

of kernels were largely preserved. In spite of this variability, when we take into account the

specific mix of ion channels per neuron as well as the runtime of each kernel, we find that

most neurons spend almost all the runtime in data-bound kernels during a serial execution.

When shared-memory parallelism is introduced, we uncover among the G-based kernels a

distinction between fast-saturating current kernels and slowly-saturating state kernels. The

memory saturation properties of clock-driven kernels are directly responsible for the shared-

memory parallel performance of the G-based models in our analysis, while clock-driven

kernels of the I-based IAF model account for less than a third of the overall runtime.

Loose-coupling The property of loose-coupling represents one of the main distinguishing

features in terms of structure of the simulation algorithm as compared to state-of-the-art

simulation workflows in other computational sciences. One of the most visible effects of

loose coupling is that it allows a significant reduction of the relative cost of the interprocess

communication phase by delaying synchronization and communication steps as much as

possible. However, our analysis shows that for point neuron models this effect is not sufficient

to mitigate the costs of communication and for medium to large scale simulations the latency

of the interprocess network hardware remains the dominating factor. Our performance model

has allowed us to identify and study in detail another, less widely-known, beneficial effect of

loose coupling: enabling cache reuse through a loop ordering optimisation. Thanks to this

algorithmic enhancement, the G-based models in our analysis enjoyed important shared-

memory performance gains by exploiting improved data locality. On the other hand, I-based

models whose shared memory scalability is bounded by the spike delivery kernel only observe

a very limited benefit from the loop ordering optimisation.
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6.2 Hardware implications

One of the main goals of this work was to identify the most relevant hardware features and

explain their effect on brain tissue simulations. Among the complex and ever-changing

state of the art in modern hardware, we identified two key characteristics that drive the

performance of biological neural networks more than any other: the memory bandwidth and

the network latency. However, several other hardware characteristics that we discuss here

play an important role for performance and, especially in extreme cases, could become new

dominant factors.

Memory bandwidth On almost all modern architectures memory bandwidth represents

an important bottleneck, especially in the case of shared memory parallelism. The in silico

models and experiments that we analysed are all heavily affected by this hardware design

pattern, albeit for different reasons. G-based models contain data-bound kernels charac-

terised by poor scaling properties, while I-based models are dominated by the spike delivery

kernel with a large memory traffic overhead. Investigating how much models would benefit

from a larger memory bandwidth, we found a significant difference between the max-filling

regime and the real-time regime. In the former, where bandwidth is assumed to be saturated,

improvements in the memory bandwidth would be directly reflected in better performance,

at least in sufficiently small clusters such that communication is not a dominating factor. On

the other hand, in the more realistic real-time scenario that drops the saturation hypothesis,

we find that strong-scaling benefits from faster memory would quickly be diminished by other

bottlenecks such as CPU throughput for detailed G-based models. Thus, according to our

analysis, memory bandwidth severely limits the shared-memory parallel scaling properties of

brain tissue simulations, but improving it alone would not automatically result in an equiv-

alent improvement of performance. This leads us to the conclusion that future chips with

hundreds or more cores run the concrete risk of being inefficient for simulations of biological

neural networks, regardless of modelling abstraction, as a consequence of being starved for

data. While of course the data-computation tradeoff should be analysed in detail for each new

architecture, our analysis points to the general conclusion that, except for a few use cases,

large degrees of shared-memory parallelism cannot be fully exploited by in silico models and

experiments unless they are sustained by a dramatic increase in memory bandwidth.

Fast cores with complex microarchitectural features The reference architecture used through-

out this work is characterised by a relatively fast core exposing important optimisations at

the hardware level, such as a superscalar architecture, speculative execution, out-of-order

scheduling, operand forwarding, handling of multiple outstanding memory requests, etc. An

important question to ask is whether these features play an important role in the performance

of in silico neuroscience simulations. While our performance model does not explicitly ac-

count for these in-hardware optimisations, we can still infer their importance from modelling.

For example, the fact that many of the G-based state kernels were found to be on the boundary
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between core-bound and data-bound profiles despite their very high arithmetic intensity indi-

cates that vectorisation and superscalar hardware have already provided extensive benefits.

In addition, we can speculate that while the full-throughput hypothesis obviously does not

apply to the spike delivery kernel, the fact that it is able to reach high performance in spite

of the high memory latency on the reference architecture is directly linked to the degree of

exposed memory-level parallelism. Thus we conclude that any architecture with low amounts

of shared memory parallelism is highly dependent on complex microarchitectural features in

order to reach high-performance simulations, by hiding the latency of core-bound kernels in

G-based models, and of the spike delivery kernel in I-based models.

Distributed parallelism The small-world nature of biological neural networks makes them

highly suitable for distributed programming. This computing technique has been used mainly

to enable simulations of larger and larger networks (weak scaling), and less often to accelerate

networks with a fixed size (strong scaling). Our analysis, based on a state of the art high-

throughput and low-latency interconnect network, revealed that when communication is

the bottleneck the network latency is the main driver of performance, a property that we

impute to the use of blocking collective communications. Concerning load imbalance, in

the weak scaling scenario we identified that static load imbalance is by definition impossible,

but dynamic load imbalance grows as the level of parallelism increases. In the strong scaling

scenario, static load imbalance due to heterogeneity between neurons can grow to represent a

significant portion of the computation time, while dynamic load imbalance has an interesting

inverse-U shape, with a peak at a relatively small number of distributed ranks. In all cases,

we are able to show that in the context of morphologically detailed G-based models, the

impact of load imbalance is usually neglectable if compared to the whole simulation runtime

(computation and communication), except when strong scaling small networks of neurons.

SIMD and MIMD parallelism Single Instruction Multiple Data (SIMD) architectures have

been gaining a lot of traction in modern computer design, from superscalar multiprocessors

that expose wider and wider vector units (e.g. Intel’s AVX512), to GPUs and vector proces-

sors. In terms of pure performance, SIMD parallelism is proven to be extremely beneficial for

simulations of the clock-driven kernels of all in silico models and experiments. Throughput-

optimized SIMD architectures that typically offer very high peak performance and memory

bandwidth can support the high-performance simulation of both core-bound and data-bound

clock-driven kernels. However, SIMD architectures would quickly suffer from both static and

dynamic load imbalance. While the former can be partially mitigated by time-multiplexing

multiple neurons on a processor, the latter is an intrinsic limitation to the high performance

of the simulation algorithm, and we have shown that it is more suited to latency-optimized

architectures. On the other hand, extreme levels of Multiple Instruction Multiple Data (MIMD)

parallelism would more similarly reflect the natural architecture of the brain. Even though

general-purpose processing has until now sustained high-performance simulations of neural

tissue, custom designed architectures such as neuromorphic chips could overcome the mem-
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ory bandwidth and network latency issues that are currently limiting the scaling to very large

networks. In this case, the intrinsic heterogeneity of the in silico model plays a fundamental

role in determining the efficient utilization of the hardware. Homogeneous abstractions that

have similar mathematical model, similar connectivity and similar, low firing rates across all

neurons would be the perfect candidate for extreme MIMD parallelism. On the other hand in

silico models with a large degree of heterogeneity, even in just one of the aspects cited above,

would inevitably lead to inefficient use of hardware. Moreover, due to the random nature of

spike events, even homogeneous models exhibiting very large firing rates could be affected by

dynamic load imbalance.

6.3 Limitations and future work

In this work we have concentrated solely on the aspect of maximising performance and

resource utilization, without considering limitations such as cost or energy. However, it

must be stated that energy efficiency is a central issue in the computational neuroscience

community, and one of the main selling points of neuromorphic hardware (Cassidy et al., 2014;

Stromatias et al., 2013). Therefore, a meaningful extension to this work would be to incorporate

a model for power consumption alongside performance prediction, as a way to constrain

the feasibility and efficiency of certain simulation configurations. To achieve this, one could

exploit already established power consumption models that are easily integrated with the ECM

and have been shown to provide valuable insight into the power and performance properties

of simulation kernels (Hager et al., 2016; Hofmann et al., 2018).

From the modelling point of view, an important aspect that we have neglected in this analysis

is synaptic plasticity. A large portion of research questions that require brain tissue simulations

involve learning and synaptic plasticity, which was shown to represent a significant portion of

the total runtime (Zenke and Gerstner, 2014), so this represents an important extension to our

analysis. However, in this work we decided to concentrate on the inference part of brain tissue

simulations because the diversity and complexity of plasticity models warrants a separate

analysis. Although the modelling of the spike delivery kernel has proven to be technically diffi-

cult, we do not think that adding a plasticity kernel would prove to be technically challenging,

but it would considerably complexify the resulting analysis.

Different in silico experiments may require measurements and reporting on different values,

even when the underlying modelling abstraction is the same. For example, an experiment

simulating local field potentials in the Reconstructed model requires storing the membrane

currents of each compartment at every timestep (Reimann et al., 2013), while visualization

or analysis constraint may require specific output data layouts. In addition to the added

complexity, differential storing of state variables may introduce load imbalance in a simulation.

To include this aspect in our analysis would require an extension of the performance model

to I/O operations, which we deemed outside of the scope of this work. However, simulation

I/O and data analysis can represent an important bottleneck in brain tissue simulations and
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empirical optimisation studies are being actively investigated (Eilemann et al., 2016; Ewart

et al., 2017; Planas et al., 2018; Schürmann et al., 2014).

Our analysis was focused on the computational requirements of brain tissue simulations, but

an interesting question that may be asked is how much paying the price of more costly simula-

tions actually buys in terms of computational capability of the network. In the field of artificial

neural networks a review introduced metrics such as the information density to represent the

accuracy per parameter in a classification task (Canziani et al., 2016). Similar metrics do not

exist for biological neural networks, but preliminary studies attempting to quantify the com-

plexity of a neuron’s behaviour are being conducted, for example by establishing a one-to-one

mapping between a biological neuron’s I/O relationship and a deep neural network (David

et al., 2019). This makes it possible, at least in theory, to relate the computational cost of a

neuron with its computational capability, measured by proxy as the information density of the

equivalent deep neural network. Future investigations in this regard could answer important

questions about the cost-benefit tradeoffs of in silico models.

From an hardware modelling perspective, we focused on HPC CPU clusters and chose a

medium-granularity model able to capture salient hardware features at the cost of a less

detailed perspective. The extension of our performance model to different hardware archi-

tectures, especially GPUs and neuromorphic, would broaden the scope and saliency of our

conclusions. While cycle-accurate hardware simulators such as RSIM would yield high accu-

racy (Pai et al., 1997), we fear that the loss in explainability would be too high to justify their

use. On the other hand, more complex analytical models would permit the investigation of

the relative importance of individual microarchitectural features (Levinthal, 2014) as well as

interesting future directions for hardware codesign such as dark silicon (Esmaeilzadeh et al.,

2012).

6.4 Closing remarks

Our analysis lead to the characterisation of brain tissue simulations from an algorithm and

hardware perspective. We showed that, if future iterations of general-purpose hardware archi-

tectures maintain the same balance as the current state-of-the-art, it will be very difficult to

achieve fast, large scale simulations of brain tissue. Even if hardware peak performance were

to improve significantly over the next years, the required speedup could only be achieved via

specifically targeted advancements and under very restrictive simulation and model config-

urations. To support the next generation of brain tissue simulations, the community must

therefore focus on the design of dedicated hardware. In order to achieve this goal, com-

putational neuroscience modellers must cooperate with software developers and hardware

designers. Ultimately, we stress that performance modelling represents a powerful tool to

enable communication between these communities This work embodies a concrete effort

to define and understand key performance properties of a wide variety of in silico models, a

necessary step to enable the next generation of brain tissue simulations.
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A Simulation algorithms and fundamen-
tal concepts

Minimum network delay All cellular-level models of brain tissue must define a strategy to

advance the integration of neurons’ and synapses’ state variables in time. The work of Morrison

et al. (2005) presented a new paradigm that, barring very few exceptions (Kozloski and Wagner,

2011), has been implemented by all simulators. Starting from the observation that axons

are very reliable in transmitting an AP with the same speed (Cox et al., 2000), they propose

to model synapses as a simple delay, based on their distance from the axon initial segment,

where APs are typically initiated. This means that coupling between neurons is mediated only

through such synaptic delays. In turn, this implies that there is a time interval during which a

neuron can be considered as completely independent from any other. This time interval can

be computed conservatively by taking the minimum across all synaptic delays in the network,

thus we denote it δmin and often refer to it simply as minimum delay or mindelay. Within a

minimum delay interval, neurons can be considered independent from one another. This

is a fundamental property of in silico models and experiments that determines many of its

performance characteristics.

Spike delivery: integration of synaptic inputs in the I-based and G-based formalisms The

membrane potential of neurons is monitored at every instant in time, and whenever it reaches

a specified threshold, a spike is initiated. In all the in silico models and experiments considered

here, spikes are treated algorithmically as events that populate a priority queue based on their

delay to delivery. This enables a lean representation of spikes: all the required information can

be summarised in the identifier number of the source neuron and the time at which the spike

occurred. In terms of integrating the effects of spikes, at the beginning of every timestep the

priority queue is popped of all the events to be delivered in that instant, and for each event the

relevant spike delivery coroutine is called. In I-based models, each neuron has a state variable

that represents the total synaptic current Isyn, and when a spike is delivered this quantity is

updated by the connection weight w :

Isyn ← Isyn +w. (A.1)
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Note that Isyn is a neuron-level state variable, meaning that when two synapses connected

to the same postsynaptic neuron are activated in the same timestep, a data race is possible

and must be prevented. Typically this is not an issue because synapses belonging to the same

postsynaptic neuron are processed serially.

In the G-based model, the synaptic conductance gsyn is updated by the connection weight,

thus indirectly determining an increase in the synaptic current via the membrane voltage v

and the synaptic receptors’ reversal potential esyn.

gsyn ← gsyn +w,

Isyn = gsyn
(
v −esyn

)
.

(A.2)

In this case, gsyn is a per-synapse variable, and while Isyn is instantiated on a per-neuron basis,

the actual computation of Isyn does not happen in the spike delivery phase, but rather in the

synaptic current phase (see Figure 2.2).

Update of voltage in the point neuron and morphologically detailed representations The

evolution of the membrane potential is described by a differential equation, typically arising

from the equivalence with a Resistance-Capacitor (RC) circuit. In the simplest model, the

lipidic structure of the membrane acts as a capacitor, while the presence of leak ion channels

that allow free flow of ions acts as a parallel resistance, as shown in Figure A.1. To give an

example for the point neuron formalism, in the Integrate-and-Fire (IAF) neuron the resistance

term is linear leading to the equation

τm
d v

d t
=− (v(t )−er est )+Rmemb I (t ), (A.3)

where v(t) is the neuron’s membrane potential, τm = RmembCmemb is the membrane time

constant and I (t ) includes synaptic currents such as A.1 as well as input currents from external

stimuli. Thus updating the neuron voltage in the IAF point neuron formalism amounts to

solving A.3 at every timestep. For the Brunel model in our analysis, an exact time-integration

method based on precomputing the matrix exponential is used (Rotter and Diesmann, 1999).

In the case of the IAF, whenever the AP threshold is reached, a spike event is elicited and

then, after a refractory period where A.3 is not integrated and synaptic inputs are ignored,

the membrane potential is simply reset to er est and time integration restarts. More complex

versions of A.3 exist, that introduce nonlinearities to account for the whole complexity of AP

dynamics, such as the Izhikevic (Izhikevich, 2003), GIF (Pozzorini et al., 2015) and the Adaptive

Exponential (Brette and Gerstner, 2005) models, but while the complexity of solving nonlinear

versions of A.3 may require careful numerical treatment, the underlying principle remains the

same.

In compartmental models, dendrites and axons are considered part of the modelling abstrac-

tion. To account for their morphological properties, they are split into compartments that are
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Figure A.1 – Equivalent RC circuit for neuron representations. A presents a point-neuron
model with the equivalent RC circuit. Ion channels that allow the free flow of ions are lumped
into a membrane resistance Rmemb , while the impermeability of the membrane leads to a
capacitance Cmemb . A battery er est denotes the resting potential of the neuron. B presents
a compartmental model. In this case, an additional resistance term Rax is used to connect
several RC circuits together, thus allowing modellers to include morphological detail in their
representation.

individually modelled as a single RC circuit, and connected through an axial resistance term

Rax . For a single section of unbranched dendritic compartments, cable theory is used (Rall,

1962) leading to the partial differential equation:

Cmemb
∂v

∂t
=− 1

Rax

∂2v

∂x2 + I (t ), (A.4)

where x denotes the axial spatial dimension along the dendrite. Branching points require

special treatment (Carnevale and Hines, 2006). In the spatial dimension a second order

finite-difference scheme is the most common numerical method, while in the temporal

dimension implicit time-integration methods are almost always used to solve A.4 for stability

reasons (Carnevale and Hines, 2006). The spatial coupling through a second-order derivative

and the use of implicit time-integration schemes leads to a linear system to be solved at every

time step. While in the general case this can lead to a very costly inversion of a matrix, Hines

(1984) introduced the Hines algorithm: a linear-complexity direct method using the specific

tree-like structure of neurons to reduce the problem to a quasi-tridiagonal structure (Thomas,

1949).

PSC contributions in the I-based formalism In the I-based formalism, each neuron holds

at least one Isyn variable representing the total synaptic input. This variable follows its own

dynamics, and while we have shown how its value can be increased by incoming spikes, we
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have not yet explained how its values decays over time in the absence of spikes. A classical

model is to assume single-exponential decay (Roth and van Rossum, 2009), which states that

the synaptic current decays exponentially over time with a fixed time constant. Note that this

enables an optimisation: instead of keeping track of each individual synaptic current, all the

synapses with the same time constant can directly contribute to the same Isyn variable, and

the exponential decay needs only to be computed for the “lumped” Isyn.

Ion channel and synapse models in the G-based formalism In the G-based formalism, we

keep track of synapses’ and ion channels’ conductance g , instead of directly computing their

current, which can a posteriori be computed via Ohm’s law given the membrane potential v

and a resting potential e:

I = g (v −e). (A.5)

In this formalism, synapses and ion channels are themselves described by a set of state vari-

ables and evolution equations. The most well-known model of this type is the Hodgkin-Huxley

(HH) (Hodgkin and Huxley, 1952) biophysical model. Given that the evolution of the mem-

brane potential and the evolution of ion channels’ and synapses’ states is very tightly coupled

in this formalism, this poses difficult numerical challenges in solving the corresponding equa-

tions. However, Hines (1984) introduced an efficient time-staggering technique, whereby the

time integration of one timestep can be divided into three distinct steps in the simulation

workflow: before updating the voltage the contributed currents to the membrane equation

must be computed; then the voltage can be updated by solving the membrane equation;

after the voltage has been updated, the state variables of ion channels and synapses must be

advanced in time via numerical integration. Note that in the G-based formalism the current

contributions and the state updates must be computed for each ion channel and synapse

instance. Moreover, in the case of morphologically detailed models computation of synaptic

and ion channel currents amounts to updating relevant terms in the corresponding matrix.

On the other hand, even in the morphologically detailed case, integration of synaptic and ion

channels’ states can be performed independently across instances, even those of the same

type or belonging to the same compartment.

Spike exchange Whenever a neuron’s membrane potential surpasses the spike threshold, it

must communicate this event to other neurons. In the case of distributed simulations, neurons

from one rank may need to communicate their spikes to neurons located on a different node.

The property of minimum network delay enables an optimisation: instead of communicating

spikes at every instant, they can be buffered and communicated every mindelay interval. A

common approach for implementing the spike exchange routine is via blocking collective

communication functions. While this choice may seem not fitting with the local connectivity

structure of neural networks, studies have found that in practice the collective calls do not

impose a performance burden (Hines et al., 2011), although it is speculated that this may
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change for extremely large clusters (Fernandez Musoles et al., 2019; Jordan et al., 2018). In the

in silico models and experiments considered here, the C2 model represents an exception to

this characterisation: instead of blocking collective calls, it uses nonblocking point-to-point

communication.

In the presence of gap junctions, even though technically they do not exchange spikes, an

additional communication step is required to exchange membrane potential values at gap

junction locations. Since eletrical synapses represent a tight coupling of the membrane

potential of two neurons, this presents an algorithmic challenge when neurons are distributed

across different parallel processors. Despite the potential for instability, in practice it has been

shown that an explicit scheme where the voltage at the gap junction is considered constant

for the whole timestep represents a satisfying approximation that considerably simplifies

the implementation (Hines et al., 2008), and while other options have been explored (Hahne

et al., 2015), the explicit algorithm remains the most commonly found in literature. Therefore

in the case of gap junctions an additional communication step is introduced, in which at

every timestep the gap junction voltage is exchanged across the interconnect network. This

communication step is also usually implemented via a blocking collective function call (Hines

et al., 2008). Note that, as direct consequence, gap junctions break the loosely-coupled

property arising from the minimum network delay.

A.1 Supplementary material for Chapter 2

Table A.1 reports the numerical values for relevant parameters of the in silico models and

experiments. These values were used to compute the hardware-agnostic metrics described in

Section 2.2.2.

Brunel Spaun C2 Reconstructed Simplified Auditory

Nneu 109 106 109 104 104 104

ODEs per neuron 2 2 2 103 3 103

param per neuron 5 0 4 103 7 103

K 11250 104 5500 103 36 103 (1% GJ)
ODEs per syn 0 1 0 4 5 4 (0 GJ)
param per syn 1 1 1 10 12 10 (1 GJ)
∆t [ms] 0.1 1 0.1 0.025 0.1 0.1
δmin [ms] 1.5 1 0.1 0.1 0.1 0.1
f [Hz] 7.6 100 1 1 1 1

Table A.1 – Parameters of in silico models and experiments. GJ denotes Gap Junctions. We
only count parameters that can vary across neuron or synapse instances, while constant,
homogeneous parameters are not counted.
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B.1 The ECM model

We present here a detailed account of the fundamental concepts and necessary steps in

the computation of the ECM model. We begin by describing the roofline model which in a

sense constitutes the basis for the ECM and introduces some key concepts such as arithmetic

intensity and memory bandwidth (Williams et al., 2009).

B.1.1 The roofline model

The roofline model is a cornerstone of performance modelling, representing one of the most

widely-known white-box approaches (Williams et al., 2009). It is based on the following key

quantities:

• the work w , defined as the number of useful operations performed by a given kernel;

• the arithmetic intensity AI , defined as the ratio w
b , where b is the memory traffic needed

to perform the work;

• the peak performance Ppeak , defined as the maximum achievable rate of work per unit

of time;

• the peak memory bandwidth BW , defines as the maximum rate of data transfer.

In its original presentation the roofline model was conceived as a visual technique able to

identify the main bottlenecks of a kernel. In that case, computing the roofline model involved

two phases: defining the machine’s peak performance and bandwidth, and measuring the

kernel’s performance and memory traffic. Note that defining the work w is not a trivial choice,

as it must satisfy the requirement of being a meaningful definition of work for the kernel at

hand, and at the same time it must allow computing a theoretical peak performance, ideally

without benchmarking. The most typical definition of work is in terms of flops, leading to
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Figure B.1 – Visual representation of the roofline model. A k1 is a memory-bound kernel that
has reached peak performance; k2 is a compute-bound kernel that has not reached peak per-
formance. B application of the roofline model to G-based state and current kernels on a Power
8 machine from (Ewart et al., 2015). Current kernels are memory-bound, and reach saturation
of the memory bandwidth at maximum parallelism. State kernels are compute-bound, but are
unable to reach peak performance, although additional investigation is warranted to explain
the cause.

a definition of performance in Gflop/s, however for kernels that do not perform arithmetic

operations – e.g. sorting – finding a meaningful definition of w can be quite difficult. A

second challenge in computing the roofline model is understanding the concept of arithmetic

intensity. It mathematical definition is quite simple, but it hides a few subtleties:

AI = w

b
. (B.1)

In addition to the difficulty of defining a meaningful work metric w , one must also decide what

to include in the data traffic b. The standard definition is to consider only traffic originating

from main memory, such that for a kernel with cache reuse, the “reused” traffic would not be

counted. This definition is consistent with using the memory bandwidth as the maximum

rate of data transfer. However, it remains unclear whether the “reused” traffic should actually

be included in b, or in cases where unnecessary data is transferred – e.g. for noncontiguous

data access – it is unclear whether only the useful data should be counted, or all the data.

Despite a slight lack of clarity in some of its definitions, the roofline model is an extremely

powerful tool for performance diagnosis. Once all the relevant quantities have been defined

and measured, it is possible to draw a diagram such as the one in Figure B.1, which presents

both the idealized machine model and the empirical measurements of kernels. At a first

glance, it is easy to see that the closer a kernel is to the idealized machine performance, the

smaller optimisation efforts are required. Moreover, the roofline model allows to distinguish

between two performance profiles: core-bound kernels – i.e. those that lie to the right of the

red line elbow in Figure B.1 – and memory bound kernels. For example, k1 in Figure B.1 is a

memory-bound kernel that has achieved maximum performance. Short of changing its data
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access pattern to decrease the pressure on the memory subsystem, no optimisation could

improve its performance. On the other hand, k2 is a core-bound kernel that has not achieved

maximum performance. Optimizations such as increasing the Instruction Level Parallelism

(ILP) or SIMD vectorisation could have beneficial effects on performance.

In addition to its diagnostic power, the roofline model can be endowed with a predictive

power by assuming that the performance of a kernel will only be bounded by its relevant

bottleneck. Thus, given a kernel’s memory traffic b and amount of work w , the roofline

estimate of performance is given by

Pr oo f l i ne = mi n
(
Ppeak , AI ×BW

)
. (B.2)

While this assumption may seem simplistic, it offers a powerful yet simple tool to reason about

performance. The roofline model has been widely-used as a fundamental preliminary tool in

software performance analysis, and has been extended to include non-contiguous memory

accesses (Nugteren and Corporaal, 2012), to better account for the presence of caches (Ilic et al.,

2013) and even to FPGAs (Da Silva et al., 2013). However, it suffers from a few shortcomings

especially for serial execution and for memory-bound kernels.

Application of the roofline model to G-based ion channel and synapse kernels on an IBM

Power 8 architecture In our performance analysis of the IBM Power 8 architecture (Ewart

et al., 2015) we used the roofline model as a tool to understand the performance properties

of ion channel and synapse kernels in a G-based detailed neuron model. We found that

performance increased linearly with the number of threads until peak memory bandwidth

was reached, and that vectorisation improved the performance of all compute-bound and

some memory-bound kernels. However, most state kernels did not reach peak performance

on this architecture as shown in Figure B.1, thus methods to reduce instruction dependencies

and latency should be investigated. Finally, we found that the powerful simultaneous multi-

threading (SMT) capabilities of the architecture did not provide significant performance

benefits.

B.1.2 Fundamentals of The ECM model

The Execution-Cache-Memory performance model is a grey-box model developed by the

HPC group at the university of Erlangen. It uses a mixed approach combining an analytic

formulation with some phenomenological input, and outputs a runtime prediction at the

granularity of individual clock cycles. The ECM model was first introduced by Treibig and

Hager (2010) and successively refined and validated on modern Intel and AMD multicore

architectures (Hofmann et al., 2017, 2018; Stengel et al., 2015). A recent review provides a clean

and detailed description by abstracting, formalizing and recasting it as a universal modelling

approach based on a strict differentiation between application and machine models (Hofmann

et al., 2019).
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In the ECM model, one must first define several contributions to the runtime of a given loop,

such as: the in-core execution time assuming data is already loaded in registers TOL , the time

needed to load data into registers from the L1 cache TnOL , the data traffic time between caches

TL1L2,TL2L3 and the data traffic time from main memory TL3Mem . These contributions must

be combined to obtain two quantities: Tcor e and Td at a , representing the time that the loop

would spend in core execution if data were instantaneously available, and the time required

to move the data across the memory hierarchy, respectively. One of the core assumptions

of the ECM model is that these two quantities can overlap, therefore single-thread runtime

predictions can be obtained using the formula

T = max (Tcor e ,Td at a) . (B.3)

Estimating the core component To estimate Tcor e one typically assumes maximum through-

put of all instructions, even though in this work we are sometimes forced to extend the model

by discarding this assumption to obtain more accurate results. Code analysis tools such as

the Intel Architecture Code Analyzer (IACA) (Intel, 2017) or the experimental Open Source

Code Analyzer (OSACA) (Laukemann et al., 2018) can provide some non-analytical input

to the model, allowing to greatly increase its prediction accuracy at the cost of losing some

interpretability.

Estimating the data component In this case we need to provide two kinds of information:

the runtime contributions from the individual caches and the formula to combine them. For

individual caches we must find the memory traffic, a difficult task that can be affected by the

following aspects:

• total memory requirements of the kernel;

• cache reuse or blocking;

• cache associativity;

• victim caching;

• cache replacement policy.

For the relatively simple case of a kernel with no reuse, requiring a data traffic of b, denoting

the L1L2 bandwidth with BWL1L2 we compute the contribution:

TL1L2 = b

BWL1L2
. (B.4)

To combine the individual caches’ contributions into Td at a , on all recent Intel server microar-

chitectures, the best accuracy in predictions is obtained assuming that there is no temporal

overlap between any cache transfers, as shown in Figure B.2 from (Hager and Wellein, 2016).
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Figure B.2 – Schematic view of estimating the data component in the ECM model. Taken
from (Hager and Wellein, 2016). Left: runtime contributions for traffic between caches and
with main memory are computed independently based on bandwidth and data requirements
of the kernel. Right: different assumptions for overlap of cache transfers are tested. On Intel
architectures, the non-overlapping assumption yields the most accurate predictions.

Thus the formula to compute Td at a , assuming the dataset must be fetched from main memory,

is

T Mem
d at a = TnOL +TL1L2 +TL2L3 +TL3Mem . (B.5)

In ECM, two shorthand notations are used to simplify the presentation of the model, one for

the individual contributions

{TOL ‖TnOL |TL1L2 |TL2L3 |TL3Mem} , (B.6)

and one for the runtime prediction, assuming that the dataset fits in different levels of the

cache hierarchy{
T L1 eT L2 eT L3 eT Mem

}
. (B.7)

Assuming there is no overlap between caches, the predictions for data originating in different

levels of the cache hierarchy are defined using eq. (3.1) as:

T L1 = max (TOL ,TnOL) ,

T L2 = max (TOL ,TnOL +TL1L2) ,

T L3 = max (TOL ,TnOL +TL1L2 +TL2L3) ,

T Mem = max (TOL ,TnOL +TL1L2 +TL2L3 +TL3Mem) .

(B.8)
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B.1.3 Runtime ECM predictions for shared memory parallelism

The procedure described above prescribes a way to define the fundamental computational

characteristics of a kernel under the ECM model and to make runtime predictions for serial

execution. To make predictions on the parallel runtime (in a shared memory configuration),

an additional assumption is required. The standard ECM model assumes that performance

scales linearly with the number of threads, until a bottleneck from a shared serial resource is

used, typically the memory interface (Hofmann et al., 2015). Thus starting from the definition

of an amount W of work done – e.g. one fully processed Cache Line (CL) worth of data – we

can define the single thread performance as

P (1) = W

T
, (B.9)

where T is the runtime required to complete the amount of work W and can be obtained from

eq. (3.1). From the assumption that performance scales linearly until a bottleneck is reached,

e.g. PBW determined by the memory bandwidth, we can easily obtain the formula for shared

memory parallelism using nt threads

P (nt ) = mi n (nt P (1),PBW ) . (B.10)

Although the standard approach has been extended to account for an additional latency

term picked up by threads as the level of parallelism (and thus the contention of the memory

interface) increases (Hofmann et al., 2018), for our intents and purposes eq. (B.10) provides

sufficient accuracy and leads to better interpretability. Since the proposed extension requires

the fitting of an additional hardware-specific and kernel-specific parameter, and we wish to

maintain our model as general as possible, we decide instead to use the standard approach.

The ECM model allows to compute the saturation point, defined as the number of threads at

which the serial memory bottleneck is saturated and dominates performance. Once this point

is reached, the kernel’s performance cannot be improved by increasing the number of threads.

Figure B.3 shows a data bound kernel on the left, and a core bound kernel on the right. For both

kernels, using up to three threads does not saturate the memory bandwidth (see Figure B.3B)

and a small portion of the execution time could still be shaved off by adding more parallelism,

represented by the purple slots that do not overlap with the yellow memory slots in the

equivalent serial timelines under the parallel threads. At four threads, as shown in Figure B.3C,

saturation effects dominate the performance. It is possible to write the runtime in (3.1)

assuming that data resides in different levels of the cache, and also including parallelism,
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1C 2C

1A

1B
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2B

Figure B.3 – Diagram of modelled parallel execution in the ECM model. The layout of this
image was inspired by (Hager and Wellein, 2016). 1A,1B,1C represent a kernel bounded
by data traffic, executed using 1,3 and 4 parallel threads respectively. At 4 parallel threads
we have saturation of the memory bottleneck. 2A,2B,2C represent a kernel bounded by in-
core arithmetic operations, executed using 1,3 and 4 parallel threads respectively. 2A In the
serial execution, the time for memory transfers is completely hidden by the time spent in the
computation. 2B Using 3 shared memory threads saturation still has not happened, and the
parallel component to the runtime still dominates. 2C At 4 parallel threads we have saturation
of the memory bottleneck.

using (B.10) as follows:

T L1(nt ) = T L1(1)

nt
,

T L2(nt ) = T L2(1)

nt
,

T L3(nt ) = T L3(1)

nt
,

T Mem(nt ) = max

(
T Mem(1)

nt
,TL3Mem

)
.

(B.11)

For simplicity of notation, we will often omit the (nt ) notation, in which case it shall be

considered that nt = 1. The presence of the max operator in T Mem(nt ) is a consequence of

the saturation phenomenon, reflected by the fact that once TL3Mem ≥ T Mem (1)
nt

, then adding

parallelism does not decrease the runtime. It is possible to explicitly compute the number of

threads at which saturation occurs, using the formula:

nsatur =
⌈

T Mem

TL3Mem

⌉
. (B.12)

The intuition behind this formula can be understood looking at Figure B.3, as the value of

nsatur represents none other than the number of times that the yellow boxes (TL3Mem) fit into

the total runtime for a serial iteration. Finally it should be noted that ignoring the rounding-up
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to the nearest integer in (B.12) yields the formula

S = T Mem

TL3Mem
, (B.13)

which could be interpreted as the maximum potential speedup that could be gained from

shared memory parallelism for a given kernel.

B.1.4 Inference based on the ECM model

We explain here how we make extensive use of the ECM model’s interpretability to make

inference on various performance properties. The first notion we introduce is the difference

between core-bound and data-bound kernels. This distinction stems directly from the def-

inition of the predicted runtime (3.1): core-bound kernels are such that Tcor e ≥ Td at a , and

conversely for data-bound kernels. Note that this is purely an intrinsic property of the kernel

that has a direct effect only on its serial runtime. While it is often true that data-bound kernels

have worse shared-memory scalability than core-bound kernels, this is not necessarily the

case, as it is possible to conceive a kernel with TOL ,TL3Mem << TnOL ,TL1L2,TL2L3 that would

be data-bound as well as highly scalable over multiple shared memory threads. Thus memory

bandwidth saturation is a property that is not necessarily tied to data-boundedness.

Another quantity that we are often interested in computing is bandwidth utilization, defined

based on the kernels’s memory requirements b as:

BWuti l =
BWexpr essed

BWMem
,

BWexpr essed = b

T Mem
[GB/s].

(B.14)

In practice, BWuti l represents the percent of saturation of the memory bandwidth by a given

kernel, compared to the peak available memory bandwidth of the system. The ECM model

provides a way to express the utilization only in terms of ECM time contributions. Recall that

the TL3Mem is defined following (B.4) by

TL3Mem = b

BWMem
. (B.15)

Thus we can rewrite

BWuti l =
BWexpr essed

BWMem
= b

BWMem
× 1

T Mem
= TL3Mem

T Mem
. (B.16)

Note that bandwidth utilization, saturation point and maximum achievable parallel speedup

are all related concepts, as can be easily seen by their definitions (B.12), (B.13), (B.16). This

is a direct consequence of the idealized full-throughput assumption, and in practice these

quantities need not be so tightly linked by mathematical formulas.
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To put the emphasis on the hardware bottlenecks identified by the ECM model, we can “invert”

the runtime prediction formulas to obtain a description in terms of hardware contributions.

In the serial case, hardware contributions are simply defined based on the regular ECM

dimensions (3.2). We define the contributions as follows:

Tcor e =
TOL TOL ≥ TnOL +TL1L2 +TL2L3 +TL3Mem

0 otherwise

Tcaches =
0 TOL ≥ TnOL +TL1L2 +TL2L3 +TL3Mem

TnOL +TL1L2 +TL2L3 otherwise

TDR AM =
0 TOL ≥ TnOL +TL1L2 +TL2L3 +TL3Mem

TL3Mem otherwise

(B.17)

In the parallel case, however, special care must be taken to distinguish scalable and non-

scalable contributions. Scalable contributions are logically improved by adding more threads,

and usually correspond to physical hardware that is replicated for each thread. The scalable

contributions are Tcor e and Tcaches , while the non-scalable contribution is TDR AM . In a parallel

execution using nt threads, we define the hardware contributions as follows: non-scalable

contributions remain unchanged from the serial execution; scalable contributions are scaled

by 1
nt

until saturation of the memory bandwidth, then set to 0. Thus the definition of parallel

hardware contributions is given by:

Tcor e (nt ) =


0 data-bound
Tcor e (1)

nt
core-bound, unsaturated

0 core-bound, saturated

Tcaches(nt ) =


Tcaches (1)

nt
− nt−1

nt
TDR AM (1) data-bound, unsaturated

0 data-bound, saturated

0 core-bound

TDR AM (nt ) = TDR AM (1)

(B.18)

The correction factor nt−1
nt

TDR AM (1) is necessary to maintain the property that the runtime

of a data-bound kernel can be obtained via the sum Tcaches +TDR AM . It can be explained by

looking at Figure B.3 1B and computing the impact of the small portion of purple – i.e. Tcache –

line that remains visible.

In the course of our application of the ECM model, we have sometimes been forced to relax

the full-throughput hypothesis to account for significant deviations of measured runtime from

the model’s predictions. An example of this has been in kernels with a strong Critical Path (CP)

component. For inference on CP-bound kernels it is sufficient to replace TOL by TC P and treat

them as regular core-bound kernels. Another example is kernels where memory latency effects

are not negligible. While our understanding of such kernels is still a bit limited, we are still
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interested in performing inference on them as they can represent a significant portion of brain

tissue simulations’ runtime. First, we must distinguish between fully latency-bound kernels

and partially latency-bound kernels. While we have not encountered any kernels of the first

type during our investigation, we speculate that for inference it is simply possible to replace

the various data-traffic ECM contributions with their corresponding latencies and treat them

as regular data-bound kernels. For partially latency-bound kernels, as will be shown to be

the case of the spike delivery kernel, we make the assumption that memory latency dominates

over all other latencies, and thus attribute all of the kernel’s runtime to the DRAM contribution.

In terms of computing their parallel performance, we assume as for other kernels that the

serial performance scales linearly with the number of threads, until the memory bandwidth

bottleneck is reached.

B.2 ECM on Intel Skylake

The Intel Skylake (SKX) architecture presents a few peculiarities that had never been accounted

for in an ECM model before our work. Aside from a few microarchitectural features, the two

main novelties were the AVX512 vector registers and the L3 victim cache (Cremonesi et al.,

2019a; Hager et al., 2018). We present here a detailed account of the strategy that we developed

to compute the individual components of the ECM model applied to the SKX architecture.

Hardware characteristics Our reference architecture is the Intel(R) Xeon(R) Gold 6140 Sky-

lake processor with AVX512 vectorisation. We consider that Sub-NUMA clustering is always

turned off, while the L3 prefetcher should be enabled (it was disabled by default on our ma-

chines). The most relevant hardware characteristics required by the performance model are

summarised in Table 3.1. We obtained these values either directly from the vendor’s spec

sheets, by custom-designed benchmarks or from reference tables (Fog, 2017). In particular,

the memory bandwidth was obtained by running the STREAM (McCalpin, 1995) benchmark

at maximum thread capacity, and taking the best reported value. The peak performance, on

the other hand, was computed using the fact that each core can retire two vectorized FMA

instructions per cycle, and that an AVX512 register holds 8 double-precision floating point

values, leading to the formula:

18 Ppeak (1 core) = 18×2.3×8×2×2. (B.19)

For validation and benchmarking we use the CoreNEURON implementation as reference (Kumb-

har et al., 2019b). We compiled all benchmarks using the Intel 18.0.1 compiler with options

−xCORE−AVX512 −qopt−zmm−usage=high \lstinline-qopt-streaming-stores never!!, and inserted #

pragma ivdep, #pragma vector aligned and #pragma omp simd simdlen(N) directives where appropriate

to ensure vectorisation and to disable the generation of nontemporal stores. The frequency of

all CPU cores was set to 2.3GHz with the tool likwid−setFrequencies −f 2.3 −−umin 2.3 −−umax 2.3.
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A

B

Figure B.4 – Example of IACA output. A the block throughput is used to estimate TOL . IACA
provides the value for each block iteration of the code in the assembly loop. Therefore vec-
torisation and loop unrolling must be taken into account to obtain predictions per scalar
iteration. B IACA also reports the cycles spent on the data ports (port 2-D and 3-D in the SKX
reference architecture). The maximum of these two values is used to compute TnOL . As before,
vectorisation and loop unrolling must be taken into account.

Estimating TOL ,TnOL As we already mentioned, there are two ways to approach this task.

One is to use code analyser tools such as IACA (Intel, 2017), the other to do it by hand. We

almost exclusively use the former because in our experience it allows to obtain predictions that

are much more accurate by analysing directly the code generated by the compiler. Moreover

our analysis has shown that it is extremely difficult to predict the throughput of complex

sequences of operations on modern hardware (Ewart et al., 2019). There are two quantities

of interest in IACA’s output. To obtain TOL we look at the reported block throughput (see

Figure B.4A), taking care to divide by the ratio of scalar to vector iterations (e.g. divide by 8 for

double precision AVX512 vectorisation) because IACA’s output is reported in loop iterations.

To obtain TnOL , we take the maximum of the cycles reported on the two data ports (see

Figure B.4B), and once again divide by the ratio of scalar to vector iterations to obtain TnOL

per scalar iteration.

When a Critical Path (CP) prediction is required, IACA can also provide a more accurate

estimate than trying to figure out the latency of all the operations. While on older architectures

the −analysis LATENCY option allowed to directly obtain a CP estimate, this is no longer possible

in IACA v3.0, which is the minimum version that supports the SKX architecture. For this reason

we resort to using the estimate for the Haswell architecture (HSW) from IACA v2.1.

To instead compute TOL by hand, a straightforward strategy would be to compute the sum

of the throughputs of all relevant operations, and divide by the number of ports in the mi-

croarchitecture able to carry out such operations, similarly to what was done to compute the

peak performance in (B.19). By not analysing the assembly code, however, one may overlook

important details such as additional operations or optimisations introduced by the compiler.

Moreover, by neglecting port utilization, one might end up over-optimistically estimating the

core performance of the kernel.
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To estimate TnOL by hand one can directly use the knowledge from Table 3.1, by estimating

the number of load and store operations via the number of variable reads and writes in the

kernel. Once again, without looking at the assembly code, the modeller cannot know with

certainty how many load/store operations were issued, and in the presence of register reuse or

register spilling the estimates by hand could be off by several cycles.

Estimating TL1L2,TL2L3 This phase requires intimate knowledge of the cache hierarchy and

the memory requirements of the kernel. For streaming kernels, i.e. kernels with little to no

data reuse, a typical approximation that works quite well is to count all unique reads and

writes of data, and assume that after the first time a variable is touched it remains in the L1

cache for the execution of the kernel.

Once the number of reads and writes has been established, it must be converted into load

traffic bload and store traffic bstor e . Note that, in certain cases, the value of bload and bstor e

may be different according to the level in the cache hierarchy. For the L1-L2 traffic on the SKX

architecture, we make the following assumptions:

• write-allocate is always used, thus a write always generates the same amount of both

store and load traffic;

• dirty evicted cache lines from L1 are moved to L2, but not clean ones;

• the data transfer bandwidth is 64 B/cycle.

Thus we have the formula for the L1L2 runtime contribution:

TL1L2 = bload +bstor e

64
. (B.20)

The SKX architecture introduced a victim L3 cache, in contrast with Intel’s recent architectures.

For this cache, we make the following assumptions:

• write-allocate is always used, thus a write always generates the same amount of both

store and load traffic;

• load traffic from DRAM goes straight to L2;

• all evicted cache lines from L2, both clean and dirty, are moved to L3;

• the data path between the L2 and the L3 cache can be assumed to provide a bandwidth

of 16 B/cycle in both directions (i.e., full duplex).

In this case, the formula for the L2L3 runtime contribution is given by:

TL2L3 = max

(
bl oad

16
,

bstor e

16

)
. (B.21)
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Computing the cache-level data traffic comes with an additional complexity of predicting

reuse. This occurs often for example in multidimensional stencil kernels, where because of

row-wise (or column-wise) representation, elements from the non-leading dimension may

still be in cache after a few iterations along the leading dimension. In these cases, the ECM

allows to compute a layer condition, i.e. the maximum number of leading dimension iterations

that still allows cache reuse. Due to the peculiar streaming nature of our kernels, we never

used this type of analysis in our work, so we point the interested reader to (Hammer et al.,

2017) for a detailed explanation on how to compute layer conditions within the ECM model

framework.

Estimating TL3Mem ,TL2Mem Due to the L3 victim cache, it seems that special care must be

taken in estimating the traffic from memory. This leads us to distinguish the two quantities:

TL2Mem representing the load traffic from memory to L2, and TL3Mem representing the store

traffic from L3 to back to memory. In any case, both are bounded by the memory bandwidth,

thus we compute them with the formula:

TL2Mem = bload

BW
,

TL3Mem = bstor e

BW
,

(B.22)

where bload accounts for both read-only and write-allocate generated traffic. Give that main-

taining this distinction can be cumbersome, we often aggregate them in a total traffic from

DRAM. For consistency with other architectures and simplicity of notation, we typically abuse

the TL3Mem symbol to be defined as TL3Mem +TL2Mem , taken to simply mean the total traffic

to and from DRAM.

Listing B.1 Illustrative example using the STREAM triad kernel.

for ( i =0; i <N;++ i )
{

A[ i ] = B[ i ] + k*C[ i ]
}

An example on the STREAM triad kernel We illustrate the application of the ECM model

to SKX with the STREAM triad kernel developed by McCalpin (1995) shown in Listing B.1.

Considering only AVX vectorisation as an example, this kernel has the following properties per

scalar iteration:

• inverse throughput prediction of TOL = 0.375 cycle/scalar iter, estimated by pen-and-

paper calculations;
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Memory

L2

L1

Core

victim L3

Figure B.5 – Diagram of ECM contributions, respecting the cache hierarchy of the refer-
ence SKX architecture. Individual contributions are computed based on the data traffic
requirements and the bandwidth of the relevant data path, or by using the IACA tool. The non-
overlapping assumptions prescribes that no contribution from data traffic overlaps with any
other. This assumption has been shown to provide accurate predictions for Intel architecture,
and was validated also on our reference architecture.

• Two loads and one store, so TnOL = 0.25 cycle/scalar iter, estimated by pen-and-paper

calculations;

• VL1L2 = 32 B/scalar iter (including write-allocate);

• TL1L2 = 32
64

B/scalar iter
B/cycle = 0.5 cycle/scalar iter;

• Due to the victim L3 cache, we have to distinguish in-memory and in-L3 datasets:

– L3: V L3
L2L3 = 48 B/scalar iter (read + write);

– Memory: V Mem
L2L3 = 24 B/scalar iter (write-only);

• The transfer times between L2 and L3 are the same in this particular case because reads

and writes to L3 can overlap:

– L3: T L3
L2L3 = max

(
24B/it
16B/cy , 24B/it

16B/cy

)
= 1.5 cycle/scalar iter;

– Memory: T Mem
L2L3 = 24B/it

16B/cy = 1.5 cycle/scalar iter (write-only);

• VL2Mem = 24 B/scalar iter (read-only traffic);

• TL2Mem = 24B/it
105GB/s ×2.3Gcy/s = 0.53 cycle/scalar iter;

• VL3Mem = 8 B/scalar iter (write-only traffic);

• TL3Mem = 8B/it
105GB/s ×2.3Gcy/s = 0.18 cycle/scalar iter.
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Figure B.5 summarises the individual contributions in a diagram representing the relevant

ECM components. The ECM model contributions for the STREAM triad kernel in Listing B.1

on SKX-AVX therefore are:

{TOL ‖TnOL |TL1L2 |TL2L3 |TL2Mem +TL3Mem} = {0.38‖0.25 |0.5 |1.5 |0.71} cycle/scalar iter ,

(B.23)

with corresponding predictions according to the non-overlapping machine model of

{0.38e0.75e2.25e2.96} cycle/scalar iter. (B.24)

For validation we compared these predictions to benchmark measurements and obtained

(0.39e0.73e2.37e4.3) cy/it, which is in reasonable agreement with the model. The deviation

in memory could be fixed by introducing a latency penalty (see (Hofmann et al., 2017)), but

since the memory contribution is rather small for most of the kernels studied here we opted

for a simpler model.

B.3 Kernel code listings

This section contains several pages of code listings for the most relevant simulation kernels

analysed in this thesis.

Listing B.2 Example of ion channel current kernel: Im current.

for ( int i =0; i <cntml ; ++ i ) {
int nd_idx = _ni [ i ] ;
double v = vec_v [ nd_idx ] ;
ek [ i ] = ion_data_ek [ ion_idx [ i ] ] ;
gIm[ i ] = gImbar [ i ] * m[ i ] ;
ik [ i ] = gIm[ i ] * ( v − ek [ i ] ) ;
ion_data_ik [ ion_idx [ i ] ] += ik [ i ] ;
vec_rhs [ nd_idx ] −= ik [ i ] ;
vec_d [ nd_idx ] += gIm[ i ] ;

}
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Listing B.3 Example of Excitatory synapse current kernel: ProbAMPANMDA_EMS current.

for ( int i =0; i <cntml ; ++ i ) {
double v = vec_v [ _ni [ i ] ] ;
mggate [ i ] = 1.0 + exp (−0.062*v ) * (mg[ i ] / 3 . 5 7 ) ;
mggate [ i ] = 1.0/ mggate [ i ] ;
g_AMPA[ i ] = gmax * ( B_AMPA[ i ] − A_AMPA[ i ] ) ;
g_NMDA[ i ] = gmax * ( B_NMDA[ i ] − A_NMDA[ i ] ) ;
g_NMDA[ i ] *= mggate [ i ] ;
g [ i ] = g_AMPA[ i ] + g_NMDA[ i ] ;
i_AMPA[ i ] = g_AMPA[ i ] * ( v − e [ i ] ) ;
i_NMDA[ i ] = g_NMDA[ i ] * ( v − e [ i ] ) ;
i _ t o t [ i ] = i_AMPA[ i ] + i_NMDA[ i ] ;
double rhs = i _ t o t [ i ] ;
double _mfact = 1 . e2 /( _nd_area [ nd_area_idx [ i ] ] ) ;
double loc_g = g_AMPA[ i ] + g_NMDA[ i ] ;
loc_g *= _mfact ;
rhs *= _mfact ;
vec_shadow_rhs [ i ] = rhs ;
vec_shadow_d [ i ] = loc_g ;

}

Listing B.4 Example of ion channel state kernel: Im state.

for ( int i =0; i <cntml ; ++ i ) {
double v = vec_v [ _ni [ i ] ] ;
mAlpha[ i ] = 6.43e−3*(v + 154.9) ;
mAlpha[ i ] /= exp ( ( v + 154.9) /11.9) −1.;
mBeta[ i ] = 0.193* exp ( v /33.1) ;
mInf [ i ] = mAlpha[ i ] / ( mAlpha[ i ]+mBeta[ i ] ) ;
mTau[ i ] = 1 . / ( mAlpha[ i ]+mBeta[ i ] ) ;
double incr = (1−exp(−dt /mTau[ i ] ) ) ;
incr *= ( mInf [ i ] /mTau[ i ] ) / ( 1 . /mTau[ i ] ) − m[ i ] ;

m[ i ] += incr ;
}

Listing B.5 Example of synapse state kernel: ProbAMPANMDA_EMS state.

for ( int i =0; i <cntml ; ++ i ) {
A_AMPA[ i ]+=(1.−exp ( dt *(−1./tau_r_AMPA [ i ] ) ) ) *(−A_AMPA[ i ] ) ;
B_AMPA[ i ]+=(1.−exp ( dt *(−1./tau_d_AMPA[ i ] ) ) ) *(−B_AMPA[ i ] ) ;
A_NMDA[ i ]+=(1.−exp ( dt *(−1./tau_r_NMDA[ i ] ) ) ) *(−A_NMDA[ i ] ) ;
B_NMDA[ i ]+=(1.−exp ( dt *(−1./tau_d_NMDA[ i ] ) ) ) *(−B_NMDA[ i ] ) ;

}
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Listing B.6 Linear algebra kernel.

// t r i a n g u l a r i z a t i o n
for ( i = ncompartments − 1 ; i >= n c e l l s ; −−i ) {

p = vec_a [ i ] / vec_d [ i ] ;
vec_d [ parent_index [ i ] ] −= p* vec_b [ i ] ;
vec_rhs [ parent_index [ i ] ] −= p* vec_rhs [ i ] ;

}
// solve boundaries ( ignored )
for ( i = 0 ; i < n c e l l s ; ++ i ) {

vec_rhs [ i ] /= vec_d [ i ] ;
}
//backward substi tut ion
for ( i = n c e l l s ; i < ncompartments ; ++ i ) {

vec_rhs [ i ] −= vec_b [ i ] * vec_rhs [ parent_index [ i ] ] ;
vec_rhs [ i ] /= vec_d [ i ] ;

}

Listing B.7 GIF current kernel.

for ( int i =0; i <cntml ; ++ i ) {
double v = vec_v [ _ni [ i ] ] ;
i _ e t a [ i ] = eta1 [ i ] + eta2 [ i ] + eta3 [ i ] ;
gamma_sum[ i ] = gamma1[ i ] + gamma2[ i ] + gamma3[ i ] ;
lambda [ i ] = lambda0 [ i ] * exp ( ( v − Vt_star [ i ] − gamma_sum[ i ] ) / DV[ i ] ) ;
p_dontspike [ i ] = exp ( − lambda [ i ] * ( dt * ( 1e−3 ) ) ) ;
i r e f r a c [ i ] = grefrac [ i ] * ( v − 0.0 ) ;
i _ t o t [ i ] = i r e f r a c [ i ] + i _ e t a [ i ] ;
double rhs = i _ t o t [ i ] ;
double loc_g = grefrac ;
double _mfact = 1 . e2 /( _nd_area [ nd_area_idx [ i ] ] ) ;
loc_g *= _mfact ;
rhs *= _mfact ;
vec_shadow_rhs [ i ] = rhs ;
vec_shadow_d [ i ] = loc_g ;

}

Listing B.8 GIF state kernel.

for ( int i =0; i <cntml ; ++ i ) {
eta1 [ i ] += (1.−exp ( dt *(−1./ tau_eta1 [ i ] ) ) ) *(−eta1 [ i ] ) ;
eta2 [ i ] += (1.−exp ( dt *(−1./ tau_eta2 [ i ] ) ) ) *(−eta2 [ i ] ) ;
eta3 [ i ] += (1.−exp ( dt *(−1./ tau_eta3 [ i ] ) ) ) *(−eta3 [ i ] ) ;
gamma1[ i ] += (1.−exp ( dt *(−1./tau_gamma1[ i ] ) ) ) *(−gamma1[ i ] ) ;
gamma2[ i ] += (1.−exp ( dt *(−1./tau_gamma2[ i ] ) ) ) *(−gamma2[ i ] ) ;
gamma3[ i ] += (1.−exp ( dt *(−1./tau_gamma3[ i ] ) ) ) *(−gamma3[ i ] ) ;

}
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Listing B.9 Example of excitatory synapse current kernel from Simplified model:
ProbFiltAMPANMDA_EMS current.

for ( int i =0; i <cntml ; ++ i ) {
double v = vec_v [ _ni [ i ] ] ;
mggate [ i ] = 1.0 + exp (−0.062*v ) * (mg[ i ] / 3 . 5 7 ) ;
mggate [ i ] = 1.0/ mggate [ i ] ;
g_AMPA[ i ] = gmax * ( B_AMPA[ i ] − A_AMPA[ i ] ) ;
g_NMDA[ i ] = gmax * ( B_NMDA[ i ] − A_NMDA[ i ] ) ;
g_NMDA[ i ] *= mggate [ i ] ;
g [ i ] = g_AMPA[ i ] + g_NMDA[ i ] ;
i_AMPA[ i ] = g_AMPA[ i ] * ( v − e [ i ] ) ;
i_NMDA[ i ] = g_NMDA[ i ] * ( v − e [ i ] ) ;
i_dend [ i ] = i_AMPA[ i ] + i_NMDA[ i ] ;

i _ t o t [ i ] = w_corr [ i ] * idend [ i ] ;
double rhs = i _ t o t [ i ] ;
double _mfact = 1 . e2 /( _nd_area [ nd_area_idx [ i ] ] ) ;
double loc_g = g_AMPA[ i ] + g_NMDA[ i ] ;
loc_g *= _mfact ;
rhs *= _mfact ;
vec_shadow_rhs [ i ] = rhs ;
vec_shadow_d [ i ] = loc_g ;

}

Listing B.10 Example of synapse state kernel from Simplified model: ProbFiltAMPANMDA_EMS

state.

for ( int i =0; i <cntml ; ++ i ) {
A_AMPA[ i ]+=(1.−exp ( dt *(−1./tau_r_AMPA [ i ] ) ) ) *(−A_AMPA[ i ] ) ;
B_AMPA[ i ]+=(1.−exp ( dt *(−1./tau_d_AMPA[ i ] ) ) ) *(−B_AMPA[ i ] ) ;
A_NMDA[ i ]+=(1.−exp ( dt *(−1./tau_r_NMDA[ i ] ) ) ) *(−A_NMDA[ i ] ) ;
B_NMDA[ i ]+=(1.−exp ( dt *(−1./tau_d_NMDA[ i ] ) ) ) *(−B_NMDA[ i ] ) ;
i_soma [ i ]+=(1.−exp ( dt *(−1./ tau_corr [ i ] ) ) ) *(− ( idend [ i ] − idend [ i ] / tau_corr [ i ] )

/ ( 1 . / tau_corr [ i ] ) − isoma [ i ] ) ;
}
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Listing B.11 Spike delivery kernel of the G-based AMPA/NMDA synapse.

Event events [ ] ;
// loop over n spike_events
for ( int e =0; e<n ; ++e )
{

Event spike_event = events [ e ] ;
Target * t a r g e t = spike_event . t a r g e t ;
int weight_index = spike_event . weight_index ;
int type = t a r g e t . type ;
int i = t a r g e t . index ;
double _lweight_AMPA = _weights [ weight_index ] ;
double _lweight_NMDA = _lweight_AMPA ;
_lweight_NMDA *= NMDA_ratio [ i ] ;
u[ i ] = u[ i ] * exp(−( t−tsyn [ i ] ) /Fac [ i ] ) ;
u[ i ] += Use [ i ]*(1. −u[ i ] ) ;
R[ i ] = 1.−(1.−R[ i ] ) *exp(−( t−tsyn [ i ] ) /Dep[ i ] ) ;
Pr [ i ] = u[ i ] *R[ i ] ;
R[ i ] = R[ i ] − u[ i ] *R[ i ] ;
tsyn [ i ] = t ;
A_AMPA[ i ] += Pr [ i ] * _lweight_AMPA*factor_AMPA [ i ] ;
B_AMPA[ i ] += Pr [ i ] * _lweight_AMPA*factor_AMPA [ i ] ;
A_NMDA[ i ] += Pr [ i ] * _lweight_NMDA*factor_NMDA [ i ] ;
B_NMDA[ i ] += Pr [ i ] * _lweight_NMDA*factor_NMDA [ i ] ;

}

Listing B.12 IAF update kernel.

for ( int i =0; i <cntml ; ++ i ) {
V_m[ i ] = P31_ex_ [ i ] * dI_ex [ i ] + P32_ex_ [ i ] * I_ex [ i ] + P31_in_ [ i ] * dI_in [ i ] +

P32_in_ [ i ] * I_in [ i ] + expm1_tau_m_ [ i ] * V_m[ i ] + V_m[ i ] ;
I_ex [ i ] = P21_ex_ [ i ] * dI_ex [ i ] + P22_ex_ [ i ] * I_ex [ i ] ;
dI_ex [ i ] = dI_ex [ i ] * P11_ex_ [ i ] ;
I_ in [ i ] = P21_in_ [ i ] * dI_in [ i ] + P22_in_ [ i ] * I_in [ i ] ;
dI_in [ i ] = dI_in [ i ] * P11_in_ [ i ] ;

}

Listing B.13 IAF PSC contributions kernel.

for ( int i =0; i <cntml ; ++ i ) {
dI_ex [ i ] = dI_ex [ i ] + EPSCInitialValue_ [ i ] * weighted_spikes_ex_ [ i ] ;
weighted_spikes_ex_ [ i ] = 0 . ;
dI_in [ i ] = dI_in [ i ] + IPSCInit ialValue_ [ i ] * weighted_spikes_in_ [ i ] ;
weighted_spikes_in_ [ i ] = 0 . ;

}

155



Appendix B. Details of the ECM and LogGP model

Listing B.14 Spike delivery kernel of the I-based excitatory synapse.

Event events [ ] ;
// loop over n spike_events
for ( int e =0; e<n ; ++e )
{

Event spike_event = events [ e ] ;
Target * t a r g e t = spike_event . t a r g e t ;
int weight_index = spike_event . weight_index ;
int type = t a r g e t . type ;
int i = t a r g e t . index ;
exc_postsyn_cur [ i ] += _weights [ weight_index ] ;

}

write streams size [MB] pred traffic [B/it] meas traffic [B/it] latency [cy/access]

1 80.0 196 143.8 ± 3905.8 15.0 ± 368.5
1 800.0 196 154.8 ± 390.1 13.6 ± 36.9
1 1600.0 196 340.8 ± 294.2 31.5 ± 29.0
1 4000.0 196 195.1 ± 0.2 18.5 ± 0.2
4 320.0 772 720.2 ± 7538.0 16.3 ± 164.7
4 3200.0 772 616.3 ± 696.3 16.1 ± 15.5
4 6400.0 772 771.1 ± 1159.1 20.5 ± 31.8
4 16000.0 772 771.8 ± 464.6 20.9 ± 13.0
9 720.0 1732 1681.2 ± 1301.7 16.4 ± 13.0
9 7200.0 1732 1729.2 ± 1563.3 18.2 ± 17.2
9 14400.0 1732 1732.1 ± 429.8 19.5 ± 3.5
9 36000.0 1732 1732.9 ± 1.5 19.6 ± 0.5

Table B.1 – Synthetic benchmark mimicking the spike delivery access pattern. We computed
the average latency per memory access by diving the runtime of the loop by the number of
memory accesses. In the table, we report the median ± max-min over 5 repetitions.

156



B.4. The LogGP model

B.4 The LogGP model

The LogGP model is part of a family of analytic performance models developed initially at

Berkeley, was adapted and extended by researchers from other centres. Historically, the

first model in this family was LogP (Culler et al., 1993). In the LogP model all complex MPI

operations are defined on the basis of point-to-point communication, i.e. the cost of sending

a message from one compute node to another within the same network. LogP was developed

with a focus solely on short (single Byte) messages, but it quickly became clear that the

accuracy of its predictions degraded in the case of long messages. Therefore the LogGP

model (Alexandrov et al., 1997; Hoefler et al., 2009) was developed to overcome this problem.

In the LogGP model, the cost of sending a single message of size m B is given by the analytic

formula

Tpt2pt = L+2o +G(m −1), (B.25)

where

• L is the network latency;

• o is the overhead from non-network operations;

• g is the inverse of the injection rate;

• G is the inverse of the network bandwidth;

• P is the number of processes involved in the communication.

Note that g does not appear above because a single message is considered, while g represents

the delay that must occur between two consecutive sends of a message.

The application of the LogGP model is best explained using an example from (Hoefler et al.,

2009). Consider the ping-ping-pong benchmark, where a client sends two messages of size m B

to a server. Upon completion of the second message reception, the server sends back a single

message of size m B to the client. Figure B.6 describes this scenario and the corresponding

LogGP model. When the first send is initiated, the client requires oµs time for non-network

operations, such as copying data to the network card. Note that, following (Hoefler et al., 2007a,

2009), in the rest of this work we will always model o as a linear factor of the message size,

i.e. o = oi +os(m −1). After this time, the operation of sending data through the interconnect

fabric can be initiated. The first byte of the message requires a time Lµs to reach the server,

and after that the server receives each subsequent byte with an interval of Gµs. Upon receiving

the first complete message, the server must spend a CPU time of oµs to process it. In the

meantime, after the client has finished sending the first message, it gets ready to send the

second one. Here the LogGP model prescribes the overlap of two operations: on the CPU

side, the client must spend oµs to prepare the second message, while on the network side an
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Figure B.6 – Ping-ping-pong illustrative example of the LogGP model. This figure was adapted
from the example in (Hoefler et al., 2009). It represents the ping-ping-pong example where
the client sends two messages to the server, and after receiving the full messages the server
replies with a single message. A: beginning of the benchmark. B: client needs oµs of CPU
time to prepare the sending of the message. C: after an interval of Lµs, the first byte of the
message reaches its destination. D: after G(m−1)µs the whole message has been delivered. E:
the injection rate constraint imposes a waiting period of g µs before the network can process
the next message. In the meantime, the CPU time of both the client and server can overlap
with this constraint. F: both messages have been fully received by the server, which gets ready
to send the message back. G: end of the benchmark.
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injection rate constraint imposes waiting for g µs before being able to send the next message.

In the example in Figure B.6 we have that g > o, thus the injection rate represents the most

important factor in determining when the next message will be sent. Upon receiving the

second message, the server must spend 2oµs to process it and prepare sending the pong

message, which will be received by the client fully received by the client after L+G(m−1)+oµs.

The total predicted latency of the ping-ping-pong operation is, according to the LogGP model,

2L+4o + g +3G(m −1)µs.

B.4.1 LogGP model on Infiniband EDR with HPE-MPI

Even though the performance modelling tools considered here can generalize well to several

types of architectures (Hoefler et al., 2009), to validate our performance predictions we restrict

our focus to a representative example of an HPC network architecture: a vendor (HPE) MPI

implementation based on MPT 2.16 and the MPI 3.0 standard, over an Infiniband EDR 100

GB/s fabric. While it would be possible to take the nominal vendor values for the hardware

parameters such as L, g ,G , it is highly advised to obtain the values of these parameters through

a set of benchmarks. A low-overhead method to compute all the necessary parameters has

been proposed (Hoefler et al., 2007a), and ultimately led to the development of the Netgauge

tool (Hoefler et al., 2007b). The model parameters can be obtained once and for all, and after

that the LogGP model does not require any additional benchmarking efforts. We used the

Netgauge v2.4.6 tool introduced in (Hoefler et al., 2007a) to make a first assessment of the

LogGP parameters, and the parameters reported in Table 3.10.

Performance penalty for large message sizes In the process of validation, we discovered

that the raw LogGP model based on the small-messages parameters from Netgauge was

only valid in the context of very small messages, while for messages larger than P ×65B the

communication incurred a penalty in both latency and bandwidth. The source of this penalty

is unclear, as it could be due to a switch in point-to-point protocols, a change in the underlying

algorithm or additional communication to ensure synchronization. Since the details of the

underlying communication protocol are not published, one can make at best an educated

guess about the underlying protocol switches. We found that, even though the Netgauge tool

does detect a change in parameters for large messages, the new parameters reported by the

tool were not satisfactory for two reasons: first the message size threshold at which it detects a

change in protocol is much larger (around 16 kB) than what we observe; second, the L and G

parameters it reports for large sizes are lower by roughly a factor 1.5x than the ones we observe.

Therefore, to account for this effect, we introduce two penalty terms in the original LogGP

parameters: a latency penalty pL = 0.593µs and a bandwidth penalty pG = 1.875×10−4µs/B.

These parameters were fitted on the data from a benchmark using only double-precision

values with P = 32, but we find that they generalize quite well to other data types and other

cluster sizes. In light of this modification, the formula to obtain a prediction for the latency of
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Appendix B. Details of the ECM and LogGP model

the Allgatherv operation becomes:

Tcomm(m < 65P ) =2(P −1)(L+2oi )+ P −1

P
(G +2os)

[
N f δmin(mI D +mt )−1

]
,

Tcomm(m ≥ 65P ) =(P −1)(L+2oi +pL)+ P −1

P
(G +2os +pG )

[
N f δmin(mI D +mt )−1

]
.

(B.26)
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C Supplementary material for Chapter 5

Figure C.1 presents the scatter plot matrix of the predicted ECM dimension for all kernels in

Table 5.1, colour-coded by kernel type (i.e. current or state). Note that all axis in the Figure

have the same dimensions (cycle per scalar iteration) and the same range. This enables visual

verification that the variability in the TOL dimension (i.e. the in-core execution) is much larger

than the variability in the other, data-traffic related, dimensions.
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Figure C.1 – Scatter plot matrix of ECM model description of state and current kernels in
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in cycles per scalar iteration. Green dots represent state kernels, and red dots represent current
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histograms are not shown.

162



kernel name type T L1
EC M T L2

EC M T L3
EC M T Mem

EC M

K_Pst current 2.13 4.87 13.87 18.83
Ca_HVA2 current 2.13 4.87 13.87 18.83
SK_E2 current 2.36 5.21 15.46 21.06
ProbGABAAB_EMS current 2.75 4.75 13.25 17.84
ProbAMPANMDA_EMS current 20 20 20 20
NaTg current 3.11 6.52 19.02 25.63
K_Tst current 3.56 4.62 13.62 18.58
KdShu2007 current 1.93 3.93 11.18 15.13
Nap_Et2 current 3.1 6.52 19.02 25.63
SKv3_1 current 1.93 4.27 12.77 17.55
Ih current 1.25 2.18 6.43 8.73
Ca_LVAst current 2.13 4.87 13.87 18.83
K_Pst state 38 38 38 38
Ca_HVA2 state 41 41 41 41
SK_E2 state 12.9 12.9 12.9 12.9
ProbGABAAB_EMS state 1.61 2.81 7.56 10.04
ProbAMPANMDA_EMS state 1.61 2.81 7.56 10.04
NaTg state 50.47 50.47 50.47 50.47
K_Tst state 41.5 41.5 41.5 41.5
KdShu2007 state 23.38 23.38 23.38 23.38
Nap_Et2 state 57.26 57.26 57.26 57.26
SKv3_1 state 18.36 18.36 18.36 18.36
Ih state 20.26 20.26 20.26 20.26
Ca_LVAst state 42.4 42.4 42.4 42.4

Table C.1 – ECM runtime predictions for all cortical microcircuit kernels.
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D Mathematical formalism for estimat-
ing dynamic load imbalance in a
spiking neural network

We prove that, under certain assumptions, the load imbalance Λ = max {Wp }−mi n {Wp }

arising from the different spiking workloads in a distributed spiking neural network simulation

can be estimated by:

Pr (Λ= k) =
∞∑

x=k
Pr (max

P
W = x,mi n

P
W = x −k), (D.1)

with W i.i.d., k ≥ 0 and the joint distribution itself given by

Pr (max
P

W = x,mi n
P

W = x−k) =


[FW (x)−FW (x −1)]P k = 0,

[FW (x)−FW (x −k −1)]P + [FW (x −1)−FW (x −k)]P . . .

· · ·− [FW (x)−FW (x −k)]P − [FW (x −1)−FW (x −k −1)]P k > 0,

(D.2)

where FW is the cumulative distribution function of W .

We formalise the problem of finding the dynamic load imbalance as: given a set of P i.i.d.

variables {Wp }, we seek the distribution of Λ= max {Wp }−mi n {Wp }.

Distribution of the load imbalance The relationship (D.1) is a direct consequence of the

law of total probability, which can be used to write Pr (Λ = k) as a sum over all possible

combinations of values of the maximum. But we are left with the problem of finding the joint

distribution of max {Wp } and mi n {Wp }.

Marginal distributions of maximum and minimum First we compute the marginal distri-

butions of max {Wp } and mi n {Wp }. For the maximum, we use the fact that if the maximum
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should be smaller than a certain value x, than all the variables in the set should be smaller

than x. This implies that

Pr (max {Wp } ≤ x) = Pr (W0 ≤ x ∩W1 ≤ x ∩ . . . ). (D.3)

For the minimum, we use some transformations to obtain

Pr (mi n {Wp } ≤ y) = 1−Pr (W0 > y ∩W1 > y ∩ . . . ). (D.4)

Let FW be the cumulative distribution function of W , using the fact that {Wp } i.i.d, we have

that (D.3) and (D.4) lead to

Pr (max {Wp } ≤ x) = FW (x)P ,

Pr (mi n {Wp } ≤ y) = 1− [1−FW (y)]P .
(D.5)

Joint distribution The following relationship holds

Pr (max {Wp } ≤ x,mi n {Wp } ≤ y) = Pr (max {Wp } ≤ x)−Pr (max {Wp } ≤ x,mi n {Wp } > y).

(D.6)

From the marginal distribution (D.5) we have that

Pr (max {Wp } ≤ x) = FW (x)P . (D.7)

To estimate the second term in (D.6) we use the fact that if the minimum should be larger that

y and the maximum smaller that x, than all {Wp } must respect these bounds. Thus

Pr (max {Wp } ≤ x,mi n {Wp } > y) = Pr (W0 > y ∩W0∩≤ x ∩W1 > y ∩W1∩≤ x ∩ . . . )

= [FW (x)−FW (y)]P .
(D.8)

Since y ≥ x =⇒ Pr (max {Wp } ≤ x,mi n {Wp } > y) = 0 we can write the joint cumulative

distribution function

Pr (max {Wp } ≤ x,mi n {Wp } ≤ y) =
FW (x)P − [FW (x)−FW (y)]P , y < x

FW (x)P , y ≥ x.
(D.9)

To obtain the joint probability mass function, we use the relationship

Pr (X = x,Y = y) = Pr (x −1 < X ≤ x, y −1 < Y ≤ y)

= F(X ,Y )(x, y)−F(X ,Y )(x −1, y)−F(X ,Y )(x, y −1)+F(X ,Y )(x −1, y −1)
(D.10)

to obtain (D.2).
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E Scientific papers

This appendix lists scientific contributions published or prepared during the doctoral studies.

Francesco Cremonesi and Felix Schürmann. Telling neuronal apples from oranges: analytical

performance modeling of neural tissue simulations. Neuroinformatics, 2019. In review

Francesco Cremonesi, Georg Hager, Gerhard Wellein, and Felix Schürmann. Analytic perfor-

mance modeling and analysis of detailed neuron simulations. The International Journal of

High Performance Computing Applications, 2019a. In review

Francesco Cremonesi, Pramod Kumbhar, and Felix Schürmann. Heterogeneity of performance

properties in the simulation of a cortical microcircuit. To be submitted, 2019b

Timothée Ewart, Francesco Cremonesi, Felix Schürmann, and Fabien Delalondre. Polyno-

mial evaluation on superscalar architecture, applied to the elementary function ex . ACM

Transactions on Mathematical Software (TOMS), 2019. In review

Timothée Ewart, Judit Planas, Francesco Cremonesi, Kai Langen, Felix Schürmann, and Fabien

Delalondre. Neuromapp: a mini-application framework to improve neural simulators. In

International Supercomputing Conference, pages 181–198. Springer, 2017. doi:10.1007/978-3-
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