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Abstract
Physics beyond the Standard Model can appear as new particles too heavy to be produced in

experiments (the energy frontier) or interacting too weakly to be seen in our measurements

(the intensity frontier).

In the first part of this thesis, we study two dark matter models of electroweak WIMP coming

from two limiting cases in the MSSM: the Higgsino and the Wino model. The dark matter

candidate is a particle too heavy to be directly seen in colliders but it could be seen indirectly

by astrophysical observations. Dark matter particles in the galaxy can annihilate to Standard

Model particles and be detected by satellites. We consider the charged neutral mass splitting

as a free parameter in the theory and investigate its effect on the Sommerfeld enhancement

which gives an important boost to the annihilation cross-section, the main observable of

indirect detection.

In the second part of this thesis, we present an idea of a fixed target experiment to search for

dark sector models, a class of model with very weakly interacting particles. This experiment

uses the experimental setup needed for a future muon collider but is independent from the

muon collider program. We study the reach of our experiment for three benchmark models,

the dark photon, the dark Higgs, the heavy neutral lepton and we compare its expected

performances to current and future experiments.

In the third part of this thesis, we consider a more model-independent approach to the search

for new physics. If new states are heavy, they can be integrated out and their leading effects

are encoded in effective operators made of Standard Model fields. Assuming baryon and

lepton number conservation, one can classify the effective operators of dimension-6 which

give the leading contribution and constrain the coefficient of these operators by looking at

precision observables. We compile results from LEP-I and LEP-II experiments as well as

neutrino scattering and other low-energy observables. We allow all operators to be present

with an arbitrary flavour structure. Our result can then be used to translate these constaints to

specific models of new physics.

Keywords: Physics beyond the Standard Model, Dark Matter, Supersymmetry, Sommerfeld

enhancement, Dark photon, Dark Higgs, heavy neutral lepton, effective field theory
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Résumé
De nouvelles particules au-delà du modèle standard peuvent exister sans avoir été détectées

soit parce qu’elles sont trop massives pour être produite dans les accélérateurs de particules,

soit parce qu’elles interagissent trop faiblement pour être produites ou détectées. Dans le

premier cas, nous avons besoin d’accélérateurs plus puissants (energy frontier) ; dans le second

nous avons besoin d’expériences plus précises (intensity frontier).

Dans le premier chapitre de cette thèse, nous étudions deux modèles de matière noire électro-

faible de type WIMP qui proviennent de deux cas limites du MSSM : le modèle pur Higgsino

et pur Wino. Dans ces modèles, la particule composant la matière noire est trop lourde pour

être observée dans les accélérateurs mais elle pourrait être observée indirectement dans des

signaux astrophysiques. En effet, des particules de matière noire dans le halo galactique pour-

raient s’annihiler et produire des particules énergétiques du modèle standard qui sont ensuite

détectées par des satellites. L’absence d’observation de tel signaux place une borne supérieure

sur la section efficace d’annihilation des particules de matière noire. Nous considérons la

différence de masse entre la composante chargée et la composante neutre d’un multiplet de

matière noire comme un paramètre libre et nous étudions ses effets sur la section efficace

d’annihilation en prenant en compte le Sommerfeld enhancement.

Dans le deuxième chapitre de cette thèse, nous présentons une suggestion d’expérience de

type collision de faisceau de particules sur cible. Le but de cette machine est la recherche

de particules appartenant à des secteurs sombres qui interagissent très faiblement avec la

matière ordinaire. Cette expérience utilise un faisceau de positrons nécessaire pour un futur

collisionneur de muons mais peut être conduite indépendamment du reste de l’accélérateur.

Nous étudions le potentiel de découverte d’un tel détecteur pour trois modèles de référence,

le dark photon, le dark Higgs et heavy neutral lepton. Les performances de ce système sont

comparées avec celles d’expériences similaires.

Dans le troisième et dernier chapitre de cette thèse, nous considérons une approche plus

modèle-indépendante de la physique au-delà du modèle standard. Si les nouvelles particules

sont lourdes, leurs effets principaux sont décrits par des opérateurs effectifs construits à partir

des champs du modèle standard. Partant du principe que le nombre baryonique et leptonique

est conservé, il est possible d’écrire tous les opérateurs de dimension-6 qui donnent la plus

grande contribution et de placer des bornes sur les coefficients de ces opérateurs en étudiant

leur contribution à des mesures très précises. Nous compilons ici les mesures faites à LEP-I et

LEP-II ainsi que celles faites à basse énergie sur les neutrinos et les atomes. Nous n’imposons

pas de symétrie de saveur sur les opérateurs de dimension-6. Notre résultat peut ensuite être

v



Résumé

utilisé pour étudier les limites expérimentales placées sur des modèles spécifiques au-delà du

modèle standard.

Mots clés : Physique au-delà du modèle standard, matière noire, supersymétrie, Sommerfeld

enhancement, Dark photon, Dark Higgs, heavy neutral lepton, théorie effective des champs
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Introduction

The Standard Model of particle physics (SM) is the current theory describing interactions

of elementary particles valid in a wide range of scales, from low-energy precision atomic

measurements to high-energy collisions at the LHC. It is the result of decades of experimental

and theoretical efforts throughout the last century.

Starting in the 1920s with Dirac’s theory of the electron, the first step in the building of the SM

was the development of quantum electrodynamics (QED), the field theory of a charged particle

and electromagnetic interactions. The success of QED include the prediction of the positron,

the famous calculation of the correction to the electron anomalous magnetic moment ae by

Schwinger in 1948 and the computation of the Lamb shift by Bethe around the same time.

The 1950s saw the discovery of a large number of particles, the mesons and the baryons and

their classification lead to the idea of more fundamental constituents, the quarks. The quarks

interact via the strong interaction, described by a non-abelian gauge theory with gauge group

SU (3)C (C for colour). The interaction is strong, i.e. non-perturbative at low energies, leading

to quark confinement. This is why quarks are not observed directly, but indirectly in composite

states (mesons and baryons) or as jets in high-energy collisions.

The radioactiveβ decay of nuclei was first described by Fermi in the 1930s using a four-fermion

operator. In the 1950s, the weak interaction was shown to violate parity maximally and in

the 1960s the electroweak theory was developped by Glashow, Salam and Weinberg. The

weak and electromagnetic forces were explained by the SU (2)L ×U (1)Y gauge group, with the

associated vector bosons W ±, Z discovered at CERN in 1983. However, at low energies, the

SU (2)L ×U (1)Y invariance is not manifest: this is because the symmetry is spontaneously

broken by the vacuum state.

The SM implements electroweak symmetry breaking with the Higgs mechanism: a scalar

field, charged under the electroweak gauge group, gets a vacuum expectation value (VEV) that

breaks SU (2)L ×U (1)Y down to the QED U (1)em describing electromagnetism. The discovery

of the Higgs boson at LHC in 2012 was a great success for the SM and marked the discovery of

the last predicted particle of the model.

1



Introduction

The Standard Model

In the modern Wilsonian point of view, the SM is an effective field theory (EFT) valid up to a

cutoff scaleΛSM at which new unknown physics appears. Then dimensional-analysis allows

us to classify the operators made of SM fields according to their mass dimension:

L =L D≤4 +∑
i

ci

ΛSM
OD=5

i +∑
i

ci

Λ2
SM

OD=6
i +·· · (1)

where D is the mass dimension of the operator Oi and ci is a coefficient encoding the interac-

tions of the heavy fields at the cutoff scale with the SM.

For example, Fermi’s description of the weak β decay can be written in modern notation

LF = GFp
2

(
ν†σ̄µe

)(
d †σ̄µd

)+ c.c. with an operator of dimension-6. Today, we know that this

decay is mediated by the heavy W boson with interaction strength gL to the lepton and

quark doublet. Integrating out the W boson gives precisely Fermi’s operator with the relation

GF =
p

2
8

g 2
L

m2
W

. Knowing the full theory, the cutoff of the Fermi theory is mW , the scale at which

treating the gauge boson as a new degree of freedom becomes necessary and the Wilson

coefficient is: c = g 2
L

8 .

If the SM is valid up to a high scale ΛSM, then from the power counting (1), the physical

observables are well described by the leading renormalizable terms. Operators with dimension

larger than 4 (irrelevant operators) have their coefficient suppressed by inverse powers of the

cutoff and are subleading compared to the D ≤ 4 operators.

In this philosophy, the building of the SM proceeds from the following recipe: from the

particle content summarized in table 1 and its quantum numbers, we write all the possible

operators compatible with SM symmetries with dimension lower or equal to 4. These are the

leading interactions observable at the weak scale. At dimension-4 level, the SM Lagrangian is

schematically:

L (D=4)
SM =−1

4
FµνFµν+ iΨ†σµDµΨ− yi jΨi HΨ j +DµH †DµH +V (H) (2)

The first two terms contain the gauge and fermions kinetic term as well as their gauge interac-

tions. The following term is the Yukawa couplings between the fermions and the Higgs field:

LYukawa =−(ye )i j`i H †ē j − (yu)i j H ·qi ū j − (yd )i j qi H †d̄ j + c.c. (3)

where the dot represents the contraction of SU (2)L indices with an epsilon tensor and ye , yu , yd

are 3×3 matrices in family space. This part is responsible for the mass of the fermions and the

misalignment between gauge and mass eigenstates in the quark sector after the Higgs field

gets a VEV. The last term in (2) is the Higgs potential:

V (H) = m2
H H †H +λ

(
H †H

)2
(4)

2
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Field SU (3)C SU (2)L U (1)Y

`=
(
ν

e

)
1 2 −1

2

ē 1 1 +1

q =
(

u
d

)
3 2 −1

6

ū 3 1 −2
3

d̄ 3 1 +1
3

Ga
µ 8 1 0

W a
µ 1 3 0

Bµ 1 1 0

H 1 2 +1
2

Table 1 – Particle content of the SM with their charges under the group SU (3)C×SU (2)L×U (1)Y .
We use two component spinors for the SM chiral fermions so the bar on ē, ū, d̄ is only a label
for the field names and does not denote any conjugation. The Dirac spinor is given by:
Ψe = (e ē†)T . The first five fermion fields carry a familly index i = 1,2,3.

The crucial feature of the Higgs potential is that the parameter m2
H is negative, leading to the

famous “Mexican hat” potential with a minimum at a non-zero Higgs field value. The Higgs

VEV is then 〈H †H〉 = v2/2 with the tree-level relation v2 =−m2
H /λ.

At renormalizable level, the SM has 19 parameters, which can be chosen as follows: 3 gauge

couplings, 9 quark and lepton masses, 3 quark mixing angles and 1 phase, 2 coefficients in the

Higgs potential and the QCD θ angle.

The dimension-4 SM is very successful for describing all observed phenomena in various

collider experiments. Precision measurements of electroweak parameters at the Z -pole and

the W pair production threshold performed at LEP are in very good agreement with the SM

predictions at the per mille level. At LHC, the Higgs boson behaves very much like the SM

Higgs and its coupling to the heavy particles (t ,b,W, Z ) are the ones predicted by the SM with

an experimental precision of around 10%. The fact that the renormalizable Lagrangian is

enough to explain all experimental observations is a strong hint that our naive power counting

is correct andΛSM is indeed large.

Furthermore, the SM explains elegantly the absence of processes like proton decay or µ→ eγ

transitions: at renormalizable level, there is no operator breaking baryon number and the indi-

vidual lepton number (e,µ,τ number). This is associated to the existence of symmetries called

accidental symmetries. These processes can only go through higher dimensional operators

and are suppressed by inverse powers ofΛSM.
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The SM only hypothesis

In order to estimate limit of validity of the SM, one can look at higher dimensional operators

and see what corrections they give to the SM. From dimentional analysis, if ΛSM is large,

leading corrections to the SM come from dimension-5 operators. At dimension-5, there is

only one class of operator one can build out of SM fields, the Weinberg operator [1]:

L (D=5)
SM = ci j

ΛSM
(`i ·H)

(
` j ·H

)+ c.c. (5)

where the dot denotes contraction of SU (2)L indices with an epsilon tensor. This operator

breaks lepton number by two units and after EWSB gives a Majorana mass to the neutrinos

of order mν ∼ v2/ΛSM. Neutrino masses are very small but non-zero as shown from neutrino

oscillation experiments. In the SM, the smallness of neutrino masses is explained by the fact

that their mass term is generated at dimension-5 and is suppressed by a factor v/ΛSM. Today,

bounds from particle physics and cosmological observations limit the neutrino masses to be

below 1 eV or so. Assuming the coefficients ci j to be of order one, this leads to an estimate

ΛSM ∼ 1014 GeV.

At dimension-6, there are many more operators. Among them, one can construct operators

violating baryon number (for example O∆B
1 = εabc uadb

(
q†

c ·`†
)

where a,b,c are colour indices)

with coefficients suppressed by Λ2
SM. The most stringent test of baryon number conservation

comes from the non-observation of proton decay; with the proton lifetime measured to be

larger than 1034 years [2]. A rough dimensional analysis estimate of the proton lifetime gives

Γ∼ m5
p /Λ4

SM and comparing it to the experimental bound results in a cutoff scale larger than

ΛSM ∼ 1016 GeV.

These two observations, based on accidental symmetries of the dimension-4 SM, support the

scenario where the Lagrangian (2) remains a very good description of microcospic phenomena

up to a very high energy scaleΛSM ∼ 1014 −1016 GeV, at least 10 orders of magnitude beyond

the reach of our most powerful colliders. The theory above the cutoff could be a grand unified

theory, or a theory of quantum gravity (the effects of gravity become important at the Planck

mass MP ∼ 1019 GeV). This is called the “SM only” scenario or sometimes the “desert” because

there is no new particle between the electroweak scale v ∼ 100 GeV and the cutoff scaleΛSM.

Direct exploration at LHC has, up to now, revealed no signal of unknown particle up to around

1 TeV (the precise bound on new particles depend on the details of the model considered).

Also, electroweak precision observables measured at LEP are consistent with SM predictions

at the per mille level, showing no sign of new physics at the TeV scale.

Other experimental measurements at lower energies of processes that are suppressed in the

SM also give credit to a high cutoff scenario. Flavour-changing neutral current (FCNC) are very

small in the SM because of the CKM structure in the quark sector (GIM mechanism) but receive

contribution at dimension-6 from four-fermion operators. Examples include meson rare

decays such as K →πνν̄, K 0−K
0

oscillations and other neutral meson-antimeson oscillations.
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Comparing the experimental measurements to the SM prediction and the contribution of

dimension-6 operators with generic order 1 coefficients leads to an estimate of the cutoff

scale larger than 107 −108 GeV for the most precise measurements (from ∆mK and εK , see for

example [3]).

All these experimental results suggest that the SM cutoff is very large. Of course, these con-

straints on ΛSM can be relaxed if we allow for the coefficients ci to be small. But the main

advantage of the SM only scenario with a large ΛSM ∼ 1014 −1016 GeV is that all experimen-

tal results listed above, baryon and lepton number conservation, smallness of the neutrino

masses and of FCNC, can be explained by dimensional analysis only and without invoking

some UV structure that cause the ci ’s to be small. However, having ΛSM À mH leads to a

theoretical problem, the famous Hierarchy problem.

The Hierarchy problem

It is interesting to note that there is only one dimensionful parameter in the renormalizable

SM Lagrangian, namely m2
H . This parameter is directly linked to the Higgs VEV v and from

there gives mass to all other particles in the theory. Experimentally, m2
H ∼ (100 GeV)2, but

we would rather expect from dimensional analysis m2
H ∼ Λ2

SM. If new particles with mass

M∗ at the cutoff scale couple (even indirectly) to the Higgs boson, they generate a correction

to its mass δm2
H ∝ M 2∗ resulting in δm2

H being 30 orders of magnitude or so (for a mass of

1016 GeV) bigger than m2
H . The Higgs mass is quadratically sentitive to the heaviest particle

that it couples to and keeping m2
H small requires a delicate cancellation between very large

contributions, also called fine-tuning.

In order to remove the sensitivity of the Higgs mass to the highest scale in the theory, one needs

new physics at the electroweak scale (from 100 GeV up to 10 TeV depending on the models)

and thus requiresΛSM to be small. But now the accidental symmetries are not explained by

dimensional analysis alone and one must impose some structure to the model in order to

comply with experimental bounds. So there is a tension between naturalness, which requires

ΛSM ∼ mH and the simple dimensional analysis explanation of the SM accidental symmetries,

which supportΛSM À mH .

A first popular solution to the Hierarchy problem is Supersymmetry, the introduction of a new

space-time symmetry that links bosons and fermions. The Higgs boson is associated with a

fermionic partner, the Higgsino, and in the m2
H → 0 limit, the theory gains a new symmetry

namely the chiral symmetry of the Higgsino. Thus corrections to m2
H remain proportional

to m2
H and the Higgs remains naturally light. However, Supersymmetry is not observed in

nature so it must be broken at some scale above the electroweak weak with superpartners not

too heavy to avoid fine-tuning in the Higgs mass. In these models, it is easy to write terms

violating baryon and lepton number and one must impose a global symmetry to forbid these

terms.

5



Introduction

Another solution is given by the class of Composite Higgs models. A strongly interacting sector

with a global symmetry G confines at a scale f above the electroweak scale, breaking G to a

subgroup H , resulting in a number of Goldstone bosons. The SM gauge interactions also break

the H symmetry, giving a mass to the Goldstone bosons, some of which are identified with

the Higgs doublet. Here the Higgs mass is protected by the shift symmetry of the Goldstones.

The generic prediction of Composite Higgs models is the presence of numerous resonances at

a mass m∗ = g∗ f where g∗ is the coupling of the new gauge group, similarly to mesons and

baryons in QCD.

Other possible solutions to the Hierarchy problem include a dynamical evolution to a small

m2
H term (the relaxion model [4]) or the presence of a very large number of SM-like sectors

(N -naturalness [5]).

Other problems of the SM

There are other problems that motivate the presence of physics beyond the Standard Model

(BSM). Here we present a few of them.

Dark matter: another very important issue in the SM is the absence of a suitable dark matter

(DM) candidate. The existence of DM is strongly supported by astrophysical and cosmological

observations with a cosmic abundance about 5 times higher than ordinary baryonic matter.

DM is non-luminous (hence its name), almost non-interacting with ordinary matter, stable

and subject to gravitational interaction. There is a priori no reason for DM to be linked to the

electroweak scale and a wide range of mass scales is possible. But a simple way to explain the

observed DM density is through the “freeze-out” mechanism: the DM candidate is weakly

interacting with the SM and in thermal equilibrium with the SM particles until the expansion

of the universe makes the process DM DM → SM too faint. At this point, the DM density

freezes and is affected only by the cosmological evolution. It turns out that a particle with SM

weak coupling (from the SU (2)L gauge group) needs a mass around 1 TeV to reproduce the

correct DM density. This scenario is called weakly interacting massive particle (WIMP) and

points towards new physics at the TeV scale, suggesting a link between DM and the Hierarchy

problem. The neutralino in the MSSM is an attractive DM candidate of this class and will be

presented in more details in chapter 1.

This is not the only explanation for the DM density, other mechanism and other models have

been proposed, with a wide possible mass range. Other models do not require new particles

but rely on new phases of QCD, or astrophysical compact objects. In any case, DM remains

an important motivation for BSM physics and has led to a wide variety of models and of

experimental effort to measure its properties.

The strong CP-problem: the SM Lagrangian contains all renormalizable operators made of

SM fields and compatible with the SM symmetries. However, one of these operators is not

observed experimentally, namely the QCD theta term: θ
16π2 Ga

µνG̃aµν where G is the gluon
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field strength and G̃aµν = εµνρσGa
ρσ. From the limits on the neutron electric dipole moment

measurements, one can infer θ < 10−10. The question of why the theta term is so small is the

strong CP-problem. The most popular solution to this problem is to promote this parameter

to a field, the Peccei-Quinn axion, and explain its small value by a dynamical evolution. If

the original solution of Peccei and Quinn has been ruled out, similar models are still being

considered and axion-like particles could be DM candidates.

Baryogenesis: the SM augmented with cold dark matter and the cosmological constant explains

well the observations from the cosmic microwave background. But why does our universe

contains baryons and not anti-baryons? In principle the SM contains the three sufficient

Sakharov conditions for baryogenesis but in practice the source of CP-violation is too small

and the electroweak phase transition is not first-order. Thus baryogenesis requires new physics

and could be linked to the electroweak symmetry breaking if the asymmetry was generated at

the electroweak phase transition.

Experimental anomalies: on the experimental side, there are a few measurements in tension

with the predictions of the SM. Belle, BaBar and LHCb have detected some deviations from

lepton flavour universality predicted by the SM [6]. The ratios RD (∗) = Γ(B→D (∗)τν)
Γ(B→D (∗)`ν) and RK (∗) =

Γ(B→K (∗)µ+µ−)
Γ(B→K (∗)e+e−) deviate from the SM predictions by 2.5σ−4σ. The ratio cancels a good part of the

hadronic uncertainties and the anomalies were observed by several experiments over several

years. These results have also driven much theoretical and experimental work, suggesting new

physics coupling primarily to the second and third generations. However, the significance of

these deviations is still debated in the community.

Another long-standing anomaly is the measurement of the muon and electron anomalous

magnetic moment aµ and ae . These are measured and predicted in QED with an impressive

precision (of 10−10 for ae ). Combined with an independent measurement of the fine structure

constant α from Rydberg constant, one finds ae smaller than the SM prediction by 2σ and

aµ larger than the SM prediction by 3.5σ. This also points to new physics breaking lepton

universality but it is difficult to build a realistic model addressing both anomalies at once. Also,

the theoretical uncertainties associated to the calculations are still debated.

One can also mention the proton radius puzzle, two different measurements of the proton

radius diagreeing by 5 to 7σ. The first one uses electrons (spectroscopy and scattering) and the

second one uses muons (muonic hydrogren spectroscopy), hinting to lepton non universality.

The search for BSM physics

On the one hand, the problems presented above are compelling arguments for the existence

of new physics, in particular above the weak scale at the TeV scale. This logic has lead to the

building of the LHC and has motivated numerous BSM models. On the other hand, despite a

few intriguing anomalies, experimental results and precision tests of the SM support a high

SM cutoff. The challenge on BSM model building is to find solutions to the problems of
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the SM without spoiling the successes of the model, namely the accidental symmetries, the

suppressed flavour-changing neutral currents, the electroweak precision tests.

There are two main directions for the search of BSM physics. The first one, which until now

led to the discovery of the heavy quarks, the W, Z and Higgs boson, is the energy frontier. New

physics consists of new heavy particles of mass M∗ and have not been detected yet because of

insufficient collider energy. The method to search for new physics is to access higher energies

E with larger, more energetic colliders. Either the new particle can be produced on-shell and

detected directly, or one can look for deviations from the SM. Indirect effects of new heavy

particles are described by higher dimensional operators and their effect grow like powers of
E

M∗
. The energy frontier approach is linked to the Hierarchy problem and also to DM in the

case of WIMP-like models.

The second direction, called the intensity frontier, is to consider new physics not as heavy

particles but as dark particles, meaning with a very feeble interaction ε to SM particles. In this

case, new particles have not been detected because their effects are suppressed by powers

of the coupling ε. Direct searches of new physics are done with experiments with very high

luminosity (typically on-target collisions) and indirect searches are performed with very

precise measurements where small deviations from the SM can be measured. Many models of

DM fall into this class, as well as axion-like particles.

Plan of the thesis

In this thesis, we will explore some topics in the quest for BSM physics at the energy and

the intensity frontier. In chapter 1 we consider two well known DM models of electroweak

WIMP coming from Supersymmetry, the Higgsino and the Wino. We consider the charged

neutral mass splitting as a free parameter of the model. We study the effect of Sommerfeld

enhancement, a non perturbative effect coming from the long range interaction due to the

exchange of electroweak gauge bosons, and its dependence to the value of the splitting. We

derive a few generic features of Sommerfeld enhancement and work out its consequence on

the DM phenomenology.

In chapter 2 we consider a class of models with new particles interacting very weakly with

the SM. We study the discovery potential of a fixed target experiment using the experimental

setup of a future muon collider. We first present the phenomenology of the three classes of

renormalizable interactions between a dark sector carrying no SM charges and our sector. We

then show the expected exclusion limits from this experiment for the three models, the dark

photon, the dark Higgs and the heavy neutral lepton.

In chapter 3, we take a more model-independent approach to new physics. If new physics is

heavy, its effects are encoded in higher dimensional operators made of SM fields. Then, one

can study the effects of these operators and set limits on their coefficients. These limits can

then be translated to concrete BSM models by matching to the SM effective field theory. In
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our work, we allow all operators to be present at the same time and we do not impose any

flavour structure, leading to a large number of free coefficients. We compile experimental data

from low-energy experiments to LEP electroweak precision tests and obtain constraints on 61

Wilson coefficients.
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1 Sommerfeld enhancement and WIMP
phenomenology

The nature of dark matter has been one of the longstanding problems of modern physics.

There are compelling arguments for the existence of DM, coming from astrophysics (galactic

rotation curves and gravitational lensing) and from cosmology. The most precise measurement

of the DM density in the universe comes from the Planck observation of the cosmic microwave

background (CMB). The fit of CMB data to theΛCDM model yields the result [7]:

ΩDMh2 = 0.120±0.001 (1.1)

From the particle physics point of view, DM cannot be one of the SM particles and calls

for some new physics explanation. One popular class of model is the weakly interacting

massive particle (WIMP): a new neutral and stable particle is added to the SM and the DM

relic density is produced by the freeze-out mechanism. In the early universe, the DM particle

is in thermal equilibrium with the SM. The expansion of the universe dilutes its density until

the annihilation probability becomes too small, at which point the two sectors decouple and

the density of DM “freezes”. The calculation of the DM density with the freeze-out mechanism

is described in appendix A. At leading order, the DM density depends only on the annihilation

cross-section to SM particles and in order to reproduce the result (1.1), one needs a cross-

section of 〈σβ〉 ≈ 3×10−26 cm3s−1. It turns out that for a particle with SM weak interactions,

one needs a mass around M ∼ 1 TeV to get the correct 〈σβ〉, suggesting that the DM candidate

has a link with the solution to the Hierarchy problem.

In Supersymmetry, one has to enforce a global symmetry to forbid baryon and lepton number

violating terms. One consequence is that the lightest supersymmetric particle (LSP) is stable,

making it an interesting DM candidate. The neutralino of the minimal supersymmetric

Standard Model (MSSM) is the prime example of a WIMP DM. Despite null results in the

search for supersymmetric particles at LHC, the neutralino WIMP is still a valid DM model, its

high mass of a few TeV making it hard to produce at colliders.

This large separation of scales between the DM mass M and the weak force carrier mass
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mW ,mZ leads to a non-perturbative enhancement of the annihilation cross-section in the

non-relativistic limit. This well-known effect is called Sommerfeld enhancement and can be

interpreted as the effect of the long range interaction between the DM pair by the exchange of

light gauge bosons. Sommerfeld enhancement is very dependent of the DM velocity β which

makes it very important so the present day annihilation cross-section (with galactic velocities

β ∼ 10−3) to SM particles which can be detected by telescopes (indirect detection signals).

Sommerfeld enhancement is also dependent of the mass splitting δm between the charged

and the neutral component of the DM multiplet, this mass splitting controlling how easily a

neutral DM pair can flip to a charged pair by W ± exchange and feel the Coulomb attractive

potential.

In this chapter, we consider two well studied benchmark models of electroweak WIMPs: the

DM doublet (also called Higgsino) and the DM triplet (or Wino) that can be seen as two limits

of the MSSM parameter space. In these models, the DM candidate is a massive fermion

in the TeV mass range charged under the weak interaction. The charged neutral splitting

δm gets a contribution from electroweak loop corrections as well as a model-dependent

contribution from heavier particles in the theory. In the litterature, the latter contribution is

usually neglected and δm is set to the loop value. In this work, we consider the mass splitting

as a free parameter and study its effect on the DM phenomenology, the relic density calculation

and the bounds from indirect detection.

In this chapter, we will start in section 1.1 with a description of Sommerfeld enhancement

and give some analytic properties in simple cases. In section 1.2, we present the minimal

supersymmetric standard model (MSSM) and the Higgsino and Wino limit. The DM candidate

and its properties in the Higgsino case are presented in section 1.3 and in section 1.4 in the

Wino case. To finish, we detail the effect of changing the mass splitting δm on the relic density

and on indirect detection in section 1.5 before concluding. This chapter is largely taken from

the publication [8].

1.1 Sommerfeld enhancement

1.1.1 Definition

This is the enhancement of the short-distance cross section for a process due to the distortion

of the wave function for the incoming state by a long-range potential. This effect increases with

decreasing velocity, and was first noticed by Sommerfeld [9] in the context of electromagnetism.

It has a classical gravitational analogue in the low-velocity enhancement of the cross section

for a point particle hitting a massive object of radius R [10]:

σ=πR2
(
1+ β2

esc

β2

)
(1.2)
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1.1. Sommerfeld enhancement

where β is the velocity of the point particle and βesc = 2GN M/R is the escape velocity from

the surface of the extended object.

In quantum field theory it can be seen as the enhancement due to ladder diagrams in which

a light force-carrier is exchanged. For non-relativistic muon annihilation for example, the

amplitude for the nth-order ladder diagram (due to n photon exchanges between the muon

pair) is proportional to (α/β)n in the non-relativistic limit, which means the perturbative

expansion in α breaks down for small enough velocity, and the ladder diagrams must be

systematically resummed. As shown in [11] the Sommerfeld factor can be determined by

factorizing the short-distance and long-distance behaviour. The distorting effect of the long-

range potential V (r ) on the two-particle wavefunction is computed by solving the Schrödinger

equation in the presence of only this potential, and the total enhancement then computed by

perturbing around the resulting inhomogeneous solution at leading order in the absorptive

part, which encodes the short-distance behaviour. The same procedure was proved in [12] to

be equivalent to explicit resummation of the ladder diagrams.

Two particles subject to a long-range potential V (|~r |), satisfy the following Schrödinger equa-

tion in the centre-of-mass frame, where ψ(~r ) is the two-particle wavefunction:

−1

2µ
∇2ψ(~r )+V (|~r |)ψ(~r ) = 1

2
µ~̇r 2ψ(~r ) (1.3)

with µ is the reduced mass of the system.

Separating variables to isolate the radial and angular parts as usual, we obtain, for two particles

of equal mass m1 = m2 = M , with velocity β in the centre-of-mass frame1, the following radial

equation:

− 1

M

1

r 2

d

dr

(
r 2 dR

dr

)
+

(
l (l +1)

Mr 2 +V (r )−Mβ2
)

R = 0 (1.4)

To isolate the dominant (s-wave) contribution, we take l = 0; substituting R(r ) = χ(r )/r we

obtain

χ′′(r )+ (
M 2β2 −M V (r )

)
χ(r ) = 0 . (1.5)

This equation cannot be solved analytically for general potentials V (r ), but we can solve

numerically for the irregular solution, which satisfies the boundary conditions:

χ(0) = 1, χ′(∞) =−i Mβχ(∞) (1.6)

and then compute the Sommerfeld-enhanced cross section as

σ≡ Sσ0 = |χ(∞)|2
|χ(0)|2 σ0 (1.7)

where σ0 is the perturbative cross-section and S denotes the Sommerfeld enhancement

1We use the velocity β such that in the non-relativistic limit we have the Mandelstam variable s = 4M2 +
4M2β2 +O(β4)
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factor.2

This method can be generalized to the case where there is an interaction that mixes distinct

two-particle states. For N two-particle states χi (r ), with i = 1, · · · , N , the Sommerfeld en-

hancement can be computed by numerically solving the following set of N coupled radial

Schrödinger equations:

χ′′i (r )+M 2β2χi (r )−M
∑

j
V tot

i k (r )χk (r ) = 0 (1.9)

N times, with a different boundary condition at r = 0 each time, representing each distinct

two-particle state participating in the short-distance interaction: χi (0)| j = δi j for the j th

solution. The boundary condition at infinity corresponds to a pure outgoing (decaying)

wave for (Mβ2 −V (r →∞)) positive (negative). Here all energies/potentials are defined with

respect to the lightest two-particle state, consisting of two identical particles of mass M . Any

mass differences with respect to the lightest state show up as additional radius-independent

contributions to the total potential. 3

The cross-section in the i th channel is then given by:

σi = ci (A .Γ . A†)i i (1.10)

where Γ j k is the absorptive part of the two-to-two cross section χ j → χk , with j ,k running

over all possible two-particle states in each channel. ci is a numerical factor that accounts for

the different normalization of the two-body wavefunctions for identical and non-identical

particles: ci = 2 (ci = 1) when the two particles are identical (distinct). The matrix A is

computed as:

Ai j = lim
r→∞

χi (r )| j

e i
p

M(Mβ2−Vi i (∞))r
. (1.11)

We can also define a Sommerfeld factor in each channel i , in analogy with the unmixed case:

Si = ci
(A .Γ . A†)i i

Γi i
. (1.12)

Note that unlike in the unmixed case the mixed Sommerfeld factor is not only dependent on

the potential, but also on the Γmatrix for the hard process of interest.

In practice, for mixed channels we must solve for the Sommerfeld factor numerically. The

2This procedure was shown in [10] to be equivalent to finding the regular solution and computing the enhance-
ment using

S =
∣∣∣∣∣∣

dχ
dr (0)

k

∣∣∣∣∣∣
2

(1.8)

3Note that for statesχi with mass M+δmi ,β is not the physical initial velocity of the particle, but is defined such
that the total energy of the heavy-particle pair with respect to the dark-matter pair is E = Mβ2. The Sommerfeld
enhancement calculation takes into account that the state χi cannot exist as an asymptotic state for Mβ2 < δmi .
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numerical stability of the solution is an issue in the multi-state scenario, since the presence

of an exponentially decaying part in the charged-charged wavefunction (due to the charged-

neutral mass difference) makes the solution particularly unstable to rounding errors. Special

care must be taken in the numerical recipe in order to favour convergence. We use the variable

phase method, as detailed in [13].

1.1.2 Some analytical considerations

The electroweak potentials that we will consider have three individual constituents that

combine in a complex way: the Coulomb interaction, the Yukawa interaction due to weak

gauge boson exchange, and a mass splitting between different sets of asymptotic states. The

effect on the Sommerfeld factor of each of these components individually can be understood

analytically. Following [14], we will review these arguments below in order to build some

intuition before we move on to tackle the full electroweak case in Section 1.3 and after.

Pure Coulomb potential

We first consider the scattering of a pair of particles of mass M and velocity β in their centre-

of-mass frame interacting via a Coulomb potential V (r ) =±α/r , where the Sommerfeld factor

can be computed analytically [10, 15]:

S =
∣∣∣∣∣ ∓πα

β

1−e±
πα
β

∣∣∣∣∣ . (1.13)

The enhancement is determined by the relative significance of the Coulomb binding energy

α2M of the incoming particles and their kinetic energy Mβ2, and is large when the binding

energy dominates. Hence the Sommerfeld factor is independent of the particle mass M (as

expected from dimensional analysis), and grows for smallβwithα/β for an attractive potential

(in practice the arbitrary growth at small β will be cut off by finite temperature effects, when

the photon acquires a thermal mass). On the other hand, for large velocities, S approaches

unity as expected. For a repulsive potential it gives rise to an exponential suppression, due to

the presence of a Coulomb barrier:

lim
β→0

S ∼
{

πα
β attractiveV
πα
β e−

πα
β repulsiveV

(1.14)

Pure Yukawa potential

The enhancement due to a Yukawa potential V (r ) =±α
r e−MV r , arising from the exchange of

a massive gauge boson of mass MV , can only be treated analytically by approximating the
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Yukawa potential as a Hulthén potential:

V (r ) =±αkMV e−kMV r

1−e−kMV r
(1.15)

where k is a fudge factor chosen phenomenologically to match the short- and long-range

behaviour of the Yukawa potential (k = π2

6 for s-wave enhancement [16]). The Sommerfeld

factor can be expressed in closed form [14, 16, 17]:

S =∓πα
β

sinh
(

2πM
kMV

β
)

cosh
(

2πM
kMV

β
)
−cos

(
2πM
kMV

β
√

∓kMV
M

α
β2 −1

) (1.16)

The Yukawa form of the potential brings into play another relevant quantity: the size of

the Bohr radius, (αM)−1 relative to the range of the potential M−1
V ; thus the Sommerfeld

enhancement depends on two parameters: α/β and αM/MV . S displays different behaviour

as β goes to zero:

lim
β→0

S ∼



k
(
α
β

)2 MV
αM attractiveV , M = n2 kMV

α for integer n

2π2

k
αM
MV

(
1−cos

(
2π

√
αM

kMV

))−1
attractiveV , non-resonant M

2π2

k
αM
MV

(
cosh

(
2π

√
αM

kMV

)
−1

)−1
repulsiveV

(1.17)

Unlike that for the Coulomb potential, the Sommerfeld factor for an attractive Yukawa po-

tential tends to a constant as β approaches zero, except for specific values of M where the

denominator of (1.17) vanishes, and the Sommerfeld factor undergoes even faster growth,

as 1/β2. These values of M correspond to instances where the Hulthén potential admits

zero-energy bound states. For a repulsive Yukawa potential, the Sommerfeld factor tends

to a constant smaller than one, and there is no resonant structure. The resonances are also

observed in numerical computation of the Sommerfeld factor in the Yukawa potential and are

not specific to the Hulthén potential. Their position can be estimated using equation (1.17).

For larger values ofβ, the hyperbolic functions simplify and S ∼πα/β as in the electromagnetic

case. The transition between the two regimes happens around β ∼ MV /M [10], where the

de Broglie wavelength of the particle becomes of order the range of the Yukawa interaction,

and the particle begins to probe the short-range nature of the potential. See Figure 1.1 for a

graphical display of the behaviour of Sommerfeld factor for an attractive Yukawa potential as

a function of β/α, for MV (αM)−1 = 0.2 (solid green curve), as compared with the growth for

an on-resonance mass, M = M∗ = kn2MV /α (solid yellow curve).
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1.1. Sommerfeld enhancement
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Figure 1.1 – Sommerfeld enhancement for an attractive Yukawa potential, showing both off-
resonance saturation for MV (αM)−1 = 1/5 (solid green curve), and on-resonance growth for
M = M∗ = kn2MV /α (solid yellow curve). The enhancement for a pure Coulomb potential is
shown for comparison (dashed blue line). For further explanation of symbols, see text.

1.1.3 Mass splitting

The introduction of a mass splitting δm between the incoming state and a nearby state with

which it mixes has two important consequences. Above some threshold velocity

βth =
√

2
δm

M
, (1.18)

a pair of incoming states can scatter inelastically to a pair of heavy partners on-shell, giving

the light states access to a new, perhaps stronger, annihilation channel. More crucial to our

narrative, however, are the large enhancements that can occur at particular velocities below

the heavy-particle threshold, due to threshold production of loosely-bound resonances of

the heavy partner pair, lying between the light and heavy states in the mass spectrum. For a

resonance with binding energy EB , the corresponding resonant velocity can be written as:

β∗ =
√

2δm −EB

M
(1.19)

In the electroweak case, approximating the binding energy En of the nth bound state as being

purely due to the Coulomb interaction to leading order, we expect to see corresponding peaks

in the Sommerfeld factor in the neutral channel at velocities:

β∗
n =

√
2δm

M
− α2

4n2 (1.20)

The physically-relevant parameter encoding the splitting is then δm/EB . The enhancement

due to these below-threshold resonances was observed in [14, 18, 19], but their possible effects

on the phenomenology of dark matter were not explored.
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology

1.1.4 Mixed electroweak potential

We will be concerned with a two-component non-relativistic potential, due to mixing between

the charged (DM+DM−) and neutral (DM0DM0) components of the dark matter multiplet,

that takes the following schematic form:

V =
(
δm +VC +VY VY

VY VY

)
(1.21)

where VC , VY denote the Coulomb and Yukawa potentials, with coupling strength scaling like

α and αL , respectively. The combined effect on the Sommerfeld factor will result in different

behaviour in different velocity regimes, as follows:

• High β, βÀ mW
M , βth : in this regime we can neglect the mass splitting and trust the

analytical expressions for the Sommerfeld factor. The Yukawa contribution is of order

SL ∼ παL/β and the electromagnetic contribution is of order Sem ∼ πα/β and since

αL >α we expect the Yukawa potential to dominate.

• Intermediate β, mW
M >β>βth: in this regime we can also neglect the mass splitting. Off

resonance, the Yukawa contribution goes to a constant of order SL ∼αL M/mW while the

electromagnetic contribution continues to grow like Sem ∼πα/β, so we expect the elec-

tromagnetic attraction to dominate. On resonance however, the Yukawa contribution

behaves like 1/β2 and is the dominant one.

• Low β, β<βth: the δm term in the potential dominates. In charged channels, the Som-

merfeld factor is zero by construction because an initial on-shell charged pair cannot

have an energy below 2(M +δm) (see footnote 3). Just below threshold the neutral

channels exhibit resonant enhancement due to Coulomb bound states of DM+DM−.

As β decreases still further, the weak Yukawa potential dominates. The Sommerfeld

factor is growing like 1/β2 at masses where there is a zero-energy resonance and satu-

rating to a constant away from the resonance as in equation (1.17), with the size of the

enhancement set by the distance from the resonance.

We illustrate this behaviour in figure 1.2, left panel where we plot the Sommerfeld factors (S1

and S2, respectively, as defined in equation (1.12) and computed for the total annihilation

matrix) for the 2×2 Wino potential (given below in equation (1.50)) for different Wino masses,

on and off resonance. By construction, the charged-charged Sommerfeld factor S1 is zero

below the pair-production threshold for the charged state, βth given by (1.18). We expect

the enhancement in this channel to grow with decreasing χ± velocity due to the Coulomb

potential; this growth will be cut off by the non-Coulomb components of the interaction.

We see clearly the low β behaviour of the neutral-neutral Sommerfeld factor S2: on resonance

M∗ = 2.37 TeV, S2 grows with decreasing β to very high values. Away from resonance, the

Sommerfeld factor goes to a constant as predicted by equation (1.17).

18



1.1. Sommerfeld enhancement

Also visible in this figure is the enhancement at specific velocities just below to the charged

particle threshold, due to production at threshold of Coulomb ‘bound states’ of a charged

DM pair. The true location of the peaks will depend on the energy levels of the bound states

in the full electroweak potential. For Winos and Higgsinos with nominal mass splitting,

the Coulomb resonances are squeezed in a narrow range of velocity just below the charged

particles threshold, where the Sommerfeld factors display a complicated pattern of peaks and

dips. The peaks can be large but are rather narrow in velocity 4. Thus we expect the physical

annihilation cross-section in the neutral channel to be enhanced at velocities just below the

charged-particle threshold. We will come back to this point in our discussion of the Higgsino

Sommerfeld factors below.
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Figure 1.2 – Sommerfeld factors for a pure Wino state. Left panel: Sommerfeld factors in the
neutral (solid) and charged (dashed) channels as a function of DM velocity for various masses
around to M∗ = 2.37 TeV, the position of the first zero-energy bound state. The charged-
neutral splitting δm is fixed at the nominal electroweak-loop value, setting the position of
the Coulomb resonances around β ∼ 0.01. Right panel: Sommerfeld factor in the neutral
channel computed at fixed velocity (β= 10−3) as a function of Wino mass for varying splitting
charged-neutral δm. We see that the resonant mass M∗ at which there is a zero-energy bound
state varies with δm. We also show the analytical result for sinθW → 0 and zero splitting for
comparison (dashed line).

These Coulomb peaks are even more clear in figure 1.3, left panel where we plot the Sommer-

feld factors S1,S2 against velocity β for a 1.1 TeV Higgsino with small splitting δm = 9.5 MeV

(the potential is given below in equation (1.44)) and we zoom in on the region around the

charged-pair threshold (depicted as a solid black line). This allows us to clearly resolve the

first three Coulomb resonances. The naive predictions for the velocities at which they are

excited (using the pure Coulomb binding energies as in Equation (1.20)) are marked with

vertical dashed lines, and are remarkably accurate. For the Wino this is not the case, the simple

Coulomb approximation being off by approximately 20%. This is understandable in light of

the larger weak Casimir factors that the Wino is subject to, being a triplet of SU (2)L . A better

approximation for the Coulomb resonances could be obtained by numerically solving the

4Here the tiny width of the resonance is due to decays of the Coulomb resonance to χ0χ0 only, and doesn’t
include decays to SM final states
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology

mixed Sommerfeld equation for the bound states.

Another consequence of the mass splitting δm and the electromagnetic interaction is to shift

the position of the Yukawa resonance naively predicted by equation (1.17). In figure 1.2,

right panel we plot the analytical approximation to the Wino Sommerfeld enhancement at

fixed, small velocity β= 10−3 as a function of Wino mass. For comparison we also show the

numerical results for the full electroweak potential for various choices of charged-neutral

splitting, δm. The zero-energy bound states appear clearly as peaks in the Sommerfeld factor

S2. We see that varying the mass splitting shifts the position of these peaks to different values

of the DM mass, away from the resonance position estimated using equation (1.17). The

dependence of the resonant mass on the splitting can be understood using perturbation

theory [20].

The Sommerfeld factors for the pure Higgsino display similar features, see figure 1.3. The

right panel shows a similar plot of the Sommerfeld factor in the neutral-neutral channel with

varying Higgsino mass, at a fixed β= 10−3 and for different splittings, with the analytical result

in the zero-hypercharge limit shown as a dashed red line. We observe the same phenomenon

of shifting the position of the resonance as δm varies.
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Figure 1.3 – Sommerfeld factors for a pure Higgsino. Left panel: zoom around the threshold
region for a 1.1 TeV thermal relic Higgsino with splitting δm = 9.5 MeV. The solid grey line
indicates the charged particle pair-production threshold βth and the grey dashed lines show
the predicted positions of the first three Coulomb resonances using (1.20). Right panel:
Sommerfeld factor in the neutral channel computed at fixed velocity (β= 10−3) as a function
of Higgsino mass for varying charged-neutral splitting δm. The analytical result for sinθW → 0
and zero splitting is shown for comparison (dashed line).

1.2 MSSM and MDM

Supersymmetry postulates the existence of a new symmetry relating bosons and fermions.

Schematically, one adds to the Poincaré algebra the operators Q and Q† which turn a bosonic

state into a fermionic state and vice versa. Particles in a supersymmetric theory fall into

irreducible representations of the supersymmetric algebra called supermultiplets, containing
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1.2. MSSM and MDM

an equal number of fermionic and bosonic degrees of freedom called superpartners of each

other. For a more detailed introduction to supersymmetry, we refer to the reviews [21, 22].

Given the SM particle content, in order to build the minimal supersymmetric standard model

(MSSM), one must add superpartners to each SM particle, doubling the spectrum. A chiral

fermion and a superpartner complex scalar fied (called sfermion) form a chiral supermultiplet.

For example in the lepton sector of the SM, the chiral fermions νL ,eL ,eR are associated to the

three complex scalars (the sleptons) ν̃L , ẽL , ẽR (here L,R are just part of the field name and

do not denote any kind of projection) to form the supermultiplets L containing (ν̃L , ẽL) and

(νL ,eL) with SU (2)L ×U (1)Y charge (2,−1
2 ) and ē containing ẽ∗R and e†

R with charge (1,+1). The

gauge bosons form with spin 1
2 Majorana fermions called gaugino a gauge supermultiplet.

Finally, the Higgs field is also embedded into a chiral supermultiplet with a fermionic Higgsino.

However, in order to reproduce the SM Yukawa terms and to preserve anomaly cancellation,

one needs two Higgs supermultiplets Hu and Hd with respective charges (2, 1
2 ) and (2,−1

2 ).

Supersymmetry solves the hierarchy problem because now when mH goes to zero the the-

ory gains a new symmetry, chiral symmetry for the massless Higgsino. The chiral symmetry

protecting the Higgsino mass is transfered to the Higgs mass by supersymmetry. In a dia-

grammatic language, the loop corrections to the Higgs mass quadratically sensitive to the UV

scale are exactly cancelled by equal and opposite loop corrections from superpartners (at least

when supersymmetry is unbroken).

The non gauge interactions in the MSSM are encoded in the superpotential:

WMSSM = ūyu q ·Hu − d̄ yd q ·Hd − ē ye` ·Hd +µHu ·Hd (1.22)

where yu , yd , ye are 3×3 matrices in family space and the dot denotes contraction of SU (2)L

indices with the epsilon tensor. The first three terms reproduce the SM Yukawa interactions

and the last term gives a mass to the Higgs and Higgsinos. However, there are other terms

that one can write down in the superpotential which are gauge-invariant and analytic in the

superfields. These are:

`i ·` j ēk , `i ·q j d̄k , ` ·Hu , ūi d̄ j d̄k (1.23)

and they all break either lepton number or baryon number by one unit. These terms are con-

strained experimentally to be extremely small (for example from proton decay experiments).

This is a clear disadvantage of the MSSM over the SM where baryon and lepton number con-

servation arise from an accidental symmetry of the dimension-4 Lagrangian. In order to forbid

these terms, one enforces a new global symmetry called “matter parity” with the associated

multiplicative quantum number defined as PM = (−1)3(B−L). Quark and leptons have PM =−1

while all other superfields have PM = 1 so that the superpotential (1.22) conserves matter

parity while the terms (1.23) all break matter parity. Matter parity is often written in terms

of the equivalent “R-parity” defined as PR = (−1)3(B−L)+2s where s is the spin of the particle.

Then one can see that all SM particles have PR = 1 and all superpartners have PR =−1.
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology

Imposing matter parity or R-parity has an important phenomenological consequence: the

lightest particle with PR =−1, or lightest supersymmetric particle (LSP) is stable. If the LSP is

neutral, it makes a natural DM candidate. In the MSSM, adding R-parity to conserve baryon

and lepton number seems artificial from the theory point of view, but has the advantage of

providing a viable DM candidate. In this chapter, we will study a scenario where the LSP is the

neutralino, a mixed state between the Higgsino and the Gaugino.

The last ingredient for a realistic theory is the breaking of supersymmetry: we do not observe

sfermions with the same mass as SM fermions so supersymmetry must be broken at some

scaleΛ. There are several proposed mechanism for supersymmetry breaking, however one

can be ignorant about the precise mechanism and parametrize its effects in soft terms, non

supersymmetric operators built of MSSM fields with dimension less than 4. We do not list

all the possible soft terms here, but they include sfermion masses, gaugino masses, trilinear

terms. In all generality, there are 105 physical parameters in the MSSM, most of them coming

from the soft terms. Not specifying the supersymmetry breaking mechanism introduces a lot

of arbitrariness in the theory.

In conclusion, the MSSM is an attractive model for the following reasons:

• The MSSM gives a solution to the hierarchy problem by introducing a new symmetry.

• In the R-parity conserving limit, it has a natural DM candidate.

However, the MSSM also suffers from other problems:

• The absence of signal from any superpartner at LHC pushes the limit of sparticle masses

higher and higher. If the superpartners are too heavy, this reintroduces some fine-tuning

in the Higgs mass. Taking only the top squark and the scalar stops, one has schematically

δm2
H ∼ m2

t̃
from the loops of top quarks and stops and becomes problematic if m t̃ À mH .

This is sometimes refered to as the little hierarchy problem.

• The Z mass is given in the MSSM by some combination of µ and the soft masses

mHu ,mHd . But µ is a supersymmetry-preserving parameter and mHu ,mHd come from

the supersymmetry breaking, so we would expect the hierarchy µÀ mHu ,mHd À mZ

again resulting in fine-tuning. This “µ-problem” can be solved by adding a new chiral

superfield S in a model called the next to minimal supersymmetric standard model

(NMSSM).

• There are sources of flavour violation outside of the SM Yukawa terms for example in the

soft squark masses. One has to impose more structure in order to keep flavour changing

neutral currents as small as observed experimentally. Also individual lepton numbers

are in general not conserved (they are broken by soft slepton masses). Here also, more

structure has to be imposed to comply with experimental bounds.
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1.2. MSSM and MDM

1.2.1 The neutralino and chargino sector

The two Higgs doublets are composed of the fields: Hu = (H+
u , H 0

u) and Hd = (H 0
d , H−

d ). In the

scalar Higgs sector, the two charged Higgs field do not get a vacuum expectation value (VEV),

only the two neutral scalars do: 〈h0
u〉 = vu/

p
2 and 〈h0

d 〉 = vd /
p

2 with v2
u+v2

d = v2 = (246GeV)2

the parameter measured from GF . One usually introduces the parameter tanβ= vu
vd

.

The scalar Higgs sector contains 8 real degrees of freedom, 3 are Goldstone bosons so there

remains 5 physical real scalars, usually denoted h0, H 0, A0 and H±.

In the fermionic sector of the MSSM, the neutral Higgsinos H̃ 0
u and H̃ 0

d mix with the neutral

electroweak gauginos B̃ ,W̃ 0 to form four neutralinos, and the charged components of the

Higgsinos and Wino also mix, yielding two charginos. In the gauge eigenstate basis ψÑ =(
B̃ ,W̃ 0, H̃ 0

u , H̃ 0
d

)
, the neutralino mass matrix is [22]:

MÑ =


M1 0 −cβsW mZ sβsW mZ

0 M2 cβcW mZ −sβcW mZ

−cβsW mZ cβcW mZ 0 −µ
sβsW mZ −sβcW mZ −µ 0

 (1.24)

where M1, M2 are the soft gaugino masses for B̃ ,W̃ ; µ comes from the superpotential and the

remaining terms are fixed by the gauge interactions. In order to avoid large CP-violating effects

in the Higgs sector, we restrict ourselves to real mass parameters µ, M1, M2 but we allow for

one non-trivial relative sign between them.

The chargino mass matrix in the gauge-eigenstate basis ψC̃ = (
W̃ +, H̃+

u ,W̃ −, H̃−
d

)
is, in block

form:

MC̃ =
(

0 X T

X 0

)
where X =

(
M2

p
2sβmWp

2cβmW µ

)
(1.25)

At tree level, the chargino masses can be computed explicitly:

m2
C̃1,C̃2

= 1

2

[
|M2|2 +|µ|2 +2m2

W ∓
√(|M2|2 +|µ|2 +2m2

W

)2 −4|µM2 −m2
W sin2β|2

]
(1.26)

In order to have a viable neutalino DM candidate, one needs the lightest neutralino Ñ1 to be

the LSP and in particular mÑ1
< mC̃1

. In what follows, we will detail two commonly studied

limits of the MSSM gaugino sector, the Higgsino limit and the Wino limit, and study the

phenomenology of the DM candidate.

1.2.2 The Higgsino limit

The Higgsino limit correspond to taking the limit M1, M2 →∞ such that the Wino and Bino

decouple leaving two neutralinos and one chargino state remaining. This corresponds to

keeping only the mass term −µH̃u · H̃d in the fermionic sector and giving infinite soft masses
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology

to the Wino and Bino. In this limit, the theory gains an additional U (1)H̃ symmetry leading to

Higgsino number conservation. The two weak doublets H̃u and H̃d have opposite Higgsino

number and can be combined into a single Dirac doublet χ with mass µ and Higgsino number

+1. We choose χ to have positive hypercharge +1/2 such that it contains a positive and a

neutral state: χ= (
χ+,χ0

)T
. In four components notation, the Lagrangian simply reads:

Ldoublet = i χ̄D/χ−µχ̄χ (1.27)

which corresponds to a vector-like doublet added to the SM with only one additional parame-

ter, the mass µ. This mass will be fixed by the DM relic density (see section 1.3) and is around

1 TeV.

The mass of the charged state Mχ+ and the mass of the neutral state Mχ0 are not exactly equal

beacuse SU (2)L is broken: loop corrections to the wave-function renormalization from γ

and Z boson are different for the charged and neutral state. At one loop, the resulting mass

splitting is [23]:

δmEW = Mχ+ −Mχ0 = αM

2π

∫ 1

0
d x (1+x) log

(
1+ 1−x

x2

m2
Z

M 2

)
→

MÀmZ

αmZ

2π
(1.28)

where M =µ is the doublet mass. In the limit we are interested in, namely µÀ mZ this integral

reduces to δmEW =αmZ /2π= 344 MeV (we use the value of α(mZ ) for the numerics). We will

refer to this value of the mass splitting δm = 344 MeV coming only from electroweak effects as

the nominal splitting.

There is another source of mass splitting in the MSSM coming from the large but finite value

of the soft masses M1, M2. After integrating out the heavy Wino and Bino at tree-level, we

obtain the dimension-5 operators:

Leff =
g 2

Y

4M1
(h∗

u H̃u −h∗
d H̃d )2 + g 2

L

4M2
(h∗

uσ
a H̃u +h∗

dσ
a H̃d )2 + c.c. (1.29)

from which, after setting the scalar Higgses to their VEVs, we get the following masses:

mÑ1,2
=|µ|− sin2β

2

µ

|µ|

(
m2

Z s2
W

M1
+ m2

W

M2

)
± 1

2

∣∣∣∣∣m2
Z s2

W

M1
+ m2

W

M2

∣∣∣∣∣+O

(
m2

W

|M1|2
,

m2
W

|M2|2
)

(1.30)

mC̃1
=|µ|− sin2β

µ

|µ|
m2

W

M2
+O

(
mW

|M2|2
)

(1.31)

The tree-level mass splitting between the lightest chargino and lightest neutralino is given by

δmtree = mC̃1
−mÑ1

= sin2β

2

µ

|µ|

(
m2

Z s2
W

M1
− m2

W

M2

)
+ 1

2

∣∣∣∣∣m2
Z s2

W

M1
+ m2

W

M2

∣∣∣∣∣+O

(
m2

W

|M1|2
,

m2
W

|M2|2
)

(1.32)

at leading order in mW /M1, mW /M2. From the equation, one can see that this contribution
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1.2. MSSM and MDM

can be positive or negative. When M1 and M2 have opposite sign, they partially cancel in the

absolute value and the contribution can be negative for parameters in the region:

−M2 tan2θW
1+ sin2β

1− sin2β
< M1 <−M2 tan2θW

1− sin2β

1+ sin2β
(1.33)

This region is the entire quadrant M1 < 0, M2 > 0 when tanβ= 1 and narrows to the line of

equation M1 =−M2 tan2θW as tanβ goes to infinity. We plot in figure 1.4 the value of δm as

function of M1, M2 for different values of tanβ, adding both the loop contribution (1.28) and

the MSSM contribution (1.32). For a fixed value of M2, the extreme values of equation (1.32)

are δmtree =±m2
W

M2
corresponding to ±1.6 GeV for M2 ∼ 4 TeV.

For the doublet χ to be a suitable DM candidate, the mass splitting δm must be positive so

that the charged component χ+ is unstable and decays to the stable χ0 component (protected

by R-symmetry). In what follows, we will consider δm as a free parameter. In the MSSM case

one can have the mass splitting varying in the range [0, 2GeV] and the DM candidate behaving

as a pure Higgsino doublet.

Note that finite M1, M2 break the U (1)H̃ symmetry, generating a mass splitting between the

two neutral Majorana states:

δm0 = MÑ2
−MÑ1

= m2
Z

∣∣∣∣∣ s2
W

M1
+ c2

W

M2

∣∣∣∣∣+O

(
m2

W

|M1|2
,

m2
W

|M2|2
)

(1.34)

which is of the same order than the charged neutral splitting δm. This makes the neutral

component a pseudo-Dirac fermion and will have important consequenses for direct detection

(we will develop this point in section 1.3). For all other processes, we will neglect this splitting

and treat χ0 as a Dirac fermion.

1.2.3 The Wino limit

The Wino limit on the other hand corresponds to taking the parameters µ, M1 to infity, decou-

pling the Bino and Higgsino from the theory and leaving only the Wino W̃ a , the superpartners

of the SU (2)L gauge bosons. They form a triplet of SU (2)L with zero hypercharge, giving a

neutral and two charged Majorana states. We will also use the chage eigenstates (χ+,χ0,χ−)

with χ± = 1p
2

(W̃ 1 ∓W̃ 2). The Lagrangian is simply:

Ltriplet = i (W̃ a)†σ̄µ∂
µW̃ a − M2

2
W̃ aW̃ a + c.c. = i (χa)†σ̄µ∂

µχa − M2

2
χ0χ0 −M2χ

+χ−+ c.c.

(1.35)

with identical tree-level mass for the charged state and the neutral state. This mass will be

fixed by the relic density with the result M2 = 2.9 TeV.

Similarly to the Higgsino case, this mass degeneracy is broken by loop corrections from γ and
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology
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Figure 1.4 – Contours of the total charged-neutral mass splitting δm = δmEW +δmtree (see
equations (1.28) and (1.32)), in MeV, in the pure Higgsino limit of the MSSM as a function of
M1 and M2, for tanβ= 3 (top), tanβ= 10 (middle) and tanβ= 80 (bottom).
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1.2. MSSM and MDM

Z . The resulting mass splitting is, in the M2 À mZ limit [24]:

δmEW =αLmW sin2 θW

2
= 165MeV (1.36)

We will also refer to this value as the nominal splitting for the triplet.

For finite values of µ, M1 À M2, we can integrate out the Higgsino and Bino at tree-level to

obtain the effective Lagrangian

Leff =− g 2
L

2µ
h∗

u ·h∗
d W̃ aW̃ a + g 2

L g 2
Y

2M1µ2

(
h∗

u · (h∗
dσ

a)W̃ a)2
(1.37)

Setting the scalars to their VEVs, we get the following masses:

mÑ1
= M2 −

m2
W

µ
sin2β− m4

W

µ2M1
sin2 2β tan2θW and mC̃1

= M2 −
m2

W

µ
sin2β (1.38)

Unlike the doublet, here the mass splitting is only affected by the dimension seven operator

making it much smaller. Explicitly:

δmtree = mC̃1
−mÑ1

= m4
W

µ2M1
sin2 2β tan2θW (1.39)

which can be positive or negative, depending on the sign of M1. However it is numerically

negligible in front of the electroweak contribution, for µ, M1 ∼ 4 TeV, one gets δmtree ∼ 0.1 MeV.

For values of the mass parameters such that M2 is smaller than M1,µ but of the same order,

the DM candidate remains very Wino-like because all mixing terms in the mass matrix 1.24

are proportional to mW ¿ M2, M1,µ. The contribution of a heavier neutralino i to the relic

density calculation will be suppressed by a factor exp
(
−Mi−M2

TF

)
with TF ∼ 100 GeV the freeze-

out temperature and can be neglected for Mi −M2 ∼ 500 GeV. The mass splitting however

goes like m4
W divided by differences of M2, M1,µ to the cube, resulting in larger values of δm

compared to the previous paragraph. In the MSSM, the DM candidate can be very close to

a pure Wino with the contribution to δm from heavy states comparable to the electroweak

value for M2 = 2.9 TeV (computed in the following section) and m1,µ in the 3.3−3.5 TeV range.

1.2.4 Minimal dark matter point of view

One can also consider the Higgsino and Wino models from the minimal dark matter (MDM)

perspective [24, 25]. The minimum addition to the SM in order to have a DM candidate is a

scalar or fermion multiplet of SU (2)L containing a neutral particle. A fermion doublet must

have hypercharge Y =±1/2 so only a Dirac doublet is possible, giving the Higgsino model.

The Wino model is the Majorana triplet with zero hypercharge. Other models with higher

multiplets or different charge assignments is also possible. These models have in common

that after specifying the new multiplet, there is only one additional parameter, the DM mass,
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology

and it is fixed by requiring that the model reproduces the correct relic abundance.

In these models, the stability of the DM candidate must be enforced by hand by a global

symmetry (equivalent to R-parity in the MSSM). Also the mass splitting is fixed and equal to

the electroweak contribution given above. In order to treat δm as an additionnal parameter,

one must invoke new physics contributing to the DM mass. One can parametrize the effects

of such new states by higher dimensional operators.

In the Higgsino case, there are two such operators at dimension-5:

LD=5 = c1H †H χ̄χ+ c2H †σ
a

2
H χ̄

σa

2
χ (1.40)

the first one being a shift of the doublet mass and the second one giving rise to the mass

splitting:

δm = Mχ+ −Mχ0 = c2v2

2
= c2m2

W

2g 2
L

(1.41)

which could be as large as 2 GeV for a new physics mass M∗ ∼ 4 TeV with generic coupling

g∗ ∼ 1.

For the Wino, the first operator affecting the mass splitting is of dimension-7:

c3

(
H †σ

a

2
H χa

)2

+c.c. (1.42)

resulting in a mass splitting:

δm = Mχ± −Mχ0 = 2c3
m4

W

g 4
L

(1.43)

In order to have a contribution to the mass splitting comparable to the electroweak loop value,

one has to allow for strongly coupled new physics close to the Wino scale.

1.3 Higgsino DM

In this section, we will review the phenomenology of the DM candidate in the Higgsino model,

including Sommerfeld enhancement. The mass splitting here is fixed to the nominal value.

1.3.1 Sommerfeld enhancement

In the Higgsino model, the DM doublet χ carries a conserved DM number. The only process of

DM annihilation to SM particles is the following: χχ̄→ SM. Since the doublet has two states,

there are four possible initial states χ+χ−, χ+χ̄0, χ0χ−, χ0χ̄0 and the Sommerfeld factor should

be a 4×4 matrix. However, all these initial states do not mix through electroweak interactions

and can be classified by the electric charge of the initial state.
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1.3. Higgsino DM

The Q = 1 sector include the initial states χ+χ̄0 and χ0χ− which do not mix with any other state

and behave the same way being linked by charge conjugation. The Q = 0 sector include the

initial states (χ+χ−,χ0χ̄0) that can flip to one another via W ± exchange. The nonrelativistic

potential due to electroweak interactions is:

VQ=0 =
(

2δm −αem/r −αL(2c2
W −1)2e−MZ r /4r c2

W −αLe−mW r /2r

−αLe−mW r /2r −αLe−mZ r /4r c2
W

)
(1.44)

VQ=1 = αL

r
e−mZ r 2c2

W −1

4c2
W

(1.45)

and the corresponding ‘annihilation matrices’ Γ (the absorptive part of the two-to-two cross

section, see (1.10)) for the s-wave (l = 0) contribution are:

ΓQ=0 =
πα2

L

128M 2

(
31+4t 2

W +43t 4
W −22−4t 2

W +43t 4
W

−22−4t 2
W +43t 4

W 31+4t 2
W +43t 4

W

)

ΓQ=1 =
πα2

L

64M 2 (25+4t 2
W ) (1.46)

where we have used the shorthand notation cW = cosθW and tW = tanθW .

Analytic approximation

We can try to get some understanding of the Sommerfeld factors in the Higgsino case by

simplifying the potential (1.44)-(1.45) and using the analytical approximations detailed in

section 1.1.

We know that in the relic density calculation, freeze-out happens around x ∼ 25 corresponding

to a peak in the velocity distribution around β ∼ 0.2. For a TeV Higgsino with order GeV

splitting, the threshold for χ+χ− happens at around βth ∼ 2×10−2 so we can safely neglect δm

in front of the electroweak potential. Also we expect the SU (2)L potential to dominate, since

gL > gY and we are before the point where the Sommerfeld factor from a Yukawa potential

begins to saturate. So we will take the limit δm → 0 and sinθW → 0 in the potential (1.44). In

this simple limit, the potential matrix in the Q = 0 sector can be diagonalized:

VQ=0(r ) = R

(
1
4 0

0 −3
4

)
RT αL

r
e−MW r where R = 1p

2

(
1 1

−1 1

)
(1.47)

yielding one attractive channel and one repulsive channel. Then we can use the approximate

analytical result (1.16) to estimate the Sommerfeld factors.

The largest Sommerfeld factors come from attractive potential so the important channel is

the attractive one with effective coupling 3
4αL = 0.025. We can estimate the Higgsino mass at

which a divergent Sommerfeld factor is predicted using equation (1.17) and we get the first

resonance at M = 4kmW
3αL

= 5.25 TeV. When switching on sinθW and δm, the position of the
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology

resonance has to be computed numerically, see figure 1.3.

For the one dimensional potential (1.45), one can directly use the approximation (1.16) with

MV = mZ and αeff =αL
2c2

W −1

4c2
W

= 0.006, a repulsive Yukawa potential.

1.3.2 Relic density calculation

Neglecting the mass splitting and all SM particle masses with respect to the large dark matter

mass M , we get the following tree-level annihilation cross-section in the center of mass frame,

in the non-relativistic limit:

σ(χχ̄→ SM) = π

256M 2β

[(
81α2

L +12αLαY +43α2
Y

)−(
90α2

L −12αLαY + 158

3
α2

Y

)
β2 +O(β4)

]
(1.48)

where β is the dark matter velocity in the centre-of-mass frame of the annihilating states.

Using this annihilation cross-section and the formula in appendix (A.2), one finds that for

M = 1.1 TeV, the Higgsino model reproduces the correct DM relic density.

Now we can use our analytic approximation of the Sommerfeld factors to compute the Hig-

gsino relic density for different masses. The result is plotted on figure 1.5; we see that Sommer-

feld enhancement is completely negligible at all masses. This is confirmed by the numerical

calculation with the full potential but is not plotted on the figure because the three lines would

be almost superimposed. In conclusion, Sommerfeld enhancement has a negligible effect on

the relic mass of the nominal Higgsino DM with δm = 344 MeV, which remains unchanged at

M = 1.1 TeV.
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Figure 1.5 – Relic density for a thermal Higgsino as a function of Higgsino mass. We show
the standard tree-level perturbative result for the l = 0 channel (blue dashed line), and the
corresponding result including the non-perturbative effect computed using the analytical
Sommerfeld factor in the sinθW ,δm → 0 limit (red dashed line), as described in the text.

In the previous paragraph, we predicted a resonance in the Sommerfeld factors at 5.25 TeV but

it has no visible effect on figure 1.5. In the full potential, this resonance is located at 6.4 TeV

but also has no effect on the relic density: the Sommerfeld factor becomes very large only at
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1.3. Higgsino DM

low velocities where the thermal distribution is very suppressed.

1.3.3 Direct detection constraints

Because it has a non-zero hypercharge, the Higgsino doublet has a direct coupling to the Z

boson and a scattering cross-section on nuclei around 10−39 cm2, several orders of magnitude

larger than the limits imposed by direct detection experiments [26]. This means that the MDM

doublet model is completely excluded as a DM candidate.

A way around this is to assume that the neutral state χ0 has a mass mixing with a neutral

Majorana state that splits the Dirac fermion into two Majorana fermions χ1 and χ2. The

lightest stateχ1 is the DM candidate and has no diagonal Zχ1χ1 coupling. This scenario occurs

naturally in the MSSM where the neutral Higgsino components mix with the Bino and neutral

Wino, resulting in the mass splitting (1.34). Then the direct detection process goes through

the off-diagonal Z -coupling and is the inelastic reaction: χ1N →χ2N . If Mχ2 −Mχ1 ≥ 350 keV

or so (depending on the nucleus), this process is kinematically forbidden and cannot be seen

in direct detection experiments [27]. In the remainder of this work we will be assuming that

such a neutral splitting is present, and is large enough to avoid direct detection constraints,

but has a negligible effect on our Sommerfeld calculations. The effect of the neutral splitting

on Sommerfeld enhancement is studied in [28].

1.3.4 Indirect detection constraints

At present day, only neutral Higgsino remain in the universe as DM so the process relevant for

indirect detection is χ0χ̄0 → SM. Today, the velocity of the DM halo in our galaxy is very low,

around β= 10−3 thus Sommerfeld effect is more important than in the relic case. However, we

are in the very low velocity regime so we cannot trust the analytical approximation we used

earlier.

In order to compute the cross-section to gauge boson, we separate the corresponding annihi-

lation matrices:

ΓW W = πα2
L

16M 2

(
1 1

1 1

)
ΓZ Z = πα2

L

32M 2 cos4θW

(
(1−2sin2θW )4 (1−2sin2θW )2

(1−2sin2θW )2 1

)
(1.49)

and the decay to photons happens only at loop level.

We find that Sommerfeld enhancement is important and give a large boost to the annihilation

cross-section but it still remains a factor 20 or so below the HESS and Fermi limits.
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology

1.4 Wino DM

1.4.1 Sommerfeld enhancement

In the Wino case, there is no notion of DM particle or antiparticle, the relevant annihilation

cross-section is χaχb → SM. The triplet χa contains the states (χ+,χ0,χ−) so there are 9

different possible initial states. Here also all initial pairs do not mix by exchange of electroweak

gauge bosons and the potential can be split in five different sectors depending on the total

charge Q and total spin S [25]:

• S = 0 , Q = 0. (This is the only sector containing mixing between two different two-

particle states χ+χ− and χ0χ0):

ΓS=0
Q=0 =

πα2
L

9M 2

(
3

p
2p

2 2

)
V S=0

Q=0 =
(

2δm − A −p2B

−p2B 0

)
(1.50)

• S = 1 , Q = 0 (χ+χ−):

ΓS=1
Q=0 =

25πα2
L

36M 2 V S=1
Q=0 = 2δm − A (1.51)

• S = 0 , Q = 1 (χ+χ0 and χ−χ0):

ΓS=0
Q=1 =

πα2
L

9M 2 V S=0
Q=1 = δm +B (1.52)

• S = 1 , Q = 1 (χ+χ0 and χ−χ0):

ΓS=1
Q=1 =

25πα2
L

36M 2 V S=1
Q=0 = δm −B (1.53)

• S = 0 , Q = 2 (χ+χ+ and χ−χ−):

ΓS=0
Q=2 =

πα2
L

9M 2 V S=0
Q=2 = 2δm + A (1.54)

where we have defined:

A = α

r
+ αLc2

W

r
e−MZ r and B = αL

r
e−MW r (1.55)

The annihilation matrices Γ are the ones appearing in equation (1.10) and are computed in

the limit of massless SM particles.
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Analytical approximation

As in the Higgsino case, at velocities relevant for the relic density calculation we expect the

Sommerfeld factors to be dominated by the SU (2)L part of the potential , and we can make an

analytical estimate of the Sommerfeld factors in the limit sinθW ,δm → 0. In the Q = 0,S = 0

sector the potential matrix can be diagonalized:

V S=0
Q=0(r ) = R

(
1 0

0 −2

)
RT αL

r
e−MW r where R = 1p

3

(
1

p
2

−p2 1

)
(1.56)

resulting again in one attractive channel and one repulsive channel. For all other sectors, we

only take the δm → 0 limit and approximate the Sommerfeld factor by the expression (1.16)

optained for the Hulthén potential.

We can already estimate the position of the resonances in the different attractive sectors using

equation (1.17). In the S0Q0 channel, the attractive Yukawa potential has an effective coupling

2αL so the first resonance is predicted to be at M = kmW
2αL

= 1.97 TeV. In the S1Q1 channel,

equation (1.17) gives: M = 3.94 TeV and in the S1Q0 channel M = 5.81 TeV. The first resonance

in the S0Q0 sector is close to the value of the Wino DM mass predicted by the perturbative

calculation and will be the most important one for Wino DM phenomenology.

When switching on the mass splitting δm, the position of the resonance shifts as shown in

figure 1.2; in the nominal case δm = 165 MeV the resonance lies at a higher mass M = 2.37 TeV.

1.4.2 Relic density

For the triplet Wino DM, the total annihilation cross section to SM particles in the nonrela-

tivistic limit (again neglecting SM masses and δm) is:

σ(χχ→ SM) = πα2
L

24M 2β

[
37−20β2 +O(β4)

]
(1.57)

Using only the perturbative result in the relic density calculation leads to a Wino relic mass

M = 2.2 TeV.

We compute the Wino relic density as function of the DM mass and plot the result on figure

1.6, showing the perturbative calculation, the analytical approximation detailed above and the

full numerical calculation (from [11]). We see that, unlike in the Higgsino case, Sommerfeld

enhancement has an significant effect on the Wino relic density, of order 40 %. The difference

with the Higgsino scenario comes from two features of the Wino model. First in the diago-

nalization of the potential matrices, we see that the attractive channel has a larger effective

coupling in the Wino case than in the Higgsino case resulting in overall larger Sommerfeld

factors. Second, the off-diagonal terms in the annihilation matrices are negative for the Hig-

gsino and positive for the Wino; in other words interferences between the charged and neutral
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channel are constructive for the Wino and destructive for the Higgsino. Including Sommerfeld

effect moves the Wino relic mass to Wino DM mass to M = (2925±15) GeV.

Moreover we see that the full numerical calculation and the analytical approximation are in

excellent agreement except in the region around the resonance in the S0Q0 sector (located at

M = 2.37 TeV for nominal δm = 165 MeV). The analytical formula underestimates the effect

of the resonance on the annihilation cross-section but it has a visible effect only in a narrow

window of one or two hundred GeV.

500 1000 1500 2000 2500 3000 3500

0.00

0.05

0.10

0.15

DM mass in GeV

Ω
D
M
h
2

Figure 1.6 – Relic density for thermal Wino DM as a function of Wino mass. We show the stan-
dard tree-level perturbative result for the l = 0 channel (blue dashed line), and the correspond-
ing result including the non-perturbative effect computed using the analytical Sommerfeld
factor in the sinθW ,δm → 0 limit (red dashed line), as described in the text. The solid orange
line shows the numerical result extracted from [11], corrected to include the one-loop running
of the gauge couplings.

1.4.3 Direct detection

In the Wino model, the DM candidateχ0 is a Majorana fermion and thus has no direct coupling

to the Z -boson. It can upscatter to χ± by exchange of a W ± but the charged neutral mass

splitting δm makes this process kinematically very suppressed. The lowest order scattering

χ0N →χ0N where N is a nucleon is through a one-loop bow diagram with two W exchange.

The resulting cross-section is still safely below experimental constraints.

1.4.4 Indirect detection

The current velocity of the DM halo in our galaxy is much smaller than the thermal velocity

at freeze-out so Sommerfeld enhancement is even more important. In order to compute

the present day annihilation to SM gauge bosons, we give the corresponding annihilation

matrices [25]:

ΓW W = πα2
L

4M 2

(
2

p
2p

2 4

)
ΓZ Z = πα2

L

M 2

(
cos4θW 0

0 0

)
(1.58)

The annihilation cross section for a pure Wino thermal relic with nominal splitting receives a

34



1.5. Effect of the mass splitting

significant boost from Sommerfeld enhancement, due to its proximity to a zero-mass reso-

nance, bringing it well above the bound from HESS, and comparable to that from Fermi-LAT.

Note however that the HESS bound is computed using the Einasto profile for the halo density,

which is cuspy towards the galactic centre, and using a cored profile would significantly relax

this constraint [29].

1.5 Effect of the mass splitting

Instead of considering δm as fixed by the electroweak loop contribution, we treat it as a new

parameter in the Higgsino and Wino model and investigate its effect on DM phenomenology.

Its effect on the Sommerfeld factor can be important, especially at low velocities such as

today’s indirect detection process.

1.5.1 Changing the Higgsino mass splitting

Effect on the relic density

We have seen that the Sommerfeld effect in the relic density calculation is dominated by

the SU (2)L part of the potential taking the δm → 0 limit. Thus, as long as δm is negligible

compared to the freeze-out temperature TF = M/xF ∼ 20 GeV, its effect on the relic density

calculation is negligible. This is true in the whole range of δm we are considering and we

conclude that the Higgsino relic mass value M = 1.1 TeV is robust and changing the splitting

from 0 to a few GeV does not change the relic calculation significantly. This is confirmed by

explicit numerical calculation for different values of the mass splitting.

The main effect of changing the mass splitting is to shift the position of the resonance from

the Yukawa attractive potential. In the nominal Higgsino case, it happens at M = 6.4 TeV.

Decreasing the mass splitting brings the resonance lower in mass; however on resonance

the boost in the Sommerfeld factor happens for velocities too low to significantly affect the

thermal averaged cross-section at freeze-out.

Effect on indirect detection signal

In the absence of low-velocity resonances in the Sommerfeld factor, the enhancement satu-

rates at a constant value and can be factorized out of the thermal average. The Sommerfeld-

enhanced annihilation cross section can then be computed by simply multiplying the tree-

level cross section by the value of the Sommerfeld factor at saturation. Provided saturation

occurs above β∼ 10−3, we will obtain equal annihilation cross section for both the galactic

centre and dwarf galaxies [30]. In the presence of Coulomb resonances however, this is no

longer the case, and we need to account for the spread in velocity of DM particles in calcu-

lating the thermally-averaged cross section. We do this by approximating the DM velocity

as a thermal distribution, centred at β= 10−3 (x = 106) for galactic signals, and β= 5×10−5
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology

(x = 4×108) for dwarf spheroidals.

In contrast to the relic calculation, Sommerfeld enhancement gives a large boost to the present

day annihilation cross-section of Higgsino DM to gauge bosons. From our previous discussion

in section 1.1, the Sommerfeld factors will receive a large enhancement in one of two scenarios:

first when the dark matter mass is close to the resonant mass where there is a zero-energy

bound state due to the Yukawa potential (this is the case for the thermal Wino with nominal

splitting); and second, for any dark matter mass, when a Coulomb resonance coincides with

the central value for the corresponding dark matter velocity distribution.

The first scenario, bringing the Yukawa resonance down to the relic mass M = 1.1 TeV seems

impossibile numerically (or requires very small splittings). The second scenario can only

occur when the mass splitting is tuned to be of order the Coulomb binding energy. We can

use the naive estimate in equation (1.20) to conclude that the indirect-detection signal due to

pure Higgsinos in the galactic centre will receive a large boost at splittings δm ∼ 9.0, 2.7 MeV,

due to Coulomb resonances with n = 1, 2. Similarly, solving for β∼ 5×10−5 we can estimate a

similar enhancement to the indirect-detection signal in dwarf galaxies at δm ∼ 8.4, 2.1 MeV.

For larger splittings, the annihilation cross-section to W W and Z Z will remain an order of

magnitude below the indirect detection bounds of HESS and Fermi-LAT [30].

This back-of-the-envelope estimate is borne out by the numerical results, presented in figure

1.7 for pure Higgsino mass close to the thermal relic value. For dark matter in the galactic

centre (left panel), the annihilation cross-section stays roughly constant as we decrease the

splitting until we reach δm ∼ 20 MeV. As we decrease the splitting still further we encounter a

very narrow peak near δm = 9 MeV that boosts the thermally-averaged cross section by two

orders of magnitude. As we decrease the splitting even further, the n = 1 Coulomb resonance

crosses the χ0χ0 threshold and we lose the enhancement. The same phenomenon recurs

around δm = 2 Mev, where we encounter the n = 2 resonance. For dwarf galaxies (right panel)

the picture is even clearer. The figure shows two large but very narrow peaks slightly shifted

in comparison to the ones for galactic centre measuremnts, but compatible with the values

predicted by the naive formula. Although these enhancements are large, they are well within

the limit due to perturbative unitarity constraints. From this we can conclude that for a pure

Higgsino thermal relic, charged-neutral mass splittings in the range δm ∈ [8.5 ,10.5] MeV and

[2,2.5] MeV are excluded by measurements of the indirect-detection cross-section by HESS.

Similarly Fermi-LAT observations exclude a very narrow region around δm = 8.5 MeV and

around δm = 2.1 MeV. These results are relatively stable under small variations in the Higgsino

mass.

Note that only dark matter states are including in computing the Sommerfeld factors, and

hence the resonance widths; we are therefore neglecting the broadening effect on the reso-

nance of direct decays to SM final states.

Here we tuned the splittings to these specific, small values in order to probe regions where

the effect due to Coulomb resonances is significant. One could instead envision a future

36



1.5. Effect of the mass splitting

1 5 10 50 100 500 1000

10-26

10-25

10-24

10-23

δm (MeV)

σ
β
in
c
m
3
s
-
1

1.1 TeV Higgsino σβ to WW+ZZ for β=10-3

Hess limit

1st EM

resonance

2nd EM

resonance

1 5 10 50 100 500 1000

10-26

10-25

10-24

10-23

δm (MeV)

σ
β
in
c
m
3
s
-
1

1.1 TeV Higgsino σβ to WW+ZZ for β=5×10-5

Fermi limit

1st EM

resonance

2nd EM

resonance

Figure 1.7 – Thermally-averaged annihilation cross-section to W W +Z Z for a thermal relic
Higgsino as a function of the charged-neutral splitting for: (left panel) galactic velocities
β = 10−3 and (right) dwarf-spheroidal velocities β = 5×10−5. The red dashed lines are the
experimental limits due to HESS (left) and Fermi-LAT (right), respectively, as taken from [30].
The nominal value for the splitting is shown as a large dot.

where indirect-detection signals are measured in galaxies and clusters at many different scales,

allowing us to ‘scan’ over a range of dark matter velocities in search of resonant effects.
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Figure 1.8 – Thermally-averaged annihilation cross section for 1.1 TeV pure Higggsino for some
discrete values of the charged-neutral mass splitting δm. The thermal average is computed
using a Maxwell-Boltzman distribution for the dark matter velocity, centred at varying x, in
order to mimic potential future measurements taken in galaxies and clusters of different scales.

We can study this possibility by computing the annihilation cross-section while varying the

effective x of the thermal velocity distribution used in the thermal averaging procedure, to

mimic results due to dark matter in clusters of different scales. In figure 1.8 we show the

variation of the sommerfeld-enhanced, thermally-averaged annihilation cross section for a

1.1-TeV pure Higgsino with x in the dark matter distribution (see equation (A.5)). The same

large enhancements at δm = 2.1, 9 MeV are also visible here, at x corresponding to the average

dark matter velocity in dwarf galaxies, and the galactic centre, respectively. As the splitting

grows, we see the resonance moving to lower values in x, corresponding to larger cluster

sizes. Measuring the continuum signal in galactic clusters with x ∼ 4×104, for example, would

allow us to probe Higgsino mass splittings δm ∼ 25 MeV. However increasing the splitting

moves the resonances to larger velocities, resulting in smaller enhancements which can be

37



Chapter 1. Sommerfeld enhancement and WIMP phenomenology

washed out in the thermal averae. The enhancement for 25 MeV splitting is just a factor of

5 at its maximum, whereas for nominal splitting there are many resonances that are rather

close together, and the enhancement is washed out entirely in the thermal average. For

nominal splitting Higgsino, the Coulomb resonances are just too narrow to give a significant

enhancement of the annihilation cross-section for the velocity spread of a realistic celestial

body.

In principle we should include thermal effects in the above computations, the main of which

would be to cut off the Coulomb enhancement in the charged channel due to the thermal

mass of the photon. We have verified that these have a negligible effect on the results quoted

above, and we omit them.

1.5.2 Changing the Wino mass splitting

Effect on the relic density

The Sommerfeld enhancement in the Wino thermal relic calculation is, as for the Higgsino

relic, dominated by the potential from the weak interaction and is well approximated by the

δm → 0 limit. We see on figure 1.6 that the analytical curve is a very good approximation for

the relic density outside of the resonance dip (around M = 2.37 TeV) where the relic density is

overestimated. Changing the mass splitting will not affect the analytical approximation but

will move the resonance, around which our approximation is not valid anymore.

For a thermal Wino relic we are always in the regime δm ¿ TF so we expect the analytic

prediction (matched by the numerical calculation for the nominal splitting δm = 165 MeV)

of M = 2.9 TeV to be valid for all values of the mass splitting as long as the resonance is not

located right at 2.9 TeV. This happens for δm = 450 MeV; around this value we expect the relic

mass to change by order a few hundred GeV. We consider that this mass splitting is too large

for a realistic Wino model and we do not study this scenario further.

Effect on indirect detection signal

The present day annihilation cross-section for Wino DM with nominal splitting is very boosted

by the presence of the zero-energy bound state at M = 2.37 TeV. The precise value of the

cross-section is very sensitive to the position of the resonance and how close it is from the

relic value M = 2.9 TeV.

Decreasing the charged-neutral splitting from the nominal value should shift the resonant

mass to lower values, further away from the thermal relic mass, thus decreasing the annihila-

tion cross section. As the mass splitting gets smaller still, below δm ∼ 20 MeV, as estimated

from equation (1.20), the first Coulomb resonance will come into play, again resulting in an

enhanced cross section.
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Numerical results for the thermally averaged annihilation cross-section for pure Wino mass

around the thermal relic value are shown in figure 1.9. As before, dark matter today is taken

to have a thermal velocity distribution centred on β= 10−3 for galactic centre measurements

(left panel) and β = 5×10−5 for Fermi-LAT measurements (right panel). As argued above,

we see a range of intermediate splittings δm ∈ [20,55] MeV for HESS measurements and

δm ∈ [15,200] MeV for Fermi-LAT, for which the annihilation cross section is smallest. Above

this value, there is a large enhancement due to a zero-energy bound state held together by

the Yukawa potential; below this value the enhancement is due to a Coulomb resonance. In

this window the cross-section is around a factor of two below the HESS limit, well into the

uncertainty band of the J-factor [31]. Varying the relic mass results in a small shift of this

window.
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Figure 1.9 – Thermally-averaged annihilation cross-section to W W +Z Z for a thermal relic
Wino as a function of the charged-neutral mass splitting for: (left panel) galactic velocities
β = 10−3 and (right) dwarf-spheroidal velocities β = 5×10−5. The red dashed lines are the
experimental limits due to HESS (left) and Fermi-LAT (right), respectively, as taken from [30].
The nominal value for the splitting is shown as a large dot.

1.6 Conclusion

In this chapter, we studied the Sommerfeld effect from the long-range potential due to the

exchange of electroweak gauge bosons. We point out several features that are general to heavy

WIMP interacting through the SM electroweak gauge group and not limited to the Higgsino

or the Wino model. At high velocity βÀ mW
M , βth with βth given by (1.18), the Sommerfeld

effect is well approximated by taking only the SU (2)L limit of the potential for which we

have an (approximate) analytical expression. On the other hand, at low velocity Sommerfeld

factors have to be computed numerically. Two important effects arise at low velocity: first, for

specific DM mass M , we approach a zero-energy bound state of the Yukawa potential and the

Sommerfeld factor grows to very large values. The position of these resonances are dependent

on the mass splitting and on the details of the full potential. Second, there are important

enhancement of the Sommerfeld factor at specific velocities below threshold. These can be

understood as χ+χ− bound states from the electromagnetic interaction. In practise there

are very narrow and they have physical effects only if the bound state energy EB ∼ α2M is
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Chapter 1. Sommerfeld enhancement and WIMP phenomenology

of the order of the mass splitting δm which requires some tuning between the electroweak

contribution to the mass splitting and the UV contribution.

From this, we can study the effect of varying the mass splitting δm on the phenomenology

of the DM candidate. At freeze-out, we are in the high velocity regime βÀ mW
M , βth and the

charged-neutral splitting can be neglected. Thus the relic mass is largely insensitive to the

value of δm, as long as δm ¿ TF ∼ M/25.

The story for indirect detection is much more interesting: for galactic velocities β∼ 10−3 and

lower for smaller bodies, the Sommerfeld factor is very sensitive to the presence of a resonance

M∗ close to the DM mass M as in the Wino case. In this case, changing the splitting δm

displaces the value of M∗ and can raise dramatically the annihilation cross-section if M∗ goes

close to M .

This is illustrated by the Wino triplet model where the present annihilation cross-section

with Sommerfeld enhancement for nominal splitting is above the HESS limit and comparable

to the Fermi-LAT limit (at least for the Einasto profile of the halo density) because of the

large enhancement due to the resonance located at M∗ = 2.37 TeV. Decreasing δm brings

the resonance down, further from the relic value M = 2.9 TeV and lowers the annihilation

cross-section below the HESS bound (see figure 1.9). We expect our conclusions to be valid for

other models of electroweak DM where this feature M∗ ≈ M happens such as for the scalar

triplet with zero hypercharge or the fermion quintuplet with zero hypercharge [25].

In the Higgsino model, the resonance M∗ lies very far above M = 1.1 TeV so the indirect

detection phenomenology is very different. The annihilation cross-section receives a much

smaller boost from Sommerfeld enhancement than in the Wino model because the resonance

is far away. Changing δm does not impact the Sommerfeld factors dramatically except for

specific masses where the DM velocity hits the Coulomb bound state (see figure 1.7) for which

the cross-section can gain two orders of magnitude. This happens for very low charged-neutral

splitting δm ∼ 9 MeV and δm ∼ 2 MeV.

Although interesting, these results suffer from theoretical and experimental problems. In order

to have such a small charged-neutral splitting while keeping the neutralino lighter, one needs

an unnatural tuning between the contribution of the UV physics and that due to electroweak

loop corrections. In the pure Wino case there is the additional complication that the leading

tree-level operator affecting the splitting has mass dimension seven; making this contribution

of the same order as the loop correction will require some strongly-coupled new physics.

On the experimental side, electroweak multiplets with very small charged-neutral splittings

will already be strongly constrained, perhaps even excluded, both by collider searches such

as [32], as well as by capture and decay/annihilation of the heavy state in dense objects like

the sun [33].

Instead we highlight the mechanism brought to light in this work which is rather generic, and

will apply in any scenario where the dark matter two-to-two scattering contains an inelastic
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channel to a final state with constituents that are acted upon by a long-range force. In analogy

with the electroweakino example detailed above, this will give rise to resonances that lie below

the energy threshold for final-state production due to the formation of ‘Coulombic’ quasi-

bound states, which are excited at specific incoming velocities of the annihilating dark matter,

thus enhancing the annihilation cross section. However in the pure electroweakino case both

the nominal charged-neutral splitting and the Coulomb binding energies are set by the same

interaction and are rather disparate in size, requiring a tuning to make the resonance velocities

relevant to existing measurements. This does not have to be the case more generally; the two

relevant quantities could be unrelated, or could be naturally of the same order, which would

automatically excite the Coulomb resonances at relevant velocities.
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2 Dark sector models

Instead of considering DM candidates interacting with the SM through the weak SU (2)L gauge

interaction, one can imagine that the DM candidate comes from a dark sector carrying no SM

charge. Then the dark sector can only interact with the SM via a SM neutral operator (often

called portal). In this case, the new particle need not to be heavy, it escaped experimental

detection because it has a very small coupling ε to SM particles. This direction of research

towards particles with very low coupling is called the intensity frontier and is typically probed

by fixed-target experiments which have higher luminosity than colliders.

Interestingly, there are only three SM singlet operators with dimension less than 4 that can

be built out of SM fields: Bµν (the hypercharge field-strength), H †H and ` · H leading to a

restricted dark sector phenomenology. Thus, in a renormalizable theory, the three possible

interactions between the dark sector and the SM are:

• Coupling to Bµν: in this case the dark sector contains at least a spin-1 field A′µ of field

strength F ′µν and coupled to the SM through the operator:

L = εBµνF ′
µν

A′ is called the dark photon.

• Coupling to H †H : the dark sector needs a scalar S and can couple to the SM via:

L = εH †H
(
mS +|S|2)

This is the dark Higgs, or Higgs portal.

• Coupling to `i · H : in this case, new fermions N j ′ can interact with the SM with the

following Lagrangian:

L = Fi j ′ `i ·H N j ′ + c.c.

The N j ′ are called Heavy Neutral Leptons (HNL) and behave like right-handed neutrinos.
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Dark sectors can also couple to the SM through higher dimensional operators such as aεµνρσFµνFρσ
where a is an axion-like particle, or εµνρσH †DµHVνBρσ for a vector particle V (Chern-Simmons

portal). However in this chapter, we will focus on the renormalizable interactions.

The interest in dark sector models has grown in recent years and significant efforts have been

made to recast the results of past experiments in terms of exclusion limits of various dark sector

models. These dark sectors could come from string theory or grand unified theories and can be

relevant for DM and baryogenesis (in the HNL case). Several experiments have been suggested

to probe dark sector models such as SHiP [34]. SHiP is a fixed-target experiment using the

CERN SPS 400 GeV. Other proposed experiments include FASER [35], CODEX-b [36] and

MATHUSLA [37]. These experiments take advantage of the LHC collisions and are designed to

detect long lived particles that would escape the LHC detector.

The goal of this chapter is to study the reach of a fixed-target experiment parasitic to a future

muon collider. A way to produce muons is to shoot a positron beam at a target with energy

tuned just above the muon threshold. The primary positron beam has to be extremely intense

to produce enough muons and can be used as a fixed target experiment simply by placing a

detector in the beam direction and shielded from the SM particles produced at the target.

We will first describe the phenomenology of three dark sector scenarios, first the dark photon

in section 2.1, then dark Higgs models in section 2.2 and HNLs in section 2.3. In section 2.4

we study the reach of such an experimental setup for the three benchmark models presented

before.

2.1 Dark photon

2.1.1 Simplified model

We consider the SM augmented with a dark sector charged under a U (1)D gauge group. The

associated force carrier is the vector field A′0
µ with a mass term mA′ coming for example from

another Higgs mechanism. The only interaction between the SM and the dark sector is from

the mixing of the dark field strength with the U (1)Y field strengh. The full Lagrangian of the

theory is given by:

L =LSM − 1

4
F ′0
µνF ′0µν+ m2

A′

2
A′0
µ A′0µ+ gD A′0

µ JµD + εY

2
B 0µνF ′0

µν (2.1)

where εY is constrained by experiment to be a small number. After electroweak symmetry

breaking, the mixing term becomes, in terms of the SM fields A0
µ and Z 0

µ:

εY

2

(
cosθW F 0µν− sinθW Z 0µν)F ′0

µν (2.2)
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2.1. Dark photon

In order to remove these mixing terms at first order in εY , one can make the following field

redefinitions: Aµ = A0
µ−εY cosθW A′0

µ

A′
µ = A′0

µ +εY sinθW Z 0
µ

(2.3)

However, this reintroduces a mixing in the mass term
m2

A′
2 A′0

µ A′0µ between A′
µ and Zµ. In order

to avoid those terms, one has to simultaneously diagonalize the kinetic and mass matrix. This

can be done by replacing the previous transformation by the following one:
Aµ = A0

µ−εY cosθW A′0
µ

Zµ = Z 0
µ−εY sinθW

m2
A′

m2
Z−m2

A′
A′0
µ

A′
µ = A′0

µ +εY sinθW
m2

Z

m2
Z−m2

A′
Z 0
µ

(2.4)

Then writing the current terms e A0
µ Jµem + gZ Z 0

µ JµZ + gD A′0
µ JµD with the physical fields give rise

to new couplings compared to the SM ones:

L =LSM −eεY cosθW A′
µ Jµem − gZ εY sinθW

m2
A′

m2
Z −m2

A′
A′
µ JµZ

+ gDεY sinθW
m2

Z

m2
Z −m2

A′
Zµ JµD (2.5)

• The dark photon A′
µ is coupled to the electromagnetic current with strength εY cosθW ×

e ≡ εe. This coupling is the one relevant for our study and permits us to produce dark

photons from SM particles.

• The dark photon also couples to the Z -current but in the limit mA′ ¿ mZ , this is further

suppressed by a factor m2
A′/m2

Z . In beam dump experiments, the available energy is

much below the Z -mass and so we will neglect this coupling.

• The Z -boson gets a coupling to particles in the dark sector with strength gD ×εY sinθW .

This can open new decay channels for the Z → invisible channel depending on the

particle content of the dark sector.

In what follows, in order to study the reach of different experiments, we will consider a

simplified model where the dark photon is the only new particle. There is no particle in the

dark sector, or they are too massive to be produced. We keep only the dark photon with mass

mA′ and interacting with charged particles with strength ε× eQ. We will focus on the mass

range 1 MeV to 10 GeV relevant for fixed-target experiments so the couplings inherited from

the mixing with the Z -boson can safely be neglected. Our benchmark model contains only

two free parameters: the dark photon mass mA′ and its coupling to the SM ε.
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Chapter 2. Dark sector models

2.1.2 Dark photon lifetime

In a generic model, the main decay channel of the dark photon is to dark particles of mass mD

such that 2mD < mA′ . The width to dark sector particles goes like αD whereas all SM decay is

suppressed by a factor ε2. The decay to a pair of Dirac fermions χ has a width:

Γ(A′ →χχ̄) = αD mA′

3

(
1+

2m2
χ

m2
A′

)√√√√1− 4m2
χ

m2
A′

(2.6)

However in our benchmark model there are no dark particles and the only decay channels are

to SM particles. The decay to leptons is straightforward to compute:

Γ(A′ → `+`−) = ε2 × αmA′

3

(
1+ 2m2

`

m2
A′

)√√√√1−
4m2

`

m2
A′

(2.7)

The decay width to quarks gets important non perturbative QCD contributions and cannot be

computed in the same way but can be deduced from the spectral fuction extracted from the

measurement of the ratio Rhad = σ(e+e−→hadrons)
σ(e+e−→µ+µ−) . Then the hadronic width is given by:

Γ(A′ → hadrons) = ε2 × αmA′

3

(
1+ 2m2

`

m2
A′

)√√√√1−
4m2

`

m2
A′

Rhad(s = m2
A′) (2.8)

Taking the measurement from the PDG, we get the lifetime of the dark photon as function of

its mass plotted in figure 2.1. The large dips around 0.7 and 1 GeV are due to the QCD ρ,ω and

φ resonances. In a concrete model, this picture can be significantly modified by the presence

of light states in the dark sector; however this curve is an upper bound for the lifetime of the

dark photons since the decay channels to the SM do not depend on the details of the dark

sector.

For even lighter dark photon mA′ ≤ 2me , the decay channel to electrons is not kinematically

accessible. The main SM decay channel is A′ → 3γ (as the decay to two photons is forbidden by

the Lee-Yang theorem) and in the limit mA′ ¿ me can be computed from the Euler-Heisenberg

Lagrangian, giving the result [38]:

Γ(A′ → 3γ) = ε2 × 17α4

273653π3

m9
A′

m8
e

(2.9)

The full 1-loop result around the electron threshold is given in [39].

The other decay channel to neutrinos A′ → νν acquired by the mixing with the Z boson is

suppressed by ε2 ×m4
A′/m4

Z and is given by

Γ(A′ → νν̄) = ε2 × α

2cos4θW

m5
A′

m4
Z

(2.10)
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Figure 2.1 – Dark photon lifetime factoring out the ε−2 dependence in meters as function of
mA′ in GeV. The first kink is the muon threshold, the two dips at 0.7 and 1 GeV are due to
hadronic resonances.

These two decay channels are negligible above the threshold mA′ ≥ 2me and will play no role

in our analysis.

2.1.3 Experimental probes

Beam dump experiments

In the mass range 1 MeV ≤ mA′ ≤ 1−10 GeV, the most stringent constraints on dark photon

models come from beam dump experiments. The main features of these experiments are

as follows: a beam of electrons or protons is directed against a target, producing copious

amounts of particles through QCD and EM interactions. A shield behind the interaction point

blocks the charged and hadronic particles and a detector is placed after the shield. Dark

photons (or other weakly interacting particles) produced in the collision or from secondary

decay of SM particles will fly through the shielding and with some probability decay back to

SM particles in the detector. The signal consists in a pair of charged particles appearing out

of nothing in the detector with constant invariant mass. The main SM background comes

from neutrinos which are not stopped by the shielding and can scatter through the process

ν`N → `N ′ creating a charged lepton. Also residual muons can travel through thick shielding

and be seen as lines in the detector tracker.

Assuming that the detector has a length L and is located at a distance D from the interaction

point, the number of dark sector particles decaying in the dectector is given by the following

formula:

Nobs =Lσe
− D

ld

(
1−e

− L
ld

)
Rvis (2.11)

where
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• L is the luminosity and depends on the machine characteristics.

• σ is the dark photon production cross-section. Since the new state couples to SM

particles with strength ε, we have σ∝ ε2.

• ld is the decay length of the dark photon. For a dark photon of mass mA′ and boost

factors β and γ, the decay length is given by:

ld = βγl0

ε2 (2.12)

where l0 is the decay legth in the rest frame for unit ε given in figure 2.1.

• The first exponential gives the probability of the dark photon surviving the distance D

until the detector. The second factor is the probability of the dark particle to decay into

the detector of length L.

• Rvis is the branching fraction to visible decay product, including detection efficiency.

The reach of the experiment at small ε is limited by the small number of dark particles pro-

duced (Lσ∝ ε2) and the long lifetime of the particle: most of them fly through the detector

without decaying. The first exponential goes to 1 and after expanding the second exponential

we get:

Nobs ∼Lσ
L

ld
Rvis ∝ ε4 (2.13)

In order to improve the reach of the detector in ε, we need a big increase in luminosity L or in

detector length L.

On the other hand, for large ε, the decay length becomes short and most of the dark photons

decay before reaching the detector: we are mostly limited by the distance to the interaction

point D . For large mixing, the number of observed events goes like:

Nobs ∼ ε2e−ε
2

(2.14)

A trade-off between a small distance D to increase the reach at large ε and a larger D for better

shielding in order to reduce the background is necessary in the detector design.

The main production mechanism from an electron beam is the radiation of a dark photon

particle from the electron, similarly to photon bremsstrahlung. The cross-section for this

process can be computed in the Weizsäcker-Williams approximation [40]. More details about

the approximation and the cross-section calculation will be given in section 2.4 and appendix.

For an electron beam of energy E0, the differential cross-section for producing a dark photon

A′ with energy E A′ and with a polar angle θA′ compared to the incoming beam is:

dσ

d x d cosθA′
≈ 4α3ε2χ

E 2
0 x

U 2

[
2−2x +x2 + 2(1−x)2m2

A′

U 2

(
m2

A′ + xU

1−x

)]
(2.15)
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2.1. Dark photon

where x is the ratio x = E A′/E0, χ is a form factor depending on the target nucleus and the

kinematics and U is the virtuality of the intermediate electron in initial state radiation and is

given by:

U ≈ E 2
0θ

2
A′x +m2

A′
1−x

x
+m2

e x (2.16)

The electron propagator gives the U−2 factor and makes the A′ bremsstrahlung process

strongly peaked at x = 0 and at θA′ = 0. Most of the produced dark photons are collinear

to the incoming beam and a small detector opening is enough to capture most of the produced

dark states.

For a proton beam, the dark photon production mechanism are more diverse. To the similar

bremsstrahlung process, one must also add dark photons produced in secondary decays of

mesons produced by the strong interaction and direct production of A′ (such as qq̄ → A′).

However, the ε-scaling of the production rate and decay in the detector is the same as described

above so we do not give more details about the proton beam case.

A list of beam dump experiments using proton and electron beam with their main characteris-

tics is given in table 2.1 (for more details see for example [41]). The exclusion region in the

ε−mA′ parameter plane is plotted in figure 2.2 top and middle panel for electron beam dump

and proton beam dump respectively. As explained above, the upper reach in coupling ε is

very dependent on the distance to the interaction point D since for too large ε, the produced

dark photons decay before reaching the detector. On the other hand, the lower reach in

coupling mostly depend on the luminosity and on the detector fiducial length (2.13). In order

to improve the limits, one has to overcome the ε4 suppression in the number of events at low

coupling.

For the reach at high mass, the limit is a combination of kinematics and decay length of

the dark photon, the absolute limit being the center-of-mass energy of the primary collisionp
s =√

2E0mp . At small mass, the reach is limited by mA′ = 2me when the last visible decay

A′ → e+e− becomes kinematically forbidden. The only SM decay channel remaining is A′ → 3γ

but the dark photon is too long-lived to be seen in detectors.

Meson decay

The dark photon can also be searched in the decays of mesons involving a photon. In this

case, the reach in the mass of the new state is limited by the mass of the mother meson and

the reach in ε is limited the statistics and by the length of the detector. (Flavour factories are

very suited for this kind of searches,)

At CERN, the NA48 experiment [52] and at COSY the WASA experiment [53] searched for the

dark photon throught the process π0 → γA′ and subsequent decay A′ → e+e−. The width is
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Figure 2.2 – Dark photon model exclusion limits in the mA′ −ε plane. The grey area is excluded
by experimental data, with limits from electron beam dump experiments listed in table 2.1
highlighted in orange in the top panel (the limit from KEK is not shown because it is entirely
contained in the region excluded by Orsay and E137). In the middle panel, the exclusion
regions of proton beam dump are shown in red. In the bottom panel, exclusion limits from
meson decay (WASA, KLOE, NA48), e+e− colliders (BaBar, KLOE) and fixed target experiments
(APEX, A1) are shown.
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Experiment Beam Target Energy POT Dist to IP Length
E774 [42] e− W 275 GeV 5.2×109 0.3 m 2 m
E141 [43] e− W 9 GeV 2×1015 0.12 m 35 m
Orsay [44] e− W 1.6 GeV 2×1016 1 m 2 m
KEK [45] e− W 2.5 GeV 1.69×1017 2.4 m 2.2 m
E137 [46] e− Al 20 GeV 1.87×1020 179 m 204 m
CHARM [47] p Cu 400 GeV 2.4×1018 480 m 35 m
LSND [48] p H2O 0.8 GeV 30 m
U70 [49, 50] p Fe 70 GeV 1.71×1018 64 m 23 m

Table 2.1 – Summary of main beam dump experiments and their characteristics. The interpre-
tation of the results of electron beam dump experiments in terms of the dark photon model is
performed in [40, 51].

given by:

Γ(π0 → γA′) = 2ε2

(
1− m2

A′

m2
π0

)3

×Γ(π0 → γγ) (2.17)

The analysis is done assuming prompt dark photon decay, meaning at the interaction point,

which is only true for sufficiently large mixing parameter ε. On the other hand, unlike in beam

dump experiments, there is no upper limit to the reach in ε.

The KLOE detector [54] at the DAΦNE φ-factory searched for φ→ ηA′, and subsequent decay

A′ → e+e−. The exclusion limit from these experimental searches are plotted in figure 2.2

(lower panel).

Collider searches

Dark photons can also be directly produced in colliders and detected by their decay products

(usually lepton pairs). The process e+e− → γA′ was looked for by KLOE [55, 56] and BaBar [57]

by searching for a bump in e+e− → γ`+`−. No such bump was found, leading to the limits

plotted in figure 2.2 (bottom panel).

Anomalous magnetic moment

The dark photon contributes to the leptons anomalous magnetic moment by the same vertex

diagram than the leading QED effect. The resulting g −2 contribution is:

aDP
` = ε2 × α

2π
×

∫ 1

0

2z(1− z2)m2
`

(1− z)2m2
`
+m2

A′z
d z (2.18)
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This expression has the limits:

aDP
` →

mA′¿m`

αε2

2π
and aDP

` →
mA′Àm`

αε2

3π

m2
`

m2
A′

(2.19)

If ε is too large, the contribution to the electron anomalous magnetic moment would be

problematic. The region excluded by the measurement of ae is coloured in red in figure 2.3

and is independent at leading order of the decay channels of the dark photon.

Note that the dark photon contribution to the muon anomalous magnetic moment has the

correct sign to account for the longstanding ∼ 3σ discrepancy between the experimental

measurement and the theoretical calculation [58]. On the other hand, the experimental value

of the electron magnetic moment is about 2σ below the theory prediction, with the wrong

sign to be explained by the dark photon. So in our simple model, from equation (2.19), we

need to be in the regime mA′ ¿ mµ in order to have a large contribution to aµ and a negligible

one to ae .

When putting together experimental limits from beam dump experiments, meson decays and

collider searches, the entire region favored by the muon magnetic moment anomaly is ruled

out in the simplest dark photon model. Even if these constraints depend strongly on the decay

channels of A′ the dark photon solution is also ruled out by invisible decay searches. Only

a dark photon model with a larger coupling to the muon can solve the muon g −2 anomaly,

such as the dark photon coming from gauging the Lµ−Lτ symmetry.

Supernova cooling

An important astrophysical constraint on dark photon models comes from the observation of

the core-collapse supernova SN1987A in the Large Magellanic Cloud galaxy. The exclusion

curve obtained by the analysis [59] is plotted in figure 2.3.

In our current understanding of the supernova physics, most of the liberated energy (about

99%) is carried by emitted neutrinos. The expected neutrino burst obtained by SM simulations

of the collapse is in good agreement with the observed events at the neutrino observatories

Kamioka, IMB and Baksan. However, the presence of long-lived dark sector particles coupled

to the SM with a sizeable production rate and able to free-stream out of the core provides

an energy-depleting mechanism competing with the neutrino. Despite large astrophysical

uncertainties, the energy loss through other means than neutrinos is severly constrained by

SN1987A.

For a dark photon of mass smaller than the supernova temperature (about 10 MeV), its

coupling to the SM ε must be either small enough so that its production during the supernova

is negligible or large enough such that the scattering on SM particles traps them efficiently in

the core, reprocessing their energy to SM neutrinos.
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Figure 2.3 – Dark photon model excluded parameter space in the mA′ −ε plane. The exclusion
region from beam dump experiments, NA48, BaBar and KLOE are shown. The blue region is
the limit from SN1987A and the red region is excluded by the measurement of the electron
magnetic moment.

Invisible dark photon decay

The experimental limits presented above can be significantly weakened if the dark photon

decays mostly to invisible states, diluting the detectable SM decays. If the dark sector contains

a state χ kinematically accessible, the decay A′ → χχ̄ (given in the fermion case by (2.6))

dominates. Only the limits from the anomalous magnetic moment are independent from A′

lifetime. There are two main search strategies in this case that are briefly summarized below.

• Search for χ scattering: the setup is similar to the beam dump setup. Dark photons are

created by a beam on a target and subsequently decay to χχ̄ pairs. The dark particles can

then scatter on nuclei via A′ exchange χN →χN similarly to DM direct detection exper-

iments. This process being doubly suppressed by ε2 (A′ production and χN scattering),

it requires an intense primary beam to maximize the luminosity. The interpretation of

the E137 experiment in terms of invisible A′ decay is performed in [60]. Note that the

limits now depend on 4 parameters ε,mA′ ,αD ,mχ.

• Meson decay to invisible: bumps can be searched in decays of mesons with missing

energy. The analysis of BaBar searches forΥ→ γA′ with invisible A′ decay was done first

in [61] and refined in [62]. Also the measurement of the kaon rare decay K + →π+νν̄ can

place limits on the decay K + →π+A′ with on-shell dark photon [61]. These limits are

independent of the content of the dark sector can be cast in the mA′ ,ε plane.
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2.1.4 Theory motivations for the dark photon

String and GUT theory

From the top-down perspective, additional U (1) gauge groups can appear from string theory.

Predictions from string theory are difficult to make because of the large number of string vacua,

however in contrete models certain features such as axions [63], extended gauge sectors and

additional U (1)s [64], additional scalars, arise commonly from string compactification. Also,

the breaking of larger gauge groups in grand unified theories (GUT) often leads to additional

gauged U (1)s, from example in SO(10) [65]. Then integrating out heavy particles coupling

both to the SM and to the additional U (1) generates the ε mixing.

If additional gauged U (1)s appear easily in theoretical construction, there is no generic pre-

diction of the mass mA′ and coupling ε of the dark photon. From this perspective, there is no

compelling reason for mA′ to be in the GeV range.

Dark matter

An interesting scenario would be to have the DM candidate in a dark sector, carrying no SM

charges and interacting with the SM only through by the dark photon. As we have seen in the

previous section, electroweak WIMP dark matter have masses in the TeV range, fixed by the

strength of the weak interaction. In order to have lighter DM, one need a new mediator with

smaller coupling constant. Direct detection constraints are evaded because of the smallness

of ε and because typical experiments like XENON loose sensitivity for light DM below a GeV.

We will consider here the very simple model with one Dirac fermion χ charged under U (1)D

and a dark photon mixing with the SM photon. A′ is unstable because of its coupling to the

SM but χ is stable by conservation of the dark charge and can be a DM candidate.

A simple possibility is to have DM density produced by the freeze-out mechanism. If mχ ≤ mA′ ,

then the main DM decay channel to SM particles is χχ̄→ f f̄ mediated by an off-shell dark

photon in the s-channel. The dark fermions start in thermal equilibrium with the SM and

decouple from the thermal bath when T ∼ mχ. The other possibility is that mχ ≥ mA′ , then

the decay χχ̄→ A′A′ is much more efficient than the one to SM particles. This reaction sets

the relic abundance at decoupling and all the produced dark photons eventually decay to SM

particles.

In the first case mχ ≤ mA′ , the annihilation cross-section is given in the non-relativistic limit

by:

〈σβ〉 = 4πε2αDα

√√√√1−
m2
`

m2
χ

2m2
χ+m2

`

(4m2
χ−m2

A′)2
≈ 8πε2αDα

m2
χ

m4
A′

(2.20)

for m` ¿ mχ ¿ mA′ (here the annihilation is given for one lepton only, one has to sum

over the available SM decay channels). In order to get the correct relic density, one needs
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〈σβ〉 ≈ 3×10−26 cm3s−1 which is possible for light mχ and mA′ .

In the second case mχ ≥ mA′ , the annihilation cross-section does not depend on ε and reads:

〈σβ〉 = πα2
D

2m2
χ

(2.21)

in the limit mχÀ mA′ . The only constraint on ε comes from A′ being in thermal equilibrium

with the SM for the formula to hold. To reproduce the correct relic abundance, the dark matter

mass needs to be mχ ∼αD ×20 TeV, in the TeV range for SM-like coupling.

Light mediators can help address some astrophysical anomalies. The PAMELA experiment [66]

reported an excess in the positron flux from space at energies E > 10 GeV while the antiproton

flux does not show any anomaly. This was latewr confirmed by the measurement of AMS [67].

A model with a light mediator mA′ ≤ mp can explain the DM annihilation χχ̄→ A′A′ followed

by A′ → e+e− producing positrons but no antiprotons. Also a mediator in the 1-100 MeV range

can explain the 511 keV line from the galactix center measured by INTEGRAL [68]. However, it

is not clear if these anomalies can be explained by more conventional astrophysical sources.

2.2 Dark Higgs

2.2.1 Simplified model

We consider the SM with an additional singlet CP-even scalar S. This scalar could come from

supersymmetry or be the field giving mass to the dark photon presented before via a Higgs

mechanism. As a simplified model, we consider only the singlet S. In this case, the most

general renormalisable Lagrangian is:

L =LSM + 1

2
∂µS∂µS + (λ1S +λ2S2)H †H +V (S) (2.22)

In this case, the interaction of the new scalar with the SM goes only through the operator H †H .

The phenomenology of this new singlet is very different if the linear mixing λ1 is present or

not. In the first case, the new scalar mixes with the SM Higgs boson and inherits its couplings

to SM fermions and gauge bosons suppressed by the mixing angle. In the second case, if a

Z2-symmetry forbids the linear term, the scalar does not mix with the Higgs and can only be

pair produced from SM states (note that however if S develops a vacuum expectation value

the term S2H †H also induces a linear mixing). We will first describe in detail the first scenario

with a linear mixing and say a few words about the second scenario at the end of this section.

After electroweak symmetry breaking, the Higgs-S quadratic terms are given in the unitary

gauge by:

Lm = 1

2
m2

hh2
0 +

1

2
m2

SS2 +λ1vSh0 (2.23)
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where v/
p

2 is the H vacuum expectation value, v = 246 GeV in the small mixing limit. Diago-

nalizing the mass matrix, as: (
h0

S

)
=

(
cosθ sinθ

−sinθ cosθ

)(
h

hD

)
(2.24)

with h the physical Higgs boson and hD the new scalar (dark Higgs), we get the mixing angle:

tan2θ =− 2vλ1

m2
h −m2

S

(2.25)

which in the limit mS ¿ mh and λ1 ¿ v is a small parameter and is approximatively given

by: θ ≈ −λ1v/m2
h . The couplings of the dark Higgs to SM fermions are the same as the

standard Higgs suppressed by the angle sinθ and in particular are proportional to the fermion

mass: ghD f f̄ = sinθm f /v . In what follows we will call ε≡ sinθ the parameter controlling the

coupling strengh of the new scalar to the SM and study the phenomenology of the model

in the parameter plane (mS ,ε). Only for experiments at energies above the weak scale does

the precise form of the potential V (h,S) matters and more parameters describing the h −S

couplings are needed.

2.2.2 Dark Higgs lifetime and decay

The dark Higgs S essentially behaves like the SM Higgs boson with couplings suppressed by a

factor ε. Thus the studies on the Higgs lifetime before its mass was known are relevant for the

dark Higgs lifetime. Just as for the dark photon, we are looking at a simplified model where the

new scalar cannot decay to dark sector states but a neutral scalar mixing with the Higgs will

have at least the following decay channels.

The decay to a lepton pair is straightforward to compute:

Γ(S → `+`−) = ε2 × m2
`

mS

8πv2

(
1−4

m2
`

m2
S

) 3
2

(2.26)

but the decay to quarks is more difficult to estimate because of the complex hadronic reso-

nances. If S is very massive, one can use the spectator quark approach and get:

Γ(S → qq̄) = ε2 ×
3m2

q mS

8πv2

(
1−4

m2
q

m2
S

) 3
2

(2.27)

and

Γ(S → g g ) = ε2 × αs(mS)2m3
S

8π3v2

∣∣∣∣∣∑q
I

(
m2

q

m2
S

)∣∣∣∣∣ (2.28)

where the function I is a loop function given below in equation (2.30). For mS between the

two pion threshold and approximatively 2 GeV, we refer to the prediction of [69].
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In the case of a very light scalar, mS < 2me , the only possible decay channel is to photons. We

give the formula for completeness:

Γ(S → γγ) = ε2 × α2m3
S

16π3v2

∣∣∣∣∣NC
∑
q

Q2
f I

(
m2

q

m2
S

)
− IW

(
m2

W

m2
S

)∣∣∣∣∣ (2.29)

where the loop functions are

I (z) =2z +2z(1−4z)arcsin2 1

2
p

z
(2.30)

IW (z) =1

2
+3z +6z(1−2z)arcsin2 1

2
p

z

coming respectively from a triangle loop of fermions and of W bosons.

2.2.3 Experimental probes

Meson decay

The dark higgs can be produced in decays of heavy mesons. In particular, the presence of

the scalar can lead to large enhancement of rare flavour-changing decays such as K →πS or

B → K S coming from the penguin diagrams. Integrating out the W boson gives an effective

di d j S operator [70]:

Leff = ε×
3g 3

L

128π2

mi m2
t

m3
W

V ∗
t j Vt i d̄ j Ldi R S +h.c. (2.31)

where i , j are family indexes and i > j . The factor mi comes from the helicity flip (we have

neglected the term proportional to m j ) and the factor m2
t comes from GIM mechanism: all

terms independent from mk the mass of the up-type quark running in the loop come with

a factor
∑

k V ∗
k j Vki which is zero from CKM unitarity. Thus the similar operator involving

up-type quarks is further suppressed by a factor m2
b/m2

t and is negligible in the dark Higgs

phenomenology. The result (2.31) and the expressions for the K and B meson decay are

detailed in appendix B.2.

Several experiments measuring meson branching ratio can constrain the dark Higgs parameter

space. The kaon decay K ± →π±µ+µ− measured at NA48 and K ± →π±X at E949 are sensitive

to dark scalars in the kinematically accessible region. Similar B decays measured at Belle,

BaBar and LHCb B± → K ±µ+µ− give stronger limits because the CKM factor is larger and can

access higher mass. The excluded regions are lotted on figure 2.4.

Finally, the Υ decay Υ→ Sγ with subsequent decay S → `+`− can be searched for at BaBar.

Here the production of the dark Higgs goes through the direct coupling to b quarks.
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Beam dump experiments

Beam dump experiments are also sensitive to the dark Higgs. The general principle has been

discussed in section 2.1.3, however, unlike in the dark photon case, direct production of

S are suppressed by first-generation Yukawa coupling and are negligible. The main scalar

production mechanism is through secondary flavour-changing decay of mesons produced in

the collision such as K →πS and B → K S detailed in appendix B.2.

In this model, proton beam dumps have a distinct advantage over electron beam dumps as

they produce more mesons by QCD interactions. The most sensitive beam dump experiment

is CHARM, mainly through the secondary decay K →πS, its exclusion limit is plotted on figure

2.4.

Collider searches

At LEP, the Higgs was searched for in the Bjorken process e+e− → Z → Z∗H . The search results

can be recast as bounds on the dark Higgs model and are the best bound available for high

masses mS > mB −mK [71].

Figure 2.4 – Experimental limits on the Dark Higgs model in the mS −ε plane from beam dump
experiments (CHARM) and various meson decay measurements described in the text. This
figure is taken from reference [34].

2.2.4 Theory motivations

There are many theories with additional scalars such as Supersymmetry or two Higgs doublet

models. Scalars can also come from string remnants or from composite states of a strongly

coupled sector. If another scalar S exists, the only relevant operator with SM fields is SH †H
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so we expect this term to remain sizeable, even if it is generated at a very high scale. Again,

there is no prediction for the mass of the new scalar; in Supersymmetry and two Higgs doublet

models they are usually heavier than the Higgs boson and are out of reach of a fixed-target

experiment.

Similarly to the dark photon, the dark Higgs could be a mediator between the SM and a dark

sector containing a DM candidate. This can also give light DM or light mediators which can

explain the astrophysical anomalies mentionned before.

2.3 Heavy Neutral Leptons

2.3.1 The model

The last renormalizable way to couple SM neutral particles to the SM is through the operator

L̄H c where L is the left-handed lepton doublet. To manipulate Majorana fermions, we will in

this section switch to two-component spinor notation.

In the SM, the left-handed lepton doublet is described by the spinors L = (ν,e) carrying

SU (2)L ×U (1)Y charge (2,−1
2 ) and the right-handed charged lepton is described by the spinor

ē with charge (1,1). The kinetic and Yukawa terms in the Lagrangian are given by:

L = i`†σ̄µ∂µ`+ i ē†σ̄µ∂µē − ye`H †ē + c.c. (2.32)

where family indices have been suppressed and ye is a 3×3 matrix in family space. Setting H

to its VEV gives the mass term for the charged leptons:

LM =− ye vp
2

(
ēe + ē†e†

)
(2.33)

and the neutrinos remain massless. Here we are in the basis where the charged leptons are in

their mass eigenstate so the matrix ye is real and diagonal with mei = (ye )i i v/
p

2.

We now add SM-neutral two-components spinors Ni ′ with i ′ = 1, ...,n. In what follows, primed

indices run from 1 to n while unprimed indices are family indices. Since the N s carry no SM

charges, they can have a Majorana mass term (unlike the left-handed neutrino) and their only

renormalizable interaction with the SM is through a Yukawa term with left handed leptons:

L =LSM +N †
j ′σ̄

µ∂µN j ′ −Fi j ′`i ·H N j ′ − 1

2
Mi ′ j ′Ni ′N j ′ + c.c. (2.34)

where ` and H are contracted with an epsilon tensor.

We will call the N s heavy neutral leptons (HNLs) but they are sometimes called right-handed

neutrinos or sterile neutrinos (because they carry no SM charges, in contrast with the left-

handed neutrinos or active neutrinos). If n = 3, each SM left-handed neutrino gets its right-
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handed counterpart and the 3 families structure is retained.

After electroweak symmetry breaking, the Yukawa term gives a Dirac mass term mixing ν and

N on top of the Majorana mass term for the HNLs. The full active and sterile neutrino mass

matrix is then given by:

Mν =
(

0 Fi j ′
vp
2

(Fi j ′)T vp
2

Mi ′ j ′

)
(2.35)

where the Lagrangian mass term is given by LM =−1
2Ψ

T MνΨ+c.c. andΨ is the n +3 vector

Ψ=
(
ν N

)T
.

Below the HNL mass, one can integrate out the N s and get the following effective Lagrangian:

Leff =
1

4
Fi j ′(M−1) j ′k ′F j k ′ (`i ·H)

(
` j ·H

)+ c.c. (2.36)

which is precisely the Weinberg operator. A generic HNL model gives mass and oscillation to

the active neutrinos and gives rise to lepton number violation.

Toy model with one HNL

In order to better understand HNL phenomenology, we consider the toy model where n = 1.

The Lagrangian is given by:

L =LSM +N †σ̄µ∂µN −Fi `i ·H N − 1

2
M N N + c.c. (2.37)

and the neutrino-HNL mass matrix is explicitly:

Mν =


0 0 0 Fe v/

p
2

0 0 0 Fµv/
p

2

0 0 0 Fτv/
p

2

Fe v/
p

2 Fµv/
p

2 Fτv/
p

2 M

 (2.38)

with Mν defined by LM =−1
2Ψ

T MνΨ+ c.c. andΨ=
(
νe νµ ντ N

)T
.

We can diagonalize the matrix M †
νMν and get the square masses of the neutrinos and HNL.

Before proceeding, it is easy to see that the mass matrix above has rank 2, giving mass to one

neutrino and one HNL. In general, one needs n HNLs to give masses to n neutrinos (for n ≤ 3,

after that all active and sterile neutrino have mass). Since neutrino oscillation experiments

measure two different mass splittings ∆m2¯ and ∆m2
atm, the one HNL only (n = 1) toy model is

excluded by experiments. One needs at least two HNLs (in which case the lightest neutrino is

massless) in order to reproduce neutrino oscillation data.

The advantage of the n = 1 case is that the masses and mixings can be solved explicitly. If

U †M †
νMνU = D with U a unitary matrix and D = diag(m2

1,m2
2,m2

3,m2
4) a diagonal matrix with
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positive entries, the masses read:

m2
1 = m2

2 =0

m2
3,m2

4 =
1

2

[
|M |2 +∑ |Fi |2v2 ∓|M |

√
|M |2 +2v2

∑ |Fi |2
]

(2.39)

and the mixing matrix is given by the diagonalization matrix U . The matrix between neutrino

flavour eigenstates and mass eigenstates UPNMS (defined in equation (2.46)) is given by the

first three rows and columns of the full mixing matrix and is not in general a unitary matrix.

Only the full 4×4 mixing matrix is unitary.

In the case M À Fi v , one can naturally identify ν1,2,3 with the active neutrinos and ν4 with

the HNL. In this limit, the masses are:

m2
1 = m2

2 = 0 m2
3 ≈

v4

4|M |2
(∑ |Fi |2

)2
m2

4 ≈ |M |2 (2.40)

and we see that the mass of the active neutrino is inversely proportional to the mass of the

HNL M , hence the name seesaw mechanism. The mechanism presented here is called type I

seesaw. The ν4 state almost coincide with N but gets a small admixture of active neutrino νi

given to first order by:

|Ui 4|2 = v2

2|M |2 |Fi |2 ¿ 1 (2.41)

and so the massive HNL gets a small SM weak charge. This mixing allows us to produce the

heavy neutrino N from SM weak interactions and probe the parameter space.

With one Dirac HNL

Here we repeat the exercise with two fermions N and N̄ that can be combined in a Dirac

fermion. We have the following Lagrangian:

L =LSM +N †σ̄µ∂µN + N̄ †σ̄µ∂µN̄ −Fi `i ·H N̄ − 1

2
M N N̄ + c.c. (2.42)

from which we can see that we can assign lepton number +1 to N and −1 to N̄ and lepton

number is conserved. Thus the Weinberg operator cannot be generated by this model and

active neutrinos remain massless. One can check this explicitly by diagonalizing the mass

matrix:

Mν =


0 0 0 0 Fe v/

p
2

0 0 0 0 Fµv/
p

2

0 0 0 0 Fτv/
p

2

0 0 0 0 M

Fe v/
p

2 Fµv/
p

2 Fτv/
p

2 M 0

 (2.43)
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whereΨ=
(
νe νµ ντ N N̄

)T
. The resulting masses are:

m2
1 =m2

2 = m2
3 = 0

m2
4 =m2

5 =
1

2

[
|M |2 +∑ |Fi |2v2 +|M |

√
|M |2 +2v2

∑ |Fi |2
]

(2.44)

whith the three active neutrinos massless as advertised above and two same mass HNLs which

can be combined in a single Dirac fermion.

Simplified model

In our analysis, we will consider a simplified model where only one HNL is kinematically

accessible to the experiment. Other HNLs can be present but they are heavier than a few tens

of GeV. This model has four parameters, chosen to be the HNL mass MN and the three (small)

mixing angle with the active neutrinos Ui 4. We will in the analysis consider the three limiting

cases Ue =U14 6= 0,U24 =U34 = 0 (mixing with electron neutrino only), Uµ =U24 6= 0,U14 =
U34 = 0 (mixing with muon neutrino only) and Uτ =U34 6= 0,U14 =U24 = 0 (mixing with tau

neutrino only).

In the n = 1 case, the relation between the mixing angle U and the Lagrangian parameters Fi

is given by equation 2.41, for n ≤ 2 they are related by complicated roots resulting from the

mass matrix diagonalization.

Note that in the one HNL case, assuming that the neutrino masses and mixing come from

another mechanism, there is an upper limit on the mixing angle as function of the mass, else

its contribution to the neutrino mass is too large. If the resulting neutrino mass is smaller than

the atmospheric splitting ∆m2
atm = 2.46×10−3 eV2, then:

m2
3 ≤∆m2

atm ⇒ ∑ |Ui 4|2 ≤
√√√√∆m2

atm

M 2
N

= 5.0×10−11
(

1GeV

MN

)
(2.45)

which is a very small mixing angle for HNL masses in the GeV range.

This relation does not hold anymore for n ≥ 2 because contributions from different HNLs can

cancel each other. In what follows, we will consider the simplified model above with one sterile

neutrino N1 of mass in the MeV - GeV range and with mixing angle larger than the bound

2.45. One can interpret this model in two ways: either more massive HNLs are present but

kinematically inaccessible with correct masses and mixing angles to cancel the contribution of

N1 to active neutrino masses; or N1 is a Dirac fermion, in which case its contribution to active

neutrino masses is zero and another mechanism is responsible for neutrino oscillations.
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2.3.2 Neutrino oscillations

In the SM neutrinos are massless and the three family states (νe ,νµ,ντ) are defined by their

charged lepton (e,µ,τ) counterpart in the weak interaction doublet. However, experimental

results on neutrino oscillations show that these flavour states are not eigenstates of the full

Hamiltonian describing neutrino propagation. The mass eigenstates are denoted (ν1,ν2,ν3)

and are related to the family states by the relation:νe

νµ

ντ

=UPNMS

ν1

ν2

ν3

 (2.46)

where UPNMS (Pontecorvo-Maki-Nakagawa-Sakata) is a 3×3 complex matrix experimentally

consistent with a unitary matrix.

If UPNMS is a unitary matrix, it contains four physical parameters (six if neutrinos are Majorana

particles) usually taken to be three Euler angles (θ12,θ13,θ23) and a CP-violating phase δ (plus

two Majorana phases α1,α2). The parametrization is:

UPNMS =

 c12c13 s12s13 s13e−iδ

−c23s12 − s23c12s13e iδ c23c12 − s23s12s13e iδ s23c13

s23s12 − c23c12s13e iδ −s23c12 − c23s12s13e iδ c23c13

×

1 0 0

0 e iα1 0

0 0 e iα2

 (2.47)

with sab = sinθab and cab = cosθab .

Neutrino oscillations

This difference between the mass eigenstates and interaction eigenstates lead to neutrino

oscillations. The neutrino produced in the source are in a flavour eigenstate |ν`〉 but the

propagation states are the mass eigenstates |νi 〉. So after time t , the produced neutrino are in

the state:

|ν`, t〉 =U` j |ν j , t〉 =U` j e−i E j t |ν j 〉 =U` j e−i E j t |ν j 〉 =U` j e−i E j tU∗
`′ j |ν`′〉 (2.48)

where we have used that U−1 =U †. Then the transition amplitude from flavour ` to `′ is:

A``′(t ) = 〈ν`′ |ν`, t〉 =U` j e−i E j tU∗
`′ j (2.49)

and so the probability of going from flavour ` to `′ after time t is:

P``′(t ) = |A``′(t )|2 =U` jU∗
`′ jU∗

`kU`′k e−i (E j−Ek )t

=δ``′ +2Re

[∑
j<k

U` jU∗
`′ jU∗

`kU`′k e−i (E j−Ek )t

]
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∆m2
atm (eV2) ∆m2¯ (eV2) θ12 θ13 θ23 δ

NH (2.46±0.05)×10−3 (7.5±0.2)×10−5 33.5±0.8 8.5±0.2 42.3+3
−1.6 306+39

−70

IH (−2.45±0.05)×10−3 (7.5±0.2)×10−5 33.5±0.8 8.5±0.2 49.5+1.5
−2.2 254+63

−62

Table 2.2 – Summary of experimental values for the neutrino parameters (taken from [72]) in
the normal and inverted mass ordering.

where we again used the unitarity of U . Then we can rearrange:

E j −Ek =
E 2

j −E 2
k

E j +Ek
=

m2
j −m2

k

E j +Ek
≈

m2
j −m2

k

2E
(2.50)

valid in the limit mi ¿ E the neutrino beam energy. Then we get to the well-known formula:

P``′(t ) =δ``′ −4
∑
j<k

Re
[
U` jU∗

`′ jU∗
`kU`′k

]
sin2

(m2
j −m2

k )L

4E

−2
∑
j<k

Im
[
U` jU∗

`′ jU∗
`kU`′k

]
sin

(m2
j −m2

k )L

2E
(2.51)

which has two parts: one dependent on the different mixing angles and one oscillating term

depending on the square mass differences and the baseline length. In practise, one performs

experiments at E/L ∼ m2
j −m2

k one of the mass splittings in order to be able to resolve the

oscillations.

Neutrino parameters

The result of the global fit of all neutrino oscillation experiments [72] is presented in table

2.2. The absolute mass scale of the neutrino is not yet known (the lightest neutrino could

be massless) and the mass ordering is also unknown. There are two possibilities: normal

hierarchy (NH) where m3 > m1,m2 in which case ∆m2
atm = m2

3 −m2
1 and inverted hierarchy

(IH) where m3 < m1,m2 and where ∆m2
atm = m2

3 −m2
2. The Majorana or Dirac nature of the

neutrino is also not settled experimentally.

Neutrino anomalies

To conclude the quick review on neutrino oscillations, let us mention that although the

standard PNMS scenario explains very well numerous neutrino data in terms of two mass

splittings and three mixing angles, there remain some anomalies that cannot be explained by

this scenario.

The LSND anomaly [73] is the observation of an excess of ν̄e in a ν̄µ beam from pion decay

(π+ →µ+νµ and followed byµ+ → e+νe ν̄µ) where ν̄e are identified by the well-studied reaction
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ν̄e p → e+n. The excess of ν̄e compared to the prediction of the standard neutrino oscillation

picture (almost no oscillation because of the short travelling path of the neutrino beam) can

be interpreted as conversion of ν̄µ to ν̄e . The new mass splitting associated to this oscillation

is of order ∆m2 ∼ eV2, much larger than solar or atmospheric splittings.

The MiniBooNE experiment was designed to investigate the LSND anomaly in terms of neu-

trino oscillations with a beam of muon neutrino and anti-neutrino. MiniBooNE saw an excess

of νe at low energies [74], consistent with the oscillation interpretation of the LSND anomaly.

Moreover, recent reanalysis of older reactor neutrino data showed a deficit of observed ν̄e com-

pared to the expected flux at similar L/E [75, 76]. To finish, νe observations from radioactive

sources also hint at a deficit of electron neutrinos (“Gallium anomaly”).

Put together, these observations known as short-baseline anomalies are consistent with

a new mass difference in the eV range. Since the number of active neutrino is very well

measured by the Z boson invisible decay width, the new mass scale must come from a sterile

neutrino. On the other hand, the one HNL interpretation of the anomalies is in tension with

νµ dissapearance experiments at similar L/E which see no muon neutrino deficit. This seem

to favor models with two or three HNLs where CP-violation can explain the difference between

neutrino and anti-neutrino experiments (for more details on the sterile neutrino interpretation

of neutrino data see [77,78]). In any case, more experiments are scheduled to investigate these

anomalies.

2.3.3 HNL Lifetime

Due to the mixing with active neutrinos, HNLs are unstable and decay back to SM particles.

The widths of different HNL decay channels are reproduced from [79] in appendix B.3. The

lifetime of the HNL as function of the mass is slightly different depending on the mixing we

are considering, because of the difference in kinematics of the associated charged lepton.

The HNL lifetime computed from these formulas and their charged conjugate is plotted on

figure 2.5. The hadronic resonances are not taken into account so our estimate is probably

underestimating the decay width around 700 MeV - 1 GeV.

2.3.4 Experimental probes

Sterile neutrinos couple to SM particles through the (small) mixing angle with active neutrinos

due to the misalignment between flavour states and mass eigenstates. HNLs can thus be

probed through any weak interactions involving active neutrinos. N j ′ behaves just like an

active neutrino νi but with its couplings suppressed by the mixing angle Ui j ′ and with different

kinematics due to the different masses. The summary of current existing limits on the HNLs

considering the simplified model described before is plotted on figure 2.6.
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Figure 2.5 – HNL lifetime factoring out the |Ui |−2 dependence in meters as function of MN

in GeV. Three curves are shown for each of the three mixing assuming the two other mixing
angle are zero.

Peak and kink searches

Two-body leptonic decays of mesons P → `ν produces a neutrino and a charged lepton. If

there is a HNL N lighter than mP −m`, the process P → `N is also possible and suppressed by

|U`|2. Then we expect two peaks (or more if there are several HNLs in this mass range) in the

charged lepton spectrum measured in the meson rest frame, at:

E` =
m2

P +m2
`

2mP
and E` =

m2
P −m2

N +m2
`

2mP
(2.52)

for respectively a (almost) massless neutrino and a massive HNL. Searches for a second peak

in the lepton spectrum have been performed in the following decays: π→ eN at TRIUMF [80],

π→ µN , K → eN , K → µN at E949 [81]. In order to probe the tau mixing, similar decays

τ→πN , τ→ K N can be probed at B-factories.

In three body decays X → Y `(νor N ), the presence of an HNL results in a kink in the charged

lepton spectrum at the point where the sterile neutrino becomes kinematically accessible. For

very low HNL masses, one can use radioactive β decays of nuclei to probe the electron mixing

angle.

Fixed target experiments

HNLs can also be produced in fixed target experiments, primarily through leptonic and semi-

leptonic decays of hadrons since direct production is suppressed by the W mass. We refer

to [79, 82] for the expressions of the decay rates for various mesons and decay channels. Then

the HNLs produced at the interaction point can be detected by their SM decay channels listed

in section 2.3.3 (for example N → `+`−ν). Fixed target experiments are very powerful probes
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of HNL models for masses around a GeV but are limited by the meson masses produced at the

interaction point.

If HNL production and decay happens in one detector, the HNL signature is a displaced vertex,

with the HNL decay products coming out of nothing at some distance from the primary meson

decay point. The number of events is suppressed for small mixing as |Ui |4 (|Ui |2 from the

production rate and |Ui |2 for the decay within the detector volume).

Experiments of this type include B-factories searching for HNLs in B-meson decays such as

Belle [83] and LHCb [84].

The detector can also be placed far from the interaction point. The main advantage is the

possibility of shielding the detector from SM particles produced at the interaction point (and

thus use a more intense primary beam to get more events) at the cost of loosing information

on the production mechanism. The HNL signature is as before charged tracks appearing out

of nothing.

Beam dump experiments of this type include the Fermilab experiment NuTeV E813 [85],

FMMF [86] and the CERN experiments PS191 [87], NA3, CHARM [88], CHARM II [89, 90],

WA66 [91], NOMAD [92] as well as JINR [93].

Collider searches

HNLs heavier than a few GeV can be produced directly at colliders. The most stringent

bounds for masses below the Z -boson mass come from LEP-I searches of Z → Nν decays and

subsequent N decay. Analyses were performed by L3 [94] and DELPHI [95] and the obtained

limits are shown in figure 2.6.

For M ≥ mZ , LEP-II put bounds on HNLs by looking for direct production e+e− → Nν. The L3

collaboration searched for this process followed by the charged current decay N → `W and

W → jets [96, 97]. Here the reach in HNL mass is limited by the LEP-II center-of-mass collision

energy of
p

s = 208 GeV.

For even higher masses, limits are set by LHC searches for N production. The main anal-

ysis focuses on the process pp → W ∗ → N`+ followed by N → `+ j j (same sign dilepton

searches) and its charged conjugate. This process clearly violates lepton number and has

no SM background but it is possible only for Majorana HNLs. Such searches have been per-

formed at CMS [98] and ATLAS. In case of Dirac HNL, the similar process (opposite sign

dilepton) has too much SM background and the best search channel is the trilepton pro-

cess [99] pp → W ∗ → N`+1 and N → `−2 `
+
3 ν and charged conjugate. These bounds apply to

the electron and muon mixing but not for the third family mixing because of the difficult tau

reconstruction in hadron colliders.

At high mass, the present bounds from direct collider searches are less competitive than the
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indirect bounds from electroweak precision tests [100–102] (see figure 2.6). Even if HNLs are

not kinematically accessible, the presence of the mixing angle with active neutrinos reduces

the coupling of the W -boson to the neutrino νi by a factor (1−|Ui |2). This affects precision

observables such as the Z invisible decay width, the Z decay to leptons Γ(Z → ``) and the

lepton universality tests such as Rπ
eµ = Γ(π→ µν)/Γ(π→ eν). Also they affect the effective

value of GF measured from muon decay by cascade affect all other precision observables.

These bounds are relatively independent of the HNL mass and constitute the most stringent

bounds (and the only bound for the mixing to ντ) at high HNL mass above 100 GeV.

2.3.5 Theoretical motivations

The first motivation for the HNL model comes from neutrino masses. This model is renor-

malizable and can explain neutrino masses with the type-1 seesaw mechanism. As stated

before, at least two HNLs are necessary to fit the two mass differences measured by neutrino

oscillations. The short-baseline anomalies are further motivations for HNLs but it is difficult

to give a unique explanation to all anomalies with a simple HNL model.

From the top-down perspective, right-handed neutrinos appear in Left-Right symmetric

models to mirror the left-handed particle content. They also appear in some GUT theories

like SO(10) in order to fill the 16 dimensional representation.

The sterile neutrino can be a DM candidate [103] in the form of warm keV DM. In order for

the HNL to be stable on cosmoogical time scales, one needs a very small mixing to active

neutrinos. The neutrino mass differences are caused by two additional HNLs, much heavier

than the DM candidate and almost degenerate in mass. Interestingly, the model with 3 HNLs

can also explain the baryon asymmetry in the universe [104]. This extension of the SM is called

the neutrino minimal Standard Model (νMSM) and can solve three observations: neutrino

masses, dark matter and baryogenesis.

2.4 Our experimental setup

A muon collider would be very interesting for high energy physics [105, 106]. As electron

colliders it has the advantage over hadron collider of having cleaner events, less pileup and

QCD background. Also, for circular rings, the muon being heavier than the electron, it suffers

less from energy loss by bremsstralung and can be accelerated to higher energies. On the

physics point of view, the Higgs cross-section is much higher by a factor m2
µ/m2

e , allowing

for better statistics on Higgs properties. It could also test lepton universality and search for

models with new particles coupling only to the second and third family, motivated by the

muon g −2 anomaly, the proton radius puzzle or the B anomalies. The main disadvantage is

of course the muon finite lifetime which causes considerable technical difficulties.

The first step of a muon collider is the production of a muon beam whith a small energy spread.
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Figure 2.6 – Current experimental limits on the HNL simplified model assuming that one HNL
only is kinematically accessible. The top figure represents the case where only the mixing
angle Ue to νe is non zero. The middle figure is the case where only the mixing angle to the
muon neutrino is non zero. The bottom figure is assuming only a mixing to the tau neutrino.
The three figures are copied from the paper [34].

69



Chapter 2. Dark sector models

Muon beams are usually obtained from pion decay, with the meson produced by a proton

beam on target. This requires a muon cooling system to focus and to reduce the emittance (the

spread in energy) of the beam. Another possibity, suggested by [107, 108] is to use a positron

beam on a fixed target, with energy tuned just above the muon pair threshold and produce the

muon beam through the process e+e− →µ+µ−. This creates a highly collimated muon beam

with small emittance of energy Eb ∼ 20 GeV. However, due to the small cross-section of the

pair production process σ∼ 1µb, a very intense beam of positrons and a very dense target is

required to produce sufficient muons. Ref. [107] suggests a setup with a 45 GeV positron beam

in a circular ring with an intensity up to 1.5×1018 positrons per second on a beryllium target.

The goal of this section is to study the performance of this very intense positron beam on

target as a beam dump experiment searching for very weakly coupled new physics. The

main advantage of this setup is the extraordinarily intense primary beam compared to past

experiments or future experiments such as SHiP, resulting in a larger luminosity. Also, with a

leptonic beam, there are less QCD events at the interaction point compared to a proton beam.

This on the one hand means a smaller meson production rate and thus less reach for Dark

Higgs and HNL models; on the other hand it means less SM background and less shielding

necessary after the interaction point. The experiment consists of a long detector with fiducial

length L placed at a distance d from the interaction point in the beamline direction. It is

totally independent from the muon acceleration or any other use of the muon beam and can

be run as a parasitic experiment to the muon collider program. Depending on the size and the

complexity of the detector, it can be a relatively cheap experiment.

In order to study the performances of such a detector, we consider the following experimental

setup: the primary positron beam has energy E0 = 45 GeV and intensity 1.5× 1018 e+ per

second during 3 years of data taking resulting in the huge Ne ≈ 1.4×1026 positrons on target.

The target is a beryllium target of thickness T = 3 mm (about 0.01 radiation length). The total

luminosity is given by the formula (valid for thin targets only):

L = Ne
NAρT

A
= 5.25×1021 mb−1 (2.53)

where A = 9.01g ·mol−1 is the beryllium atomic mass, ρ = 1.848g ·cm−3 is the target density

and NA = 6.02×1023 mol−1 is the Avogadro number. We consider a detector of fiducial length

L = 200 m and located at a distance d = 20 m in the beamline direction.

In this thesis, we do not study precisely the background from SM muons and neutrinos

produced at the target and that can interact in the detector. Compared to similar experiments

such as SHiP, we expect less background because the incoming beam is leptonic and is less

energetic. We also do not specify the details of the detector design, leaving this for a more

complete study. Thus it is difficult to estimate a precise reach for our experiment. In what

follows, we will consider that the threshold for discovering a dark sector particle is at 10 decay

events in the detector volume, slightly higher than for similar experiments. We will also show

the curves for 100 events, corresponding to a very conservative estimate, and for 1 event,
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which would be the reach in an ideal background free experiment.

2.4.1 Dark photon reach

In our setup, dark photons are primarily produced by A′ radiation from the positron in the

positron-nucleus interaction. This can be estimated using the Weizsäcker-Williams approxi-

mation with more details presented in appendix B.1. This separates the total cross-section in

two pieces, one where the intermediate photon is considered as a real photon in the 2 to 2 pro-

cess e+γ→ e+A′, the second giving the effective photon flux from the nucleus electromagnetic

field. The resulting differential cross-section is:

dσ

d x d cosθA′
≈ 4α3ε2χ

E 2
0 x

U 2

[
2−2x +x2 + 2(1−x)2m2

A′

U 2

(
m2

A′ + xU

1−x

)]
(2.54)

where E A′ is the dark photon energy, x is the ratio x = E A′/E0, θA′ is the A′ polar angle in the

laboratory frame and U is the virtuality of the intermediate electron given by:

U ≈ E 2
0θ

2
A′x +m2

A′
1−x

x
+m2

e x (2.55)

The photon flux χ encodes the properties of the target nucleus. It is given by the following

integral over the electric form factor [40]:

χ=
∫ tmax

tmin

d t
t − tmin

t 2 G2(t ) (2.56)

where tmin and tmax are given in appendix B.16 and the explicit form of the electric form

factor G2(t) can be found in appendix B.27,B.28. To a good approximation, one can neglect

the dependence of χ on the kinematics x,θA′ and set tmin = (m2
A′/2E0)2 and tmax = m2

A′ +m2
e ,

simplifying the total rate calculation. We will call this improved Weizsäcker-Williams (IWW)

approximation.

The U−2 dependence of the cross-section makes the A′ angular distribution strongly peaked

at θA′ = 0, justifying a detector in the beam axis. The number of dark photons decaying in our

detector is given by:

Nobs =L

∫ θ?

0
dθA′

∫ 1

mA′/E0

d xε2 dσ

d x dθA′
exp

(
−DmA′ε2

βxE0l0

)[
1−exp

(
−LmA′ε2

βxE0l0

)]
(2.57)

where we have pulled out the explicit dependence on ε in the formula. The decay legth l0 is

given in figure 2.1 and the luminosity is given in equation 2.53. The formula we use for dσ
d x dθA′

is the formula B.25 with only Weizsäcker-Williams approximation. The numerical calculation

shows that the results of B.25 are very close to the ones with one more layer of approximations

B.26 and the IWW approximation.

The signature of a dark photon decaying is the detector is very simple: it consists of two
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Figure 2.7 – Region in the parameter plane (mA′ −ε) where out experimental setup is expected
to see 1, 10 and 100 dark photon events. The estimated exclusion limit from the SHiP exper-
iment [34] is plotted in black dashed line. The experimentally excluded region is shaded in
grey. See text for more details on the current experimental status.

charged tracks appearing out of nothing, coming from the interaction point and with invariant

mass equal to mA′ . The branching ratio of A′ to a pair of charged SM particles is very close to 1

so we do not add any term accounting for detection efficiency. We consider an opening angle

θ? = 0.01 rad. The region of parameter space mA′ −ε where our apparatus is expected to see

more than 100, 10 and 1 event is plotted in figure 2.7.

We consider that 10 events is a reasonable estimate of the reach of our experiment. 1 event

corresponds to the ideal case with zero background, whereas 100 events is a very conservative

threshold given that the dark photon signal is very clean. We see that our experiment could

improve significantly the limits from beam dump experiments, especially for high dark photon

mass around 1 GeV. The exclusion region in the ideal zero-background is very comparable to

the SHiP expected reach [34] and is slightly smaller in the more realistic estimate.

2.4.2 Meson production

The number of mesons produced by the primary positron beam is very important to eval-

uate in order to estimate the dark Higgs and HNL production from secondary decay. In

order to compute the number of mesons produced by our setup, we use the GiBUU (Giessen

Boltzmann-Uehling-Uhlenbec) model and code [109], a transport model for elementary

particle interaction with nuclei.
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Figure 2.8 – Angular distribution of charged kaons (left panel) and charged D mesons (right
panel) produced by a 45 GeV positron beam against a beryllium target obtained with the
GiBUU code [109].

Kaon production

For our experimental setup, at 45 GeV positron beam striking a beryllium target, the GiBUU

code predicts the following kaon production cross-sections:

σ(K ±) = 9.2×10−5 mb and σ(K 0,K
0

) = 8.9×10−5 mb (2.58)

leading to a production of 5×1017 charged kaons and a similar number of neutral kaons.

The distribution of the charged kaon polar angle in the laboratory frame (with respect to

the incoming positron beam) is plotted on figure 2.8, left panel. We can see that unlike for

the dark photon, kaons are produced with relatively large polar angle: the median angle is

θmed = 0.15 rad and only 0.8% of charged kaons are produced towards the detector (with polar

angle smaller than 0.01). Compared to proton beam dump experiments such as CHARM or

SHiP, the meson production cross-section is lower (from electromagnetic interaction instead

of QCD interaction) but also the angular spread is larger because the primary beam is less

energetic (45 GeV against 400 GeV for CHARM and SHiP).

D meson production

The production cross sections for various charmed mesons are also estimated using GiBUU:

σ(D±) = 2.4×10−7 mb σ(D0,D
0

) = 5.3×10−7 mb and σ(D±
s ) = 5.5×10−8 mb

(2.59)

which translates with our experimental setup to 1.3×1015 charged D mesons, 3×1015 neutral

D mesons and 3×1014 Ds mesons.

Figure 2.8, right panel, shows the angular distribution of the charged D mesons in the labora-

tory frame. The angular spread is narrower than for kaons, with a median angle of 0.06 rad
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and about 3% of the charged charmed mesons produced in the direction of the detector.

D mesons are an important source of HNLs in the GeV range. Also, they produce tau leptons

from Ds → τν̄τ decay, themselves important for probing the HNL mixing with ντ. From the

branching ratio BR(Ds → τντ) = 5.5%, we expect 1.6×1013 tau leptons from Ds decay, more

than from direct QED production.

B meson production

For a proton in the beryllium nucleus, the energy of the positron-proton collision is
p

s =√
2E0mp +m2

p = 9.2 GeV, below the two B meson threshold. Thus the number of produced

b-quark is negligible because of the kinematics. This has important consequences for the

reach of our experimental setup: dark Higgs and HNLs heavier than the charm quark can only

be produced in B-meson decays.

2.4.3 Dark Higgs

The dark Higgs is mostly produced in decays of down type quarks, in our case charged and

neutral kaons. The production from charm quark decay is strongly suppressed as we have seen.

From the kaon cross-section (2.58) and estimating that 0.5% of the produced dark Higgs enter

the detector, one can estimate that the reach in the mass-coupling plane is similar to the one

of the CHARM experiment. Since our apparatus does not improve the existing experimental

bounds, we do not study the dark Higgs any further.

2.4.4 HNLs

HNLs are primarily produced by meson decays since direct production involve a W -boson and

is strongly suppressed at low energies. The two-body leptonic decay width of a pseudoscalar

meson h is given by:

Γ(h± → `±i N ) = |Ui |2 ×
G2

F f 2
h mh

8π
|Vh |2

[
1− M 2

N

m2
h

+2
m2
`

m2
h

+ m2
`

M 2
N

(
1− m2

`

m2
h

)]
λ(mh , MN ,m`)

(2.60)

where fh is the meson decay constant, Vh is the relevant CKM element and the function λ is

the standard expression:

λ(mh , MN ,m`) = m2
h +M 2

N +m2
`−2mh MN −2m`MN −2mhm` (2.61)

Three body semi-leptonic decays h → h′`N also produce HNLs but are subleading compared

to the two body decay, except for low MN . For the full expression of the three body decay

width we refer to [79, 82].
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We first do a preliminary estimate of the reach of our experimental setup by restricting our-

selves to two-body leptonic decays K → `N , D → `N and Ds → `N . We use the meson

cross-section production obtained with GiBUU and estimate that only 0.5% and 2% of the

HNLs respectively from kaon and D,Ds decays are produced in the direction of the detector.

In order to probe the HNL mixing with ντ, it is important to include the production from τ

decay. The tau lepton mainly comes from Ds decay. We also estimate that 0.5% of HNLs from

tau decay are produced towards the detector. The exclusion limit from this simple calculation

asking 10 HNL decays to two charged particles in the detector are plotted in figure 2.9. In the

case of HNL mixing with νe or νµ, we do not show the events from τ decay becay they are

negligible compared to the ones from D,Ds decays. Also, we do not take into account pion

decay because this channel only probes very light HNLs in a region already well probed by

experiments.

We stress that these are only preliminary estimates where the kinematics and angular distribu-

tion are oversimplified. Using the meson kinematic and angular distribution obtained with

GiBUU, we will simulate the leptonic and semi-leptonic decays to get the energy and angular

distribution of the produced HNLs. These computations are still ongoing and the results will

be shown in the final version of this thesis.

We see that our experiment could improve the existing experimental limits on HNLs, especially

in the 1 GeV region with events coming from charmed meson decay for HNLs mixing with

νe ,νµ. Our reach at high mass is limited by the charmed meson masses since we need mN ≤
mDs −m`. For the mixing with tau neutrinos, the improvement is even more important due to

the large number of tau leptons produced in the experiment. In the tau mixing case, meson

decay can only probe masses mN ≤ mDs −mτ ∼ 200 MeV. This is why HNLs produced from

tau decays τ→ N X are very important.

However, in all three cases, the exclusion limits are well within the SHiP expected bounds [34].

At high mass, this is because of the lack of B-mesons, and the lower number of D,Ds mesons.

At low mass, the limits coming from kaon decay are better than SHiP, this is because in the

latter experiment, most kaons are stopped right after the interaction point by the shielding

before they have time to decay. In our case, a more careful study of the background is necessary

to decide if our shield can be placed further from the target in order to have more kaon decays.

2.4.5 Conclusion

We presented an fixed target experiment searching for dark sector particles that could be run

in parallel to a future muon collider program. The intense positron beam hitting a target

in order to produce the muons can also be used as a fixed-target experiment by adding a

shielding and a detector in the beam direction. The extreme intensity of the primary positron

beam makes it possible to have more particles on target than any previous electron beam

dump experiment.
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Figure 2.9 – Preliminary plots for the expected exclusion limit from our experimental setup.
The lines correspond to 10 decays to charged particles in the detector, with different curves for
HNLs coming from kaon decay (blue), D± decay (orange), DS decay (green) and τ decay (red).
The SHiP limits are shown in black dashed for comparison and the current experimental limits
are shaded in grey. The top panel shows the scenario with only mixing to νe , the middle panel
the one with mixing to νµ only and the bottom panel the scenario with mixing to ντ only.
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Compared to the proton fixed target experiment SHiP, our setup has more luminosity but

suffers from smaller meson production cross-section. On the one hand this reduces the SM

background, simplifying the shield design but on the other hand makes our experiment less

competitive in models where the dark particle mainly comes from secondary meson decay.

We studied the expected reach for the dark photon, the dark Higgs and the HNL models. In the

dark photon, our experiment could bring a large improvement in the experimental limits in the

region mA′ ∼ 1 GeV and ε∼ 10−6 −10−7. Our result is plotted in figure 2.7. For the dark Higgs

model, our setup does not improve significantly current experimental bounds, mainly because

the energy of the positron beam is too low to produce B-mesons. Finally for the HNL model,

our experiment has the potential to improve bounds for e and µ mixing in the MN ∼ 1 GeV

region from the large number of charmed quarks. In the τ mixing case, significant progress

can be made for MN ≤ mτ from the production of HNL from tau lepton decay. The expected

limits in the three cases obtained from a preliminary simplified calculation are shown in figure

2.9.

In order to have a more precise idea of the reach of our proposed experimental setup, a more

careful study of the SM background, the different shielding possibilities and of the detector

design is necessary. On the physics side, it would be interesting to estimate its exclusion

potential for other dark sector models such as axion-like particles. Such an experiment could

also have applications in neutrino physics, being an important source of tau neutrino.

A muon collider would have tremendous discovery potential in the energy frontier. With little

more instrumentation, it can also contribute a lot to the intensity frontier. Such an ambitious

program would greatly improve our understanding of the Standard Model and shed light on

the problems of modern particle physics and on their possible solutions.
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3 Standard Model effective field theory

3.1 Introduction

The ongoing exploration of the high-energy frontier at the LHC strongly suggests that the only

fundamental degrees of freedom at the weak scale are the Standard Model ones. Moreover,

their perturbative interactions are well described by the most general renormalizable SM

Lagrangian invariant under the SU (3)C ×SU (2)L ×U (1)Y local symmetry. However, theoretical

problems of the SM suggest that new physics should be not much heavier than the weak scale.

One can be agnostic about new physics and try to study its effect in a model-independent way.

One framework designed to describe such new physics effects in a systematic fashion goes

under the name of the SM Effective Field Theory (SMEFT).

In this approach, the effects of new particles with masses above the weak scale are encoded in

higher-dimensional operators suppressed by inverse powers of the SM cutoff:

L =LSM +∑
i

ci

ΛSM
OD=5

i +∑
i

ci

Λ2
SM

OD=6
i +·· · (3.1)

The goal of this program is to study directly the effects of the different operators Oi and put

constraints on the value of the Wilson coefficients ci (fixingΛSM to a reference value). One can

then analyze experimental searches once and for all within this framework. The output of such

analysis, namely numerical values for the Wilson coefficients of higher-dimensional operators,

can then be applied to any new physics model covered by the SMEFT. Significant progress

has been recently achieved concerning the automation of this EFT matching [110–113]. The

efficient SMEFT program should be compared with model-dependent studies where non-

trivial hadronic effects, PDFs, radiative corrections, experimental errors, cuts, etc., have to be

taken into account for each model.

We have seen in the introduction that assuming that dimension-5 terms are present leads

to neutrino masses, lepton number violation, and assuming ci to be of order one leads to

a very large estimate of ΛSM ∼ 1014 GeV. Here we assume that new physics at the cutoff can

have additional symmetry structure, maybe leading to a large hierarchy between different
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Wilson coefficients. In particular, we assume lepton and baryon number conservation so

that dimension-5 operators are absent and leading SMEFT contributions originate from

dimension-6 operators [114, 115]. In this framework, there are 2499 independent operators in

L D=6. Among them, a lot of operators mediate FCNC or violate individual lepton number

and must be small.

There is a vigorous program to characterize the effects of the dimension-6 operators on

precision observables and derive constraints on their Wilson coefficients in the SMEFT La-

grangian [116–154]. Most of these analyses assume that the dimension-6 operators respect

some flavour symmetry in order to reduce the number of independent parameters. On the

other hand, Refs. [139, 150] allowed for a completely general set of dimension-6 operators,

demonstrating that the more general approach is feasible.

In this work, we further pursue the approach of Refs. [139, 150], providing new constraints on

the SMEFT where all independent dimension-6 operators may be simultaneously present with

an arbitrary flavour structure. We compile information from a plethora of low-energy flavour-

conserving experiments sensitive to electroweak gauge boson interactions with fermions

and to 4-fermion operators with 2 leptons and 2 quarks (LLQQ) and 4 leptons (LLLL). There

are two main novelties compared to the existing literature. First, precision constraints on

the LLQQ operators have not been attempted previously in the flavour-generic situation.

Therefore our results are relevant to a larger class of UV completions where new physics

couples with a different strength to the SM generations. Note that, in particular, all models

addressing the recent B-meson anomalies (see e.g. [155–159]) must necessarily involve exotic

particles with flavour non-universal couplings to quarks and leptons. Our analysis provides

model-independent constraints that have to be satisfied by all such constructions. Second,

we include in our analysis the low-energy flavour observables (nuclear, baryon and meson

decays) recently summarized in Ref. [160]. At the parton level these processes are mediated

by the quark transitions d(s) → u`ν̄`, hence they can probe the LLQQ operators. We will

show that for certain operators the sensitivity of these observables is excellent, such that new

stringent constraints can be obtained. Moreover, the low-energy flavour observables offer a

sensitive probe of the W boson couplings to right-handed quarks.

Our analysis is performed at the leading order in the SMEFT. We ignore the effects of dimension-

6 operators suppressed by a loop factor, except for the renormalization group running within

a small subset of the LLQQ operators. Moreover all dimension-8 and higher operators are

neglected, and only the linear contributions of the dimension-6 Wilson coefficients are taken

into account. The corollary is that the likelihood we obtain for the SMEFT parameters is

Gaussian. All in all, we provide simultaneous constraints on 61 linear combinations of the

dimension-6 Wilson coefficients. We quote the central values, the 68% confidence level

(CL) intervals and the full correlation matrix, which allows one to reconstruct the complete

likelihood function. The final results are also provided in an electronic form as supplementary

material in the publication [161], so that they can be more easily integrated into other analyses.
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3.2. Formalism and notation

In this chapter, we first present the theoretical framework and the notation in section 3.2. We

review the experimental input of our analysis in section 3.3 and show the results of our fit

section 3.4, in the general case and in the flavour symmetric limit. Finally section 3.5 discusses

the interplay with LHC searches, and section 3.6 contains our conclusions. This chapter is

taken from the two publications [150, 161].

3.2 Formalism and notation

3.2.1 SMEFT with dimension-6 operators

Our framework is that of the baryon- and lepton-number conserving SMEFT [114, 115]. The

Lagrangian is organized as an expansion in 1/Λ2, where Λ is interpreted as the mass scale

of new particles in the UV completion of the effective theory. We truncate the expansion at

O (Λ−2), which corresponds to retaining operators up to the canonical dimension D=6 and

neglecting operators with D ≥ 8. The Lagrangian takes the form

L =LSM +∑
i

ci

v2 OD=6
i , (3.2)

where LSM is the SM Lagrangian, v = (
p

2GF )−1/2 ' 246 GeV, each OD=6
i is a gauge-invariant

operator of dimension D=6, and ci are the corresponding Wilson coefficients that are O (Λ−2).

OD=6
i span the complete space of dimension-6 operators, see Refs. [162, 163] for examples of

such sets.

In order to connect the SMEFT to observables it is convenient to rewrite equation (3.2) using

the mass eigenstates after electroweak symmetry breaking. Then the effects of dimension-6

operators show up as corrections to the SM couplings between fermion, gauge and Higgs fields,

or as new interaction terms not present in the SM Lagrangian. The discussion and notation

below follows closely that in Section II.2.1 of Ref. [164]. We define the mass eigenstates such

that all kinetic and mass terms are diagonal and canonically normalized. We also redefine

couplings such that, at tree level, the relation between the usual SM input observables GF ,

α, mZ and the Lagrangian parameters gL , gY , v is the same as in the SM. See Ref. [164] for

complete definition of conventions and the complete list of interaction terms with up to 4

fields. In the following we only highlight the parts of the mass eigenstate Lagrangian directly

relevant for our analysis.

Without loss of generality, the Lagrangian can be brought to a form where the kinetic terms for

the electroweak gauge boson are given by

L ⊃−1

2
W +
µνW −

µν−
1

4
ZµνZµν− 1

4
AµνAµν+

g 2
L v2

4
(1+δm)2 W +

µ W −
µ + (g 2

L + g 2
Y )v2

8
ZµZµ (3.3)

where δm parametrizes the relative correction to the W boson mass that may arise in the

presence of D=6 operators. By construction, there is no correction to the Z boson mass: a
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possible shift due to D=6 operators has been absorbed into the definition of the electroweak

parameters gL , gY and v .

One important effect of the dimension-6 operators from the point of view of precision mea-

surements is the shift of the interaction strength of the weak bosons. We parametrize the

interactions between the electroweak gauge bosons and fermions as

L ⊃ e Aµ
∑

f =u,d ,e
Q f

(
f †

I σ̄µ f I + f̄ †
I σ̄µ f̄ I

)
+ gLp

2

[
W µ+ν†

I σ̄µ
(
δI J + [δg W e

L ]I J
)

e J +W µ+u†
I σ̄µ

(
VI J +

[
δg W q

L

]
I J

)
d J +c.c.

]
+ gLp

2

[
W µ+ūIσµ

[
δg W q

R

]
I J

d̄ †
J +h.c.

]
+

√
g 2

L + g 2
Y Zµ

∑
f =u,d ,e,ν

f †
I σ̄µ

(
(T f

3 − s2
θQ f )δI J +

[
δg Z f

L

]
I J

)
f J

+
√

g 2
L + g 2

Y Zµ
∑

f =u,d ,e
f̄ Iσµ

(
−s2

θQ f δI J +
[
δg Z f

R

]
I J

)
f̄ †

J (3.4)

Here, gL , gY are the gauge couplings of the SU (2)L ×U (1)Y local symmetry, the electric

coupling is e = gL gY /
√

g 2
L + g 2

Y , the sine of the weak mixing angle is sθ = gY /
√

g 2
L + g 2

Y , and

I , J = 1,2,3 are the generation indices. For the fermions we use the 2-component spinor

formalism.1 The SM fermions f J , f̄ J are in the basis where the mass terms are diagonal, and

then the CKM matrix V appears in the quark doublets as qI = (uI ,VI J d J ). The effects of

dimension-6 operators on the couplings to gauge bosons are parameterized by the vertex

corrections δg that in general can be flavour-violating. For flavour-diagonal interactions we

will employ the shorter notation [δg V f
L/R ]J J ≡ δg

V f J

L/R .

The vertex corrections can be expressed as linear combinations of the Wilson coefficients ci in

equation (3.2), see C.1 for the map to the Warsaw basis. We find more transparent to recast

the results of precision experiments as constraints on δg ’s. This is completely equivalent,

provided one takes into account that not all δg ’s in equation (3.4) are independent.2 Indeed,

the mapping between the vertex corrections and the Wilson coefficients implies the relations

[δg Zν
L ]I J − [δg Z e

L ]I J = [δg W e
L ]I J , and [δg W q

L ]I J = [δg Z u
L ]I K VK J −VI K [δg Z d

L ]K J .

Moreover, the W mass correction δm in (3.3) is not independent and is related to the leptonic

vertex corrections and one 4-lepton operators [166]:

δm = δg W e
L +δg Wµ

L

2
− [c``]1221

4
(3.5)

1Compared to [165], we use a different normalization of the antisymmetric product of the σ matrices: σµν =
i
2 (σµσ̄ν−σνσ̄µ), σ̄µν = i

2 (σ̄µσν− σ̄νσµ).
2More generally, it is often convenient to parametrize the space of dimension-6 operators using δg ’s and other

independent parameters in the mass eigenstate Lagrangian that are in a 1-to-1 linear relation with the set of Wilson
coefficients ci [131]. One example of such parametrization goes under the name of the Higgs basis and is defined
in Ref. [164].
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Chirality conserving (I , J = 1,2,3) Chirality violating (I , J = 1,2,3)

[O`q ]I I J J =
(
`†

I σ̄µ`I

)(
q†

J σ̄
µq J

)
[O`equ]I I J J =

(
`†

I ē†
I

)
·
(
q†

J ū†
J

)
[O(3)

`q ]I I J J =
(
`†

I σ̄µσ
i`I

)(
q†

J σ̄
µσi q J

)
[O(3)

`equ]I I J J =
(
`†

I σ̄µνē†
I

)
·
(
q†

J σ̄µνū†
J

)
[O`u]I I J J =

(
`†

I σ̄µ`I

)(
ū Jσ

µū†
J

)
[O`ed q ]I I J J =

(
`†

I ē†
I

)(
d̄ J q J

)
[O`d ]I I J J =

(
`†

I σ̄µ`I

)(
d̄ Jσ

µd̄ †
J

)
[Oeq ]I I J J =

(
ē Iσµē†

I

)(
q†

J σ̄
µq J

)
[Oeu]I I J J =

(
ē Iσµē†

I

)(
ū Jσ

µū†
J

)
[Oed ]I I J J =

(
ē Iσµē†

I

)(
d̄ Jσ

µd̄ †
J

)
Table 3.1 – Flavor-conserving 2-lepton-2-quark operators in the SMEFT Lagrangian of equa-
tion (3.2). The dot · denotes the contraction of SU (2)L indices with an epsilon tensor.

One flavour (I = 1,2,3) Two flavours (I < J = 1,2,3)

[O``]I I I I = 1
2

(
`†

I σ̄µ`I

)(
`†

I σ̄
µ`I

)
[O``]I I J J =

(
`†

I σ̄µ`I

)(
`†

J σ̄
µ`J

)
[O``]I J J I =

(
`†

I σ̄µ`J

)(
`†

J σ̄
µ`I

)
[O`e ]I I I I =

(
`†

I σ̄µ`I

)(
ē Iσ

µē†
I

)
[O`e ]I I J J =

(
`†

I σ̄µ`I

)(
ē Jσ

µē†
J

)
[O`e ]J J I I =

(
`†

J σ̄µ`J

)(
ē Iσ

µē†
I

)
[O`e ]I J J I =

(
`†

I σ̄µ`J

)(
ē Jσ

µē†
I

)
[Oee ]I I I I = 1

2

(
ē Iσµē†

I

)(
ē Iσ

µē†
I

)
[Oee ]I I J J =

(
ē Iσµē†

I

)(
ē Jσ

µē†
J

)
Table 3.2 – Flavor-conserving 4-lepton operators in the SMEFT Lagrangian of equation (3.2).

Again, this relation is a consequence of the linearly realized SM gauge symmetry and the

absence of operators with dimensions greater than 6. It also ensures that the Fermi constant

GF measured in muon decays is given at tree-level by GF = 1/
p

2v2 as in the SM.

In this work we focus on flavour-conserving observables that target flavour-diagonal Wilson co-

efficients. We will express the experimental constraints using the following set of independent

flavour-diagonal vertex corrections:

δg Z e I
L , δg Z e I

R , δg W e I
L , δg Z uI

L , δg Z uI
R , δg Z dI

L , δg Z dI
R , δg W qI

R . (3.6)

The vertex corrections correspond to 24 linear combinations of dimension-6 Wilson coef-

ficients, 3 of which are complex (those entering δg W q
R ). We consider only CP-conserving

observables, thus the imaginary part enters at the quadratic level and is neglected. To simplify

the notation we will omit Re in front of complex Wilson coefficients.

We will also discuss constraints on flavour-diagonal 4-fermion operators in the SMEFT La-
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grangian of equation (3.2). We work with the same set of 4-fermion operators as in Ref. [162]

and employ a similar notation.3 The main focus is on the flavour-conserving 2-lepton-2-quark

(LLQQ) and 4-lepton (LLLL) dimension-6 operators. The LLQQ operators are summarized

in table 3.1, and are defined in the flavour basis where the up-quark Yukawa matrices are

diagonal. Overall, there are 10×3×3 = 90 such operators, of which 27 (the chirality-violating

ones) are complex. In the latter case the corresponding Wilson coefficient is complex, and the

Hermitian conjugate operator is included in equation (3.2). We also list in table 3.2 the LLLL

operators which include 3×3+6×3 = 27 flavour-conserving 4-lepton operators , 3 of which

are complex ([O`e ]I J J I ).

All in all, our analysis eyes 147 linear combinations of dimension-6 operators displayed in

equation (3.6), table 3.1, and table 3.2. The observables discussed here will not depend on

all of them, and thus we will be able to constrain only a limited number of the combinations.

In particular the operators involving the third generation fermions are currently, with a few

exceptions, poorly constrained by experiment. Nevertheless, the constraints we derive are

robust, in the sense that they do not involve any strong assumptions about the unconstrained

operators, other than the validity of the SMEFT description at the weak scale. We assume that

our results are not invalidated by O
( 1

16π2Λ2

)
corrections, which arise at one loop in the SMEFT

and inevitably introduce dependence of our observables on other D=6 Wilson coefficients. We

will also treat V as the unit matrix when it multiplies dimension-6 Wilson coefficients. This

ignores all contributions to observables where the Wilson coefficients are multiplied by an

off-diagonal CKM element.4

In the last section, we will also particularize our results to more restrictive scenarios, such as

the so-called flavour-universal SMEFT, where dimension-6 operators respect the U (3)5 global

flavour symmetry acting in the generation space on the SM fermion fields q , `, ū, d̄ , ē.

3.2.2 Weak interactions below the weak scale

Precision experiments with a characteristic momentum transfer Q ¿ mZ can be conveniently

described using the low-energy effective theory where the SM W and Z bosons are integrated

out. In this framework, weak interactions between quark and leptons are mediated by a set of

4-fermion operators. Within the SM, these operators effectively appear due to the exchange

of W and Z bosons at tree level or in loops, and their coefficients can be calculated by the

standard matching procedure. Once the SM is extended by dimension-6 operators, these

3One difference is that for operators with the SU (2)L singlet contraction of fermionic currents we omit the
superscript (1). We also rename Qqe → Oeq so that the first (last) two flavour indices of all LLQQ operators
correspond to the leptons (quarks).

4Such an approach is not completely satisfactory, since the Cabibbo angle is not small enough to always justify
neglecting it. However, including the new physics contributions suppressed by the Cabibbo angle would require
extending our analysis to include flavour-violating observables, which we leave for future publications. On the
other hand, one naively expects the neglected operators to be severely constrained by other observables where the
CKM suppression is not present, which would justify our approximation. Also, including CKM parameters in our
analysis requires to take into account the effect of the dimension-6 operators in the measurements of the CKM
parameters themselves [167].
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coefficients may be modified, either due to modified propagators and couplings of W and Z ,

or due to the presence of contact 4-fermion operators in the SMEFT Lagrangian.

Below we define the low-energy operators that are relevant for the precision measurements

we include in our analysis. We follow the PDG notation [168] (Section 10), and we present

the matching between the coefficients of the low-energy operators and the parameters of the

SMEFT.

Charged-current (CC) interactions: qq ′`ν

The low-energy CC interactions of leptons with the first generation quarks are described by

the effective 4-fermion operators:

Leff ⊃ −2Ṽud

v2

[(
1+εde J

L

)
(e†

J σ̄µνJ )(u†σ̄µd)+εde
R (e†

J σ̄µνJ )(ūσµd̄ †) (3.7)

+ε
de J

S +εde J

P

2
(ē JνJ )(ūd)+ ε

de J

S −εde J

P

2
(ē JνJ )(u†d̄ †)+εde J

T (ē JσµννJ )(ūσµνd)+h.c.

]
.

To make contact with low-energy flavour observables, we defined the rescaled CKM matrix

element Ṽud [160]. It is distinct from the actual Vud , i.e., the 11 element of the unitary matrix V

that appears in the Lagrangian after rotating quarks to the mass eigenstate basis. The two are

related by Vud = Ṽud (1+δVud ) where δVud is chosen such as to impose the relation εde
L =−εde

R

in equation (3.7).5

Let us note that in general Ṽud is also different from the phenomenological value obtained

within the SM, which we will denote by V PDG
ud . Currently this value comes from superallowed

nuclear beta decays [169] that depend on the vector couplings via the combination εde
L +εde

R . By

setting εde
L =−εde

R , this nonstandard effect has been conveniently absorbed into the definition

of Ṽud . However, the relevant transitions also depend, each in a different way, on the scalar

coefficient εde
S . Thus Ṽud and V PDG

ud only coincide if εde
S vanishes, whereas in general it is not

possible to redefine away all new physics contributions through Ṽud . For this reason we treat

Ṽud as a free parameter that is fit together with the EFT Wilson coefficients [160]. In principle

the difference between Ṽud and V PDG
ud must be taken into account every time the latter is used

to calculate any given SM prediction. In practice, this effect will be negligible in most cases,

given the strong constraints on εde
S from the same nuclear decay data, cf. equation (3.43).

5The bar in the ε
de J
L coefficient reminds the reader that this coefficient is not the usual ε

de J
L (see e.g. Ref. [160])

where the shift of NP effects into Ṽud is not carried out. These two are trivially related by Vud (1 + εde J
L ) =

Ṽud (1+εde J
L ).
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At tree level, the low-energy parameters are related to the SMEFT parameters as

δVud = −δg W q1

L −δg W q1

R +δg Wµ

L − 1

2
[c``]1221 + [c(3)

l q ]1111,

εde
R =−εde

L = δg W q1

R ,

ε
dµ
L = −δg W q1

R +δg Wµ

L −δg W e
L + [c(3)

l q ]1111 − [c(3)
l q ]2211,

ε
de J

S = −1

2

(
[clequ]∗J J11 + [cl ed q ]∗J J11

)
,

ε
de J

P = −1

2

(
[clequ]∗J J11 − [cl ed q ]∗J J11

)
,

ε
de J

T = −1

2
[c(3)

lequ]∗J J11 , (3.8)

As indicated earlier, at O (Λ−2) we treat the CKM matrix as the unit matrix. In this limit, the

effective parameters in equation (3.7) depend only on flavour-diagonal vertex corrections and

4-fermion operators. Note also that the rescaled CKM matrix is no longer unitary. In particular

we have |Ṽud |2 +|Vus |2 ≈ 1+∆CKM, where

∆CKM =−2δVud = 2δg W q1

L +2δg W q1

R −2δg Wµ

L + [c``]1221 −2[c(3)
l q ]1111 (3.9)

Although the extraction of the Vus element is also affected by dimension-6 operators, their

contribution to this unitarity test is suppressed by Vus and therefore it can be neglected in our

approximation (V ≈ 1 at orderΛ−2).

Neutral-current (NC) neutrino interactions: ``νν and qqνν

At energies below the weak scale, the NC neutrino-electron interactions can be parametrized

by the effective Lagrangian:

L ⊃− 1

v2

(
ν†

J σ̄µνJ

)[(
g
νJ e
LV + g

νJ e
L A

)
(e†σ̄µe)+ (

g
νJ e
LV − g

νJ e
L A

)
(ēσµē†)

]
(3.10)

Matching to the SMEFT one finds the relations

g
νJ e
LV = −1

2
+2s2

θ−
(
1−4s2

θ

)
δg

ZνJ

L +δg Z e
L +δg Z e

R − 1

2

(
[c``]11J J + [c`e ]J J11

)
g
νJ e
L A = −1

2
−δg

ZνJ

L +δg Z e
L −δg Z e

R − 1

2

(
[c``]11J J − [c`e ]J J11

)
(3.11)

Similarly, the low-energy NC neutrino interactions with light quarks are described by the

effective 4-fermion operators:

Leff ⊃ − 2

v2

(
ν†

J σ̄
µνJ

)(
g
νJ u
LL u†σ̄µu + g

νJ u
LR ūσµū† + g

νJ d
LL d †σ̄µd + g

νJ d
LR d̄σµd̄ †

)
(3.12)
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At tree level, the low-energy parameters are related to the SMEFT parameters as

g
νJ u
LL = 1

2
− 2s2

θ

3
+δg Z u

L +
(

1− 4s2
θ

3

)
δg

ZνJ

L − 1

2
([cl q ]J J11 + [c(3)

l q ]J J11)

g
νJ u
LR = −2s2

θ

3
+δg Z u

R − 4s2
θ

3
δg

ZνJ

L − 1

2
[clu]J J11

g
νJ d
LL = −1

2
+ s2

θ

3
+δg Z d

L −
(

1− 2s2
θ

3

)
δg

ZνJ

L − 1

2
([cl q ]J J11 − [c(3)

l q ]J J11)

g
νJ d
LR = s2

θ

3
+δg Z d

R + 2s2
θ

3
δg

ZνJ

L − 1

2
[cl d ]J J11 (3.13)

The experiments probing these couplings usually normalize the NC cross section using its CC

counterpart. Thus, it is convenient to define the following combinations of effective couplings:

(g
νJ

L/R )2 ≡ (g
νJ u
LL/LR )2 + (g

νJ d
LL/LR )2(

1+εde J

L

)2 , θ
νJ

L/R ≡ arctan

(
g
νJ u
LL/LR

g
νJ d
LL/LR

)
, (3.14)

where we took into account that SMEFT dimension-6 operators modify in general both NC

and CC processes. Let us notice that additional (linear) effects in the normalizing CC process

due to εde
R and ε

de J

S,P,T can be neglected because they are suppressed by the ratio mumd /E 2 and

me J /E respectively. The effect due to the possible difference between Ṽud and V PDG
ud can also

be safely neglected here, given the limited precision of the neutrino scattering experiments

included in our fit. Last, the same holds for the δVud contribution that appears if the unitarity

of the CKM matrix is used in the SM determination.

Neutral-current charged-lepton interactions: ```` and qq``

For low energy electron-electron scattering we use:

L ⊃ 1

2v2 g ee
AV

[
−(e†σ̄µe)(e†σ̄µe)+ (ēσµē†)(ēσµē†)

]
(3.15)

Matching to the SMEFT, one finds

g ee
AV = 1

2
−2s2

θ−2
(
1−2s2

θ

)
δg Z e

L −4s2
θδg Z e

R − 1

2
[c``]1111 + 1

2
[cee ]1111 (3.16)

Finally, we parametrize6 the 4-fermion operators with 2 charged leptons and 2 light quarks as

L ⊃ 1

2v2

[
g

e J q
AV (ē Jγµγ5e J )(q̄γµq)+ g

e J q
V A (ē Jγµe J )(q̄γµγ5q)

]
+ 1

2v2

[
g

e J q
V V (ē Jγµe J )(q̄γµq)+ g

e J q
A A (ē Jγµγ5e J )(q̄γµγ5q)

]
(3.17)

6For the parity-violating electron couplings, another frequently used notation is g
eq
AV ≡C1q , g

eq
V A ≡C2q .
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where we momentarily switch to the Dirac notation with γ5ψL =−ψL , γ5ψR =+ψR . Also, q

stands for the u or d Dirac spinor and not for the left-handed quark doublet. At tree level, the

parameters g ei q
X Y are related to the SMEFT parameters as

g
e J u
AV = −1

2
+ 4

3
s2
θ−

(
δg Z u

L +δg Z u
R

)+ 3−8s2
θ

3

(
δg

Z e J

L −δg
Z e J

R

)
+ 1

2

[
c(3)

l q − cl q − cl u + ceq + ceu

]
J J11

g
e J d
AV = 1

2
− 2

3
s2
θ−

(
δg Z d

L +δg Z d
R

)
− 3−4s2

θ

3

(
δg

Z e J

L −δg
Z e J

R

)
+ 1

2

[
−c(3)

l q − cl q − cld + ceq + ced

]
J J11

g
e J u
V A = −1

2
+2s2

θ−
(
1−4s2

θ

)(
δg Z u

L −δg Z u
R

)+ (
δg

Z e J

L +δg
Z e J

R

)
+ 1

2

[
c(3)

l q − cl q + clu − ceq + ceu

]
J J11

g
e J d
V A = 1

2
−2s2

θ−
(
1−4s2

θ

)(
δg Z d

L −δg Z d
R

)
−

(
δg

Z e J

L +δg
Z e J

R

)
+ 1

2

[
−c(3)

l q − cl q + cld − ceq + ced

]
J J11

g
e J u
A A = 1

2
+δg Z u

L −δg Z u
R −δg

Z e J

L +δg
Z e J

R + 1

2

[
−c(3)

l q + cl q − clu − ceq + ceu

]
J J11

g
e J d
A A = −1

2
+δg Z d

L −δg Z d
R +δg

Z e J

L −δg
Z e J

R + 1

2

[
c(3)

l q + cl q − cl d − ceq + ced

]
J J11

(3.18)

We do not display the expressions for g ei q
V V here because they will not be needed in the follow-

ing.

3.2.3 Renormalization and scale running of the Wilson coefficients

In general the Wilson coefficients display renormalization-scale dependence that is to be

canceled in the observables by the opposite dependence in the quantum corrections to

the matrix elements. Let us first discuss the QCD running, which can have a numerically

significant impact due to the magnitude of the strong coupling constant αs . This effect is

further enhanced by the large separation of scales of the experiments discussed in this work

(from low-energy precision measurements to LHC collisions). Among the coefficients involved

in our analysis, only the three chirality-violating ones, cl equ ,cled q ,c(3)
l equ (i.e. εd`

S,P,T in the

low-energy EFT), present a non-zero 1-loop QCD anomalous dimension, namely [170]

d~x(µ)

d logµ
= αs(µ)

2π

 −4 0 0

0 −4 0

0 0 4/3

~x(µ), (3.19)

where~x refers to the SMEFT coefficients~c = (cled q , clequ , c(3)
lequ) if the scale µ is above the weak

scale or to the low-energy EFT coefficients~ε= (εd`
S , εd`

P , εd`
T ) below it. We find that higher-loop

QCD corrections to the running are numerically significant, and we include them in our

analysis.7

On the other hand we neglect in this work the electromagnetic/weak running of the SMEFT

Wilson coefficients, which is expected to have a much smaller numerical importance simply

7 We use the 3-loop QCD anomalous dimension [171], and we include the threshold corrections at mb and mt
extracted from Refs. [172] and [173] for scalar and tensor operators respectively. See Ref. [174] for further details.
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3.3. Low-energy experiments

due to the smallness of the corresponding coupling constants. There is however one exception

to this, namely the chirality-violating operators discussed above, for two reasons: (i) contrary

to the QCD running, the QED/weak running involves mixing between these operators; (ii) pion

decay makes possible to set bounds of order 10−7 on the pseudoscalar coupling εd`
P (µlow),

which can give important bounds on scalar and tensor via mixing despite the smallness of

αem . In order to take into account this effect, equation (3.19) has to be replaced by

d~x(µ)

d logµ
=

(
αem(µ)

2π
γx + αs(µ)

2π
γs

)
~x(µ) , (3.20)

where we will use the 1-loop QED (electroweak) anomalous dimension, γx = γem(w), to evolve

the coefficients~ε (~c) below (above) the weak scale [174–177]:

γem =


2
3 0 4

0 2
3 4

1
24

1
24 −20

9

 , γw =


− 4

3c2
θ

0 0

0 − 11
6c2

θ

15
c2
θ

+ 9
s2
θ

0 5
16c2

θ

+ 3
16s2

θ

1
9c2

θ

− 3
2s2

θ

 , (3.21)

where we neglect terms suppressed by Yukawa couplings [177, 178]. Integrating numerically

the coupled differential renormalization group equations we find εd`
S

εd`
P

εd`
T


(µ= mZ )

=

 0.58 1.42×10−6 0.017

1.42×10−6 0.58 0.017

1.53×10−4 1.53×10−4 1.21


 εd`

S

εd`
P

εd`
T


(µ= 2 GeV)

,(3.22)

 cled q

clequ

c(3)
lequ


(µ= 1 TeV)

=

 0.84 0 0

0 0.84 0.16

0 3.3×10−3 1.04


 cled q

clequ

c(3)
lequ


(µ= mZ )

. (3.23)

These results use the QCD beta function and anomalous dimensions up to 3 loops, and we

included the bottom and top quark thresholds effects, see Ref. [174] for details. The diagonal

entries would change by ∼ 12% if just 1-loop QCD running were included, while two-loop

results differ by only ∼ 1.5%. In our subsequent analysis we will use the numerical results in

equation (3.22) and equation (3.23).

3.3 Low-energy experiments

3.3.1 Z- and W-pole observables

The vertex corrections in (3.4) can be probed by measurements of leptonic decays of on-shell

Z and W bosons. Precise measurements of observables ultimately related to various Z and

W partial decay widths were performed in LEP-1 (Z) [179] and LEP-2 (W) [180]. In these

observables, the dependence on four-fermion operators is suppressed by ΓV /mV and can be

neglected [116]. Simultaneous constraints on all flavour-preserving vertex corrections were
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Chapter 3. Standard Model effective field theory

derived in reference [139], and we use directly these results.

Note that all leptonic vertex corrections are strongly constrained by the data in a model-

independent way. In particular, the constraints on charged leptons couplings to Z (dominated

by LEP-1) are at a per-mille level, while the constraints on lepton couplings to W (dominated

by LEP-2) are at a percent level. The quark vertex corrections are also all constrained at percent

level, except [δg Z u
R ] because there is no e+e− → t t̄ data.

3.3.2 W mass

The W boson mass was measured very precisely at LEP-2 and the Tevatron. We use the result

from Ref. [181], mW = (80.385±0.015) GeV, where the SM prediction is mW = 80.364 GeV. This

trivially translates into the constraint on the parameter δm in (3.3),

δm = (2.6±1.9)×10−4 (3.24)

which by virtue of (3.5) translates to a constraint on a combination of leptonic vertex correction

and one four-lepton operator.

3.3.3 Neutrino scattering

Neutrino scattering experiments measure the ratio of neutral- and charged-current neutrino

or anti-neutrino scattering cross sections on nuclei:

Rνi =
σ(νi N → νX )

σ(νi N → `−i X )
Rν̄i =

σ(ν̄i N → ν̄X )

σ(ν̄i N → `+i X )
(3.25)

At leading order and for isoscalar nucleus targets (equal number of protons and neutrons) one

has the so-called Llewellyn-Smith relations [182]:

Rνi = (gνi
L )2 + r (gνi

R )2 Rν̄i = (gνi
L )2 + r−1(gνi

R )2 (3.26)

where r is the ratio of ν to ν̄ charged-current cross sections on N that can be measured sepa-

rately, and the effective couplings gνi
L/R are defined in equation (3.14). In some experiments

the beam is a mixture of neutrinos and anti-neutrinos, and the following ratio is measured

Rνi ν̄i =
σ(νi N → νX )+σ(ν̄i N → ν̄X )

σ(νi N → `−i X )+σ(ν̄i N → `+i X )
= (gνi

L )2 + (gνi
R )2 (3.27)

νe data.- The CHARM experiment [183] made a measurement of electron-neutrino scattering

cross sections:

Rνe ν̄e = 0.406+0.145
−0.135 (3.28)

where the uncertainties quoted here and everywhere else in this work are 1-sigma (68%C.L.)
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Experiment Observable Experimental value SM value Ref.

CHARM (r = 0.456)
Rνµ 0.3093±0.0031 0.3156 [184]
Rν̄µ 0.390±0.014 0.370 [184]

CDHS (r = 0.393)
Rνµ 0.3072±0.0033 0.3091 [185]
Rν̄µ 0.382±0.016 0.380 [185]

CCFR κ 0.5820±0.0041 0.5830 [186]

Table 3.3 – The results of muon-neutrino scattering experiments most relevant for constrain-
ing dimension-6 operators in the SMEFT. The SM values of Rνµ and κ include subleading
corrections [187], whereas those of Rν̄µ are the tree-level values, which should be sufficient
taking into account the larger experimental errors.

errors. To avoid dealing with asymmetric errors we approximate it as Rνe ν̄e = 0.41±0.14, and

we estimate the SM expectation as RSM
νe ν̄e

= 0.33. To our knowledge, this weakly constraining

measurement is currently the best probe of the electron-neutrino neutral-current interactions.

νµ data.- For the muon-neutrino scattering the experimental data are much more abundant

and precise. We summarize the relevant results in table 3.3. The observable κ measured in

CCFR probes the following combinations of couplings [186]:

κ= 1.7897(g
νµ
L )2 +1.1479(g

νµ
R )2 −

0.0916
[

(g
νµu
LL )2 − (g

νµd
LL )2

]
+0.0782

[
(g

νµu
LR )2 − (g

νµd
LR )2

]
(1+ ε̄dµ

L )2

(3.29)

The additional small dependence on the difference of the up and down effective couplings

appears when one takes into account that the target (in this case iron) is not exactly isoscalar.

For the reasons explained in Ref. [168], in our fits we do not take into account the results of the

NuTeV experiment.

The observables in table 3.3 constrain 3 independent combinations of the SMEFT coefficients.

Rather then combining these results ourselves, we use the PDG combination [168] that also

uses additional experimental input [188] from neutrino induced coherent neutral pion pro-

duction from nuclei [189, 190] and elastic neutrino-proton scattering [191, 192]. Although

their precision is quite limited, their inclusion allows one to constrain the 4 muon-neutrino

effective couplings to quarks [187]. The results of the latest PDG fit are [168]:

(g
νµ
L )2 = 0.3005±0.0028 (g

νµ
R )2 = 0.0329±0.0030

θ
νµ
L = 2.50±0.035 θ

νµ
R = 4.56+0.42

−0.27 (3.30)

The correlations are quoted to be small in Ref. [168] and in the following we neglect them. We

symmetrize the uncertainty on θR taking the larger of the errors, so as to avoid dealing with

asymmetric errors. The corresponding SM predictions are given in table 3.4. To evaluate their

dimension-6 EFT corrections in equation (3.13) we will use s2
θ
= 0.23865, which is the central

value in the MS scheme at low energies [168]. We neglect the error of the SM predictions
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when it is much smaller than the experimental uncertainties; otherwise we combine it in

quadrature.

We note that LLQQ (and 4-lepton) operators can also be probed via matter effects in neu-

trino oscillations, see e.g. [193, 194]. However, the resulting constraints are not available in

the model-independent form where all 4-fermion operators can be present simultaneously.

Moreover, neutrino oscillations probe linear combinations of lepton-flavour-diagonal opera-

tors and of the off-diagonal ones (which we marginalize over). For these reasons, we do not

include the oscillation constraints. A SMEFT analysis of reactor neutrino data is performed in

reference [195].

νµ scattering on electrons.- Similar scattering of muon neutrino and anti-neutrino on elec-

trons were measured at the CHARM [196], CHARM-II [197], and BNL-734 [198] experiments.

We use the result of the PDG fit [168] in our analysis:

g
νµe
LV =−0.040±0.015 and g

νµe
L A =−0.507±0.014 (3.31)

with the correlation coefficient ρ = −0.05 where the SM prediction is g
νµe
LV = −0.0396 and

g
νµe
L A =−0.5064. The effect of 4-leptons operators is given in equation (3.11).

3.3.4 Parity violation in atoms and in scattering

Parity violation in Møller scattering e−e− → e−e− was measured at the SLAC E158 experiment

[199]. The parity-violating asymmetry is defined as APV = (σR −σL)/(σR +σL) where σL(R)

is the cross-section for incident left- (right-) handed electrons. The E158 experiment used

a polarized electron beam of energy E ≈ 50 GeV against an electron target at rest which

corresponds to a center-of-mass energy of
p

s ≈p
2me E ≈ 0.2 GeV, far below the Z pole. Parity

violating processes no not compete against the elctromagnetic interaction and are direct

probes of the weak interaction even at low energies. The result quoted in the PDG is

g ee
AV = 0.0190±0.0027 (3.32)

where the SM prediction is g ee
AV = 0.0225 and the contribution of dimension-6 operators is

given in equation (3.16).

Atomic parity violation (APV) and parity-violating electron scattering experiments access the

parity-violating effective couplings of electrons to quarks g eq
AV and g eq

V A . In particular, APV and

elastic scattering on a target with Z protons and N neutrons probe its so-called weak charge

QW that is given by

QW (Z , N ) =−2
(
(2Z +N )g eu

AV + (Z +2N )g ed
AV

)
(3.33)

up to small radiative corrections [168, 187]. The most precise determination is performed in
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3.3. Low-energy experiments

133Cs, where QW (55,133−55) ≈−376g eu
AV −422g ed

AV . Taking into account recent re-analyses [200]

of the measured parity-violating transitions in cesium atoms [201], the latest edition of the

PDG Review [168] quotes

QCs
W =−72.62±0.43 (3.34)

where the SM prediction is QCs
W,SM =−73.25±0.02 [168]. Other APV measurements, e.g. with

thallium atoms, probe slightly different combinations of the g eq
AV couplings, although with

larger errors.

Instead, a very different linear combination of g eu
AV and g ed

AV is precisely probed by mea-

surements of the weak charge of the proton, Qp
W =QW (1,0), in scattering experiments with

low-energy polarized electrons. The QWEAK experiment [202] finds

Qp
W = 0.064±0.012 (3.35)

where the SM prediction is Qp
W,SM = 0.0708±0.0003 [168].

In order to access the effective couplings g eq
V A one needs to resort to deep-inelastic scattering

of polarized electrons. Currently, the most precise of these is the PVDIS experiment [203] that

studies electron scattering on deuterium targets. The experiment is sensitive to the following

two linear combinations of effective couplings [203]:

APVDIS
1 = 1.156×10−4

(
2g eu

AV − g ed
AV +0.348(2g eu

V A − g ed
V A)

)
APVDIS

2 = 2.022×10−4
(
2g eu

AV − g ed
AV +0.594(2g eu

V A − g ed
V A)

)
(3.36)

The measured values are [203]

APVDIS
1 = (−91.1±4.3)×10−6, APVDIS

2 = (−160.8±7.1)×10−6 (3.37)

where the SM predictions are APVDIS
1,SM =−(87.7±0.7)×10−6, APVDIS

2,SM =−(158.9±1.0)×10−6 [203].

The PDG combines the results of APV, QWEAK, and PVDIS experiments into correlated con-

straints on 3 linear combinations of g eq
V A and g eq

AV [168]:g eu
AV +2g ed

AV

2g eu
AV − g ed

AV

2g eu
V A − g ed

V A

=

 0.489±0.005

−0.708±0.016

−0.144±0.068

 ρ =

 −0.94 0.42

−0.45

 (3.38)

To disentangle g eu
V A and g ed

V A one needs more input from earlier (less precise) measurements of

parity-violating scattering. We include two results provided by the SAMPLE collaboration [204]:

g eu
V A − g ed

V A =−0.042±0.057 g eu
V A − g ed

V A =−0.12±0.074 (3.39)

from the scattering of polarized electrons on deuterons in the quasi-elastic kinematic regime

at two different values of the beam energy. Combining the likelihood obtained from equation
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(3.38) with the SAMPLE results we find the following constraints:
δg eu

AV

δg ed
AV

δg eu
V A

δg ed
V A

=


0.0033±0.0054

−0.0047±0.0051

−0.041±0.081

−0.032±0.11

 ρ =


−0.98 −0.37 −0.27

0.37 0.27

0.94

 (3.40)

Here δg eq
X Y are shifts of the effective couplings away from the SM values, whose dependence

on the dimension-6 Wilson coefficients can be read off from equation (3.18).

There are also results concerning effective muon couplings to quarks. A CERN SPS experi-

ment [205] measured a DIS asymmetry using polarized muon and anti-muon scattering on an

isoscalar carbon target. The results can be recast as the measurement of the observable bSPS

defined as

bSPS = 3

5e2v2

(
gµd

A A −2gµu
A A +λ(gµd

V A −2gµu
V A)

)
(3.41)

where λ is the muon beam polarization fraction. Two measurements of bSPS at different beam

energies and polarization fractions were carried out [205]:

bSPS = − (1.47±0.42)×10−4 GeV−2 for λ= 0.81 ⇒ bSM
SPS =−1.56×10−4 GeV−2

bSPS = − (1.74±0.81)×10−4 GeV−2 for λ= 0.66 ⇒ bSM
SPS =−1.57×10−4 GeV−2 (3.42)

3.3.5 Low-energy flavour

The partonic process d j → ui`ν̄` underlies a plethora of (semi)leptonic hadron decays.

Ref. [160] studied d(s) → u`ν̄` transitions, such as nuclear, baryon and meson decays, within

the SMEFT framework and obtained bounds for 14 combinations of effective low-energy

couplings between light quarks and leptons (ε
dI e J

i ). Ignoring the CKM mixing at O (Λ−2), the

effective couplings of strange quarks depend only on flavour-off-diagonal Wilson coefficients

(see C.2). Marginalizing over them, we obtain the likelihood for 6 combinations of effective

couplings together with the Ṽud CKM parameter:8

Ṽud

∆CKM

εde
R

εde
S

εde
P

εde
T

∆d
LP


=



0.97451(38)

−(1.2±8.4) ·10−4

−(1.3±1.7) ·10−2

(1.4±1.3) ·10−3

(4.0±7.8) ·10−6

(1.0±8.0) ·10−4

(1.9±3.8) ·10−2


, ρ =



1. 0.88 0. 0.82 0.01 0. 0.01
0.88 1. 0. 0.73 0.01 0. 0.01

0. 0. 1. 0. −0.87 0. −0.87
0.82 0.73 0. 1. 0.01 0. 0.01
0.01 0.01 −0.87 0.01 1. 0. 0.9995

0. 0. 0. 0. 0. 1. 0.
0.01 0.01 −0.87 0.01 1. 0. 1.

 , (3.43)

8 There is a small (but nonzero) correlation with the effective couplings of strange quarks that we marginalized
over. This must be taken into account when going to specific scenarios. The full likelihood is available in Ref. [160].
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in the MS scheme at µ= 2 GeV. The effective couplings ε were defined in section 3.2.2, and

∆d
LP ≈ εde

L − εdµ
L + 24εdµ

P . See C.2 for the complete likelihood [160] that also involves the

effective couplings of the strange quarks and allows one to constrain some off-diagonal Wilson

coefficients. Using equation (3.22) we can run these results up to the weak scale, where the

matching with the SMEFT is carried out, cf. equation (3.8) and equation (3.9).

It is useful to recall the physics behind these bounds [160]. Roughly speaking, Ṽud and

εde
R,S,P,T were obtained comparing the total rates of various superallowed nuclear decays and

π→ eνe , as well as using various differential distributions in π→ eνγ and neutron decay. The

comparison with Γ(π→µνµ) provides us with ∆d
LP , and the combination of the obtained Ṽud

with Vus , extracted from (semi)leptonic kaon decays, makes possible to extract ∆C K M .

3.3.6 Fermion pair production in e+e− collisions

Electron-positron colliders operating at center-of-mass energies above or below the Z mass

provide complementary information about 4-fermion operators containing electrons.

Muon and tau pair production

The LEP-2 experiment measured differential cross sections for the processes e+e− → `+`−,

`= e,µ,τ at energies above the Z boson resonance. Away from the Z-pole, these processes

probe not only Z couplings to leptons but also 4-lepton operators, and the effect of the latter

increases with increasing center-of-mass energy.

Let us first focus on the processes e−e+ →µ−µ+ (e−e+ → τ−τ+ is analogous). For the experi-

mental input, we will use the total cross-sections and forward-backward asymmetries mea-

sured at 12 different center-of-mass energies between
p

s ≈ 130 GeV and
p

s ≈209 GeV [180].

We are interested in O (Λ−2) corrections to these observables from D=6 operators, which

translates to linear corrections in the vertex corrections and Wilson coefficients of 4-fermion

operators (i.e. the interference term between SM and new physics). At that order, the ob-

servables are affected by 5 four-leptons operators [O``]1122, [O``]1221, [Oee ]1122, [O`e ]1122,

and [O`e ]2211. In the limit of vanishing fermion masses, their effect on the forward (σF ) and

backward (σB ) e−e+ →µ−µ+ cross sections is given by

δ (σF +σB ) = 1

24πv2

{
e2 ([c``]1122 + [c``]1221 + [cee ]1122 + [c`e ]1122 + [c`e ]2211) (3.44)

+ s(g 2
L + g 2

Y )

s −m2
Z

[
(g Z e

L,SM)2 ([c``]1122 + [c``]1221)+ (g Z e
R,SM)2[cee ]1122 + g Z e

L,SMg Z e
R,SM ([c`e ]1122 + [c`e ]2211)

]}

δ (σF −σB ) = 1

32πv2

{
e2 ([c``]1122 + [c``]1221 + [cee ]1122 − [c`e ]1122 − [c`e ]2211)

+ s(g 2
L + g 2

Y )

s −m2
Z

[
(g Z e

L,SM)2 ([c``]1122 + [c``]1221)+ (g Z e
R,SM)2[cee ]1122 − g Z e

L,SMg Z e
R,SM ([c`e ]1122 + [c`e ]2211)

]}
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where g Z e
L,SM =−1

2 + s2
θ

, g Z e
R,SM = s2

θ
are the couplings of the Z to left- and right-handed electrons.

The effect of the vertex corrections δg Z e
L , δg Z e

R , δg Zµ
L , and δg Zµ

R is also taken into account in

the fit, but is not displayed here. The operator [O`e ]1221 does not interfere with the SM due

to the different helicity structure; thus it enters only at the quadratic ( O (Λ−4)) level and is

neglected in this analysis.

One observes that measurements of the total cross section and asymmetry in e−e+ →µ−µ+

in principle can constrain 3 linear combinations of the 5 four-lepton operators that enter

in (3.44). [O``]1122 and [O``]1221 are indistinguishable for this process because their parts

involving charged leptons are related by a Fierz transformation. [O`e ]1122 and [O`e ]2211 are

also indistinguishable in this process, which can be traced to lepton flavour universality of the

SM couplings. Accidentally, the LEP-2 observables depend very weakly on the combination

[O``]1122 + [O``]1221 − [Oee ]1122 due to the fact that, numerically, (g Z e
L,SM)2 ≈ (g Z e

R,SM)2.

In the muon sector, this degeneracy will be resolved by the addition of the muon-neutrino scat-

tering data described before. In the tau sector, e add the measurement of τ polarization and its

FB asymmetry in e+e− → τ+τ− production at
p

s = 58 GeV by the VENUS collaboration [206].

Bhabha scattering

We move to the process e−e+ → e−e+ (Bhabha scattering). In Ref. [180], LEP-2 quotes the

differential cross sections for the scattering angle cosθ in the interval [−0.9,0.9], and the

center-of-mass energies from 189 GeV to 207 GeV. Bhabha scattering is affected by the three

four-leptons operators [O``]1111, [Oee ]1111 and [O`e ]1111. In the limit of vanishing fermion

masses their effect on the differential cross section is given by

δ
dσ

d cosθ
= 1

8πs
1

v2

{
u2

[
e2([c``]1111 + [cee ]1111)

(
1

s
+ 1

t

)
+ (g 2

L + g 2
Y )

((
g Z e

L,SM

)2
[c``]1111 +

(
g Z e

R,SM

)2
[cee ]1111

)(
1

s −m2
Z

+ 1

t −m2
Z

)]

+ t 2

[
[c`e ]1111

e2

s
+ [c`e ]1111

(g 2
L + g 2

Y )g Z e
L,SMg Z e

R,SM

s −m2
Z

]

+s2

[
[c`e ]1111

e2

t
+ [c`e ]1111

(g 2
L + g 2

Y )g Z e
L,SMg Z e

R,SM

t −m2
Z

]}
(3.45)

where t =− s
2 (1−cosθ) and u =− s

2 (1+cosθ). Again, the dependence on the vertex corrections

δg Z e
L , δg Z e

R is taken into account in our analysis but not displayed here. In principle, Bhabha

scattering at LEP-2 constrains independently all 3 four-electron operators, but again an ap-

proximate flat direction along the direction [O``]1111 − [Oee ]1111 arises due to the numerical

accident (g Z e
L,SM)2 ≈ (g Z e

R,SM)2.
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Quark pair production

Unlike the low-energy experiments discussed above, e+e− → qq̄ processes also probe flavour-

conserving operators with strange, charm and bottom quarks. Typically, the experiments

quote the total measured cross section for σq ≡σ(e+e− → qq̄) and the asymmetry Aq
F B = σFB

q

σq
,

where σF B
q is the difference between the cross sections with the electron going forward and

backward in the center-of-mass frame. In the presence of dimension-6 operators, at O (Λ−2)

these cross sections are modified as follows

δσq = 1

8πs

[
−e2(g 2

L + g 2
Y )

s

s −m2
Z

(
δAF q +δAB q

)+ (g 2
L + g 2

Y )2 s2

(s −m2
Z )2

(
δBF q +δBB q

)]

+ 1

8πv2 (g 2
L + g 2

Y )
s

s −m2
Z

(
ĝ Z e

L ĝ Z q
L cLL + ĝ Z e

L ĝ Z q
R cLR + ĝ Z e

R ĝ Z q
L cRL + ĝ Z e

R ĝ Z q
R cRR

)
− 1

8πv2 e2Qq (cLL + cLR + cRL + cRR ) (3.46)

δσFB
q = 3

32πs

[
−e2(g 2

L + g 2
Y )

s

s −m2
Z

(
δAF q −δAB q

)+ (g 2
L + g 2

Y )2 s2

(s −m2
Z )2

(
δBF q −δBB q

)]

+ 3

32πv2 (g 2
L + g 2

Y )
s

s −m2
Z

(
ĝ Z e

L ĝ Z q
L cLL + ĝ Z e

R ĝ Z q
R cRR − ĝ Z e

L ĝ Z q
R cLR − ĝ Z e

R ĝ Z q
L cRL

)
− 3

32πv2 e2Qq (cLL + cRR − cLR − cRL) , (3.47)

where
p

s is the center-of-mass energy of the e+e− collision, ĝ Z f ≡ T 3
f − s2

θ
Q f (i.e., the SM

values), and

δAF q = Qq

(
δg Z e

L ĝ Z q
L +δg Z e

R ĝ Z q
R + ĝ Z e

L δg Z q
L + ĝ Z e

R δg Z q
R

)
, (3.48)

δAB q = Qq

(
δg Z e

L ĝ Z q
R +δg Z e

R ĝ Z q
L + ĝ Z e

L δg Z q
R + ĝ Z e

R δg Z q
L

)
δBF q = ĝ Z e

L

(
ĝ Z q

L

)2
δg Z e

L + ĝ Z e
R

(
ĝ Z q

R

)2
δg Z e

R + (
ĝ Z e

L

)2
ĝ Z q

L δg Z q
L + (

ĝ Z e
R

)2
ĝ Z q

R δg Z q
R

δBB q = ĝ Z e
L

(
ĝ Z q

R

)2
δg Z e

L + ĝ Z e
R

(
ĝ Z q

L

)2
δg Z e

R + (
ĝ Z e

R

)2
ĝ Z q

L δg Z q
L + (

ĝ Z e
L

)2
ĝ Z q

R δg Z q
R

For the up-type quark production, q = u J , the four-fermion Wilson coefficients cX Y in equa-

tion (3.46) and equation (3.47) are given by

cLL = [c`q ]11J J − [c(3)
`q ]11J J , cLR = [c`u]11J J , cRL = [ceq ]11J J , cRR = [ceu]11J J , (3.49)

while for the down-type quark production, q = d J ,

cLL = [c`q ]11J J + [c(3)
`q ]11J J , cLR = [c`d ]11J J , cRL = [ceq ]11J J , cRR = [ced ]11J J . (3.50)

The operators O`equ , O(3)
`equ and O`eqd do not enter at O (Λ−2) because they do not interfere

with the SM amplitudes due to the different chirality structure.
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The LEP-2 experiment studied e+e− collisions at energies above the Z -pole, ranging from
p

s =
130 Gev to

p
s = 209 GeV. Available data includes the total cross section σ(qq̄) ≡∑

q=u,d ,s,c,bσq

[180], as well as the total cross section and forward-backward asymmetry for the charm and

for the bottom quark production [207]. This amounts to 5 distinct observables, each measured

at different
p

s. From equation (3.46) and equation (3.47), given the energy dependence,

each of these observables should resolve 4 different combinations of dimension-6 Wilson

coefficients.9 In practice, the energy range scanned by LEP-2 is not large enough to efficiently

disentangle these different combinations. Therefore, in our fit we also include earlier, less

precise measurements of heavy quark production below the Z-pole. Specifically, we include

the measurements from the VENUS [208] and TOPAZ [209] collaborations of the cc̄ and bb̄

pair production at
p

s = 58 GeV (total cross sections and FB asymmetries).

3.3.7 Muon and tau decay

The leptonic tau decays τ− → e−ντν̄e , τ− → µ−ντν̄µ, and the conjugates provide additional

information on 4-lepton operators involving τ. In particular, the provide the only constraint

we are aware of on lepton-flavour conserving 4-lepton operators with muons and taus. The

decays can be described by the following effective Lagrangian:

L = 4Gτ fp
2

(ν†
τσ̄ρτ)( f †σ̄ρν f ) (3.51)

where f = e,µ. At the linear level, the relative strength of the Fermi constant measured in the

tau decays normalized to that measured in the muon decay is affected by the vertex corrections

and four-lepton operators as

Ae ≡ G2
τe

G2
F

= 1+2δg W τ
L +2δg W e

L −4δm − [c``]1331

Aµ ≡
G2
τµ

G2
F

= 1+2δg W τ
L +2δg Wµ

L −4δm − [c``]2332 (3.52)

where the W mass corrections δm can be expressed by other EFT parameters, c.f. (3.24). The

experimental values quoted by the PDG are [210]

Ae = 1.0029±0.0046

Aµ = 0.981±0.018 (3.53)

and the SM prediction is A f = 1.

For the muon decay, µ− → e−νµν̄e and the conjugate, the total rate defines the SM input

parameter v and by itself it does not probe new physics. However, additional information

can be extracted from differential distributions in (polarized) muon decay. Customarily, these

9Note that two of these combinations involve only vertex corrections though.
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measurements are presented in the language of Michel parameters [211]. From the EFT

perspective the most interesting are the so-called η and β′/A parameters, because they are the

only ones that may receive contributions at O (1/Λ2) [212, 213]:

η= Re[c`e ]1221

2
, β′/A =− Im[c`e ]1221

4
. (3.54)

These parameters have been measured in an experiment in the PSI [214]:

η=−0.0021±0.0071, β′/A =−0.0013±0.0036. (3.55)

Analogous limits from tau decays are much weaker.

3.3.8 Neutrino trident production

Finally, we include the constraints from the trident productionνµX →µµµ
+µ−Y [215,216].Dimension-

6 operators modify the trident cross section as

σtrident

σtrident,SM
≈ 1+2

g
νµµ

LL,SMδg
νµµ

LL + g
νµµ

LR,SMδg
νµµ

LR

(g
νµµ

LL,SM)2 + (g
νµµ

LR,SM)2
, g

νµµ

LL,SM = 1

2
+ s2

θ, g
νµµ

LR,SM = s2
θ

δg
νµµ

LL = −δg W e
L +2s2

θ(δg Wµ

L +δg Zµ
L )+ [c``]1221 − [c``]2222

2

δg
νµµ

LL = δg Zµ
R +2s2

θ(δg Wµ

L +δg Zµ
L )− [c`e ]2222

2
(3.56)

This observable is, to our knowledge, the only one constraining 4-muon operators.

3.4 Global Fit

3.4.1 Scope

The main goal of this work is to provide model-independent constraints on flavour-diagonal 2-

lepton-2-quark operators summarized in table 3.1. Among the chirality-conserving ones, most

of the observables considered here probe the operators involving the 1st generation leptons.

There are 21 such operators and for an easy reference we list here their Wilson coefficients:

[c`q ]11J J , [c(3)
`q ]11J J , [c`u]11J J , [c`d ]11J J , [ceq ]11J J , [ceu]11J J , [ced ]11J J , J = 1,2,3. (3.1)

Scattering of muons and muon neutrinos on nucleons gives us access to chirality-conserving

operators involving 2nd generation leptons and 1st generation quarks. There are 7 such

operators:

[c`q ]2211, [c(3)
`q ]2211, [c`u]2211, [c`d ]2211, [ceq ]2211, [ceu]2211, [ced ]2211. (3.2)
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Class Observable Exp. value Ref. & Comments SM value

νeνe qq Rνe ν̄e 0.41(14) CHARM [183] 0.33

νµνµqq

(g
νµ
L )2 0.3005(28)

PDG [168], ρ ≈ 1

0.3034

(g
νµ
R )2 0.0329(30) 0.0302

θ
νµ
L 2.500(35) 2.4631

θ
νµ
R 4.56+0.42

−0.27 5.1765

PV low-E
eeqq

g eu
AV +2g ed

AV 0.489(5)

PDG [168], ρ 6= 1

0.4951

2g eu
AV − g ed

AV −0.708(16) −0.7192

2g eu
V A − g ed

V A −0.144(68) −0.0949

g eu
V A − g ed

V A

−0.042(57)
SAMPLE [204] −0.0627−0.120(74)

PV low-E
µµqq

bSPS(λ= 0.81) −1.47(42) ·10−4

SPS [205]
−1.56 ·10−4

bSPS(λ= 0.66) −1.74(81) ·10−4 −1.57 ·10−4

d(s) → u`ν ε
d j`

i equation (3.43) Ref. [160] 0

e+e− → qq̄

σ(qq̄) LEPEWWG [180], ρ 6= 1

σc ,σb f (
p

s) LEPEWWG [217],
VENUS [208], TOPAZ [209]

f (
p

s)

Acc
F B , Abb

F B

νµνµee
g
νµe
LV −0.040(15)

PDG [168], ρ 6= 1
−0.0396

g
νµe
L A −0.507(14) −0.5064

e−e− → e−e− g ee
AV 0.0190(27) PDG [168] 0.0225

νµγ
∗→µ+µ−νµγ∗ σ

σSM

1.58(57) CHARM [215]
1

0.82(28) CCFR [216]

τ→ `νν
G2
τe /G2

F 1.0029(46)
PDG [168], ρ ≈ 1

1

G2
τµ/G2

F 0.981(18) 1

e+e− → `+`−
dσ(ee)
d cosθ LEPEWWG [180], ρ ≈ 1

σµ,στ,Pτ f (
p

s) LEPEWWG [217],
VENUS [206]

f (
p

s)

Aµ

F B , Aτ
F B

Table 3.4 – Summary of experimental input (sensitive to LLQQ and LLLL contact interactions)
used in our fit. The correlations that are taken into account in our fit are specified. Each
observable in e+e− → f f̄ is measured at various c.o.m. energies, which we denote in the table
by f (

p
s). The specific numerical values can be found in the corresponding original references.

We also use the set of pole observables described in Ref. [139] in order to independently
constrain the vertex corrections δg .
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Finally, the likelihood in equation (3.43) summarizing the constraints from low-energy flavour

observables gives us also access to chirality-violating operators involving 1st and 2nd genera-

tion leptons and and 1st generation quarks. There are 6 such operators:

[clequ]J J11 , [cled q ]J J11 , [c(3)
lequ]J J11 , J = 1,2 , (3.3)

which should be understood as evaluated at the renormalization scaleµ= mZ unless otherwise

stated.

We will use the observables summarized in section 3.3 to constrain as many as possible of the

34 Wilson coefficients in Eqs. (3.1)-(3.3). We will also present simultaneous constraints on

these parameter, together with the vertex corrections and 4-lepton Wilson coefficients.

3.4.2 Flat directions

Not all linear combinations of the parameters Eqs. (3.1)-(3.3) can be constrained by the

observables we consider. Before venturing into a global fit, we need to count the independent

constraints and determine the flat directions in the parameter space. In table 3.4 we have the

following probes of LLQQ operators:

• 1 combination of the parameters in equation (3.1) is constrained (poorly) via the only

νeνe qq measurement (Rνe ν̄e );

• 4 combinations in equation (3.2) are constrained via νµνµqq measurements;

• 4 new combinations in equation (3.1) are constrained via PV low-energy eeqq measure-

ments (g eq
V A/AV );

• 1 different combination in equation (3.2) is constrained (poorly) via PV low-energyµµqq

measurements (bSPS), which also probe a second combination already constrained by

νµνµqq data;

• 5 additional combinations in Eqs. (3.1)-(3.3) are constrained by low-energy flavour

observables (d(s) → u`ν` transitions);10

• 10 additional combinations in equation (3.1) are probed by e+e− → qq̄ data, through

the measurement of the the total hadronic cross section and heavy flavour (b and c)

fractions and asymmetries.

10The likelihood in equation (3.43) also independently constrains δg
W q1
R .
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All together we have 25 constraints on 34 parameters, which leaves 9 flat directions. These can

be characterized quite concisely:

(F1) : [c`u]1133, (F2) : [ceu]1133, (F3) : [c(3)
`q ]1133 =−[c`q ]1133,

(F4) : [c(3)
`q ]1122 = [c`q ]1122, [c`d ]1122 =

(
−5+ 3g 2

L

g 2
Y

)
[c`q ]1122, [ced ]1122 =

(
3− 3g 2

L

g 2
Y

)
[c`q ]1122,

(F5) : [c`q ]1111 =−[c`u]1111 =−[c`d ]1111 =−[ceq ]1111 = [ceu]1111 = [ced ]1111,

(F6) : [ceq ]2211 =−[ced ]2211, (F7) : [ceq ]2211 = 2[ceu]2211,

(F8,F9) : 0.86[cled q ]2211 −0.86[clequ]2211 +0.012[c(3)
led q ]2211 = 0. (3.4)

The flat directions F1, F2, F3 arise because low-energy precision measurements do not probe

the top quark couplings, which may be amended one day by e+e− collider operating above the

t t̄ threshold. F4 is due to the insufficient information about the strange quark couplings, and it

could be lifted by off Z-pole measurements of the strange asymmetry. F5 is the consequence of

the fact that the parity conserving operator (ēγµγ5e)
∑

q (q̄γµγ5q) and the axial neutrino-quark

interaction (ν̄LγµνL)
∑

q (q̄γµγ5q) are unconstrained by low-energy measurements and by

e+e− colliders. F6 and F7 are due to little data on muon scattering on nucleons. Finally, F8

and F9 appear because, with our approximations, the low-energy flavour observables probe

only one combination of light quark couplings to muons (through π→µν). The low-energy

constraint on εdµ
P = ([cled q ]2211 − [clequ]2211)/2 at µ= 2 GeV (via ∆d

LP in equation (3.43)), after

taking into account the running up to mZ , becomes a constraint on the linear combination in

the last line of equation (3.4).

In order to isolate the flat directions we define

[ĉeq ]1111 = [ceq ]1111 + [c`q ]1111

[ĉ`u]1111 = [c`u]1111 + [c`q ]1111 − [ĉeq ]1111

[ĉ`d ]1111 = [c`d ]1111 + [c`q ]1111 − [ĉeq ]1111

[ĉeu]1111 = [ceu]1111 − [c`q ]1111

[ĉed ]1111 = [ced ]1111 − [c`q ]1111

[ĉ(3)
`q ]1122 = [c(3)

`q ]1122 − [c`q ]1122

[ĉ`d ]1122 = [c`d ]1122 +
(

5− 3g 2
L

g 2
Y

)
[c`q ]1122 − [ĉeq ]1111

[ĉed ]1122 = [ced ]1122 −
(

3− 3g 2
L

g 2
Y

)
[c`q ]1122 − [ĉeq ]1111
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[ĉ(3)
`q ]1133 = [c(3)

`q ]1133 + [c`q ]1133

[ĉeq ]2211 = [ceq ]2211 + [ced ]2211 −2[ceu]2211

ε
dµ
P (2 GeV) = 0.86[cled q ]2211 −0.86[clequ]2211 +0.012[c(3)

led q ]2211

[ĉ``]2222 = [c``]2222 +
2g 2

Y

g 2
L +3g 2

Y

[c`e ]2222 (3.5)

The last variable projects out the flat direction among 4-muon operators in the trident ob-

servable. Using these variables, the global likelihood depends on the Wilson coefficients on

the right-hand sides of Eqs. (3.5) only via the ĉ and εdµ
P (2 GeV) combinations.11 Moreover, the

dependence on [ĉeq ]1111 appears only thanks to the loose Rνe ν̄e constraint, and thus we know

beforehand that there is no sensitivity to [ĉeq ]1111 . 1.

3.4.3 Reconnaissance

We start by presenting the constraints in the case when only one of the LLQQ operators is

present at a time, and all vertex corrections and 4-lepton operators vanish. We stress that this

is just a warm-up exercise and not our main result. Indeed, one-by-one constraints are basis

dependent and could be different if another basis of dimension-6 operators was used. Only

the global likelihood encoding the correlated constraints on all Wilson coefficients in a given

basis has a model-independent meaning. The main purpose of this exercise is to compare

the sensitivity of various experiments to a few particular directions in the space of Wilson

coefficients.

The one-by-one constraints on chirality-conserving LLQQ operators involving 1st generation

quarks are shown in table 3.5. One can see that atomic parity violation is the most sensitive

probe for most of the operators with electrons and the first generation quarks. The exception

is [O(3)
`q ]1111, which contributes to charged-current transitions and can be probed in d → ueν̄e

decays.12 We stress however that the less sensitive experiments will be absolutely crucial to

probe more independent directions in the space of dimension-6 operators. For the operators

involving the 2nd generation lepton doublet the muon-neutrino scattering is a fairly sensitive

probe. Again, [O(3)
`q ]2211 is very precisely probed by the low-energy flavour observables because

it affects the charged current. The sensitivity of low-energy experiments to the operators

involving the right-handed muons is very poor. However, this is not a pressing problem, given

these directions are very well probed by the LHC [129], as will be discussed in section 3.5.

The (ee)(qq) bounds shown in Table 5 are in excellent agreement with the 1-by-1 results of

Ref. [129], whereas our (µµ)(qq) bounds are more stringent due to the inclusion of additional

experimental input.

11Let us stress that the LLQQ coefficients in the r.h.s. of ε
dµ
P (2 GeV) in equation (3.5) are defined at µ= mZ .

12The single-operator bounds from d(s) → u`ν̄` data shown in this section are obtained using the likelihood
of equation (3.43), which was marginalized over strange-quark couplings. Using instead the full likelihood [160]
given in C.2 slightly stronger constraints (and central values closer to zero) are obtained.
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(ee)(qq)
[c(3)
`q ]1111 [c`q ]1111 [c`u ]1111 [c`d ]1111 [ceq ]1111 [ceu ]1111 [ced ]1111

CHARM −80±180 700±1800 370±880 −700±1800 x x x
APV 27±19 1.6±1.1 3.4±2.3 3.0±2.0 −1.6±1.1 −3.4±2.3 −3.0±2.0

QWEAK 7.0±12 −2.3±4.0 −3.5±6.0 −7±12 2.3±4.0 3.5±6.0 7±12
PVDIS −8±12 24±35 38±48 −77±96 −77±96 −12±17 24±35

SAMPLE −8±45 x −17±90 17±90 x −17±90 17±90
d j → u`ν 0.38±0.28 x x x x x x

LEP-2 3.5±2.2 −42±28 −21±14 42±28 −18±11 −9.0±5.7 18±11

(µµ)(qq)
[c(3)
`q ]2211 [c`q ]2211 [c`u]2211 [c`d ]2211 [ceq ]2211 [ceu]2211 [ced ]2211

PDG νµ 20±15 4±21 18±19 −20±37 x x x
SPS 0±1000 0±3000 0±1500 0±3000 40±390 −20±190 40±390

d j → u`ν −0.4±1.2 x x x x x x

Table 3.5 – 68% C.L. constraints (in units of 10−3) on chirality-conserving (ee)(qq) and (µµ)(qq)
operators from different precision experiments. The bounds are derived assuming that only
one operator is present at a time. See table 3.4 and main text for further details about the
different experiments. The best constraint in each case is highlighted in blue, while ‘x’ signals
that the operator is not probed at tree level by that experiment or combination.

The LEP-2 constraints on operators involving 2nd generation or bottom quarks are similar

as those shown in table 3.5. We also give 1-by-1 constraints on the chirality-violating LLQQ

operators from the low-energy flavour observables: [c`equ]1111

[c`ed q ]1111

[c(3)
`equ]1111

=

− (0.8±2.9) ·10−7

(0.8±2.9) ·10−7

(0.5±2.0) ·10−5

 ,

 [c`equ]2211

[c`ed q ]2211

[c(3)
`equ]2211

=

 (1.7±5.8) ·10−5

− (1.7±5.8) ·10−5

− (1.2±4.1) ·10−3

 . (3.6)

This exceptional sensitivity arises because these operators violate the approximate symmetries

of the SM, leading potentially to a large enhancement of several decays of low-mass hadrons.13

In particular, new physics generating the pseudo-scalar (ee)(qq) operator is probed up to

Λ/g∗ ∼100 TeV. Let us note that they dominate the c(3)
`equ bounds shown above, despite the fact

that they probe them only via 1-loop QED mixing [174, 218]. For consistency with the rest of

this work, these individual limits are obtained using V = 1 at orderΛ−2. Working instead with

the full non-diagonal CKM matrix the limits are slightly modified, but more importantly one

can set strong 1-by-1 limits in a long list of other (offdiagonal) operators.

Finally, for the sake of completeness we show the 1-by-1 bound on the W coupling to right-

13More specifically they violate the approximate flavour symmetry of the SM U (1)`×U (1)e that suppresses the
decay π→ `ν` by a factor m2

`
/Λ2

QC D . Thus, their bounds benefit from this largeΛQC D /m` chiral enhancement.

This does not apply however to the tensor operator c(3)
`equ , whose tree-level contribution to this specific decay is

zero by simple Lorentz invariance considerations.
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handed 1st-generation quarks

δg W q1

R =− (3.9±2.9) ·10−4, (3.7)

which is completely dominated by its contribution to the CKM-unitarity test of equation (3.9).

3.4.4 All out

We now combine all the experimental observables summarized in table 3.4 along with the pole

observables discussed in Ref. [139], which represent a total of 264 experimental input. These

provide simultaneous constraints on 61 combinations of Wilson coefficients of dimension-6

operators in the SMEFT Lagrangian (21 vertex corrections δg , 25 LLQQ and 15 LLLL operators)
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and on the Ṽud SM parameter. Marginalizing over Ṽud we find the following constraints:

δg W e
L

δg Wµ

L

δg W τ
L

δg Z e
L

δg Zµ
L

δg Zτ
L

δg Z e
R

δg Zµ
R

δg Zτ
R

δg Z u
L

δg Z c
L

δg Z t
L

δg Z u
R

δg Z c
R

δg Z d
L

δg Z s
L

δg Z b
L

δg Z d
R

δg Z s
R

δg Z b
R

δg W q1

R

[c``]1111

[c`e ]1111

[cee ]1111

[c``]1221

[c``]1122

[c`e ]1122

[c`e ]2211

[cee ]1122

[c``]1331

[c``]1133

[c`e ]1133

[c`e ]3311

[cee ]1133

[ĉ``]2222

[c``]2332



=



−1.00±0.64

−1.36±0.59

1.95±0.79

−0.023±0.028

0.01±0.12

0.018±0.059

−0.033±0.027

0.00±0.14

0.042±0.062

−0.8±3.1

−0.15±0.36

−0.3±3.8

1.4±5.1

−0.35±0.53

−0.9±4.4

0.9±2.8

0.33±0.17

3±16

3.4±4.9

2.30±0.88

−1.3±1.7

1.01±0.38

−0.22±0.22

0.20±0.38

−4.8±1.6

1.5±2.1

1.5±2.2

−1.4±2.2

3.4±2.6

1.5±1.3

0±11

−2.3±7.2

1.7±7.2

−1±12

−2±21

3.0±2.3



×10−2,



[c(3)
`q ]1111

[ĉeq ]1111

[ĉ`u]1111

[ĉ`d ]1111

[ĉeu]1111

[ĉed ]1111

[ĉ(3)
`q ]1122

[c`u]1122

[ĉ`d ]1122

[ceq ]1122

[ceu]1122

[ĉed ]1122

[ĉ(3)
`q ]1133

[c`d ]1133

[ceq ]1133

[ced ]1133

[c(3)
`q ]2211

[c`q ]2211

[c`u]2211

[c`d ]2211

[ĉeq ]2211

[c`equ]1111

[c`ed q ]1111

[c(3)
`equ]1111

ε
dµ
P (2 GeV)



=



−2.2±3.2

100±180

−5±11

−5±23

−1±12

−4±21

−61±32

2.4±8.0

−310±130

−21±28

−87±46

270±140

−8.6±8.0

−1.4±10

−3.2±5.1

18±20

−1.2±3.9

1.3±7.6

15±12

25±34

4±41

−0.080±0.075

−0.079±0.074

−0.02±0.19

−0.02±0.15



×10−2.

(3.8)

The correlation matrix is available in the Mathematica notebook attached as a supplemental

material to the publication [161].

The model-independent bounds on the vertex corrections are practically the same as the ones
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obtained from the pole observables only in Ref. [139]. This is due to the fact that there are

more 4-fermion operators than independent off-pole observables. Hence the latter serve to

bound 4-fermion Wilson coefficients but cannot further constrain δg . Nevertheless, there are

non-zero correlations between the constraints on vertex corrections and 4-fermion operators

that are captured by our analysis. It is worth stressing the CKM-unitarity test∆C K M of equation

(3.9), which actually provides stronger one-by-one limits on the vertex corrections δg W q1

L and

δg Wµ

L than all pole observables combined.

Furthermore, the low-energy flavour observables provide a percent level bound on the W

boson coupling to right-handed light quarks δg W q1

R [160]. Recall that δg W q
R are not probed by

the pole observables at tree level and O (Λ−2) in the SMEFT expansion, therefore the model-

independent limit in equation (3.8) (from Ref. [160]) is a new result. It is weaker than the

one in equation (3.7) because in the global fit the strong constraints from the CKM-unitarity

test of equation (3.9) are diluted by marginalizing over less precisely probed dimension-6

parameters. Nevertheless, the constraint on δg W q1

R will typically be stronger in specific new

physics scenarios, unless they predict that the particular linear combination on the r.h.s of

equation (3.9) approximately vanishes at the sub-per-mille level.

The bounds on LLLL operators involving only electrons and/or muons are also similar to the

ones previously obtained in Ref. [150], with the exception of [c``]2222 which is now bound

due to the inclusion of neutrino trident production data. For the eeττ operators the bounds

are much stronger thanks to including the VENUS ττ polarization data, which resolves the

degeneracies present in the fit of Ref. [150].

Previous global SMEFT analyses targeting LLQQ operators [116, 117, 146] were carried out

assuming some simplifying flavour structure, such as the U (3)5 symmetry [116], which greatly

reduces the number of independent Wilson coefficients. On the other hand, previous analyses

working in a flavour general setup provided 1-by-1 bounds (see e.g. Ref. [122, 129]). Thus,

the global bounds applicable for a completely arbitrary flavour structure are obtained for

the first time in these two papers, and they represent our main result. They are relevant for

a large class of new physics scenarios with or without approximate flavour symmetries. In

particular, models addressing various flavour anomalies necessarily do not respect the U (3)5

symmetry, and therefore the global likelihood we obtained may provide new constraints on

their parameters.

We find several poorly constrained directions in the space of LLQQ operators. As discussed

earlier, [ĉeq ]1111 is currently constrained only by very imprecise measurements of electron

neutrino scattering on nucleons, such that the experiments are insensitive to [ĉeq ]1111 . 1.

More surprisingly, another practically unconstrained direction emerges in our fit, which

roughly corresponds to the linear combination [ĉed +0.6 ĉ`d ]1122. This can be traced to the

fact that the LEP-2 collider was scanning a fairly narrow range of
p

s in e+e− collisions. For

this reason, not all theoretically available combinations discussed in section 3.4.2 are resolved

in practice. Again, it is should be noted that constraints in typical scenarios generating these
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LLQQ operators will be stronger unless the operators accidentally align with the flat directions

in our fit. We stress that the global likelihood retains the full information about the correlations.

3.4.5 Flavor-universal limit

The general likelihood presented in section 3.4.4 can be easily restricted to a smaller subspace

relevant for any particular scenario. We present here the results for the flavour-universal limit,

where dimension-6 operators are invariant under the global flavour symmetry U (3)5. The

symmetry implies that 1) all off-diagonal and chirality-violating operators as well as δg W q
R

are absent, 2) the remaining operators do not carry the flavour index. The only subtlety

concerns the [c``]I JK L coefficients, since two independent contractions of flavour indices

are allowed by the U (3)5 symmetry. We follow the common practice of parametrizing them

in terms of the two U (3)5-symmetric operators O`` ≡ 1
2

∑
I ,J ( ¯̀I σ̄µ`I )( ¯̀J σ̄µ`J ) and O(3)

``
≡

1
2

∑
I ,J ( ¯̀

Iσ
i σ̄µ`I )( ¯̀

Jσ
i σ̄µ`J ). All in all, with the parameterization of the dimension-6 space

used in this paper, the U (3)5 symmetry corresponds to the following pattern:

δg
W e J

L

δg
Z e J

L

δg
Z e J

R

δg
Z u J

L

δg
Z u J

R

δg
Z d J

L

δg
Z d J

R


=



δg W e
L

δg Z e
L

δg Z e
R

δg Z u
L

δg Z u
R

δg Z d
L

δg Z d
R


,


[c``]J J J J

[c``]I J J I

[c``]I I J J

[c`e ]I I J J

[cee ]I I J J

=


c``+ c(3)

``

2c(3)
``

c``− c(3)
``

c`e

cee

 ,



[c(3)
`q ]I I J J

[c`q ]I I J J

[ceq ]I I J J

[c`u]I I J J

[c`d ]I I J J

[ceu]I I J J

[ced ]I I J J


=



c(3)
`q

c`q

ceq

c`u

c`d

ceu

ced


(3.9)

and all the remaining vertex corrections and 4-fermion Wilson coefficients vanish. This setup

corresponds to the SMEFT limit studied in the pioneering work of Ref. [116].14

It turns out that the global likelihood constrains the entire restricted parameter set introduced

in equation (3.9). Thus, unlike in the flavour-generic case, there is no need to define new

variables ĉ in order to factor out the flat directions. Marginalizing over Ṽud , we find the

following constraints: 

δg W e
L

δg Z e
L

δg Z e
R

δg Z u
L

δg Z u
R

δg Z d
L

δg Z d
R


=



−1.22 ± 0.81

−0.10 ± 0.21

−0.15 ± 0.23

−1.6 ± 2.0

−2.1 ± 4.1

1.9 ± 1.4

15 ± 7


×10−3 (3.10)

14Let us note that the more recent analysis of Ref. [146] corresponds to a more restricted scenario, since the two

independent coefficients c`` and c(3)
``

are controlled by one single coefficient C`` in that work.
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
c(3)
``

c``
c`e

cee

=


−3.0 ± 1.7

7.2 ± 3.3

0.2 ± 1.3

−2.5 ± 3.0

×10−3



c(3)
`q

c`q

ceq

c`u

c`d

ceu

ced


=



−4.8 ± 2.3

−15.4 ± 9.1

−14 ± 23

4 ± 24

6 ± 42

4 ± 11

26 ± 18


×10−3 (3.11)

The correlation matrix reads ρ =



1. −0.5 0.2 0.1 0.1 0. 0. 1. −0.5 0. −0.1 0.4 −0.1 0. 0.1 0. 0.1 0.
−0.5 1. 0.3 −0.1 0. −0.2 −0.2 −0.5 0.2 0. 0.1 −0.1 0.1 0. 0. 0. −0.1 −0.1
0.2 0.3 1. 0. 0. −0.3 −0.3 0.2 −0.2 0. 0.1 0.3 0. 0.1 0.1 0.1 0. −0.1
0.1 −0.1 0. 1. 0.8 0.2 0.1 0.1 0. 0. 0. 0.7 −0.3 0. 0.1 0. 0.5 0.1
0.1 0. 0. 0.8 1. 0.1 0.2 0.1 0. 0. 0. 0.7 −0.3 0. 0.1 0. 0.5 0.2
0. −0.2 −0.3 0.2 0.1 1. 0.9 0. 0. 0. 0. −0.4 −0.2 −0.1 −0.1 −0.2 0.2 0.4
0. −0.2 −0.3 0.1 0.2 0.9 1. 0. 0. 0. 0. −0.5 −0.2 −0.1 −0.1 −0.2 0.2 0.4
1. −0.5 0.2 0.1 0.1 0. 0. 1. −0.5 0. −0.1 0.4 −0.1 0. 0.1 0. 0.1 0.

−0.5 0.2 −0.2 0. 0. 0. 0. −0.5 1. −0.2 −0.6 −0.2 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. −0.2 1. −0.2 0. 0. 0. 0. 0. 0. 0.

−0.1 0.1 0.1 0. 0. 0. 0. −0.1 −0.6 −0.2 1. 0. 0. 0. 0. 0. 0. 0.
0.4 −0.1 0.3 0.7 0.7 −0.4 −0.5 0.4 −0.2 0. 0. 1. −0.1 0.1 0.2 0.1 0.3 −0.1
−0.1 0.1 0. −0.3 −0.3 −0.2 −0.2 −0.1 0. 0. 0. −0.1 1. −0.2 −0.7 −0.6 −0.5 −0.9

0. 0. 0.1 0. 0. −0.1 −0.1 0. 0. 0. 0. 0.1 −0.2 1. 0.7 0.9 −0.5 0.5
0.1 0. 0.1 0.1 0.1 −0.1 −0.1 0.1 0. 0. 0. 0.2 −0.7 0.7 1. 0.9 −0.1 0.8
0. 0. 0.1 0. 0. −0.2 −0.2 0. 0. 0. 0. 0.1 −0.6 0.9 0.9 1. −0.2 0.7

0.1 −0.1 0. 0.5 0.5 0.2 0.2 0.1 0. 0. 0. 0.3 −0.5 −0.5 −0.1 −0.2 1. 0.3
0. −0.1 −0.1 0.1 0.2 0.4 0.4 0. 0. 0. 0. −0.1 −0.9 0.5 0.8 0.7 0.3 1.


(3.12)

where the rows and columns correspond to the ordering of the parameters in equation (3.10)

and equation (3.11). The correlation matrix with more significant digits (necessary for practical

applications) is given in the Mathematica notebook attached as supplemental material.

Thanks to lifting the exact and approximate flat directions, in the U (3)5 symmetric limit

typical constraints on the dimension-6 parameters are at the per-mille level. We note that

the vertex corrections are constrained slightly better than when only the pole observables are

used [139], thanks to the precise input from low-energy flavour measurements. Most of the

LLQQ operators are constrained at the percent level.

Also working in the flavour-universal limit, Ref. [147] obtained bounds on 10 additional SMEFT

coefficients using Higgs data and W W production at LEP2. The only flavour-universal SMEFT

coefficients unconstrained by these two fits are those that are either CP-violating, or contain

only quarks, only gluons or only higgses.

3.4.6 Oblique parameters

In the literature, precision constraints on new physics are often quoted in the language of

oblique parameters S, T , W , Y [118, 219]. These correspond to a further restriction of the
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pattern of the dimension-6 parameters in the U (3)5 symmetric case [150, 220]:

δg Z f
L/R = α

T 3
fL/R

T −W − g 2
Y

g 2
L

Y

2
+Q f

2g 2
Y T − (g 2

L + g 2
Y )S +2g 2

Y W + 2g 2
Y (2g 2

L−g 2
Y )

g 2
L

Y

4(g 2
L − g 2

Y )


δg W e

L = α

2(g 2
L − g 2

Y )

(
−g 2

L + g 2
Y

2
S + g 2

LT − (g 2
L −2g 2

Y )W + g 2
Y Y

)

c(3)
``

= c(3)
`q = c(3)

qq =−αW c f1 f2 =−4Y f1 Y f2

g 2
Y

g 2
L

αY (3.13)

where Y fi is the fermionic hypercharge. With this pattern, all vertex corrections and 4-fermion

operators can be redefined away, such that new physics affects only the electroweak gauge

boson propagators. Restricting the U (3)5 symmetric likelihood using equation (3.13) we find

the following constraints on the oblique parameters:
S

T

Y

W

=


−0.10±0.13

0.02±0.08

−0.15±0.11

−0.01±0.08

 , ρ =


1. 0.86 0.70 −0.12

. 1. 0.39 −0.06

. . 1. −0.49

. . . 1.

 (3.14)

The constraints on the oblique corrections are dominated by the pole-observables and lepton-

pair production in LEP-2. The new observables probing LLQQ operators do not affect these

constraints significantly. In particular, the low-energy flavour observables do not probe the

oblique corrections at all. Compared to the fit in Ref. [150], we only observe a small shift of the

central values.15

3.5 Comments on LHC reach

Four-fermion LLQQ operators can be probed via the qq̄ → `+`− processes in hadron colliders.

Previously several groups set bounds on their Wilson coefficients through the reanalysis within

the SMEFT of various ATLAS and CMS exotic searches (see e.g. [129, 221]). In this section we

update those bounds using the recently published measurements of the differential Drell-Yan

cross sections in the dielectron and dimuon channels [222]. Our main goal here is to present a

brief comparison between the sensitivity of the LHC run-1 and of the low-energy observables

discussed in this paper.

Precision measurements in hadron collider environments are challenging. Individual ob-

servables are typically measured with much worse accuracy than in lepton colliders or very

low-energy experiments. However, the effect of 4-fermion operators on scattering amplitudes

grows with the collision energy E as ∼ c4 f E 2/v2. As a consequence, the superior energy reach

15The O (10%) increase of some errors compared to [150] is due to using different values of the electroweak
couplings to evaluate the dimension-6 shifts of the LEP-2 observables.
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3.5. Comments on LHC reach

(ee)(qq)
[c(3)
`q ]1111 [c`q ]1111 [c`u ]1111 [c`d ]1111 [ceq ]1111 [ceu ]1111 [ced ]1111

Low-energy 0.45±0.28 1.6±1.0 2.8±2.1 3.6±2.0 −1.8±1.1 −4.0±2.0 −2.7±2.0

LHC1.5 −0.70+0.66
−0.74 2.5+1.9

−2.5 2.9+2.4
−2.9 −1.6+3.4

−3.0 1.6+1.8
−2.2 1.6+2.5

−1.5 −3.1+3.6
−3.0

LHC1.0 −0.84+0.85
−0.92 3.6+3.6

−3.7 4.4+4.4
−4.7 −2.4+4.8

−4.7 2.4+3.0
−3.2 1.9+2.5

−1.9 −4.6+5.4
−4.1

LHC0.7 −1.0+1.4
−1.5 5.9±7.2 7.4±9.0 −3.6±8.7 3.8±5.9 2.1+3.8

−2.9 −8±10
(µµ)(qq)

[c(3)
`q ]2211 [c`q ]2211 [c`u ]2211 [c`d ]2211 [ceq ]2211 [ceu ]2211 [ced ]2211

Low-energy −0.2±1.2 4±21 18±19 −20±37 40±390 −20±190 40±390

LHC1.5 −1.22+0.62
−0.70 1.8±1.3 2.0±1.6 −1.1±2.0 1.1±1.2 2.5+1.8

−1.4 −2.2±2.0

LHC1.0 −0.72+0.81
−0.87 3.2+4.0

−3.5 3.9+4.8
−4.4 −2.3+4.9

−4.7 2.3+3.1
−3.2 1.6+2.3

−1.8 −4.4±5.3

LHC0.7 −0.7+1.3
−1.4 3.2+10.3

−4.8 4.3+12.5
−6.4 −3.6±9.0 3.8±6.2 1.6+3.4

−2.7 −8±11
Chirality-violating operators (µ= 1 TeV)

[c`equ ]1111 [c`ed q ]1111 [c(3)
`equ ]1111 [c`equ ]2211 [c`ed q ]2211 [c(3)

`equ ]2211

Low-energy (−0.6±2.4)10−4 (0.6±2.4)10−4 (0.4±1.4)10−3 0.014(49) −0.014(49) −0.09(29)

LHC1.5 0±2.0 0±2.6 0±0.91 0±1.2 0±1.6 0±0.56

LHC1.0 0±2.9 0±3.7 0±1.4 0±2.9 0±3.7 0±1.4

LHC0.7 0±5.3 0±6.6 0±2.6 0±5.5 0±6.9 0±2.6

Table 3.6 – Comparison of low-energy and LHC constraints (in units of 10−3) on the Wilson
coefficients of the chirality-conserving (ee)(qq) and (µµ)(qq) and chirality-violating operators
defined at the scale µ= 1 TeV. The 68% CL bounds are derived assuming only one 4-fermion
operator is present at a time, and that the vertex corrections and [c``]1221 are absent. The
low-energy constraints combine all experimental input summarized in table 3.4. The LHC1.5

constraints use the m`` ∈ [0.5-1.5] TeV bins of the measured differential e+e− and µ+µ− cross
sections at the 8 TeV LHC [222]. We also separately show the constraints obtained when the
m`` ∈ [0.5-1.0] TeV (LHC1.0) and m`` ∈ [0.5-0.7] TeV (LHC0.7) data range is used.

of the LHC compensates the inferior precision in this case [129, 221]. This message was re-

cently stressed in Ref. [223] in the context of the determination of the oblique parameters,

which encode new physics corrections to propagators of the electroweak gauge bosons. It

turns out that the effect of the oblique parameters W and Y [118] on the high invariant-mass

tail of dσ(pp→`+`−)
dm``

also grows with E (as opposed to that of the more familiar S and T pa-

rameters [219]). The current LHC constraint on W and Y are already competitive with those

obtained from low-energy precision experiments, and will become more accurate with the full

run-2 dataset at
p

s ≈ 13-14 TeV [223]. In the SMEFT framework, W and Y correspond to a

particular pattern of vertex corrections and 4-fermion operators [150, 220], cf. equation (3.13).

Therefore we expect that similar arguments apply, and that competitive bounds on the LLQQ

operators can be extracted from ATLAS and CMS measurements of dσ(pp→`+`−)
dm``

. Below we

present some quantitative illustrations of this message.

In the situation when only one LLQQ operator is present at a time and all other dimension-6

operators are absent, the sensitivity of the LHC run-1 and of the low-energy observables is

contrasted in table 3.6. To estimate the LHC reach we use 3 bins in the range m`` ∈ [0.5-1.5] TeV

of the ATLAS measurement of the differential e+e− and µ+µ− cross sections at the 8 TeV LHC
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(20.3 fb−1) [222]. This is shown under the label of LHC1.5 constraints in table 3.4, and it is

compared to the combined constraints using the low-energy input. For the chirality conserving

(ee)(qq) operators the two are indeed similarly sensitive. For the chirality conserving (µµ)(qq)

operators the low-energy bounds are relatively weaker, especially for the operators that do

not affect the muon neutrino couplings. With the exception of [O(3)
`q ]2211 probed by the flavour

observables, the LHC sensitivity is superior by at least an order of magnitude. Therefore in

these directions in the parameter space of dimension-6 SMEFT the LHC is in a completely

uncharted territory. The situation is quite opposite for the chirality-violating (ee)(qq) and

(µµ)(qq) operators. There the light quark transitions offer a superior sensitivity with which

the LHC cannot compete in most cases. The exception is the [O(3)
`equ]2211 operator where the

LHC reach is comparable.

An important difference between the LHC and low-energy constraints should be emphasized.

The latter are obtained in the energy regime where it is very plausible to assume the validity of

the EFT. Here, by validity we mean that the SMEFT with dimension-6 operators adequately

describes the physics of the underlying UV completion. First of all, if such completion contains

new states at ∼ 1 TeV then clearly the LHC bounds in table 3.6 cannot be applied and a model-

dependent approach becomes necessary. This is however not the case for the SMEFT bounds

derived from low-energy data in the previous section, which are still valid. On the other hand,

even in the absence of such “light” states one should analyze the sensitivity to O (Λ−4) terms.

The precisely measured low-energy observables are dominated by O (Λ−2) contributions of

dimension-6 operators, whereas the quadratic terms in the Wilson coefficients, formally

O (Λ−4), are negligible. In contrast, the one-by-one LHC constraints on 4-fermion operators

in table 3.6 have in general a similar sensitivity to linear and quadratic terms.16 Notice that

this problem becomes much more severe in a global fit and that in the particular case of the

chirality-violating operators there is no interference at all. This may undermine the SMEFT

1/Λ2 expansion for generic UV completions, and it is not clear whether the dimension-8 and

higher operators can be neglected in the analysis. As discussed in Ref. [224], in such a case

the EFT is still valid for strongly coupled UV completions, where the dimension-6 squared

terms are parametrically enhanced with respect to the dimension-8 contributions by a large

NP coupling. On the other hand, for weakly coupled UV completion one should use weaker

LHC bounds obtained by truncating the
p

s range of the analyzed data at some Mcut above

which the SMEFT is no longer valid. For illustration, in table 3.4 we show the analogous LHC

constraints with Mcut = 1 TeV (LHC1.0) and Mcut = 0.7 TeV (LHC0.7).

Another practical consequence of the quadratic terms domination at the LHC is that the

likelihood for the Wilson coefficients is not approximately Gaussian. That means it is not

fully characterized by the central values, 1 σ errors, and the correlation matrix, as is the case

for the low-energy observables. This makes the presentation of the global fit results more

cumbersome.

16 In fact, in a few LHC0.7 entries in table 3.6 there is an additional (not shown) second solution far from the
origin.
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3.6. Conclusion

Last, let us notice that the dilepton-production cross section is also sensitive to SMEFT

coefficients that are flavour non-diagonal in the quark bilinear if we go beyond the V = 1

approximation at order Λ−2. This was exploited in Ref. [160] to set bounds on the Wilson

coefficients of chirality-violating ``21 operators.

3.6 Conclusion

In this work, we compiled information from a number of experiments sensitive to flavour-

conserving LLQQ operators. The main focus is on experiments probing physics well below

the weak scale, such as neutrino scattering on nucleon targets, atomic parity violation, parity-

violating electron scattering on nuclei, and so on. Information from e+e− collisions at the

center-of-mass energies around the weak scale is also included. This is combined with

previous analyses studying 4-lepton operators and the strength of the Z and W boson couplings

to matter. The ensemble of data is interpreted as constraints on heavy new physics encoded

in tree-level effects of dimension-6 operators in the SMEFT. The main strength of this analysis

is that we allow all independent operators to be simultaneously present with an arbitrary

flavour structure. Another novelty is the inclusion of low-energy flavour constraints from pion,

neutron, and nuclear decays, recently summarized in Ref. [160]. The leading renormalization

group running effects from low energies to the weak scale are taken into account.

We obtain simultaneous constraints on 61 linear combinations of Wilson coefficients in

the SMEFT. The results are presented as a multi-dimensional likelihood function, which is

provided in a Mathematica notebook attached as supplemental material. The likelihood can

easily be projected onto more restricted new physics scenarios. As an illustration, we provide

constraints on the SMEFT operators in the U (3)5-symmetric scenario, and on the oblique

parameters S, T , W , Y . The likelihood can be used to place limits on masses and couplings in

a large class of theories beyond the SM when the mapping between these theories and the

SMEFT is known.

Finally, a brief comparison of the sensitivity of low-energy experiments to LLQQ operators with

that of the LHC is provided. For many directions in the SMEFT parameters space, dilepton

production at the LHC is exploring virgin territories not constrained by previous experiments.

This is especially true for the chirality-conserving 2µ2q operators, where q are light quarks,

while for the chirality-conserving 2e2q operators the LHC and low-energy probes are similarly

sensitive. It would be beneficial to recast the LHC dilepton results in a model-independent

form of a global likelihood on the SMEFT Wilson coefficients. We leave this task for future

publications.

The SMEFT constraints summarized in these two papers should be improved by current LHC

data and future experiments. Measurements of the differential Drell-Yan production cross

sections at the LHC run-2 provides a more powerful probe of operators involving the first

generation quarks, thanks to the increased center-of-mass energy of the collisions. Progress

is imminent on the low-energy front as well, e.g. thanks to more precise measurements of
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the weak mixing angle via low-energy scattering of electrons in the Q-weak and MOLLER

experiments. We have stressed the importance of probing the SMEFT operators with multiple

low- and high-energy observables, which helps to lift flat directions in the global likelihood for

the Wilson coefficients. Finally, the existence of poorly constrained directions in the SMEFT

parameters space (especially for the operators involving the third generation quarks and

leptons) could be an inspiration to design new experiments and observables.
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Conclusion

In chapter 1, we studied two WIMP DM models coming from the MSSM. If the current experi-

mental bounds on supersymmetric particles put the MSSM naturalness under pressure, the

WIMP scenario is still an attractive DM model. We explored the Sommerfeld enhancement

from electroweak interactions, showing that at low velocity, the Sommerfeld factor can grow

very large in two cases. The first is when the DM mass M comes close to a resonance value

M∗, due to the presence of a zero-energy bound state of the Yukawa potential. The second

happens for every mass M but at specific velocity where the DM system has precisely the

energy of a Coulombic χ+χ− bound state.

We showed that for electroweak WIMP, the relic density calculation including Sommerfeld

enhancement is independent of the precise value of the mass splitting δm, since at freeze-out

TF À δm. The situation is different however for indirect detection. The DM particles in the

DM halo have very low velocity β∼ 10−3 depending on the celestial body under consideration

and the annihilation cross-section receives a large boost from Sommerfeld effect. In the Wino

case, the DM mass is close to a resonance, leading to a large cross-section above experimental

bounds from HESS. Changing the mass splitting can shift the position of the resonance and

bring the cross-section below experimental bounds. In the Higgsino case, there is no such

resonance near the relic mass. Coulomb resonances can boost the annihilation cross-section

for very specific mass splittings. The effect of changing the Higgsino and Wino mass splittings

on the indirect detection signal are shown in figure 1.7 and 1.9.

In chapter 2, we suggested a fixed-target experiment using the positron beam on target that

produces muons for a future muon collider. If such a collider is built, then by making minimal

changes in the design, adding a shield and a detector further in the beam direction, one

can enlarge the physics potential of the machine. The very intense primary beam gives a

large luminosity, allowing us to probe very weakly coupled new physics. If a dark particle if

produced at the interaction point, it will fly through the shielding and with some probability

decay back to SM particles in the detector.

Such weakly interacting long lived particles could be part of a dark sector carrying no SM

charges. Then at the renormalizable level, interactions between the dark sector and our

sector can only go through the dark photon, the dark Higgs or the HNL. We reviewed the

phenomenology and search strategy for the three classes of models.
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Conclusion

We studied the expected reach of our experimental proposal in a simplified model of each

class. Of course, the limits depend on the details of the concrete model but these simplified

models allow us to compare the reach of different experiments. Our results are shown in figure

2.7 for the dark photon case and in figure 2.9 for the HNLs. Except for the dark Higgs, our

setup would greatly improve current experimental bounds and is competitive with similar

projects such as SHiP. In order to have a better idea of the performances, one needs a more

complete study of the detector design, the expected SM background and the shielding needed

to reduce it.

In chapter 3, we compiled data from a number of experiments sensitive to flavour-conserving

LLQQ and LLLL operators. We focused on low-energy experiments, such as neutrino scatter-

ing on nucleon targets, atomic parity violation, parity-violating electron scattering on nuclei,

and so on. Measurements from LEP at and above the Z -pole are also included. These mea-

surements are recasted as constraints on heavy new physics encoded in tree-level effects of

dimension-6 operators in the SMEFT allowing all independent operators to be simultaneously

present with an arbitrary flavour structure. This analysis is valid for a large class of models

where new physics is heavy compared to the weak scale and conserves baryon and lepton

number. However, one has to assume that dimension-6 operators are not suppressed for some

reason and are always dominant compared to dimension-8 operators.

Our result consists in simultaneous constraints on 61 linear combinations of Wilson coeffi-

cients in the SMEFT. We see that most four-fermion operators involving the first generation

are well constrained by experimental data but the bounds become very poor or non-existent

for operators involving only second and third generations. In order to continue in this direc-

tion, one could include data from tau hadronic decays [225] and heavy quark decays. This

would require a systematic treatment of the CKM matrix in the SMEFT framework, with one

posibility suggested in [167]. In any case, the very large number of parameters in the SMEFT

with arbitrary flavour structure makes it necessary to include as much experimental data as

possible.

In the general case, the number of free parameters in the SMEFT is still much larger than the

number of experimental measurements we can include. Our result can be used to test specific

ideas or models giving some structure to the Wilson coefficients. One limit we presented

is the flavour-symmetric limit with a U (3)5 symmetry. We see that in this case, all vertex

corrections, LLLL and LLQQ operators are constrained at the per-mille or percent level. It

would be interesting to study the structure of the Wilson coefficients in scenarios relevant for

the flavour puzzle and for the B-anomalies and test them with our result.

In this thesis, we have explored different models and directions in the search for BSM physics

motivated by DM, naturalness and other problems of the SM. Future experimental progress at

the energy frontier, at the intensity frontier and at the cosmology frontier will bring us closer

to understanding the long-standing puzzles of the Standard Model.

116



A DM relic density calculation

The freeze-out mechanism is one of the most popular ways to explain why the DM density in

our universe has its measured value. Here we will sketch the DM density evolution and give

some order of magnitude estimations relevant for the WIMP case.

In the standard thermal DM scenario, the DM particles are in thermal equilibrium with the

SM particles in the early universe. As the universe expands, their number density is given by

the Boltzmann equation:
dn

d t
+3Hn =−〈σβ〉12(n2 −n2

eq ) (A.1)

where H is the expansion rate of the universe and 〈σβ〉12 the thermal average of the annihila-

tion cross-section of DM particles to SM states multiplied by their relative velocity. When the

temperature of the universe decreases below the DM mass M , its equilibrium density drops

exponentially and the annihilation rate Γ= n〈σβ〉12 becomes negligible compared to H . The

DM particles are too rare to annihilate and their density is only diluting with the expansion of

the universe. The temperature at which the DM particles decouple from the thermal bath is

called the freeze-out temperature TF .

Following the procedure described in [226], the thermal relic abundance of DM is given by:

ΩDMh2 =
√

45

π

s0

ρc

1p
g∗MP

[∫ ∞

xF

〈σβ〉12

x2 d x

]−1

(A.2)

where s0 = 2891cm−3 is the entropy density today, ρc = 1.054×10−5h2 GeVcm3 is the critical

density of the universe (values taken from [210]), xF = M
TF

and g∗ is the number of degrees of

freedom at freeze-out. Since we expect TF to be around 50 GeV we will take g∗ = 92 in all the

following calculations. The freeze-out temperature is computed recursively with the formula:

xF = log

[
5

4

√
45

8

g

2π3

M MPp
g∗xF

〈σβ〉T=TF

]
(A.3)

where g is the number of degrees of freedom of the DM species.
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Appendix A. DM relic density calculation

One can often take the non-relativistic limit in the thermal average computation using the

Maxwell-Boltzmann distribution:

f (β12, x) = 4π
( x

4π

) 3
2
β2

12 exp

(
−xβ2

12

4

)
(A.4)

The annihilation cross section is then expanded in the non-relativistic limit: σβ12 = a+bβ2
12+

O(β4
12). In this case, the thermal average can be computed explicitly and we get:

∫ ∞

xF

〈σβ12〉
x2 d x = 1

xF

[
a + 3b

xF
+O

(
1

x2
F

)]
(A.5)

With co-annihilationIn the case of co-annihilation where the DM is composed of N species

i = 1, ..., N almost degenerate in mass and in thermal equilibrium, one has to replace in the

previous paragraph the cross-section σ by the temperature dependent effective annihilation

cross-section given by:

σeff =
N∑
i , j
σi j

gi g j

geff
(1+∆i )

3
2
(
1+∆ j

) 3
2 e−x(∆i+∆ j ) (A.6)

where σi j =σ(DMi DM j → SM), ∆i = (Mi −M)/M where M is the lightest DM particle mass

and

geff =
N∑
i

gi (1+∆i )
3
2 e−x∆i

In the Wino and Higgsino case, we are always in a regime where TF À δm so taking into

account the Boltzmann factor gives only a small correction to the case where all DM species

are degenerate in mass.
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B Details in dark sector calculations

B.1 Weizsäcker-Williams approxinmation

The dark photon is produced in the positron-nucleon interaction by the following process:

e+(pµ)+N (Pµ

i ) → e+(p ′µ)+N (Pµ

f )+ A′(kµ). The nucleus is a Beryllium nucleus with Z = 4

and A = 9 of mass denoted M . We follow the derivation in [227]. The cross-section, if one can

compute the amplitude, is given by:

dσ23 = 1

2p

1

2M
|M23|2 d 3p′

(2π3)2E ′
d 3P f

(2π)32E f

d 3k

(2π)32Ek
(2π)4δ(4)(p +Pi −P f −p ′−k) (B.1)

= 1

1024π5

1

pME f E ′Ek
|M23|2 d 3p′ d 3P f d 3kδ(4)(p +Pi −P f −p ′−k)

where the sum and average over polarizations is included in the two to three amplitude M23.

We first integrate over d 3p′ and trade Pµ

f for the intermediate photon four-vector qµ = Pµ

i −Pµ

f .

We then choose spherical coordinates (Q,θq ,φq ) for q where the azimuthal direction is taken

to be along the vector v = k−p:

dσ23 = 1

1024π5

1

pME f E ′Ek
|M23|2 d 3qd 3kδ(E0 +q0 −E ′−Ek )

= 1

1024π5

Q2

pME f E ′Ek
|M23|2 dQ d cosθq dφq d 3kδ(E0 +q0 −E ′−Ek ) (B.2)

and the δ-function is explicitly given by:

δ

(
E0 +M −

√
M 2 +Q2 −Ek −

√
v2 +Q2 +2vQ cosθq +m2

e

)
(B.3)

(where v = |v|). We can then solve the δ-function for cosθq and integrate over d cosθq . This

gives a factor E ′
Qv and sets a range on Q, v and Ek for the solution to exist. We then change
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Appendix B. Details in dark sector calculations

variable to t =−q2 the virtuality of the intermediate photon:

t =Q2 − (q0)2 = 2M

(√
M 2 +Q2 −M

)
⇒QdQ = E f

2M
d t (B.4)

We are now left with:

dσ23 = 1

2048π5

1

pv M 2Ek
|M23|2 d 3k (B.5)

Finally, we decompose k in spherical coordinates (K ,θA′ ,φA′) where the azimuthal angle is

aligned with the incoming beam direction. Here φA′ plays no role by cylindrical symmetry

so we can integrate over it. Then we cange variable to x = Ek
E0

such that K dK = Ek E0d x which

gives us our formula:

dσ23

d x d cosθA′
= 1

1024π4

xE 2
0

pv M 2

√√√√1− m2
A′

x2E 2
0

∫ tmax

tmin

d t
∫ 2π

0
dφq |M23|2 (B.6)

In order to finalize our formula, we only need to compute tmin(x,θ) and tmax(x,θ) from equa-

tion (B.3) and plug in the expression of the amplitude.

We now turn our attention to the two to three amplitude. It can be separated in two pieces,

the two to two amplitude e+γ→ e+A′ and the nucleus electromagnetic form factor Fµ linked

by the virtual photon propagator:

M23 =M
µ
22

ηµν

t
eFν (B.7)

We make a first assumption on the tensor structure of the nucleon form-factor:∑
pol

FµFν = ηµνF (t )2 (B.8)

so that our formula becomes:

dσ23

d x d cosθA′
= α

256π3

xE 2
0

pv M 2

√√√√1− m2
A′

x2E 2
0

∫ tmax

tmin

F (t )2 d t

t 2

∫ 2π

0
dφq |M22|2 (B.9)

Weizsäcker-Williams approximation

The Weizsäcker-Williams approximation relies on the following approximation dtailed in [228]:

1

8M 2

∫ 2π

0

dφq

2π
|M22|2 ≈ t − tmin

2tmin
|M22|2t=tmin (B.10)

which simplifies our double-integral to one integral only, interpreted as the photon flux:

dσ23

d x d cosθA′
≈ αχ

16π2

xE 2
0

pv
βA′

|M22|2t=tmin

2tmin
where χ(x,θA′) =

∫ tmax

tmin

F (t )2 t − tmin

t 2 d t (B.11)
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B.1. Weizsäcker-Williams approxinmation

and where we have written βA′ =
√

1−m2
A′/E 2

k .

In order to recover the usual Weizsäcker-Williams formula, we introduce the two to two

process e+(pµ)+γ(qµ) → e+(p ′µ)+ A′(kµ) where the photon is off-shell (q2 = −tmin). The

corresponding Mandelstam variables will be denoted s2, t2 and u2. From the PDG, we have

the formula:

dσ22

d t2
= 1

64πs2

1

|p1cm|2 |M22|2 = 1

16π

1

(s2 −m2
e −m2

γ)2 −4m2
e m2

γ

|M22|2 (B.12)

Here, we have considered that the photon had a negative mass given by m2
γ =−tmin. Plugging

this into our formula gives:

dσ23

d x d cosθA′
≈ α

π
χ(x,θA′)

xE 2
0

pv
βA′

(s2 −m2
e + tmin)2 +4m2

e tmin

2tmin

dσ22

d t2

∣∣∣∣
t=tmin

(B.13)

The rest is mostly kinematics and phase space. In order to simplify the phase space calculation

(B.3), we take the large nucleon mass limit: the intermediate photon energy q0 is of order

1/M 2 and can be neglected. Thus the delta-function reduces to:

δ

(
E0(1−x)−

√
v2 +Q2 +2vQ cosθq +m2

e

)
(B.14)

This has a solution in cosθq only if:

−2vQ ≤ (1−x)2E 2
0 − v2 −Q2 −m2

e ≤ 2vQ (B.15)

which in turn has a solution in Q only for 1−x ≥ me /E0. Equation (B.14) fixes the minimum

and maximum value of Q: Qmin =
∣∣∣−v +

√
(1−x)2E 2

0 −m2
e

∣∣∣
Qmax = v +

√
(1−x)2E 2

0 −m2
e

(B.16)

and we get the bounds of the t integral with t =Q2. The minimum value Q =Qmin is reached

when cosθq =±1 so θq = 0 or π, which means that the 3-vector q is collinear with p−k.

Following [40], we can make further simplifying assumptions: me ,mA′ ¿ E0 and θA′ ¿ 1 so we

keep the leading order in me /E0, mA′/E0 and θA′ . Then the Mandelstam variables for t = tmin
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Appendix B. Details in dark sector calculations

simplify to:

u2 = (p −k)2 ≈−xθA′E 2
0 −

1−x

x
m2

A′ + (1−x)m2
e

v = |p−k|2 ≈(1−x)E0

tmin =Q2
min ≈ ũ2

2

4E 2
0 (1−x)2

(B.17)

s2 = (p ′+k)2 ≈ −ũ2

1−x
+m2

e

t2 = (p −p ′)2 ≈ ũ2x

1−x
+m2

A′

where ũ2 = u2 −m2
e . Using these, the prefactor of the total cross-section becomes:

xE 2
0

pv

(s2 −m2
e + tmin)2 +4m2

e tmin

2tmin
= 2x

1−x
E 2

0 (B.18)

so that we reproduce the well-known Weizsäcker-Williams formula:

dσ23

d x d cosθA′
≈ αχ(x,θA′)

π

xE 2
0

1−x
βA′ 2

dσ22

d t2

∣∣∣∣
t=tmin

(B.19)

In order to be consistent in our approximations, we can simplify dσ22 using the Mandelstam

variables given in equation (B.17). The result is [40]:

dσ22

d t2
= 2πα2ε2 1−x

ũ2
2

[
1+ (1−x)2 + 2(1−x)2m2

A′

ũ2
2

(
m2

A′ + ũ2x

1−x

)]
(B.20)

Improved Weizsäcker-Williams approximation

Since most of the events take place at θA′ close to 0 and x close to 1 where tmin is minimal, we

can neglect the x and θA′ dependence in the photon flux χ. We set tmin to its minimum value

(dropping m2
e terms) and we set tmax to a constant value [40]:

tmin =
(

m2
A′

2E0

)2

and tmax = m2
A′ +m2

e (B.21)

Therefore, the photon flux χ can be pulled out of the x and θA′ integral in the full cross-section

calculation.

Let us derive an approximate result for the total cross-section. We start with the angular

integral and change variable using dũ2 = 2pk d cosθA′ ≈ 2xE 2
0 d cosθA′ , integrating ũ2 from

ũ2(θA′) = 0 ≡ −u0 to the maximum (absolute) value of ũ2 that we take to be −∞. Then the
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B.1. Weizsäcker-Williams approxinmation

cross-section is:

dσ23

d x
=2α3ε2χβA′

∫ −u0

−∞
dũ2

1

ũ2
2

[
1+ (1−x)2 + 2(1−x)2m2

A′

ũ2
2

(
m2

A′ + ũ2x

1−x

)]

=2α3ε2χβA′

[
1+ (1+x)2

u0
− x(1−x)m2

A′

u2
0

+ 2(1−x)2m4
A′

3u2
0

]
(B.22)

In the limit mA′ À me , this reduces to:

dσ23

d x
= 4α3ε2χβA′

m2
A′

x

1−x

(
1−x + x2

3

)
(B.23)

We see that the differential cross-section diverges as x → 1, divergence cut-off by the electron

mass m2
e /m2

A′ . According to [40], the appromations break down for (1− x)E0 ≤ Q, giving

another cut-off m2
A′/E 2

0 . Integrating over x, and keeping only the diverging part, we get:

σ23 ≈ 4α3ε2χβA′

3m2
A′

log

(
1

1−xc

)
with 1−xc = max

(
m2

e

m2
A′

,
m2

A′

E 2
0

)
(B.24)

In conclusion

There are three layers of approximations we can use. The first one uses the approximations

(B.8), (B.10) and (B.14), this is the WW approximation:

dσ23

d x d cosθA′
≈ αχ(x,θA′)

16π2

xE 2
0

pv
βA′

|M22|2t=tmin

2tmin
(B.25)

where we use the full amplitude and tmin is given by equation (B.16).

If we take θA′ and all masses small in front of the beam energy, we use equations (B.17) and we

have the usual WW formula:

dσ23

d x d cosθA′
≈ αχ(x,θA′)

π

xE 2
0

1−x
βA′ 2

dσ22

d t2

∣∣∣∣
t=tmin

(B.26)

where the cross-section is given by the expression (B.20).

Finally, the improved Weizsäcker-Williams approximation consists of neglecting the θA′ and x

dependence of the photon flux χ.

The photon flux

To finish our calculation, we need to evaluate the photon flux χ(x,θA′) = ∫ tmax
tmin

G2(t) t−tmin
t 2 d t

with G2(t ) ≡ F (t )2 the electric form factor. It is given by a sum of two terms [228], the elastic
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form factor

G2,el (t ) =
(

a2t

1+a2t

)2 (
1

1+ t/d

)2

Z 2 (B.27)

and the inelastic form factor

G2,i n(t ) =
(

a′2t

1+a′2t

)2 (
1+ t

mp
(µ2

p −1)

(1+ t/d ′)4

)2

Z 2 (B.28)

where we have a = 111Z−1/3/me (parametrizing electron screening), d = 0.164GeV2 A−2/3,

a′ = 773Z−2/3/me , mp is the proton mass, µp = 2.79 and d ′ = 0.71GeV2.

B.2 Dark Higgs production from meson decay

B.2.1 Meson decay widths

We compute the width of the decays B+ → K +h and K + → π+h. We use the following form

factors [229]:

〈K +|s̄LbR |B+〉 = 1

2

m2
B −m2

K

mb −ms
f0(q2) where f0(q2) = 0.33

1− q2

38GeV2

(B.29)

〈π+|d̄L sR |K +〉 = 1

2

m2
K −m2

π

ms −md
(B.30)

and we get

Γ(B+ → K +h) =ε2 9α3
L

8192π2

m4
t m2

b

m6
W

(
m2

B −m2
K

)2

(mb −ms)2

|~ph |
m2

B

|Vtb |2|Vt s |2 f0(q2)2 (B.31)

Γ(K + →π+h) =ε2 9α3
L

8192π2

m4
t m2

s

m6
W

(
m2

K −m2
π

)2

(ms −md )2

|~ph |
m2

K

|Vt s |2|Vtd |2 (B.32)

where |~ph | is found using two-body kinematics, for example for B+ → K +h we have:

|~ph | =
√

m4
B +m4

K +m4
h −2m2

B m2
K −2m2

B m2
h −2m2

K m2
h

2mB
. (B.33)

Putting in numbers (especially mt = 176.7 GeV) and using the B+ and K + total width ΓB =
4.02×10−13 and ΓK = 5.32×10−17 GeV we reproduce the results of [71, 230]:

BR(B+ → K +h) =0.50ε2 2|~ph |
mB

(
1− m2

h

38GeV2

)−2

(B.34)

BR(K + →π+h) =0.0018ε2 2|~ph |
mK

(B.35)
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B.2. Dark Higgs production from meson decay

(The numerical factor is very sensitive to the top mass, using the top MS mass of 160 GeV, the

numerical factors become 0.33 and 0.0012 respectively).

B.2.2 Dark Higgs from two body meson decay

From this, we get the energy and angular distribution of Dark Higgs (neglecting the displace-

ment of kaons before decaying) by the schematical formula:

d Nh =
∫

dEK d cosθK dφK
d NK

dEK d cosθK dφK

dΓ(K → hπ)

Γtot
(B.36)

However, here the width of the Kaon is computed in the lab frame where the Kaon has

momentum given by spherical coordinates (pK ,θK ,φK ). We have:

dΓ=|M |2
32π2

1

EK EhEπ
d 3phd 3pπδ

(4)(pK −ph −pπ)

=|M |2
32π2

1

EK EhEπ
p2

h d ph d cosθdφδ(EK −Eh −Eπ)

=|M |2
32π2

ph

EK Eπ
dEh d cosθdφδ(EK −Eh −Eπ) (B.37)

where the dark higgs has momentum given in spherical coordinates by (ph ,θ,φ) and the pion

energy is given by:

Eπ =
√

p2
K +p2

h −2pK ph(sinθK sinθcos(φK −φ)+cosθK cosθ)+m2
π (B.38)

Now we trade the delta function on energies for a delta function on φK (this is possible only if

cos(θ+θK ) ≤ 2EK Eh−m2
K −m2

h+m2
π

2ph pK
≤ cos(θ−θK ) else there is no solution):

δ(EK −Eh −Eπ) = δ(φK −φK ,0)
Eπ

ph pK sinθK sinθ sin(φK −φ)
(B.39)

Now we can plug back in our original formula, do the φK integral and trade φK for its expres-

sion from solving the equation in the delta function. In fact, we only need sin(φK −φ) and

cos(φK −φ) as function of the parameters of the problem:

d Nh =
∫

dEK dθK dφK
d NK

dEK dθK dφK

dΓ(K → hπ)

Γtot

=
∫

dEK dθK
d NK

dEK dθK dφK

|M |2
Γtot

1

32π2

1

EK pK sinθK sinθ sin(φK −φ)
dEh d cosθdφ

=
∫

dEK dθK
d NK

dEK dθK dφK

|M |2
Γtot

1

32π2

1

EK pK u(EK ,Eh ,θK ,θh)
dEh d cosθdφ
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where u is the following expression (comes from the delta function):

u(EK ,Eh ,θK ,θh) =
√√√√sin2θK sin2θ−

(
2EK Eh −m2

K −m2
h +m2

π

2ph pK
−cosθK cosθ

)2

(B.40)

The precise value of φK ,0 is irrelevant because d NK does not depend on φK . Thus all depen-

dence on φ dissapears (as expected from the symmetries of the problem) and we can integrate

over dφ:

d Nh

dEh d cosθ
=

∫
dEK dθK

d NK

dEK dθK

|M |2
Γtot

1

32π2

1

EK pK u(EK ,Eh ,θK ,θh)
(B.41)

The last step is to work out the translation of the condition cos(θ+θK ) ≤ 2EK Eh−m2
K −m2

h+m2
π

2ph pK
≤

cos(θ−θK ) to bounds on the EK ,θK integral. First, we work out the condition on θK then the

condition on EK . We define:

Emin(Eh) =
Eh(m2

K +m2
h −m2

π)−ph

√
m4

K +m4
h +m4

π−2m2
K m2

h −2m2
K m2

π−2m2
hm2

π

2m2
h

Emax(Eh) =
Eh(m2

K +m2
h −m2

π)+ph

√
m4

K +m4
h +m4

π−2m2
K m2

h −2m2
K m2

π−2m2
hm2

π

2m2
h

v(EK ,Eh) = 2EK Eh −m2
K −m2

h +m2
π

2
√

E 2
h −m2

h

√
E 2

K −m2
K

θmin(EK ,Eh ,θ) = max(arccos v −θ, θ−arccos v)

θmax(EK ,Eh ,θ) = min(θ+arccos v,2π−arccos v −θ)

Finally, we have by Lorentz dilatation that Γtot = 1
γΓ0 with Γ0 the total width in the rest frame.

So our final formula is:

d Nh

dEh d cosθ
=

∫ Emax

Emin

dEK

∫ θmax

θmin

dθK
d NK

dEK dθK

|M |2
32π2mKΓ0

1

pK u(EK ,Eh ,θK ,θh)
(B.42)

Number of events

Putting all together, the number of events in the detector is given by the four-fold integral:

Nh =
∫ θA

0
dθ

∫
dE

∫ Emax

Emin

dEK

∫ θmax

θmin

dθK A ·B ·C ·D (B.43)

where
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• A is the distribution of Kaons given by GiBUU

A = d NK

dEK dθK
(B.44)

• B is the decay rate computed before

B = |M |2
16πmKΓ0

= 0.0018ε2 (B.45)

• C is a factor coming from boosting the angular distribution from the Kaon rest frame

C = 1

2π

sinθ

pK u(EK ,Eh ,θK ,θ)
(B.46)

• D describes the propagation and decay of the dark higgs in the detector

D =
(
1−e−

mh L
Ecτ

)
e−

mh d
Ecτ (B.47)

and can be refined by having d ,L depend on θ.

Note that this formula, if correct, neglects the fight of the Kaons before decaying and considers

that all dark higgses are produced at the interaction point. This should not be too problematic

because we consider only kaons decaying before the shielding, not too far from the interaction

point.

B.3 HNL decay

We collect here the expressions for various HNL decay channels [79, 82].

The fully leptonic decays include the decay to 3 neutrinos:

Γ

(
N →∑

i , j
νi ν̄ jν j

)
= G2

F M 5
N

192π3 ×∑
i
|Ui |2 (B.48)

and to one neutrino and two different leptons (i 6= j ):

Γ
(
N → `−i `

+
j ν j

)
= |Ui |2 ×

G2
F M 5

N

192π3

(
1−8x2 +8x6 −x8 −12x4 log x2) (B.49)

with x = m2
`

/M 2
N where m` is the heaviest lepton. The decay to one neutrino and a lepton pair

is more complicated:

Γ
(
N → νi`

−
j `

+
j

)
=|Ui |2 ×

G2
F M 5

N

192π3

[(
C1(1−δi j )+C3δi j

)(
(1−14x2 −2x4 −12x6)

√
1−4x2 +12x4(x4 −1)L

)
+4

(
C2(1−δi j )+C4δi j

)(
(2+10x2 −12x4)x2

√
1−4x2 +6x4(1−2x2 +2x4)L

)]
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where

L = log

[
1−3x2 − (1−x2)

p
1−4x2

x2(1+
p

1−4x2)

]
and x = m2

`

M 2
N

(B.50)

and

C1 = 1

4
(1−4s2

W +8s4
W ) C2 = 1

2
(2s2

W −1) C3 = 1

4
(1+4s2

W +8s4
W ) C4 = 1

2
(2s2

W +1) (B.51)

Two-body decay modes involving mesons are:

Γ
(
N →π0νi

)= |Ui |2 ×
G2

F f 2
πM 3

N

32π

(
1− m2

π

M 2
N

)
(B.52)

and the same formula holds for η and η′ with the corresponding decay constant. The decay to

a charged pseudoscalar meson h is:

Γ
(
N → h+`−i

)=|Ui |2 ×
G2

F f 2
h M 3

N

16π
|Vh |2

[(
1− m2

`

M 2
N

)2

− m2
h

M 2
N

(
1+ m2

`

M 2
N

)]

×
√√√√(

1− (mh −m`)2

M 2
N

)(
1− (mh +m`)2

M 2
N

)
(B.53)

The decay to a charged ρ meson:

Γ
(
N → ρ+`−i

)=|Ui |2 ×
G2

F g 2
ρM 3

N

16πm2
ρ

|Vud |2
[(

1− m2
`

M 2
N

)2

+
m2
ρ

M 2
N

(
1+

m2
`
−2m2

ρ

M 2
N

)]

×
√√√√(

1− (mρ−m`)2

M 2
N

)(
1− (mρ+m`)2

M 2
N

)
(B.54)

and the decay to a neutral ρ meson reads:

Γ
(
N → ρ0νi

)= |Ui |2 ×
G2

F M 3
N

16π

g 2
ρ

m2
ρ

(
1+2

m2
ρ

M 2
N

)(
1−

m2
ρ

M 2
N

)2

(B.55)
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C Warsaw basis and more general ap-
proach to flavour observables

C.1 Translation to Warsaw Basis

In this work, we parametrize the relevant part of the space of dimension-6 operators using

an independent set of vertex corrections δg and Wilson coefficients of 4-fermion operators.

The latter are directly inherited from the Warsaw basis, such that the translation is trivial. The

former are related to the Wilson coefficients of dimension-6 operators in the Warsaw basis by

the following linear transformation:

δg W e
L = c(3)

H`
+ f (1/2,0)− f (−1/2,−1)

δg Z e
L = −1

2
c(3)

H`
− 1

2
cH`+ f (−1/2,−1)

δg Z e
R = −1

2
cHe + f (0,−1)

δg W q
R = −1

2
cHud

δg Z u
L = 1

2
c(3)

H q − 1

2
cH q + f (1/2,2/3)

δg Z d
L = −1

2
V †c(3)

H qV − 1

2
V †cH qV + f (−1/2,−1/3)

δg Z u
R = −1

2
cHu + f (0,2/3)

δg Z d
R = −1

2
cHd + f (0,−1/3) (C.1)

where

f (T 3,Q) = −I3Q
gL gY

g 2
L − g 2

Y

cHW B (C.2)

+ I3

(
1

4
[c``]1221 − 1

2
[c(3)

H`
]11 − 1

2
[c(3)

H`
]22 − 1

4
cHD

)(
T 3 +Q

g 2
Y

g 2
L − g 2

Y

)
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and I3 is the 3×3 identity matrix in the generation space. Using (C.1) one can easily recast

the results of this paper as a likelihood for the Wilson coefficients in the Warsaw basis. See

Ref. [164] for the dictionary between δg and the Wilson coefficients in the SILH basis.

C.2 More general approach to low-energy flavour observables

The low-energy flavour observables discussed in Ref. [160] also probe precisely 4-fermion

operators with a strange quark. In the framework of the SMEFT the corresponding observables

receive contributions from flavour off-diagonal dimension-6 operators, and in this paper we

marginalized our likelihood over them. We also approximated the CKM matrix as V = 1 when

acting on O (Λ−2) terms in the Lagrangian. For completeness, in this appendix we provide the

formalism that allows one to take into account the constraints from strange observables and

retrieve the terms suppressed by off-diagonal elements of the CKM matrix. First, the effective

low-energy Lagrangian in (3.7) is generalized to

Leff ⊃ − ∑
I ,J=1,2

2ṼuI

v2

[(
1+εdI e J

L

)
(e†

J σ̄µνJ )(u†σ̄µdI )+εdI e
R (e†

J σ̄µνJ )(ūσµd̄ †
I )

+ε
dI e J

S +εdI e J

P

2
(ē JνJ )(ūdI )+ ε

dI e J

S −εdI e J

P

2
(ē JνJ )(u†d̄ †

I )

+εdI e J

T (ē JσµννJ )(ūσµνdI )+ c.c.
]

(C.3)

such that it also includes charged currents with the strange quark (s → u`ν`). At tree level, the

low-energy parameters are related to the SMEFT parameters as

εde
R =−εde

L = 1

Vud
δg W q1

R

εse
R =−εse

L = 1

Vus
[δg W q

R ]12

ε
dµ
L = − 1

Vud
δg W q1

R +δg Wµ

L −δg W e
L +

(
[c(3)

l q ]111J − [c(3)
l q ]221J

) VJd

Vud

ε
sµ
L = − 1

Vus
[δg W q

R ]12 +δg Wµ

L −δg W e
L +

(
[c(3)

l q ]111J − [c(3)
l q ]221J

) VJ s

Vus
(C.4)
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ε
de J

S = − 1

2Vud

(
VK d [clequ]∗J JK 1 + [cled q ]∗J J11

)
ε

de J

P = − 1

2Vud

(
VK d [clequ]∗J JK 1 − [cled q ]∗J J11

)
ε

se J

S = − 1

2Vus

(
VK s[cl equ]∗J JK 1 + [cled q ]∗J J12

)
ε

se J

P = − 1

2Vus

(
VK s[cl equ]∗J JK 1 − [cled q ]∗J J12

)
ε

de J

T = − VK d

2Vud
[c(3)

l equ]∗J JK 1

ε
se J

T = − VK s

2Vus
[c(3)

lequ]∗J JK 1 (C.5)

In addition to Ṽud we also introduce the the rescaled CKM matrix element parameter Ṽus .

Both are distinct from the elements of the unitary matrix V , to which they are related by

Vud = Ṽud (1+δVud ), Vus = Ṽus(1+δVus), where

δVud = − 1

Vud
δg W q1

L − 1

Vud
δg W q1

R +δg Wµ

L − 1

2
[c``]1221 + [c(3)

l q ]111J
VJd

Vud

δVus = − 1

Vus
[δg W q

L ]12 − 1

Vus
[δg W q

R ]12 +δg Wµ

L − 1

2
[c``]1221 + [c(3)

l q ]111J
VJ s

Vus
(C.6)

The purpose of this rescaling is to impose the relation εdI e
L =−εdI e

R in (C.3). After the rescaling,

Ṽud and Ṽus are no longer related by the standard unitarity equation. In the limit where the

mixing with the 3rd generation is neglected we have |Ṽud |2 +|Ṽus |2 = 1+∆CKM, where

∆CKM = −2VudδVud −2VusδVus

= 2Vud

(
δg W q1

L +δg W q1

R − [c(3)
l q ]111J VJd

)
+2Vus

(
[δg W q

L ]12 + [δg W q
R ]12 − [c(3)

l q ]111J VJ s

)
−2δg Wµ

L + [c``]1221 (C.7)

As before, Ṽud may be affected by new physics contributing to εde
S and should be treated as

a free parameter in the fit. Ref. [160] obtained the following constraints on the low-energy
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parameters 

Ṽ e
ud

∆CKM

∆s
L

∆d
LP

εde
P

εde
R

εse
P

ε
sµ
P

εs
R

ε
sµ
S

ε
sµ
T

εde
S

εde
T

εse
S

εse
T



=



0.97451±0.00038

−1.2±8.4

1.0±2.5

1.9±3.8

4.0±7.8

−1.3±1.7

−0.4±2.1

−0.7±4.3

0.1±5.0

−3.9±4.9

0.5±5.2

1.4±1.3

1.0±8.0

−1.6±3.3

0.9±1.8



×10∧



0

−4

−3

−2

−6

−2

−5

−3

−2

−4

−3

−3

−4

−3

−2



(C.8)

in the MS scheme at µ= 2 GeV. Here∆s
L = εsµ

L −εse
L and∆d

LP ≈ εde
L −εdµ

L +24εdµ
P . The associated

correlation matrix is given in Ref. [160]. We note that some entries in this matrix are very close

to one, so it is crucial to take it into account.
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