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A B S T R A C T

Information transmission through multimode fibers (MMFs) has been a topic of great interest for many years. Deep learning algorithms have been applied suc-
cessfully to MMFs in particular to fiber endoscopy. In this work, we show how Deep Neural Networks (DNNs) can be a versatile technique for classification and
recovery of input images that have been significantly distorted while propagating along the MMF forming a speckle pattern. A comparison between holographic and
intensity-only recording of the speckle output, which is used as an input to the DNNs, shows that high performance can be achieved without having the full field
information (amplitude and phase). Impressive reconstruction fidelity and classification accuracy of the fiber inputs from the intensity-only images of the speckle
patterns is reported.

1. Introduction

The idea of imaging using multi-mode fibers (MMFs) has a long
history. The earliest report was an experiment done by Spitz and Wertz
[1] who phase conjugated the light transmitted through a MMF and
obtained a recognizable image back at the input. Several other groups
[2–5] reported imaging using MMFs primarily using optical phase
conjugation as the mechanism for undoing the distortion that results
from modal dispersion as light propagates in a MMF. The development
of digital holography [6–10] catalyzed a new wave of developments in
imaging using MMFs [11–16]. Digital holography gave unprecedented
flexibility in terms of recording and storing large numbers of holograms
of the light transmitted through MMFs, allowing us to build databases
of input-out pairs of data with which an MMF can be characterized and
controlled. Phase conjugation [13,17–19] and the matrix method
[14,16,20–26] were deployed to demonstrate various functionalities in
MMFs such as focusing [14,22,23,27,28], scanning [16,22], image re-
trieval [29,30], image projection [31,32], and short pulse delivery
[22,23,28] through MMFs. These techniques relied on the linear re-
lationship between the optical fields at the input and the output of the
fiber. Impressive demonstrations were carried out, including in-vivo
endoscopic imaging [33,34] and several applications were suggested
such as laser ablation [22,23], tweezing [31], multi-photon imaging
[28,28,35], endoscopy [15,16,23,36,37], 3D printing [19,38]. The
major drawback of MMFs when used as an imaging optical element,
such as a lens, is the requirement for a calibration step in advance. The

database of input-output pairs that is measured and stored digitally is
used to interpret the light at the output of the MMF or used to modulate
the light at the input of the MMF with a spatial light modulator (SLM).
If there is any change in the conditions of the system between the time
when the calibration data was collected and when the device is used,
then the performance of the system degrades rapidly. In particular
bending of the fiber is a major limiting factor for applications that re-
quire flexible imaging probes. Several solutions to the bending problem
of MMFs have been proposed and demonstrated [12,27,37,39–42]. It is
fair to say, however, that at the time of this writing bending remains a
major challenge of MMF imaging devices.

The fidelity of the optical transformation performed by the combi-
nation of the MMF and SLM has been assessed with phase only mod-
ulation, amplitude only modulation and by combinations thereof
[22–24,27,43,44]. Although the SLM and MMF system is well described
by analytical physical models based on the optical fiber modes, it turns
out that in practice, the real fiber index profile deviates from the ideal
profile and thus the simple physical model description is not useful
when the fiber length is significant (10’s of cm). For this reason, in the
experimental demonstrations above, the MMF transmission system is
treated as a “box” whose transmission matrix must be measured by
sending a number of orthogonal pairs of known inputs (and collecting
the output) approximately equal to the transmission system’s degrees of
freedom.

Recently a different approach to approximate the unknown MMF
transmission function has been proposed which consists of sending a
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large amount of input data (not necessarily orthogonal) compared to
the system’s degrees of freedom and collecting the output data for the
purpose of learning the transmission properties with an artificial neural
network. Specifically, Deep Neural Networks (DNNs) have been de-
ployed to model and control MMF imaging devices [45,46]. Generally,
DNNs use a database of input-output pairs to train layers of “neurons”
to perform the function from which the examples were drawn. We can
think of DNNs as an alternative to the matrix or phase conjugation
methods for MMF imaging applications. Neural networks model non-
linear systems and therefore they can be used with intensity measure-
ments rather than holographic recordings since they can accommodate
the square law nonlinearity. Optical nonlinearities that arise at high
intensity levels or nonlinear mappings due to phase modulation by the
SLM can also be directly addressed by neural networks. Perhaps most
importantly, drifts in the system characteristics (such as bending) can
be incorporated in the training set and result in increased robustness in
performance. In a recent experiment, imaging through MMFs while
bending was demonstrated using DNNs [47]. As another example,
temperature and mechanical fluctuations of a 1 km long fiber were
partially tolerated in a DNN assisted MMF imaging system [45]. These
results indicate potential use of DNNs for real-time endoscopic imaging.

In this paper, we will review the application of DNNs to MMF
imaging and highlight some of the recent results from our laboratories.
We will start by describing results from recognizing input images to the
MMF from the speckle pattern detected at the output and then we
concentrate on the classification and reconstruction of the input images.
We conclude with a discussion and comparison of DNN techniques with
linear methods.

2. Methods

2.1. Optical setup

A standard optical holographic setup (shown in Fig. 1) was used to
create the datasets used for training and testing the DNNs on image
classification and recovery through MMFs. A diode laser source
(λ=560 nm) is collimated and split into two paths, by means of a
polarizing beam splitter (PBS) which together with a half waveplate
(HWP1) adjust the energy ratio of each path. The laser beam in the
signal arm is modulated by a phase-only spatial light modulator (SLM,
Pluto-NIR2, Holoeye) and imaged onto the proximal fiber facet by
means of a 4f-system. A second 4f system is placed at the distal side to
image the fiber output on a CCD detector (CCD1, Chameleon 3,
1024×1280 pixels, Mono, Point Grey). For monitoring the input on

the fiber, we also include a 4f-system to capture the SLM output on a
second camera (CCD2). A 2 cm graded-index (GRIN) fiber of 62.5 μm
core diameter and NA of 0.275 (by Thorlabs) is used in the experiments
presented for the classification performance of the DNNs. In addition,
image reconstruction through a 75 cm step-index MMF with a core
diameter of 50um (NA=0.22) is shown in the following sections. In
the first case, the fiber supports about 2300 spatial modes and in the
second about 1000.

The inputs images are selected from the online available MNIST
database of handwritten digits. In each experiment we record 20,000
images of speckle patterns corresponding to each digit projected on the
SLM from which 16,000 are used for training the DNNs, 2000 for va-
lidation and 2000 for testing the DNN performance. The inputs of the
fiber can switch from amplitude (Fig. 2a) to phase (Fig. 2b) and vice-
versa by tuning the half waveplate (HWP2) and the polarizer before and
after the SLM respectively. In addition, by blocking or not the reference
arm we can either detect intensity-only images of the speckle patterns
at the fiber output (Fig. 2c) or record the corresponding digital holo-
gram (Fig. 2d) which is formed when the reference beam interferes with
the speckle pattern on the CCD1. This configuration allows both am-
plitude and phase information of the speckle pattern to be obtained at
the fiber distal side in order to compare DNNs performance with the
intensity-only imaging case.

2.2. Deep neural network architectures

2.2.1. Image classifier
A VGG-type DNN [48], with a convolutional feature detecting

frontend and a fully connected backend, was used to classify the re-
corded distal speckle patterns. The same network architecture (shown
in Fig. 3a) with the same hyperparameters was used to process all of the
cropped and downsampled speckle images. The datasets comprised 20 k
samples which were then randomly separated into 16 k training, 2 k
validation, and 2 k testing subsets. The networks were trained using
batch sizes of 500 for a maximum of 50 epochs. An Adam optimizer
[49] with a 1×10−4 learning rate was used to minimize a mean
squared error cost function. The network input was either 1 or 2
channel 32×32 images. The classification accuracies are reported as
the mean and standard deviation of the results of 5 different training
instances.

The diameter of the full resolution speckle patterns was 1024 pixels.
The recorded speckle images, either intensity only or holographic, were
center cropped and down-sampled to 32×32 pixels for input into the
network.

Fig. 1. Optical set for the collection of the datasets consisting of fiber input-output image pairs.
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2.2.2. Image reconstruction
The VGG-net is composed of 22 blocks; of which the first and the

last are the input and output convolutional units mapping the single
channel gray-scale 51×51 images to 64 channels and back to one,
respectively. The remaining blocks in the middle constitute the hidden
unit of the network which does the inverse transformation of either the
amplitude-to-amplitude or amplitude-to-phase conversion. The blocks
of the hidden unit are composed of two consecutive convolutional units

followed by a reshaping unit which up-samples the images by a factor
of two and then a max –pooling unit which down-samples the images in
each dimension back to the original size. The overall schematic of the
network is depicted in Fig. 3b and further explained in our previously
published work [46].

Fig. 2. Image of the SLM output on CCD2 for the
digit 6 for a) amplitude and b) phase modulation.
Image of the speckle pattern generated at the fiber
output for input (b) when the reference beam is c)
blocked and d) interfering with the output resulting
in a hologram. The inset in image (d) shows a
magnified part of the hologram where the inter-
ference fringes are clear.

Fig. 3. Scheme of the VGG-type DNN a) classifier architecture and b) reconstruction architecture.
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3. Results

3.1. Speckle image classification

The relative classification accuracies provided by intensity or ho-
lographic imaging of the speckle patterns, and the combination of dif-
ferent components of the recovered complex field were reported in our
previous work [50] and shown in Table 1. The results indicate that
intensity only speckle imaging provides similar classification accuracies
as for holographic imaging. This greatly simplifies imaging through
multimode fibers, since intensity only imaging eliminates the need for
the reference arm required for holographic imaging, the post-processing

of the holograms to recover the complex fields, and the determination
of the transmission matrices.

Since images projected onto the proximal fiber facet are distributed
across the propagation modes supported by the fiber, localized image
information is spread across the fiber cross-section as it propagates
along its length. This spreading of the localized information is further
enhanced when the light exits the fiber and interferes to produce the
speckle pattern. As a result of this, the intensity of each pixel of the
recorded distal speckle pattern is contributed to by large areas of the
input images. This contribution is higher for phase modulated inputs
where a greater number of the fiber modes are participating in the
speckle formation.

Table 1
Classification accuracies obtained after the DNN is trained with different input images [50]

Classification accuracy (%)

VGG network input # Input channels Amplitude modulated input Phase modulated input

Hologram Intensity Fig. 4(b) 1 91.8 ± 1.0 93.46 ± 0.6
Amplitude-only Fig. 4(c) 1 94.3 ± 0.5 94.2 ± 0.7
Phase-only Fig. 4(d) 1 75.2 ± 21.1 75.8 ± 21.8
Real part-only Fig. 4(e) 1 91.0 ± 0.8 91.7 ± 0.3
Imaginary part-only Fig. 4(f) 1 91.4 ± 0.8 91.7 ± 0.5
Complex Fig. 4(c&d) 2 94.0 ± 0.5 94.4 ± 0.3
Complex Fig. 4(e&f) 2 92.2 ± 1.1 93.4 ± 0.5
Speckle Intensity 1 92.7 ± 0.5 95.1 ± 0.6

Fig. 4. Cropped images of speckle patterns recorded
on the camera CCD1 after downsampling to 32× 32
pixels. The upper row of images corresponds to in-
tensity-only recording while the lower row to holo-
graphic recording of the speckle output. The size of
the square cropped area on the initial image changes
form 1024×1024 pixels a) and b), 256× 256
pixels c) and d) and 32×32 pixels for e) and f).

Table 2
Classification accuracies obtained after the DNN is trained with differently sized cropped portions of the initial speckle image recorded either using intensity-only or
holographic measurement.

Crop size [pixels] Classification accuracy [%]

Amplitude modulated - Intensity
recording

Phase modulated - Intensity
recording

Amplitude modulated - Holographic
recording

Phase modulated - Holographic
recording

Mean SD Mean SD Mean SD Mean SD

1024×1024 93.2 0.7 94.9 0.4 91.8 1 93.5 0.6
512×512 91.2 0.8 93 3 89.6 2.2 92.2 1.1
256×256 83.2 1.8 91.6 0.4 85.5 1.4 88.3 0.6
128×128 76.7 1.4 85.2 0.8 79.8 1.1 83.7 1
64×64 66.3 1.9 77.5 1.5 69.2 1.8 73.1 2.3
32×32 59.2 2 70.5 2.1 52.9 1.8 63 2
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As a result of this spread, it is interesting to assess if there is suffi-
cient information in a cropped area of a speckle image to classify the
corresponding input images. In order to study the effects of cropping on
the classification accuracy, the full resolution speckle patterns were
center cropped to 32, 64, 128, 256, 512, and 1024 pixel sided square
areas. These were then down-sampled to 32× 32 pixel images; ex-
amples of these images are shown in Fig. 4. Downsampling of the ori-
ginal speckle pattern results in a blurred version or the initial image.
For endoscopic applications this could be also the result of using a
partially coherent illumination source. It has been already demon-
strated that image reconstruction using an LED source that results in a
blurred and almost uniform output of the MMF is possible using DNNs
[51].

The results shown in Table 2 indicate that the classification accu-
racy decreases with decreasing crop sizes for all input modulation and
speckle imaging combinations. In particular, for a crop size of
128×128 pixels, equivalent to a 1.5% area of the full speckle image,
the accuracy decreases by around 12%; whilst for a crop size of 32× 32
pixels, equivalent to a 0.1% area of the full speckle image, the accuracy
decreases by around 30% relative to an uncropped image. Furthermore,
Table 3 also shows that phase modulation of the input generally pro-
vides higher accuracies than amplitude modulation, probably due to the

excitation of more fiber modes. The results also indicate that the
combination of phase modulated input and intensity recording of the
speckle provides the best results, thus once again highlighting the ad-
vantage of using deep learning for multimodal fiber imaging.

In order to study the effects of crop location on the classification
accuracy, the full resolution speckle images were cropped to 340×340
pixel patches at the three locations shown in Fig. 5. These were then
down-sampled to 32×32 pixel images for classification by the VGG
network. The results, shown in Table 3, indicate that the classification
accuracy is essentially independent of crop location on the speckle
image, thus highlighting that the input image information is spread
over the speckle pattern.

3.2. Speckle image reconstruction

It has been shown that neural networks are able to generalize image
transmission inside a MM fiber to other categories of images than the
ones used for training the NN. In other words, a neural network trained
to reconstruct one class of images can be readily used to retrieve other
types of images without the need to further train or fine tune the net-
work. Specifically, it has been shown [46] that a convolutional neural
network with the architecture of the VGG networks is able to re-
construct images of digits as well as other drawings when trained only
on images of handwritten Latin alphabet. Fig. 6 depicts examples of
such reconstructions for both amplitude-output to amplitude-input as
well as amplitude-output to phase-input mapping. Ground truth labels
are compared against the reconstructed images using the Pearson cor-
relation coefficient (indicated as insets of images). The double non-
linearity of the amplitude to phase inversion is noticeable in the lower
fidelity of the amplitude-output to phase-input reconstructed images. In
this case, generalization of the network is limited to categories of
images with similar features (black background and central features).

However, when trained on a dataset with richer features, the net-
work is expected to generalize better. Fig. 7 plots reconstructed ex-
amples of natural images, projected through the MMF as described in
previous sections, that were obtained for the ImageNet test dataset
when the network is trained on examples from ImageNet train dataset.
Here the architecture of the network follows that of the Residual net-
works which is explained in more details in our previous work [46].

Image reconstruction through MMFs has been studied in the past
years using digital holographic approaches such as the transmission
matrix (TM) method [14,20,22,22,24]. In order to efficiently re-
construct an image through a MMF the number of supported modes
should be at least equal to the number of pixels of the image. The re-
solution of the endoscope is determined by the wavelength and the NA
of the MMF and the signal to noise ratio can be improved by increasing
the number of modes. However, contrary to the TM method, image
reconstruction using DNNs is not a linear method and the relationship
between the fiber modes and the reconstruction fidelity is expected to
be different than the one described previously. Nevertheless further
investigation is needed in order to define how the DNNs performance
changes based on the physical system.

4. Conclusions

This study highlights how recent advances in deep learning have
impacted the revival of imaging through multimode fibers. In parti-
cular, the deep learning approach has eliminated the need for experi-
mentally determined transmission matrices, and the need for holo-
graphic recording of the speckle patterns, thus greatly simplifying its
practical implementation. Our studies have shown that image recovery
and classification is possible when the DNNs are trained with pairs of
input images and their corresponding speckle patterns at the MMF fiber
output. In addition, generalization to image sets that the DNN is not
trained on is verified to some extent.

Table 3
Classification accuracies obtained after the DNN is trained by cropping different
locations on the initial speckle image recorded either using intensity-only or
holographic measurement.

Crop
location

Classification accuracy [%]

Amplitude
modulated
-Intensity
recording

Phase
modulated
-Intensity
recording

Amplitude
modulated -
Holographic
recording

Phase modulated
- Holographic
recording

Mean SD Mean SD Mean SD Mean SD

1 91.1 0.5 89.6 1.8 86.6 2.3 87.2 1.3
2 90.1 1.8 92.5 1.2 87.1 1 86.7 2.3
3 90.6 1.2 88.7 1.1 85.9 1 87.7 1.1

Fig. 5. Image of a speckle pattern recorded at the fiber output. The white
square indicate the locations of 340× 340 pixels crop which are then down-
sampled to 32× 32 pixels for classification by the DNN.
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Fig. 6. Image reconstruction of speckle images corresponding to MNIST digit inputs to the MMF using DNNs.
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