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Abstract— In this letter, we present normally-off GaN-on-Si 

MOSFETs based on the combination of tri-gate with a short 

barrier recess to yield a large positive threshold voltage (VTH), 

while maintaining a low specific on resistance (RON,SP) and high 

current density ( ID
 ). The tri-gate structure offered excellent 

channel control, enhancing the VTH from +0.3 V for the recessed 

to +1.4 V for the recessed tri-gate, along with a much reduced 

hysteresis in VTH, and a significantly increased transconductance 

(gm). Additional conduction channels at the sidewalls of the tri-gate 

trenches compensated the degradation in ON resistance (RON) 

from the gate recess, resulting in a small RON of 7.32 ± 0.26 Ω·mm 

for LGD of 15 μm, and an increase in the maximum output current 

( ID
 max ). In addition, the tri-gate inherently integrates a gate-

connected field-plate (FP), which improved the breakdown voltage 

(VBR) and reduced the degradation in dynamic RON. With proper 

passivation techniques, these devices could be very promising as 

high performance power switches for future power applications. 

 
Index Terms— E-mode, normally-off, GaN, MOS HEMT, tri-

gate, high breakdown, low leakage, low on-resistance, gate recess. 

I. INTRODUCTION 

AN (MOS)HEMTs offer a huge potential for power 

applications thanks to their low losses and high blocking 

resolution lithography. This requirement can be significantly 

relieved by combining tri-gates with gate recess, as 

demonstrated in [19].  

In this letter, we demonstrate high-performance normally-off 

GaN-on-Si MOSFETs based on an optimized recessed tri-gate 

structure. This structure offered large VTH and low RON 

concurrently, thanks to the additional conduction channels at 

the tri-gate sidewalls. In addition, the tri-gate inherently 

integrates a gate-connected FP, which improved the VBR and 

reduced the degradation in dynamic RON, even without 

passivation. These results show the enormous potential of 

recessed tri-gate for high-voltage normally-off GaN transistors. 

II. DEVICE DESIGN AND FABRICATION 

The AlGaN/GaN epitaxial structure in this work consisted of 

4.2 μm buffer, 420 nm un-doped GaN channel, 20 nm 

Al0.25Ga0.75N barrier and 2.5 nm GaN Cap layers. The 

schematics and scanning electron microscopy (SEM) images of 

the device are shown in Fig.1 (a-d).  The device fabrication 

started with the definition of the mesa and tri-gate regions by e-

beam lithography, and followed by Cl2-based ICP etch. The tri-

gate width (w) was varied from 200 nm to 600 nm, and the 

spacing (s) was fixed at 100 nm. This corresponds to filling 

factors (FF = w/(w+s)) varying from 0.66 to 0.87. The tri-gate 

length (l) was fixed at 700 nm and the height of tri-gate trench 

(h) was ~250 nm. A 150 nm-long gate recess (lr) was defined 

by e-beam lithography, followed by a 20 nm-deep slow-etch-

rate Cl2-based ICP etch. A metal stack composed of Ti/Al/Ti/ 

Ni/Au was deposited in source and drain regions, followed by 

rapid thermal annealing. The gate dielectric was 25 nm-thick 

SiO2, deposited by atomic layer deposition (ALD), without any 

further passivation layers. Finally, gate and contact pads were 

formed by Ni/Au. Devices with planar gates (planar) and 

recessed planar gates (recessed) were fabricated on the same 
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 Fig. 1.  (a) Top-view and (b) zoomed SEM images of the recessed tri-gate 

MOSFET. (c) 3D schematic of recessed tri-gate MOSFET. (d) Cross-sectional 

views of recessed tri-gate MOSFET. 
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voltages [1]. Efficient power switches usually require a positive 

VTH that is sufficiently large, along with low RON,SP and high VBR

[2], which is however very challenging in GaN MOSHEMTs. 

Among  several  reported  techniques,  such  as  fluorine  plasma 

treatment [3]–[5] and p-GaN gate [6]–[8], recessing the barrier 

under the gate region [9]–[12], either partially or fully, can lead 

to large VTH [13], which however typically degrades RON. While 

reducing the gate recess length can improve RON, it also results 

in a negative shift of VTH [14]. 

 Recently  tri-gate structures are  attracting  considerable 

attention due to their better gate control [15]–[17] and enhanced 

VBR [18]–[20] compared to planar devices, without degrading 

the RON [17]. In addition, tri-gates allow a controllable positive 

shift  of  VTH by  changing  the fin width,  due  to  the  partial 

relaxation of the AlGaN barrier and the enhanced electrostatic 

control from the tri-gate sidewalls [15]–[21]. 

 However,  reaching positive  VTH relying only  on  tri-gates, 

requires very small fin widths [21], [22], which demands high 
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batch with same process conditions for comparison.  All current 

values were normalized by the device width of 80 μm, and the 

standard deviation was determined from about 8 separate 

devices of the same kind. 

III. RESULTS AND DISCUSSION 

The transfer characteristics of the Planar, Recessed Planar 

and Recessed tri-gate devices are shown in Fig. 2(a). A 

significant positive shift of VTH was observed from –3.6 V (at 1 

μA/mm) for the planar, to +0.3 V for the recessed and +1.4 V 

for the recessed tri-gate (Fig. 2(a)). The large VTH in the 

recessed tri-gate is mainly due to the strain relaxation of the 

AlGaN barrier and the sidewall gate modulation [16], [17], 

[23], [24]. The recessed tri-gate exhibited a larger gm of 275 ± 

12 mS/mm, with an ON/OFF ratio beyond 109, an improved SS 

of 95 ± 3 mV/dec and IOFF at VG = 0 V as small as 300 pA/mm, 

as compared with planar and recessed devices, revealing an 

improved tri-gate control over electrons in the channel. The 

small hysteresis below 0.5 V for all devices, under different VG 

up to 8 V (Fig. 2(b)) indicates a good oxide quality. The 

recessed tri-gate devices showed the smallest hysteresis of 0.18 

± 0.05 V (at VG
 max of 8 V) compared to 0.47 ± 0.09 V of recessed 

planar and 0.53 ± 0.06 V. Moreover, the recessed tri-gate 

presented a much narrower VTH distribution among all 

measured devices, with an average VTH of +1.41 ± 0.12 V, 

confirming the excellent gate uniformity of our process. 

The output characteristics of these devices are shown in Fig. 

2 (c). The recessed tri-gate presented a larger ID
 max of 622 ± 16 

mA/mm at VG = 7 V compared to 581 ± 34 mA/mm for the 

recessed planar, which was only slightly smaller than that of the 

planar D-mode device (672 ± 19 mA/mm) (Fig. 2(c)). The 

degraded output characteristic of recessed planar devices shown 

in Fig. 2(c) is likely due to the short recess length of 150 nm, 

since the recessed planar with 500 nm-long recessed region 

presented good output characteristics. The recessed tri-gate 

presented much better performance with the same recess length 

of 150 nm, revealing a better channel control of the tri-gate 

combined with a narrow gate recess.  The negative output 

resistance of these devices is mostly due to the self-heating. The 

RON of planar, recessed and recessed tri-gate, extracted from ID 

- VD sweeps in linear region, were 6.82 ± 0.29 Ω·mm, 7.37 ± 

0.45 Ω·mm, and 7.32 ± 0.26 Ω·mm at VG = 7 V, respectively 

(Fig. 2(d)). The recessed tri-gate required a much smaller gate 

driving voltage to reach low RON (Fig. 2(d)), as compared to the 

recessed planar devices, which is due to the superior control of 

the tri-gate recessed over electrons in the channel that results in 

a larger gm compared to the planar recessed device. 

The low RON and large ID
 max  of the recessed tri-gate are a 

consequence of the trench conduction in the tri-gate geometry. 

To illustrate this, we fabricated recessed tri-gate devices with w 

of 200, 400, 500, and 600 nm and fixed s of 100 nm, 

corresponding to a number of tri-gate wires per mm (NNW) of 

3333, 2000, 1666, and 1333, respectively. The RON was 

extracted at VG = 7 V for all recessed tri-gate device, since the 

small difference in VTH is negligible compared to the driving 

voltage, and the RON is already saturated at this VG.  

An increase in ID
 max and a reduction of RON were observed 

when increasing NNW (Fig. 3(a)). This can be understood with 

an equivalent model of the recessed tri-gate MOSFET (inset of 

Fig. 3(a)) consisting of 2 parallel parts of the top (recessed + 

planar) and trench portions of the tri-gate (sidewall and bottom 

portions), plus the source (RS) and drain (RD) contact and access 

resistances (inset of Fig. 3(b)). Thus the total RON can be written 

as: 
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Where, Rsh
 r  and Rsh

 p
 are the equivalent sheet resistances of the 

recessed and top planar regions, respectively. We assumed an 

equivalent sheet resistance for the sidewall and bottom parts 

(Rsh
 trench) to simplify the model [25]–[27]. The 𝑅sh

 r  and Rsh

 p
 were 

obtained by averaging 7 separate planar and recessed gated 

halls, respectively, resulting in Rsh

 p
 and Rsh

 r  of 269 ± 7 Ω/sq and 

1713 ± 92 Ω/sq (at VG = 7 V). The RS and RD were calculated 

 
Fig. 3.  (a) RON and ID

 max  of the recessed tri-gate versus the number of 

nanowires (NNW) and fill factor (FF) in the tri-gate region. (b) Current share in 
the recessed tri-gate region. Insets: Schematic and equivalent circuit of the 

recessed tri-gate. 
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Fig. 2.  Comparison of the normally-off recessed tri-gate with planar and 

recessed devices. (a) Transfer at VDS = 5 V and (b) Measured VG
 max - ΔVTH 

dependence of planar, recessed and recessed tri-gate devices and gate 
hysteresis up to 8 V of recessed tri-gate transistor. (c) Output characteristics 

of the three devices with VG up to 7 V. (d) gm of recessed planar and recessed 

tri-gate MOSFET under VD of 1 V and 3 V and extracted VG – RON dependence 
of planar, recessed and recessed tri-gate transistors. The LGS, LG and LGD were 

1, 2.5 and 15 μm, respectively, and FF was 0.66. Standard deviation bars were 

determined from the measurement of 8 devices of each type, revealing their 

consistent performance. 
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based on the planar sheet resistance and contact resistance from 

separate TLM on the same wafer. To determine the missing 

variable Rsh
 trench, the measured RON versus NNW was fitted using 

this model (black curve in Fig. 3(a)), resulting in Rsh
 trench of 3355 

± 138 Ω/sq. Based on these values, we calculated the share of 

current flowing at the top and sidewall regions (Fig. 3(b)). For 

large FF, the main contribution to conduction is from the top 

region, whereas by reducing FF, NNW is increased and the 

contribution from the sidewalls becomes dominant.  

The breakdown voltage of the devices was measured with 

floating (Fig. 4(a)) and grounded substrates (Fig. 4(b)), with VG 

= 0 V. The observed breakdown mainly happened at the edge 

of gate. With floating substrate, the soft VBR at IOFF of 1 μA/mm 

of the recessed tri-gate with LGD of 15 μm and 20 μm were 1650 

V and 1800 V, respectively. A large hard VBR of 2050 V was 

measured for the recessed tri-gate with LGD of 20 μm (at IOFF = 

9 μA/mm). The gate leakage was ~1 nA/mm until 1400 V. A 

VBR of 960 V at 1 μA/mm was observed with grounded 

substrate, for both recessed and recessed tri-gate, with a high 

hard breakdown of 1100 V, which was mainly limited by the 

buffer thickness and quality. The observed improvement in VBR 

compared with the recessed devices is mainly due to the 

integrated field plates (FP) in the recessed tri-gate. The gate 

region in the recessed tri-gate device contains two FPs: tri-gate 

FP (FP1) from the recess edge to tri-gate drain-side edge, and 

planar FP (FP2) from the tri-gate drain-side edge to gate drain-

side edge (Fig.1(b)). These regions function as two gate-

connected FPs, due to their more negative pinch-off voltages 

compared to the recessed region, of -2 V in the tri-gate FP and 

-4 V in the planar FP [17]–[20]. With increasing VD, the 2DEG 

under FP1 and FP2 are sequentially depleted, reducing the 

electric field in the recessed gate region and leading to a much 

enhanced VBR [28], [29]. In addition, despite the lack of 

passivation in both devices, this additional FP also improved 

the dynamic RON of the recessed tri-gate devices by better 

distributing the electric field under the gate, as supported by 

[30], [31] (inset of Fig.4 (b)). The measured floating 

breakdown voltage could be affected by virtual gating, which 

can be resolved by a proper passivation process without 

sacrificing the breakdown voltage [32]–[34]. 

The ID
 max and RON versus VTH of the recessed tri-gate devices 

in this work were benchmarked against E-mode GaN transistors 

in the literature, demonstrating concurrently high ID
 max, low RON 

and large VTH of 1.4 V (Fig. 5(a,b)), with RON,SP of 1.76 and 2.42 

mΩ·cm2 for LGD of 15 μm and 20 μm, respectively. These 

results highlight the benefits of combining tri-gate structures 

and narrow gate recess for high-performance normally-off 

devices. 

IV. CONCLUSIONS 

In this work we have demonstrated state-of-the-art normally-

off recessed tri-gate GaN-on-Si MOSFETs by combining tri-

gates with a short barrier recess. Due to trench conduction in 

the tri-gate region, the devices presented concurrently large 

positive VTH of 1.4 V at 1 μA/mm, along with high ID
 max of 622 

± 16 mA/mm at VG = 7 V and low RON of 7.32 ± 0.26 Ω· mm. 

The excellent channel control from the tri-gate structure 

enhanced the VTH stability, reduced gate driving voltage and 

increased the transconductance. These results unveil the 

excellent prospect of recessed tri-gate for power applications. 
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