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Abstract

Options are some of the most traded financial instruments and computing their price is
a central task in financial mathematics and in practice. Consequently, the development
of numerical algorithms for pricing options is an active field of research. In general,
evaluating the price of a specific option relies on the properties of the stochastic model
used for the underlying asset price. In this thesis we develop efficient and accurate
numerical methods for option pricing in a specific class of models: polynomial models.
They are a versatile tool for financial modeling and have useful properties that can be
exploited for option pricing.

Significant challenges arise when developing option pricing techniques. For instance, the
underlying model might have a high-dimensional parameter space. Furthermore, treating
multi-asset options yields high-dimensional pricing problems. Therefore, the pricing
method should be able to handle high dimensionality. Another important aspect is the
efficiency of the algorithm: in real-world applications, option prices need to be delivered
within short periods of time, making the algorithmic complexity a potential bottleneck.
In this thesis, we address these challenges by developing option pricing techniques that are
able to handle low and high-dimensional problems, and we propose complexity reduction
techniques.

The thesis consists of four parts:

First, we present a methodology for European and American option pricing. The method
uses the moments of the underlying price process to produce monotone sequences of lower
and upper bounds of the option price. The bounds are obtained by solving a sequence of
polynomial optimization problems. As the order of the moments increases, the bounds
become sharper and eventually converge to the exact price under appropriate assumptions.
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Second, we develop a fast algorithm for the incremental computation of nested block
triangular matrix exponentials. This algorithm allows for an efficient incremental compu-
tation of the moment sequence of polynomial jump-diffusions. In other words, moments
of order 0, 1, 2, 3 . . . are computed sequentially until a dynamically evaluated criterion
tells us to stop. The algorithm is based on the scaling and squaring technique and
reduces the complexity of the pricing algorithms that require such an incremental moment
computation.

Third, we develop a complexity reduction technique for high-dimensional option pricing.
To this end, we first consider the option price as a function of model and payoff parameters.
Then, the tensorized Chebyshev interpolation is used on the parameter space to increase
the efficiency in computing option prices, while maintaining the required accuracy. The
high dimensionality of the problem is treated by expressing the tensorized interpolation
in the tensor train format and by deriving an efficient way, which is based on tensor
completion, to approximate the interpolation coefficients.

Lastly, we propose a methodology for pricing single and multi-asset European options.
The approach is a combination of Monte Carlo simulation and function approximation.
We address the memory limitations that arise when treating very high-dimensional
applications by combining the method with optimal sampling strategies and using a
randomized algorithm to reduce the storage complexity of the approach.

The obtained numerical results show the effectiveness of the algorithms developed in this
thesis.

Keywords. Option pricing, polynomial models, matrix exponential, polynomial bounds,
scaling and squaring method, complexity reduction, tensorized Chebyshev interpolation,
high-dimensional problems, low-rank tensor approximation, Monte Carlo methods.
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Estratto

Le opzioni sono uno dei principali strumenti finanziari e calcolarne il valore è un problema
importante in matematica finanziaria e nella pratica. Lo sviluppo di algoritmi numerici
per la prezzatura delle opzioni (option pricing) è perciò un campo di ricerca attivo. In
generale, un metodo per calcolare il prezzo di un’opzione dipende dalle proprietà del
modello stocastico usato per il prezzo del sottostante. In questa tesi sviluppiamo metodi
numerici efficienti e accurati per un determinato tipo di modelli: i modelli polinomiali.
Essi sono uno strumento versatile per la modellizzazione finanziaria e offrono proprietà
interessanti che si possono usare per prezzare le opzioni.

Quando si sviluppano tecniche di option pricing si presentano delle sfide sostanziali. Per
esempio, il modello scelto potrebbe avere uno spazio parametrico di dimensione alta.
Inoltre, problemi multidimensionali si presentano nel prezzare opzioni basate su più
sottostanti, ossia opzioni multi-asset. Perciò, il metodo sviluppato deve essere in grado di
gestire l’alta dimensionalità. Un altro aspetto importante è l’efficienza dell’algoritmo: in
applicazioni reali i prezzi devono essere calcolati in un breve lasso di tempo, per questo
motivo gli algoritmi devono essere il più efficienti possibile. In questa tesi trattiamo questi
aspetti sviluppando tecniche di option pricing per opzioni single e multi-asset. Inoltre,
proponiamo delle tecniche per ridurre la complessità algoritmica.

La tesi è composta da quattro parti.

Nella prima parte proponiamo un metodo per prezzare opzioni Europee e Americane.
L’approccio utilizza i momenti del sottostante per calcolare, attraverso dei problemi di
ottimizzazione polinomiale, sequenze monotone di limiti superiori e inferiori del prezzo.
Sotto ipotesi appropriate, aumentando l’ordine dei momenti usati i limiti convergono
monotonamente verso il prezzo esatto.
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Nella seconda parte sviluppiamo un algoritmo efficiente per calcolare sequenzialmente
esponenziali di matrici triangolari a blocchi. Questo ci permette di calcolare efficientemente
la sequenza dei momenti di diffusioni polinomiali con salti. In altre parole, i momenti
di ordine 0,1,2,3... vengono calcolati uno dopo l’altro finché necessario. L’algoritmo è
basato sul metodo di scalatura e quadratura e riduce la complessità delle tecniche di
option pricing che necessitano di questo tipo di calcolo incrementale dei momenti.

Nella terza parte sviluppiamo una tecnica per ridurre la complessità degli algoritmi
di option pricing in dimensione alta. A tal fine, consideriamo il prezzo di un’opzione
come funzione dei parametri del modello e del payoff. In seguito applichiamo l’interpo-
lazione multivariata di Chebyshev sullo spazio dei parametri per aumentare l’efficienza
di calcolo dei prezzi, mantenendo l’accuratezza necessaria. L’alta dimensionalità del
problema viene trattata esprimendo l’interpolazione in formato tensor train e derivando
una maniera efficace, basata sul completamento di tensori, per approssimare i coefficienti
dell’interpolazione.

Infine, proponiamo un metodo per prezzare opzioni single e multi-asset che combina la
simulazione Monte Carlo con l’approssimazione di funzioni. Inoltre, per problemi di di-
mensione molto alta riduciamo la memoria necessaria per eseguire il metodo combinandolo
con una strategia di campionamento ottimale e usando un algoritmo randomizzato.

I risultati numerici ottenuti dimostrano l’efficacia degli algoritmi sviluppati in questa tesi.

Parole Chiave. Prezzatura delle opzioni, modelli polinomiali, matrice esponenziale, limiti
polinomiali, metodo di scalatura e quadratura, riduzione della complessità, interpolazione
multivariata di Chebyshev, problemi multidimensionali, approssimazione di rango basso
di tensori, metodi di Monte Carlo.
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1 Introduction and background

This thesis deals with the numerical computation of option prices. In particular, we
develop efficient and accurate numerical algorithms for low and high-dimensional option
pricing problems for a specific class of models: polynomial models. In this framework, the
underlying asset prices are modeled via polynomial (jump-)diffusions which have interesting
properties that can be exploited to design algorithms for option pricing. The main property
is that conditional moments are given in closed form. The proposed numerical approaches
are based on different techniques: optimization, numerical approximation of matrix
exponentials, tensorized Chebyshev interpolation, and Monte Carlo simulation. Despite
their different nature, most of the approaches have a common underlying idea: they are
based on polynomial approximation.

The thesis is organized as follows. In Chapter 2 we introduce the class of polynomial
models. Therein, we provide a formal definition of polynomial (jump-)diffusions, and we
summarize their main properties. In Chapter 3 we introduce a pricing technique based
on the computation of polynomial bounds for option prices. An efficient algorithm for
the incremental computation of the conditional moments of polynomial (jump-)diffusions
is developed in Chapter 4. Chapter 5 and Chapter 6 focus on numerical methods for
high-dimensional option pricing problems. In particular, in Chapter 5 we present a
complexity reduction technique based on the tensorized Chebyshev interpolation. Lastly,
in Chapter 6 we address high dimensionality via Monte Carlo simulation combined with
function approximation.

In the rest of this chapter we introduce the option pricing problem. We start by providing
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Chapter 1. Introduction and background

some basic definitions used throughout the thesis. Then, we provide the so-called risk-
neutral pricing formula, and we give a short overview of existing numerical methods for
option pricing. We conclude the chapter with the thesis’ contributions.

1.1 Basic definitions

The following definitions are standard and can be found in any textbook about options
and option pricing methods, see e.g. [1, 74, 19, 70, 108].

In financial markets, a derivative is a financial contract whose value depends on the value
of an underlying asset or of a group of underlying assets. We consider derivatives issued
at time t = 0 and expiring at time T > 0, where T is referred to as time of maturity or,
in short, maturity. At time T the value of the derivative is determined by the price of
the underlying assets up to time T .

A specific asset can be sold or bought at any given time t at a certain price St, called
the spot price. All possible prices St as functions of t constitute the asset price process
(St)t≥0. We model the asset price process with a stochastic process. More details about
it will be given in the next section.

Options are a type of derivatives. They are sold by one party, the writer of the option, to
another, the holder of the option, for a certain price, the option price. The holder of an
option has the right, but not the obligation, to make a specified transaction at a specified
price prior to or at time of maturity T . There are different types of options, depending on
the terms of the contract. Among the most popular are European call and put options.
The holder of a European call option has the right to buy the underlying asset at time
T for a specified price, the strike price K. Similarly, the European put option gives the
right to sell the underlying asset at time T for a strike price K. Note that for these two
examples the value of the option depends only on the asset price at time T , and they can
be only exercised exactly at maturity T . American call and put options, instead, give the
holder the right to buy, respectively sell, the underlying asset at any time t ≥ 0 before or
at maturity T . Since these options are specified by simple rules, they are usually referred
to as plain vanilla options. Imposing more complicated terms to the contract gives rise
to more complicated options, the so-called exotic options. Examples of exotic options
are the so-called path-dependent options, whose value does not only depend on ST , as

2



1.2. Option pricing

in the above mentioned European case, but on the whole history of the asset price, i.e.
(St)0≤t≤T . Examples of path-dependent options are Asian, lookback and barrier options.

The value of the option at time T is called payoff of the option, and the function that
describes the payoff is referred to as payoff function. For example, for a European call
option with strike value K the payoff function is given by

f(ST ) := (ST −K)+ =

⎧⎨⎩ST −K for ST > K

0 otherwise.

This is because if ST > K, the holder exercises the option and buys the asset for the
strike price K. The asset can then be immediately sold for the spot price ST and the
holder can make a gain of ST −K. In this situation, the value of the option is ST −K.
In the case K > ST the right is not exercised because the asset can be purchased on
the market for the cheaper price ST . In this case, the option expires and its value is 0.
Similarly, the payoff function of the European put option is given by (K − ST )

+.

In the models considered in this thesis, we always assume the existence of a riskless bank
account with fixed continuously compounded risk-free interest rate r ≥ 0, i.e. putting
1 unit of currency in the riskless bank account at time t = 0 yields ert currency units
at time t. Also, we assume that there are no transaction costs or taxes, and that no
dividends are paid. Finally, the market is assumed to be arbitrage-free. This last concept
is related to the risk neutral pricing approach that we explain in the next section.

1.2 Option pricing

The goal of this section is to derive the risk-neutral pricing formula, which yields a concrete
way to compute the price of options. First, as already mentioned in the previous section,
the price (St)0≤t≤T of the financial assets of interest is modeled by a stochastic process
in continuous time [0, T ], where the maturity T is the time horizon. We assume that
(St)0≤t≤T is defined on a filtered probability space (Ω,F ,F,P), where F := (Ft)0≤t≤T is a
filtration that represents the information available in the model. Moreover, we assume
that the filtered probability space satisfies the usual conditions and that (St)0≤t≤T is F-
adapted. In order to simplify the notation, we will denote the stochastic process (St)0≤t≤T

by (St). We will use St to refer to the random variable with the index t. Similarly for

3



Chapter 1. Introduction and background

arbitrary stochastic processes and random variables.

We assume that our market model is arbitrage-free. In general, a market model is
arbitrage-free if it is not possible to construct a self-financing portfolio whose value
process, denoted by (Vt), is such that

• its value at initial time t = 0 is zero, i.e. V0 = 0, and

• its value at some time T̃ > 0 is always nonnegative and can be positive, i.e. V
˜T
≥ 0

and P[V
˜T
> 0] > 0.

Given an arbitrage-free model one can obtain derivative prices by the principle of arbitrage-
free pricing, which states that the price process of the derivative should be chosen such
that the joint model remains arbitrage-free. For example, consider a European call option
whose underlying’s price process is given by (St) and denote its price at time t by Ct.
The idea is to define the price process (Ct), which is itself a stochastic process, such that
the joint-model (St, Ct) remains free of arbitrage. The key tool to achieve this goal is the
fundamental theorem of asset pricing (FTAP).

Fundamental theorem of asset pricing. Informally, the fundamental theorem of
asset pricing states that:

The market model defined by (Ω,F ,F,P) and by the asset prices (St) is arbitrage-free if
and only if there exists a probability measure Q, which is equivalent to P and such that
the discounted asset price process (e−rtSt) is a Q-martingale.

The equivalent measure Q is usually referred to as equivalent martingale measure or risk-
neutral measure. There are different ways to rigorously define the concept of “arbitrage-free”
and to define the technical conditions needed such that the FTAP holds. We refer to the
textbook [30] for an overview on the different definitions of arbitrage-free models and the
different versions of the FTAP. Since the FTAP is not the focus of this thesis, for the sake
of brevity we restrict our attention to the following important implications of the FTAP.
First, the implication ”⇐” is of practical relevance since it states that, if we construct a
model where the discounted asset price process (e−rtSt) is a martingale under a certain
probability measure Q, then our model is guaranteed to be free of arbitrage. The second
important implication is that the FTAP yields a way to define the price of derivatives
(Ct in our example above), the so-called risk-neutral pricing formula.
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1.2. Option pricing

Risk-neutral pricing formula. Considering the above example of the joint market
(St, Ct), the FTAP suggests that by specifying the European call option price as Ct :=

e−r(T−t)EQ[CT |Ft] we are guaranteed to obtain a joint model (St, Ct) which is arbitrage-
free. Extending the same reasoning to an arbitrary option with payoff function f and
expiring at maturity T , the option price at time t ∈ [0, T ] is given by the risk-neutral
pricing formula

e−r(T−t)EQ[f(ST )|Ft].

In particular, in the case that F0 is trivial, the option price at time t = 0 is given by

e−rTEQ[f(ST )]. (1.1)

We will use the formula (1.1) several times in this thesis. Moreover, since we will always be
working in the risk-neutral setting, we will usually omit the ”Q” and write e−rTE[f(ST )].

In the case of American options the risk-neutral pricing procedure allows us to write the
price at time t = 0 of an American option maturing at time T with payoff function f as

sup
τ∈S0,T

E[e−rτf(Sτ )], (1.2)

where S0,T is the set of all stopping times in [0, T ].

The risk-neutral pricing formula provides an easy way to establish the relation between
the price of European put and call options that share the same underlying, strike price,
and maturity. Indeed, denoting by Ct the price of a European call option at time t and
by Pt the price of a European put option at time t, one can show (see e.g. [74]) that

Ct − Pt = St −Ke−r(T−t). (1.3)

We refer to this formula as put-call parity and we will use it in some of our numerical
examples in the next chapters.

Challenges in option pricing. On the one hand, the FTAP is a strong theoretical tool
to derive the price of financial derivatives and, in particular, of options. On the other
hand, new challenges in the development of models and option pricing techniques arise.
These are the tasks that we need to carry out:
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Chapter 1. Introduction and background

1. Develop a model (St) for the underlying assets that is rich enough in order to
capture important empirical features that are observed in the financial markets.

2. At the same time, the model has to be tractable, simple enough, and should possess
properties that can be used to compute expectations of the form (1.1) or (1.2).

3. With the developed model and its properties at hand, we can then develop numerical
techniques for option pricing.

Furthermore, an option pricing technique should also satisfy some computational properties
that are of practical relevance. For example, real-world applications request the delivery
of computed option prices within short periods of time. Therefore:

4. The developed option pricing technique has to be as computationally efficient as
possible.

Another important aspect that arises concerns the high dimensionality of the pricing
problem: the underlying stochastic model developed in the first step might depend on
many parameters, forcing us to work with high-dimensional parameter spaces. Also,
high-dimensional pricing problems arise when considering multi-asset options. Thus:

5. The pricing technique needs to be able to handle high-dimensional problems.

Before explaining what the thesis’ contributions are and how they are related to the items
1-5, we briefly summarize some classical option pricing techniques. Since it is impossible
to consider all the existing techniques, we limit our summary to the ones that we will
use as reference methods throughout the thesis. Furthermore, the following descriptions
focus more on giving the general idea of the methods rather than on the technical details.

Closed-form formulas. For some specific models and types of options, quantities of
the form (1.1) can be computed explicitly. In those cases, the option prices are given in
closed form. A well known example is the one of European call and put options in the
Black-Scholes model. In this model, which we present in detail in Chapter 2, the asset
price St is log-normally distributed and the price at time t of a European call option
expiring at time T with strike K is explicitly given by

StΦ(d1)−Ke−r(T−t)Φ(d2), (1.4)

6



1.2. Option pricing

where Φ is the cumulative distribution function of the standard normal distribution, and
d1 and d2 are defined as

d1 =
1

σ
√
T − t

(
log

(St

K

)
+

(
r +

σ2

2

)
(T − t)

)
, d2 = d1 − σ

√
T − t.

Here, σ denotes the volatility. A closed-form formula for the price of European put options
can be derived by applying the put-call parity (1.3) to (1.4). Unfortunately, closed-form
formulas are rare and most of the time one needs numerical techniques to evaluate the
price of options. An example is that of Monte Carlo methods.

Monte Carlo methods. The core idea of the standard Monte Carlo method to compute
expectation of random variables and, in particular, quantities of the form (1.1) is very
simple and can be described as follows. First, we simulate N realizations of the random
variable ST and we denote them by Si

T , for i = 1, . . . , N . Then, (1.1) is approximated by

e−rTE[f(ST )] ≈ e−rT 1

N

N∑
i=1

f(Si
T ).

The simulation step is performed according to the information one has about the dis-
tribution of ST . For example, if it is given explicitly one can simply generate random
realizations according to it. If it is not known but (St) is given as a solution of a stochastic
differential equation (SDE), then one can sample by discretizing the governing SDE of
(St). More details will be given in Chapter 6.

Monte Carlo methods have been widely used in finance and several developments and
variations have been proposed. Some examples are variance-reduction techniques, Quasi-
Monte Carlo methods, multilevel Monte Carlo algorithms, and others. The textbook [50]
gives a good overview on Monte Carlo methods for finance and we refer the reader to it
for detailed descriptions of the algorithms. Furthermore, Monte Carlo methods can be
also applied to compute the price (1.2) of American options. One of the main methods
that performs this task is the one by Longstaff and Schwartz, developed in [94].

Fourier transform techniques. Fourier transform methods allow us to compute option
prices under the assumption that the characteristic function of the asset price ST is known,
given explicitly, or that it can be easily computed. We recall that the characteristic
function of an arbitrary random variable X is defined as φX(u) := E[eiuX ]. The idea

7



Chapter 1. Introduction and background

consists of expressing the option price (1.1) in terms of φST
and of the Fourier transform of

the payoff function. More precisely, let f̂ be the Fourier transform of the payoff function,
i.e.

f̂(u) =

∫
R

eiusf(s)ds.

Then, under suitable integrability conditions, the Plancherel-Parseval’s identity (see e.g.
[104]) allows us to write the option price as

e−rTE[f(ST )] =
e−rT

2π

∫
R

f̂(−u)φST
(u)du. (1.5)

The last integral in (1.5) can then be numerically computed in different ways, e.g. by
numerical integration or by Fast-Fourier-Transform algorithms, see e.g. [23].

Remark 1.1. It is worth mentioning that the Fourier transform method can be used
whenever the option price can be written in the form E[f(Y )], with a random variable Y

whose characteristic function is available. For example, for some asset price models the
characteristic function of the log-asset price Xt, defined through eXt := St, is available.
In such a case, one can write E[f(ST )] as E[f̃(XT )] for f̃(x) := f(ex) and the Fourier
method can be directly applied as described before.

PDE approaches. Approaches based on partial differential equations (PDE) are
an other important branch of methods for option pricing. If the price process (St) is
Markov with respect to the filtration F, the European option price (1.1) at time t can
be written as a function v(t, x) of t and x := St. More precisely, we can define it as
v(t, x) := e−r(T−t)E[f(ST )|Ft] = e−r(T−t)E[f(ST )|St = x]. Then, the core idea is to relate
v(t, x) to a PDE. The main tool to do it is the Feynman-Kac theorem (see e.g. [19]),
which allows us to express v(t, x) as solution of the PDE

∂tv(t, x) + Gv(t, x)− rv(t, x) = 0, (x, t) ∈ R+ × [0, T ),

v(T, x) = f(x),

where G is the generator of (St). For the case of American options, the price (1.2) of
the American version of the option described before satisfies (see e.g. [1, 36]) the partial
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1.3. Contributions of the thesis

differential complementarity problem (PDCP)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tv(t, x) + Gv(t, x)− rv(t, x) ≥ 0,

v(t, x) ≥ f(x),(
v(t, x)− f(x)

)(
∂tv(t, x) + Gv(t, x)− rv(t, x)

)
= 0,

v(T, x) = f(x),

(1.6)

where the first three relations hold for (x, t) ∈ R+ × [0, T ) and the last equation for
x ∈ R+. The inequalities (1.6) are also referred to as variational inequalities. With the
PDE or the PDCP at hand, the option prices can then be numerically computed by
means of any type of PDE solvers, for example by finite difference discretization, see e.g.
[36], or finite element discretization, see e.g. [70].

As previously mentioned, the literature of option pricing methods is vast and rich, and
a big variety of techniques have been developed. Some further examples are algorithms
based on quadrature rules, binomial tree models, and others. We refer to the survey paper
[20] and to the textbooks [1, 70, 108] for a more complete overview.

1.3 Contributions of the thesis

We present the contributions of this thesis. For each chapter, we first describe its content.
Then, at the end of each section we explain how the contribution is related to the
development of asset price models and option pricing techniques, described through the
items 1-5 in Section 1.2.

Chapter 2. This is a review chapter where we introduce the polynomial models. In
particular, we present the definition and the main properties of polynomial jump-diffusions
[39] and of the special case of polynomial diffusions [38]. We introduce the models that
are used throughout the thesis and, finally, we present an option pricing technique based
on polynomial expansions that is used as reference method in some of our numerical
experiments.

This chapter mainly refers to the modeling part 1 and to the properties of the class of
models that can be exploited for option pricing, item 2.

9



Chapter 1. Introduction and background

Chapter 3. We propose a methodology to numerically compute the price of European
and American options in polynomial models. The method exploits the availability of
all the conditional moments of the underlying asset price process to produce monotone
sequences of lower and/or upper bounds of the option price. In particular, given a fixed
moment order n, an upper/lower bound of the price is obtained by numerically solving a
polynomial optimization problem that considers the information of all the moments of
order at most n. By letting n go to infinity, the method produces the aforementioned
monotone sequences of bounds.

For the European case, the starting point is the methodology developed in [14] that
considers the same approach but under restrictive assumptions that limit its applications.
In particular, it is assumed in [14] that the payoff function is piecewise linear and that
only a fixed number of moments is available. In our work, we extend it to consider a
more general class of payoff functions and a number of moments n that can go to infinity.
This extension is of practical relevance in the setting of polynomial models where payoff
functions are often not piecewise polynomial and the moments of all orders are available.
In this relaxed setting, we present new convergence results that show that the bounds
converge towards the option price under some appropriate assumptions. Moreover, we
address the numerical solution of the involved optimization problems. First, we propose
to use the same technique as in [14, 122] based on semidefinite programming. Then, we
propose a new numerical technique based on the cutting plane procedure that better suits
our new relaxed setting.

In the second part of the chapter we propose a new extension of the method that allows
us to price American options in polynomial models. For this case, we explain how to
adapt the numerical algorithms to solve the new obtained optimization problems. Finally,
for both the European and the American case, we show numerical results that illustrate
the effectiveness of our method.

This chapter refers to the step on the development of option pricing techniques for specified
families of models, item 3.

Chapter 4. Some option pricing techniques for polynomial models require an incremental
computation of the moment sequence. In other words, moments of order 0, 1, 2, 3, . . . have
to be computed sequentially until a dynamically evaluated criterion tells the procedure to
stop. Two of these techniques are the one developed in Chapter 3 and the polynomial
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expansion-based technique mentioned in Chapter 2. For both of them, increasing the order
of the considered moments improves the quality of the option price approximation. Once
a pre-specified precision is reached, the procedure can stop and the required option price
is returned. In practice, such a computation translates into an incremental evaluation
of a nested sequence of block upper triangular matrix exponentials. In this chapter we
propose a new algorithm that performs this task efficiently. More precisely, our method is
based on the scaling and squaring algorithm and, by carefully reusing certain intermediate
quantities from one step to the next, it efficiently computes the required sequence of
matrix exponentials. The choice of the scaling parameter is of particular importance in
the scaling and squaring method. In our algorithm, we address this point by developing
an adaptive strategy to select it in the most suitable way. Finally, we present numerical
results that show the effectiveness of our method in concrete option pricing contexts.

Our new algorithm reduces the complexity of the pricing algorithms that require the
aforementioned incremental moment computation and can therefore be related to item 4
of the development procedure presented in the Section 1.2.

Chapter 5. We develop a complexity reduction technique for high-dimensional option
pricing. The starting point is the approach developed by Gass et al. in [46]. There, the
authors propose a complexity reduction technique for parametric option pricing based on
Chebyshev interpolation. The idea is as follows. First, the option price is considered as a
function of model and payoff parameters. Then, the classical Chebyshev interpolation
is used on the parameter space to increase the efficiency in computing option prices,
while maintaining the required accuracy. The method can be split into two parts, an
offline phase and an online phase. In the first one, the option prices are computed in the
Chebyshev nodes by a reference method and the interpolation coefficients are evaluated.
With the interpolation coefficients at hand, in the online phase the price can be efficiently
computed in a new arbitrary set of parameters by a quick evaluation of the interpolating
polynomial. In [46], this method is shown to be effective for low-dimensional parameter
spaces. As the number of parameters increases, however, it is affected by the curse of
dimensionality in both phases. In our work, we extend this approach to treat parameter
spaces of high dimensions by exploiting low-rank structures. The core idea of our method
is to express the tensorized Chebyshev interpolation in the tensor train format and to
develop an efficient way, based on tensor completion, to approximate the interpolation
coefficients. In particular, in the completion step we combine the approach developed in
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Chapter 1. Introduction and background

[112] with a new adaptive sampling strategy to approximate the prices in the Chebyshev
nodes. This results in a new complexity reduction of both the offline and the online
phase. We present two numerical experiments. The first one concerns the computation of
American option prices, while the second one treats European basket options. In these
examples we treat parameter spaces of dimensions up to 25 and the numerical results
confirm the effectiveness of our method compared to advanced reference techniques.

The contribution of this chapter is directly related to item 4 since it improves the efficiency
of pricing algorithms. At the same time, it allows us to treat high-dimensional parameter
spaces and, therefore, it is related to item 5, as well.

Chapter 6. We propose a methodology for pricing single and multi-asset European
options. The starting point is the method for multivariate integration recently developed
in [97] and denoted by MCLS (Monte Carlo with Least-Squares). There, the author
proposes a variance reduction technique for multivariate integration with respect to
the Lebesgue measure. The main idea is to combine the Monte Carlo simulation with
a function approximation step, where the integrating function is approximated by a
least-squares approach. First, we extend MCLS to compute multivariate integrals with
respect to general probability measures. This is done by changing the simulation step
of MCLS and it allows us to compute quantities of the form (1.1), i.e. the price of
(multi-asset) European options. Then, after noticing that for large-scale applications
MCLS faces some memory limitations due to the large storage requirement for running
it, we propose to combine it with the optimal sampling strategy from [26] (this was
already proposed in [97]) along with the randomized extended Kaczmarz algorithm [124]
for solving the least-squares problem. We propose a new cost analysis where we show that
MCLS asymptotically becomes more accurate than the standard Monte Carlo approach at
the same cost. Finally, we apply our extended version of MCLS to numerically compute
single and multi-asset European option prices in some polynomial models and a large-scale
multivariate integral. The obtained results show the effectiveness of the method and of
our extension in both low and high dimensions.

The method offers an efficient way to deal with the high dimensionality arising when
treating multi-asset options. This chapter is therefore mainly related to item 5 in the
development process of option pricing techniques.
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2 Polynomial models

Polynomial models build upon a particular type of stochastic processes: polynomial
(jump-)diffusions. As explained in [38, 39], one of the key properties of polynomial
(jump-)diffusions is that their conditional moments can be computed in closed form, which
renders them computationally tractable and suited for financial asset pricing models.
Moreover, their dynamics are shown to be flexible and able to capture important empirical
features of financial time series. Thanks to these properties, polynomial models provide
a tractable and flexible framework for financial modeling and have become a versatile
tool in a wide range of applications in finance. Examples include the modeling of interest
rates [31, 123, 40], stochastic volatility [54, 4], exchange rates [87], life insurance liabilities
[15], variance swaps [44], credit risk [2], dividend futures [43], commodities [41], and
stochastic portfolio theory [27]. Apart from modeling, polynomial (jump-)diffusions can
also be used to improve existing computational techniques. For example, a variance
reduction technique for option pricing and hedging based on polynomial (jump-)diffusions
is developed in [28]. It is also worth mentioning that a large set of commonly used
processes are polynomial (jump-)diffusions. Examples are Ornstein-Uhlenbeck processes,
square-root diffusions, and Lévy processes.

The goal of this chapter is to introduce all the ingredients required to work in the
framework of polynomial models. More precisely, in Section 2.1 we define the classes
of polynomial jump-diffusions and polynomial diffusions and we present some of their
properties. These properties will be used in the development of our pricing techniques.
Then, in Section 2.2 we provide a list of examples, which are used throughout the thesis.
Finally, in Section 2.3 we present a technique for European option pricing based on
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Chapter 2. Polynomial models

polynomial expansions. This approach can be used in the setting of polynomial models
and we use it as a reference approach in some of our examples throughout the thesis.

2.1 Polynomial jump-diffusions and polynomial diffusions

Polynomial jump-diffusions have appeared in the literature for a long time (see e.g. [120])
and have been applied in financial modeling since the early 2000s (see e.g. [123]). The
mathematical foundations for polynomial models in finance have been provided in the
recent articles [28, 38, 39]. The following summary is mostly based on [39] for polynomial
jump-diffusions, and on [38] for polynomial diffusions.

We start by introducing some notation and basic definitions. A d-variate polynomial
p on Rd is a map Rd → R of the form p(x) =

∑
k αkx

k, where the sum runs over all
multi-indices k = (k1, . . . , kd) ∈ Nd

0 and only finitely many coefficients αk ∈ R are nonzero.
Note that xk := xk11 . . . xkdd . The degree of p is defined as deg(p) = max{|k| : αk �= 0},
for |k| := k1 + · · ·+ kd. The degree of the zero polynomial is set to 0 by definition. We
denote by Pol(Rd) the space of all d-variate polynomials and by Poln(R

d) the space of all
d-variate polynomials of degree at most n, i.e.

Poln(Rd) :=

{ ∑
0≤|k|≤n

αkx
k : x ∈ Rd, αk ∈ R

}
.

We now consider a subset E of Rd. We say that p is a polynomial on E if it is the
restriction on E of a polynomial q ∈ Pol(Rd), i.e. p := q|E . Its degree is defined as
deg(p) := min{deg(q) : p = q|E , q ∈ Pol(Rd)}. Similarly to before, we define Pol(E)

to be the space of all d-variate polynomials on E and Poln(E) the space of all d-variate
polynomials on E of degree at most n. If E has a non-empty interior Poln(E) and Poln(Rd)

can be identified and have the same finite dimension. We note that the dimension of
Poln(Rd) is given by N(n, d) :=

(
n+d
n

)
. Finally, for the rest of the chapter, we fix a filtered

probability space (Ω,F ,F,Q) which satisfies the usual conditions.

Polynomial jump-diffusions. We define polynomial jump-diffusions through their
generator, as done in [39]. We consider the operator

Gf(x) = 1

2
Tr(A∇2f(x)) + bT∇f(x) +

∫
Rd

(
f(x+ ξ)− f(x)− ξT∇f(x)

)
ν(x, dξ),
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2.1. Polynomial jump-diffusions and polynomial diffusions

for some measurable maps A : Rd → Sd+ and b : Rd → Rd, where Sd+ is the space of positive
semidefinite matrices. Also, ν(x, dξ) is a transition kernel from Rd into Rd satisfying
ν(x, {0}) = 0 and

∫
Rd ‖ξ‖ ∧ ‖ξ‖2ν(x, dξ) < ∞ for all x ∈ Rd. We clarify that ∇f(x) is

defined as ∇f(x) := ( ∂
∂x1

f(x), · · · , ∂
∂xd

f(x))� and

∇2f(x) :=

⎡⎢⎢⎢⎢⎢⎢⎣

∂2

∂x2
1
f(x) ∂2

∂x1x2
f(x) · · · ∂2

∂x1xd
f(x)

∂2

∂x2x1
f(x) ∂2

∂x2
2
f(x) · · · ∂2

∂x2xd
f(x)

...
...

. . .
...

∂2

∂xdx1
f(x) ∂2

∂xdx2
f(x) · · · ∂2

∂x2
d
f(x)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rd×d.

We say that the operator G is well defined on Pol(E) if Gf = 0 on E for any f ∈ Pol(Rd)

with f = 0 on E and if
∫
Rd ‖ξ‖nν(x, dξ) < ∞ for all x ∈ E and all n ≥ 2.

We assume that A(x), b(x) and the transition kernel ν(x, dξ) satisfy

b ∈ Pol1(E),

A+

∫
Rd

ξξT ν(·, dξ) ∈ Pol2(E),∫
Rd

ξkν(·, dξ) ∈ Pol|k|(E),

(2.1)

for all |k| ≥ 3. Lemma 2.2 in [39] states that if G satisfies the conditions (2.1), then it
maps Poln(E) to itself for each n ∈ N, i.e. the invariant property

GPoln(Rd) ⊆ Poln(Rd) (2.2)

holds. We finally define polynomial jump-diffusions.

Definition 2.1 (Definition 2.1 in [39]). The operator G is called polynomial on E if
it is well defined on Pol(E) and maps Poln(E) to itself for each n ∈ N. Let (Xt) be
an E-valued jump-diffusion with generator G. In this case, we call (Xt) a polynomial
jump-diffusion on E.

Therefore, a polynomial jump-diffusion is a jump-diffusion with state space E whose jump
measure admits moments of all orders, with generator that maps polynomials on E to
polynomials on E of lower or equal degree.
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Chapter 2. Polynomial models

In the special case of a vanishing jump measure, the process (Xt) exhibits almost surely
continuous paths, i.e. it is a process without jumps. This special class is referred to as
the class of polynomial diffusions and it is studied in [38]. Polynomial diffusions play
an important role in the thesis. We therefore dedicate some space to this special case.

For a polynomial diffusion (Xt), the corresponding generator takes the form

Gf(x) = 1

2
Tr(A∇2f(x)) + bT∇f(x),

and the conditions (2.1) simplify to

Aij ∈ Pol2(Rd), bi ∈ Pol1(Rd), for i, j = 1, . . . , d. (2.3)

Moreover, if A is positive definite, (Xt) can also be defined as an E-valued solution of
the stochastic differential equation (SDE)

dXt = b(Xt)dt+Σ(Xt)dWt, (2.4)

where (Wt) is a d-dimensional Brownian motion and Σ is uniquely defined via A := ΣΣT .

Next, we derive a closed form formula for computing conditional moments of polynomial
jump-diffusions, i.e. quantities of the form E[p(XT )|Ft] where p is a polynomial. We
refer to this formula as moment formula and this is the most important result about
polynomial jump-diffusions.

The moment formula. Let (Xt) be an E-valued polynomial jump-diffusion with
generator G. We fix a basis of polynomials Hn = {h1, . . . , hN} for Poln(E) and we write

Hn(x) = (h1(x), . . . , hN (x)).

Thanks to the property (2.2), the restriction of G to Poln(E) possesses a unique matrix
representation Gn with respect to Hn, for any fixed n ∈ N. More precisely, for any
p ∈ Poln(E) with coordinate vector 	p ∈ RN with respect to Hn, we can write

Gp(x) = Hn(x)Gn	p. (2.5)

In the following, we make use of the notion of generalized conditional expectation, which

16



2.1. Polynomial jump-diffusions and polynomial diffusions

is defined for any σ-field F ′ ⊆ F and all random variables Y by

E[Y |F ′] =

⎧⎨⎩E[Y +|F ′]− E[Y −|F ′], on {E[|Y ||F ′] < ∞},
+∞, elsewhere.

The moment formula for polynomial jump-diffusions is stated and proven in [39, Theorem
2.5], which we review in the following theorem.

Theorem 2.2 (Moment formula). Assume G is polynomial on E. Then for any p ∈
Poln(E) with coordinate representation 	p ∈ RN , we have

E[p(XT )|Ft] = Hn(Xt)e
Gn(T−t)	p, for t ≤ T. (2.6)

We recall that eB for an arbitrary square matrix B ∈ Rd×d represents the matrix
exponential of B, defined as

eB :=
∞∑
�=0

B�


!
.

In the particular case where F0 is trivial, for t = 0 the moment formula (2.6) becomes

E[p(XT )] = Hn(X0)e
GnT 	p. (2.7)

We will use the form (2.7) several times throughout the thesis.

We now want to have more insights into the matrix Gn and its structure. We start having
a closer look at it in the next example, where we consider scalar polynomial diffusions.

Example 2.3. We consider the one-dimensional case d = 1. In view of the conditions
(2.3), the SDE (2.4) of a scalar polynomial diffusion (Xt) must necessarily be of the form

dXt = (b+ βXt) dt+
√
a+ αXt +AX2

t dWt,

for some real values b, β, a, α,A. The generator takes the form

Gf(x) = (b+ βx)
∂

∂x
f(x) +

1

2
(a+ αx+Ax2)

∂2

∂x2
f(x).

Let {1, x, · · · , xn} be the monomial basis of Poln(R). We apply G to an arbitrary basis
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element xk and get

Gxk = k(k − 1)
a

2
xk−2 + k

(
b+ (k − 1)

α

2

)
xk−1 + k

(
β + (k − 1)

A

2

)
xk.

The columns of the matrix Gn are the coordinate vectors of Gxk for k = 0, · · · , n. Therefore,
Gn can be explicitly constructed as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 b 2a
2 0 · · · 0

0 β 2
(
b+ α

2

)
3 · 2a

2 0
...

0 0 2
(
β + A

2

)
3
(
b+ 2α

2

) . . . 0

0 0 0 3
(
β + 2A

2

) . . . n(n− 1)a2
... 0

. . . n
(
b+ (n− 1)α2

)
0 . . . 0 n

(
β + (n− 1)A2

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(n+1)×(n+1). (2.8)

Structure of the matrix Gn. The structure of the matrix Gn plays an important role in
the thesis. In this paragraph, we take a closer look at it and we highlight some important
properties. We start by noting that the polynomial subspaces Poln(E) for n = 0, 1, 2, · · ·
define a nested sequence of finite-dimensional subspaces of the infinite-dimensional vector
space Pol(E), i.e.

Pol0(E) ⊆ Pol1(E) ⊆ Pol2(E) ⊆ · · · ⊆ Pol(E).

Consequently, the bases H0,H1,H2 . . . can be chosen to form a sequence of nested bases,
i.e.

H0 ⊆ H1 ⊆ H2 ⊆ . . . . (2.9)

Consider now the sequence G0, G1, G2, . . . of matrix representations of G restricted to the
spaces Pol0(E),Pol1(E),Pol2(E), . . . as defined in (2.5). Thanks to the property (2.2)
which holds for any n ∈ N, and due to the nestedness (2.9) of the bases, Gn is constructed
from Gn−1 by adding the columns representing the action of G to Hn \ Hn−1. This last
expression corresponds to the basis polynomials of exact degree n. Hence, the matrix Gn

can be partitioned as

Gn =

[
Gn−1 gn

0 Gn,n

]
∈ RN(n,d)×N(n,d).
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The diagonal block Gn,n is of size
(
n+d−1

n

)
, the dimension of the space of d-variate

polynomials of exact degree n. By iterating the same reasoning, we can write Gn as

Gn =

⎡⎢⎢⎢⎢⎢⎣
G0,0 G0,1 · · · G0,n

G1,1 · · · G1,n

. . .
...

Gn,n

⎤⎥⎥⎥⎥⎥⎦ .

Hence, Gn is block upper triangular and the sizes of the square diagonal blocks are

1, d,

(
1 + d

2

)
, . . . ,

(
n+ d− 1

n

)
.

To conclude this description, we note that the sequence G0, G1, G2, . . . forms a nested
sequence of block upper triangular matrices. This property will prove useful in the rest of
the thesis.

The paper [38] presents several other results about polynomial diffusions. For example,
existence and uniqueness of solutions to (2.4) on several types of state spaces E ⊆ Rd

and for large classes of Σ and b are studied. Also, the authors provide a large set of
examples and other applications. Similarly, [39] contains more results on polynomial
jump-diffusions, including examples, applications and other properties. As these results
are not explicitly needed in this thesis, we do not present them and we refer to [38, 39]
for more details.

2.2 Examples

In this section we present some examples of polynomial models. All of them belong to
the class of polynomial diffusion models and are used throughout the thesis to verify
the developed pricing techniques. In the context introduced in Section 1, polynomial
diffusions are used to model the asset price process (St) in the risk-neutral setting. In
particular, the discounted price process (e−rtSt) is a martingale in the considered filtered
probability space (Ω,F ,F,Q) and Q is a risk-neutral measure.

We present three models: the multi-dimensional Black-Scholes model, the Heston stochas-
tic volatility model and the Jacobi stochastic volatility model. Also, as a particular case of
the multi-dimensional Black-Scholes model, we devote some space to the one-dimensional
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Black-Scholes model in the log-asset price formulation, which will be of particular impor-
tance in the rest of this thesis. For the Jacobi stochastic volatility model, our summary is
based on [4]. The Heston model and the Black-Scholes models, being very popular, are
described in several textbooks, see e.g. [36].

Multi-dimensional Black-Scholes model. In the d-dimensional Black-Scholes model
we consider d assets whose price process (St) ∈ Rd is given by

dSi
t = rSi

t + σiS
i
tdW

i
t , i = 1, · · · , d, (2.10)

for some volatility values σi, i = 1, · · · , d, a risk-free interest rate r and d correlated
Brownian motions (W i

t ) with correlation parameters ρij ∈ [−1, 1], for i �= j. For any
deterministic starting vector S0 ∈ Rd

+ the price process takes values in the state space
E = Rd

+. Solving explicitly (2.10) we can write the price process as

Si
t = Si

0 exp
(
(r − σ2

i

2
)t+ σiW

i
t

)
, i = 1, · · · , d.

The generator G of (St) is given by

Gf =
1

2

d∑
i=1

d∑
j=1

σiσjρijsisj
∂2

∂sisj
f + r

d∑
i=1

si
∂

∂si
f.

The matrix Gn can be computed with respect to the monomial basis as in the following
lemma, and turns out to be diagonal.

Lemma 2.4. Let Hn be the monomial basis of Poln(Rd
+). Let

π : E →
{
1, . . . ,

(
n+ d

n

)}
be an enumeration of the set of tuples E = {k ∈ Nd

0 : |k| ≤ n}. Then, the matrix
representation Gn of the generator of the process (S1

t , · · · , Sd
t ) with respect to Hn and

restricted to Poln(Rd
+) is diagonal with diagonal entries defined as

Gπ(k),π(k) =
1

2

d∑
i=1

d∑
j=1

σiσjρij(kikj1i �=j + ki(ki − 1)1i=j) + r

d∑
i=1

ki,

for all k ∈ E.
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Proof. We apply the generator G of (S1
t , · · · , Sd

t ) to a monomial basis element of the form
sk11 · · · skdd and we obtain

Gsk11 · · · skdd = sk11 · · · skdd
(
1

2

d∑
i=1

d∑
j=1

σiσjρij(kikj1i �=j + ki(ki − 1)1i=j) + r
d∑

i=1

ki

)
.

It follows that Gn is diagonal as stated above.

We apply the moment formula and exploit the diagonal structure of Gn to get the moments
of ST explicitly.

Corollary 2.5. The moments of ST are given by

E[Sk
T ] = Sk

0 exp

(
T

2

d∑
i=1

d∑
j=1

σiσjρij(kikj1i �=j + ki(ki − 1)1i=j) + rT

d∑
i=1

ki

)
,

for any multi-index k ∈ Nd
0.

The log-asset price formulation of the one-dimensional Black-Scholes model is used several
times throughout this thesis. We therefore have a closer look at it.

One-dimensional Black-Scholes model. In the case d = 1, the price St at time t can
be written as St = eXt , where (Xt) is defined as solution of the SDE

dXt = (r − σ2

2
)dt+ σdWt, (2.11)

where σ is the volatility parameter, r ≥ 0 a risk-free interest rate and (Wt) is a one-
dimensional Brownian motion. We refer to (Xt) as the log-asset price process. The state
space of Xt is E = R. It can be directly shown that Xt is explicitly given as

Xt = X0 +
(
r − 1

2
σ2

)
t+ σWt,

where X0 ∈ R is a deterministic starting value. Therefore, Xt is normal distributed with
mean X0 +

(
r − 1

2σ
2
)
t and variance σ2t. Its generator is given by

Gf =
(
r − 1

2
σ2

) ∂

∂x
f +

1

2
σ2 ∂2

∂x2
f.
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Chapter 2. Polynomial models

Since (Xt) is a scalar polynomial diffusion, the matrix Gn can be constructed with respect
to the monomial basis as in (2.8) by replacing the variables according to (2.11), i.e.

b = r − 1

2
σ2, a = σ2, α = β = A = 0.

Similarly, it is possible to construct Gn with respect to other bases of Poln(R).

Heston stochastic volatility model. The Heston model is a stochastic volatility
model, meaning that the volatility is stochastic itself. The log-asset price process (Xt) is
defined as the solution of the SDE

dXt =
(
r − Vt

2

)
dt+ ρ

√
VtdW

1
t +

√
Vt

√
1− ρ2dW 2

t

and the squared stochastic volatility follows

dVt = κ(θ − Vt)dt+ σ
√

VtdW
1
t .

The two Brownian motions (W 1
t ) and (W 2

t ) are independent and the model parameters
satisfy the conditions κ ≥ 0, θ ≥ 0, σ > 0, r ≥ 0, ρ ∈ [−1, 1]. For any deterministic
starting value (X0, V0) ∈ R × R+ the process (Xt, Vt) takes values in the state space
E = R×R+. While the Heston model (Xt, Vt) is a polynomial diffusion in two dimensions,
its asset price formulation (St, Vt), as originally introduced in [66], is not polynomial. The
generator is given by

Gf(x, v) = 1

2
Tr(A(v)∇2f(x, v)) + b(v)T∇f(x, v)

for

b(v) =

[
r − v/2

κ(θ − v)

]
, A(v) =

[
v ρσv

ρσv σ2v

]
.

Hence

Gf =
(
r − 1

2
v
) ∂

∂x
f + κ(θ − v)

∂

∂v
f +

1

2
σ2v

∂2

∂v2
f + σρv

∂2

∂v∂x
f + v

∂2

∂x2
f.

In order to construct the matrix Gn, we consider an arbitrary element xpvq of the

22



2.2. Examples

monomial basis of Poln(E) and we apply G to it. We obtain

Gxpvq =xpvq−1
(
κθq +

1

2
σ2q(q − 1)

)
+ xp−1vq(rp+ ρσqp)+

xp−2vq+1
(1
2
p(p− 1)

)
+ xpvq(−κq) + xp−1vq+1

(
− 1

2
p
)
.

(2.12)

We consider the monomial basis of Poln(E) ordered as in

Hn(x, v) = (1, x, v, x2, xv, v2, . . . , xn, xn−1v, . . . , vn) ∈ R1×N(n,2), (2.13)

where N(n, 2) is explicitly given by (n+1)(n+2)
2 . An enumeration π : E → {1, 2, . . . , N(n, 2)}

of the set of pairs E := {(p, q) ∈ N0 ×N0 : p+ q ≤ n} corresponding to the basis ordering
as in (2.13) is given by (p, q) �→ π(p, q) = 1

2(p+ q + 1)(p+ q) + q + 1. From (2.12) we can
conclude that Gn has at most 5 nonzero elements in each column π(p, q), given by

Gπ(p,q−1),π(p,q) = κθq +
1

2
σ2q(q − 1), (q ≥ 1)

Gπ(p−1,q),π(p,q) = rp+ ρσqp, (p ≥ 1)

Gπ(p−2,q+1),π(p,q) =
1

2
p(p− 1), (p ≥ 2)

Gπ(p,q),π(p,q) = −κq,

Gπ(p−1,q+1),π(p,q) = −1

2
p. (p ≥ 1)

This allows us to construct Gn with respect to the monomial basis. In the following
corollary, which directly derives from the moment formula (2.7), we give an explicit
formula for computing the moments of the log-asset price XT .

Corollary 2.6. The first n moments of the log-asset price XT are given by

E[Xp
T ] = Hn(X0, V0)e

GnT eπ(p,0), 0 ≤ p ≤ n, (2.14)

where Hn, Gn and π are defined as above, and ei is the i-th standard basis vector in
RN(n,2).

Jacobi stochastic volatility model. The Jacobi model is another stochastic volatility
model. As explained in [4], it contains the Heston model as a limit case, see [4, Theorem

23



Chapter 2. Polynomial models

2.3]. The log-asset prices (Xt) and the squared volatility process (Vt) are given by

dXt =
(
r − Vt

2

)
dt+ ρ

√
Q(Vt)dW

1
t +

√
Vt − ρ2Q(Vt)dW

2
t ,

dVt = κ(θ − Vt)dt+ σ
√
Q(Vt)dW

1
t ,

where
Q(v) =

(v − vmin)(vmax − v)

(
√
vmax −

√
vmin)2

,

for some 0 ≤ vmin < vmax. Here, (W 1
t ) and (W 2

t ) are independent standard Brownian
motions and the model parameters satisfy the conditions κ ≥ 0, θ ∈ [vmin, vmax], σ > 0,
r ≥ 0, ρ ∈ [−1, 1]. For any deterministic starting value (X0, V0) ∈ R × [vmin, vmax] the
process (Xt, Vt) takes values in the state space E = R× [vmin, vmax]. The generator G in
the Jacobi model takes the form

Gf(x, v) = 1

2
Tr(A(v)∇2f(x, v)) + b(v)T∇f(x, v),

where

b(v) =

[
r − v/2

κ(θ − v)

]
, A(v) =

[
v ρσQ(v)

ρσQ(v) σ2Q(v)

]
.

It follows that

Gf =
(
r − 1

2
v
) ∂

∂x
f + κ(θ − v)

∂

∂v
f +

1

2
σ2Q(v)

∂2

∂v2
f + σρQ(v)

∂2

∂v∂x
f + v

∂2

∂x2
f.

We explain how to construct Gn. We consider the same basis (2.13) as in the Heston
model and we set S := (

√
vmax −

√
vmin)

2. The action of the generator G on xpvq yields

Gxpvq =xp−2vq+1 1

2
p(p− 1)− xp−1vq+1p

(
1

2
+

qρσ

S

)
+ xp−1vqp

(
r + qρσ

vmax + vmin

S

)
− xp−1vq−1 pqρσvmaxvmin

S
− xpvqq

(
κ+

q − 1

2

σ2

S

)
− xpvq−2q

q − 1

2

σ2vmaxvmin

S
+ xpvq−1q

(
κθ +

q − 1

2
σ2 vmax + vmin

S

)
.
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2.3. European option pricing via polynomial expansions

Therefore, Gn has at most 7 nonzero elements in each column π(p, q), given by

Gπ(p,q−1),π(p,q) = q

(
κθ +

q − 1

2
σ2 vmax + vmin

S

)
, (q ≥ 1)

Gπ(p−1,q),π(p,q) = p

(
r + qρσ

vmax + vmin

S

)
, (p ≥ 1)

Gπ(p−2,q+1),π(p,q) =
1

2
p(p− 1), (p ≥ 2)

Gπ(p−1,q−1),π(p,q) = −pqρσvmaxvmin

S
, (p, q ≥ 1)

Gπ(p,q−2),π(p,q) = −q
q − 1

2

σ2vmaxvmin

S
, (q ≥ 2)

Gπ(p,q),π(p,q) = −q

(
κ+

q − 1

2

σ2

S

)
,

Gπ(p−1,q+1),π(p,q) = −p

(
1

2
+

qρσ

S

)
. (p ≥ 1)

For instance, for n = 2, G2 is explicitly given by

G2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 r κθ 0 −ρσvmaxvmin
S −σ2vmaxvmin

S

0 0 2r κθ 0

−1
2 −κ 1 r + ρσ(vmax+vmin)

S 2κθ + σ2(vmax+vmin)
S

0 0 0

−1 −κ 0

0 −1
2 − ρσ

S −2κ− σ2

S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.15)

This form highlights the block upper triangular structure of Gn mentioned in Section 2.1.
In [4] it is explained how to construct Gn with respect to a different basis. Corollary 2.6
with Gn as in the Jacobi model allows us to compute the moments of XT in this setting.

2.3 European option pricing via polynomial expansions

We present a polynomial expansion method for European option pricing. This approach
has been used in the literature for pricing options in several polynomial models, see
e.g. [42] for the Heston model and [4] for the Jacobi model.

For simplicity, we assume that we are pricing a European option with discounted payoff
function f : R → R. We assume that the asset price is modeled via a polynomial

25



Chapter 2. Polynomial models

jump-diffusion (Xt) on the state space E = R. We fix a maturity T > 0 and we assume
that XT has a density q(x). The goal is to compute the option price

πf =

∫
R

f(x)q(x)dx. (2.16)

We consider an auxiliary density w(x) on R such that∫
R

q(x)2

w(x)
dx < ∞

and we denote by 
(x) the likelihood ratio


(x) =
q(x)

w(x)
.

We consider the weighted Lebesgue space,

L2
w =

{
f(x) | ‖f‖2w =

∫
R

f(x)2w(x)dx < ∞
}
,

equipped with the scalar product

〈f, q〉w =

∫
R

f(x)q(x)w(x)dx.

Note that L2
w with the scalar product 〈·〉w is a Hilbert space and 
(x) is in L2

w. We
assume that the space of polynomials Pol(R) is dense in L2

w and we fix an orthonormal
basis of polynomials H0 = 1, H1, H2, . . . of L2

w, such that degHn(x) = n for all n ∈ N.
Also, we further assume that f(x) is in L2

w, as well. Then, since both 
(x) and f(x) lie in
L2
w, basic functional analysis (see e.g. [105]) allows us to write the option price (2.16) via

the series representation

πf =

∫
R

f(x)q(x)dx =
∑
n≥0

〈f,Hn〉w〈
,Hn〉w =
∑
n≥0

fn
n, (2.17)

where we have defined

n := 〈
,Hn〉w =

∫
R

Hn(x)q(x)dx

and
fn := 〈f,Hn〉w =

∫
R

f(x)Hn(x)w(x)dx.
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A price approximation is obtained by truncating the option price series in (2.17), i.e.

π
(N)
f =

N∑
n=0

fn
n (2.18)

for some positive integer N . Note that (2.18) can be also written as

π
(N)
f =

N∑
n=0

fn
n =
N∑

n=0

〈f, 
nHn〉w =

∫
R

f(x)q(N)(x)dx,

where

q(N)(x) =

( N∑
n=0


nHn(x)

)
w(x)

is an approximation of the density q(x). In particular, the first N moments of q(N)(x)

match the first N moments of q(x), see the second remark below for details.

In the following we provide some remarks.

• Choosing the auxiliary density w(x) is a difficult task. In particular, w(x) needs to
be defined such that f(x) and 
(x) belong to L2

w, and such that Pol(R) is dense in
L2
w. These conditions will guarantee the convergence of the series representation

(2.17) (see e.g. [105]). In general, the choice of w(x) depends on the underlying
model and, more precisely, on the density q(x) of XT . In [42], the Heston model
is considered and w(x) is assumed to be a bilateral gamma density. In the Jacobi
model [4], w(x) is defined as a Gaussian density. In [3] the authors propose to use
a mixture of auxiliary densities to define w(x), where a class of stochastic volatility
models is studied.

• The density approximation q(N)(x) integrates to one, since each Hn(x) is orthogonal
to H0 = 1 in L2

w for any n ≥ 1. However, in general q(N)(x) is a signed measure,
i.e. it can take negative values. Also, we note that for any basis polynomial Hi(x)

with i ≤ N one has

∫
R

Hi(x)q
(N)(x)dx =

N∑
n=0


n

∫
Hn(x)Hi(x)w(x)dx = 
i,

where in the last equality we use the orthonormality property of the basis elements.
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Hence, the moments of order 0, . . . , N of q(x) and q(N)(x) coincide.

• From a practical perspective, the efficiency of this approach depends on how fast
the coefficients 
n and fn can be computed. In the setting of polynomial models,
the quantities 
n can be computed in closed form via the moment formula (2.7).
This is a big computational advantage.

• The coefficients fn can be computed via numerical integration. However, for some
particular cases, depending on the payoff function f and on the choice of w(x), the
coefficients fn are given in closed form, see examples in [4].

• In the case that w(x) admits closed-form moments, i.e. quantities of the form∫
R
p(x)w(x)dx are explicitly given for any arbitrary polynomial p, the orthonormal

basis H0, H1, H2, . . . can be constructed by applying a Gram-Schmidt orthogonal-
ization procedure to an arbitrary basis of polynomials. In most cases, one can start
from the basis of monomials.

• If w(x) is a Gaussian density, the density approximation q(N)(x) coincides with the
Gram-Charlier A series expansion of the density q(x) on the real line, see e.g. [77].

• From a practical point view, the option price approximation π
(N)
f can be computed

in two different ways. 1) One computes the quantities 
n and fn for n = 0, . . . , N

and one evaluates the sum
∑N

n=0 fn
n. 2) One computes 
n and the density ap-
proximation q(N) and one approximates

∫
R
f(x)q(N)(x)dx via numerical integration.

If fn is given in closed form the first approach is to be preferred. Otherwise, the
second one is better since it involves only one numerical integration.

• In [39] this polynomial expansion method is generalized to a setting where path
dependent options can be priced. We refer to it for more details.

To conclude this section, we would like to emphasize that since all the conditional moments
of polynomial (jump-)diffusions are given in closed form, any moment-based technique
for option pricing can be used in polynomial models.
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3 Polynomial bounds for European
and American option pricing

In this chapter we present a methodology for European and American option pricing.
The method only assumes the availability of all the moments of the underlying asset price
process. Therefore, since the moments of polynomial (jump-)diffusions are given in closed
form via the moment formula (2.6), it applies to the specific case of polynomial models.
The core idea is as follows. We fix a polynomial degree n. We define an optimization
problem in which a linear function is minimized/maximized over the set of all polynomials
of degree at most n. The solution of the optimization problem yields an upper/lower
bound of the option price. Then, considering an increasing sequence of polynomial degrees
yields a monotone sequence of lower/upper bounds of the option price. Under certain
assumptions, the sequence converges to the option price. The numerical solution of the
involved optimization problems and the convergence study are of particular interest. We
address them in this chapter.

The chapter consists of two parts. In the first part, Section 3.1, we introduce the method
in the context of European option pricing. In particular, we explain how to define the
optimization problems to obtain the bounds of the option price in Section 3.1.1. Then,
we study the convergence of the bounds and we explain how to numerically solve the
optimization problems, Section 3.1.2 and Section 3.1.3, respectively. We provide numerical
results in polynomial models, Section 3.1.4. Finally, we present a black box algorithm for
European option pricing, Section 3.1.5. This part is mostly based on the preprint [110].

In the second part, Section 3.2, we adapt the methodology to price American options in
polynomial models. We define the sequence of optimization problems in Section 3.2.1.
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Chapter 3. Polynomial bounds for European and American option pricing

Then, in Section 3.2.2 we explain how to numerically solve them. Finally, we show
numerical experiments in the context of polynomial models in Section 3.2.3.

3.1 European option pricing

We consider the problem of computing the price of European options in the setting where
the moments of the underlying asset price process at maturity exist and are available. As
introduced in Chapter 1, Section 1.2, this translates to computing a quantity of the form

E[f(X)], (3.1)

where f is a scalar function, and X is a multidimensional random variable, for which we
assume the availability of moments.

The core idea of the methodology is to use the moments of X in order to set up two
optimization problems whose solutions yield a lower and an upper bound of (3.1). In
particular, for a fixed n ∈ N, an upper bound of (3.1) can be obtained by minimizing
E[p(X)] over the set of all multivariate polynomials p of total degree at most n that
bound f from above, i.e.

inf
p
{E[p(X)] | p polynomial s.t. deg(p) ≤ n and p(x) ≥ f(x), ∀x ∈ E}, (3.2)

where E is the state space of X. Similarly, a lower bound is derived by solving

sup
p
{E[p(X)] | p polynomial s.t. deg(p) ≤ n and p(x) ≤ f(x), ∀x ∈ E}. (3.3)

Solving the problems (3.2) and (3.3) for an increasing sequence of polynomial degrees n

yields a monotone sequence of upper and lower bounds. Moreover, writing the moments of
X in a vector γ allows to write the objective function as the linear function γ�	p, where 	p

is the coordinate vector of the polynomial p. In turn, the optimization problems (3.2) and
(3.3) are linear semi-infinite programming problems, in the sense that a linear objective
function is minimized/maximized subject to an infinite number of constraints. Having
the problems (3.2) and (3.3) at hand, two questions arise:

(a) What is the quality of the obtained bounds and what happens as n → ∞?
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3.1. European option pricing

(b) How do we solve the optimization problems (3.2) and (3.3) numerically?

Partial answers to these questions can be found in the existing literature, where (3.2) and
(3.3) have been already studied, together with their associated dual problems. In particular,
a very similar approach is considered in [14, 122, 63], in the setting of option pricing as
well. There, the underlying assumption is that only a fixed number of moments of X is
available, and the required bounds are computed by considering the same optimization
problems as described above. The numerical approach pursued in these works is based
on rewriting (3.2) and (3.3) as semidefinite programming problems, whose numerical
solutions can be computed via standard algorithms. The dual version of the optimization
problems (3.2) and (3.3) is considered in [37, 89], again in the context of option pricing.
There, the methodology is extended further to price exotic options, such as Asian or
barrier options. Similarly to our setting, the case where all the moments of X are available
is studied, leading to a convergence study of the bounds for n → ∞ for some explicit
choices of the payoff function f . In [89], the optimization problem is again solved via a
semidefinite programming approach, while in [37] a linear programming approach is used.

In the works mentioned above, however, the function f is always assumed to be piecewise
polynomial when considering the problem of pricing European options. This a severe
restriction for the application of the methodology. In this chapter, we extend the approach
in order to consider settings where f only needs to be upper bounded by a sequence of
piecewise polynomials. This generalization is necessary in the settings where the log-asset
price is modeled, as for example in the Jacobi and in the Heston model, see Chapter 2, and
in other stochastic volatility models, as the Stein-Stein model [111], and the Hull-White
model [75]. Indeed, the payoff functions usually become piecewise exponential in the
log-asset price formulation, as for example (1− ex)+, the payoff function of the European
put option with strike price 1. Our extension applies to these settings.

We prove the convergence of the bounds for the cases where X is a scalar random variable,
under suitable assumptions on f and on the probability distribution of X. This will give
us an answer to the question (a). Concerning question (b), we first propose to use again
the semidefinite programming approach developed in [14, 122, 63]. Second, we introduce
a new algorithm for the numerical solution of (3.2) and (3.3). This approach, based on
the cutting plane technique, is intuitive and can be applied to a vast choice of functions
f .
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3.1.1 Polynomial bounds via optimization

Fix a probability space (Ω,F ,Q) together with an E-valued random variable X, where E

is a Borel subset of Rd. Let μ be the distribution of X and assume that its support is
given by E. We consider the set Poln(E) of d-variate polynomials of degree at most n

(n ∈ N), as defined in Chapter 2. We assume that all the moments of X exist, i.e.

E[Xk] < ∞

for any multi-index k ∈ Nd
0, and that they are available or can be easily computed. The

goal is to find an upper and a lower bound for a quantity of the form

E[f(X)], (3.4)

where f : E → R is an arbitrary measurable function, which is integrable with respect to
μ.

The starting point consists of defining two optimization problems whose solutions represent
the desired bounds for (3.4). More precisely, fix a value n ∈ N for the considered polynomial
degree. Then, the solutions of the optimization problems

UBn(f) := inf
p∈Sn(f)

E[p(X)], Sn(f) := {p ∈ Poln(E) so that p(x) ≥ f(x), ∀x ∈ E},

(3.5)

LBn(f) := sup
p∈Cn(f)

E[p(X)], Cn(f) := {p ∈ Poln(E) so that p(x) ≤ f(x), ∀x ∈ E}.

(3.6)

satisfy

LBn(f) ≤ E[f(X)] ≤ UBn(f).

In other words, solving (3.5) and (3.6) corresponds to finding the best upper and lower
bounding polynomials of degree at most n of the function f . Note that

LBn(f) = sup
p∈Cn(f)

E[p(X)] = − inf
p∈Cn(f)

E[−p(X)]

= − inf
−p∈Sn(−f)

E[−p(X)] = − inf
p∈Sn(−f)

E[p(X)] = −UBn(−f).
(3.7)
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The first goal is to study the convergence of the bounds UBn(f), LBn(f) for n → ∞
under suitable conditions on f and μ. In particular, we aim to prove

lim
n→∞UBn(f) = E[f(X)], monotonically from above, and (3.8)

lim
n→∞LBn(f) = E[f(X)], monotonically from below. (3.9)

Due to the relation (3.7), under the requirement that both f and −f satisfy the needed
assumptions, proving (3.8) is equivalent to proving (3.9). Therefore, from now on, we
restrict our analysis to the minimization problem UBn(f).

The study of the convergence requires the formulation of the dual problem of (3.5), which
we review in the next chapter.

Duality

In this section we derive the dual problem of the optimization problem (3.5). For fixed
chosen polynomial degree n, consider a basis Hn := {h1, . . . , hN} of Poln(E) and write

Hn(x) = (h1(x), · · · , hN (x)) ∈ RN ,

in line with the notation introduced in Chapter 2. Consider the vector γ ∈ RN of
mixed moments of the distribution μ of X corresponding to H. More precisely, for an
enumeration

π : E → {1, . . . , N}

of the multi-index set E = {k ∈ Nd
0 | |k| ≤ n} the entries of γ are defined as

γπ(k) :=

∫
E
hπ(k)(x)dμ.

This allows us to rewrite and rename (3.5) as

Pn := inf
	p
{γ�	p | 	p ∈ RN so that Hn(x)	p ≥ f(x), ∀x ∈ E}. (3.10)

Now, consider an arbitrary finite Borel measure ν on E that satisfies the moment conditions∫
E
hπ(k)(x)dν = γπ(k), for all k ∈ E . (3.11)
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Then, for all vectors 	p ∈ RN contained in the constraint set of (3.10) we have∫
E
f(x)dν ≤

∫
E
Hn(x)	pdν = γ�	p, (3.12)

where the inequality comes from the constraint conditions in (3.10) and the equality from
(3.11).

Intuitively, the inequality (3.12) implies that finding a finite Borel measure ν that satisfies
the moment conditions (3.11) allows us to find a lower bound for the solution value of
(3.10). Following standard results in duality theory, see e.g. [88], we define the dual
problem of Pn as finding the largest lower bound of γ�	p over the set of all finite Borel
measures the satisfy (3.11), i.e. the dual problem of Pn is given by

Dn := sup
ν
{
∫
E
f(x)dν | ν ∈ B(E) satisfying

∫
E
hπ(k)(x)dν = γπ(k), k ∈ E},

where B(E) denotes the set of all finite Borel measures on E.

The inequality (3.12) already shows that weak duality between Pn and Dn holds, i.e.
Dn ≤ Pn whenever the two feasible sets are not empty. In order to find conditions for
strong duality to hold, i.e. Pn = Dn, we write Pn and Dn as conic optimization problems,
following the approach from [88, Chapter 1]. Define the convex sets

P (E) := {(	p, p̃0) ∈ RN+1 | Hn(x)	p+ p̃0f(x) ≥ 0, for all x ∈ E}, (3.13)

C(E) := {(γ, γ̃0) ∈ RN+1 | ∃ν ∈ B(E) s.t. γ̃0 =
∫
E
fdν and

∫
E
hπ(k)(x)dν = γπ(k), k ∈ E}.

(3.14)

Then, Pn and Dn can be rewritten as

Pn = inf
	p
{γ�	p | (	p,−1) ∈ P (E)},

Dn = sup
γ̃0

{γ̃0 | (γ, γ̃0) ∈ C(E)}.

Finally, standard results of conic duality in convex optimization (see e.g. [18]) yield the
following theorem about the strong duality.

Theorem 3.1. (Theorem 1.2 in [88]). If (γ, γ̃0) ∈ C(E) for some γ̃0 and there exists
	p ∈ RN such that (	p,−1) lies in the interior of P (E), then Pn = Dn and both problems
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have an optimal solution, that is, the sup and the inf are attained whenever they are finite.

3.1.2 Convergence results for the case d = 1

In this section we analyze the convergence of the bounds UBn(f) for n → ∞, i.e. we
prove (3.8). In particular, we give sufficient conditions on μ, E and f for which (3.8)
holds. We restrict the analysis to the one-dimensional case d = 1. As already mentioned,
the convergence of UBn(f) and its dual has already been addressed for some cases in the
literature, see e.g. [89, 88]. In particular, in [89] the convergence of the dual problems is
shown in the framework of European option pricing, where f is assumed to be the payoff
function of the European call option, i.e. f(x) = (x−K)+ for a strike price K, and μ

is assumed to be moment-determinate, meaning that it is uniquely determined by its
moments, see Definition 3.2 below.

All of the convergence results presented so far in the literature assume, however, a
polynomial or piecewise polynomial function f . In this work, we are interested in relaxing
this condition to consider f of a more general form. The need for a non-piecewise
polynomial f arises, for example, when one models the log-asset price instead of the
price. Examples are the Jacobi and the Heston stochastic volatility models, introduced
in Chapter 2. There, pricing European options often boils down to computing the
expectation of piecewise exponential payoff functions, as for example f(x) = (ek − ex)+,
see Section 3.1.4. In this case, the convergence (3.8) is not guaranteed by existing results.

We start by assuming, without loss of generality, that E = R. The following results can
be similarly obtained for any Borel subset E of R. For simplicity, we use the monomial
basis for the space Poln(R), i.e.

Hn(x) = (1, x, x2, · · · , xn).

Note that the following results are, however, independent of the choice of the basis. We
assume that f : R → R+ and the distribution μ of X satisfy the following conditions:

C1 There exists a sequence {qm}m∈N of continuous piecewise polynomials of degree at
most m that bound f from above, i.e.

f(x) ≤ qm(x) for all x ∈ R and for every m.
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We define the degree of a piecewise polynomial as the highest degree amongst the
degrees of the different pieces of polynomials.

C2 The measure μ is moment-determinate. See Definition 3.2 below.

C3 The measure μ and the sequence {qm}m∈N are defined such that the condition

lim
m→∞E[f(X)− qm(X)] = 0

holds.

We define the moment determinacy property in the following (see also [89, Definition
3.2]).

Definition 3.2. Let μ be measure on Rd with finite moments of all orders. The measure
μ is said to be moment-determinate if μ = ν whenever∫

Rd

xkdμ =

∫
Rd

xkdν, for all k ∈ Nd
0,

for some measure ν on Rd.

For each bounding polynomial qm and for an arbitrary fixed r ∈ N we define the
optimization problems

D2r,m := sup
ν
{
∫
R

qm(x)dν | ν ∈ B(R) satisfying
∫
R

xidν = γi, i = 0, · · · , 2r},

where γ is the vector of moments of μ, as defined in Section 3.1.1.

We now show that the ad-hoc Conditions C1-C3 are sufficient to obtain the convergence
(3.8) of the bounds. We start by showing that D2r,m converges towards E[qm(X)] as
r → ∞ and for every fixed m. For the particular case qm(x) := (x−K)+ (for some real
K) the convergence is proven in [89, Theorem 5.2]. However, the arguments in the proof
apply more generally to piecewise polynomial functions qm. This yields the following
lemma.

Lemma 3.3. Under the Condition C2, for any fixed m, one has

lim
r→∞
r≥m

D2r,m = E[qm(X)],
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from above, monotonically.

Before proving Lemma 3.3 we review the so-called truncated Stieltjes moment problem
(see e.g. [5]), which gives sufficient conditions for an arbitrary vector to represent the
vector of moments of a measure supported on an interval of the form [a,∞), a ∈ R.

Theorem 3.4 (Truncated Stieltjes moment problem). For a fixed r ∈ N, let y =

(y0, y1, . . . , y2r) ∈ R2r+1 be an arbitrary vector. Then, the elements of y are the first 2r+1

moments of a measure ν supported on [a,∞) if

Mr(y) � 0 and Mr−1(g, y) � 0

where g(x) := x− a and Mr(y),Mr−1(g, y) are respectively the moment and the localizing
matrices, whose entries are defined as

Mr(y)i,j := yi+j−2, i, j = 1, · · · , r + 1,

Mr−1(g, y)i,j := yi+j−1 − ayi+j−2, i, j = 1, · · · , r.

We now prove Lemma 3.3.

Proof. We assume without loss of generality that qm is of the form

qm(x) =

⎧⎨⎩q1m(x) x < x0,

q2m(x) x ≥ x0,
(3.15)

for some x0 ∈ R and for two polynomials q1m(x) :=
∑m

i=0 α
1
i x

i and q2m :=
∑m

i=0 α
2
i x

i with
coefficients α1

i and α2
i for i = 0, · · · ,m, respectively. For a piecewise polynomial qm of

the more general form (for n > 0)

qm(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q1m(x) x < x0,

qi+2
m (x) xi ≤ x < xi+1, i = 0, . . . , n− 1,

qn+2
m (x) x ≥ xn,

(3.16)

for some xi ∈ R (i = 0, . . . , n) and for polynomials qim(x) (i = 1, . . . , n + 2), the same
procedure as the following one can be applied by using the truncated Hausdorff moment
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problem1 (see e.g. [5]) together with the truncated Stieltjes moment problem.

We define the restricted measures ν1 and ν2 as ν1 = ν|(−∞,x0) and ν2 = ν|[x0,∞). Then,
we write the objective function as∫

R

qm(x)dν =

∫
(−∞,x0)

q1m(x)dν1 +

∫
[x0,∞)

q2m(x)dν2

=

m∑
i=0

α1
i ν

i
1 +

m∑
i=0

α2
i ν

i
2 =: L(ν01 , . . . , ν

m
1 , ν02 , . . . , ν

m
2 )

where νki is the k-th moment of the i-th measure. We rewrite the problem D2r,m as

D2r,m :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup L(ν01 , . . . , ν

m
1 , ν02 , . . . , ν

m
2 )

subject to νj1 + νj2 = γj , j = 0, · · · , 2r
ν1 is a Borel measure on (−∞, x0],

ν2 is a Borel measure on [x0,∞).

Note that, according to the Remark 3.5 below, we may consider ν1 to be supported on
(−∞, x0] instead of (−∞, x0). The two associated problems are equivalent. Rewriting
the last two conditions according to the truncated Stieltjes moment problem, Theorem
3.4, yields

D̃2r,m :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup L(ν01 , . . . , ν

m
1 , ν02 , . . . , ν

m
2 )

subject to νj1 + νj2 = γj , j = 0, · · · , 2r
Mr(ν1) � 0,Mr−1(−g, ν1) � 0,

Mr(ν2) � 0,Mr−1(g, ν2) � 0,

where g(x) := x − x0. The problem D̃2r,m is a relaxation of D2r,m in the sense that
the last two conditions are only necessary conditions for the vectors (ν01 , . . . , ν

2r
1 ) and

(ν02 , . . . , ν
2r
2 ) to be moments of measures supported on (−∞, x0] and [x0,∞), respectively.

This is because we are imposing positive semidefiniteness instead of positive definiteness
of the moment and localizing matrices. The last step consists of showing

lim
r→∞
r≥m

D̃2r,m = E[qm(X)], (3.17)

1The truncated Hausdorff moment problem gives sufficient conditions for an arbitrary vector to
represent the vector of moments of a measure supported on an interval of the form [a, b], for some a, b ∈ R.
In our setting, it can be applied on the intervals [xi, xi+1], i = 0, . . . , n− 1, to obtain the relaxed problem
D̃2r,m corresponding to qm as in (3.16).
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from above, monotonically. The proof of (3.17) can be carried out along the lines of
[89, Theorem 5.2], which shows (3.17) for the special case qm(x) = (x−K)+ under the
assumption C2. In practice, the proof for qm(x) as in (3.15) is obtained by replacing K

with x0 and substituting ν12 −Kν02 with L(ν01 , . . . , ν
m
1 , ν02 , . . . , ν

m
2 ) in [89, Theorem 5.2].

Finally, (3.17) in turn implies the statement of our lemma since D̃2r,m ≥ D2r,m.

Remark 3.5. We follow the same reasoning as that of [88, Section 9.1]. Suppose that φ1

supported on (−∞, x0], and φ2 supported on [x0,∞) are the optimal solution of D2r,m.
Assume also that φ1(x0) > 0. Then we construct a pair of measures (φ̃1, φ̃2) such that

• (φ̃1, φ̃2) is feasible for the problem D2r,m,

• one has φ̃1(x0) = 0, and

• the associated objective value coincides with L(φ1
1, . . . , φ

m
1 , φ1

2, . . . , φ
m
2 ), i.e.

L(φ̃1
1
, . . . , φ̃1

m
, φ̃2

1
, . . . , φ̃2

m
) = L(φ1

1, . . . , φ
m
1 , φ1

2, . . . , φ
m
2 ).

By constructing such a pair we show that we may assume (−∞, x0] instead of (−∞, x0).

We write φ1 as φ1 = φ1,1 + φ1,2, where φ1,1(B) := φ1(B ∩ {x0}) and φ1,2(B) := φ1(B ∩
(−∞, x0)) for any Borel set B ∈ (−∞, x0]. Then, we define the pair (φ̃1, φ̃2) as (φ̃1, φ̃2) :=

(φ1,2, φ2 + φ1,1). We note that (φ̃1, φ̃2) is feasible for D2r,m. Moreover, φ̃1 is a measure
defined on (−∞, x0) that satisfies φ̃1(x0) = 0, and φ̃2 is a measure defined on [x0,∞).
Lastly, one has

L(φ̃1
1
, . . . , φ̃1

m
, φ̃2

1
, . . . , φ̃2

m
) =

∫
(−∞,x0)

q1m(x)dφ̃1 +

∫
[x0,∞)

q2m(x)φ̃2

=

∫
(−∞,x0)

q1m(x)dφ̃1 +

∫
[x0,∞)

q2m(x)dφ2 + q2m(x0)φ1,1({x0})

=

∫
(−∞,x0)

q1m(x)dφ1,2 + q1m(x0)φ1,1({x0}) +
∫
[x0,∞)

q2m(x)dφ2

=

∫
(−∞,x0]

q1m(x)dφ1 +

∫
[x0,∞)

q2m(x)dφ2

= L(φ1
1, . . . , φ

m
1 , φ1

2, . . . , φ
m
2 ),

where in the third equality we use the continuity of qm(x) at the point x0.

39



Chapter 3. Polynomial bounds for European and American option pricing

Consider now the dual problem of D2r,m, defined as

P2r,m := inf
	p
{γ�	p | 	p ∈ R2r+1 so that H2r(x)	p ≥ qm(x), ∀x ∈ R}. (3.18)

Using the strong duality result reviewed in Section 3.1.1 we show that the sequence P2r,m

converges to E[qm(X)], as well.

Lemma 3.6. Under the Conditions C1 and C2 one has

lim
r→∞
r≥m

P2r,m = E[qm(X)], (3.19)

from above, monotonically.

Proof. We want to show that the assumptions of Theorem 3.1 hold. The statement follows
then directly from the strong duality combined with Lemma 3.3.

Condition C1 implies, in particular, that f is polynomially bounded over R (i.e. there
exists a polynomial p satisfying p(x) ≥ f(x) for all x ∈ R). This implies the existence
of a 	p such that (	p,−1) lies in the interior of P (R) (see Definition (3.13)). Also, X is a
random variable with probability distribution μ and all finite moments, which implies
that (γ, γ̃0) ∈ C(R) for γ̃0 :=

∫
E fdμ (see Definition (3.14)). Hence, the conditions of

Theorem 3.1 are satisfied and the strong duality holds.

Combining Lemma 3.6 with the Condition C3 yields the main convergence result.

Theorem 3.7. Assume that Conditions C1, C2 and C3 hold. Then,

lim
n→∞ inf

p∈Sn(f)
E[p(X)− f(X)] = 0,

where Sn(f) := {p ∈ Poln(R) so that p(x) ≥ f(x), ∀x ∈ R}.

Proof. Fix an arbitrary ε > 0. Then, Condition C3 implies that there exists m̃ such that
for all m > m̃, one has

E[f(X)− qm(X)] <
ε

2
. (3.20)

Additionally, (3.19) implies that, for any fixed value m, there exists r̃ ∈ N such that for
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all r > r̃, we have
P2r,m − E[qm(X)] <

ε

2
. (3.21)

Both relations (3.20) and (3.21) imply that there exist some finite values m̄, r̄ ∈ N such
that

P2r̄,m̄ − E[f(X)] < ε.

Now, Condition C1 ensures that the polynomial p�2r̄,m̄ defined as the solution argument
of P2r̄,m̄ is in the set S2r̄(f). Therefore, one has

inf
p∈S2r̄(f)

E[p(X)− f(X)] ≤ E[p�2r̄,m̄(X)− f(X)] < ε.

Since ε was arbitrary chosen, this last relation implies the statement of the theorem.

In the rest of the section we focus on the special case where E is compact, in particular
of the form [a, b] for some real values a < b. The convergence result of Theorem 3.7 holds
in this case as well and the Condition C2 is automatically satisfied, since all the measures
with compact support are moment-determinate, see e.g. [13]. Moreover, if we assume
f to be continuous, then the Conditions C1 and C3 directly hold, as well. Indeed, if f
is continuous and E is compact, the Weierstrass approximation theorem (see e.g. [116])
implies that it is possible to define a sequence {qm}m∈N of upper bounding polynomials
that satisfies the Condition C3. Even if the convergence is already guaranteed by Theorem
3.7, the following direct argument gives us more insights on the speed of convergence of
the bounds UBn(f) in terms of the modulus of continuity of f , which is defined as

ω(δ) := sup
y,z∈[a,b],
|y−z|<δ

|f(y)− f(z)|.

This approach does not need the dual formulation of UBn(f) and uses standard results
from approximation theory. The first lemma we consider is a small modification of
Jackson’s theorem (see e.g. [47]). We state it in the following.

Lemma 3.8. Let f be a continuous function on E := [a, b] ⊆ R for some a < b, and let
n ∈ N be a fixed polynomial degree. Then,

inf
p∈Sn(f)

(
sup

x∈[a,b]
(p(x)− f(x))

)
≤ Cω(1/n),
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for a constant C which is independent of f and n. Here, Sn(f) is defined as in (3.5) and
ω is the modulus of continuity of f .

Proof. Jackson’s theorem states that for a continuous function f on [a, b], the sequence
of best polynomial approximations Bn(f) satisfies

sup
x∈[a,b]

|Bn(f)(x)− f(x)| ≤ C̃ω(1/n), (3.22)

for a constant C̃ which is independent of f and n. Since Bn(f) is a polynomial of degree
n for every n, (3.22) implies

inf
p∈Poln([a,b])

(
sup

x∈[a,b]
|p(x)− f(x)|

)
≤ C̃ω(1/n).

We want to obtain the estimate for the infimum taken over Sn(f). Define B̃n(f) :=

Bn(f) + C̃ ω(1/n). Then, B̃n(f) is a polynomial of degree n satisfying B̃n ≥ f for all
x ∈ [a, b]. Hence B̃n(f) ∈ Sn(f) and

sup
x∈[a,b]

(B̃n(f)(x)− f(x)) ≤ 2C̃ω(1/n),

The statement follows by taking the infimum over all polynomials in Sn(f) and defining
C := 2C̃.

We finally propose a convergence result for the case where E is compact and f is continuous,
based on the above direct approach.

Theorem 3.9. Let f be a continuous function on E := [a, b] ⊆ R for some a < b and let
X be an E-valued random variable. Then, (3.8) holds.

Proof. From Lemma 3.8 we obtain

inf
p∈Sn

E[p(X)− f(X)] ≤ μ([a, b]) inf
p∈Sn

(
sup

x∈[a,b]
(p(x)− f(x))

)
≤ Cω(1/n).

Since f is continuous, its modulus of continuity goes to 0 for n → ∞, implying the
statement of the theorem.
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Remark 3.10. The statement of Theorem 3.9 could be proven more directly using Weier-
strass approximation theorem, which states that for any ε > 0 there exists a polynomial
p so that supx∈[a,b] |f(x)− p(x)| ≤ ε. However, the considered proof allows us to have a
rough idea of the speed of convergence of the bounds towards E[f(X)], as n → ∞. Indeed,
the inequality

inf
p∈Sn

E[p(X)− f(X)] ≤ Cω(1/n)

implies that the convergence rate is given by the modulus of continuity of f . For example,
in the case of the European put option with f(x) = (ek − ex)+ for some log-strike value k

(see also Section 3.1.4), the modulus of continuity is given by

ω(1/n) = O(1/n).

Hence, we would expect the convergence rate to be 1/n.

3.1.3 Numerical algorithms for the optimization problems

In Section 3.1.1, we have introduced the general optimization problems that allow us to
find bounds for the quantity E[f(X)]. Solving them is, however, a difficult task. In this
section we present two algorithmic techniques to compute their solution numerically.

Semidefinite programming approach

In this subsection we explain the first strategy to numerically solve (3.5) (and (3.6))
for a fixed polynomial degree n. The idea is to rewrite the optimization problem as a
semidefinite programming (SDP) problem, which can be numerically solved via standard
algorithms. This approach has already been used in the literature, see e.g. [14, 88]. In
the following, we review the main steps of the methodology for an arbitrary dimension d.
This approach is developed for solving (3.5) in the cases where f is piecewise polynomial
and the state space E can be partitioned in semialgebraic sets (see below for details).
Even if we are interested in solving problems for more general forms of f , this method can
be applied to numerically solve the problems (3.18), whose solutions tends to E[f(X)]

(for d = 1), see Theorem 3.7. It is therefore worth reviewing it.

Consider the problem formulation (3.10). The first step consists of rewriting the constraint
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set such that both sides of the inequality are polynomials on suitable specified subsets of
E. In particular, define a disjoint partition {Ej , j = 1, · · · , k} of E such that f can be
written as

f(x) =
k∑

j=1

fj(x)�Ej , x ∈ E,

for some polynomials {fj , j = 1, . . . , k}. Then, (3.10) can be rewritten as

inf
	p
{γ�	p | 	p ∈ RN so that Hn(x)	p− fj(x) ≥ 0, ∀x ∈ Ej , j = 1, · · · , k}. (3.23)

In order to obtain the SDP formulation of (3.23), we aim to find an equivalent characteri-
zation for the non-negativity of the polynomials Hn(x)	p− fj(x) on the corresponding sets
Ej . In the case that the sets Ej ’s are semialgebraic, this characterization can be given in
terms of sum of squares polynomials, whose definition and properties are reviewed in the
following. Note that these results can be mainly found in [88].

Definition 3.11. A polynomial p ∈ Pol(Rd) is a sum of squares (in short s.o.s.) if it
can be written as

p(x) =
∑
i∈I

pi(x)
2, x ∈ Rd,

for some finite family of polynomials {pi : i ∈ I}, where I is an index set.

Remark 3.12. Note that the degree of p must be even and the degree of the polynomials
pi is necessarily bounded by half of that of p.

An equivalent characterization for a polynomial on Rd to be a sum of squares is given in
the following lemma.

Lemma 3.13. Let Hn(x) be a basis vector of Poln(Rd). Then, a polynomial p ∈ Pol2n(Rd)

is s.o.s. if and only if there exists a real symmetric positive semidefinite matrix Q ∈ RN×N

such that p(x) = Hn(x)QHn(x)
�, ∀x ∈ Rd.

Proof. The proof of Proposition 2.1 in [88] shows the statement for the monomial basis
vector Bn(x) = (1, x1, · · · , xd, x21, x1x2, · · · , xn−1xn, x

n
1 , · · · , xnd). For a general basis

vector Hn(x) the statement follows by an appropriate change of basis of the form
Hn(x) = LBn(x) for some transformation matrix L ∈ RN×N .
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Being s.o.s. is clearly a sufficient condition for a polynomial p ∈ Pol(Rd) to be non-
negative on Rd. On the other side, the non-negativity property does not necessarily imply
that p can be written as a sum of squares. More specifically, for an arbitrary d > 1, one
can construct a non-negative polynomial which is not s.o.s., see Example 3.15. For the
case d = 1, instead, being s.o.s. is equivalent to being non-negative, as stated next.

Theorem 3.14 (Theorem 2.5 in [88]). For any polynomial p ∈ Pol(R) the relation

p(x) ≥ 0, ∀x ∈ R ⇐⇒ p(x) is s.o.s.

holds.

Example 3.15. Consider the polynomial

p(x1, x2, x3) = x21x
2
2(x

2
1 + x22 − x23) + 6x63.

Then, p is non-negative on R3 but it cannot be written as a sum of squares.

Proof. We first show that p is non-negative on R3. It is clear that p is always positive in
the region {x ∈ R3 | x21+x22 ≥ x23}. Let us consider all values of x such that x21+x22 ≤ x23.
Then,

x21 + x22 ≤ x23 =⇒ x21 + x22 + x23 ≤ 2x23 =⇒ (x21 + x22 + x23)
3 ≤ 8x63,

which implies
8x63 ≥ 6x21x

2
2x

2
3.

Therefore,

p(x1, x2, x3) = x21x
2
2(x

2
1 + x22 − x23) + 6x63 ≥ x41x

2
2 + x21x

4
2 +

14

3
x63 ≥ 0.

Hence, p is non-negative. We now show that p cannot be written as a s.o.s. polynomial.
Since all the monomials of p are of total degree 6, we attempt to write p in the form

∑
n

(Anx
3
1+Bnx

2
1x2+Cnx

2
1x3+Dnx1x

2
2+Enx1x2x3+Fnx1x

2
3+Gnx

3
2+Hnx

2
2x3+Inx2x

2
3+Jnx

3
3)

2.

Now, since there is no x61 nor x62 term in p, we must have An = Gn = 0. A similar
argument applied to the monomials x41x23, x42x23, x21x43, x22x43 yields Cn = Hn = Fn = In = 0.
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Hence
p(x1, x2, x3) =

∑
n

(Bnx
2
1x2 +Dnx1x

2
2 + Enx1x2x3 + Jnx

3
3)

2.

The last equation implies that the coefficient of the monomial term x21x
2
2x

2
3 is given by

∑
n

E2
n ≥ 0,

which is a contradiction since the the coefficient of x21x22x23 in p is −1. Hence, p is not a
s.o.s. polynomial.

As already mentioned, a s.o.s. polynomial is non-negative on Rd . We are now interested
in finding sufficient conditions (in terms of s.o.s. polynomials) for a polynomial to be
non-negative on an arbitrary semialgebraic set S ⊆ Rd of the form

S = {x ∈ Rd | gj(x) ≥ 0, j = 1, · · · ,m}, (3.24)

for some polynomials gj(x).

Lemma 3.16. Let S ⊆ Rd be a semialgebraic set of the form (3.24). Then, a polynomial
p ∈ Pol(Rd) is non-negative on S if it can be written in the form

p(x) = h0(x) + h1(x)g1(x) + · · ·+ hm(x)gm(x), x ∈ Rd,

for some s.o.s. polynomials hj(x), j = 0, · · · ,m.

Proof. For simplicity, let us assume m = 1. A more general proof will follow directly. We
first impose the following inequality on p

p(x) ≥ h1(x)g1(x), x ∈ Rd,

for a s.o.s. polynomial h1. This inequality will ensure us that p will be non-negative on
S. Next, we just use the fact that a s.o.s. polynomial is non-negative on the whole space
Rd. Hence, we impose

p(x)− h1(x)g1(x) = h0(x), x ∈ Rd,

for a second s.o.s. polynomial h0. The statement follows.
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For the case d = 1, the following two theorems give a characterization in terms of s.o.s.
polynomials for p to be non-negative on intervals of the form [a, b], [a,∞), or (−∞, b], for
some a < b.

Theorem 3.17. (Theorem 2.6 in [88]) Let p ∈ Poln(R). Let g(x) := (x− a)(b− x) for
some real values a < b. Then p ≥ 0 on [a, b] if and only if

p(x) = f(x) + g(x)h(x),

for some s.o.s. polynomials f(x) and h(x), with both summands of degree less than n.

Theorem 3.18. (Theorem 2.7 in [88]) Let p ∈ Pol(R) be non-negative on [a,∞) for
some real value a. Then

p(x) = f(x) + (x− a)h(x),

for two s.o.s. polynomials f(x) and h(x). Similarly, if p ∈ Pol(R) is non-negative on
(−∞, b] for some real value b, then

p(x) = g(x) + (b− x)l(x),

for two s.o.s. polynomials g(x) and l(x). In both cases the degree of both summands is
bounded by the degree of p(x).

Assume now that each set Ej of the partition {Ej , j = 1, · · · , k} of E is a semialgebraic
set of the form

Ej = {x ∈ Rd | gji (x) ≥ 0, i = 1, · · · ,mj}.

Moreover, assume that n is even, of the form n = 2r for some r ∈ N. Finally, by exploiting
the previous lemmas and theorems, we rewrite the optimization problem (3.23) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf	p∈RN γ�	p, such that

Hn(x)	p− f1(x) = Hr(x)Q0,1Hr(x)
� + g11Hr(x)Q1,1Hr(x)

� + · · ·+ gm
1

1 Hr(x)Qm1,1Hr(x)
�,

...
Hn(x)	p− fk(x) = Hr(x)Q0,kHr(x)

� + g1kHr(x)Q1,kHr(x)
� + · · ·+ gm

k

k Hr(x)Qmk,kHr(x)
�,

Qi,j � 0, for all i, j.

(3.25)

This defines an SDP problem. Note that, depending on d and on the specific form of
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the sets Ej , the problem (3.25) can be either equivalent to (3.23), or a relaxation of it,
since the non-negativity conditions imposed on the polynomials Hn(x)	p− fj(x) are only
sufficient in some cases, see Lemma 3.16.

In order to numerically solve (3.25), one first needs to rewrite the equality constraints
by getting rid of the x variable. This can be done by comparing the coefficients of all
basis elements stored in the basis vectors Hr(x) and Hn(x). In [14] the explicit SDP
problem is constructed for some specific forms of f , for instance f(x) = (x−K)+ (payoff
of the European call option). The solution of (3.25) can then be numerically computed
by standard SDP solvers, such as the interior-point method.

To conclude this part of the first numerical approach, we would like to comment further
on the s.o.s. conditions that we impose for replacing the non-negativity conditions in
(3.23).

Remark 3.19. How do the bounds change if we replace the non-negativity conditions by
s.o.s. conditions? Theorems 3.17 and 3.18 imply that non-negativity and s.o.s. conditions
are equivalent in the case d = 1, for Ej of the form [a, b], [a,∞), or (−∞, b]. For the
multivariate case d > 1, Theorem 2.4 in [88] states that the space of s.o.s. polynomials is
dense in the space of non-negative multivariate polynomials. This implies that, even if the
form (3.25) is a relaxation of (3.10) due to the fact that we impose only some sufficient
conditions for non-negativity, we still expect to obtain sharp bounds for E[f(X)] as n → ∞
when solving (3.25).

Cutting plane algorithm

The second way we propose to numerically solve (3.5) and (3.6) (for a fixed n) is based on
the cutting plane (CP) technique. This algorithm is more direct and intuitive, and does
not require us to rewrite the constraint set of the optimization problem. A description
of a general cutting plane algorithm can be found, for example, in [17]. Note that an
algorithm based on the cutting plane strategy has been used in the context of European
option pricing in [122]. There, however, the strategy is applied to an SDP formulation
of (3.5) for d = 1 and a specific choice of f . Here, we do not use any SDP formulation.
Instead, we design the algorithm directly for solving the problem (3.10). In principle, this
technique can be applied for any choice of f and d, making it very tractable and suitable
for our extension.
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The algorithm is iterative and at iteration l we perform the following steps.

1. Define a finite discrete subset El = {xl,1, · · · ,xl,m} of E and impose the inequality
constraint in (3.10) only in El. We obtain a linear program (LP) of the form

min
	p

{γ�	p | 	p ∈ RN so that H	p ≥ f}, (3.26)

where H := (Hn(x
l,1)| · · · |Hn(x

l,m))� ∈ Rm×N contains the basis vector Hn(x)

evaluated in all points of El, and f = (f(xl,1), · · · , f(xl,m))�.

2. Solve the LP problem (3.26) using standard techniques. Denote by p�l the resulting
optimal coefficient vector.

3. Find the point xv ∈ E defined as xv = argminx∈E(p�l (x)−f(x)) where the inequality
constraint is violated the most.

4. If p�l (x
v) − f(xv) < 0, then insert xv in El, defining a new finite discrete subset

El+1 := El ∪ xv and restart from Step 1 with El+1. If p�l (x
v)− f(xv) ≥ 0 stop the

iteration and return γ�p�l .

This algorithm is in principle very intuitive and easy to implement. However, some steps
require attention. For example, the existence of a solution of (3.26) or of the minimization
problem argminx∈E(p�l (x) − f(x)) is not guaranteed a priori. These points need to be
addressed for the specific type of application. In Section 3.1.4 we analyze the algorithm
in the context of pricing European put options.

3.1.4 European option pricing in polynomial models

We now apply the methodology developed in the previous sections to price European
options in polynomial models. Recalling the risk-neutral pricing setting of Chapter 1 and
the polynomial models introduced in Chapter 2, our goal is to evaluate an expression of
the form

e−rTE[f(XT )],

where (Xt) is a polynomial (jump-)diffusion that models the asset price.

We assume that the initial value X0 of (Xt) is deterministic and that F0 is trivial. Then,
formula (2.7) implies that all the mixed moments of XT (γ from Section 3.1.1) exist and

49



Chapter 3. Polynomial bounds for European and American option pricing

can be computed as
γ� = Hn(X0)e

GnT . (3.27)

In the following, we apply the methodology to the one-dimensional Black-Scholes model
and to the Jacobi stochastic volatility model, whose definition and main properties are
summarized in Chapter 2, Section 2.2.

European put option - Theoretical setting

We apply the technique developed above to the specific case of the European put option
in the log-asset price setting. In particular, consider the payoff function f(x) = (ek − ex)+

for a log-strike value k. The goal is to compute, or better, to find polynomial bounds for
the quantity

e−rTE[f(XT )].

We first discuss the convergence of the polynomial bounds. Then, we explain how to set
up the optimization routines and, finally, we show some numerical results.

Convergence

Showing the convergence (3.8) of the upper bounds boils down for this particular case to
showing

lim
n→∞ inf

p∈Sn(f)
E[p(X)− (ek − eX)+] = 0, (3.28)

where Sn(f) := {p ∈ Poln(R) so that p(x) ≥ (ek − ex)+, ∀x ∈ R}. Note that we omit
the discounting factor e−rT and we write X instead of XT , in line with the notation of
Section 3.1.1.

Without loss of generality, we assume k = 0. The goal is to apply Theorem 3.7. Hence,
we first aim to construct a sequence of piecewise polynomials {qm}m∈N that satisfy the
Condition C1 in Section 3.1.2. First, we consider the Taylor series T2m−1(x) of order
2m− 1 around 0 of the function 1− ex, which are explicitly given by

T2m−1(x) = −
2m−1∑
k=1

xk

k!
. (3.29)

Then, we define q2m−1 for m ∈ N (we consider only odd polynomial degrees) as the
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positive part of T2m−1(x), i.e. q2m−1 := T2m−1(x)
+. The following lemma summarizes

some properties of (3.29) and, in particular, shows that the Condition C1 is satisfied for
our choice {q2m−1}m∈N.

Lemma 3.20. Let T2m−1(x) be defined as in (3.29) for some m ∈ N. Then,

1. T2m−1(x) ≥ 1− ex, for all x ∈ R,

2. T2m−1(x) has only one real zero, which is given by x = 0.

In particular, it follows that T2m−1(x)
+ ≥ (1− ex)+ for all x ∈ R and every m.

Proof. 1. Expanding the exponential in 1− ex gives us the expression

T2m−1(x)− (1− ex) =

∞∑
k=2m

xk

k!
,

which clearly implies T2m−1(x) ≥ 1− ex for all x ≥ 0.

To get the inequality on the negative axis, consider again the difference

s2m−1(x) := T2m−1(x)− (1− ex) = ex − 1 + T2m−1(x).

A simple computation shows that the l-th derivative of s2m−1(x) is given by
s
(l)
2m−1(x) = ex − 1 + T2m−1−l(x) for 0 < l < 2m − 1, and s

(2m−1)
2m−1 (x) = ex − 1

which implies s
(l)
2m−1(0) = 0 for 0 < l ≤ 2m − 1. Moreover, s(2m)

2m−1(x) = ex. We
now show that s2m−1(x) has no real negative zeros, arguing by contradiction. As-
sume that s2m−1(x) has a real negative zero in some point x1 < 0. Then, since
s2m−1(0) = 0, Rolle’s theorem implies that there exists a point y1 ∈ (x1, 0) where
s
(1)
2m−1(y1) = 0. Now, since s

(1)
2m−1(0) = 0, we can again apply Rolle’s theorem to

find a point y2 ∈ (y1, 0) so that s
(2)
2m−1(y2) = 0. Applying inductively the same

argument, we get a point y2m < 0 satisfying s
(2m)
2m−1(y2m) = 0, which is clearly a

contradiction since s
(2m)
2m−1(x) = ex. Hence, T2m−1(x) doesn’t cross 1 − ex on the

negative real axis. Moreover, since the leading coefficient of T2m−1(x) is negative,
one has

lim
x→−∞ sm(x) = ∞.

It follows that s2m−1(x) > 0, and hence, T2m−1(x) > 1− ex for x < 0.
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2. From equation (3.29) one can easily see that 0 is a zero of T2m−1(x). Since all the
coefficients of T2m−1(x) are negative, the polynomial can not have strictly positive
zeros. Finally, Statement 1 tells us that T2m−1(x) is larger than 1 − ex, which is
strictly positive on the negative real axis. This implies that T2m−1(x) cannot have
negative real zeros. Therefore, 0 is the only real zero of T2m−1(x).

We now address the Condition C3. Rather then showing that this condition holds for the
chosen polynomial models, we first give some sufficient condition on the distribution μ of
X so that it holds.

Lemma 3.21. Let X be a R-valued random variable whose distribution μ satisfies

lim
l→∞
l∈N

∫ 0

−∞
x2l

(2l)!
dμ = 0. (3.30)

Then,
lim

m→∞
m∈N

E[T2m−1(X)+ − (1− eX)+] = 0.

Proof. Property 2 of Lemma 3.20 implies

∣∣E[T2m−1(X)+ − (1− eX)+]
∣∣ = ∣∣E[(T2m−1(X)− (1− eX))Ix≤0]

∣∣ .
Then, since all derivatives of 1 − ex are upper bounded by 1 and lower bounded by 0

(in absolute value) on the negative real axis, the Lagrange form of the Taylor remainder
T2m−1(x)− (1− ex) implies

∣∣E[(T2m−1(X)− (1− eX))Ix≤0]
∣∣ ≤ ∣∣∣∣∫ 0

−∞
x2m

(2m)!
dμ

∣∣∣∣ = ∫ 0

−∞
x2m

(2m)!
dμ,

which goes to 0 as m → ∞ thanks to the assumption (3.30).

Now that we have found conditions on μ such that the Condition C3 is satisfied, we can
give explicit sufficient conditions so that the convergence (3.28) holds. The following
convergence result comes as a corollary of Theorem 3.7.
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Corollary 3.22. Let X be an R-valued random variable and assume that all of its
moments are finite. Assume that the distribution μ of X is moment-determinate and
satisfies (3.30). Then,

lim
n→∞ inf

p∈Sn(f)
E[p(X)− (1− eX)+] = 0,

where Sn(f) := {p ∈ Poln(R) s.t. p(x) ≥ (1− ex)+, ∀x ∈ R}.

We further address the Conditions C2 and C3 in order to relate them to the choice of
the asset price models. In the case of the Black-Scholes model, the log-asset price Xt is
normally distributed for any time t, as explained in Section 2.2 of Chapter 2. In this case
the condition (3.30) is satisfied. Indeed, for an arbitrary even l = 2k (for some positive
integer k) and for any a > 0 one has

1

l!

∫ ∞

0
xle−ax2

dx =
1

l!

∫ 0

−∞
xle−ax2

dx =
(2k − 1)!!

2k+1ak(2k)!

√
π

a
=

1

2k+1ak(2k)!!

√
π

a
,

which clearly converges to 0 as k (or l) tends to infinity. Moreover, as mentioned in [89],
the normal distribution is moment-determinate. This implies that the Conditions C1-C3
are satisfied in the case of the Black-Scholes model. Hence, the convergence (3.28) is
guaranteed.

In the following, we give a further sufficient condition on X such that (3.30) holds.

Lemma 3.23. Let X be a R-valued random variable satisfying

E[e|X|] < ∞. (3.31)

Then, condition (3.30) is satisfied.

Proof. Property (3.31) together with the dominated convergence theorem allows us to
write ∞∑

k=0

E[|X|k]
k!

= E[e|X|] < ∞,

which in turn implies
E[|X|k]

k!
→ 0, as k → ∞,
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and consequently
E[|X|2l]
(2l)!

→ 0, as l → ∞. (3.32)

Finally, the inequalities

0 ≤
∫ 0

−∞
x2l

(2l)!
dμ ≤ E[|X|2l]

(2l)!

together with (3.32) imply the statement of the lemma.

It turns out that if X satisfies (3.31), then its distribution μ is also moment-determinate,
satisfying the Condition C2 as well. Indeed, for any measure μ on R, the so-called Cramèr
condition (see e.g. [114]) states that if

E[ec|X|] < ∞ for some c > 0,

then μ is moment-determinate. Therefore, if X satisfies (3.31), then (3.28) is guaranteed.
Note that for the case when XT is defined as in the Jacobi model, Theorem 3.1 in [4] can
be used to show that XT satisfies (3.31), depending on the model parameters. Hence, for
both chosen models the convergence (3.28) can be shown.

Formulation of the optimization problems

Since the payoff function f is not a piecewise polynomial in this setting, we cannot directly
apply the SDP method developed in Section 3.1.3. Instead, we apply it to T2m−1(x)

+. The
convergence result of the previous subsection guarantees that if we solve the corresponding
SDP for T2m−1(x)

+ and we let m and n going to infinity, the bounds will still converge
towards E[f(X)].

Fix a polynomial T2m−1(x)
+ for some m, and an even natural number n = 2r for the

fixed polynomial degree such that n > (2m−1). Then, consider the optimization problem

inf
	p
{γ�	p | 	p ∈ R2r+1 so that Hn(x)	p ≥ T2m−1(x)

+, ∀x ∈ R}, (3.33)

where γ is computed using the moment formula (3.27) for polynomial models. In particular,
note that for the Black-Scholes model, γ is directly given by γ = Hn(X0)e

GnT . For the
Jacobi model, however, the latter formula returns the vector of mixed moments in both
variable x and v. We need only the moments in the x variables. Therefore, before defining
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our optimization problem we define γ containing only the entries of Hn(X0, V0)e
GnT

corresponding to the moments in x. This can be done as explained in the Corollary 2.6,
Chapter 2.

In order to apply the SDP technique we rewrite the optimization problem as explained in
Section 3.1.3. In particular we derive an SDP of the form (3.25) which is equivalent to
(3.33). Consider the equivalence

p(x) ≥ (T2m−1(x))
+, ∀x ∈ R ⇐⇒ p(x) ≥ T2m−1(x), ∀x ∈ R and p(x) ≥ 0, ∀x ∈ R.

(3.34)
Then, according to the Theorem 3.14 and the Lemma 3.13 we can rewrite the non-
negativity conditions as s.o.s. conditions and we get the SDP formulation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

inf	p∈RN γ�	p, such that

Hn(x)	p = Hr(x)Q0,1Hr(x)
�

Hn(x)	p− T2m−1(x) = Hr(x)Q0,2Hr(x)
�,

Qi,j � 0, for all i, j.

(3.35)

This is the problem that is solved in practice, to obtain the required upper bounds for
the European put options in the setting of polynomial models.

For the cutting plane approach explained in Section 3.1.3, there is no need to approximate
the payoff function because the method does not require a piecewise polynomial payoff
function. Hence, we directly solve the problem

UBCP
n (f) := inf

	p
{γ�	p | 	p ∈ R2r+1 so that Hn(x)	p ≥ (ek − ex)+, ∀x ∈ R}. (3.36)

However, it is useful to show that all the steps of the algorithm are well defined, under
certain conditions. This will allow the CP routine to output the optimal solution when
the stopping criterion is satisfied. This particular example of European put option allows
us to exploit the structure of the payoff function to make the CP routine computationally
more efficient. In particular, we modify the general CP algorithm of Section 3.1.3 by
taking care of the following points.
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• In the LP problem (3.26) we include the linear condition

γ�	p ≥ 0 (3.37)

in the constraint set. Hence, at each iteration l we solve

min
	p

{γ�	p | 	p ∈ RN so that H	p ≥ f and γ�	p ≥ 0}, (3.38)

where H and f are defined as in (3.26). This will make the LP problem well defined,
as we see below in Lemma 3.24. Moreover, note that (3.37) is a reasonable condition
since it implies that the obtain upper bounding price is non-negative.

• The minimization problem argminx∈E(p�l (x)− f(x)) is often seen, as mentioned in
[121], as the bottleneck of the CP routine since it might be too expensive. For our
case, this can be efficiently performed by splitting the problem on the two regions
E1 := {x ∈ R | x ≤ k} and E2 := {x ∈ R | x ≥ k}. More precisely we solve

argminx≤k (p�l (x)− (ek − ex)), (3.39)

argminx≥k p�l (x), (3.40)

and we add both resulting points to the discrete set El. Problem (3.39) is well
defined whenever the leading coefficient of p�l is positive and n is even, as we explain
below in the Remark 3.25, and can be efficiently solved using, for example, a
standard Newton method since the first derivative of the objective function is easily
computable. Problem (3.40) can be efficiently solved since the objective function is
a polynomial.

The final complete CP algorithm is summarized in Algorithm 3.1. Note that the value
tol in the algorithm describes a tolerance value that controls the stopping criterion. In
a standard CP algorithm this value is set to tol = 0. However, in order to make the
computation more efficient one can set, for example, tol = −10−5, allowing the constraints
to be satisfied up to the tolerance tol. Also, in Algorithm 3.1 we have indicated the
Matlab functions we can use for solving the involved optimization problems.

In the following we prove the needed results to show that the CP routine is well defined
and it produces an optimal solution of (3.36) whenever it stops. Note that we assume
that the obtained bounding polynomial p�l (x) has a positive leading coefficient at every
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Algorithm 3.1 CP routine for upper bounding European put option prices
Input: Model and payoff parameters, tolerance tol, maximal number of iterations maxiter
Output: Upper bound (3.36) of the option price
1: Construct Gn and γ according to (3.27)
2: Define a random discrete set E1 of E
3: Build H and f as defined in (3.26)
4: l = 1
5: while l ≤ maxiter do
6: Solve the LP (3.38) and get p�l (using linprog.m)
7: Solve (3.39) and get xv1 (using fmincon.m)
8: Solve (3.40) and get xv2 (using roots.m)
9: if p�l (x

v
1)− f(xv1) ≥ tol and p�l (x

v
2)− f(xv2) ≥ tol then

10: Break
11: end if
12: El+1 = El ∪ {xv1, xv2}
13: Update H and f
14: l = l + 1
15: end while
16: UBCP

n (f) = γ�p�l

step l of the Algorithm 3.1.

Lemma 3.24. The optimization problem (3.38) is well defined.

Proof. The goal is to show that the function γ�	p has a global minimum on the constraint
set A := {	p ∈ RN so that H	p ≥ f and γ�	p ≥ 0}. We distinguish two different cases to
prove the statement.

If A ∩ {	p ∈ RN so that γ�	p = 0} �= ∅, then the global minimum is given by 0.

If A ∩ {	p ∈ RN so that γ�	p = 0} = ∅, then

lim
||	p||→∞,	p∈A

γ�	p = +∞.

Hence, the objective function is continuous, coercive and bounded from below on the
closed set A. The existence of a global minimum follows from standard results on coercive
functions, see e.g. Theorem 2.32 in [12].
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Remark 3.25. In each step of the CP routine we have to solve the minimization problem

argminx≤k p(x)− (ek − ex).

The function p(x)− (ek − ex) restricted to (−∞, k] has a global minimum, whenever p is
of even degree and the leading coefficient is positive. Therefore, the above minimization
problem is well defined under our assumptions.

Lemma 3.26. The sequence {γ�p�i |i = 1, · · · } of solution values of the CP steps is
bounded and monotone increasing towards the solution value of (3.36). Moreover, suppose
that Algorithm 3.1 stops after l iterations. Then, γ�p�l is the solution value of the original
problem (3.36) up to a tolerance tol, i.e.

|UBCP
n (f)− γ�p�l | ≤ tol. (3.41)

Proof. Let F be the feasible set of (3.36) and let Fl be the feasible set of the LP problem
(3.38). Moreover, let p� be the optimal solution of (3.36). Then, since we add a new
linear constraint step by step in the CP routine, we have

F ⊆ · · · ⊆ Fl ⊆ · · · ⊆ F1

which implies that {γ�p�i |i = 1, · · · } is monotone increasing and upper bounded by γ�p�.

Using the tolerance value tol makes us solving the perturbed problem

inf
	p
{γ�	p+ tol | 	p ∈ R2r+1 so that Hn(x)	p ≥ (ek − ex)+, ∀x ∈ R}.

This observation directly implies inequality (3.41).

Remark 3.27. Since the payoff function is piecewise exponential, we have to use, for
example, a Newton type algorithm to perform Step 7 of Algorithm 3.1. Unfortunately, the
algorithm can return the argument value of a local minimum, depending on the starting
point. However, the numerical results presented in the Section 3.1.4 show that this does
not affect the final results for our application. A more practical way to avoid this problem
is to use T2m−1(x)

+ instead of (ek − ex)+, as in the SDP approach. In this case, Step 7 of
Algorithm 3.1 could be also performed using a rootfinder (for instance roots.m) ensuring
the argument of the global minimum on the region x ≤ k.
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European put option - Numerical experiments

In this section, we finally show some numerical results for the computation of European
put option prices in the one-dimensional Black-Scholes model and in the Jacobi model.
All algorithms have been implemented in Matlab and run on a standard laptop (Intel
Core i7, 2 cores, 256kB/4MB L2/L3 cache). We used the toolbox YALMIP [93] together
with SDPT3 [117] to model and solve the SDP problems, while the LP problems and
the minimization problems arising in the cutting plane algorithm have been solved
via Matlab’s built-in functions linprog.m (for LP), fmincon.m (for minimizing non-
polynomial functions) and roots.m (for finding the critical points of polynomials and,
consequently, their minima).

For both models, the payoff parameters and the initial log-asset price are set to

x0 = 0, T = 1, k = {−0.1, 0, 0.1},

so that we consider different types of moneyness. For the model parameters, we set

σ = 0.2, r = 0.01

for the Black-Scholes model, while for the Jacobi model we consider the model parameters

v0 = 0.04, σ = 0.15, κ = 0.5, θ = 0.04, ρ = −0.5, vmin = 10−4, vmax = 0.1, r = 0.01.

In these numerical experiments we also consider the computation of lower bounds in
order to better assess the method. For the numerical computation of upper bounds, the
optimization algorithms are set up as described in the previous section, while for the
lower bounds the algorithms have been adapted to the new setting. Note that when
considering the computation of lower bounds, the corresponding SDP formulation cannot
be simplified as in the case of the upper bounds (see the formulation (3.35)) since the
relation (3.34) cannot be used. The obtained SDP problem is therefore slightly more
complicated and involves more variables. Also, when setting up the corresponding CP
algorithm the condition (3.37) cannot be included.

The parameters of the optimization algorithms are set as follows. For the CP algorithm
(Algorithm 3.1), the tolerance value is set to tol = −10−5 and the initial discrete set
E1 consists of 200 equidistant points in [−2, 2]. For the SDP approach we solve the
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optimization problems for the sequence of polynomials Tn−1(x)
+ (see (3.29)), where n is

the considered polynomial degree in the optimization problem. The vector of moments γ

is computed according to the moment formula (3.27), where the matrix Gn is constructed
for both models as explained in Chapter 2, Section 2.2.

We compare the obtained bounds with reference prices computed via other techniques.
In the Black-Scholes model we compute the reference price using the Black-Scholes
formula, see Chapter 1. For the Jacobi model the reference price is computed using the
polynomial expansion method developed in [4], and summarized in Chapter 2, Section
2.2. In particular, the auxiliary density w(x) is defined as a Gaussian density with mean
μw = E[XT ] and variance σ2

w = E[X2
T ]− E[XT ]

2, and the orthonormal basis consists of
generalized Hermite polynomials, defined as

Hn(x) =
1√
n!
Hn

(
x− μw

σw

)
, (3.42)

where Hn(x) are the standard probabilists’ Hermite polynomials, i.e.

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 .

In the case of the European call option, the quantities fn in the expansion (2.17) are
given recursively by

f0 = e−rT+μwI0

(
k − μw

σw
;σw

)
− e−rT+kΦ

(
μw − k

σw

)
,

fn = e−rT+μw
1√
n!
σwIn−1

(
k − μw

σw
;σw

)
, n ≥ 1,

(3.43)

where the functions In(μ; ν) are defined recursively by

I0(μ; ν) = e
ν2

2 Φ(ν − μ),

In(μ; ν) = Hn−1(μ)e
νμφ(μ) + νIn−1(μ; ν), n ≥ 1.

Here, Φ(x) denotes the standard Gaussian distribution function, and φ(x) its density. In
order to obtain reference prices, we first compute call option prices by truncating the
expansion at N = 50 (see (2.18)). Then, put prices are obtained via the put-call parity
(1.3), see Chapter 1.
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In the following analysis we also consider the mid-price MPn(f), defined as MPn(f) :=
UBn(f)+LBn(f)

2 . The mid-price can be used as an approximation of the option price
and, since the bounds converge towards the exact price as n goes to infinity, it satisfies
limn→∞MPn(f) = E[f(XT )]. The quality of the mid-price is of practical relevance and
we consider it in the construction of a black box algorithm for European option pricing,
which we introduce later in the Section 3.1.5. In Table 3.1, for each value of k and for
different values of n, we show the obtained lower bounds (LB), the upper bounds (UB),
and (in blue) the absolute error of the mid-price MPn(f) with respect to the reference
price. We show the results for both the SDP and the CP approach, in the Black-Scholes
model. Similarly in Table 3.2 for the Jacobi model. In Figure 3.2 we show the obtained
bounding polynomials of degree n = 12 in the Jacobi model, while in Figure 3.1 we show
the bounding polynomials obtained in the Black-Scholes model for n = 12, multiplied by
the probability density function of XT which is explicitly known in this model2. This will
give us more insight on the quality of the bounds with respect to the correct integrating
measure. Finally, the Figures 3.3 and 3.4 show the Black-Scholes implied volatilities3

corresponding to the upper bounds, to the lower bounds and to the mid-price, for the
Black-Scholes model and the Jacobi model, respectively.

First, we observe that both methods yield tight upper and lower bounds for both models,
in line with the numerical results obtained also in [14, 89]. The numerical values in the
Tables 3.1-3.2 show in particular that the upper bounds have a slightly better quality
than the lower ones, which can be also observed from the implied volatilities pictured in
the Figures 3.3-3.4. For n = 20, the absolute error of the mid-price is of magnitude 10−3

for both models and any type of moneyness. Also, the absolute implied volatility error
can be observed to be much lower than 1%. Therefore, considering moments of order 20

already yields a good price approximation.

Regarding the comparison between the two optimization approaches, it can be observed
that the CP algorithm performs better for small polynomial degrees (n = 2, · · · , 8), while
for higher degrees the two approaches produce almost identical results. This is due to
the fact that the SDP approach requires the polynomial approximation of the payoff
function, which is poor for n small, while the CP algorithm is directly applied to the

2We have plotted the bounding polynomials for n = 12, which is the polynomial degree for which the
results of the SDP and the CP algorithm start to coincide for both models.

3For a given put option price C, the Black-Scholes implied volatility is defined as the volatility
parameter that renders the corresponding Black-Scholes price equal to C.
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SDP

k = −0.1 k = 0 k = 0.1

n [LB, Abs Err MP, UB] [LB, Abs Err MP, UB] [LB, Abs Err MP, UB]

2 [0.0000, 0.0056, 0.0579] [0.0099, 0.0174, 0.1041] [0.1204, 0.0139, 0.1851]
4 [0.0141, 0.0028, 0.0493] [0.0526, 0.0010, 0.0942] [0.1121, 0.0052, 0.1550]
6 [0.0202, 0.0029, 0.0429] [0.0527, 0.0064, 0.0833] [0.1225, 0.0028, 0.1495]
8 [0.0224, 0.0028, 0.0410] [0.0614, 0.0021, 0.0833] [0.1238, 0.0039, 0.1459]
10 [0.0255, 0.0018, 0.0399] [0.0614, 0.0036, 0.0802] [0.1284, 0.0019, 0.1453]
12 [0.0260, 0.0022, 0.0387] [0.0651, 0.0018, 0.0801] [0.1285, 0.0027, 0.1435]
14 [0.0279, 0.0013, 0.0384] [0.0654, 0.0024, 0.0786] [0.1311, 0.0015, 0.1434]
16 [0.0280, 0.0017, 0.0377] [0.0673, 0.0014, 0.0786] [0.1312, 0.0020, 0.1424]
18 [0.0292, 0.0011, 0.0376] [0.0676, 0.0017, 0.0778] [0.1326, 0.0013, 0.1424]
20 [0.0293, 0.0013, 0.0370] [0.0682, 0.0014, 0.0777] [0.1327, 0.0016, 0.1416]

CP

k = −0.1 k = 0 k = 0.1

n [LB, Abs Err MP, UB] [LB, Abs Err MP, UB] [LB, Abs Err MP, UB]

2 [0.0000, 0.0083, 0.0524] [0.0084, 0.0228, 0.0947] [0.0959, 0.0078, 0.1659]
4 [0.0146, 0.0026, 0.0493] [0.0530, 0.0008, 0.0941] [0.1128, 0.0050, 0.1547]
6 [0.0211, 0.0026, 0.0428] [0.0532, 0.0064, 0.0828] [0.1238, 0.0023, 0.1492]
8 [0.0227, 0.0030, 0.0403] [0.0619, 0.0020, 0.0828] [0.1248, 0.0035, 0.1457]
10 [0.0260, 0.0016, 0.0399] [0.0619, 0.0034, 0.0801] [0.1285, 0.0019, 0.1453]
12 [0.0260, 0.0022, 0.0387] [0.0651, 0.0019, 0.0800] [0.1287, 0.0027, 0.1435]
14 [0.0279, 0.0014, 0.0384] [0.0653, 0.0024, 0.0786] [0.1311, 0.0015, 0.1434]
16 [0.0281, 0.0017, 0.0376] [0.0672, 0.0015, 0.0785] [0.1313, 0.0019, 0.1424]
18 [0.0293, 0.0011, 0.0376] [0.0674, 0.0018, 0.0777] [0.1326, 0.0012, 0.1424]
20 [0.0294, 0.0013, 0.0370] [0.0685, 0.0013, 0.0777] [0.1328, 0.0016, 0.1417]

Table 3.1 – Lower/upper bounds and mid-price absolute error for put option prices obtained via
SDP and CP approach in the Black-Scholes model. The reference prices are 0.0345 (k = −0.1),
0.0744 (k = 0) and 0.1388 (k = 0.1).

piecewise exponential payoff function. As n increases, the quality of the approximation
Tn−1(x)

+ of f(x) improves, and the SDP approach reaches the same accuracy as the CP
one. Therefore, for lower polynomial degree n, the CP method is to be preferred, while
for n sufficiently large both methods can be in principle considered.

Finally, the Figures 3.1-3.2 give us an idea on how the bounding polynomials look like.
Intuitively, the bounding polynomials are expected to be tighter around the mean E[XT ],
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SDP

k = −0.1 k = 0 k = 0.1

n [LB, Abs Err MP, UB] [LB, Abs Err MP, UB] [LB, Abs Err MP, UB]

2 [0.0000, 0.0062, 0.0587] [0.0099, 0.0161, 0.1051] [0.1204, 0.0171, 0.1860]
4 [0.0165, 0.0013, 0.0521] [0.0502, 0.0019, 0.0932] [0.1061, 0.0075, 0.1511]
6 [0.0190, 0.0043, 0.0435] [0.0523, 0.0054, 0.0840] [0.1199, 0.0018, 0.1487]
8 [0.0242, 0.0018, 0.0434] [0.0583, 0.0033, 0.0822] [0.1199, 0.0044, 0.1435]
10 [0.0247, 0.0029, 0.0408] [0.0609, 0.0028, 0.0807] [0.1243, 0.0022, 0.1434]
12 [0.0274, 0.0015, 0.0408] [0.0621, 0.0029, 0.0792] [0.1255, 0.0025, 0.1417]
14 [0.0275, 0.0021, 0.0395] [0.0643, 0.0019, 0.0790] [0.1265, 0.0023, 0.1411]
16 [0.0291, 0.0013, 0.0395] [0.0644, 0.0024, 0.0779] [0.1282, 0.0016, 0.1407]
18 [0.0292, 0.0016, 0.0388] [0.0663, 0.0015, 0.0779] [0.1283, 0.0019, 0.1400]
20 [0.0301, 0.0012, 0.0388] [0.0663, 0.0018, 0.0772] [0.1293, 0.0015, 0.1399]

CP

k = −0.1 k = 0 k = 0.1

n [LB, Abs Err MP, UB] [LB, Abs Err MP, UB] [LB, Abs Err MP, UB]

2 [0.0000, 0.0091, 0.0531] [0.0025, 0.0246, 0.0955] [0.0956, 0.0050, 0.1667]
4 [0.0165, 0.0013, 0.0521] [0.0505, 0.0018, 0.0930] [0.1064, 0.0075, 0.1507]
6 [0.0194, 0.0041, 0.0435] [0.0524, 0.0054, 0.0840] [0.1200, 0.0018, 0.1486]
8 [0.0245, 0.0017, 0.0434] [0.0589, 0.0030, 0.0822] [0.1201, 0.0043, 0.1435]
10 [0.0246, 0.0028, 0.0408] [0.0609, 0.0020, 0.0822] [0.1251, 0.0018, 0.1435]
12 [0.0274, 0.0016, 0.0406] [0.0621, 0.0029, 0.0792] [0.1255, 0.0025, 0.1417]
14 [0.0276, 0.0020, 0.0395] [0.0643, 0.0019, 0.0790] [0.1265, 0.0023, 0.1410]
16 [0.0291, 0.0013, 0.0395] [0.0646, 0.0023, 0.0779] [0.1281, 0.0017, 0.1407]
18 [0.0293, 0.0016, 0.0388] [0.0661, 0.0017, 0.0778] [0.1283, 0.0019, 0.1399]
20 [0.0301, 0.0011, 0.0388] [0.0661, 0.0019, 0.0772] [0.1294, 0.0015, 0.1398]

Table 3.2 – Lower/upper bounds and mid-price absolute error for put option prices obtained via
SDP and CP approach in the Jacobi model. The reference prices are 0.0356 (k = −0.1), 0.0736
(k = 0) and 0.1361 (k = 0.1).

and then explode far away from that region. This is because the probability mass is
concentrate around the mean. This intuition is confirmed by the polynomials shown in
the Figure 3.2 where the Jacobi model is considered. When multiplying the bounding
polynomial with the probability density function, as we did in the Figure 3.1 for the Black-
Scholes case, one can first observe that the explosion of the polynomials is compensated
by the faster decay of the density function. The polynomials are therefore tight over the
whole real axis in the “correct measure”. Second, the same figure shows that the region
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Algorithm 3.2 European option pricing in polynomial models based on optimization
Input: Model and payoff parameters, tolerance ε
Output: Approximation Price of E[f(X)]
1: n = 2
2: Gap = 1
3: while Gap > ε do
4: Set up the optimization problems (3.5) and (3.6)
5: Solve them numerically to get a lower bound LB and an upper bound UB
6: Gap = UB − LB
7: n = n+ 2
8: end while
9: Price = (UB + LB)/2

where the polynomials cannot completely capture the shape of the payoff function is the
one around the “kink”, i.e. the irregularity of the payoff function given by the strike value
k. Also, one can see that the irregular region can be better approximated from above
than from below, generating the quality gap between upper and lower bounds.

3.1.5 A black box algorithm for European option pricing

In real-world applications, one usually needs option pricing algorithms that are able
to output an option price, given some model and payoff parameters as input. In other
words, the result of running the pricing algorithm must be given by a single number: the
price. The technique described in this chapter, as well as the approaches developed in
[14, 122, 63, 89, 37], is able to compute a lower bound and an upper bound for the option
price of interest. However, it does not give any a priori information on the quality of the
bounds or on the price itself. Moreover, even if in theory it can be shown that the bounds
converge to the real price as n → ∞, it is not known a priori how to choose the value of
n required to get a satisfactory accuracy.

In order to overcome these obstacles, we can design an algorithm which computes the
bounds incrementally (by increasing n) and stops after that the gap between them goes
below a certain tolerance ε. Such a black box algorithm would then require model and
payoff parameters as input, and would return a ε approximation of the exact price in
output, as desired. Assuming that both upper and lower bounds converge to the exact
price, such an algorithm can be defined as in Algorithm 3.2 (again, we omit the discounting
factor for simplicity).
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The Step 5 of Algorithm 3.2 can be performed by employing one of two numerical
techniques developed in Section 3.1.3. In order to perform Step 4 and efficiently update
the vector γ of moments in the setting of polynomial models, one can use the algorithm
incexpm.m developed in [83]. This algorithm exploits the block triangular structure of
the nested sequence G0, G1, · · · of matrices in the moment formula (3.27) in order to
incrementally update γ in an efficient way, as n increases. This particular structure has
been already presented in Chapter 2, Section 2.1, and the algorithm incexpm.m is also
developed in this thesis. We present it in the next chapter.

3.2 American option pricing

Considering the dual problem Dn allows us to extend the methodology to price exotic
options, as Asian and barrier options, see [89, 37]. On the other side, the primal
optimization problem (3.5) can be modified in order to obtain an optimization problem
whose solution yields an upper bound for the American version of the same option. We
now explain how to do it.

3.2.1 Polynomial upper bounds via optimization

We consider the problem of computing the price of an American option maturing at time
T , with payoff function f : E → R. The price at time t = 0 is given by (see Section 1)

sup
τ∈S0,T

E[e−rτf(Sτ )], (3.44)

where S0,T is the set of all stopping times in [0, T ]. In the following, the methodology
is developed for polynomial models. In particular, we assume that all the conditional
moments of (Xt) exist and are available.

The core idea is again to consider an optimization problem whose solution represents an
upper bound of the price (3.44). In the American case we consider only upper bounds. It
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is shown in [25], that the price (3.44) is upper bounded by the solution of the problem

inf{e−rTE[s(XT )] | s measurable s.t. e−r(T−t)Ex[s(XT )] ≥ f(x), ∀(x, t) ∈ E × [0, T ]},

(3.45)

where Ex denotes the expectation assuming the starting value Xt = x at time t. Intuitively,
the idea is to derive a payoff function s whose corresponding European option price
e−r(T−t)Ex[s(XT )] dominates f , at any time t ∈ [0, T ] and for any x ∈ E. Then, the
European price e−rTE[s(XT )] at time t = 0 is an upper bound of the American price
(3.44). In other words, we represent the American option in (3.44) with a dominating
European option. In [91], the solution s of (3.45) is referred to as the cheapest dominating
European option of the American option with payoff f .

Results in [25, 91] show that (3.45) yields sharp bounds for (3.44). We aim at adapting
this approach to the setting of polynomial models. To do that, we propose to restrict the
feasible set of (3.45) to the set Poln(E). This yields the problem

inf{e−rTE[p(XT )] | p ∈ Poln(E) s.t. e−r(T−t)Ex[p(XT )] ≥ f(x), ∀(x, t) ∈ E × [0, T ]},

which can be rewritten as

inf
	p
{e−rTγ�	p | 	p ∈ RN s.t. e−r(T−t)Hn(x)e

Gn(T−t)	p ≥ f(x), ∀(x, t) ∈ E × [0, T ]},
(3.46)

after inserting the moment formula (2.6) and

γ� = Hn(X0)e
GnT .

Solving (3.46) will yield the desired upper bound of (3.44). We note that if we impose the
condition e−r(T−t)Hn(x)e

Gn(T−t)	p ≥ f(x) only at finite time t = T , the problem (3.46)
reduces to (3.10), the upper bound of the European version of the option. This gives us
more insights on how the American case can be seen as an extension of the European one.

As in the European case, we propose two ways to solve (3.46): a semidefinite programming
approach and a cutting plane algorithm. Both are extensions of the algorithms presented
in Section 3.1.3.
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3.2.2 Numerical algorithms for the optimization problems

SDP approach for American options

We assume that f is piecewise polynomial and E can be partitioned in semialgebraic
sets, as in the European case. In order to derive an SDP formulation of (3.46) for
a fixed polynomial degree n, we again aim at rewriting the constraint set. Since the
function e−r(T−t)Hn(x)e

Gn(T−t)	p− f(x) is not polynomial nor piecewise polynomial in
the time variable t, we cannot directly substitute the non-negativity conditions with
s.o.s. conditions. In order to overcome this obstacle, we propose to discretize the time
interval [0, T ] and impose the inequality constraints at each time discretization point.
More precisely, we consider a discretization {t0 = 0, t1, · · · , t�−1, t� = T} of [0, T ] and we
look at the optimization problem⎧⎪⎨⎪⎩

inf	p∈RN e−rTγ�	p, s. t.

e−r(T−ti)Hn(x)e
Gn(T−ti)	p ≥ f(x), ∀x ∈ E and for i = 0, · · · , 
.

(3.47)

Now, each of the 
+1 inequalities in the constraint set can be treated as in the European
case (see Section 3.1.3). Hence, we impose s.o.s. conditions instead of non-negativity
conditions for each inequality constraint by splitting E in a suitable way. The resulting
problem is an SDP problem.

The obtained problem is more complex and the number of s.o.s constraints is larger,
depending on the number 
 of discretization points. However, we will see in Chapter
3.2.3 that the problem remains numerically solvable for the chosen applications and the
obtained upper bounds are sharp. Also, the fact that we discretize the time interval does
not influence the quality of the bounds.

CP algorithm for American options

The cutting plane algorithm does not require the infinite linear constraints to be polynomial
nor piecewise polynomial in any variable. Consequently, the proposed algorithm for the
European case described in Section 3.1.3 can be easily adapted to the American case.
More precisely, at iteration l we perform the following steps.

1. Define a finite discrete subset Ẽl = {(xl,1, tl,1), · · · , (xl,m, tl,m)} of E × [0, T ] and
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impose the inequality constraint in (3.46) only in Ẽl, obtaining the LP problem

min{e−rTγ�	p | 	p ∈ RN so that H	p ≥ f}, (3.48)

where H := (e−r(T−tl,1)Hn(x
l,1)eGn(T−tl,1)| · · · |e−r(T−tl,m)Hn(x

l,m)eGn(T−tl,m))� ∈
Rm×N contains the left hand-side of the inequality constraints evaluated in Ẽl, and
f = (f(xl,1), · · · , f(xl,m))�.

2. Solve the LP problem (3.48) using standard techniques. Denote by p�l the resulting
optimal coefficient vector.

3. Find the point (xv, tv) ∈ E × [0, T ] defined as

argmin(x,t)∈E×[0,T ](e
−r(T−t)Hn(x)e

Gn(T−t)p�l − f(x)),

where the inequality constraint is violated the most.

4. If e−r(T−tv)Hn(x
v)eGn(T−tv)p�l − f(xv) < 0, then insert (xv, tv) in Ẽl, defining a

new finite discrete subset Ẽl+1 := Ẽl ∪ (xv, tv) and restart from Step 1 with Ẽl+1.
If e−r(T−tv)Hn(x

v)eGn(T−tv)p�l − f(xv) ≥ 0 stop the iteration and return e−rTγ�p�l .

Compared to the European case, the CP algorithm does not increase much in complexity.
For example, the dimension of the LP problem solved at Step 1 remains unchanged.
Only in Step 3 the numerical solution of a more complex problem is required. Here, the
minimization problem is now to be performed over a set of dimension d+ 1 (instead of d).
Again, in this step we can use standard minimization solvers on smartly split regions to
make the algorithm more efficient.

3.2.3 American option pricing in polynomial models

We apply the methodology developed in the Sections 3.2.1 and 3.2.2 to price American
put options and American rainbow options. We explain how to set up the optimization
problems and we show numerical experiments for concrete asset models. Note that the
following numerical experiments have been performed on the same machine as in the
European case. Also, the same Matlab toolboxes and built-in functions have been used.
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American put option

In this section we price American put options in the one-dimensional Black-Scholes model.
As in the European case, Section 3.1.4, we use the log-asset price version and the payoff
function is given by f(x) = (ek − ex)+ for a log-strike value k.

We set up the SDP algorithm as follows. First, we approximate f(x) with T2m−1(x)
+

and we consider the equivalence

p(x) ≥ (T2m−1(x))
+, ∀x ∈ R ⇐⇒ p(x) ≥ T2m−1(x), ∀x ∈ R and p(x) ≥ 0, ∀x ∈ R.

Then, the optimization problem (3.47) takes the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf	p∈RN e−rTγ�	p, s. t.

e−r(T−ti)Hn(x)e
Gn(T−ti)	p ≥ T2m−1(x), ∀x ∈ R and for i = 0, · · · , 
.

e−r(T−ti)Hn(x)e
Gn(T−ti)	p ≥ 0, ∀x ∈ R and for i = 0, · · · , 
.

Substituting the non-negativity conditions on each polynomial with s.o.s. conditions
yields the final SDP problem. To apply the CP algorithm, we adapt the steps described
in Section 3.2.2 to the American put option case and we obtain Algorithm 3.3.

We consider the model and payoff parameters

σ = 0.15, x0 = 0, T = 1/12 r = 0.01, k = {−0.1, 0, 0.1}.

For the CP algorithm, the tolerance value is set to tol = −10−5 and the initial discrete
set Ẽ1 is a two dimensional grid of 100× 100 equidistant points in [−20, 20]× [0, T ]. In
the SDP approach we discretize [0, T ] with 
 = 10 equidistant points and we consider
the approximation Tn−1(x)

+ of f(x), where n is the considered polynomial degree. The
matrix Gn is computed again with respect to the monomial basis. We compute the
reference price using a finite difference discretization scheme for the PDE approach (see
e.g [36] and Section 1). In particular we use a θ-scheme with parameters Ns = 40 (number
of subintervals in s = ex), Smin = 0.8125, Smax = 1.2297, Δt = 0.0021, and θ = 0.5. In
Table 3.3 we show the obtained upper bounds, together with the corresponding absolute
errors obtained via both SDP and CP approaches. Note that in this example we considered
only polynomials (moments) of degree at most n = 10. This was sufficient to get very
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Chapter 3. Polynomial bounds for European and American option pricing

Algorithm 3.3 CP routine for upper bounding American put option prices
Input: Model and payoff parameters, tolerance tol, maximal number of iterations maxiter
Output: Upper bound (3.46) of the American option price
1: Construct Gn and γ according to (3.27)
2: Define a random discrete set Ẽ1 of E × [0, T ]
3: Build H and f and add the constraint γ�	p ≥ 0 to the LP (3.48)
4: l = 1
5: while l ≤ maxiter do
6: Solve LP (3.48) and get p�l
7: Compute

(xv1, t
v
1) := argmin(x,t)∈(−∞,k]×[0,T ]

(
e−r(T−t)Hn(x)e

Gn(T−t)p�l − (ek − ex)
)
.

8: Compute

(xv2, t
v
2) := argmin(x,t)∈[k,∞)×[0,T ]

(
e−r(T−t)Hn(x)e

Gn(T−t)p�l

)
9: Define the function g(x, t) := e−r(T−t)Hn(x)e

Gn(T−t)p�l
10: if g(xv1, t

v
1)− f(xv1) ≥ tol and g(xv2, t

v
2)− f(xv2) ≥ tol then

11: Break
12: end if
13: Ẽl+1 = Ẽl ∪ {(xv1, tv1), (xv2, tv2)}
14: Update H and f
15: l = l + 1
16: end while
17: Return e−rTγ�p�l

sharp bounds, at least in the same range of accuracy as in the European case. The
obtained numerical results show that both algorithmic approaches are able to produce
very tight upper bounds, only by using moments of order at most 10 and for every type
of moneyness. Moreover, the reference price is matched for n = 8, 10 in the case k = 0.1.

American put on minimum of two assets

In the second example we price American rainbow options in the two-dimensional Black-
Scholes model, described in Section 2.2. Here, we directly model the prices (S1

t , S
2
t ) of

the two assets. The payoff function is defined as a put option on the minimum of the two
assets, i.e. f(s1, s2) = (K −min(s1, s2))

+, for a strike value K. Recalling that the state
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3.2. American option pricing

SDP

k = −0.1 k = 0 k = 0.1

n UB Abs error UB Abs error UB Abs error

2 0.0041 0.0039 0.0217 0.0047 0.1155 0.0103
4 0.0006 0.0005 0.0212 0.0042 0.1054 0.0002
6 0.0003 0.0002 0.0188 0.0018 0.1053 0.0001
8 0.0003 0.0001 0.0179 0.0009 0.1052 0.0000
10 0.0002 0.0001 0.0177 0.0007 0.1052 0.0000

CP

k = −0.1 k = 0 k = 0.1

n UB Abs error UB Abs error UB Abs error

2 0.0039 0.0037 0.0212 0.0042 0.1094 0.0042
4 0.0006 0.0005 0.0212 0.0042 0.1054 0.0002
6 0.0006 0.0004 0.0188 0.0018 0.1053 0.0001
8 0.0005 0.0003 0.0187 0.0017 0.1052 0.0000
10 0.0003 0.0001 0.0187 0.0017 0.1052 0.0000

Table 3.3 – Upper bounds (with absolute errors) for American put option prices obtained via SDP
and CP approach in the one-dimensional Black-Scholes model. The reference prices are 0.0002
(k = −0.1), 0.0170 (k = 0), and 0.1052 (k = 0.1).

space is E = R+ × R+, we note that the payoff function can be split on E as

f(s1, s2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, on E1 := {(s1, s2) ∈ R2 | K ≤ s1, s2},
(K − s1), on E2 := {(s1, s2) ∈ R2 | 0 ≤ s1 ≤ s2 ≤ K},
(K − s2), on E3 := {(s1, s2) ∈ R2 | 0 ≤ s2 ≤ s1 ≤ K}.

Also, for any polynomial p(s1, s2) ∈ Pol(E) we consider the equivalence

p(s1, s2) ≥ f(s1, s2), ∀(s1, s2) ∈ E ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(s1, s2) ≥ 0, ∀(s1, s2) ∈ E,

p(s1, s2) ≥ K − s1, ∀(s1, s2) ∈ E,

p(s1, s2) ≥ K − s2, ∀(s1, s2) ∈ E.

(3.49)
In order to simplify both the SDP and the CP algorithm, we impose the three inequalities
in (3.49) on the set R2, instead of E. This produces a strengthening of the original
problem, since the polynomial p is required to be positive on a larger set. However, as we

71



Chapter 3. Polynomial bounds for European and American option pricing

see below in the numerical experiments, this does not pose any limitation on the quality
of the upper bounds. For the SDP approach, the optimization problem (3.47) takes the
form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

inf	p∈RN e−rTγ�	p, s. t.

e−r(T−ti)Hn(s1, s2)e
Gn(T−ti)	p ≥ 0, ∀(s1, s2) ∈ R2 and for i = 0, · · · 
.

e−r(T−ti)Hn(s1, s2)e
Gn(T−ti)	p ≥ K − s1, ∀(s1, s2) ∈ R2 and for i = 0, · · · 
.

e−r(T−ti)Hn(s1, s2)e
Gn(T−ti)	p ≥ K − s2, ∀(s1, s2) ∈ R2 and for i = 0, · · · 
.

To apply the CP algorithm, we adapt the steps described in Section 3.2.2 and we obtain
Algorithm 3.4.

We consider the model and payoff parameters

S1
0 = 0.5, S2

0 = 0.6, r = 0.01, σ1 = σ2 = 0.15, T = 1/12, ρ = 0.5, K = {0.55, 0.65}.

For the CP approach the tolerance value is set to tol = −10−4 and the initial discrete set
Ẽ1 consists of 100 uniformly distributed random points in [−10, 10]× [−10, 10]× [0, T ].
In the SDP approach we discretize [0, T ] with 
 = 10 equidistant points. The matrix
Gn is computed as in Lemma 2.4. We compute the reference price using the Longstaff-
Schwartz Monte Carlo approach for American options, originally developed in [94]. In
particular, the reference price is computed using 105 simulations and by dividing [0, T ]

in 10 subintervals. In Table 3.4 we show the obtained upper bounds, together with
the corresponding absolute errors obtained via both SDP and CP approaches. Again,
we consider polynomials of degree at most n = 10. Here, we emphasize that since the
dimension is d = 2, the actual number of used moments is N = (n+1)(n+2)

2 , the dimension
of Poln(R2). For n = 10 one has N = 66.

The numerical results show again the effectiveness of the method for both numerical
approaches. Indeed, the obtained upper bounds are very tight with an absolute error that
reaches the order 10−4 for n = 10 or less.
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Algorithm 3.4 CP routine for upper bounding American rainbow option prices
Input: Model and payoff parameters, tolerance tol, maximal number of iterations maxiter
Output: Upper bound (3.46) of the American option price
1: Construct Gn and γ according to (3.27)
2: Define a random discrete set Ẽ1 of R2 × [0, T ]
3: Build H and f and add the constraint γ�	p ≥ 0 to the LP (3.48)
4: l = 1
5: while l ≤ maxiter do
6: Solve LP (3.48) and get p�l
7: Compute

(sv,11 , sv,12 , tv1) := argmin(s1,s2,t)∈R2×[0,T ]

(
e−r(T−t)Hn(s1, s2)e

Gn(T−t)p�l − (K − s1)
)

8: Compute

(sv,21 , sv,22 , tv2) := argmin(s1,s2,t)∈R2×[0,T ]

(
e−r(T−t)Hn(s1, s2)e

Gn(T−t)p�l − (K − s2)
)

9: Compute

(sv,31 , sv,32 , tv3) := argmin(s1,s2,t)∈R2×[0,T ]

(
e−r(T−t)Hn(s1, s2)e

Gn(T−t)p�l

)
10: Define the function g(s1, s2, t) := e−r(T−t)Hn(s1, s2)e

Gn(T−t)p�l
11: if g(sv,i1 , sv,i2 , tvi )− f(sv,i1 , sv,i2 ) ≥ tol for i = 1, 2, 3 then
12: Break
13: end if
14: Ẽl+1 = Ẽl ∪ {(sv,11 , sv,12 , tv1), (s

v,2
1 , sv,22 , tv2), (s

v,3
1 , sv,32 , tv3)}

15: Update H and f
16: l = l + 1
17: end while
18: Return e−rTγ�p�l

3.3 Conclusion

In this chapter we have proposed a method to compute bounds for European and American
option prices. The method assumes the existence and the availability of all the moments
of the underlying asset price process. It applies therefore to polynomial models. The core
idea is to set up an optimization problem whose solution yields an upper or a lower bound
of the option price of interest. More specifically, for the European case an upper bound is
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SDP

K = 0.55 K = 0.65

n UB Abs error UB Abs error

2 0.0531 0.0032 0.1516 0.0018
4 0.0501 0.0002 0.1500 0.0002
6 0.0500 0.0001 0.1500 0.0002
8 0.0500 0.0001 0.1499 0.0001
10 0.0500 0.0001 0.1499 0.0001

CP

K = 0.55 K = 0.65

n UB Abs error UB Abs error

2 0.0548 0.0049 0.1538 0.0040
4 0.0505 0.0006 0.1509 0.0011
6 0.0505 0.0006 0.1503 0.0005
8 0.0502 0.0003 0.1501 0.0003
10 0.0500 0.0001 0.1501 0.0003

Table 3.4 – Upper bounds (with absolute errors) for American rainbow option prices obtained
via SDP and CP approach in the 2d Black-Scholes model. The reference prices are 0.0499 with
95% confidence interval (0.0499, 0.0500) (K = 0.55), and 0.1498 with 95% confidence interval
(0.1497, 0.1499) (K = 0.65).

obtained by minimizing e−rTE[p(XT )] over the set of all upper bounding polynomials of
the payoff function f , i.e. p(x) ≥ f(x) for all x in the state space E, see (3.5). For the
American case, instead, we aim at minimizing e−rTE[p(XT )] over the set of all polynomials
p that satisfy e−r(T−t)Ex[p(XT )] ≥ f(x) for all (x, t) ∈ E× [0, T ], see (3.46). This can be
interpreted as finding the cheapest dominating European option of the American option
with payoff f . For both the European and the American case we have proposed two
algorithmic techniques to compute the numerical solution of the optimization problems.
The first one is based on semidefinite programming, while the second one follows the
cutting plane technique. For the European case, we have obtained convergence results for
the one-dimensional case and for different classes of payoff functions and state spaces. The
numerical experiments that have been performed for different types of models showed that
the methodology yields tight bounds and, in the case of European option, the mid-price
can be used as a price approximation. Moreover, the CP algorithm performs better
than the SDP one for moments of low degree. This indicates that our extension to non
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piecewise polynomial payoff functions combined with the CP algorithm is valid. The
overall method is therefore effective. Finally, for the European case we have explained
how to efficiently design a black box algorithm able to take model and payoff parameters
as input, and return the option price in output. This algorithm is based on an efficient
computation of the moment sequence which is directly connected to the next chapter.
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Figure 3.1 – Bounding polynomials of degree n = 12 multiplied by the density function for the
European put option payoff in the Black-Scholes model, for different log-strike values k.
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Figure 3.2 – Bounding polynomials of degree n = 12 for the European put option payoff in the
Jacobi model, for different log-strike values k.
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Figure 3.3 – Implied volatilities of the upper bounds, lower bounds and mid-price for different
values of n (x-axis) in the Black-Scholes model. For all choices of the log-strike k the reference
implied volatility is 0.2.
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Figure 3.4 – Implied volatilities of the upper bounds, lower bounds and mid-price for different values
of n (x-axis) in the Jacobi model. The reference implied volatilities are 0.2034 (for k = −0.1),
0.1979 (for k = 0) and 0.1929 (for k = 0.1).
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4 Efficient incremental computation of
the moment sequence

In this chapter we develop an algorithm for the incremental computation of block triangular
matrix exponentials. More precisely, we study the problem of computing the matrix
exponential of a block triangular matrix in a peculiar way: block column by block column,
from left to right. Since the moments of polynomial jump-diffusions are given in closed form
via the moment formula (2.6), and the sequence G0, G1, G2, . . . of matrix representations
of the generator G restricted to the polynomial spaces Pol0(E),Pol1(E),Pol2(E), . . .

forms a nested sequence of block upper triangular matrices (see Chapter 2), this algorithm
allows for an efficient incremental computation of the moment sequence. In other words,
we aim to efficiently compute the moments of order 0, 1, 2, 3, . . . . until a dynamically
evaluated criterion tells us to stop. The need for such an evaluation scheme arises in the
context of option pricing in polynomial models. An example is given by the Algorithm
3.2, where in Step 4 such an algorithm can be used to update the vector of moments γ.
Our algorithm is based on scaling and squaring. By carefully reusing certain intermediate
quantities from one step to the next, we can efficiently compute the required sequence of
matrix exponentials.

The rest of this chapter is organized as follows. In Section 4.1 we motivate the development
of our algorithm and we give a precise problem formulation. In Section 4.2 we provide
a detailed description of the algorithm. Finally, in Section 4.3 we present numerical
experiments, some of which treat the option pricing problem in polynomial models. This
chapter is mostly based on the paper [83].
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4.1 Motivation and problem formulation

Some option pricing techniques require an incremental computation of the moments of
the underlying asset price XT , in the sense that moments of XT of order 0, 1, 2, 3, . . . are
to be computed sequentially, one after the other, until a dynamically evaluated stopping
criterion allows to stop. In particular, increasing the order n of the computed moments
allows for a better approximation of the option price, however, the value of n required
to attain a desired accuracy is usually not known a priori. One of these algorithms
is illustrated in Algorithm 3.2, in the Chapter 3 of this thesis. There, updating the
vector γ of moments allows to incrementally compute the bounds of the option price
and the algorithm can stop as soon as the bounds are close enough to each other, in
an ε-neighborhood of the exact price. An other algorithm that requires an efficient
incremental computation of the moment sequence arises when considering the pricing
technique based on polynomial expansions, presented in Section 2.3 of Chapter 2. There,
it is possible to design a heuristic algorithm to select the truncation value N in (2.18)
based on the absolute value of the summands. We present this algorithm later in Section
4.3.

When considering polynomial jump-diffusions, the moment formula (2.6) implies that
computing the sequence of moments boils down to evaluating quantities of the form
Hn(X0)e

GnT 	p, for n = 0, 1, 2, . . . , and for p belonging to the nested sequence of polynomial
spaces Pol0(E) ⊆ Pol1(E) ⊆ Pol2(E) . . . . As mentioned in Chapter 2, Section 2.1, the
matrix sequence G0, G1, G2, . . . forms a nested sequence of block triangular matrices.
Therefore, we are required to incrementally compute the nested block triangular matrix
exponentials

exp(G0), exp(G1), exp(G2), . . .

step by step. We develop an algorithm able to perform this task efficiently.

We now give the general problem formulation. Consider a sequence of block upper
triangular matrices G0, G1, G2, . . . of the form

Gn =

⎡⎢⎢⎢⎢⎢⎣
G0,0 G0,1 · · · G0,n

G1,1 · · · G1,n

. . .
...

Gn,n

⎤⎥⎥⎥⎥⎥⎦ ∈ Rdn×dn , (4.1)
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4.1. Motivation and problem formulation

where all diagonal blocks Gn,n are square. In other words, the matrix Gi arises from
Gi−1 by appending a block column (and adjusting the size). We aim at computing the
sequence of matrix exponentials

exp(G0), exp(G1), exp(G2), . . . . (4.2)

One could, of course, simply compute each of the exponentials (4.2) individually using
standard techniques (see [96] for an overview). However, the sequence of matrix exponen-
tials (4.2) inherits the nested structure from the matrices Gn in (4.1), i.e., exp(Gn−1) is
a leading principle submatrix of exp(Gn). In effect only the last block column of exp(Gn)

needs to be computed and the goal of this chapter is to explain how this can be achieved
in a numerically safe manner.

In the special case where the spectra of the diagonal blocks Gn,n are separated, Parlett’s
method [102] yields – in principle – an efficient computational scheme: Compute F0,0 :=

exp(G0,0) and F1,1 := exp(G1,1) separately, then the missing (1,2) block of exp(G1) is
given as the unique solution X to the Sylvester equation

G0,0X −XG1,1 = F0,0G0,1 −G0,1F1,1.

Continuing in this manner all the off-diagonal blocks required to compute (4.2) could
be obtained from solving Sylvester equations. However, it is well known (see Chapter 9
in [67]) that Parlett’s method is numerically safe only when the spectra of the diagonal
blocks are well separated, in the sense that all involved Sylvester equations are well
conditioned. Since we consider the block structure as fixed, imposing such a condition
would severely limit the scope of applications; it is certainly not met by the application in
option pricing for polynomial models we discuss below. For instance, one can easily see
that the spectra of the first three diagonal blocks of the matrix G2 arising in the Jacobi
model, explicitly shown in the Equation (2.15), are not separated. Indeed, the diagonal
blocks G0,0, G1,1 and G2,2 have the common eigenvalue 0, and the blocks G1,1 and G2,2

share the eigenvalue −κ. Therefore, Parlett’s method would not be suitable to compute
the sequence (4.2) for this particular case.

Exponentials of block triangular matrices have also been studied in other contexts. For
two-by-two block triangular matrices, Dieci and Papini study conditioning issues in [34],
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and a discussion on the choice of scaling parameters for using Padé approximants to
exponential function in [33]. In the case where the matrix is also block-Toeplitz, a fast
exponentiation algorithm is developed in [16].

4.2 Incremental scaling and squaring

Since the set of conformally partitioned block triangular matrices forms an algebra, and
exp(Gn) is a polynomial in Gn, the matrix exp(Gn) has the same block upper triangular
structure as Gn, that is,

exp(Gn) =

⎡⎢⎢⎢⎢⎢⎣
exp(G0,0) ∗ · · · ∗

exp(G1,1)
. . .

...
. . . ∗

exp(Gn,n)

⎤⎥⎥⎥⎥⎥⎦ ∈ Rdn×dn .

As outlined in the introduction, we aim at computing exp(Gn) block column by block
column, from left to right. Our algorithm is based on the scaling and squaring methodology,
which we briefly summarize next.

4.2.1 Summary of the scaling and squaring method

The scaling and squaring method uses a rational function to approximate the exponential
function, and typically involves three steps. Denote by rk,m(z) =

pk,m(z)
qk,m(z) the (k,m)-Padé

approximant to the exponential function, meaning that the numerator is a polynomial of
degree k, and the denominator is a polynomial of degree m. These Padé approximants
are very accurate close to the origin, and in a first step the input matrix G is therefore
scaled by a power of two, so that ‖2−sG‖ is small enough to guarantee an accurate
approximation rk,m(2−sG) ≈ exp(2−sG).

The second step consists of evaluating the rational approximation rk,m(2−sG), and, finally,
an approximation to exp(G) is obtained in a third step by repeatedly squaring the result,
i.e.,

exp(G) ≈ rk,m(2−sG)2
s
.

Different choices of the scaling parameter s, and of the approximation degrees k and m
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yield methods of different characteristics. The choice of these parameters is critical for
the approximation quality, and for the computational efficiency, see [67, Chapter 10].

In what follows we describe techniques that allow for an incremental evaluation of the
matrix exponential of the block triangular matrix (4.1), using scaling and squaring. These
techniques can be used with any choice for the actual underlying scaling and squaring
method, defined through the parameters s, k, and m.

4.2.2 Tools for the incremental computation of exponentials

Before explaining the algorithm, we first introduce some notation that is used throughout.
The matrix Gn from (4.1) can be written as

Gn =

⎡⎢⎢⎢⎢⎢⎣
G0,0 · · · G0,n−1 G0,n

. . .
...

...
Gn−1,n−1 Gn−1,n

Gn,n

⎤⎥⎥⎥⎥⎥⎦ =:

[
Gn−1 gn

0 Gn,n

]
(4.3)

where Gn−1 ∈ Rdn−1×dn−1 , Gn,n ∈ Rbn×bn , so that gn ∈ Rdn−1×bn . Let s be the scaling
parameter, and r = p

q the rational function used in the approximation (for simplicity we
will often omit the indices k and m). We denote the scaled matrix by G̃n := 2−sGn and
we partition it as in (4.3).

The starting point of the algorithm consists in computing the Padé approximant of
the exponential exp(G0) = exp(G0,0), using a scaling and squaring method. Then, the
sequence of matrix exponentials (4.2) is incrementally computed by reusing at each step
previously obtained quantities. So more generally, assume that exp(Gn−1) has been
approximated by using a scaling and squaring method. The three main computational
steps for obtaining the Padé approximant of exp(Gn) are

1. evaluating the polynomials p(G̃n), q(G̃n),

2. evaluating p(G̃n)
−1q(G̃n), and

3. repeatedly squaring it.

We now discuss each of these steps separately, noting the quantities to keep at every
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Chapter 4. Efficient incremental computation of the moment sequence

iteration.

Evaluating p(G̃n), q(G̃n) from p(G̃n−1), q(G̃n−1)

Similarly to (4.3), we start by writing Pn := p(G̃n) and Qn := q(G̃n) as

Pn =

[
Pn−1 pn

0 Pn,n

]
, Qn =

[
Qn−1 qn

0 Qn,n

]
.

In order to evaluate Pn, we first need to compute monomials of G̃n, which for l = 1, . . . , k,
can be written as

G̃l
n =

[
G̃l

n−1

∑l−1
j=0 G̃

j
n−1g̃nG̃

l−j−1
n,n

G̃l
n,n

]
.

Denote by Xl :=
∑l−1

j=0 G̃
j
n−1g̃nG̃

l−j−1
n,n the upper off diagonal block of G̃l

n, then we have
the relation

Xl = G̃n−1Xl−1 + g̃nG̃
l−1
n,n , for l = 2, · · · , k,

with X1 := g̃n, so that all the monomials G̃l
n, l = 1, . . . , k, can be computed in O(b3n +

dn−1b
2
n + d2n−1bn). Let p(z) =

∑k
l=0 αlz

l be the numerator polynomial of r, then we have
that

Pn =

[
Pn−1

∑k
l=0 αlXl

p(G̃n,n)

]
, (4.4)

which can be assembled in O(b2n + dn−1bn), since only the last block column needs to be
computed. The complete evaluation of Pn is summarized in Algorithm 4.1.

Similarly, one computes Qn from Qn−1, using again the matrices Xl.

Evaluating Q−1
n Pn

With the matrices Pn, Qn at hand, we now need to compute the rational approximation
Q−1

n Pn. We assume that Qn is well conditioned, in particular non-singular, which is
ensured by the choice of the scaling parameter and of the Padé approximation, see,
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4.2. Incremental scaling and squaring

Algorithm 4.1 Evaluation of Pn, using Pn−1

Input: Gn−1, Gn,n, gn, Pn−1, Padé coefficients αl, l = 0, · · · , k.
Output: Pn.
1: g̃n ← 2−sgn, G̃n,n ← 2−sGn,n, G̃n−1 ← 2−sGn−1

2: X1 ← g̃n
3: for l = 2, 3, · · · , k do
4: Compute G̃l

n,n

5: Xl = G̃n−1Xl−1 + g̃nG̃
l−1
n,n

6: end for
7: X0 ← 0dn−1×bn

8: Compute off diagonal block of Pn:
∑k

l=0 αlXl.
9: Compute p(G̃n,n) =

∑k
l=0 αlG̃

l
n,n

10: Assemble Pn as in (4.4)

e.g., [68]. We focus on the computational cost. For simplicity, we introduce the notation

F̃n =

⎡⎢⎢⎣
F̃0,0 · · · F̃0,n

. . .
...

F̃n,n

⎤⎥⎥⎦ := Q−1
n Pn, Fn =

⎡⎢⎢⎣
F0,0 · · · F0,n

. . .
...

Fn,n

⎤⎥⎥⎦ := F̃ 2s

n ,

and we see that

F̃n = Q−1
n Pn =

[
Q−1

n−1 −Q−1
n−1qnQ

−1
n,n

0 Q−1
n,n

][
Pn−1 pn

0 Pn,n

]

=

[
F̃n−1 Q−1

n−1(pn − qnQ
−1
n,nPn,n)

0 Q−1
n,nPn,n

]
.

(4.5)

To solve the linear system Q−1
n,nPn,n we compute an LU decomposition with partial pivoting

for Qn,n, requiring O(b3n) operations. This LU decomposition is saved for future use, and
hence we may assume that we have available the LU decompositions for all diagonal
blocks from previous computations:

ΠlQl,l = LlUl, l = 0, . . . , n− 1. (4.6)

Here, Πl ∈ Rbl×bl , l = 0, . . . , n− 1 are permutation matrices; Ll ∈ Rbl×bl , l = 0, . . . , n− 1

are lower triangular matrices and Ul ∈ Rbl×bl , l = 0, . . . , n − 1 are upper triangular
matrices.
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Chapter 4. Efficient incremental computation of the moment sequence

Set Yn := pn − qnQ
−1
n,nPn,n ∈ Rdn−1×bn , and partition it as

Yn =

⎡⎢⎢⎣
Y0,n

...
Yn−1,n

⎤⎥⎥⎦ .

Then we compute Q−1
n−1Yn by block backward substitution, using the decompositions

of the diagonal blocks. The total number of operations for this computation is hence
O(d2n−1bn+dn−1b

2
n), so that the number of operations for computing F̃n is O(b3n+d2n−1bn+

dn−1b
2
n). Algorithm 4.2 describes the complete procedure to compute F̃n.

Algorithm 4.2 Evaluation of F̃n = Q−1
n Pn

Input: Qn, Pn and quantities (4.6)
Output: F̃n = Q−1

n Pn and LU decomposition of Qn,n.
1: Compute ΠnQn,n = LnUn and keep it for future use (4.6)
2: Compute F̃n,n := Q−1

n,nPn,n

3: Yn = pn − qnQ
−1
n,nPn,n

4: F̃n−1,n = U−1
n−1L

−1
n−1Πn−1Yn−1,n

5: for l = n− 2, n− 3, · · · , 0 do
6: F̃l,n = U−1

l L−1
l Πl(Yl,n −∑n−1

j=l+1Ql,jF̃j,n)
7: end for
8: Assemble F̃n as in (4.5)

The squaring phase

Having computed F̃n, which we write as

F̃n =

[
F̃n−1 f̃n

F̃n,n

]
,

we now need to compute s repeated squares of that matrix, i.e.,

F̃ 2l

n =

[
F̃ 2l
n−1

∑l−1
j=0 F̃

2l−1+j

n−1 f̃nF̃
2j
n,n

F̃ 2l
n,n

]
, l = 1, . . . , s, (4.7)

so that Fn = F̃ 2s
n . Setting Zl :=

∑l−1
j=0 F̃

2l−1+j

n−1 f̃jF̃
2j
n,n, we have the recurrence

Zl = F̃ 2l−1

n−1 Zl−1 + Zl−1F̃
2l−1

n,n ,

88



4.2. Incremental scaling and squaring

with Z0 := f̃n. Hence, if we have stored the intermediate squares from the computation
of Fn−1, i.e.,

F̃ 2l

n−1, l = 1, . . . , s (4.8)

we can compute all the quantities Zl, l = 1, . . . , s in O(d2n−1bn+dn−1b
2
n), so that the total

cost for computing Fn (and the intermediate squares of F̃n) is O(d2n−1bn + dn−1b
2
n + b3n).

Again, we summarize the squaring phase in the following algorithm.

Algorithm 4.3 Evaluation of Fn = F̃ 2s
n

Input: F̃n−1, f̃n, F̃n,n, quantities (4.8).
Output: Fn and updated intermediates.
1: Z0 ← f̃n
2: for l = 1, 2, · · · , s do
3: Compute F̃ 2l

n,n

4: Zl = F̃ 2l−1

n−1 Zl−1 + Zl−1F̃
2l−1

n,n

5: Assemble F̃ 2l
n as in (4.7) and save it

6: end for
7: Fn ← F̃ 2s

n

4.2.3 Overall algorithm

Using the techniques from the previous section, we now give a concise description of the
overall algorithm. We assume that the quantities listed in equations (4.6) and (4.8) are
stored in memory, with a space requirement of O(d2n−1).

In view of this, we assume that Fn−1 and the aforementioned intermediate quantities
have been computed. Algorithm 4.4 describes the overall procedure to compute Fn, and
to update the intermediates; we continue to use the notation introduced in (4.3).

Algorithm 4.4 Computation of Fn ≈ exp(Gn), using Fn−1

Input: Block column gn, diagonal block Gn,n, quantities (4.6), and (4.8).
Output: Fn, and updated intermediates.
1: Extend Pn−1 to Pn using Algorithm 4.1, and form analogously Qn

2: Compute F̃n using Algorithm 4.2
3: Evaluate Fn = F̃ 2s

n using Algorithm 4.3

As explained in the previous section, the number of operations for each step in Algo-
rithm 4.4 is O(d2n−1bn+dn−1b

2
n+ b3n), using the notation at the beginning of Section 4.2.2.
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Chapter 4. Efficient incremental computation of the moment sequence

If Fn were simply computed from scratch, without the use of the intermediates, the
number of operations for scaling and squaring would be O((dn−1 + bn)

3). In the typical
situation where dn−1 � bn, the dominant term in the latter complexity bound is d3n−1,
which is absent from the complexity bound of Algorithm 4.4.

In order to solve our original problem, the computation of the sequence exp(G0), exp(G1),
exp(G2), . . . , we use Algorithm 4.4 repeatedly; the resulting procedure is shown in
Algorithm 4.5.

Algorithm 4.5 Approximation of exp(G0), exp(G1), . . .

Input: Padé approximation parameters k, m, and s
Output: F0 ≈ exp(G0), F1 ≈ exp(G1), . . .
1: Compute F0 using scaling and squaring, store intermediates for Algorithm 4.4
2: for n = 1, 2, . . . do
3: Compute Fn from Fn−1 using Algorithm 4.4
4: if termination criterion is satisfied then
5: return
6: end if
7: end for

We now derive a complexity bound for the number of operations spent in Algorithm 4.5.
For simplicity of notation we consider the case where all diagonal blocks are of equal size,
i.e., bk ≡ b ∈ N, so that dk = (k+1)b. At iteration k the number of operations spent within
Algorithm 4.4 is thus O(k2b3). Assume that the termination criterion used in Algorithm 4.5
effects to stop the procedure after the computation of Fn. The overall complexity bound
for the number of operations until termination is O(

∑n
k=0 k

2b3) = O(n3b3), which matches
the complexity bound of applying scaling and squaring only to Gn ∈ R(n+1)b×(n+1)b, which
is also O((nb)3).

In summary the number of operations needed to compute Fn by Algorithm 4.5 is asymp-
totically the same as applying the same scaling and squaring setting only to compute
exp(Gn), while Algorithm 4.5 incrementally reveals all exponentials exp(G0), . . . , exp(Gn)

in the course of the iteration, satisfying our requirements outlined in the introduction.

4.2.4 Adaptive scaling

In Algorithms 4.4 and 4.5 we have assumed that the scaling power s is given as input
parameter, and that it is fixed throughout the computation of exp(G0), . . . , exp(Gn).
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4.2. Incremental scaling and squaring

This is in contrast to what is usually intented in the scaling and squaring method, see
Section 4.2.1. On the one hand s must be sufficiently large so that rk,m(2−sGl) ≈
exp(2−sGl), for 0 ≤ l ≤ n. If, on the other hand, s is chosen too large, then the evaluation
of rk,m(2−sGl) may become inaccurate, due to overscaling. So if s is fixed, and the norms
‖Gl‖ grow with increasing l, as one would normally expect, an accurate approximation
cannot be guaranteed for all l.

Most scaling and squaring designs hence choose s in dependence of the norm of the input
matrix [96, 58, 68]. For example, in the algorithm of Higham described in [68], it is the
smallest integer satisfying

‖2−sGl‖1 ≤ θ ≈ 5.37.... (4.9)

In order to combine our incremental evaluation techniques with this scaling and squaring
design, the scaling power s must thus be chosen dynamically in the course of the evaluation.
Assume that s satisfies the criterion (4.9) at step l− 1, but not at step l. We then simply
discard all accumulated data structures from Algorithm 4.4, increase s to match the
bound (4.9) for Gl, and start Algorithm 4.5 anew with the repartitioned input matrix

Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0,0 · · · G0,l G0,l+1 · · · G0,n

. . .
...

...
...

Gl,l Gl,l+1 · · · Gl,n

Gl+1,l+1 · · · Gl+1,n

. . .
...

Gn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
Ĝ0,0 Ĝ0,1 · · · Ĝ0,n−l

Ĝ1,1 · · · Ĝ1,n−l

. . .
...

Ĝn−l,n−l

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:Ĝn−l

.

(4.10)
The procedure is summarized in Algorithm 4.6.

It turns out that the computational overhead induced by this restarting procedure is
quite modest. In the notation introduced for the complexity discussion in Section 4.2.3,
the number of operations for computing exp(Gn) by Higham’s scaling and squaring
method is O(log(‖Gn‖1)(nb)3). Since there are at most log(‖Gn‖1) restarts in Algo-
rithm 4.6, the total number of operations for incrementally computing all exponentials
exp(G0), . . . , exp(Gn) can be bounded by a function in O(log(‖Gn‖1)2(nb)3). We assess
the actual performance of Algorithm 4.6 in Section 4.3.

In the application from option pricing in polynomial models it turns out that the norms
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Chapter 4. Efficient incremental computation of the moment sequence

Algorithm 4.6 Approximation of exp(G0), exp(G1), . . . with adaptive scaling
Input: Padé approximation parameters k, m, norm bound θ.
Output: F0 ≈ exp(G0), F1 ≈ exp(G1), . . .
1: s ← max{0, log(‖G0‖1)}
2: Compute F0 using scaling and squaring, store intermediates for Algorithm 4.4
3: for l = 1, 2, . . . do
4: if ‖Gl‖1 > θ then
5: Repartition Gn = Ĝn−l as in (4.10)
6: Restart algorithm with Ĝn−l.
7: end if
8: Compute Fl from Fl−1 using Algorithm 4.4
9: if termination criterion is satisfied then

10: return
11: end if
12: end for

of the matrices Gl do not grow dramatically and quite accurate approximations to all the
matrix exponentials can be computed even if the scaling factor is fixed (see Section 4.3.2).

4.3 Numerical experiments

We have implemented the algorithms described in this chapter in Matlab and compared
them with Higham’s scaling and squaring method from [68], which typically employs a
diagonal Padé approximation of degree 13 and is referred to as “expm” in the following.
The implementation of our algorithms for block triangular matrices, Algorithm 4.5 (fixed
scaling parameter), and Algorithm 4.6 (adaptive scaling parameter), is based on the
same scaling and squaring design and are referred to as “incexpm’ in the following. All
experiments were run on a standard laptop (Intel Core i5, 2 cores, 256kB/4MB L2/L3
cache) using a single computational thread.

4.3.1 Random block triangular matrices

We first assess run time and accuracy on a randomly generated block upper triangular
matrix Gn ∈ R2491×2491. There are 46 diagonal blocks, of size varying between 20 and 80.
The matrix is generated to have a spectrum contained in the interval [−80,−0.5], and a
well conditioned eigenbasis X (κ2(X) ≈ 100).
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Figure 4.1 – Comparison of incexpm and expm for a random block triangular matrix. Left:
Cumulative run time for computing the leading portions. Right: Relative error of incexpm
w.r.t. expm.

Figure 4.1 (left) shows the wall clock time for the incremental computation of all the leading
exponentials. Specifically, given 0 ≤ l ≤ n, each data point shows the time vs. dl = b0 +

· · ·+ bl needed for computing the l+1 matrix exponentials exp(G0), exp(G1), . . . , exp(Gl)

when using

• expm (by simply applying it to each matrix separately);

• incexpm with the adaptive scaling strategy from Algorithm 4.6;

• incexpm with fixed scaling power 6 (scaling used by expm for G0);

• incexpm with fixed scaling power 12 (scaling used by expm for Gn).

As expected, incexpm is much faster than naively applying expm to each matrix separately;
the total times for l = n are also displayed in Table 4.1. For reference we remark that
the run time of Matlab’s expm applied only the final matrix Gn is 13.65s, which is very
close to the run time of incexpm with scaling parameter set to 12 (see Section 4.2.3 for a
discussion of the asymptotic complexity). Indeed, a closer look at the runtime profile of
incexpm reveals that the computational overhead induced by the more complicated data
structures is largely compensated in the squaring phase by taking advantage of the block
triangular matrix structure, from which Matlab’s expm does not profit automatically. It
is also interesting to note that the run time of the adaptive scaling strategy is roughly only
twice the run time for running the algorithm with a fixed scaling parameter 6, despite its
worse asymptotic complexity.
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Algorithm Time (s) Rel. error
expm 163.60
incexpm (adaptive) 20.01 3.27e-15
incexpm (s = 6) 9.85 2.48e-13
incexpm (s = 12) 13.70 6.17e-14

Table 4.1 – Run time and relative error attained by expm and incexpm on a random block triangular
matrix of size 2491.

The accuracy of the approximations obtained by incexpm is shown on the right in
Figure 4.1. We assume expm as a reference, and measure the relative distance between
these two approximations, i.e.,

‖expm(Gl)− incexpm(Gl)‖F
‖expm(Gl)‖F

,

at each iteration l (quantities smaller than the machine precision are set to u in Figure 4.1,
for plotting purpose). One notes that the approximations of the adaptive strategy remain
close to expm throughout the sequence of computations. An observed drop of the error
down to u for this strategy corresponds to a restart in Algorithm 4.6; the approximation
at this step is exactly the same as the one of expm. Even for the fixed scaling parameters
6 and 12, the obtained approximations are quite accurate.

4.3.2 Application to option pricing in polynomial models

We now apply incexpm in the framework of polynomial models to price European options.
First, we remind that incexpm allows us to sequentially compute the moment sequence
of polynomial jump-diffusions by means of the moment formula (2.6), see Section 4.1.
Moreover, we recall that the matrix Gn representing the action of the generator G to the
basis elements of Poln(E) exhibits the block triangular structure as in (4.1), where its
size dn is given by dn := N(n, d), the dimension of Poln(Rd), and the sizes of the n+ 1

square diagonal blocks are

1, d,

(
1 + d

2

)
, . . . ,

(
n+ d− 1

n

)
,

as highlighted in Chapter 2.

As discussed in Section 4.2, a norm estimate for Gn is instrumental for choosing a priori
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the scaling parameter in the scaling and squaring method. In the following we provide
such an estimate for the Jacobi model and for the Heston model. We consider these two
models in the numerical experiments below.

Lemma 4.1. Let Gn be the matrix representation of the generator G associated to the
Jacobi model (see definition in Chapter 2) with respect to the monomial basis (2.13) of
Poln(E). Define

α :=
σ(1 + vminvmax + vmax + vmin)

2(
√
vmax −

√
vmin)2

.

Then the matrix 1-norm of Gn is bounded by

n(r + κ+ κθ − σα) +
1

2
n2(1 + |ρ|α+ 2σα). (4.11)

Proof. As already mentioned in Chapter 2, the action of the generator G on a basis
element xpvq yields

Gxpvq =xp−2vq+1p
p− 1

2
− xp−1vq+1p

(
1

2
+

qρσ

S

)
+ xp−1vqp

(
r + qρσ

vmax + vmin

S

)
− xp−1vq−1 pqρσvmaxvmin

S
− xpvqq

(
κ+

q − 1

2

σ2

S

)
− xpvq−2q

q − 1

2

σ2vmaxvmin

S
+ xpvq−1q

(
κθ +

q − 1

2
σ2 vmax + vmin

S

)
,

where S := (
√
vmax −

√
vmin)

2. For the matrix 1-norm of Gn, one needs to determine
the values of (p, q) ∈ M := {(p, q) ∈ N0 × N0|p + q ≤ n} for which the 1-norm of the
coordinate vector of Gxpvq becomes maximal. First, we recall that the model parameters
κ, θ, σ, r, vmin, vmax and S are nonnegative. Then, considering that p and q are also
nonnegative, an upper bound of the 1-norm of the coordinate vector of Gxpvq can be
obtained by replacing ρ by |ρ| as follows:

p
p− 1

2
+ p

(
1

2
+

q|ρ|σ
S

)
+ p

(
r + q|ρ|σvmax + vmin

S

)
+

pq|ρ|σvmaxvmin

S

+ q

(
κ+

q − 1

2

σ2

S

)
+ q

q − 1

2

σ2vmaxvmin

S
+ q

(
κθ +

q − 1

2
σ2 vmax + vmin

S

)
=pr + qκ(θ + 1) +

1

2
p2 + 2pq|ρ|α+ q(q − 1)σα

≤n(r + κ+ κθ) +
1

2
n2 + 2pq|ρ|α+ n(n− 1)σα.
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Figure 4.2 – Left: 1-norm and estimation (4.11) of Gl, l = 0, 1, · · · . Right: Corresponding scaling
parameters.

This completes the proof, noting that the maximum of pq on M is bounded by n2/4 over
M.

The result of Lemma 4.1 predicts that the norm of Gn grows, in general, quadratically.
This prediction is confirmed numerically for parameter settings of practical relevance.
Consider for example the set of model parameters

κ = 0.5, θ = 0.04, σ = 0.15, ρ = −0.5, vmin = 0.01, vmax = 1, r = 0.

Figure 4.2 shows (left) the 1-norm of the matrices Gl, l = 0, 1, · · · and the corresponding
estimation (4.11). On the right side, one can see the scaling parameter we would choose
for all different values of l.

The following lemma extends the result of Lemma 4.1 to the Heston model.

Lemma 4.2. Let Gn be the matrix representation of the generator G associated to the
Heston model (see definition in Chapter 2) with respect to the monomial basis (2.13) of
Poln(E). Then the matrix 1-norm of Gn is bounded by

n(r + κ+ κθ − σ2

2
) +

1

2
n2(1 + |ρ|σ

2
+ σ2).
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Proof. The action of the generator G on a basis element xpvq yields (see (2.12))

Gxpvq =xpvq−1
(
κθq +

1

2
σ2q(q − 1)

)
+ xp−1vq(rp+ ρσqp)+

xp−2vq+1
(1
2
p(p− 1)

)
+ xpvq(−kq) + xp−1vq+1

(
− 1

2
p
)
.

As done in the proof of Lemma 4.1, an upper bound of the 1-norm of Gn is obtained by
considering the non-negativity of the model parameters and by replacing ρ by |ρ|. The
required bound is then given by
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where the last inequality follows the same reasoning as in Lemma 4.1.

We now present the first option pricing technique that requires the incremental com-
putation of the moment sequence. It is based on the polynomial expansion technique
presented in Chapter 2, Section 2.3. We consider the pricing of European call options in
the Jacobi model. The polynomial expansion method takes the particular form described
in Chapter 3, Section 3.1.4. In particular the price is given by

∑
n≥0

fn
n, (4.12)

where the coefficients fn are computed recursively as in (3.43) and the coefficients 
n are
given by


n = Hn(X0, V0)e
GnT	hn, (4.13)

for 	hn containing the coordinates of the generalized Hermite polynomials (3.42) with
respect to the monomial basis (2.13). Truncating the sum (4.12) after a finite number of
terms allows us to obtain an approximation of the option price. However, in practice it is
not known a priori how to choose the truncation level N in order to get a satisfactory
accuracy. This issue can be solved by designing a heuristic algorithm to selecting N

based on the absolute value of the summands. This procedure requires a sequential
moment computation and it is presented in Algorithm 4.7, which makes use of incexpm,
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Algorithm 4.7 Option pricing for the European call option in the Jacobi model
Input: Model and payoff parameters, tolerance ε
Output: Approximate option price
1: n = 0
2: Compute 
0, f0; set Price = 
0f0.
3: while |
nfn| > ε · Price do
4: n = n+ 1
5: Compute exp(GnT ) using Algorithm 4.4.
6: Compute Hermite moment 
n using (4.13).
7: Compute Fourier coefficient fn as in (3.43).
8: Price = Price + 
nfn;
9: end while

Algorithm Time (s) Rel. price error
expm 42.97 1.840e-03
incexpm (adaptive) 5.84 1.840e-03
incexpm (s = 7) 5.60 1.840e-03

Table 4.2 – Total run time and option price errors for the Jacobi model for n = 61.

Algorithm 4.5, for computing the required moments incrementally.

We now show results for computing option prices using Algorithm 4.7 for the set of
parameters

v0 = 0.04, x0 = 0, σw = 0.5, μw = 0, κ = 0.5, θ = 0.04, σ = 0.15,

ρ = −0.5, vmin = 0.01, vmax = 1, r = 0, T = 1/4, k = log(1.1).

We use the tolerance ε = 10−3 for stopping Algorithm 4.7.

We explore the use of different algorithms for the computation of the matrix exponentials
in line 5 of Algorithm 4.7: incexpm with adaptive scaling, incexpm with fixed scaling
parameter s = 7 (corresponding to the upper bound from Lemma 4.1 for n = 60), and
expm. Similar to Figure 4.1, the observed cumulative run times and errors are shown in
Figure 4.3. Again, incexpm is observed to be significantly faster than expm (except for
small matrix sizes) while delivering the same level of accuracy. Both incexpm run times
are also close to the run time of Matlab’s expm applied only to the final matrix GnT

(4.64s).

Table 4.2 displays the impact of the different algorithms on the overall Algorithm 4.7, in
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Figure 4.3 – Comparison of incexpm and expm for the block upper triangular matrices arising in
the context of the Jacobi model in Algorithm 4.7. Left: Cumulative run time for computing the
leading portions. Right: Relative error of incexpm w.r.t. expm.

terms of execution time and accuracy. Concerning accuracy, we computed the relative
error with respect to a reference option price computed by considering a truncation
order N = 100. It can be observed that there is no difference in accuracy for the three
algorithms.

We now consider a second option pricing algorithm that requires an incremental com-
putation of the moment sequence: the black box algorithm for European option pricing
developed in Chapter 3, Section 3.1.5, based on the computation of lower and upper
bounds of the option price. In particular we compute the price of a European call option
with payoff parameters k = −0.1 and T = 1/12 in the Heston model by running the
Algorithm 3.2. We set the tolerance for the gap to ε = 10−5 and we consider the model
parameters

v0 = 0.01, x0 = 0, κ = 0.5, θ = 0.04, σ = 0.15, ρ = 0.5, r = 0.

The solution of the optimization problems (3.5) and (3.6) (Step 5 of the algorithm) are
computed using the SDP approach explained in Chapter 3, Section 3.1.3. We employ
incexpm in Step 4 to update the vector of moments. In particular, we combine it with
the adaptive scaling strategy and with fixed scaling parameter s = 6 (obtained via the
Lemma 4.2 with n = 40). We compare it with expm. We show the impact of the different
algorithms on the overall Algorithm 3.2 in Table 4.3. We list the total run times to
compute the sequence of matrix exponentials and the relative price errors computed with

99



Chapter 4. Efficient incremental computation of the moment sequence

Algorithm Time (s) Rel. price error
expm 3.09 5.421e-04
incexpm (adaptive) 0.78 5.421e-04
incexpm (s = 6) 1.06 5.421e-04

Table 4.3 – Total run time and option price errors for the Heston model for n = 40.

respect to a reference price obtained via the Fourier pricing technique as in [66] and
reviewed in Chapter 1.

The algorithm always stops after reaching maximal moment order n = 40. Again, we see
that incexpm outperforms expm in terms of total run time by keeping the same accuracy,
for both choices of the scaling parameter. It is worth it to mention that, compared
to the previous example, there is a notable difference. The evaluation of the stopping
criterion requires the numerical solution of the two SDPs, which completely dominates
the time needed for the computation of the matrix exponentials. Therefore, while in the
Jacobi model example incexpm has a big impact on the overall pricing Algorithm 4.7 in
terms of total run time, in this last example the dominating cost of the Algorithm 3.2 is
concentrated in Step 5.

We conclude with a short remark about a computational detail of incexpm.

Remark 4.3. While the particular structure of the diagonal blocks is taken into account
automatically by expm and incexpm when computing the LU decompositions of the diagonal
blocks, it is not so easy to benefit from the sparsity. Starting from sparse matrix arithmetic,
the matrix quickly becomes denser during the evaluation of the initial rational approxima-
tion, and in particular during the squaring phase. In all our numerical experiments we
used a dense matrix representation throughout.

4.4 Conclusion

We have presented techniques for scaling and squaring algorithms that allow for the
incremental computation of block triangular matrix exponentials. We combined these
techniques with an adaptive scaling strategy that allows for both fast and accurate
computation of each matrix exponential in this sequence (Algorithm 4.6).

The developed algorithm incexpm has been effectively employed for European option
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pricing in polynomial models. In this framework, we have considered two pricing algorithms
that require the incremental computation of the moment sequence. Numerical experiments
have shown that the running time can be reduced by using incexpm with both the adaptive
scaling strategy and with a fixed scaling parameter, while maintaining the same accuracy.
Our algorithm is therefore effective. Lastly, we have seen that the fixed scaling parameter
can be determined through the estimation techniques in Lemmas 4.1 and 4.2, which can
be in principle extended to any polynomial model.
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5 A complexity reduction technique
for high-dimensional option pricing

In this chapter we present a complexity reduction technique for high-dimensional option
pricing. Our approach is based on the work by Gass et al. [46], who propose a complexity
reduction technique for parametric option pricing based on Chebyshev interpolation.
There, the idea consists of using the classical Chebyshev interpolation on the space
of model and payoff parameters to increase the efficiency in computing option prices,
while maintaining the required accuracy. As the number of treated parameters increases,
however, this method is affected by the curse of dimensionality. We extend this approach
to treat parameter spaces of high dimensions by exploiting low-rank structures. The
core idea of our method is to express the tensorized interpolation in the tensor train
format and to develop an efficient way, based on tensor completion, to approximate the
interpolation coefficients.

Our method is designed to tackle the high dimensionality of parameter spaces in the
general option pricing problem. Given an arbitrary option pricing algorithm for a certain
stochastic model, this method can be applied to reduce its complexity and increase
the efficiency. As a consequence, moment-based option pricing techniques, as the one
developed in Chapter 3, and polynomial models are a special case to which it can be
applied.

Generally speaking, treating high dimensionality is one of the main challenges in the
development of computational methods for solving problems arising in finance. We
continue this chapter by reviewing high dimensionality in finance, Section 5.1. Then, in
Section 5.2 we give an overview of the different steps of our method, and we provide a
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detailed explanation in Section 5.3. Finally, we show its effectiveness in Section 5.4 where
we present two numerical experiments. This chapter is mostly based on the preprint [51].

5.1 Introduction to high dimensionality in finance

Financial problems are, by their nature, multi- and high-dimensional, because a large
number of risk factors contribute to the prices of each financial asset. Moreover, the
banking, insurance and hedge fund industry draws on investments in large portfolios.
The interdependencies of both the risk factors and the assets make basic computational
tasks such as model calibration, pricing, and hedging as well as more global tasks such as
uncertainty quantification, risk assessment and capital reserve calculation computationally
extremely challenging, see for instance [10].

Automatic and high-speed trading challenge the computational methods in that the results
need to be available fast and with minimal storage requirement. Moreover, we observe
rising regulatory requirements. On the one hand, more realistic modeling demands more
prudent considerations, which leads to rising computational complexity. On the other
hand, the availability of requested performance characteristics is expected to be delivered
within shorter periods of time. This poses a high challenge for traditional approaches,
which typically suffer from low convergence rates in higher dimensions, see for instance
[22, 32].

For the reasons explained above, the development of efficient computational methods
for high-dimensional problems in finance is an utmost active field of research in both
academia and industry. For example, further developments of the Monte Carlo method
have been very successfully applied to financial problems; we refer to [90, 49] for the
quasi Monte Carlo method and to [48] for the multilevel Monte Carlo method. Besides
stochastic integration, deterministic numerical integration has been exploited using sparse
grid techniques, see [56, 71, 11]. Also PDE methods have been extended to multivariate
problems in finance. For instance using operator splitting methods as in [76], principal
component analysis and expansions as in [103], and wavelet compression techniques
proposed in [95, 69, 70].

Exploiting the particular structure of a problem, complexity reduction techniques exhibit
great potential to save run-time and storage capacity while maintaining the required
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accuracy. One way to reduce the complexity of a certain approach is to look at the
parameter dependency of the problem. Let us consider the example of option pricing.
The price of an option can be seen as a function of model and payoff parameters and
this parameter dependency can be exploited as follows. First, the price is computed in a
certain set of parameters during an offline phase. Then, the procedure learns from the
computed prices to get insights on the structure of the function “parameters �→ Price”.
Finally, this knowledge is exploited to compute (an approximation of) the prices for a new
arbitrary set of parameters during an online phase. The idea is to make the procedure
work a lot during the offline phase, which is the most expensive part of the approach,
in order to collect as much information as possible. Similar approaches are used in the
field of machine learning, where complex models are trained during an offline phase using
available data, see e.g. [92] for a machine learning approach to option pricing.

The big advantage of such an approach is that the offline phase can be performed at
any time, and once finished, the information can be stored and used whenever needed
during the online phase to efficiently compute option prices. Such a structure is very
convenient, for example, when model calibration has to be performed. Indeed, this task
requires a lot of price evaluations and this can be efficiently done in the offline-online
framework described above. In this chapter we propose a complexity reduction technique
for computing the price of options that depend on a large set of parameters. The idea
is to use the direct interpolation of multivariate functions which enables us to exploit
parameter dependency and to build an offline-online procedure.

5.2 Introduction to the method

Our starting point is the tensorized Chebyshev interpolation of conditional expectations
in the parameter and state space, as introduced in [46]. Having observed for a large
set of applications that these functions are highly regular, admitting sensitivities of
high order or even being analytic, and that the domain of interest can be restricted
to a hyperrectangular, Chebyshev interpolation is a promising choice: Its convergence
is superalgebraic for multivariate analytic functions, its implementation is numerically
stable, and the coefficients are simply given by a linear transformation of the function
values at the nodal points. In this work we exploit this favorable structure further for high
dimensionality. In passing, we point out that, while we choose Chebyshev interpolation
for the reasons listed in this paragraph, the technique presented in this chapter extends
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to other tensorized interpolation techniques.

The basis of our approach is the following. In an offline phase, the price as function
of parameters p ∈ [−1, 1]d, p �→ Pricep is evaluated at selected parameter samples p

to prepare an approximation by tensorized Chebyshev polynomials Tj1,...,jd with pre-
computed Fourier coefficients cj1,...,jd , as follows,

Pricep ≈
n1∑

j1=0

. . .

nd∑
jd=0

cj1,...,jdTj1,...,jd(p). (5.1)

To evaluate the function in the online phase, only the multivariate polynomials on the
right-hand side need to be evaluated. However, implementing (5.1) in a straightforward
manner exposes the method to the curse of dimensionality in both the offline and the
online phase: In the offline phase, the prices need to be evaluated on a tensorized grid of
Chebyshev nodes, amounting to O(nd) parameter samples when n nodes are required for
each parameter. This is computationally costly, especially if the underlying pricing method
is already computationally demanding. In the online phase alike, O(nd) operations are
needed for evaluating the approximating multivariate polynomial. Even for a number as
low as n = 3, corresponding to quadratic polynomials, a problem with d = 20 parameters
becomes infeasible.

One approach to breaking the curse of dimensionality that has already proven effective
in a number of areas is to exploit low-rank structures of high-dimensional tensors; see
[55, 59, 78] and the references therein. These techniques reduce, sometimes dramatically,
memory requirements and the cost of operating with tensors. In the context of parametric
PDEs, low-rank tensor structures have been successfully exploited in, e.g., [6, 9, 79, 86, 112].
As option prices are characterized as solutions of parabolic PDEs, this gives hope that
low-rank structures can be exploited in finance as well. The following questions arise:

Can we detect low-rank structures for the problem of form (5.1)? Existing theoretical
studies only provide partial answers to this question, either not reflecting the observed
effectiveness of low-rank techniques or being limited to rather specific function classes;
see [29, 59, 107] for examples. We therefore approach the question from an experimental
perspective and analyze examples of different nature and different dimensionality in
Section 5.4. The results clearly indicate an approximate low-rank structure of the tensor
P containing the prices evaluated at the nodes of the tensorized Chebyshev grid. In
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the specific case of the interpolation of American option prices in the Heston model in
five parameters we can explicitly compare the full tensor P with the one resulting from
low-rank approximation. We perform this comparison in Section 5.4.1, which confirms
the low-rank structure of P. In Section 5.4.2 we consider prices of basket options in the
Black-Scholes model with up to 25 underlyings and interpolate in the initial values of the
underlyings. Although the resulting full tensor P is too large to be explicitly computed
and compared with, we provide a structural analysis that explains why P is expected to
exhibit low-rank structure.

How can we exploit low-rank structures for the problem of form (5.1)? Expressing the
problem in a tensor format reveals that exploiting the tensor structure itself (even without
low-rank structure) leads to a considerable efficiency gain in both the offline and the
online phase. Next, we explore existing low-rank tensor techniques. In order to efficiently
exploit these techniques for problem (5.1), we need to introduce several new components
resulting in the new method. We detail these steps below.

In order to construct the interpolation coefficients cj1,...,jd in the offline phase, it is first
required to compute or approximate all values of the tensor P , containing the prices in the
tensorized Chebyshev grid. Evaluating P explicitly is too costly for larger d, especially
when the underlying pricing procedure is computationally expensive. Instead we only
compute part of the entries of P and then need to deal with an incomplete tensor. This
leads us to the following first step:

1. We start by computing the prices for a small portion of the Chebyshev grid points
only. Then, we adapt a completion algorithm (in Section 5.3.4) which allows us to
approximate the tensor of prices for the complete Chebyshev grid by fitting tensors
of pre-specified low rank to the provided data points. As it is not reasonable to
assume a priori knowledge of low-rank structure, the completion procedure needs to
be combined with an adaptive rank and sampling strategy. Specifically, we repeat
the process of adding new samples and increasing the pre-specified rank until an
adequate stopping criterion is fulfilled. This completion algorithm is designed to
work with tensors built and stored in the tensor train (TT) format.

With the low-rank approximation of the tensor P in the TT format at hand, we can then
approximate efficiently the Fourier coefficients cj1,...,jd . This is the last step of the offline
phase:
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2. The computation of the tensor C, containing the Fourier coefficients cj1,...,jd , is
computed by a sequence of d tensor-matrix multiplications. The particular structure
of the involved matrices facilitates the use of the fast Fourier transform, leading to
a complexity of O(dnr2 log(n)), where r is determined by the ranks of P . This step
is explained in Section 5.3.5.

Suppose now that, in the online phase, we want to compute the interpolated price (5.1)
for a new set of parameter samples. Given the tensor C in the TT format, the evaluation
of (5.1) for a price p is performed efficiently as follows:

3. First, each of the Chebyshev polynomials involved in the tensorized Chebyshev basis
is evaluated in p. It turns out that (5.1) can be viewed as inner product between C
and a rank-one tensor. Thanks to the TT format, the complexity of computing this
inner product is O(dnr2); see Section 5.3.3. As long as r is reasonably small, this
compares favorably with the O(nd) operations needed by the standard approach.

In Section 5.4, we test the performance of the new method for two different option pricing
problems, the interpolation of

– American option prices in the Heston model in d = 5 parameters, and of

– prices of basket options in the Black-Scholes model in up to d = 25 underlyings.

At comparable accuracy, the interpolation in American option prices reveals a promising
gain in efficiency when compared to an ADI-based PDE solver. The efficiency gain for the
basket option prices is shown in comparison to a Monte Carlo simulation with variance
reduction.

5.3 TT format and tensor completion for Chebyshev inter-

polation

This section describes the methodology proposed in this work. We start with recalling
the tensorized Chebyshev interpolation method from [46]. After defining the concept
of low-rank approximation and the TT format [101], we present and extend the tensor
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completion approach from [112]. Finally, we explain how to combine these algorithms in
order to efficiently price parametric options for a large number of parameters.

5.3.1 Chebyshev interpolation for parametric option pricing

We consider an option price that depends on a vector of d parameters p contained in
[−1, 1]d; general hyperrectangular parameter domains can be addressed by a suitable
affine transformation. The basic idea developed in [46] consists of using the tensorized
Chebyshev interpolation in the parameters (model and payoff parameters) to increase the
efficiency of computing option prices, while maintaining satisfactory accuracy. Writing
Pricep for the price evaluated in p, the Chebyshev interpolation of order n := (n1, . . . , nd)

(with ni ∈ N0) aims at interpolating Pricep in the d-dimensional tensorized Chebyshev
grid defined as

qk1,...,kd := (qk1 , . . . , qkd), for ki = 0, . . . , ni and i = 1, . . . , d, (5.2)

where
qki := cos

(
π
ki
ni

)
are the Chebyshev nodes of the second kind, by means of basis functions that are
constructed from Chebyshev polynomials of the first kind as

Tj1,...,jd(p) :=

d∏
i=1

Tji(pi), Tji(pi) = cos(ji arccos(pi)), (5.3)

for j� = 0, . . . , n�, with 
 = 1, . . . , d. By extending standard results on the one-dimensional
Chebyshev interpolation (see e.g. [116]), one can show (see also Lemma 5.1 below) that
the interpolating polynomial that solves the tensorized Chebyshev interpolation problem
is given by

In(Price
(·))(p) =

n1∑
j1=0

. . .

nd∑
jd=0

cj1,...,jdTj1,...,jd(p), (5.4)

where the coefficients cj1,...,jd are defined as

cj1,...,jd =

( d∏
i=1

2�ni>ji>0

ni

) n1∑′′

k1=0

. . .

nd∑′′

kd=0

P(k1, . . . , kd)

d∏
i=1

cos
(
jiπ

ki
ni

)
. (5.5)
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The symbol
∑′′

in (5.5) indicates that the first and the last summand are halved, and
the tensor P contains the prices on the tensorized Chebyshev grid:

P(k1, . . . , kd) = Priceqk1,...,kd , (5.6)

for ki = 0, . . . , ni and i = 1, . . . , d. A convergence analysis of the tensorized Chebyshev
interpolation in the setting of option pricing is given in [46].

In the following lemma we rigorously show that the interpolation problem is indeed solved
by the interpolating polynomial In(Price(·))(p).

Lemma 5.1. Let qα1,...,αd
be an arbitrary Chebyshev node that belongs to the tensorized

grid (5.2). Then,
In(Price

(·))(qα1,...,αd
) = Priceqα1,...,αd .

Proof. For the sake of clarity, we first show the statement for the one-dimensional case
d = 1. In this case, the interpolating polynomial evaluated in the Chebyshev node qα

takes the form

In(Price
(·))(qα) =

n∑
j=0

cjTj(qα) =
n∑

j=0

(
2�n>j>0

n

n∑′′

k=0

P(k) cos
(
jπ

k

n

))
Tj(qα) =

2

n

n∑′′

j=0

( n∑′′

k=0

P(k)Tj(qk)

)
Tj(qα) =

2

n

n∑′′

k=0

P(k)

( n∑′′

j=0

Tj(qk)Tj(qα)

)
.

(5.7)

It follows straightforward from the definition of Tj and qk that the equality

Tj(qk) = Tk(qj) (5.8)

holds for all k, j = 0, . . . , n. Moreover, the Chebyshev polynomials satisfy the following
discrete orthogonality condition (see e.g. [47])

n∑′′

j=0

Tk(qj)Tα(qj) = δk,α

⎧⎨⎩n for α = 0 or α = n

n
2 1 ≤ α ≤ n− 1

. (5.9)

By using the Properties (5.8) and (5.9), the Equation (5.7) can be further simplified
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obtaining

2

n

n∑′′

k=0

P(k)

( n∑′′

j=0

Tj(qk)Tj(qα)

)
=

2

n

n∑′′

k=0

P(k)

( n∑′′

j=0

Tk(qj)Tα(qj)

)
= P(α) = Priceqα ,

which concludes the proof for the case d = 1. For an arbitrary d > 1, the Property (5.8)
takes the form

Tj1,...,jd(qk1,...,kd) =

d∏
i=1

Tji(qki) =

d∏
i=1

Tki(qji) = Tk1,...,kd(qj1,...,jd), (5.10)

for all ki, ji = 0, . . . , ni, while the Property (5.9) becomes

n1∑′′

j1=0

. . .

nd∑′′

jd=0

( d∏
i=1

Tki(qji)
d∏

�=1

Tα�
(qj�)

)
=

⎧⎨⎩
∏d

i=1
ni

2
�ni>ki>0

if αi = ki for all i

0 otherwise
.

(5.11)
By exploiting (5.10) and (5.11) the statement can be shown for an arbitrary dimension d

by rewriting In(Price
(·))(qα1,...,αd

) as

n1∑
j1=0

. . .

nd∑
jd=0

cj1,...,jdTj1,...,jd(qα1,...,αd
) =

n1∑
j1=0

. . .

nd∑
jd=0

(( d∏
i=1

2�ni>ji>0

ni

) n1∑′′

k1=0

. . .

nd∑′′

kd=0

P(k)

d∏
i=1

cos
(
jiπ

ki
ni

))
Tj1,...,jd(qα1,...,αd

) =

2d

n1 · · ·nd

n1∑′′

k1=0

. . .

nd∑′′

kd=0

P(k)

n1∑′′

j1=0

. . .

nd∑′′

jd=0

( d∏
i=1

cos
(
jiπ

ki
ni

) d∏
�=1

Tj�(qα�
)

)
=

2d

n1 · · ·nd

n1∑′′

k1=0

. . .

nd∑′′

kd=0

P(k)

n1∑′′

j1=0

. . .

nd∑′′

jd=0

( d∏
i=1

Tki(qji)

d∏
�=1

Tα�
(qj�)

)
= P(α1 . . . , αd) =

Priceqα1,...,αd ,

where we used the notation k := (k1, . . . , kd) throughout. This concludes the proof.

The tensor P in equation (5.5) is of order d and size (n1 + 1) × · · · × (nd + 1). The
interpolation procedure first requires to compute each entry of this tensor with the
reference method. This becomes expensive when the interpolation order and the dimension
d increase. We will use tensor completion to lower this cost.
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Remark 5.2 (Choice of interpolation order). In our numerical experiments, the inter-
polation order n is chosen a priori for simplicity. However, this choice can be made
adaptively as explained in [64] for the case d = 3.

5.3.2 Low-rank matrix approximation

In this section we start introducing the notion of low-rank approximation. We begin by
focusing on matrices and we consider tensors in the next section. Let A ∈ Rm×n be a
matrix and assume that m ≥ n. Its singular value decomposition (SVD) is given by

A = UΣV T , with Σ =

⎡⎢⎢⎢⎢⎢⎣
σ1

. . .

σn

0

⎤⎥⎥⎥⎥⎥⎦ ∈ Rm×n, (5.12)

for two orthogonal matrices U ∈ Rm×m and V ∈ Rn×n, and where the scalars σ1 ≥ σ2 ≥
· · · ≥ σn ≥ 0 are the singular values of A. The number r of positive (nonzero) singular
values is equal to the rank of A which we denote by rank(A). The matrices U and V can
be partitioned in columns as

U =
[
u1

∣∣∣ . . . ∣∣∣un∣∣∣un+1

∣∣∣ . . . ∣∣∣um]
, V =

[
v1

∣∣∣ . . . ∣∣∣vn] ,
and the vectors u1, . . . , un ∈ Rm are called left singular vectors. Similarly, the vectors
v1, . . . , vn ∈ Rn are called right singular vectors. If the rank of A is strictly smaller than
n, then the singular values σr+1, . . . , σn are equal to 0. In this case, the matrix A can be
decomposed according to the so-called reduced SVD

A = UrΣrV
T
r ,

where

Ur =
[
u1

∣∣∣ . . . ∣∣∣ur] ∈ Rm×r, Vr =
[
v1

∣∣∣ . . . ∣∣∣vr] ∈ Rn×r, Σr = diag(σ1, . . . , σr).

If r is much smaller than m and n we say that A has low rank.

Let A ∈ Rm×n be an arbitrary matrix. We aim at approximating A with a matrix of a
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certain prescribed rank r ≤ rank(A). We consider the SVD (5.12) and we define the rank
r-truncation of A as the matrix

Tr(A) := UrΣrV
T
r , (5.13)

where
Ur :=

[
u1

∣∣∣ . . . ∣∣∣ur] , Σr := diag(σ1, . . . , σr), Vr :=
[
v1

∣∣∣ . . . ∣∣∣vr] .
The matrix Tr(A) has rank r and represents a rank-r approximation of A. The following
theorem (see e.g. [73]) states that this is the best rank-r approximation in the Frobenius
norm and in the 2-norm, given by

‖A‖F =
√

Tr(ATA) =
√

σ2
1 + · · ·+ σ2

n, ‖A‖2 = max
‖x‖2=1

‖Ax‖2 = σ1

respectively.

Theorem 5.3. Consider the rank r-truncation Tr(A) defined in (5.13) for A ∈ Rm×n

with 0 ≤ r ≤ n ≤ m. Then

min
{
‖A−B‖ : B ∈ Rm×n,B has rank at most r

}
= ‖A− Tr(A)‖

holds for both the Frobenius norm and the 2-norm.

By construction, the error ‖A− Tr(A)‖ is explicitly given by

‖A− Tr(A)‖2 = σr+1, ‖A− Tr(A)‖F =
√

σ2
r+1 + · · ·+ σ2

n.

If there exists r � m,n such that the singular values σr+1, . . . , σn are small, the truncation
Tr(A) yields a good rank-r approximation for A and we say that A has a low-rank structure.
This allows to reduce the storage complexity. In fact, storing the low-rank factorization
(5.13) requires r(m+ n) units of storage, while storing A in full format requires mn units
of storage. If r � m,n this represents a big storage reduction. Also, the matrix operations
can be performed more efficiently. For example, the matrix-vector multiplication Tr(A)x,
for a vector x ∈ Rn, has a computational cost O(r(m+ n)), while performing Ax in full
format costs O(nm) operations. Again, if r � m,n this leads to a complexity reduction
of the operation.

The concept of (matrix)-decomposition and low-rank approximation can be extended
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Figure 5.1 – Tensor network diagram of the TT decomposition of a tensor of order d = 5.

further to tensors, which are d-dimensional arrays. More precisely, a tensor of order d

and size n1 × nd × · · · × nd is a d-dimensional array with entries

X (i1, i2, · · · , id), iμ ∈ {1, . . . , nμ} for μ = 1, . . . , d.

Matrices are tensors of order 2. While the rank of a matrix is uniquely defined and
the SVD allows to compute the best low-rank approximations, the situation is more
complex with tensors. In fact, they can be decomposed in different ways, leading to
different definitions of tensor-rank and to different tensor decompositions. Examples are
the Canonical Polyadic Decomposition and the Tucker decomposition, see e.g. [82]. An
other tensor decomposition is the tensor train (TT) decomposition, introduced in [101].
In this chapter, we work with tensors in the TT format and their corresponding low-rank
approximations, which we present next.

5.3.3 TT format

For recalling the TT format introduced in [101], we consider a general tensor X ∈
Rn1×n2×···×nd of order d. The tensor X is in the TT decomposition if every entry
X (i1, i2, · · · , id) can be expressed as

X (i1, i2, · · · , id) =
r1∑

k1=1

· · ·
rd−1∑

kd−1=1

U1(1, i1, k1)U2(k1, i2, k2) · · ·Ud(kd−1, id, 1), (5.14)

for some third order tensors Uμ of size rμ−1 × nμ × rμ, for μ = 1, · · · , d, the so-called TT
cores of X . Tensors in the TT format can be represented by a tensor network diagram [100].
For example, Figure 5.1 illustrates a tensor of order 5 in the TT format. As shown in
[101], the integer tuple (r0, r1, · · · , rd), where we formally set r0 = rd = 1, is related
to the (matrix-)ranks of the so-called unfoldings of X , which we define next. For each
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μ = 1, . . . , d− 1, the entries of X can be rearranged into a matrix

X<μ> ∈ R(n1n2···nμ)×(nμ+1···nd),

which is called the μth unfolding of X . For this purpose, the first μ indices of X are
merged into the row index and the last n− μ indices into a column index. Formally, the
index map is given by

ι : Nd → N× N, ι(i1, . . . , id) = (irow, icol),

irow = 1 +

μ∑
�=1

(i� − 1)
�−1∏
k=1

nk, icol = 1 +
d∑

�=μ+1

(i� − 1)
�−1∏

k=μ+1

nk.

The μth unfolding of X can be computed in Matlab with the reshape command as

X<μ> = reshape

(
X ,

[ μ∏
i=1

ni,

d∏
i=μ+1

ni

])
.

The Theorem 2.1 in [101] shows that the tuple (r0, r1, · · · , rd) can be chosen to be1

(r0, r1, · · · , rd) = (1, rank(X<1>), · · · , rank(X<d−1>), 1). (5.15)

We refer to (5.15) as the TT ranks of X and we denote it by rankTT(X ). The proof of
[101, Theorem 2.1] is constructive and gives an algorithm ([101, Algorithm 1]) to compute
the TT decomposition (5.14) with TT ranks (5.15) of a general tensor X . This algorithm
is referred to as TT-SVD and it uses a sequence of d− 1 SVDs of some auxiliary matrices
to compute the TT cores of X . We give the pseudo-code of the TT-SVD in Algorithm
5.1. Note that in the algorithm we write the SVD (5.12) in the form A = UṼ where
U ∈ Rm×r and Ṽ := ΣV T ∈ Rr×n, for r = rank(A).

We now proceed as in the case of matrices by defining the concept of low rank and
low-rank approximation of tensors in the TT format. We say that the tensor X has
low rank if the TT ranks are much smaller than n1, . . . , nd. A low-rank approximation
of X in the TT format can be constructed by modifying the TT-SVD. In particular,
if one truncates each SVD (Step 4 and Step 9) in Algorithm 5.1 as in (5.13), then the
algorithm yields an approximation X̃ of X which has lower TT ranks. Assuming that

1This is the “best” choice for (r0, r1, . . . , rd) in the sense that if (5.14) holds for some r1, · · · , rd−1,
then necessarily rμ ≥ rank(X<μ>), for μ = 1, . . . , d− 1.
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Algorithm 5.1 TT-SVD
Input: Tensor X
Output: TT cores Uμ for μ = 1, . . . , d
1: n ← n1n2 . . . nd

2: nR ← n/n1

3: X1 ← reshape(X , [n1, nR])
4: Compute the SVD X1 = UṼ and set r1 ← rank(X1)
5: U1 ← U
6: for μ = 2, . . . , d− 1 do
7: nR ← nR/nμ

8: Ṽμ−1 ← reshape(Ṽ , [rμ−1nμ, nR])
9: Compute the SVD Ṽμ−1 = UṼ and set rμ ← rank(Ṽμ−1)

10: Uμ ← reshape(U, [rμ−1, nμ, rμ])
11: end for
12: Ud ← Ṽ

rankTT(X̃ ) = (1, r̃1, . . . , r̃d−1, 1), the approximation error is (see [101, Theorem 2.2])

‖X − X̃‖F ≤
√

ε21 + · · ·+ ε2d−1,

where the ε-terms are given by the rank r̃μ-truncations of the unfoldings of X , i.e.

ε2μ := ‖X<μ> − Tr̃μ(X<μ>)‖2F .

While the Theorem 5.3 states that the truncated SVD yields the best rank-r approximation
in the case of matrices, the following result states that the TT-SVD yields a quasi-optimal
approximation, see [101, Corollary 2.4].

Corollary 5.4. Let Xbest denotes the best approximation of X with TT ranks bounded by
(1, r̃1, . . . , r̃d−1, 1), i.e.

Xbest := argminY∈Rn1×···×nd

{
‖X − Y‖F : rankTT(Y) ≤ (1, r̃1, . . . , r̃d−1, 1)

}
.

Then, the tensor approximation X̃ satisfies

‖X − X̃‖F ≤
√
d− 1‖X − Xbest‖F .
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As in the case of matrices, if the singular values of the unfoldings of X exhibit a fast decay,
X̃ is a good approximation and if its TT ranks are small, we say that the tensor X has a
low-rank structure. Moreover, if the TT ranks are small, storing the TT cores instead of
the full tensor X yields a significant memory reduction: from O(nd) to O(dnr2), where
r = max{r0, . . . , rd} and n = max{n1, . . . , nd}.

Some operations can be effected quite cheaply in the TT format for tensors of low TT
ranks. Let us first consider the inner product of two tensors X ,Y ∈ Rn1×···×nd defined as

〈X ,Y〉 = 〈vec(X ), vec(Y)〉 =
n1∑

i1=1

· · ·
nd∑

id=1

X (i1, . . . , id)Y(i1, . . . , id), (5.16)

where vec(·) stacks the entries of a tensor into a long vector. The corresponding tensor
network diagram when X and Y are both in the TT decomposition is shown in Figure
5.2. It can be seen that the summations in (5.16) become contractions between the TT
cores of X and Y . By carrying out these contractions of cores from the left to right, the
cost of evaluating the inner product reduces from O(nd) to O(dnr3), where r denotes the
maximum of all involved TT ranks. This procedure is described in [101, Algorithm 4].

U1 U2 U3 U4 U5

V1 V2 V3 V4 V5

n1

r1

n2

r2

n3

r3

n4

r4

n5

s1 s2 s3 s4

Figure 5.2 – Inner product of two tensors of order d = 5 in the TT decomposition.

The mode-μ matrix multiplication between a tensor X ∈ Rn1×···×nd and a matrix M ∈
Rm×nμ results in a tensor Z ∈ Rn1×···nμ−1×m×nμ+1···×nd defined by

Z(i1, · · · , iμ−1, j, iμ+1 · · · , id) =
nμ∑

iμ=1

X (i1, · · · , id)M(j, iμ), j = 1, . . . ,m.

We will denote this operation by Z = X ×μ M . If X is in the TT decomposition (5.14)
then it is straightforward to obtain a TT decomposition for Z, by performing a mode-2
matrix multiplication of Uμ with M . Indeed, the core tensors U1, . . .Uμ−1,Uμ+1, . . . ,Ud

remain unchanged and the μ-th core tensor of Z is obtained by computing MU
(2)
μ , where
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U
(2)
μ ∈ Rnμ×rμ−1rμ is the 2-mode matricization of Uμ, see e.g. [59]. This has a cost

of O(nmr2) while computing Z = X ×μ M in full format requires O(mnd) operations.
Again, we obtain a significant complexity reduction by exploiting the TT format.

5.3.4 Completion algorithm

The goal of completion algorithms is to reconstruct a given data set from a small fraction
of its entries. As this is clearly an ill-posed task, one needs to additionally impose some
regularization, such as smoothness conditions. In this work, we impose low TT ranks
on the tensor P containing the prices and reconstruct P using the completion algorithm
proposed in [112].

In the following, we briefly summarize the approach from [112]. Let A ∈ Rn1×···×nd

denote the original data tensor for which only the entries in a (small) training set
Ω ⊂ {1, . . . , n1} × · · · × {1, . . . , nd} are known. When aiming at fitting a tensor of fixed
(low) TT ranks r = (r0, . . . , rd) to this data, completion takes the form of the constrained
optimization problem

min
X

1

2
||PΩX − PΩA||2

subject to X ∈ Mr := {X ∈ Rn1×···×nd | rankTT = r},
(5.17)

where PΩX denotes the orthogonal projection onto Ω and ‖ · ‖ is the norm induced by
the inner product (5.16). It is known that Mr is a smooth embedded submanifold of
Rn1×···×nd (see e.g. [72]), which enables one to apply Riemannian optimization techniques
to (5.17). Specifically, in [112] it is proposed to employ a Riemannian conjugate gradient
(CG) method (see Algorithm 1 in [112]). This method produces iterates that stay on the
manifold and, in turn, can be stored and manipulated efficiently in the TT format. In
the following we provide the basic outline of the Riemannian CG.

Riemannian CG

We start by introducing the Euclidean (nonlinear) CG algorithm. Later on, we explain
how to design a Riemannian version of it, obtaining the basic outline of the algorithm
developed in [112] that we use to solve (5.17).
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The Euclidean CG algorithm is a line-search method that aims at numerically solving an
optimization problem of the form

min
x∈Rn

f(x),

for an objective function f : Rn → R, which is assumed to be differentiable. The idea is
to create a sequence of iterates {x0, x1, . . .} that converges to a local minimizer of f . In
the case of the Euclidean CG algorithm, see e.g. [61], these iterates are defined as (for a
random starting vector x0)

xk+1 := xk + αkηk, k = 0, . . . , (5.18)

where αk is a stepsize, and ηk is the search direction given by

ηk :=

⎧⎨⎩−∇f(xk), for k = 0,

−∇f(xk) + βkηk−1, for k = 1, . . . ,
(5.19)

for some parameter βk. The search directions {ηk}k∈N0 are referred to as the conjugate
directions. Ideally, the stepsize αk is chosen such that it minimizes f(xk+1), i.e.

αk := argminαf(xk + αηk).

The parameter βk can be chosen in different ways, yielding different versions of the
Euclidean CG algorithm. One way to define βk is according to the Fletcher-Reeves rule,
see [45], given by

βk =
∇f(xk)

�∇f(xk)

∇f(xk−1)�∇f(xk−1)
. (5.20)

In order to solve the problem (5.17), we need to adapt the CG algorithm to the Riemannian
setting. In particular, the problem is now of the form

min
x∈M

f(x),

where we consider an arbitrary Riemannian submanifold M, and f : M → R. In order
to derive a Riemannian version of the CG algorithm, the following points are considered,
see e.g. [109].

• The Euclidean gradient is replaced by the Riemannian gradient, which we denote
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Algorithm 5.2 Riemannian CG for tensor completion
Input: Initial guess X0 ∈ Mr.
ξ0 ← gradf(X0) % compute Riemannian gradient
η0 ← −ξ0 % first step is steepest descent
α0 ← argminαf(X0 + αη0) % step size by linearized line search
X1 ← R(X0, α0η0) % obtain next iterate by retraction
for k = 1, 2, . . . do
ξk ← gradf(Xk) % compute Riemannian gradient
ηk ← −ξk + βkTXk−1→Xk

ηk−1 % conjugate direction by updating rule
αk ← argminαf(Xk + αηk) % step size by linearized search
Xk+1 ← R(Xk, αkηk) % obtain next iterate by retraction

end for

by gradf(x). At each iteration k, the negative Riemannian gradient points into the
direction of the steepest descent within the tangent space of M at the point xk.

• At each iteration, we need to make sure that the new iterate xk stays on the manifold
M. In general, after performing the update step (5.18), the new iterate xk does not
lie on M. In the Riemannian CG, the new iterate is mapped back to the manifold
by a retraction operator, which we denote by R. In [113, Figure 2.3], the concept of
retraction is well illustrated.

• For k ≥ 1, the new conjugate direction ηk in (5.19) is a linear combination of the
current gradient and of the previous direction ηk−1. Since the vectors belong to
different tangent spaces, the operation is not defined a priori in the Riemannian
case. Therefore, in order to perform this operation we first need to transport ηk−1

to the tangent space at the current point xk. This is done by a vector transport,
which we denote by Txk−1→xk

. This concept is illustrated in [113, Figure 2.4].

• Finally, the parameter βk can be computed as in (5.20) where the Euclidean gradient
is replaced by the Riemannian gradient and the inner product is substituted by the
Riemannian metric.

Considering the above points for (5.17) yields the Riemannian CG for the tensor completion
problem summarized in the Algorithm 5.2, which corresponds to [112, Algorithm 1]. In
[112] it is explained how to define the Riemannian gradient, the retraction operator, and
the vector transport operator for the manifold Mr of tensors of fixed TT ranks. Also,
it is shown how to perform every step of the Riemannian CG algorithm 5.2 in the TT
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format. Moreover, the complexity of the algorithm is discussed and it is shown that one
iteration requires O(dnr3 + d|Ω|r2) operations, where |Ω| denotes the cardinality of Ω.

Regarding the stopping criterion of the Riemannian CG, we design it to attain a level of
accuracy warranted by the data and the chosen TT ranks. Following [112], we choose a
test set ΩC of, say, 100 additional parameter samples not in the training set Ω. At each
iteration k, we measure the errors on the training and the test set:

εΩ(Xk) :=
‖PΩA− PΩXk‖

‖PΩA‖ , εΩC
(Xk) :=

‖PΩC
A− PΩC

Xk‖
‖PΩC

A‖ .

The algorithm is stopped once these errors stagnate, that is,

|εΩ(Xk)− εΩ(Xk+1)|
|εΩ(Xk)|

< δ and
|εΩC

(Xk)− εΩC
(Xk+1)|

|εΩC
(Xk)|

< δ, (5.21)

holds for some small δ > 0.

Adaptive rank and adaptive sampling strategy

To set up the optimization problem (5.17), two issues remain to be discussed: The choice
of the TT ranks r and a suitable training set Ω. For our application, these are not known
a priori and thus need to be chosen adaptively.

Concerning the choice of TT ranks, we follow the adaptive strategy proposed in [112]. We
start by solving (5.17) for the smallest sensible choice of TT ranks, r = (1, . . . , 1). Most
likely, this choice will not suffice to obtain satisfactory accuracy and the error on the test
set will be relatively large. To decrease it, the obtained solution is used as starting value
for Riemannian CG applied again to (5.17), but this time with the increased TT ranks
r = (1, 2, 1, . . . , 1) as discussed in [112]. See also [118] for a greedy rank update procedure
in the context of matrix completion. The described procedure is repeated by increasing
cyclically every TT rank rμ. The overall algorithm stops as soon as increasing any of the
TT ranks does not improve the test set error anymore or the maximal possible rank rmax

is reached; see Algorithm 5.3.

For the adaptive choice of the sampling set Ω, which has not been addressed in [112], we
present two different strategies. The core idea is to gradually increase the size of Ω in
order to improve the approximation of the tensor. Both strategies are also combined with
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Algorithm 5.3 Adaptive rank strategy
Input: Data on sampling/test sets Ω,ΩC , max rank rmax, acceptance parameter ρ ≥ 0
Output: Completed tensor X with adaptively chosen TT ranks r, rμ ≤ rmax.
1: X random tensor having TT ranks r = (1, . . . , 1)
2: X ← result of Riemannian CG using starting guess X
3: locked = 0
4: μ = 1
5: while locked < d− 1 & maxν rν < rmax do
6: Xnew ← increase μth rank of X to (r0, . . . , rμ−1, rμ + 1, rμ+1, . . . , rd)
7: Xnew ← result of Riemannian CG using starting guess Xnew

8: if (εΩC
(Xnew)− εΩC

(X )) > −ρ then
9: locked ← locked+ 1 % revert step

10: else
11: locked ← 0, X ← Xnew % accept step
12: end if
13: μ ← 1 + (μ mod d− 1)
14: end while

Algorithm 5.3 and they differ only in the measurement of the error.

The steps of the first adaptive sampling strategy are as follows.

1. Start with a sample set Ω of small size and a test set ΩC of a certain prescribed
size |ΩC |. Run Algorithm 5.3.

2. Measure the relative error on the test set ΩC and stop if the stopping criterion is
satisfied. If not satisfied, add the test set ΩC to the sample set Ω and create a new
test set of size |ΩC |. In our applications, this corresponds to computing new option
prices on the Chebyshev grid using the reference method.

3. Run again Algorithm 5.3 from line 2 to the end, by using a rank r = (1, . . . , 1)

approximation of the result from the previous step as initial guess for the CG
algorithm.

4. Repeat 1-3 until a maximal sampling percentage is reached or an a priori chosen
stopping criterion is satisfied.

The pseudo-code in Algorithm 5.4 summarizes this first strategy.

The second adaptive sampling strategy that we propose is designed in a similar way. The

122



5.3. TT format and tensor completion for Chebyshev interpolation

Algorithm 5.4 Adaptive sampling strategy 1
Input: Initial sampled data PΩA, maximal rank rmax for rank adaptivity, maximal

allowed size percentage p (of Ω)
Output: Completed tensor X of TT ranks r, rμ ≤ rmax

1: Create test set ΩC
new such that Ω ∩ ΩC

new = ∅
2: Run Algorithm 5.3 with Ω,ΩC

new and get completed tensor Xc.
3: errnew ← εΩC

new(Xc)
4:
5: while |Ω|/size(A) < p do
6: errold ← errnew
7: X̃ ← rank (1, . . . , 1) approximation of Xc

8: ΩC
old ← ΩC

new

9: Create new test set ΩC
new such that ΩC

new ∩ ΩC
old = ∅

10: Ω ← Ω ∪ ΩC
old

11: Run Algorithm 5.3 (from line 2 to end) with Ω,ΩC
new and X̃ as starting guess.

Get completed tensor Xc out of it.
12: errnew ← εΩC

new(Xc)
13: if stopping criterion satisfied then
14: Break
15: end if
16: end while
17:
18: X ← Xc

only difference is that the error is measured on an a priori defined fixed set Γ and not
on ΩC , which changes at each step. Therefore, this strategy follows the same steps as
the first one, with the only difference that in Step 2 we measure the error on the set Γ,
which has been previously defined. The algorithm summarizing this second strategy can
be obtained by replacing line 3 and line 12 in Algorithm 5.4 with

errnew ← εΓ(Xc).

The stopping criterion of line 13 can be also defined in different ways. We choose to stop
the algorithm if one of the following criteria is satisfied:

1. if errnew < tol, where tol is a prescribed tolerance;

2. if |errnew − errold| < tol′, where tol′ is a prescribed tolerance;

3. if ∃μ such that rμ(Xc) == rmax.
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The first criterion allows us to stop as soon as the error goes below a certain level, the
second stops the algorithm whenever the error stagnates, and the last one when the TT
ranks have reached the maximal allowed rank at least in one mode μ.

We test the new adaptive sampling strategies on a problem with known solution in the
next section.

Numerical test for adaptive sampling strategies

We consider the problem of Chapter 5.4.2 in [112] and we apply our adaptive sampling
strategies to it in order to compare them and to investigate their advantages and disad-
vantages. We expect a similar performance of both strategies in terms of accuracy and
compression. In this numerical example, as well as in the rest of the chapter, we choose
‖ · ‖ to be the 2-norm and δ = 10−4 in (5.21). The problem consists of discretizing the
function

f : [0, 1]4 → R, f(x) = exp(−‖x‖)

using n = 20 equally spaced discretization points on [0, 1] in each mode. We aim at
reconstructing the tensor containing the function values in the grid. In Algorithm 5.4 we
set the maximum rank to rmax = (1, 7, 7, 7, 1) and we start with an initial sampling set Ω

satisfying |Ω|/n4 = 0.01. Moreover, we set the acceptance parameter ρ of Algorithm 5.3
to ρ = 10−4. In order to analyze the behavior of the error, we do not impose any stopping
criterion, but we let our adaptive sampling strategies run until |Ω|/size(A) > 0.25. The
size of each ΩC is set to 2000 and |Γ| = 3000 for the second strategy. Figures 5.3 and 5.4
show the results for the two different strategies.

First, we observe that both strategies eventually reach the same accuracy and the same
final TT ranks, which makes both of them valid. We observe an oscillatory behavior
in Figure 5.3. This non-smooth decay can be expected since in each step the error is
measured on a different test set ΩC . We observe that the amplitude of the oscillations
becomes smaller as |Ω| increases. This indicates an error stagnation over the whole tensor
which cannot be improved by enlarging ΩC further. On the other hand, the error in the
second strategy behaves almost monotonically and stagnates much earlier than in the
previous case. This is due to the fact that we measure it on the fixed set Γ. In practice,
the earlier error stagnation of the second strategy is preferable as it triggers the stopping
criterion 2. However, the second strategy has the disadvantage of the initial additional
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Figure 5.3 – Relative error on varying test sets ΩC for different sampling set sizes in adaptive
sampling strategy 1.
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Figure 5.4 – Relative error on set Γ for different sampling set sizes in adaptive sampling strategy
2.

cost of evaluating the tensor in the set Γ. In our numerical experiments in Section 5.4
we choose the first strategy, which turned out to be more favorable since the stopping
criterion 1 was triggered.
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5.3.5 Combined methodology

We are now in the position to combine the concepts and the algorithms in order to develop
an efficient procedure for high-dimensional tensorized Chebyshev interpolation.

We would like to price options that depend on a vector p = (p1, · · · , pd) of d varying
parameters. It is reasonable to assume that every combination of parameters p belongs
to a compact hyper-rectangular [p

1
, p1]× [p

2
, p2]× · · · × [p

d
, pd]. For example, if time-to-

maturity T belongs to the set of varying parameters, we can assume that T ∈ [0.05, 2];
similarly for the other payoff or model parameters. The combined methodology consists
of two phases: offline phase and online phase, as already introduced in [46].

Offline phase - Computation of P

The offline phase starts by performing following operations:

1. Fix an interpolation order n = (n1, . . . , nd) and compute the entries of the tensor
P (as defined in (5.6)) from an a priori chosen subset Ω of Chebyshev nodes, using
the reference pricing technique.

2. Apply tensor completion with adaptive sampling strategy (Algorithm 5.4) in order
to get a low-rank approximation of the tensor P in the TT format.

For simplicity, we denote the obtained low-rank approximation of P again by P2. In
the last step of the offline phase we construct the interpolation coefficients, defined in
(5.5). We denote the tensor of coefficients by C ∈ R(n1+1)×(n2+1)×···×(nd+1). Its entries
are therefore given by (adjusting the ordering according to the Sections 5.3.1 and 5.3.3)

C(i1, i2, · · · , id) = ci1−1,i2−1,··· ,id−1, (5.22)

for ij = 1, · · · , nj + 1 and j = 1, · · · , d. The tensor C can be efficiently computed in the
TT format, as explained in the following subsection.

2Note that in Section 5.3.1 we let the indices of the entries of P start from 0. From now on, we let
them start from 1 in order to be consistent with the new notation introduced in Section 5.3.2
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5.3. TT format and tensor completion for Chebyshev interpolation

Offline phase - Efficient computation of C

In order to explain the algorithm we first consider the simple case d = 1. In this case P
and C are in R(n1+1)×1, where n1 is the chosen interpolation order. The entries of C are
given by

C(j + 1) =
2�n1>j>0

n1

n1∑′′

k=0

P(k + 1) cos
(
jπ

k

n1

)
, j = 0, · · · , n1.

By defining a matrix Fn1 ∈ R(n1+1)×(n1+1) as

Fn1 :=
2

n1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
4

1
2 . . . 1

2
1
4

1
2 cos( π

n1
) . . . cos(π(n1−1)

n1
) 1

2 cos(π)
...

...
. . .

...
...

1
2 cos(π(n1−1)

n1
) . . . cos(π(n1−1)2

n1
) 1

2 cos(π(n1 − 1))
1
4

1
2 cos(π) . . . 1

2 cos(π(n1 − 1)) 1
4 cos(πn1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

the whole vector C of coefficients can be computed via the matrix-vector multiplication

C = Fn1P. (5.23)

For a general dimension d > 1, the same reasoning can be applied and the tensor C of
interpolation coefficients can be computed by sub-sequentially multiplying P with Fni

(i = 1, · · · , d) via the mode-μ multiplication, defined in Section 5.3.3. The final procedure
for an efficient computation of C is given in Algorithm 5.5.

Algorithm 5.5 Efficient computation of C
Input: Tensor P in the TT format containing option prices in the Chebyshev grid
Output: Tensor C as defined in (5.22), in the TT format
1: Compute Fn1 as in (5.23).
2: C ← P ×1 Fn1

3: for m = 2, . . . , d do
4: Compute Fnm

5: C ← C ×m Fnm .
6: end for

Note that if n1 = · · · = nd =: n, Algorithm 5.5 can be further simplified by computing the
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matrix Fn only once. Following the cost of the mode-μ multiplication illustrated in Section
5.3.3, one can easily see that Algorithm 5.5 requires O(dn2r2) operations. Moreover, the
cost of the operation (5.23) can be further reduced by applying a Fast-Fourier-Transform
(FFT) based algorithm. As a consequence, also the cost of each mode multiplication in
the Algorithm 5.5 can be further reduced, from O(r2n2) to O(r2n log(n)). In summary,
running the whole Algorithm 5.5 and computing C can be performed in O(dnr2 log(n))

operations. In the following remark we give a detailed explanation on how to employ a
FFT based algorithm to perform (5.23).

Remark 5.5. We recall that the discrete Fourier transform (DFT) of an arbitrary sequence
of complex numbers x0, . . . , xn−1 is defined as the sequence f0, · · · , fn−1 where

fj :=

n−1∑
k=0

xke
−i2πj k

n , j = 0, . . . , n− 1.

A Fast-Fourier-Transform is an algorithm that computes the DFT of a sequence in
O(n log(n)) operations, see e.g. [119]. We explain how to compute the coefficients C via
a FFT based algorithm. For consistency with the definition of DFT, we consider the
notation

cj =
2�n>j>0

n

n∑′′

k=0

Priceqk cos
(
jπ

k

n

)
, j = 0, . . . , n (5.24)

for the interpolation coefficients.

• We define the vector

p̃ := [p̃0, · · · , p̃2n−1] := [Priceq0 ,Priceq1 , . . . ,Priceqn ,Priceqn−1 , . . . ,Priceq1 ].

• We compute the DFT of p̃; we take its real part, and we divide each number of the
sequence by n, resulting in the sequence

c̃j =
1

n

2n−1∑
k=0

p̃k cos
(
jπ

k

n

)
, j = 0, . . . , 2n− 1. (5.25)

• By exploiting the relation p̃k = p̃2n−k, for all k = 1, · · · , 2n− 1, and the fact that
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cos
(
πjk
n

)
= cos

(
πj(2n−k)

n

)
, we can rewrite (5.25) as

c̃j =
2

n

n∑′′

k=0

p̃k cos
(
jπ

k

n

)
, j = 0, . . . , 2n− 1.

• Finally, the interpolation coefficients (5.24) are given by

c0 =
c̃0
2
, cn =

c̃n
2
,

cj = c̃j , for j = 1, . . . , n− 1.

The offline phase can be finally completed by performing the step

3. Construct the tensor C as explained in Algorithm 5.5.

Online phase

Once we have stored C in the TT format, we can use it to compute every option price via
interpolation during the online phase. For any particular choice of parameters p, we first
perform the step

4. Evaluate the Chebyshev tensor basis (5.3) in p.

This step returns a tensor Tp ∈ R(n1+1)×(n2+1)×···×(nd+1) of TT ranks (1, · · · , 1), that we
store in the TT format. The interpolated price, defined in (5.4), can now be rewritten as
the inner product

In(Price
(·))(p) = 〈C, Tp〉. (5.26)

The final step of our combined methodology is then defined as

5. Compute the interpolated price (5.26) in the TT format as in (5.16).

If we consider a fixed interpolation order n in each dimension and if the TT ranks of P
and C are approximately r, then the total cost for performing both Step 3 and Step 5 is
given by O(dnr2 + dnr2 log(n)). These two steps are represented via a tensor network
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Figure 5.5 – Tensor network diagram representing the whole interpolation procedure as in (5.4)
and (5.5), for d = 5 in the TT format. Note that ñ := n+ 1.

diagram in Figure 5.5 (for d = 5), where we denoted by Pi the core tensors of P and by
Ti the ones of Tp.

Finally, we summarize our complete methodology in Algorithm 5.6.

Algorithm 5.6 Combined methodology for Chebyshev interpolation in parametric option
pricing
Input: Interpolation order n, subset Ω of total Chebyshev nodes, set Π of parameters p

for which we want to compute option prices
Output: Interpolated option prices for parameters p ∈ Π
1: % Offline phase
2: Compute option prices using reference method in the subset Ω of Chebyshev points
3: Construct P using tensor completion in the TT format (Algorithm 5.4)
4: Construct tensor C as in Section 5.3.5
5:
6: % Computation of option prices - Online phase
7: for p ∈ Π do
8: Evaluate the Chebyshev tensor basis Tp
9: Compute interpolated price (5.26)

10: end for

In the next section we see how this combined methodology performs on concrete examples.

130



5.4. Financial applications and numerical experiments

5.4 Financial applications and numerical experiments

Putting the new approach to test, we implement the method described in Section 5.3
for two different types of applications. In the first one, we tackle computational intense
option pricing methods in a parametric model. We treat option prices as functions in the
parameter space which consists of model and option parameters. We then approximate
the price function by Chebyshev interpolation in the parameter space. This approach
has been successfully tested in cases where the parameter space is low-dimensional. In
various applications, several varying parameters are of interest. If the interpolation is even
efficient in the full parameter space, it can be interpreted as a new pricing methodology.
Here, we combine Chebyshev interpolation and low-rank approximation to cope with
higher dimensionality in the parameter space. Already for pricing single asset options, it
is promising to tackle medium and high-dimensional parameters spaces in this approach.
As a generic example, we choose to approximate American put option prices in the Heston
model with the varying parameters K, ρ, σ, κ and θ. It turns out that the computational
complexity reduces significantly in this case.

As second type of application we examine the interpolation of basket option prices in the
d-variate Black-Scholes model as function of the initial asset prices. This is a prototypical
example for the computation of generalized conditional moments of high-dimensional
Markov processes.

All algorithms have been implemented in Matlab and run on a standard laptop (Intel
Core i7, 2 cores, 256kB/4MB L2/L3 cache). In order to deal with tensors, we used the
toolboxes [101] by Oseledets and [7, 8], while for the completion algorithm we used the
TT completion toolbox described in [84, 85, 112, 113]. Note that in this toolbox the
most expensive steps have been implemented in C using the Mex-function capabilities of
Matlab.

5.4.1 Pricing American options in Heston’s model

We consider pricing single asset American put options in the Heston model. In contrast
to Chapter 4, in this example we use the asset price formulation of the model, and not
the log-asset price formulation as presented in Section 2.2. The price dynamics of the
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asset price under the risk neutral measure are given by

dSt = rStdt+
√
vtStdW

1
t ,

where the square of the volatility vt is modeled by the square root process

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t .

Here, the two Brownian motions (W 1
t ) and (W 2

t ) are correlated with correlation parameter
ρ, mean-reversion rate κ > 0, long-term mean θ > 0, volatility of the variance σ > 0 and,
finally, fixed and deterministic continuously compounding interest rate r.

We recall that the price of an American put option at time t < T , maturing at T , with
initial underlying price s ≥ 0 and initial volatility v ≥ 0 is given by (see Section 1)

Price = sup
τ∈St,T

E[e−r(τ−t)f(Sτ )|St = s, vt = v], (5.27)

where St,T is the set of all stopping times in [t, T ], and f is the payoff function of the
European put option, i.e. f(x) = (K − x)+, for a strike price K.

As introduced in Chapter 1, the price (5.27) of the American option satisfies the partial
differential complementarity problem (PDCP)⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tPrice+ GPrice− rPrice ≥ 0

Price ≥ f

(Price− f)(∂tPrice+ GPrice− rPrice) = 0,

(5.28)

where the generator G in the asset formulation of the Heston model is given by

Gg(s, v) = 1

2
s2v∂2

ssg + ρσsv∂2
svg +

1

2
σ2v∂2

vvg + rs∂sg + κ(θ − v)∂vg.

The problem (5.28) has been well studied in the literature and different pricing algorithms
have been developed so far. In our example we consider, as reference method for our
combined methodology, the pricing algorithm explained in [60]. More precisely, the
authors propose different schemes for the time and the spatial discretization and we
consider the Hundsdorfer Verwer - Ikonen Toivanen (HV-IT) scheme, explained at page
219 of [60].
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Solving the discretized PDCP yields an approximate price for all values of S0, v0 and T

in each grid point of the pre-specified domain. For many applications we would like to
have the solution at hand for other parameters (as well). In calibration, for instance,
we observe S0 and r, and one could estimate v0 from historical stock price data. Then
the calibration problem reduces to fitting the parameters (K, ρ, σ, κ, θ) to the observed
option price data. To do so one needs to solve an optimization problem where prices
need to be computed for large sets of parameters (K, ρ, σ, κ, θ, T ). Since the price for
different maturities can be obtained by rescaling κ and σ, effectively we need the prices
for combinations of the parameters K, ρ, σ, κ and θ. This motivates the following set up,
where we fix the model and payoff parameters

S0 = 2, v0 = 0.0175, r = 0.1, T = 0.25,

and we let vary the five parameters

(K, ρ, σ, κ, θ) ∈ [2; 4]× [−1; 1]× [0.2; 0.5]× [1; 2]× [0.05; 0.2]

in their corresponding domain.

In order to compute the reference prices we consider 50 equidistant spatial grid points in
both directions s and v with smin = 0, smax = 5, vmin = 0, vmax = 1, 40 time steps and
the Crank-Nicholson time stepping scheme.

We start by performing the offline phase of Algorithm 5.6. We consider an interpolation
order n1 = · · · = n5 =: n = 10 in each direction and we construct the tensor P by tensor
completion as explained in Section 5.3.4. We apply the first adaptive sampling strategy
as in Algorithm 5.4. We choose the completion parameters as

ρ = 0, tol = 10−3, tol′ = 10−8, rmax = 10, |Ω| = 805, |ΩC | = 805, p = 0.2.

For this particular example, we were also able to explicitly construct the full tensor
(in more than 1 hour and 40 minutes!). In Table 5.1 we show the size of the final set
Ω (first column), the relative error of the completed tensor on the last Ωnew

c (second
column), the relative error between the obtained completed tensor and the full one (third
column), the runtime of the completion, Algorithm 5.4, in seconds (fourth column),
the TT ranks of P (fifth column), the storage needed to save P in the TT format,
denoted by store(TT) and measured in bytes (sixth column) and finally, the storage
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needed to save the full tensor, denoted by store(full) and again measured in bytes.
Matlab requires 8 bytes to store a floating-point number of type double, which gives
us the formula store(full)= 8 · (n+ 1)d for the storage of the full tensor and store(TT)=
8 · (n+ 1)(r1r2 + · · ·+ rd−2rd−1) + 8 · (n+ 1)(r1 + rd−1) for the storage of the tensor in
the TT format, see Section 5.3.3

Table 5.1 shows that a sample set of 5% is sufficient for the algorithm to reach the
prescribed accuracy. Furthermore, the relative error of the completed tensor P in the
2-norm over the last test sample parameter space Ωnew

c and the relative error over the
full tensor, i.e. over all Chebyshev nodes, is only in the 6th digit. This is one order of
magnitude smaller than the relative error on the full P. This is a good indication that
the approach can be extended to more complex cases, where the computation of the full
tensor P is not feasible any more (see Section 5.4.2). The completion time was about 6

minutes. Finally, the rank properties together with its storage reduction of a factor of
115 confirm the low-rank structure of the problem.

final |Ω| rel err on last Ωnew
c rel err on full P completion time (s)

8050 (5 %) 2.56 · 10−5 2.75 · 10−5 366.12

rankTT(P) store(TT) (bytes) store(full) (bytes)

(1, 5, 8, 6, 5, 1) 11264 1288408

Table 5.1 – Completion results on P for the parametric American put option pricing problem in
the Heston model.

For constructing the tensor C (last step of the offline phase) we applied Algorithm 5.5
and the computation time was 0.0037 seconds, which is negligible compared to the
completion time. Hence, almost all the computation time in the offline phase is spent in
the construction of the tensor P.

Next, we compute American put option prices for the online phase in both ways using our
methodology and the reference algorithm. We compute 243 prices with random model
parameters uniformly drawn from the reference set [2; 4]× [−1; 1]× [0.2; 0.5]× [1; 2]×
[0.05; 0.2]. We measure the maximal absolute error over the computed options prices, i.e.
we report the quantity

max(|PInt − PRef|),

where PInt is a vector containing all interpolated prices for the different choices of model
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parameters; analogously is PRef for the reference method. In Table 5.2 we also report the
computation time for computing one single option price for both methods. One can notice
that the online phase of the interpolation compared to the reference method accelerates
the procedure by a factor of 75. The accuracy of the reference method is reported in part
C of Figure 1 in [60] for one specific parameter set to be of the order 10−3 in the maximum
norm. The interpolation error is one order smaller, making the new procedure at least
as accurate as the reference method. Therefore, we can conclude that the methodology
strongly outperforms the reference method in the online phase while keeping the same
accuracy.

time reference method (s) time interpolation (s) max abs error

3.65 · 10−2 4.89 · 10−4 1.95 · 10−4

Table 5.2 – Results on American put option pricing via combined methodology and reference
method.

5.4.2 Basket options in the multivariate Black-Scholes model

We now consider the d-variate Black-Scholes model with d assets S1, · · · , Sd. The risk
neutral dynamics and other relevant properties of the model are specified in Chapter 2,
Section 2.2. We apply the new methodology in order to price basket options with payoff
function f : Rd → R defined as

f(s) :=

( d∑
n=1

wnsn −K

)+

,

where K is the strike and (w1, · · · , wd) is a vector of weights satisfying
∑d

n=1wn = 1.
The price at time t = 0 of the basket option with maturity T is, as introduced in Chapter
1, given by

Price = e−rTE[f(ST )]. (5.29)

From now on, we consider the parameters r, σi (i = 1, · · · , d) and the correlation matrix Σ

to be fixed, and we let the vector S0 ∈ Rd of initial asset prices be the varying parameter.
The reference pricing algorithm will be of Monte Carlo (MC) type combined with a
variance reduction technique. In particular, we use the control variates method presented
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in [50], where the control variate is given by

Y =:

(
exp

( d∑
i=1

ωi log(S
i
T )

)
−K

)+

.

Since the only varying parameter is the vector of initial asset prices, it is very convenient
to split the Monte Carlo simulation in two parts in order to make the completion more
efficient. More precisely, in a pre-computation phase (Algorithm 5.7) we simulate a certain
number of realizations (e.g. 104) of

exp
(
(r − σ2

i

2
)T + σiW

i
T

)
, for i = 1, · · · , d,

and in a second moment we multiply the vector S0 (for all required parameter combina-
tions) with all the realizations and we compute the Monte Carlo price by applying the
chosen variance reduction technique (Algorithm 5.8). In order to generate the correlated
random variables W i

T , we use the Cholesky factorization of the correlation matrix, which
is then multiplied by a vector of independently generated standard normal distributed
random variates. Note that ◦ in Algorithm 5.8 represents the Hadamard (component-wise)
product between vectors.

Algorithm 5.7 Simulation of correlated geometric Brownian motions
Input: Model and payoff parameters σ,Σ, T, r; number of simulations NumberSim.
Output: Matrix M ∈ RNumberSim×d containing simulated random variables.
1: L ← Cholesky factor of Σ
2: M ← zeros(NumberSim, d)
3: for iSim = 1 : NumberSim do
4: ε ← Generate a vector of d independent standard normal variates
5: x ← Lε
6: for iStock = 1 : d do
7: M(iSim, iStock) ← exp((r − σ(iStock)2

2 )T + σ(iStock)x(iStock)
√
T )

8: end for
9: end for

Algorithm 5.7 is executed at the beginning of the whole procedure and Algorithm 5.8
whenever needed in later stages. The advantage of splitting the MC algorithm is twofold.
Firstly, it supports a considerable gain in efficiency in the performance of the completion
algorithm: When we adaptively increment the sampling set Ω (which consists of sampling
Chebyshev nodes in S0) in Algorithm 5.4, we need to compute new prices in the Chebyshev
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Algorithm 5.8 Computation of basket options using MC with control variate technique
Input: Matrix M from Algorithm 5.7, S0, strike K, vector of weights ω, r, T
Output: Basket option price (5.29)
1: payoff ← zeros(NumberSim, 1)
2: control ← zeros(NumberSim, 1)
3: for iSim = 1 : NumberSim do
4: R ← iSim-th row of M
5: S ← S0 ◦R�

6: payoff(iSim) ← (
∑d

i=1 ωiSi −K)+

7: control(iSim) ← (exp(
∑d

i=1 ωi log(Si))−K)+

8: end for
9: Compute mean μY of Y as explained in [50]

10: sum ← payoff − (control− μY )
11: Compute mean μ of sum
12: Price ← exp(−rT )μ

grid, which can be done by using Algorithm 5.8 only. The second advantage regards
the analysis of the methodology and the completion accuracy: Since we use the same
set of simulations for every Chebyshev price, the MC simulation does not introduce any
further error to the completion. Moreover, we will see in Section 5.4.2 that this splitting
procedure allows for a qualitative analysis of the rank structure of P.

Next, we perform numerical experiments for different settings of model parameters, first
for uncorrelated then for correlated assets.

Basket options of uncorrelated assets

In this example we consider the special case of uncorrelated assets. We investigate the
performance of the proposed method for two different interpolation orders n1 = · · · =
nd =: n = 4 and n1 = · · · = nd =: n = 6. We apply the combined methodology
(Algorithm 5.6) to portfolios consisting of d ∈ {5, 10, 15, 20, 25} assets. The set of fixed
parameters is given by

T = 0.25, K = 1, r = 0, σi = 0.2 ∀i, Σ = Id, ωi =
1

d
∀i,

where Id denotes the d× d identity matrix. We let S0 vary in the hyper-rectangular

[1; 1.5]d,
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so that we consider ITM (in-the-money) options and ATM (at-the-money) options as
well.

For each value of d, we start by performing Algorithm 5.7 with NumberSim = 103 for
n = 4 and with NumberSim = 104 for n = 6. In a second moment we construct the tensor
P by applying the tensor completion with the adaptive sampling strategy of Algorithm 5.4
(first strategy). Table 5.3 shows the completion parameters for each value of d and each
interpolation order. The results of the tensor completions are displayed in Table 5.4.
As in the previous subsection, we report the final size of the set Ω, the relative error
measured on the last set Ωnew

C , the completion time and the memory needed to store
both the obtained tensor in the TT format and the full tensor. For the TT ranks of
the completed tensor, we do not report the full tuple (r0, · · · , rd) but only the quantity
maxμ∈{0,··· ,d} rμ.

d ρ tol tol′ rmax initial |Ω| |ΩC | p

n = 4 5 0 10−2 10−8 5 31 31 10−1

10 0 10−2 10−8 5 78 78 10−2

15 0 10−2 10−8 5 214 214 10−5

20 0 10−2 10−8 5 763 763 10−8

25 0 10−2 10−8 5 2086 2086 10−11

n = 6 5 0 10−3 10−8 7 17 17 10−1

10 0 10−3 10−8 7 282 141 10−3

15 0 10−3 10−8 7 475 475 10−6

20 0 10−3 10−8 7 798 798 10−10

25 0 10−3 10−8 7 1341 1341 10−15

Table 5.3 – Completion parameters for constructing P. Case of uncorrelated assets.

It is interesting to analyze the size of the finally obtained set Ω in Algorithm 5.4 for
different values of d and n (different sizes of P). Figure 5.6 shows a plot of |Ω| (final)
against d for the two chosen interpolation orders. The graphical representation clearly
suggests that the number of sampled entries, i.e. |Ω|, required for the chosen tolerance
tol = 10−2 for a fixed interpolation order n = 4 and tol = 10−3 for a fixed n = 6 is roughly
of O(d2), whereas the size of the full tensor is nd. On the practical side, this means that
by the completion algorithm we can reduce the complexity of the first step of the offline
phase from an exponential growth down to a quadratic growth in the dimensionality. The
exponential growth typically is referred to as curse of dimensionality. The reduction in
absolute numbers is already tremendous for d = 5 and n = 4, where we observe |Ω| = 124
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d final |Ω| rel err on last Ωnew
C completion time (s)

n = 4 5 124 3.42 · 10−3 9.90
10 546 2.54 · 10−6 67.44
15 1712 3.55 · 10−8 171.14
20 2289 5.03 · 10−8 193.90
25 4172 3.96 · 10−9 226.38

n = 6 5 204 2.40 · 10−4 52.55
10 987 1.20 · 10−6 198.27
15 1900 2.28 · 10−7 429.39
20 3192 2.97 · 10−7 732.49
25 4023 1.35 · 10−7 999.25

d max rμ reached store(TT) (bytes) store(full) (bytes)

n = 4 5 5 2080 2.50 · 104
10 4 3440 7.81 · 107
15 4 5840 2.44 · 1011
20 4 5800 7.63 · 1014
25 4 10920 2.38 · 1018

n = 6 5 4 2688 1.34 · 105
10 6 9912 2.26 · 109
15 6 13720 3.80 · 1013
20 5 11536 6.38 · 1017
25 4 12600 1.07 · 1022

Table 5.4 – Completion results on P for the basket option pricing problem in the Black-Scholes
model. Case of uncorrelated assets.

and the full tensor size equals (n+ 1)d = 3125. The compression is dramatic for n = 6

and d = 25, namely the numbers of required entries shrinks by a factor of more than
3× 1017.

As in the previous numerical example, the computation time to build the tensor C of
interpolation coefficients is negligible in the offline phase. Indeed, for all choices of d and
n it is less than 0.01 seconds, for instance 0.0045 seconds for n = 4 and d = 5, and 0.0095

seconds for n = 6 and d = 25.

We now perform the online phase of Algorithm 5.6 in order to see how efficient becomes
pricing basket options in the new setting. We start by computing 100 basket option
prices via Chebyshev interpolation (combined methodology), choosing random initial
asset prices S0 in the reference hypercube [1; 1.5]d. We then compare the obtained prices
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Figure 5.6 – Required size of Ω for the completion to go below tol = 10−2 for n = 4 and tol = 10−3

for n = 6. Case of uncorrelated assets.

with reference prices computed by applying the reference method (Monte Carlo with
control variates) with 104 new simulations for n = 4 and 105 new simulations for n = 6.
In particular, we measure again the maximal absolute error over all computed prices

max(|PInt − PRef|),

where PInt is a vector containing all 100 interpolated prices for the different choices of S0;
analogously is PRef for the reference method. The errors together with the computational
times are shown in Table 5.5. Note that we report again the computational time to
compute one single option price.

One can see that the online phase of the new procedure compared to the MC reference
method accelerates the computation of a factor between 200 and 400 for n = 4 and of
a factor between 2000 and 4000 for n = 6. Note that the difference in the acceleration
between the two chosen interpolation orders is given by the different numbers of simulations
chosen in the MC reference method (104 for n = 4 and 105 for n = 6). Therefore, for
both interpolation orders and for all choices of d, the acceleration is dramatic. In order to
judge the accuracy of our method we have computed the 95% confidence interval of the
reference method, which results to be of a size between 10−4 and 5 · 10−4 for all choices of
S0 and d or n. This, together with the last column of Table 5.5, leads us to the conclusion
that the new method is as accurate as the reference MC algorithm.
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d time reference method (s) time interpolation (s) max abs error

n = 4 5 0.18 0.45 · 10−3 3.75 · 10−3

10 0.19 0.64 · 10−3 5.21 · 10−4

15 0.20 0.73 · 10−3 4.38 · 10−4

20 0.20 1.09 · 10−3 3.16 · 10−4

25 0.21 0.97 · 10−3 2.08 · 10−4

n = 6 5 1.84 0.40 · 10−3 5.20 · 10−4

10 1.91 0.61 · 10−3 1.42 · 10−4

15 1.99 0.78 · 10−3 1.02 · 10−4

20 2.04 0.93 · 10−3 1.01 · 10−4

25 2.10 1.04 · 10−3 9.36 · 10−5

Table 5.5 – Basket option prices computed via Chebyshev interpolation (combined methodology)
versus MC reference method with 104 simulations for n = 4 and 105 simulations for n = 6. Case
of uncorrelated assets.

Finally, in Figure 5.7 we show the gain in efficiency of the new method when computing
basket option prices for d = 25 and both choices of interpolation orders. In particular, on
the x-axis we consider a possible number of computed prices and on the y-axis we present

1. the computational time of the reference MC method,

2. the computational time of the new combined methodology (offline phase + online
phase ),

required to compute the corresponding amount of prices.

The plots in Figure 5.7 show that after an initial investment the computational time
grows very slowly in the number of computed prices for the new method. This is due to
the fact that the online phase in Algorithm 4 is very cheap, as shown in the numerical
experiments. This proves that the method is useful whenever one can split the task in
a pre-computational phase during idle times and a run-time phase where execution is
required to be fast. Moreover, it will outperform the reference methods if a large number
of prices needs to be computed. The first plot in Figure 5.7 indicates that for the case
n = 4 it is convenient to use the reference MC method if we want to compute up to 1000

option prices. For the case n = 6 the break-even point is already reached with 500 prices.
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Figure 5.7 – Computational time for computing basket option prices. Comparison MC versus
combined methodology for n = 4 and n = 6. Case of uncorrelated assets.

Basket options of correlated assets

In this second numerical experiment we repeat the test of the previous subsection but,
this time, we consider correlated assets. In particular, we choose again the interpolation
orders n = 4, n = 6 and the other parameters are given by

T = 0.25, K = 1, r = 0, σi = 0.2 ∀i, Σ = Rd, ωi =
1

d
∀i,
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where Rd denotes a random correlation matrix. The free parameters Si
0, i = 1, · · · , d are

again contained in [1;1.5]. We perform the offline phase by considering again the set of
completion parameters listed in Table 5.3. The obtained results of the completion are
now in Table 5.6 and Figure 5.8 shows the required size of Ω to go below the tolerance
tol = 10−2 for n = 4 and tol = 10−3 for n = 6. We notice that the completion results
are similar to the case of uncorrelated assets and that |Ω| scales again like O(d2). The
computational time to construct C was again measured to be less than 0.01 seconds for
all choices of d and n.
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Figure 5.8 – Required size of Ω for the completion to go below tol = 10−2 for n = 4 and tol = 10−3

for n = 6. Case of correlated assets..

The online phase is performed similarly to the previous chapter, in particular we compute
again 100 prices using the new method and the reference one. The MC parameters are
set as before and the results are shown in Table 5.7. The performance of the new method
in terms of accuracy and computational efficiency is similar to the one observed in the
case of uncorrelated assets. To summarize, the new methodology achieves a very good
performance for uncorrelated as well as for correlated assets.

Rank structure of P

In this section we qualitatively analyze the rank structure of the tensor P . For simplicity,
we perform this analysis for the standard Monte Carlo approach (without any variance
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d final |Ω| rel err on last Ωnew
C completion time (s)

n = 4 5 124 1.86 · 10−3 8.95
10 390 2.19 · 10−4 65.73
15 1284 1.72 · 10−7 118.73
20 1526 2.49 · 10−8 168.20
25 4172 7.52 · 10−9 215.44

n = 6 5 255 4.40 · 10−4 66.54
10 987 2.06 · 10−4 200.15
15 1900 1.79 · 10−7 432.58
20 3990 1.82 · 10−8 852.13
25 5364 2.88 · 10−7 1335.76

d max rμ reached store(TT) (bytes) store(full) (bytes)

n = 4 5 5 2320 2.50 · 104
10 3 2440 7.81 · 107
15 5 8960 2.44 · 1011
20 4 7040 7.63 · 1014
25 3 8040 2.38 · 1018

n = 6 5 5 2520 1.34 · 105
10 5 6832 2.26 · 109
15 4 6664 3.80 · 1013
20 4 12040 6.38 · 1017
25 4 8960 1.07 · 1022

Table 5.6 – Completion results on P for the basket option pricing problem in the Black-Scholes
model. Case of correlated assets.

reduction technique). Assume that we have already simulated the realizations of the
correlated geometric Brownian motions stored in the matrix M (Algorithm 5.7). Then,
the price in the point S0 is given by the function

p : D → R,

p(S0) :=
e−rT

NS

NS∑
n=1

[
w�(S0 ◦M(n, :)�)−K

]+
,

where D is the hyper-rectangular domain for the interpolation, M(n, :) is the n-th row of
M and NS is the number of Monte Carlo simulations. This expression can be rewritten
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d time reference method (s) time interpolation (s) max abs error

n = 4 5 0.18 0.50 · 10−3 1.39 · 10−3

10 0.20 0.56 · 10−3 4.82 · 10−4

15 0.20 0.70 · 10−3 2.82 · 10−4

20 0.23 0.91 · 10−3 2.93 · 10−4

25 0.23 1 · 10−3 4.30 · 10−4

n = 6 5 1.85 0.38 · 10−3 3.55 · 10−4

10 1.90 0.57 · 10−3 5.58 · 10−4

15 1.99 0.74 · 10−3 1.39 · 10−4

20 2.06 0.90 · 10−3 1.41 · 10−4

25 2.15 0.96 · 10−3 9.28 · 10−5

Table 5.7 – Basket option prices computed via Chebyshev interpolation (combined methodology)
versus MC reference method with 104 simulations for n = 4 and 105 simulations for n = 6. Case
of correlated assets.

in the form

p(S0) =
e−rT

NS

NS∑
n=1

( d∑
i=1

αi(n)S
i
0 −K

)+

,

where the αi(n)’s are coefficients multiplying Si
0 depending on the n-th simulation and

on the i-th weight ωi. The function p is piecewise affine in the variables Si
0.

To explore the rank structure of P let us consider the case of a single Monte Carlo
simulation NS = 1. Then p is of the form

p(S0) = e−rT

( d∑
i=1

αiS
i
0 −K

)+

.

Now we analyze three different cases. First, consider the case where the price is positive
for any S0 in the hyper-rectangular D. Here, p is affine. This implies that the TT ranks
are bounded by d. This follows from the fact that the CP rank (rank of the Canonical
Polyadic Decomposition, see [82]) of P, which is an upper bound for each rμ in the TT
ranks (see [59]), is equal to d. Second, if we observe a vanishing price for all S0 in the
hyper-rectangular, then P is the zero-tensor, which has rank 0. These two cases obviously
yield a low-rank structure of P, a favorable case for the new combined methodology.

In the third case where p is only piecewise affine the situation is more complex and to
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gain an intuition we consider the case d = 2, where p is of the form

p(S1
0 , S

2
0) = e−rT (α1S

1
0 + α2S

2
0 −K)+,

on a squared domain D. Now, define the set

L := {(S1
0 , S

2
0) ∈ D | α1S

1
0 + α2S

2
0 −K = 0}.

When L intersects the domain D it cuts it in two regions. Only if α1, α2 and K are of a
specific form that leads L to be the diagonal of D, the rank of P is almost full. In the
Monte Carlo simulation context, this special case is very unlikely. In all other cases, P
exhibits a lower rank structure. In particular, we expect the rank to be the lower the
more the sizes of the two regions differ.

In order to visualize these findings we consider three different pairs (α1, α2) together with
r = 0, K = 1 and evaluate the corresponding p on the discretized D = [1; 1.5]2 using 50
equidistant points in each direction. Figure 5.9 shows the sparsity pattern and the rank
of the obtained matrices P.
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Figure 5.9 – Sparsity patterns and ranks for evaluated p on D = [1; 1.5]2 for different values of
(α1, α2). Left: (α1, α2) = (0.9, 0.8) and rank = 2. Center: (α1, α2) = (0.4, 0.4) and rank = 49.
Right: (α1, α2) = (0.1, 0.8) and rank = 8.

This qualitative explanation indicates that the rank structure of P depends on D. We
expect the rank to be lower for domains D with an asymmetry with respect to the strike
K. Next we construct P as in the experiments of Section 5.4.2 for K = 1, d = 2 and
different interpolation orders n for both D = [0.5; 1.5]2 and D = [1; 1.5]2. In particular,
we first construct the matrix M via Algorithm 5.7 with 105 simulations and subsequently
compute P using Algorithm 5.8. In Figure 5.10 we display the decay of the singular
values for all treated cases. As expected, the decay is faster for D = [1; 1.5]2. However,
also for D = [0.5; 1.5]2 the decay of the singular values is reasonably fast. This implies
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that the new methodology would be still beneficial in this case.
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Figure 5.10 – Singular value decay of the matrix P for sampling intervals [0, 5; 1, 5] and [1; 1.5]
for different interpolation orders: Top left: n = 6, Top right: n = 10, Bottom: n = 20.

5.5 Conclusion

We have presented a unified approach to efficiently compute parametric option prices. The
starting point of our methodology was the Chebyshev interpolation technique developed
in [46], which we briefly summarized in Section 5.3.1. We refined both the offline and the
online phase to treat high-dimensional problems with parameter spaces up to dimension
25. We have exploited the low-rank structure (the notion of low-rank approximation is
presented in Section 5.3.2) of the tensors involved in the interpolation procedure, which
have been stored in the TT format (summarized in Section 5.3.3). In particular, we
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have developed a completion technique (explained in Section 5.3.4) which allows us the
construct the tensor P, containing the option prices in the Chebshev tensor grid. All
ingredients have been efficiently assembled to finally build a combined methodology,
explained in Section 5.3.5.

In the last part of the chapter, Section 5.4, we have tested our approach in two different
concrete option pricing settings: We have treated the American option pricing problem
in the Heston model (Section 5.4.1) and the European basket option pricing problem
in the d-dimensional Black-Scholes model (Section 5.4.2). Both examples show that
our approach allows for a substantial gain in efficiency, while maintaining very accurate
results, whose precision is comparable to the one of the considered reference methods.
For instance, the interpolation of American option prices in 5 parameters accelerates
the procedure by a factor of 75, when compared to the FD reference method [60]. For
basket option pricing with 25 underlyings the efficiency gain reaches factors up to 4000.
See Tables 5.2, 5.5, 5.7 and Figure 5.7 for further results. Finally, for both examples
we qualitatively investigated the rank structure of P, which confirmed that our initial
low-rank assumption was indeed reasonable. For instance, for the American put, we
obtain a compression factor of 115 of the completed tensor P with respect to the full one,
with a relative error in the 5th digit only, see Table 5.1. For the basket option the full
tensor containing prices in the Chebyshev grid is too large to be computed, however in
Section 5.4.2 it is qualitatively explained why P is expected to have a low-rank structure.
This is also confirmed by the compression rates observed in Tables 5.4 and 5.6 that go up
to 3× 1017.

Seen the promising performance of this new approach and considering the fact that
this methodology can be easily tailored to different problem settings, we expect it to
be applicable in several domains in finance. For instance, pricing, calibration and
sensitivity analysis in equity markets, fixed income and credit, and parameter uncertainty
quantification are some of the possible domains of application.
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6 Combining function approximation
and Monte Carlo simulation for
efficient option pricing

In this chapter we propose a methodology to compute single and multi-asset European
option prices, and more generally expectations of scalar functions of (multivariate)
random variables. This method is a generalization of the approach developed in [97] for
the numerical computation of multivariate integrals with respect to the Lebesgue measure
and its main idea is to combine the Monte Carlo simulation with function approximation,
resulting in a variance reduction technique. The method offers an efficient way to deal
with the high dimensionality arising when treating multi-asset options, which represents
a big computational challenge as mentioned several times throughout the thesis, see e.g.
Chapter 1 and Chapter 5, Section 5.1. Moreover, it can be applied to polynomial models.

The method developed by Nakatsukasa in [97] can be briefly described as follows. Consider
the problem of computing a multivariate integral of the form∫

Ω
f(x)dx,

where Ω is the unit d-dimensional cube [0, 1]d and f is an arbitrary L2-integrable function.
The algorithm, denoted by MCLS (Monte Carlo with Least Squares), is based on the
principle “approximate and integrate” and mainly consists of three steps: i) generate N

sample points {xi}Ni=1 ∈ Ω, uniformly at random; ii) approximate the integrand f with a
linear combination of a priori chosen basis functions f(x) ≈ p(x) :=

∑n
j=0 cjφj(x),

where the coefficients {cj}nj=0 are computed by solving a least-squares problem of
the form minc∈Rn+1 ‖Vc − f‖2; iii) finally, integrate p(x) to approximate the integral∑n

i=0 cj
∫
Ω φj(x)dx ≈

∫
Ω f(x)dx.
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In this work we extend MCLS and apply it to the problem of pricing single and multi-asset
European options. Firstly, we generalize the approach to approximate integrals of the
form ∫

E
f(x)dμ(x),

where (E,A, μ) is a probability space. This is done in Section 6.1.

Secondly, we note that a computational bottleneck in MCLS is the storage requirement
arising when solving the least-squares problem. Indeed, when the number of simulations N
and of basis functions n are too large, it is not feasible to explicitly store the Vandermonde1

matrix V = (φi(xj))i=0,...,n;j=1,...,N , which is needed in step ii) to approximate the
integrand f . This limits the number of basis functions, the dimension d, and the number
of simulations for which the approach is feasible. In order to overcome this limitation we
propose to combine MCLS with the randomized extended Kaczmarz (REK) algorithm
[124] for solving the least-squares problem. Its benefit is that no explicit storage of
V is needed in order to invoke the algorithm and this allows us to treat least-squares
problems of big size. However, for REK to converge at a reasonably fast rate, the least-
squares problem needs to be well conditioned, i.e., the condition number κ2(V) has to
be sufficiently small. This can be obtained by applying the optimal sampling strategy
proposed in [26] to MCLS in step i). We review this strategy in Section 6.1.1, while the
randomized extended Kaczmarz algorithm is summarized in Section 6.1.2. We provide a
cost and a convergence analysis in Section 6.2.

In Section 6.3 we apply MCLS to price single and multi-asset European options in
polynomial models. The fact that the conditional moments are given in closed form via
the moment formula (2.7) naturally suggests the choice of polynomials as basis functions
{φj}nj=0, for which step iii) of MCLS becomes very efficient. Here, we obtain good
numerical results for different models and payoff profiles.

Lastly, in Section 6.4 we apply our extension of MCLS to a high-dimensional integration
problem with respect to the Lebesgue measure, emphasizing that the limitations of the
approach in [97] due to the high dimensionality have been indeed overcome.

1Note that the matrix V is not a Vandermonde matrix in the standard sense. In statistics, such a
matrix is usually referred to as “design matrix”. However, in the rest of the chapter we keep the name as
in [97] and we call it Vandermonde matrix.
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6.1 Method

In this section we introduce a methodology to compute the definite integral

Iμ :=

∫
E
f(x)dμ(x),

for some probability space (E,A, μ), E ⊆ Rd, and for a function f : E → R, which we
assume to be square-integrable, i.e., in

L2
μ = {f : E → R | ‖f‖2μ =

∫
E
f(x)2dμ(x) < ∞, f measurable},

which is a Hilbert space with the inner product 〈f, g〉μ =
∫
E f(x)g(x)dμ(x). As already

mentioned, the method is an extension of the method proposed in [97] for integrals with
respect to the Lebesgue measure.

To start, we choose a set of n basis functions {φj}nj=1, with φ0 ≡ 1, which will be used to
approximate the integrand f . Key to exploit the advantage of function approximation
for integration is to choose basis functions {φj}nj=0 that can be easily, possibly exactly,
integrated, and that ideally the linear combination of {φj}nj=0 approximates f well. For
instance, polynomials can be a good choice as shown in the applications of Section 6.3
and Section 6.4. Then, the steps of MCLS are as follows. First, as in standard Monte
Carlo methods, one generates N sample points {xi}Ni=1 ∈ E, according to μ. Second, the
integrand f and the set of basis functions are evaluated at all simulated points {xi}Ni=1

leading to the following linear least-squares problem:

min
c∈Rn+1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎣
1 φ1(x1) φ2(x1) . . . φn(x1)

1 φ1(x2) φ2(x2) . . . φn(x2)
...

...
...

1 φ1(xN ) φ2(xN ) . . . φn(xN )

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:V

⎡⎢⎢⎢⎢⎢⎣
c0

c1
...
cn

⎤⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎣
f(x1)

f(x2)
...

f(xN )

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:f

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

, (6.1)

which we denote as minc∈Rn+1 ‖Vc− f‖2. Note that (6.1) can be seen as a discrete version
of the projection problem minc∈Rn+1 ‖f −∑n

j=0 cjφj‖μ. Third, one solves (6.1), whose
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solution is known to be explicitly given by

ĉ = (VTV)−1VT f .

At this point, the linear combination p(x) :=
∑n

j=0 ĉjφj(x) is an approximation of f .
Finally, the last step consists of computing the integral of the approximant p, and Iμ is
approximated by

Iμ ≈ Îμ,N =

∫
E
p(x)dμ(x) = ĉ0 +

n∑
j=1

ĉj

∫
E
φj(x)dμ(x). (6.2)

We summarize the procedure in Algorithm 6.1.

We remark that there is an interesting connection between MCLS and the standard Monte
Carlo (MC) method: If one takes n = 0, i.e. one approximates f with a constant function,
the resulting approximation is the solution of the least-squares problem

min
c∈Rn+1

∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎣
1

1
...
1

⎤⎥⎥⎥⎥⎥⎦ c0 −

⎡⎢⎢⎢⎢⎢⎣
f(x1)

f(x2)
...

f(xN )

⎤⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥
2

,

which is exactly given by ĉ0 :=
1
N

∑N
i=1 f(xi), the standard Monte Carlo estimator. We

recall that in the standard MC method, for sufficiently large N the error scales like (see
e.g. [21]) ( ∫

E(f(x)− Iμ)
2dμ(x)

) 1
2

√
N

,

which is equivalent to
minc∈R ‖f − c‖μ√

N
=:

σ(f)√
N

. (6.3)

The quantity (σ(f))2 is usually referred to as the variance of f . This relation between
MC and MCLS leads to an asymptotic error analysis, which we detail in Section 6.2.1.
This connection can be also exploited in order to increase the speed of convergence by
combining it with quasi-Monte Carlo. In [97] also other ways to speed up the procedure
are proposed, for example by an adaptive choice of the basis functions (MCLSA).
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Algorithm 6.1 Generalized MCLS
Input: Function f , basis functions {φj}nj=1, φ0 ≡ 1, integer N(> n), probability distri-

bution μ(x) over domain E.
Output: Approximate integral Îμ,N ≈

∫
E f(x)dμ(x)

1: Generate sample points {xi}Ni=1 ∈ E, according to μ.
2: Evaluate f(xi) and φj(xi), for i = 1, . . . , N and j = 1, . . . , n.
3: Solve the least-squares problem (6.1) for ĉ = [ĉ0, ĉ1, . . . , ĉn]

T .
4: Compute Îμ,N = ĉ0 +

∑n
j=1 ĉj

∫
E φj(x)dμ(x).

It is observed in [97] that the method performs well for dimensions d up to d = 6.
For higher dimensions solving the least-squares problem (6.1) becomes computationally
expensive, this is mainly due to two effects:

(i) The size of V, being N × (n + 1), rapidly becomes very large, posing memory
limitations.

(ii) The condition number of V typically gets large.

In the following we address these issues by combining MCLS with an optimal sampling
strategy and with the randomized extended Kaczmarz algorithm for solving the least-
squares problem.

6.1.1 Well conditioned least-squares problem via optimal sampling

It is crucial that the matrix V in (6.1) is well conditioned, from both a computational
and a function approximation perspective. Computationally, an ill-conditioned V means
the least-squares problem is harder to solve using e.g. the conjugate gradient method (see
e.g. [52, Chapter 11]), and the randomized Kaczmarz method described in Section 6.1.2.
From an approximation viewpoint, V having a large condition number κ2(V) implies
that the function approximation error (in the continuous setting) ‖f − ∑n

j=0 ĉjφj‖μ
could be as large as κ2(V)‖f − ∑n

j=0 c
∗
jφj‖μ (see [97, Proposition 5.2]), where c∗ :=

argminc∈Rn+1‖f −∑n
j=0 cjφj‖μ. Hence in practice we devise the MCLS setting (choice

of φ and sampling strategy) so that V is well conditioned with high probability.

A first step to attempt to obtain a well conditioned Vandermonde matrix V is to choose
the basis {φj}nj=0 to be orthonormal with respect to the scalar product 〈·〉μ, for instance
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by applying a Gram-Schmidt orthonormalization procedure. Then, the strong law of large
numbers (see e.g. [57, Chapter 6]) yields

1

N
(VTV)i+1,j+1 =

1

N

N∑
l=1

φi(xl)φj(xl)
p→

∫
E
φi(x)φj(x)dμ(x) = δij

as N → ∞. Therefore, for a large number of samples N we expect 1
NVTV to be close

to the identity matrix Idn+1 ∈ R(n+1)×(n+1). This implies that κ2(V) gets close to 1.
In practice, however, the condition number often is large even if the basis functions are
orthonormal. This is because the number N of sample points required to obtain a well
conditioned V might be very large. For example, if we consider the one-dimensional
interval E = [−1, 1] with the uniform probability measure and an orthonormal basis of
Legendre polynomials, one can show that at least N = O(n2 log(n)) sample points are
needed to obtain a well conditioned V. This example and others are discussed in [24, 26].

To overcome this problem and lower the required sample size N to obtain a well conditioned
problem, Cohen and Migliorati [26] introduce a weighted sampling for least-squares fitting.
Its use for MCLS was suggested in [97], which we summarize here. Define the nonnegative
function w via

1

w(x)
=

∑n
j=0 φj(x)

2

n+ 1
. (6.4)

The orthonormality of {φj}nj=0 implies that 1
w ≥ 0 on E and

∫
E

1
w(x)dμ(x) = 1. We then

take samples {x̃i}Ni=1 according to dμ
w . Intuitively this means that we sample more often

in areas where
∑n

i=0 φi(x)
2 takes large values.

The least-squares problem (6.1) with the samples ∼ dμ
w becomes

min
c∈Rn+1

‖
√
W(Vc− f)‖2, (6.5)

where
√
W = diag(

√
w(x̃1),

√
w(x̃2), . . . ,

√
w(x̃N )), and V, f are as before in (6.1) with

x ← x̃. This is again a least-squares problem minc∈Rn+1 ‖Ṽc− f̃‖2, with coefficient matrix
Ṽ :=

√
WV and right-hand side f̃ :=

√
Wf , whose solution is ĉ = (ṼT Ṽ)−1ṼT

√
Wf .

With high probability, the matrix Ṽ is then well conditioned, provided that N � n log n,
see Theorem 2.1 in [26].

Remark 6.1. Note that the left-multiplication by
√
W forces all the rows of Ṽ to have

the same norm (here
√
n+ 1); a property that proves useful in Section 6.1.2.
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A simple strategy to sample from w is as follows: for each of the N samples, choose
a basis function φj from {φj}nj=0 uniformly at random, and sample from a probability
distribution proportional to φ2

j . We refer to [62] for more details.

6.1.2 Randomized extended Kaczmarz to solve the least-squares prob-
lem

A standard least-squares solver that uses the QR factorization [52, Ch. 5] costs O(Nn2)

operations, which quickly becomes prohibitive (relative to standard MC) when n � 1 .
As an alternative, the conjugate gradient method (CG) applied to the normal equation
(VTV)c = VT f is suggested in [97]. For κ2(V) = O(1) this reduces the computational
cost to O(Nn). However, CG still requires to build and possibly store all the O(Nn)

entries of V. Indeed in practice, building and storing the matrix V becomes a major
bottleneck in MCLS.

To overcome this issue, here we suggest a further alternative, the randomized extended
Kaczmarz algorithm developed by Zouzias and Freris [124]. REK is a randomized
iterative method to solve least-squares problems. It builds upon Strohmer and Vershynin’s
pioneering work [115] and Needell’s extension to inconsistent systems [98], and converges
to the minimum-norm solution by simultaneously performing projection and solution
refinement at each iteration. The convergence is geometric in expectation and, as already
observed in [115], Kaczmarz methods can sometimes even outperform the conjugate
gradient method in speed for well conditioned systems. A block version of REK was
introduced in [99], which sometimes additionally improves the performance.

Here we focus on REK and consider its application to MCLS. A pseudocode of REK
is given in Algorithm 6.2. Matlab notation is used, in which V(:, j) denotes the jth
column of V and V(i, :) the ith row. The z(k) iterates are the projection steps, which
converge to f⊥, the part of f that lies in the orthogonal complement of V’s column space.
The vectors c(k) are the solution iterates. REK works by simultaneously projecting out
the f⊥ component while refining the least-squares solution. The solution refinement step
(Step 6 in Algorithm 6.2) without z(k), i.e.

c(k+1) = c(k) − V(ik, :)
�c(k) − fik

‖V(ik, :)‖22
V(ik, :),
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Algorithm 6.2 REK: Randomized extended Kaczmarz method

Input: V ∈ RN×(n+1) and f ∈ RN .
Output: Approximate solution c for minc∈Rn+1 ‖Vc− f‖2
1: Initialize c(0) = 0 and z(0) = f
2: for k = 1, 2, . . . ,M do
3: Pick i = ik ∈ {1, . . . , N} with probability ‖V(i, :)‖22/‖V‖2F
4: Pick j = jk ∈ {1, . . . , n+ 1} with probability ‖V(:, j)‖22/‖V‖2F
5: Set z(k+1) = z(k) − V(:,jk)

�z(k)

‖V(:,jk)‖22
V(:, jk)

6: Set c(k+1) = c(k) +
fik−z

(k)
ik

−V(ik,:)
�c(k)

‖V(ik,:)‖22
V(ik, :)

7: end for
8: c = c(M)

corresponds to the orthogonal projection of the current estimate onto the affine hyperplane
defined by the ikth equation of the least-squares problem, i.e. V(ik, :)

�c = fik . Since the
index i is chosen at random at every step, we can interpret REK as a particular stochastic
gradient descent method, in which at each iteration we minimize the objective function
in the ikth component.

Let us comment on REK (Algorithm 6.2) and its implementation, particularly in the
MCLS context:

• Employing the optimal weighted sampling strategy of Section 6.1.1 significantly
simplifies Algorithm 6.2. Following Remark 6.1, the norm of the rows of Ṽ are
constant and equal to

√
n+ 1. This also implies that ‖Ṽ‖2F = N(n + 1). The

index ik in line 3 is therefore simulated uniformly at random. This has a practical
significance in MCLS as the probability distribution (‖V(i, :)‖22/‖V‖2F )i=1,...,N does
not have to be computed before starting the REK iterates. This results in (a
potentially enormous) computational reduction; an additional benefit of using the
optimal sampling strategy, besides improving conditioning.

• The number of iterations M is usually not chosen a priori but by checking con-
vergence of c(k) infrequently. The suggestion in [124] is to check every 8min(N,n)

iterations for the conditions

‖Vc(k) − (f − z(k))‖2
‖V‖F ‖c(k)‖2

≤ ε, and
‖VT z(k))‖2
‖V‖F ‖c(k)‖2

≤ ε (6.6)

for a prescribed tolerance ε > 0. In our numerical examples in Sections 6.3 and 6.4
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we adopt this strategy to check the convergence of the algorithm and we set the
tolerance value to ε = 10−5.

• A significant advantage of REK is that it renders unnecessary the storage of the
whole matrix V: only the ikth row and the jkth column are needed, taking O(N)

memory cost. In practice, one can even sample in an online fashion: early samples
can be discarded once the REK update is completed. Note that, also to compute
the Frobenius norm ‖V‖F for an arbitrary input matrix, the storage of the whole
matrix is unnecessary. Indeed, the norm can be computed by exploiting the relation
‖V‖2F =

∑N
i=0 ‖V(i, :)‖22, in which we sequentially sum up the squared 2-norm of

each row, which is discarded right after.

The convergence of REK is known to be geometric in the expected mean squared sense [124,
Thm 4.1]: after M iterations, we have

Ẽ[‖c(M) − ĉ‖22] ≤
(
1− (σmin(V))2

‖V‖2F

)
M
2
�
(1 + 2κ22(V))‖ĉ‖22, (6.7)

where ĉ is the solution for minc∈Rn+1 ‖Vc − f‖2 and the expectation is taken over the
random choices of the algorithm. When V is close to having orthonormal columns (as
would hold with the optimal sampling and/or N → ∞ with orthonormal basis functions
φ), the convergence in (6.7) becomes O((1− 1

n)
M
2 ).

The cost of REK is analyzed in [124, Section 4.3]. If the stopping criterion (6.6) is chosen,
then it is shown that the expected number of arithmetic operations of REK is proportional
to the number of non-zero elements of V (which is bounded by N(n + 1)) times the
square condition number of V. Therefore, in the case κ2(V) = O(1), the cost of REK is
of the same order as the one of the CG algorithm. This fact will prove useful in our cost
analysis in Section 6.2.

For the applications we consider, our experiments suggest that conjugate gradients applied
to the normal equation is faster than Kaczmarz, so we recommend CG whenever it is
feasible. However, as mentioned above, an advantage of (extended) Kaczmarz is that
there is no need to store the whole matrix to execute the iterations. For these reasons,
we suggest to choose the solver for the LS problem (6.1) according to the scheme shown
in Figure 6.1. Preliminary numerical experiments have shown that the threshold 10 for
κ2(V) is a good choice.
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Can V be stored?

REK without storing V

No

CG to normal equation

κ 2
(V
) ≤

10

QR based solver
κ
2 (V

) >
10

Yes
Figure 6.1 – Choice of algorithm to solve the least-squares problem.

6.2 Convergence and cost analysis

In this section we first present convergence results, on which basis we will derive a cost
analysis.

6.2.1 Convergence

First, we obtain a convergence result and consequently asymptotic confidence inter-
vals, applying the central limit theorem (CLT). The following statement and proof is a
straightforward generalization of [97, Theorems 3.1 and 5.1] for an arbitrary integrating
probability measure μ.

Proposition 6.2. Fix n and the L2
μ-basis functions {φj}nj=0 and let either w = 1 or w

as in (6.4). Then with the weighted sampling dμ
w , the corresponding MCLS estimator Îμ,N

in (6.2), as N → ∞ we have

√
N(Îμ,N − Iμ)

d−→ N (0, min
c∈Rn+1

‖
√
w(f −

n∑
j=0

cjφj)‖2μ),

where d−→ denotes convergence in distribution.

Proof. Note that the approximate function
∑n

j=0 ĉjφj and thus Îμ,N only depends on the
span of the basis functions {φj}nj=0 and not on the specific choice of the basis. Therefore,
without loss of generality we can assume that the chosen basis functions {φj}nj=0 form an
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orthonormal basis (ONB) in L2
μ, i.e.

∫
E φi(x)φj(x)dμ(x) = δij .

We decompose the function f into a sum of orthogonal terms

f =

n∑
j=0

c∗jφj + g =: f1 + g, (6.8)

where g satisfies
∫
E g(x)φj(x)dμ(x) = 0 for all j = 0, · · · , n. Note that ‖g‖μ =

minc∈Rn+1 ‖f − ∑n
j=0 cjφj‖μ. Assume now that we sample according to dμ

w and ob-
tain the points {x̃i}Ni=1. Then, the vector of sample values in the weighted least-squares
problem can be decomposed as

f̃ = [f̃1(x̃1) + g̃(x̃1), . . . , f̃1(x̃N ) + g̃(x̃N )]T = Ṽc∗ + g̃,

where Ṽ and f̃ are defined as in (6.5) and g̃ :=
√
wg and hence

g̃ = [
√

w(x̃1)g(x̃1), . . . ,
√
w(x̃N )g(x̃N )].

Let ĉ be again the least-squares solution to (6.5), then

ĉ = argminc∈Rn+1‖Ṽc− (Ṽc∗ + g̃)‖2 = (ṼT Ṽ)−1ṼT (Ṽc∗ + g̃) = c∗ + (ṼT Ṽ)−1ṼT g̃,

where the second summand is exactly cg := argminc∈Rn+1‖Ṽc− g̃‖2. It thus follows that
the integration error is Îμ,N − Iμ = cg,0 = [1, 0, . . . , 0](ṼT Ṽ)−1ṼT g̃.

Now by the strong law of large numbers we have

1

N
(ṼT Ṽ)i+1,j+1 =

1

N

N∑
l=1

w(x̃l)φi(x̃l)φj(x̃l)

→
∫
E
w(x̃)φi(x̃)φj(x̃)

dμ(x̃)

w(x̃)
=

∫
E
φi(x̃)φj(x̃)dμ(x̃) = δij

almost surely and in probability as N → ∞, by the orthonormality of {φj}nj=0. Therefore
we have 1

N ṼT Ṽ
p→ Idn+1 as N → ∞, where Idn+1 denotes the identity matrix in

R(n+1)×(n+1). Moreover,
√
N

(
1
N

∑N
i=1w(x̃i)g(x̃i)

)
d→ Z ∼ N (0, ‖√wg‖2μ) for N → ∞

by the central limit theorem, where we used the fact
∫
E g(x)dμ(x) = 0 for the mean and∫

E(w(x̃)g(x̃))
2 dμ(x̃)
w(x̃) = ‖√wg‖2μ for the variance. Thanks to Slutsky’s theorem (see e.g.
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[57, Chapter 5]) we finally obtain

√
N(Îμ,N − Iμ) =

√
N [1, 0, . . . , 0]T

1

N
(
1

N
ṼT Ṽ)−1ṼT g̃

d−→ N (0, ‖
√
wg‖2μ).

The above proposition shows that the MCLS estimator yields an approximate integral
Îμ,N that asymptotically (for N → ∞ and {φj}nj=1 fixed) satisfies2

E[|Îμ,N − Iμ|] ≈
minc∈Rn+1 ‖√w(f −∑n

j=0 cjφj)‖μ√
N

, (6.9)

highlighting the fact that the asymptotic error is still O(1/
√
N) (as in the standard

MC), but with variance (σ(f))2 reduced from minc∈R ‖f − c‖22 (standard MC, see (6.3))
to minc∈Rn+1 ‖√w(f − ∑n

j=0 cjφj)‖2μ (MCLS). In other words, the variance is reduced
thanks to the approximation of the function f and the constant in front of the O(1/

√
N)

convergence in MCLS is equal to the function approximation error in the L2
μ norm.

After solving the least-squares problem (6.5), the variance minc∈Rn+1 ‖√w(f−∑n
j=0 cjφj)‖2μ

can be estimated via3

σ̃2
LS :=

1

N − n− 1

N∑
i=1

(w(x̃i))
2(f(x̃i)− p(x̃i))

2 =
1

N − n− 1
‖W(Vĉ− f)‖22, (6.10)

where the sampling points x̃i, i = 1, · · · , N are taken according to dμ
w . This leads to

approximate confidence intervals, for example the 95% confidence interval is approximately
given by [

Îμ,N − 1.96
σ̃LS√
N

, Îμ,N − 1.96
σ̃LS√
N

]
. (6.11)

As explained in [97], the MCLS estimator is not unbiased, in the sense that E[Îμ,N ] �= Iμ.
However, one can show along the same lines as in the proof of [97, Proposition 3.1] that
with the MCLS estimator Îμ,N with n and {φj}nj=0 fixed, one has

|Iμ − E[Îμ,N ]| = O
(

1

N

)
.

2We use the notation “≈” with the statement “for N → ∞” to mean that the relation holds for
sufficiently large N . E.g. (6.9) means E[|Îμ,N −Iμ|] = min

c∈Rn+1 ‖√w(f−∑n
j=0 cjφj)‖μ√

N
+o( 1√

N
) for N → ∞.

3This approximation is commonly used in linear regression, see e.g. [65].
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This shows that the bias is of a smaller order than the error.

In the case of optimal weighting, we moreover have a finite sample error bound, which is
presented in [26, Theorem 2.1 (iv)]. Note that as this is not only an asymptotic result, it
is especially useful in practice. We review it in the following proposition.

Proposition 6.3. Assume that we adopt the weighted sampling dμ
w . For any r > 0, if n

and N are such that n ≤ κ N
log(N) − 1 for κ = 1−log(2)

2+2r , then

E[‖f − p̃‖2μ] ≤
(
1 +

4κ

log(N)

)
min

c∈Rn+1
‖f −

n∑
j=0

cjφj‖2μ + 2‖f‖2μN−r, (6.12)

where p̃ is defined as

p̃ :=

⎧⎨⎩p, if ‖ 1
NVTV − I‖2 ≤ 1

2

0, otherwise,

with p =
∑n

j=0 ĉjφj, for ĉ being the solution of (6.5).

We note the slight difference between p and p̃; this is introduced to deal with the tail case
in which V becomes ill-conditioned (which happens with low probability). This is used
for a theoretical purpose, but in practice, this modification is not necessary and we do
not employ it in our experiments.

Proposition 6.3 allows us to define a non-asymptotic, proper bound for the expected error
we commit when estimating the vector c∗, solving the LS problem (6.5). To see this, we
first decompose the function f into a sum of orthogonal terms as in (6.8). Then,

E[‖f −
n∑

j=0

ĉjφj‖2μ] = E[‖f − f1 −
n∑

j=0

ĉjφj + f1‖2μ]

= ‖f − f1‖2μ + E[‖c∗ − ĉ‖2μ] = ‖g‖2μ + E[‖c∗ − ĉ‖2μ].

This, together with the bound (6.12) yields

E[‖c∗ − ĉ‖2μ] ≤
4κ

log(N)
min

c∈Rn+1
‖f −

n∑
j=0

cjφj‖2μ + 2‖f‖2μN−r. (6.13)

When we are primarily interested in integration, we aim at an upper bound for the
expected error of the first component of c∗ − ĉ. The bound (6.13) clearly holds for the
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first component and this gives us a bound for E[|Îμ,N − Iμ|2]. Intuitively, we expect that
the error in the elements of c∗ − ĉ are not concentrated in any of the components. This
suggests a heuristic bound

E[|Îμ,N − Iμ|2] �
1

n

⎛⎝ 4κ

log(N)
min

c∈Rn+1
‖f −

n∑
j=0

cjφj‖2μ + 2‖f‖2μN−r

⎞⎠ . (6.14)

This argument has already been proposed in [97]. A rigorous argument still remains
an open problem. Observing that the first term of the right hand side is the dominant
one (for N → ∞) and assuming n ≈ N

log(N) , we can see that the heuristic bound (6.14)
matches the asymptotic result derived in Proposition 6.2.

6.2.2 Cost analysis

The purpose of this section is to reveal the relationship between the error vs. cost (in
flops). The cost of MCLS is analyzed in [97] and in Table 6.1 we report a cost and error
comparison between MC and MCLS as given in Table 3.1 in [97]. Here, we highlight some
cases for which MCLS outperforms MC in terms of accuracy or cost.

Remark 6.4. Note that the cost of MCLS in the Table 6.1 is reported to be CfN+O(Nn).
As already mentioned at the beginning of Section 6.1.2, this reflects the cost of MCLS when
applying the CG algorithm to solve the least-squares problem (whenever κ2(V) = O(1)).
In the case that we combine MCLS with the REK algorithm and κ2(V) = O(1), which
happens with high probability whenever the optimal sampling strategy is used (see [26,
Theorem 2.1]), the cost is also given by CfN +O(Nn). This is shown in [124, Lemma 9]
and in the subsequent discussion, and it has been already mentioned at the end of Section
6.1.2. The following cost analysis includes therefore the two options CG and REK.

First, consider the situation of a limited budget of sample points N that cannot be
increased further, and the goal is to approximate the integral Iμ in the best possible way.
This is a typical task in financial institutions. For instance, in portfolio risk management,
simulation can be extremely expensive because a large number of risk factors and positions
contribute to the company’s portfolio. In this case even if MCLS is more expensive than
MC (second column of Table 6.1), MCLS is preferable to MC as it yields a more accurate
approximation (third column of Table 6.1).
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Cost Convergence

MC CfN
1√
N

min
c∈R

‖f − c‖μ

MCLS CfN +O(Nn)
1√
N

min
c∈Rn+1

‖
√
w(f −

n∑
j=0

cjφj)‖μ

Table 6.1 – Comparison between MC and MCLS. N is the number of sample points and Cf

denotes the cost for evaluating f at a single point. As explained in the Remark 6.4, the cost of
MCLS represented in this table refers to MCLS combined with CG or REK.

Second, we show under mild conditions that MCLS also asymptotically becomes more
accurate than MC at the same cost. This can be of practical relevance whenever the
integral Iμ needs to be computed at a very high accuracy and one is able to spend a high
computational cost. Let us fix some notation:

en := min
c∈Rn+1

‖
√
w(f −

n∑
j=0

cjφj)‖μ for n ≥ 0,

CostMC(N) := CfN,

CostMCLS(N
′, n) := CfN

′ + CMN ′n for some CM > 0,

errorMC(N) :=
e0√
N

,

errorMCLS(N
′, n) :=

en√
N ′ ,

where the last two definitions reflect the asymptotic error behaviour for large N and N ′

(for a fixed n), depicted in Table 6.1. We are now in the position to present the result.

Proposition 6.5. Assume that en = o
(

1√
n

)
. Then there exists ñ ∈ N such that for any

fixed n > ñ, errorMCLS < errorMC as CostMCLS = CostMC → ∞.

Proof. We first determine the value of N = N(N ′, n) such that CostMCLS = CostMC :

CostMCLS = CostMC ⇐⇒ N = N ′
(
1 +

CM

Cf
n
)
.

Consider now the error ratio under the constraint CostMCLS = CostMC , given by

ER :=
errorMC

errorMCLS
=

e0

en
√
1 + CM

Cf
n
,
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yielding

ER > 1 ⇐⇒ en

√
1 +

CM

Cf
n < e0.

The assumption en = o
(

1√
n

)
implies that there exists some ñ such that ER > 1 for

all n > ñ. Now, fixing an arbitrary n > ñ and letting N ′ and consequently N going to
infinity yields the result.

Remark 6.6. Note that the quantity ER in the proof of Proposition 6.5 only reflects
the error ratio asymptotically for N,N ′ → ∞. Therefore we restrict the statement of the
result to the asymptotic case where CostMCLS = CostMC → ∞.

To show the practical implication of this asymptotic analysis, in Figures 6.2 and 6.3
we examine the convergence of MC and MCLS. We consider the problem of integrating
smooth and non-smooth functions for several dimensions d, on the unit cube [0, 1]d and
with respect to the Lebesgue measure. We solve the least-squares problem by means of
the CG algorithm. Even though the result of Proposition 6.5 holds for a fixed value of
n, in practice the convergence rate can be improved by varying n together with N , as
illustrated in [97], where such an adaptive strategy is denoted by MCLSA. For this reason,
we show numerical results where we let the cost increase (represented on the x-axis) and
for different choices of n (n fixed and n varying)4.

As expected, the numerical results reflect our analysis presented above. For all dimensions
and chosen functions, we achieve an efficiency gain by an appropriate choice of n and
N , asymptotically. Note that the erratic convergence with fixed n is a consequence of
ill-conditioning; an effect described also in [97]. Namely, when the number of sample
points N is not enough, V tends to be ill-conditioned and the least-squares problem
minc∈Rn+1 ‖Vc − f‖2 requires many CG iterations, resulting in higher cost than with
a larger N . Therefore, the function “N �→ Cost(N)” is not necessarily monotonically
increasing in N . That is the reason for which the curves in the Figures 6.2 and 6.3,
particularly for n fixed, do not necessarily continuously go “from left to right”. The single
points have been joined according to N increasing.

We now comment further on the condition en = o
(

1√
n

)
in Proposition 6.5 in relation

to our numerical experiments presented in the Sections 6.3 and 6.4. The integrand f

4These figures differ from those in [97] in that the x-axis is the cost rather than the number of sample
points N .
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Figure 6.2 – Cost vs Convergence plots for MC and MCLS with varying n: n = 50, n =
√
N and

n = N/ logN , for d = 1. Cost is computed as 2N(n+ 1)k, the flop counts in the CG iteration,
where k is the number of CG steps required. Left: Non-smooth function f(x) = |x− 1

2 |. Right:
analytic function f(x) = sin(30x).

in the example in Section 6.4 is smooth and the integral is defined on a compact set.
Therefore, the above condition is satisfied for this case. For the experiments in option
pricing of Section 6.3, the integrands are only continuous and, in some cases, E is not
compact. In general, it is difficult to estimate the approximation error en in such cases.
Intuitively, we cannot expect the above condition to be satisfied. However, the left plots
of the Figures 6.2 and 6.3, which are generated for integrands that are only continuous
and present similar types of irregularities as the ones of the considered payoff functions,
show that MCLS becomes asymptotically more accurate than MC at the same cost. From
a practical point of view, this behavior might be expected in our numerical examples in
option pricing as well.

6.3 Application to European option pricing

We now apply MCLS to price European options. As mentioned in Chapter 1, the price at
time t = 0 of a European option with payoff function f : E → R and maturing at time T

is given by

e−rTE[f(XT )] = e−rT

∫
E
f(x)dμ(x), (6.15)

where (Xt) models the asset price over the time interval [0, T ], r is a risk-free interest
rate and μ denotes the distribution of XT whose support is assumed to be E.
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Figure 6.3 – Same as in 6.2, but with d = 5. The fixed value n = 251 comes from n =
(
d+k
k

)
− 1

for degree k = 5. Left: non-smooth function f(x) =
∑d

i=1 exp(−|x− 1
2 |). Right: analytic function

f(x) = sin(
∑d

i=1 xi).

6.3.1 MCLS for European option pricing

We explain how to adapt MCLS to compute European option prices. When applying
MCLS for computing (6.15) we observe two potential issues. First, the distribution μ

often is not known explicitly. Therefore, we cannot directly perform the sampling part,
namely the first step of MCLS, as described in Algorithm 6.1. Second, it is crucial that
the basis functions {φj}nj=0 are easily integrable with respect to μ. Therefore we need to
find an appropriate selection of the basis functions.

Concerning the sampling part, if μ is explicitly known, as for example in the Black-Scholes
framework (see Section 6.3.2 for two examples), we can just generate sample points
according to μ. If μ is not explicitly known, typically the process (Xt) can still be
expressed as the solution of a stochastic differential equation (SDE), as for example in
the case of polynomial diffusions, see Chapter 2. In this case, we propose to simulate N

paths of (Xt) by discretizing its governing SDE and collect the realizations of XT . More
details follow below and an example can be found in the Section 6.3.2.

To obtain an appropriate choice of the basis functions {φj}nj=0 we need E[φj(XT )] to be
easy to evaluate. To do so we exploit the structure of the underlying asset model. If (Xt)

belongs to the wide class of affine processes, which is true for a large set of popular models
including the Black-Scholes and the Heston model, then the characteristic function of
Xt can be easily computed, as explained e.g. in [35]. Also, if (Xt) is a Lévy process,
the characteristic functions are given by the Lévy-Khintchine formula, see e.g. [106]. In
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Algorithm 6.3 Generalized MCLS for European option pricing
Input: Payoff function f , basis functions {φj}nj=0, φ0 ≡ 1, integer N(> n), governing

SDE of Xt.
Output: Approximate option price Îμ,N ≈

∫
E f(x)dμ(x)

1: Simulate N paths of the process (Xt) from t = 0 to t = T , and collect the realizations
of XT in xi, i = 1, . . . , N .

2: Evaluate f(xi) and φj(xi), for i = 1, . . . , N and j = 1, . . . , n.
3: Solve the least-squares problem (6.1) for ĉ = [ĉ0, ĉ1, . . . , ĉn]

T .
4: Compute Îμ,N =

∑n
j=0 ĉj

∫
E φj(x)dμ(x).

these cases, it is therefore natural to choose exponentials as basis functions. If (Xt) is
a polynomial (jump-)diffusion, then its conditional moments are given in closed form
via the moment formula (2.7). In this case, polynomials are an excellent choice of basis
functions. In our numerical experiments in the Section 6.3.2 we consider some of the
polynomial models presented in the Chapter 2 and already used in the rest of this thesis.

To summarize, the main steps of MCLS for option pricing are as follows (if μ is not known
explicitly):

1. Simulate N paths of the process (Xt), from t = 0 to t = T (time to maturity), by
discretization of the governing SDE.

2. Let xi for i = 1, . . . , N be the realizations of XT for each simulated path. Then, we
evaluate f(xi) and φj(xi), for i = 1, . . . , N and j = 1, . . . , n.

3. Solve the least-squares problem (6.1) to obtain the approximation of f . The solver
can be chosen according to the scheme represented in Figure 6.1.

4. Finally, the option price is approximated via (we omit the discounting factor)

E[f(XT )] =

∫
E
f(x)dμ(x) ≈ Îμ,N :=

n∑
j=0

ĉj

∫
E
φj(x)dμ(x) =

n∑
j=0

ĉjE[φj(XT )].

Note that we select the basis functions in such a way that the quantities E[φj(XT )]

can be easily evaluated. In particular, no Monte Carlo simulation is required.

Algorithm 6.3 summarizes this procedure.

In the case that μ is explicitly known, the error resulting from MCLS is analysed in
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Proposition 6.2 and Proposition 6.3. In case we discretize the governing SDE of (Xt), we
introduce a second source of error, which we address in the following.

Assume that (Xt) is the solution of an SDE of the form

dXt = b(Xt)dt+Σ(Xt)dWt, 0 < t ≤ T

X0 = x0,
(6.16)

where (Wt) denotes a d-dimensional Brownian motion, b : Rd �→ Rd, Σ : Rd �→ Rd×d, and
x0 ∈ Rd. An approximation of the solution (Xt) of (6.16) can be computed via a uniform
Euler-Maruyama scheme, defined in the following.

Definition 6.7. Consider an equidistant partition of [0, T ] in Ns intervals, i.e.

Δt = T/Ns, ti = iΔt for i = 0, · · · , Ns,

together with
ΔW̃i = Wti+1 −Wti for i = 0, · · · , Ns.

Then, the Euler-Maruyama discretization scheme of (6.16) is given by

X̄i+1 = X̄i + b(X̄i)Δt+Σ(X̄i)ΔW̃i, for i = 0, · · · , Ns − 1,

X̄0 = x0,
(6.17)

and the Euler-Maruyama approximation of XT is given by X̄Ns .

Assume that we sample N independent copies of X̄Ns (first step of Algorithm 6.3) and we
apply MCLS to approximate (6.15). Then the error naturally splits into two components
as

|E[f(XT )]− Īμ,N | ≤ |E[f(XT )]− E[f(X̄Ns)]|+ |E[f(X̄Ns)]− Īμ,N |.

The second summand can then be approximated as in (6.9). We collect the result in the
following proposition.

Proposition 6.8. Let Īμ,N be the MCLS estimator obtained by sampling according to the
Euler-Maruyama scheme as in Definition 6.7. Then, the MCLS error asymptotically (for
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n fixed and N → ∞) satisfies

|E[f(XT )]− Īμ,N | � |E[f(XT )]− E[f(X̄Ns)]|+
minc∈Rn+1 ‖f −∑n

j=0 cjφj‖μ̄√
N

, (6.18)

where μ̄ is the distribution of X̄Ns .

The first term in the right-hand-side of (6.18) is usually referred to as time-discretization
error, while the second summand denotes the so-called statistical error. The time-
discretization error and, more generally, the Euler-Maruyama scheme together with its
properties, are well studied in the literature, see e.g. [81]. Depending on the regularity
properties of f, b and Σ, one can conclude, for example, that the time-discretization error
is bounded from above by C|Δt|, for a constant C > 0. In this case, we say that the
Euler-Maruyama scheme converges weakly with order 1. Finally, note that the statistical
error can be further approximated as in (6.10) using

min
c∈Rn+1

‖f −
n∑

j=0

cjφj‖μ̄ ≈ 1

N − n− 1

N∑
i=1

(f(xi)− p(xi))
2 =

1

N − n− 1
‖Vĉ− f‖22,

where the xi’s are sampled according to μ̄.

6.3.2 Numerical examples in option pricing

Next, we apply MCLS to numerically compute European option prices (6.15) for several
types of payoff functions f and in different polynomial diffusion models. All algorithms
have been implemented in Matlab version 2017a and run on a standard laptop (Intel
Core i7, 2 cores, 256kB/4MB L2/L3 cache).

In all of our numerical experiments the solver for numerical solution of the least-squares
problem (6.1) is chosen according to the scheme in Figure 6.1. The choice of the examples
leads us to test all of the three choices in the scheme. For the univariate pricing examples
in Heston’s and the Jacobi model the CG algorithm is appropriate. Later on, when
basket options of medium dimensionality in the multivariate Black-Scholes model are
considered, a QR based method is employed, because the condition number of V was
usually larger than O(1). In these both cases we directly sample from the distribution of
the underlying random variable XT , where in the univariate case we solve an SDE. Finally,
we consider pricing a rainbow option in a high-dimensional multivariate Black-Scholes
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model, where the randomized extended Kaczmarz algorithm combined with the optimal
sampling strategy yields a good performance.

Call option in stochastic volatility models

We consider the Heston model in its log-asset price formulation as presented in Chapter
2. We recall that Corollary 2.6 states that the moments of XT are given as in (2.14).

In the following we apply MCLS in the Heston model in order to price single-asset
European call options with payoff function given by

f(x) = (ex − ek)+,

for a log-strike value k. We compare MC and MCLS to the Fourier pricing method
introduced in [23] and reviewed in Chapter 1.

In this experiment we use an ONB (with respect to the corresponding L2
μ space, where μ

is the distribution of XT ) of polynomials as basis functions {φj}nj=0. Conveniently the
ONB can be obtained by applying the Gram-Schmidt orthogonalization process to the
monomial basis. Note that, even if the distribution μ is not known explicitly, we still
can apply the Gram-Schmidt orthogonalization procedure since the corresponding scalar
product and the induced norm can be computed via the moment formula (2.14).

Since the distribution of XT is not known explicitly, we apply the Euler-Maruyama scheme
as defined in (6.17) and obtain

V0 = v0,

X0 = x0,

Vti = Vti−1 + κ(θ − Vti−1)Δt+ σ
√
Vti−1

√
ΔtZ1

i ,

Xti = Xti−1 + (r − Vti−1/2)Δt+ ρ
√

Vti−1

√
ΔtZ1

i +
√
Vti−1

√
1− ρ2Vti−1

√
ΔtZ2

i ,

(6.19)

for all i = 1, · · · , Ns and where Z1
i and Z2

i are independent standard normal distributed
random variables. For the following experiments we consider the model parameters

σ = 0.15, v0 = 0.04, x0 = 0, κ = 0.5, θ = 0.01, ρ = −0.5, r = 0.01.

170



6.3. Application to European option pricing

For this choice of parameters, the arguments of the square roots in (6.19) are always
positive. The Euler-Maruyama scheme is therefore well-defined. However, for a different
choice of parameters this might not be the case. If this happens, the scheme can be
modified by taking the absolute value or the positive part of the arguments of the square
roots. Such a modification is discussed, e.g., in [80]. The same remark holds for the
forthcoming numerical examples.

First, we apply MCLS to an in-the-money (ITM) call option, with payoff parameters

k = −0.1, T = 1/12,

and we use Ns = 100 time steps for the discretization of the SDE. We use an ONB
consisting of polynomials of maximal degrees 0 (standard MC), 1, 3 and 5 and we obtain
the results shown in Figure 6.45. In particular, we plot the absolute error of the prices
and the width of the obtained 95% confidence interval computed as in (6.10) and (6.11),
against the number of simulated points N.
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Figure 6.4 – MCLS for ITM call option in Heston model for different polynomial degrees. Left:
Absolute price error. Right: Width of 95% confidence interval.

Second, we apply again MCLS but this time to an at-the-money (ATM) call option with
parameters

k = 0, T = 1/12,

5Note that all the left-figures of this chapter are the outcome of a random choice of sample points.
Different samples would give different figures. In these experiments, we haven’t chosen any particular
sample. The right-figures showing the confidence intervals, instead, are more robust in the choice of the
sample points and might be used for a better assessment of the method, as also done in [97].
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and to an out-of-the-money (OTM) call option with parameters

k = 0.1, T = 1/12.

The results are shown in Figure 6.5 and in Figure 6.6, respectively.

102 103 104

Sample size N

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
ric

e 
er

ro
r MC

MCLS deg = 1

MCLS deg = 3

MCLS deg = 5

102 103 104

Sample size N

10-4

10-3

10-2

10-1

C
I

MC

MCLS deg = 1

MCLS deg = 3

MCLS deg = 5

Figure 6.5 – MCLS for ATM call option in Heston model for different polynomial degrees. Left:
Absolute price error. Right: Width of 95% confidence interval.
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Figure 6.6 – MCLS for OTM call option in Heston model for different polynomial degrees. Left:
Absolute price error. Right: Width of 95% confidence interval.

In this setting, for all different choices of payoff parameters, we show in Table 6.2 the
implied volatility absolute errors (in percentage) for the MC and MCLS prices computed
with a basis of polynomials of maximal degree 5. The implied volatility error is measured
against the implied volatility of the reference method.

Before commenting on the numerical results, we apply MCLS to a second stochastic
volatility model, the Jacobi model presented in Chapter 2, Section 2.2. The moments can
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Implied vol absolute errors

k = −0.1 k = 0 k = 0.1
N MC MCLS MC MCLS MC MCLS

100 – 0.21 2.16 0.29 0.50 0.37
215 4.35 0.09 0.47 0.15 1.56 0.49
464 9.16 0.31 1.00 0.00 1.03 0.26
1000 9.13 0.28 1.58 0.17 1.21 0.02
2154 2.44 0.22 0.82 0.16 0.59 0.19
4642 1.15 0.09 0.18 0.02 0.18 0.24
10000 0.34 0.04 0.25 0.03 0.28 0.01

Table 6.2 – Implied volatility errors (in %) for MC and MCLS with basis of polynomials of
maximal degree 5 in the Heston model, for different sizes N of the sample set.

be computed again as in Corollary 2.6 where Gn corresponds now to the Jacobi model
and can be computed as explained in Section 2.2. For the numerical experiments we
consider the set of model parameters

σ = 0.15, v0 = 0.04, x0 = 0, κ = 0.5, θ = 0.04,

vmin = 10−4, vmax = 0.08, ρ = −0.5, r = 0.01.

We again consider single-asset European call options with payoff parameters

k = {−0.1, 0, 0.1}, T = 1/12.

As reference pricing method we choose the polynomial expansion technique introduced in
[4] and reviewed in Chapter 2, Section 2.3. Also, note that the same reference pricing
method has been used in Chapter 3, Section 3.1.4, where we give more details about the
method tailored to the Jacobi model. Here, we truncate the polynomial expansion of the
price after 50 terms.

We simulate the whole path of (Xt) from 0 to T in order to get the sample points xi,

173



Chapter 6. Combining function approximation and Monte Carlo simulation
for efficient option pricing

i = 1, · · · , n. The discretization scheme of the SDE is given by

V0 = v0,

X0 = x0,

Vti = Vti−1 + κ(θ − Vti−1)Δt+ σ
√
Q(Vti−1)

√
ΔtZ1

i ,

Xti = Xti−1 + (r − Vti−1/2)Δt+ ρ
√

Q(Vti−1)
√
ΔtZ1

i +
√
Vti−1 − ρ2Q(Vti−1)

√
ΔtZ2

i

for all i = 1, · · · , Ns, where Z1
i and Z2

i are independent standard normal distributed
random variables and the rest of the parameters are as specified in the example for the
Heston model.

We use again an ONB consisting of polynomials of maximal degrees 0 (standard MC),
1, 3 and 5 and we obtain the results shown in Figures 6.7, 6.8 and 6.9, for ITM, ATM and
OTM call options, respectively. Lastly, we show in Table 6.3 the implied volatility absolute
percentage errors for the MC and MCLS prices computed with a basis of polynomials
with maximal degree 5.
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Figure 6.7 – MCLS for ITM call option in Jacobi model for different polynomial degrees. Left:
Absolute price error. Right: Width of 95% confidence interval.

We can observe that MCLS strongly outperforms the standard MC in terms of price
errors, confidence interval width and implied volatility errors, for every type of moneyness,
for almost all values of N , and in both chosen stochastic volatility models. MCLS is
therefore very effective when applied to price single-asset options.

The last remark concerns the condition number of the Vandermonde matrix V. Thanks
to the choice of the ONB and to the fact that N � n, in both models, its condition
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Figure 6.8 – MCLS for ATM call option in Jacobi model for different polynomial degrees. Left:
Absolute price error. Right: Width of 95% confidence interval.
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Figure 6.9 – MCLS for OTM call option in Jacobi model for different polynomial degrees. Left:
Absolute price error. Right: Width of 95% confidence interval.

number is at most of order 10. Therefore, the CG algorithm has been selected. As another
consequence of the low condition number we did not implement optimal sampling6.

Basket options in Black-Scholes models - medium size problems

In this section we address multi-dimensional option pricing problems of medium size
in the Black-Scholes model, meaning with number of assets d ≤ 10 and N ≤ 105. The
risk neutral dynamics of the asset prices (S1

t , . . . , S
d
t ) and other relevant properties of

the model are specified in the Chapter 2, Section 2.2. In particular the moments can be

6Note that it is not clear how to efficiently implement the optimal sampling strategy in connection
with an Euler-Maruyama scheme. This remains an open problem.
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Implied vol absolute errors

k = −0.1 k = 0 k = 0.1
N MC MCLS MC MCLS MC MCLS

100 8.75 0.67 2.75 0.40 0.72 0.20
215 8.67 0.46 1.92 0.33 0.96 0.14
464 – 0.30 1.23 0.07 1.77 0.10
1000 3.27 0.39 0.32 0.13 1.16 0.24
2154 2.55 0.11 0.03 0.13 0.07 0.14
4642 3.26 0.03 0.68 0.01 0.15 0.08
10000 0.47 0.05 0.35 0.02 0.32 0.02

Table 6.3 – Implied volatility errors (in %) for MC and MCLS with basis of polynomials with
maximal degree 5 in the Jacobi model, for different sizes N of the sample set.

computed as in Corollary 2.5 and the corresponding matrix Gn is diagonal and given as
in the Corollary 2.4.

For the following numerical experiments we consider basket options with payoff function

f(s1, · · · , sd) =
( d∑

i=1

wisi −K

)+

(6.20)

for different moneyness with payoff parameters

K = {0.9, 1, 1.1}, T = 1, wi =
1

d
∀i.

Model parameters are chosen to be

Si
0 = 1 ∀i, σi = rand(0, 0.5) ∀i, Σ = Rd, r = 0.01,

where each σi is a randomly chosen volatility parameter in [0, 0.5], and Rd denotes a
random correlation matrix of size d× d. In this example we consider dimensions d = 5

and d = 10.

We compare MCLS to a reference price computed via a standard Monte Carlo algorithm
with 106 simulations. We plot again the absolute price errors and the width of the 95%

confidence intervals (computed as in (6.10) and (6.11)) for different chosen polynomial
degrees (0 (MC), maximally 1 and maximally 3). To be more precise, we used the
monomial basis as functions {φj}nj=0. Note that the distribution of the prices (S1

t , · · · , Sd
t )

176



6.3. Application to European option pricing

is known to be the geometric Brownian distribution so that there is no need to simulate
the whole path but only the price at final time T .

The results are shown in Figures 6.10, 6.11 and 6.12. In the legend the represented
number indicates again the maximal total degree of the basis monomials. For instance, if
d = 2 and the maximal total degree is deg = 3, this means that the basis functions φj are
chosen to be {1, s1, s2, s21, s1s2, s22, s31, s21s2, s1s22, s32}.
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Figure 6.10 – MCLS for basket options (with K = 0.9) in Black-Scholes model for different
dimensions and polynomial degrees. Left: absolute price errors with respect to a reference price
computed with 106 simulations. Right: Width of 95% confidence interval.

We observe that also in these multidimensional examples MCLS strongly outperforms
the standard MC in terms of absolute price errors and width of the confidence intervals.
Due to the use of the multivariate monomials as basis functions, the condition number of
V is relatively high, reaching values up to order 105. However, the QR based algorithm
chosen according to the selection scheme 6.1 for the numerical solution of the least-squares
problem (6.1) still yields accurate results. The Vandermonde matrix V is here still
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Figure 6.11 – MCLS for basket options (with K = 1) in Black-Scholes model for different
dimensions and polynomial degrees. Left: absolute price errors with respect to a reference price
computed with 106 simulations. Right: Width of 95% confidence interval.

storable, being of size at most 105 × 286. In the next section we treat problems of higher
dimensionality leading to a Vandermonde matrix of bigger size. There, its storage is not
feasible any more and neither CG nor QR based solvers can be used.

Basket options in Black-Scholes models - big size problems

In the multivariate Black-Scholes model we now consider rainbow options with payoff
function

f(s1, · · · , sd) = (K −min(s1, · · · , sd))+,
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Figure 6.12 – MCLS for basket options (with K = 1.1) in Black-Scholes model for different
dimensions and polynomial degrees. Left: absolute price errors with respect to a reference price
computed with 106 simulations. Right: Width of 95% confidence interval.

so that we apply MCLS in order to compute the quantity

e−rTE[(K −min(S1
T , · · · , Sd

T ))
+] = e−rT

∫
Rd
+

(K −min(s1, · · · , sd))+dμ(s1, · · · , sd),

where μ is the distribution of (S1
T , · · · , Sd

T ). In contrast to the payoff (6.20) which presents
one type of irregularity that derives from taking the positive part (·)+, this payoff function
presents two types of irregularities: one again due to (·)+, and the second one deriving
from the min(·) function. This example is therefore more challenging.

As similarly done in [97], we rewrite the option price with respect to the Lebesgue measure

e−rT

∫
[0,1]d

(
K − min

i=1,...,d

(
Si
0 exp

(
(r − σ2

i

2
)t+ σi

√
TLΦ−1(x)

)))+

dx,
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where L is the Cholesky decomposition of the correlation matrix and Φ−1 is the inverse map
of the cumulative distribution function of the multivariate standard normal distribution.

The model and payoff parameters are chosen to be

Si
0 = 1, K = 1, σi = 0.2 ∀i, Σ = Id T = 1, r = 0.01,

so that we consider a basket option of uncorrelated assets.

We apply MCLS for d = {5, 10, 20} using different total degrees for the approximating
polynomial space and we compare it to a reference price computed using the standard
MC algorithm with 107 simulations. Also, we consider different numbers of simulations
that go up to 106. We choose a basis of tensorized Legendre polynomials, that form an
ONB with respect to the Lebesgue measure on the unit cube [0, 1]d and we perform the
sampling step of MCLS (step 1) according to the optimal distribution as introduced in
[26] and reviewed in Section 6.1.1. The solver for the least-squares problem is chosen
according to the scheme shown in Figure 6.1, where we assume that the Vandermonde
matrix V can be stored whenever the number of entries is less than 108. This implies
that also, for example, for the case d = 5 with polynomial degree 5 and 106 simulations
V can not be stored. Indeed, for d = 5, deg = 5 and N = 106 the matrix V has 2.52 · 108

entries. For all of these cases, we therefore solve the least-squares problem by applying
the randomized extended Kaczmarz algorithm.

In Figure 6.13 we plot the obtained price absolute errors and the width of the 95%

confidence intervals for all considered problems. We notice that MCLS outperforms
again MC in terms of confidence interval width and price errors, as observed for medium
dimensions. The choice of the optimal sampling strategy combined with the ONB allowed
us to obtain a well conditioned matrix V, according to the theory presented in the
previous sections.

These examples and the obtained numerical results show therefore that our extension
of MCLS is effective and allows us to efficiently price single and multi-asset European
options. In the next section we test our extended MCLS in a slightly different setting
where the integrating function is smooth.
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6.4 Application to high-dimensional integration

In this section we apply the extended MCLS algorithm to compute the definite integral

∫
[0,1]d

sin

( d∑
j=1

xj

)
dx. (6.21)

The same integration problem has been considered in [97] where the author managed to
apply MCLS to compute (6.21) for dimension at most d = 6 and with at most N = 105

simulations. Our goal is to show that, thanks to our extension, we can increase the
considered dimension d and the number of simulations N .

We apply MCLS for d = 10 and d = 30 using a basis of tensorized Legendre polynomials
of total degree 5 and 4, respectively. We compare it to the reference result which for
d = 2 (mod 4) is explicitly given by

∫
[0,1]d

sin

( d∑
j=1

xj

)
dx =

d∑
j=0

(−1)j+1

(
d

j

)
sin(j).

Also, we consider different sample sizes that go up to 107. We perform the sampling step
of MCLS (step 1) according to the optimal distribution as introduced in [26] and reviewed
in Section 6.1.1. The choice of the solver for the least-squares problem is again taken
according to the scheme in Figure 6.1 and we assume that the Vandermonde matrix V

can be stored whenever the number of entries is less than 108.

The obtained results are shown in the Figure 6.14. Again, we have plotted the obtained
absolute error computed with respect to the reference result (left) and the width of
the 95% confidence interval (right). First, we note that MCLS performs much better
than the standard MC, as in the previously shown examples. Furthermore, the obtained
results are much better than the ones obtained in the previous section, see Figure
6.13. This is due to the fact that the integrand is now smooth, while in the multi-
asset option example it was only continuous. Indeed, the function approximation error
minc∈Rn+1 ‖√w(f − ∑n

j=0 cjφj)‖μ is expected to be much smaller in this case, since
polynomials provide a more suitable approximating space for smooth functions than
for irregular functions. According to Proposition 6.2, this results in a stronger variance
reduction and in a better approximation of the integral. Finally, the very good numerical
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results show that our extension is effective since we managed to consider problems of size
much larger than in [97].

6.5 Conclusion

We have presented a numerical technique to price single and multi-asset European options.
The starting point was the algorithm (MCLS) for multidimensional integration developed
in [97]. After extending MCLS to numerically evaluate integrals with respect to an
arbitrary probability measure, we have proposed to combine it with the optimal sampling
strategy (Section 6.1.1) introduced in [26] and with the randomized extended Kaczmarz
algorithm [124] (Section 6.1.2). The optimal sampling strategy allows us to obtain a well
conditioned least-squares problem that, in a second moment, can be solved by applying
the REK algorithm. This combination allows us to treat problems of big size since REK
does not need the storage of the full matrix V, which was the main bottleneck in using
classical algorithms for the numerical solution of least-squares problems. Afterwards, in
Section 6.2 we have presented a convergence and a cost analysis. Here, we have shown
that MCLS asymptotically outperforms the standard Monte Carlo method as the cost
goes to infinity, provided that the integrand satisfies certain regularity conditions.

In the second part of the chapter, Section 6.3, we have applied the new method to the
problem of European option pricing. First, we have adapted our generalization to compute
single and multi-asset option prices, where we have proposed to modify the sampling step
of MCLS by discretizing the governing SDE of the underlying price process, whenever
needed. The modification of the first step introduces a new source of error, which has
been analyzed in Proposition 6.8. In Section 6.3.2 we have applied the algorithm to price
single and multi-asset European options in the Heston model, in the Jacobi model and in
the multidimensional Black-Scholes model. Here, we have exploited the fact the these
models belong to the class of polynomial diffusions and the moments can be computed
in closed form. For these examples, MCLS strongly outperformed the standard MC in
terms of implied volatility, see Table 6.2 and Table 6.3, and in terms of option price
errors and confidence interval width, see for instance Figures 6.4-6.9 and Figure 6.13. In
particular the choice of the Kaczmarz algorithm combined with the optimal sampling
strategy allowed us to consider problems of big size, where we treated options based on
20 assets and 106 simulations. Finally, in the Section 6.4 we have tested our extension of
MCLS in the computation of a multidimensional integral of a smooth function, which
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had already been considered in [97]. There, the author managed to consider a maximal
dimension d = 6 and N = 105. Thanks to the application of the REK algorithm we
managed to reach d = 30 and to consider N up to 107, showing the effectiveness of our
extended approach.

To extend the approach further to even higher dimensions, computational bottlenecks
arising are to be addressed. Solving the storage issue in the least-squares problem with
Kaczmarz leaves us with a high number of function calls. We do not need to store the
full Vandermode matrix, but instead rows and columns are required many times during
the iteration. This leads to a high computational cost. One can reduce this cost by 1)
reducing the number of function calls and by 2) making the function calls more efficient.
To achieve 1), one can for instance store the rows and columns of the Vandermonde
matrix which are called with highest probability. To achieve 2) one can exploit further
insight of the functions, for instance using a low-rank approximation [55] or functional
analogues of tensor decomposition approximation [53].
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Figure 6.13 – MCLS for rainbow options in Black-Scholes model for different dimensions and
polynomial degrees. Left: absolute price errors with respect to a reference price computed with 107

simulations. Right: width of the 95% confidence interval.
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7 Conclusion

In this thesis we have discussed the development of numerical methods for option pricing.
In particular, we have considered the class of polynomial models, which have been reviewed
in Chapter 2, and we have focused on treating important challenges that arise when
developing option pricing techniques, discussed in Chapter 1. For instance, treating
the high dimensionality arising in option pricing problems and reducing the algorithmic
complexity are important points that we have addressed.

In Chapter 3, we have exploited the availability of all the moments of polynomial jump-
diffusions to introduce a pricing technique based on the computation of polynomial bounds
for option prices. For both the European and the American case, we have explained
how to compute the bounds by solving sequences of optimization problems using two
different numerical approaches: a technique based on semidefinite programming, and an
algorithm based on the cutting plane procedure. For the one-dimensional European case,
we have obtained new convergence results where we have considered a general class of
non-piecewise polynomial payoff functions. Numerical experiments have shown that the
method yields sharp bounds for different payoff profiles and for different models. Finally,
we have introduced a black box algorithm for European option pricing (Algorithm 3.2),
able to take model and payoff parameters as input, and to return the option price.

In Chapter 4, we have developed incexpm, a new efficient algorithm that computes
sequences of nested block triangular matrix exponentials. Since the sequence G0, G1, . . .

of the matrix representations of the generator G restricted to Pol0(E),Pol1(E), . . . exhibits
a nested block triangular structure, our algorithm can be used to reduce the complexity of
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the pricing procedures that require an incremental computation of the moment sequence.
An example is the aforementioned Algorithm 3.2. The complexity is reduced by combining
incexpm with the moment formula (2.7). At each step k of the incremental procedure,
incexpm reduces the complexity of computing exp(Gk) from O(k3b3) to O(k2b3), where
b is the size of the diagonal blocks. Moreover, we have developed an adaptive scaling
procedure which allows us to avoid inaccurate results and, in the context of polynomial
models, we have derived estimation techniques to choose the scaling parameter. Finally,
the numerical experiments have confirmed that using incexpm instead of Matlab’s expm
reduces the complexity of some pricing techniques while maintaining the same accuracy.

In Chapter 5, we have developed a complexity reduction technique for parametric option
pricing based on the tensorized Chebyshev interpolation. In particular, we have extended
the approach proposed in [46] to treat high-dimensional parameter spaces. The core
idea is to exploit the low-rank structure of the tensors involved in the interpolation
task by expressing the whole procedure in the TT format. This allows us to reduce
the storage complexity from O(nd) to O(dnr2), where n is the interpolation order, d
the dimension of the parameter space, and r the largest rank of all involved tensors.
Then, we have developed a method based on tensor completion to efficiently approximate
the interpolation coefficients in an offline phase. In the online phase, expressing the
interpolated price as an inner product between two tensors in the TT format allows us to
reduce the computational complexity from O(nd) to O(dnr2). The numerical experiments
have confirmed that our method dramatically reduces the storage requirement and the
computational complexity of the pricing procedure while maintaining a very high accuracy.

In Chapter 6, we have proposed a technique to price single and multi-asset European
options. The method is a combination of Monte Carlo simulation and function approxi-
mation, and is a generalization of the algorithm (MCLS) developed in [97]. In particular,
we have adapted it to compute integrals with respect to general probability measures,
and we have shown that it reduces the variance of the estimator thanks to the function
approximation step, as in [97]. We have proposed a new cost analysis and we have
combined MCLS with the randomized Kaczmarz algorithm (REK), and with an optimal
sampling strategy. Employing REK reduces the memory requirement of MCLS since it
does not require the storage of the full Vandermonde matrix. The numerical experiments
in option pricing and the computation of a large-scale multivariate integral have shown
the effectiveness of the method and of our extension in both low and high dimensions.
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