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Abstract: We demonstrate a novel method for fabricating single crystal diamond diffraction 
gratings based on crystallographic etching that yields high-quality diffraction gratings from 
commercially available <100> diamond plates. Both V-groove and rectangular gratings were 
fabricated and characterised using scanning electron microscopy and atomic force microsco-
py, revealing angles of 57° and 87° depending on the crystal orientation, with mean rough-
ness below Ra = 5 nm on the sidewalls. The gratings were also optically characterised, show-
ing good agreement with simulated results. The fabrication method demonstrated in this con-
tribution shows the way for manufacturing high-quality diamond diffractive components that 
surpass existing devices both in quality and manufacturability. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Diffraction gratings fabricated in single crystal diamond represent an inspiring endeavour, 
thanks to their exceptional material properties. Diamond exhibits a high refractive index (2.4 
at 635 nm [1]) and low absorption over a wide spectral range spanning from ultraviolet to far 
infrared. Furthermore, it provides high thermal conductivity and a remarkably high laser in-
duced damaged threshold (LIDT) [2]. These properties enable compact, high power laser 
components and spectrometers operating in the visible and UV range that are not accessible 
with other materials. 

Diffraction gratings are key elements in the optical toolbox. A periodic change in the opti-
cal path length gives rise to interference, which can be exploited as a frequency selective ele-
ment. Diffraction gratings are found in numerous optical systems, including monochromators 
[3], spectrometers [4–6], beamsplitters [7], continuous wave [8] and pulsed lasers [9]. These 
are commonly fabricated by mechanical ruling [10], where the grooves are created by me-
chanical material removal, or by microfabrication technologies based on photolithography 
and subsequent etching procedures [11]. While microfabrication is typically more complex, 
gratings fabricated this way are well suited as moulds for creating replicas [12]. 

Microfabrication also provides greater flexibility in patterning via lithography, gives ac-
cess to a wide range of materials in addition to the typically employed grating substrates 
(quartz, plastic), such as silicon [13], gallium nitride [14] or gallium arsenide [15], and inher-
ently enables surface treatments, such as distributed Bragg reflector (DBR) or anti-reflection 
(AR) coatings, in the same manufacturing environment. Current research efforts address the 
improvement of microfabricated gratings for astronomy [13], long-wavelength operation [16], 
microspectrometers [5,6] external cavity lasers [8] and large-area gratings [17,18]. In such 
applications, the extraordinary optical, mechanical and thermal properties of single crystal 
diamond are of high practical and functional value. Yet only recently has diamond been made 
commercially available as a single crystal substrate, thanks to the tremendous progress in 
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chemical vapour phase growth of high-quality plates [19–21]. Chemical inertness and me-
chanical hardness are the striking properties of diamond [22,23]. However, these properties 
cause significant challenges for microfabrication. As no chemical wet etchants exist for dia-
mond, alternative microstructuring approaches, such as metal etching [24], laser ablation and 
modification [25–27], focused ion-beam milling [28], multi-photon UV etching [29,30] and 
dry etching [31] have been developed. The recent discovery of crystallographic diamond 
etching via unbiased oxygen plasma [32–34] allows the fabrication of microstructures reveal-
ing crystal planes selectively, in analogy to silicon processing via anisotropic etching with 
KOH/TMAH [35]. 

In this work, we demonstrate single crystal diamond diffraction gratings fabricated by 
photolithography, hardmask patterning and crystallographic etching. This method allows the 
definition of precise angles according to the crystalline planes of the substrate. We present 
diffraction gratings with sidewalls along the {100} and {111} planes, following our previous 
demonstration of this fabrication method to manufacture beamsplitters with trapezoidal pro-
file [34]. Diffraction gratings in diamond have been previously published using directional 
anisotropic etching, exploitation of mask redeposition [36], boron implantation [37] and for 
X-ray applications [38]. Compared to these fabrication methods, crystallographic etching 
allows precise control of angles, produces smooth sidewalls free of ion damage and enables 
high aspect ratio gratings using commonly available microfabrication equipment. Further-
more, the here reported fabrication method facilitate the fabrication of blazed diffraction grat-
ings, previously unobtainable in the diamond material system. 

In this work we show the fabrication and detailed geometrical and optical characterisation 
of high-quality and uniform, large area gratings which are limited in quality only by substrate 
polishing and size. Furthermore, we elucidate the etch mechanism with numerical simula-
tions. 

2. Results 

The diamond diffraction gratings were fabricated from commercially available general grade 
single crystal diamond substrates (Element Six, LakeDiamond). The grooves were lithograph-
ically defined and aligned to the <110> or <100> directions, determined optically from the 
substrate edge. A 60 nm thick Al2O3 hardmask protects the diamond during the unbiased oxy-
gen plasma etching process (see Methods). Subsequent to the diamond crystallographic etch-
ing, the resulting gratings were characterised by scanning electron microscopy (SEM) and 
atomic force microscopy (AFM) to extract the geometry and surface roughness. The rough-
ness on the top of the grooves only depends on the substrate polishing quality, as this area is 
not exposed to etching during processing. 

The realised grooves in the <110> direction have a pitch and depth of 5 μm and 2.65 μm, 
respectively (Fig. 1(a)). We observed an asymmetry of the etched groove shape, which can be 
attributed to the misalignment of the gratings with respect to the <110> direction, resulting in 
an undercut of the mask (Fig. 1(b), dashed line). This effect is commonly observed in silicon 
gratings fabricated by crystallographic wet etching [39]. The angle of the gratings with re-
spect to the surface plane is 57° (Fig. 1(b)). The sidewalls of the <110> groove are smooth 
with exception of steps occurring due to groove misalignment, yielding a total Ra of 22 nm. 
Exclusion of the steps results in a mean roughness (Ra) better than 5 nm (Fig. 2(a)). 

The grooves in accomplished the <100> direction have a pitch and a depth of 4 μm and 
1.37 μm, respectively (Fig. 1(c)). The AFM measurements revealed an almost vertical side-
wall with an angle of 87° (Fig. 1(d)). We observed the sidewalls of the <100> grooves to be 
extremely smooth, with a measured Ra below 5 nm (Fig. 2(b)). We also noted the roughening 
on the bottom of the trenches, which we attribute to hardmask material remaining at the bot-
tom of the trenches due to insufficient etching [40]. 

The efficiency of the diffraction orders in transmission was measured using a goniometer 
setup (see Methods), and the efficiency values were compared with simulated results based on 
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and optical characterisations to assess the quality of the produced devices. We have shown 
that the <110> grooves exhibit a sidewall angle of 57°, with a mean sidewall surface rough-
ness of Ra = 22 nm, while the <100> grooves exhibit a sidewall angle of 87° and a roughness 
better than Ra = 5 nm. We have shown that the resulting devices are optically flat (peak-to-
valley flatness:) and have diffraction efficiencies as predicted by simulations of the idealised 
groove profile, indicating uniform groove size and spacing and low scattering. Furthermore, it 
follows that such simulations are a reliable way of designing gratings based on this fabrica-
tion method. 

To our knowledge, this is the first time diamond diffraction gratings fabricated via crystal-
lographic etching are characterised in detail, showing that gratings fabricated with this meth-
od exhibit outstanding quality similar to the silicon system. We believe that this synergy al-
lows the adaptation of existing designs for silicon-based diffractive elements to single crystal 
diamond, exploiting the broadband transmission window (including visible wavelengths) and 
the inherent high damage threshold. The shown fabrication method can be further refined to 
provide a scalable process enabling high-quality single crystal diffraction gratings, with 
smoother sidewalls and improved grating uniformity. While the grating pitch was chosen to 
showcase fabrication, the grating line resolution is a product of the lithography step and can 
be increased depending on the method used (the process shown can also be straightforwardly 
adapted to electron beam lithography if very fine pitch is required). Similarly, etch depth can 
be set by timing the etch process (vertical grooves) or by choice of pitch and duty cycle (V-
shaped grooves). 

The fabrication process can be adapted for the fabrication of blazed gratings (by exploita-
tion of substrate miscut angle introduced groove angle asymmetry [47]), and the resulting low 
roughness surfaces are of great interest to manufacture low loss waveguide structures in dia-
mond photonic integrated circuits. 

4. Materials and methods 

4.1. Microfabrication process 

The microfabrication process is carried out on commercially available general grade single 
crystal diamond plates (Element Six, Lake Diamond) with dimensions of 2.6mm x 2.6mm x 
0.3mm and <100> crystal orientation (Fig. 4). The plates are first cleaned in acetone and IPA, 
then 60 nm of Al2O3 is deposited using atomic layer deposition (ALD). Alumina represents an 
excellent hardmask for this etch process, with selectivity better than 1:80. The diamond plate 
is fixed to a wafer using mounting wax (QuickStick 135) to ensure thermal contact during 
diamond etching and facilitate handling. Subsequently photoresist (AZ ECI 3007) is spincoat-
ed onto the chip. The grating lines are exposed using contact lithography, aligned to the chip 
edges. Two samples were fabricated one with grating lines in the <110>, the other with grat-
ing lines in the <100> direction. The alumina hardmask is etched in a deep reactive ion etcher 
using chlorine chemistry (STS Multiplex). Afterwards, diamond etching is carried out using 
reactive ion etching (SPTS APS) with oxygen plasma, utilising high ICP power (2000 W) and 
zero platen bias power (15 mT process pressure, 30 sccm O2 gas flow, 25 °C). Etching time 
was 70 minutes for the <110> gratings and 35 minutes for the <100> gratings, resulting in 
etch depths of 2.65 μm and 1.37 μm, respectively. After etching, the chip is released from the 
carrier wafer and the hardmask is stripped in concentrated hydrofluoric acid. 
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