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Abstract
Optimization-based controllers are advanced control systems whose mechanism of determin-

ing control inputs requires the solution of a mathematical optimization problem. In this thesis,

several contributions related to the computational effort required for optimization-based

controller execution are provided. The content of the thesis is divided into three parts:

The first part provides methods capable of performing automatic controller tuning for

constrained control of nonlinear systems. Given a specified controller structure, the presented

methods are able to perform an offline tuning of the controller parameters such that some

user-specified performance metric is optimized while imposing stability guarantees on the

obtained closed-loop system. The methods are characterized by a broad flexibility that allows

their application to many control schemes that are widely popular in practice, but also to

novel user-specified control schemes that are convenient from a computational or some other

point of view. The controller tuning is formulated as an optimization problem that can be

tackled by black-box optimization techniques such as Bayesian optimization. The methods

are demonstrated by application examples involving speed control of a permanent magnet

synchronous machine and position control of a mechanical gyroscopic system.

The second part provides an accelerated version of the alternating direction method of

multipliers (ADMM) optimization algorithm derived by using a recently proposed accelerated

Douglas-Rachford (DR) splitting. The obtained method is an accelerated ADMM version that

replaces the internal proximal point convergence mechanism of the classical ADMM by the

accelerated gradient method applied on a specially constructed scaled DR envelope function.

The form of the accelerated ADMM is derived and conditions are provided under which the

underlying accelerated DR splitting is validly addressing the Fenchel dual problem.

The third part describes a model predictive control scheme for power electronics con-

trol which involves a combination of the integral of squared predicted tracking error as the

controller’s cost function together with offline computed optimal steady-state voltage signals.

These offline computed optimal steady-state signals are in the power electronics community

referred to as Optimized Pulse Patterns (OPPs). The method is presented by considering

an industrial case study involving a grid-tied converter with LC filter. After introducing an

optimal control problem based on OPPs, low computational complexity approximate versions

are provided. The resulting approximate controller versions are addressed by using memory

storage of the dynamic behavior of the system, leading to controller forms whose execution

can be performed on embedded hardware.
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Résumé
Les régulateurs basés sur l’optimisation sont des régulateurs avancés dont le mécanisme de

détermination de l’entrée repose sur la solution d’un problème d’optimisation mathématique.

Dans cette thèse, plusieurs contributions en relation sur le coût calculatoire de l’implémenta-

tion du régulateur basé sur l’optimisation résultant, seront présentées. Le contenu de cette

thèse est divisée en trois parties.

La première partie traite des méthodes capables d’ajuster de manière automatique les

paramètres du règulateur et s’applique aux systèmes non-linéaires contraints. A partir d’une

structure de régualteur donnée, la méthode présentée est capable d’effectuer un ajustage

hors-ligne des paramètres du régulateur en garantissant à la fois une performance utilisateur

donnée et une stabilité de la boucle fermée. Les méthodes proposées ont un caractère étendu

et flexible rendant possible leur application à une vaste palette de problèmes d’automatique

rencontré dans la pratique, mais également rend possible des innovations de techniques

existantes en améliorant les performances calculatoires et d’autres indices de performance.

L’ajustage du régulateur est formulé comme un problème d’optimisation qui peut être résolu

comme un problème d’optimisation boîte noire telle que l’optimisation Bayesienne. Les

méthods sont validées à travers des exemples d’application telles que la régulation de vitesse

d’un moteur à aimants permanents (machine synchrone) et le positionnement d’un système

gyroscopique mécanique.

La seconde partie propose une méthode pour accélérer la technique d’optimisation fon-

dées sur les directions alternées dans la méthode des mulitiplicateurs (ADMM). Elle découle

d’une méthode d’accélération récente appelée méthode par scindement Douglas-Rachford

(DR). La méthode ainsi proposée est est un version accélérée ADMM qui remplace le mécanis-

mae de convergence ponctuel par méthode interne proximale de la méthode classique ADMM

par une méthode de grandients accélérée appliquée à une fonction enveloppe construite

spécialement et mise en échelle selon le critère Douglas-Rachford. La forme issue d’une telle

modification de la méthode ADMM est ainsi obtenue et caractérisée de telle sorte à obtenir

les conditions pour lesquelles le scindement DR est possible tout en adressant le problème de

Fenchel dual.

La troisième partie décrit un schéma de commande prédictive fondée sur un modèle avec

comme application la régulation de systèmes d’électronique de puissance. Elle comporte une

fonction de coût de commande qui repose sur un terme qui évalue l’intégrale du carré de

l’erreur de prédiction de poursuite combinée avec un terme qui évalue la valeur optimale hors

ix



Résumé

ligne des niveaux asymptotiques des tensions des signaux. Ces valeurs des signaux asymp-

totiques hors-lignes sont référés dans la litérature de l’électronique de puissance comme les

modèles d’impulsions optimisés (OPPs, Optimized Pulse Patterns). La méthode présentée est

appliquée à un cas d’étude industriel qui repose sur un convertisseur LC attaché au réseau.

Après avoir appliqué un problème de commande optimale basée sur les OPPs, des approxi-

mations de complexité calculatoire réduite sont proposées. Les régulateurs approximatifs

ainsi obtenus sont implémentés en tirant parti du stockage en mémoire du comportement

dynamique du système, rendant ainsi possible une structure implémentable sur des systèmes

embarqués.

Mots-clés : Commande basée sur l’optimistaion, MPC, ajustage de régulateur, systèmes

non lináires, somme de carrés, approche scénario, optimisation bayésienne, ADMM, scin-

dement Douglas-Rachford, accélération de Nestorov, électronique de puissance, modèles

d’impulsions optimisés (OPPs), convertisseurs multi-niveaux.
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1 Introduction

Optimization-based controllers are advanced control systems whose mechanism of determin-

ing control inputs requires the solution of a mathematical optimization problem. Controllers

of this kind are usually formed by using a prediction horizon concept; that is, over a certain

prediction horizon into the future, a system model is used to predict the future evolution of the

system as a function of the predicted inputs, and by usage of prediction the best input signal

over the prediction horizon is determined so that some cost function is minimized. To provide

feedback and robustness, after computing the best control input over the prediction horizon,

only its portion over the first control period is applied and the whole computational process

is repeated at the next control period by using new information about the system state. In

comparison to classical control schemes based on linear systems theory, optimization-based

controllers are characterized by important advantages such as direct treatment of the system’s

constraints and ability to treat nonlinear system dynamics, resulting thereby in a better control

performance.

Beside the ability to provide better control performance, optimization-based control also

involves several drawbacks. One of the most prominent is the computational effort required

for execution of the control algorithm. This usually high computational effort is caused by

a necessity to solve the involved optimization problem to compute the control input. An

additional difficulty is caused by a necessity to select a convenient optimization algorithm

and appropriately tune it for the present control problem. The selection of an optimization

algorithm should consider several aspects, such as exploitation of the optimization problem’s

structure, robustness to numerical errors caused by finite precision of the computational

hardware, as well as the convergence properties whose establishing usually requires a math-

ematically rigorous analysis. Despite the rich theoretical foundations of control theory and

mathematical optimization, a practical implementation of optimization-based control often

requires a considerable amount of trial-and-error parameter tuning of the cost function and

the optimization algorithm in order to achieve stability and the optimization algorithm’s

practical convergence rate appropriate for real-time execution within the available control

period.
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Chapter 1. Introduction

This thesis provides several contributions related to to the computational effort required for

optimization-based controller execution. The content of the thesis is divided into three parts,

as sumamrized in what follows.

Part I - Automatic Controller Tuning

The first part of the thesis presents methods capable of performing offline automatic tuning

of controller parameters. More specifically, given some fixed controller structure, the methods

of this part tune the controller parameters such that some user-specified performance metric

is optimized while imposing stability guarantees on the obtained closed-loop system. The

techniques are characterized by a broad flexibility that allows their application to nonlinear

system dynamics, user-specified controller structures and problem-tailored performance

metrics. As such, they allow the design of low-complexity optimization-based controllers

whose tuning parameters (including possibly also those of the optimization algorithm) are

optimized for performance and closed-loop stability. Due to the high flexibility in terms of the

controller structures and performance metrics that can be considered, the presented tuning

methods allow not just an easier design of optimization-based controllers by tuning their

control and optimization algorithm parameters, but also provide the user with a tool capable

of tuning his intuitive novel control structures in order to bring them to their best performance

while imposing closed-loop stability. The content consists of the three chapters described

below.

Chapter 2 - Automatic tuning based on sum-of-squares programming

This chapter describes a tuning technique which involves sum-of-squares (SOS) programming

for the generation of closed-loop Lyapunov functions for polynomial systems. The SOS

stability verification technique used in this chapter is the one from [43]. In comparison

to other controller design methods using SOS programming, the method of this chapter is

characterized by the ability to address nonlinear polynomial dynamics in a constrained setting

with broad flexibility regarding the performance metrics which can be specified by the user.

To provide an illustration of the possibilities which the tuning method creates in case of model

predictive control (MPC), an example involving synthesis of an explicit MPC (EMPC) controller

for constrained control of nonlinear system dynamics is considered. As will be described in

more detail in the chapter, the tuning method consists of two phases, both of which can be

addressed by using a black-box optimization technique such as Bayesian optimization which

will be used in the numerical example.

The content of this chapter is based on the following publication:

• I. Pejcic, M. Korda, C. N. Jones. "Control of Nonlinear Systems with Explicit-MPC-like

Controllers", In Proc. of Conference on Decision and Control, 2017.
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whose content has also partly appeared in:

• M. Kvasnica, C. N. Jones, I. Pejcic, J. Holaza, M. Korda, P. Bakarac. "Real-Time Implemen-

tation of Explicit Model Predictive Control", In Handbook of Model Predictive Control,

Springer, 2018.

Chapter 3 - Extension to multimodel uncertainty and experimental verification

This chapter brings several further developments related to the automatic tuning method

of Chapter 2. Besides demonstrating a broader applicability of the tuning method from

Chapter 2 by applying it in a case involving a non-optimization-based, nonlinear control

policy, the primary purpose of this chapter is to experimentally demonstrate the validity of the

method by application to a mechanical physical system and to extend the method’s practical

computational capability to the case of multimodel plant uncertainty. The mentioned broader

generality of the method from Chapter 2 (i.e., applicability to non-optimization-based control

schemes) can be anticipated from some of the illustrative examples provided in papers [43] and

[42] from which the SOS stability certification used in Chapter 2 and this chapter originates.

The anti-windup equipped PID control scheme considered in this chapter is embedded into

the SOS framework by using the KKT conditions in a manner similar to an example presented

in [43].

The content of this chapter is based on the publication:

• I. Pejcic and C. N. Jones. "Experimental Verification of Sum-Of-Squares-Based Con-

troller Tuning Technique with Extension to Parallel Multimodel Uncertainty Processing",

Accepted to European Control Conference 2019.

Chapter 4 - Automatic tuning based on scenario approach technique

This chapter presents a method whose purpose is to extend the benefits of the automatic

tuning procedure described in Chapter 2 to problems of larger size. The presented method

also provides better modelling flexibility than the SOS approach as it does not require poly-

nomial form for the functions describing the system. Instead of using the SOS programming

technique for computation of Lyapunov functions, a procedure allowing a high accuracy

numerical Lyapunov function estimation is introduced. This procedure formulates the Lya-

punov function search as a robust optimization problem which is then tackled by applying a

Chebychev center and scenario-based optimization techniques. The concept is then incorpo-

rated into a controller synthesis method whose demonstration is performed by application to

two examples which cannot be addressed by the SOS-based approach due to scalability and

modelling limitations.

This chapter is based on a publication in preparation:

3



Chapter 1. Introduction

• I. Pejcic and C. N. Jones. "A General Automatic Tuning Method for Constrained Nonlin-

ear Systems Control", In preparation.

Part II - Accelerated ADMM based on Accelerated Douglas-Rachford

Splitting

Chapter 5 - Accelerated ADMM based on Accelerated Douglas-Rachford Splitting

Solving of the controller’s optimization problem can be addressed by a large variety of opti-

mization algorithms. An algorithm that has received attention in recent years is the alternating

direction method of multipliers (ADMM). A general property of first order methods, including

the gradient method and ADMM, is their slow convergence rate in comparison to advanced

second order methods. A substantial contribution to the performance of the gradient method

is achieved through its acceleration based on an extrapolation rule between subsequent gradi-

ent steps. This chapter provides an accelerated version of ADMM by building on a recently

proposed accelerated Douglas-Rachford (DR) splitting, resulting in a method that replaces

the internal proximal point convergence mechanism of classical ADMM by the accelerated

gradient method applied on a specially constructed scaled DR envelope function. The chapter

derives the form of the accelerated ADMM algorithm and provides conditions under which

the underlying accelerated DR splitting is valid.

The content of this chapter is based on the publication:

• I. Pejcic and C. N. Jones. "Accelerated ADMM based on Accelerated Douglas-Rachford

Splitting", In Proc. of European Control Conference, 2016.

Part III - Power Converter Pulse Pattern Optimal Control

Chapter 6 - Power Converter Pulse Pattern Optimal Control

The field of medium-voltage power electronics has demonstrated itself as a fruitful ground

for application of optimization-based control. In comparison to the traditional control ap-

proaches that exist in the field, the developed optimization-based schemes showed an ability

to get the existing power electronics hardware closer to its full operating potential, providing

better efficiency and dynamic/steady-state performance. The method to be presented in

this chapter is based on usage of offline computed optimal steady-state input signals that

are in the power electronics community known as Optimized Pulse Patterns (OPPs). In com-

parison to the other methods which use OPPs to store the optimal steady-state operation

in the controller’s memory, the method of this chapter also allows a usage of memory to

store the information about dynamic system behavior, thereby allowing an approximate

low-computational complexity MPC that optimizes the transient behavior of complex power
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electronics configurations for which it is not possible to approximate the plant dynamics with

two integrators, as done by the state-of-the-art method. The presented method is thus more

general (e.g., directly applicable in the presence of LC filters) and furthermore, it also involves

penalization of the tracking error not only at the end of the prediction horizon but along it, thus

not experiencing a degradation of transient performance when longer prediction horizons

are used. Introduction of various problem-specific approximations allows a computational

implementation on a field-programmable gate array (FPGA), and one particular FPGA model

is considered in the numerical results section for assessment of the computational effort.

This chapter is mainly based on the publication:

• I. Pejcic, S. Almer, H. Peyrl. "Voltage Source Converter MPC with Optimized Pulse

Patterns and Minimization of Integrated Squared Tracking Error". In Proc. of American

Control Conference, 2017.

as well as on a publication in preparation:

• I. Pejcic, H. Shukla, S. Almer, J. Ferreau, C.N. Jones, "Low Computational Complexity

Power Converter Optimal Control using Optimized Pulse Patterns", In preparation.
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There is a large number of control schemes that are very popular from a practical point of

view, but are not as theoretically sound as their closely related versions usually studied in

the control literature. Employment of such control schemes often requires a considerable

amount of effort spent on iterative trial-and-error tuning with an aim of eventually obtaining

a controller that works satisfactorily, although without any closed-loop stability guarantees.

Such circumstances create a need for an automatic tuning tool which should preferably be

characterized by a generality that allows it to address a broad variety of user-specified control

structures and closed-loop performance metrics.

The departures from theoretically sound controller forms are quite common in case of

optimization-based controllers. In many cases, they are inevitable due to the practical limita-

tions present in the implementation of the controller, causing for example a necessity for early

termination of the controller’s optimization algorithm due to hard real-time computational

constraints, and resulting in a need for tuning of the optimization algorithm parameters in

order to obtain an appropriate practical convergence rate. Another example involves model

predictive control (MPC) schemes [68] used without a terminal constraint in order to obtain

an optimization problem that is computationally easier to solve, causing thereby a loss of the

stability properties guaranteed by the MPC theory. In the field of non-optimization-based

controllers, an example are the controllers obtained by using linear systems theory to which

saturation elements are subsequently added in order to handle system constraints, resulting as

well in a loss of the performance/stability properties guaranteed by the linear systems theory

and in a potentially considerable amount of effort to be spent on tuning by a technician.

This part of the thesis presents several methods capable of performing controller tuning

for constrained control of nonlinear systems in an automated fashion. The techniques are

characterized by a broad flexibility that allows their application to nonlinear system dynamics,

user-specified controller structures and problem-tailored performance metrics. In particular,

the presented techniques allow not only a tuning of many heuristic control schemes that are

popular in practice, but also provide the user a possibility for development of his novel user-

specified control schemes involving for example his intuitively designed early-terminated

optimization algorithm (without convergence properties established in a mathematically

rigorous fashion) whose parameters get tuned together with the other controller’s parameters

with respect to the given performance metric while imposing closed-loop stability on the

obtained closed-loop system.

This Part I concerning automatic controller tuning consists of three chapters. The first of them,

Chapter 2, develops an automatic controller tuning method that uses sum-of-squares (SOS)

techniques for stability certification of the obtained closed-loop systems (i.e., for generation

of closed-loop Lyapunov functions), involving thereby polynomial structure requirement on

the functions describing the system. The method is demonstrated by synthesizing an explicit-

MPC (EMPC) controller for speed control of a nonlinear permanent magnet synchronous

machine (PMSM) model. The material of this chapter is based on the publication [61].
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Chapter 3 describes extension of the SOS-based synthesis to the case of multimodel plant un-

certainty, provides an experimental verification of the method by application on a mechanical

gyroscopic system, and demonstrates applicability of the method beyond optimization-based

controller structures by involving an anti-windup equipped PID controller synthesized robust

to the multimodel uncertainty in the experimental setup. The material of this chapter is based

on the document [60] accepted for publication.

Chapter 4 extends the benefits of the automatic tuning procedure presented in Chapter 2 to

problems of larger size. The obtained method also provides better modelling flexibility than the

SOS approach as it does not require polynomial form for the functions describing the system.

Instead of using the SOS programming technique for computation of Lyapunov functions, a

procedure allowing a high accuracy numerical Lyapunov function estimation is introduced.

This procedure formulates the Lyapunov function search as a robust optimization problem

which is then tackled by applying a Chebychev center and scenario-based optimization

techniques. The concept is then incorporated into a controller synthesis method whose

demonstration is performed by application to two examples which cannot be addressed

by the SOS-based approach due to scalability and modelling limitations. The examples

involve a synthesis of an early-terminated optimization-based controller applied for soft-

constrained control of the PMSM rotational speed with the involved optimization algorithm

tuned together with the other controller tuning parameters, as well as a synthesis of a cascaded

linear controller with saturation applied for position control of gyroscope’s disc, which is an

input constrained nonlinear control problem.
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2 Automatic tuning based on
sum-of-squares programming

2.1 Introduction

This chapter describes a tuning technique which as one of its components uses sum-of-

squares (SOS) programming for generation of closed-loop Lyapunov functions. The tuning

method of this chapter will be based on the SOS stability verification technique from [43].

To provide an illustration of the possibilities which the tuning method creates, an example

involving synthesis of explicit-MPC (EMPC) controller for control of nonlinear system dynam-

ics is considered. EMPC represents a version of MPC [68] that stores the offline computed

solution of the parametric Quadratic Program (QP) in the controller’s memory for online usage,

thus allowing one to avoid running an iterative optimization algorithm during controller’s

operation. One of the key restrictions of EMPC is the requirement to use a linear dynamic

prediction model for EMPC formulation, which is necessary in order to ensure that a QP is

obtained. In addition to it, due to the memory limitations EMPC often cannot involve long

prediction horizons and is usually applied without terminal constraint, which is an element

from MPC theory used to provide guarantees on the stability of the closed-loop system. An

alternative approach to establish guaranteed closed-loop stability is an a-posteriori stability

verification, which can be performed for a given controller after its design is finished, and

which can be done in the case of a discrete-time linear system with QP controller by using

the S-procedure [65] or Mixed Integer Linear Programing (MILP) [70]. In the case of a more

general class which involves discrete-time systems described by polynomial functions, such

a-posteriori stability verification can be done by using SOS programming [43].

The tuning allows synthesis of EMPC controllers with closed-loop stability guarantees for

polynomial systems without relying on a terminal cost and/or constraint, but also even without

using the prediction horizon concept (involving linear prediction model) to formulate the

control optimization problem. In particular, for a specified QP structure the tuning method

directly searches for the stabilizing coefficients in the cost and/or the constraints of the QP.

This can be regarded as a search for a stabilizing control policy (i.e., a stabilizing mapping from

measurements to plant inputs) which is described, in a compressed form, as a parametric QP
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Chapter 2. Automatic tuning based on sum-of-squares programming

(a mapping from the QP input parameters to the optimal solution).

As will be described in what follows, the tuning method involves two phases. The first phase

introduces a slack polynomial function to the stability verification technique [43] and allows

a search for stabilizing tunings by a black-box optimization technique, such as Bayesian

optimization which will be used in the numerical example of this chapter. The second phase

takes the stabilizing tuning parameters from the first phase and optimizes for improvement of

some user-specified performance criteria, as well by applying Bayesian optimization.

Controller synthesis using SOS techniques has been addressed in various forms in the existing

studies. Paper [64] formulates synthesis of a stabilizing polynomial controller as a convex

optimization problem, without considering closed-loop performance objective and system

constraints. The development in [63] addresses nonlinear plant dynamics through a (non-

unique) state-dependent linear system representation and synthesizes stabilizing polynomial

controllers in unconstrained setting with minimized H∞ or optimal cost (upper bounded

by the obtained Lyapunov function) performance metrics, with success of the synthesis

dependent on the choice of the non-unique state-dependent linear representation. The

authors in [72] consider nonlinear quadratic system dynamics with input saturations and

provide a method for synthesis of polynomial feedback control laws with maximized local

stability region whose estimate is obtained from a generated quadratic Lyapunov function.

Paper [2] considers switched systems and provides a method for synthesis of stabilizing

switching controllers with H∞ disturbance attenuation guarantee. The methodology which

will be described in this chapter is capable of addressing nonlinear polynomial dynamics in

constrained setting, with broad flexibility regarding the performance metrics which can be

specified by the user.

The synthesis of a discrete-time controller for a continuous-time nonlinear system can be

performed either in discrete-time by using a discretized plant model (e.g., obtained by forward

Euler discretization) or in continuous time by using the continuous-time plant model and

a subsequent approximate discrete-time controller implementation with a short sampling

time. Although the method of this chapter can be developed in both conceptual frameworks,

it will be presented here for the latter case in which the continuous-time nonlinear model is

addressed without discretization. For this purpose, Section 2.2 describes a continuous-time

version of the SOS stability certification from [43], which is an additional minor contribution

of this chapter. The development dealing with discrete-time polynomial systems would

involve the discrete-time version from [43]. Section 2.3 describes the two phases of the control

synthesis method, and Section 2.4 demonstrates it on the bilinear model of a permanent

magnet synchronous machine (PMSM) by synthesizing an EMPC controller for speed control

of PMSM.
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2.2. Continuous-time SOS Stability Verification

2.2 Continuous-time SOS Stability Verification

This section describes the continuous-time variation of the discrete-time SOS stability ver-

ification from [43]. The described stability certification will serve as a starting point for the

development of the control synthesis technique in this chapter. Consider a continuous-time

polynomial plant model:

ẋ = fx (x,u), (2.1a)

y = fy (x), (2.1b)

where x ∈ Rnx is the state vector, u ∈ Rnu the input vector, y ∈ Rny the output vector, ẋ ∈ Rnx

the derivative of the state, fx : Rnx+nu → Rnx the system function and fy : Rnx → Rny the

output mapping. The functions fx and fy are assumed to be vector-valued multivariate

polynomials, i.e., each component function of fx and fy is a multivariate polynomial in

(x,u) and x, respectively. Consider as well an abstract form of the control law defined by the

polynomial equalities and inequalities:

s = fs(y ;η), (2.2a)

Ks,η =
{
θ | ∃λ s.t. h(s,θ,λ;η) = 0, g (s,θ,λ;η) ≥ 0

}
, (2.2b)

u ∈ κ(Ks,η;η), (2.2c)

where s ∈ Rns is the input to the controller, θ ∈ Rnθ and λ ∈ Rnλ internal variables, and the

functions fs : Rny → Rns , h : Rns+nθ+nλ → Rnh , g : Rns+nθ+nλ → Rng , and κ : Rnθ → Rnu are

vector-valued multivariate polynomials whose coefficients are parametrized in some way

by the controller’s tuning parameters η ∈ Rnη . While the goal of this chapter is to develop a

method capable of finding a tuning η that optimizes some user-specified performance criteria,

in this section the vector η is assumed fixed to some value and focus is on establishing SOS

stability guarantees for the given closed-loop system.

Remark 1. By the use of the KKT optimality conditions [11, 12, 15] whose equalities and in-

equalities can be embedded into the functions h and g in (2.2b), a large variety of control

structures can be written in the form of (2.2), such as for example the EMPC control law as

described in Section 2.4 or the PID with anti-windup as described in Section 3.4 of the next

chapter.

Remark 2. The discrete-time formulation of SOS certification in reference [43] formulates

the problem by including an additional subsystem, which for instance may correspond to an

observer. In the formulation given here it is omitted in order to keep the expressions shorter.

For selected tuning parameters η of the controller, the global closed-loop stability in the state

variable x can be certified by a Lyapunov function V satisfying

−‖x‖2
2 −∇xV (x,θ,λ)T ẋ ≥ 0, (2.3a)

V (x,θ,λ)−‖x‖2
2 ≥ 0. (2.3b)
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Chapter 2. Automatic tuning based on sum-of-squares programming

Considering the system dynamics (2.1) and the control law (2.2), the conditions (2.3) should

be satisfied for all vectors

(x,θ,λ, ẋ) ∈ Tη (2.4)

where the set

Tη =
{
(x,θ,λ, ẋ) | ẋ = fx (x,κ(θ;η)), ĥ(x,θ,λ;η) = 0, ĝ (x,θ,λ;η) ≥ 0

}
(2.5)

encapsulates the closed-loop system dynamics with the specified control law, and the func-

tions

ĥ(x,θ,λ;η) = h( fs( fy (x);η),θ,λ;η), (2.6a)

ĝ (x,θ,λ;η) = g ( fs( fy (x);η),θ,λ;η), (2.6b)

are introduced to make the notation lighter.

Remark 3. Notice that in the equations (2.3)-(2.5) the ẋ does not represent a derivative of the

state x, but actually a variable denoted by ẋ whose equality to fx (x,κ(θ;η)) is enforced by having

the vector of variables (x,θ,λ, ẋ) in the set Tη.

Remark 4. The above formulation substitutes the system output y, the input to the controller

s and the input to the system u by using equations (2.1b) , (2.2a) and (2.2c), respectively. This

formulation was chosen because it is characterized by a smaller number of equality constraints

and allows a simpler exposition of the method. The treatment of the aforementioned relations

as additional equality constraints in (2.5), or elimination of some other variables by their

substitution (e.g., elimination of the variable ẋ by substituting it with (2.1a)) are straightforward

alternatives.

Remark 5. The conditions (2.3a) and (2.3b) involve the terms ‖x‖2
2 whose weighting factors

could be optimized as well. In this document, it will be proceed by keeping them fixed to unity

for the sake of simplicity.

The previous formulation involves the nonnegativity conditions (2.3) imposed over the set

(2.5), which is a problem that can be tackled by using SOS programming. In particular, by

denoting

ξ= (x,θ,λ, ẋ) (2.7)

and by restricting the Lyapunov function to be a polynomial of a certain (user-specified)

degree, a sufficient condition for the nonnegativities (2.3) over the set Tη are the following
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2.2. Continuous-time SOS Stability Verification

polynomial equalities

−‖x‖2
2 −∇xV (x,θ,λ)T fx (x,u) =σ0(ξ)

+σ1(ξ)T ĝ (x,θ,λ;η)+p1(ξ)T ĥ(x,θ,λ;η)

+p2(ξ)T (ẋ − fx (x,κ(x;η)), (2.8a)

V (x,θ,λ)−‖x‖2
2 = σ̄0(ξ)

+ σ̄1(ξ)T ĝ (x,θ,λ;η)+ p̄1(ξ)T ĥ(x,θ,λ;η), (2.8b)

where the σ0 and σ̄0 are SOS polynomials (defined below) with some user-specified degrees,

σ1, σ̄1 are vectors whose components are SOS polynomials with user specified-degrees, and p1,

p2, p̄1 are vectors of arbitrary polynomials with user-specified degrees as well. A polynomial

σ(ξ) is said to be SOS if there exists a representation

σ(ξ) = v(ξ)T P v(ξ), (2.9)

where v(ξ) is a vector of polynomials and P º 0 is a positive semidefinite matrix of appropriate

size, resulting in σ(ξ) being nonnegative for every ξ. The satisfaction of the nonnegativity con-

ditions in (2.3) over the set (2.5) follows directly from (2.8) since for ξ ∈ Tη the SOS polynomials

σ are nonnegative and the arbitrary polynomials p are equal to zero.

The previous discussion of closed-loop stability verification thus boils down to the feasibility

of the SOS problem

find V ,σ0,σ1, p1, p2, σ̄0, σ̄1, p̄1

s.t. (2.8a), (2.8b),

σ0,σ1, σ̄0, σ̄1 SOS polynomials,

V , p1, p2, p̄1 arbitrary polynomials,

(2.10)

where the decision variables are the coefficients of the polynomials (V ,σ0,σ1, p1, p2, σ̄0, σ̄1, p̄1).

This problem converts to a semidefinite programming (SDP) convex optimization problem,

and can thus be solved efficiently. The conversion can be done automatically by using freely

available software like Yalmip [48]. For more information about the conversion of (2.10) to

SDP, the reader is referred to, e.g., [45, 56].

Remark 6. Although the method extends to the case with reference tracking, it is formulated

here for the case of regulation of the state x to the origin of the state-space in order to avoid

cumbersome expressions and better emphasize the fundamental concepts of the method. The

application of the method to the case involving reference tracking in delta formulation is

demonstrated in the computational example section.

While the SOS program (2.10) ensures global stability in the state variable x, the method can
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Chapter 2. Automatic tuning based on sum-of-squares programming

also be modified to address local stability over a set

X = {x |ψi (x) ≥ 0, i = 1, . . . ,nψ}. (2.11)

where ψi (x) : Rnx → R for all i ∈ {1, . . . ,nψ} are polynomial functions. As described in [43],

this is done by including the inequalities of the set X in the set Tη, and by subsequently

assigning them SOS polynomial multipliers (since they are inequality constraints) in (2.8) as

well. The satisfaction of such a modified condition (2.8) does not guarantee invariance of the

closed-loop system over the whole set X, but only over the largest sublevel set of the Lyapunov

function which is contained in X.

2.3 Controller Synthesis

An attempt to involve the controller tuning parameters η as decision variables in the SOS pro-

gramming stability verification (2.10) makes the problem loose the SDP structure, since after

the conversion the constraint (2.8) would now be equivalent to a Bilinear Matrix Inequality

(BMI) instead of to a Linear Matrix Inequality (LMI). The optimization problem thus ends up

in a form which is not anymore an SDP.

The synthesis optimization problem addressed in what follows can be formulated as

min. P(η)+δst (η)

s.t. η ∈ D,
(2.12)

where the δst (η) is a function indicating the existence of the SOS stability certificate from

(2.10):

δst (η) =
{

0, for η with a stability certificate,

+∞, otherwise,
(2.13)

the P(η) is a user-specified performance criteria for the closed-loop system with control

parameters η, and the set D models some basic requirements on the tuning parameters η (e.g.,

a requirement that the Hessian in the cost function of a QP-based controller is symmetric

positive definite)

The solving of optimization problem (2.12) in what follows consists of two phases. The first

phase searches for feasible (i.e., stabilizing) control parameters η in (2.12). This is achieved

by introducing a slack polynomial function into the stability certification constraint (2.8) (de-

scribed in Section 2.3.1) and then by minimizing its presence by using Bayesian optimization

to obtain parameters η feasible in (2.12) (described in Section 2.3.2). The second phase takes

the generated stabilizing tuning parameters of (2.12) as initial conditions which are providing

an indication about the location of a stabilizing region, and then starting from that data further

explores for improvement of the performance criteria P(η) by means of Bayesian optimization

and its data exploitation property (described in Section 2.3.3).
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2.3. Controller Synthesis

2.3.1 Reformulation with slack polynomial function

To allow controller synthesis, an additional SOS polynomial will be introduced in the condition

(2.8a), denoted σsl(ξ) and of the same degree as the σ0(ξ), in order to play the role of a slack,

which results in the constraint (2.8a) taking the form:

−‖x‖2
2 −∇xV (x,θ,λ)T fx (x,u) =σ0(ξ)−σsl(ξ)

+σ1(ξ)T ĝ (x,θ,λ;η)+p1(ξ)T ĥ(x,θ,λ;η)

+p2(ξ)T (ẋ − fx (x,κ(x;η)), (2.14)

while the constraint (2.8b) will be retained without modification. Since any arbitrary poly-

nomial can be written as a difference of two SOS polynomials [1], the σ0(ξ)−σsl(ξ) term can

express any arbitrary polynomial up to the degree of σ0(ξ) and σsl(ξ). Thus, the constraint

consisting of (2.14) and (2.8b) has a feasible solution for any fixed value of the parameter

η, provided that the degree of σ0(ξ) and σsl(ξ) is no smaller than the degrees of the other

polynomials in (2.14).

Since the goal will be to minimize the presence of the slack as much as possible to make it

become identically equal to zero, consider a cost function which is an integral of the SOS

slack polynomial σsl(ξ). In particular, for σsl(ξ) =∑nβ

i=1 viβi (ξ) where vi are the polynomial’s

coefficients and (βi )
nβ

i=1 the corresponding monomials, the integral over some simple set Y

(like for instance a unit box which will be used in the numerical example) is:

∫
Y
σsl(ξ)dξ=

nβ∑
i=1

vi

∫
Y
βi (ξ)dξ, (2.15)

and is a linear function in the coefficients vi weighted by the integrals of the βi monomials

over the set Y (these integrals are constant values).

Since this cost is a linear function in the coefficients of the SOS polynomial σsl(ξ), together

with the constraint set containing (2.14) and (2.8b) it represents the SOS problem:

Iσ(η) = min.
∫

Y
σsl(ξ)dξ

s.t. (2.14), (2.8b),

σsl,σ0,σ1, σ̄0, σ̄1 SOS polynomials,

V , p1, p2, p̄1 arbitrary polynomials,

(2.16)

which corresponds to an SDP for any fixed η, and Iσ(η) is the optimal value of the problem.

As σsl(ξ) is an SOS polynomial and thus globally nonnegative, the integral Iσ(η) is zero only

when the polynomial σsl(ξ) is identically equal to zero. This Iσ(η) = 0 corresponds to the

case involving η for which the stability certificate from (2.10) exists. Otherwise, the slack

function σsl(ξ) and its corresponding integral Iσ(η) are non-zero and minimization of Iσ(η) as

a function of η would lead to stabilizing controller parameters (i.e., those satisfying Iσ(η) = 0),
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Chapter 2. Automatic tuning based on sum-of-squares programming

as discussed in the following section.

Instead of introducing an SOS polynomial σsl(ξ) in (2.14) to play the role of a slack, one can

alternatively introduce an arbitrary (non-SOS) polynomial psl(ξ) whose presence in (2.16) can

then be minimized by putting the `1 or `2-norm of the coefficients of psl(ξ) as a cost function.

To demonstrate this flexibility, this chapter involves the SOS polynomial slack σsl(ξ) and the

next chapter involves an arbitrary polynomial slack psl(ξ).

2.3.2 Search for stabilizing control parameters

Let D be the set of tuning parameters η satisfying some basic design requirements, as defined

in (2.12). The set containing the tuning parameters ηwith SOS stability certificate is {η | Iσ(η) =
0,η ∈ D}. In the case when it is nonempty, it corresponds to the set of optimal solutions of the

optimization problem

min. Iσ(η)

s.t. η ∈ D.
(2.17)

In case of {η | Iσ(η) = 0,η ∈ D} being empty, the optimal value of (2.17) would be larger than

zero and it is not possible to find tuning parameters η with stability certificate (2.10).

The minimization (2.17) that leads to stabilizing tuning parameters {η | Iσ(η) = 0,η ∈ D} can be

performed by using a black-box global optimization method. In this work, the optimization

problem (2.17) will be addressed by using Bayesian optimization [17], which is a derivative-

free method for finding a constrained global optimal solution of a black-box cost function.

The constraint set can be specified either explicitly (like the set D in (2.17)) or as an error in

the evaluation of the cost (i.e., the value +∞ returned by cost function), and the values of the

cost function are allowed to be either deterministic or stochastic (see [49] for information

pertaining to the practical aspects of the method). The algorithm is conceived in such a

way that at each iteration of the Bayesian optimization method, the currently available cost

evaluation pairs {ηi , Iσ(ηi)} are used to build a statistical model of the cost function based on

Gaussian Processes [66]. This model is then employed to construct an acquisition function

a(η), which is such that its minimizer represents the next sampling point η that balances

between exploitation of the currently known cost values and exploration of the less known

regions of the cost function Iσ(η). The solving of (2.17) by Bayesian optimization can be

accelerated by providing as initial conditions some tuning vectors η for which it can be

believed that they are good candidates for being stabilizing. The feature that the next sampling

point η is determined by minimizing the acquisition function a(η) instead of operating with

the actual cost function Iσ(η) makes the method particularly suitable for problems where the

evaluation of the cost function Iσ(η) is time consuming or in some other sense expensive.
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2.3.3 Optimization of performance

The optimization problem (2.12) can be addressed by Bayesian Optimization, which would

treat the +∞ values from δst (η) as the error in the evaluation of the cost. A problem however

is that in the initial phase before any tuning parameters with SOS stability certificate are found

(i.e., any parameter η with δst (η) = 0), the Bayesian optimization would have only values +∞
available, which are not very informative for choosing where to sample η next in order to

reach a region with stabilizing parameters. For this reason, the solving of (2.12) by Bayesian

optimization should be preceded by a search for stabilizing tuning parameters with (2.17),

so that after a certain number (e.g., twenty) of stabilizing tuning parameters η is found by

(2.17) one can use them as initial points to start Bayesian optimization on (2.12). These intial

points (which would be different among themselves due to the exploration property) would

provide some information to the Bayesian optimization solving (2.12) about the location of

the stabilizing region in the space of tuning parameters, and by the exploitation property of

Bayesian optimization it would be a region of focus for further investigation while minimizing

the performance criteria P(η).

There is a great amount of flexibility in the choice of the cost term P(η) in (2.12), as it is allowed

to be any performance criteria which can be evaluated for a fixed vector of tuning parameters

η. A possible broadly applicable choice is an approximate evaluation of the integral of the

infinite horizon trajectory cost over some set W:

P(η) =
∫

W
C∞,η(x)d x , C∞,η(x) =

∫ ∞

0
l (x(t ),u(t ))d t , (2.18)

where C∞,η(x) is the infinite horizon trajectory cost obtained with controller η when starting

from the state x, and l(x,u) is some stage cost. Equation (2.18) can be evaluated approximately

by using Monte Carlo (MC) approximation for the integral and finite horizon approximations

for the trajectory costs obtained from a discretized version of the continuous-time system:

P(η) =
Nmc∑
j=1

C̃Nst ,η(x j ) , C̃Nst ,η(x) = Ts

Nst∑
k=0

l(xk ,uk ), (2.19)

where Ts is the sampling time of the discrete-time simulation of the continuous-time system

(obtained by applying the forward Euler method for example), xk and uk are the state and

input values at the k-th simulation step, the C̃Nst ,η(x) is the finite horizon trajectory cost

involving Nst simulation steps from the initial state x, and the Nmc is the number of samples

from the set W in the MC approximation of the integral. As the evaluation of P(η) involves

MC approximation, the Bayesian optimization should consider the cost function values as

stochastic.
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2.4 Computational Example

The control synthesis method will be demonstrated by an example involving a QP-based

controller for control of a bilinear system with parametric uncertainty. The SOS programming

problems are implemented by using Yalmip [48] as a modelling tool together with MOSEK as

SDP solver, and the Bayesian optimization is applied by using Matlab’s Statistics and Machine

Learning Toolbox [49].

2.4.1 QP-based controller for a bilinear system with parametric uncertainty

This section synthesises a QP-based controller for speed control of a permanent magnet

synchronous machine (PMSM). The small size of the QP control structure used in this section

allows its implementation for the control of a bilinear PMSM model in EMPC fashion. In

comparison to the MPC scheme for PMSM developed in [24], the controller synthesis of this

section directly deals with the bilinear model of the system, thus circumventing the need

for using a linear discrete-time prediction model like in [24] which is valid only at nominal

(or some other fixed and in advance chosen) rotational speed. Furthermore, the controller

presented here is synthesized robust to the stator resistance variations caused by temperature

changes, and also without the outer speed-control loop based on an additional PI controller,

which are features both mentioned in [24] as desirable to be addressed in future research.

The continuous-time model of the two-pole PMSM in the d q reference frame fixed to the rotor

(see, e.g., [44]) has the form

d Id (t )

d t
=− R̃s

Ls
Id (t )+Ωr (t )Iq (t )+ 1

Ls
Ud (t ), (2.20a)

d Iq (t )

d t
=− R̃s

Ls
Iq (t )−

(
Id (t )+ Φ0

Ls

)
Ωr (t )+ 1

Ls
Uq (t ), (2.20b)

dΩr (t )

d t
= Kt

J
Iq (t )− 1

J
ΓL (t ), (2.20c)

where Id (t ) and Iq (t ) are the d and q component of the stator current vector I (t ) = [Id (t ), Iq (t )]T ,

Ωr (t ) is the rotational speed of the rotor, Ud (t ) and Uq (t ) are the d and q component of the

input voltage vector U (t ) = [Ud (t ),Uq (t )]T , ΓL (t ) is the load torque, the parameter R̃s is stator

resistance, Ls stator inductance, Φ0 the flux from the rotor’s permanent magnet, Kt torque

coefficient and J the rotational inertia of the rotor. The value of stator resistance R̃s is charac-

terised by slow variations caused by the changes in temperature, leading to the values of R̃s

which during operation can be several times larger than the Rs contained in Table 2.1 where

the parameters of PMSM from [24] are given. The system has an input constraint concerning

the magnitude of the input voltage vector:

‖U (t )‖2 ≤Unom , (2.21)

while due to the thermal inertia of the machine, the stator current vector I (t) is allowed to
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Table 2.1 – PMSM parameters and nominal values, base values for the per-unit system, and
the per-unit PMSM parameters.

Name Notation Value

Stator resistance Rs 4.3Ω
Stator inductance Ls 3.56 mH
Flux from rotor Φ0 0.0245 Wb
Torque coefficient Kt 36.8 mNm/A
Rotational inertia J 11 ·10−7 Nm
Nominal (phase) voltage Unom 36/

p
3 V

Nominal current Inom 0.8 A
Nominal torque Γnom 30 mNm
Base value of voltage Ub =Unom 36/

p
3 V

Base value of current Ib = Inom 0.8 A
Base value of load torque Γb = Γnom 30 mNm
Base value of impedance Zb =Unom/Inom 25.98 Ω
Base value of speed ωb 5000·2π rad/s
Base value of rotor’s flux Φb =Unom/ωb 0.0397 Wb
Per-unit stator resistance rs = Rs/Zb 0.4138
Per-unit stator inductance ls =ωbLs/Zb 0.0717
Per-unit flux from rotor φ0 =Φ0/Φb 0.6172
Per-unit torque constant Kt = (Kt Ib)/(Jω2

b) 51.11

make temporary violations of the constraint ‖I (t )‖2 ≤ Inom during transients, but still not of

an excessively large magnitude which could cause damage on the machine or voltage source

(e.g., it should be ensured that ‖I (t )‖2 ≤ 5Inom).

By using the base values in Table 2.1, the following normalized model is obtained:

did (τ)

dτ
=− r̃s

ls
id (τ)+ ωr (τ) iq (τ)+ 1

ls
ud (τ), (2.22a)

diq (τ)

dτ
=− r̃s

ls
iq (τ)−

(
id (τ)+ φ0

ls

)
ωr (τ)+ 1

ls
uq (τ), (2.22b)

dωr (τ)

dτ
=Kt iq (τ)− Tb

Jω2
b

γL (τ), (2.22c)

where τ = ωb t is per-unit time, id (τ) = Id (t)/Ib , iq (τ) = Iq (t)/Ib are per-unit stator current

components, ωr (τ) =Ωr (t )/ωb per-unit rotational speed, ud (τ) =Ud (t )/Ub , uq (τ) =Uq (t )/Ub

per-unit input voltage components, γL (τ) = ΓL (t)/Γb per-unit load torque, and the per-unit

parameters appearing in the model are as defined in Table 2.1. The input constraint for

the per-unit model takes the form ‖u(τ)‖2 ≤ 1, and the constraint on the current which

can be temporarily violated during transients ‖i (τ)‖2 ≤ 1. The corresponding state vector is

x(τ) = [id (τ), iq (τ),ωr (τ)]T and the input vector u(τ) = [ud (τ),uq (τ)]T . It can be seen that the
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Chapter 2. Automatic tuning based on sum-of-squares programming

plant model is bilinear as it involves products of the state variables.

For the purpose of tracking a constant speed reference r , the steady-state target operating

point xs = [id s , iqs ,ωr s]T , us = [ud s ,uqs]T at which the rotational speed is equal to r is to be

computed. In order to keep the synthesis example simpler and avoid additional complications,

we consider the case involving a zero load torque (i.e., γL = 0) which results in the steady-state

target operating point of the form

xs =

0

0

r

 , us =
[

0

φ0 r

]
. (2.23)

Consideration of a non-zero load torque, such as for example a γL which is a polynomial

function of the rotational speed or a constant γL whose value is provided to the controller by

an estimator, is also possible and reflects itself on the expression for the steady-state target

(2.23).

The QP-based controller will be synthesised so that the QP takes as its inputs the target us and

the deviation from the steady-state target ∆x = x −xs , and provides as its output (its optimal

solution) the deviation ∆u from the steady-state target us (i.e., the input signal to the PMSM is

u = us +∆u). The form of the QP is selected to be

min. 1
2 zT H z +∆xT F z

s.t. Gz ≤ d −Gus ,
(2.24)

where z ∈R2 is the decision vector, H ∈R2×2 is a symmetric positive definite matrix, F ∈R3×2,

and since the optimal solution of (2.24) corresponds to the input deviation ∆u, the constraint

matrices G ∈ R6×2 and g ∈ R6 are chosen such that they approximate the input constraint

‖us +∆u‖2 ≤ 1 by an inner polytopic approximation consisting of nh = 6 halfspaces g T
i z ≤ di ,

∀i ∈ {1, . . . ,nh} where gi = [cos(πi /nh) , sin(πi /nh) ]T , di = cos(π/nh), as can be seen in Fig. 2.2.

The controller’s tuning parameters (the vector η) are the elements of the H and F matrix, thus

resulting in η ∈R9 (due to the symmetry of H).

To represent the solution of the QP (2.24) as a system of polynomial equalities and inequalities,

consider its corresponding KKT system [15]:

H z +F T∆x +GTλ= 0, (2.25a)

λT (Gz −d +Gus) = 0, (2.25b)

d −Gz −Gus ≥ 0, (2.25c)

λ≥ 0, (2.25d)

where λ ∈R6 is a dual variable, (2.25a) represents the stationarity condition, (2.25b) is comple-

mentarity slackness, (2.25c) is primal feasibility and (2.25d) dual feasibility. The existence of

λ so that (2.25) is satisfied by some z is a necessary and sufficient condition for that z to be
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optimal in (2.24), provided some constraint qualification conditions are satisfied, which is the

case for (2.24) with the specified G and d (for a detailed treatment of optimality conditions in

convex optimization, see e.g. [12]).

For the controller synthesis, the vector of variables is selected to be

ξ= (r,∆x,λ,∆ẋ, r̃s) (2.26)

and all other variables are expressed as a function of ξ. In particular, at all places at which they

appear, the xs and us are expressed as in (2.23), the x and u as x = xs +∆x and u = us +∆u,

respectively, the ∆u as ∆u = z, and the z as z =−H−1(F T∆x +GTλ) which is obtained from

(2.25a).

For the purpose of reference tracking, the Lyapunov conditions (2.3) are formulated in delta

space and have the form

−∆xT∆x −∇∆xV (∆x,r, r̃s)T∆ẋ ≥ 0, (2.27a)

V (∆x,r, r̃s)−∆xT∆x ≥ 0. (2.27b)

It can be seen that the Lyapunov function V (∆x,r, r̃s) depends on the speed reference r

(specified below to be in the range [−1,1]) and on the stator resistance r̃s (specified below to

be in the range [rs ,5rs], where rs is as stated in Table 2.1). For control law (2.2), by selecting

the input parameter s = [∆x,us]T and the internal variable θ = z, the h(s, z,λ) and g (s, z,λ)

polynomials take the form

h(s, z,λ) =
[
λT (Gus +Gz −d)

]
, (2.28a)

g (s, z,λ) =
[

d −G(us + z)

λ

]
. (2.28b)

The local stability certification set (2.11) is used to incorporate the bound on the reference |r | ≤
rmax with rmax = 1, the bound on the state vector −xmax ≤ xs +∆x ≤ xmax with xmax = [5,5,2]T ,

and the bound on the stator resistance rs,min ≤ r̃s ≤ rs,max with rs,min = rs and rs,max = 5rs

where rs is the parameter from Table 2.1. The set (2.11) is thus defined by

ψ=



r + rmax

−r + rmax

xs +∆x +xmax

−xs −∆x +xmax

r̃s − rs,min

−r̃s + rs,max


. (2.29)

The control synthesis is run with the Lyapunov function V (∆x,r, r̃s) of order 4, SOS σ and

arbitrary p polynomial multipliers of order 2, and the SOS slack polynomial σsl of order 4. The
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search ranges for tuning parameters in η are chosen to be [−1,1] for each component, which

is together with the positive-definiteness constraint for the matrix H embedded into the set

D. After 120 Bayesian Optimization iterations applied to (2.17) for the search of stabilizing

solutions (involving a unit box as the set Y in (2.15)), 17 stabilizing tuning parameters η (i.e.,

vectors in the set {η | Iσ(η) = 0,η ∈ D}) were obtained, with an average time per Bayesian opti-

mization iteration of about 9.5 minutes (the computing platform involved 3.0GHz Intel Core i7

processor and 16GB of RAM). These stabilizing parameters were then used as initial points in a

total of 240 Bayesian optimization iterations applied to the performance optimization problem

(2.12), with the average time per iteration slightly larger than 3 minutes. The performance

criteria used was the MC approximation of the integral of trajectory costs (2.19). For it, the

trajectories were simulated using forward Euler discretization with Ts = 100µs (equivalent in

per-unit to τs =ωbTs) with the value of r̃s fixed to r̃s = 2.5rs . The Nst was selected to Nst = 500,

and Nmc to Nmc = 90 which was spread equally for the reference values r = 0, r = 0.8 and

r =−0.8. The stage cost was selected to be

l (xk ,uk ) =∆xT
k Qsc∆xk +qsc‖uk−1 −uk‖2

2, (2.30)

where Qsc ∈R3×3 is diagonal with 2, 0.5 and 1 on its diagonal, and qsc = 1. The set W used for

initial states in (2.19) was selected identical to the locality constraint (2.29).

A slice of the control law with the obtained H and F matrix is represented in Fig. 2.1 withω and

r fixed to ω= 0, r = 1. The controller was tested in simulation for various values of r̃s ∈ [rs ,5rs]

by applying it with the sampling time Ts = 100µs and starting it from many random initial

points. Fig. 2.2 shows the state trajectory, the Lyapunov function values and the input signals

obtained with speed reference r = 1 and a randomly generated initial state.

Figure 2.1 – The EMPC regions and the input components u = [ud ,uq ]T obtained with ω and
r fixed to ω= 0, r = 1. As can be seen, the number of regions of the EMPC is 13.
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Figure 2.2 – Evolution of the state vector x starting from the initial x0 = [−0.166,0.441,−0.998]T

for the reference r = 1 and resistance r̃s = rs , the corresponding Lyapunov values along
the trajectory, and the input vectors u = [ud ,uq ]T along the trajectory (the target input is
us = [0,0.617]T ).

2.5 Conclusions

This chapter described an automatic tuning procedure capable of optimizing user-specified

performance metric while imposing closed-loop stability guarantees. The functions describing

the system are assumed to be of polynomial form and the closed-loop stability guarantees are

established by using SOS stability verification for polynomial discrete-time systems, described

in continuous-time in this chapter. The tuning method involves two phases, where the

first phase searches for stabilizing controllers by minimizing a polynomial slack function

introduced to the Lyapunov decrease condition and the second phase optimizes some user-

specified performance criteria. The two phases are formulated as optimization problems

which are tackled by applying Bayesian optimization as a black-box optimization technique.

As an example of the possibilities that the tuning method provides, the presented synthesis

method allows a design of EMPC controllers with closed-loop stability guarantees without

relying on a terminal cost and/or constraint, and also without using the prediction horizon

concept to formulate the control optimization problem. In particular, for a specified QP

structure the tuning method can directly search for the stabilizing coefficients in the cost

and/or the constraint set. The synthesis has been demonstrated on a numerical example

involving an EMPC controller synthesized for speed control of a nonlinear PMSM model where

the controller is synthesized robust to parametric uncertainty coming from the temperature-

dependent stator resistance of the PMSM.
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3 Extension to multimodel uncertainty
and experimental verification

3.1 Introduction

This chapter brings several further developments related the automatic tuning method de-

veloped in Chapter 2. Besides demonstrating a broader applicability of the tuning method

from Chapter 2 by applying it in a case involving a non-optimization-based, nonlinear control

policy, the primary purpose of this chapter is to:

1. Experimentally demonstrate the validity of the method by application to a physical

system.

2. Extend the method’s practical computational capability to the case of multimodel plant

uncertainty.

The mentioned broader generality of the method from Chapter 2 (i.e., applicability to non-

optimization-based control schemes) can be anticipated from some of the illustrative ex-

amples provided in papers [43] and [42], from which the SOS stability certification used in

Chapter 2 and this Chapter 3 originates. The anti-windup equipped PID control scheme

considered in this chapter is embedded into the SOS framework by using the KKT conditions

in a manner similar to an example present in [43]. This chapter, as a subsidiary contribution

additional to the above two mentioned, also demonstrates an alternative possibility with

respect to the method from Chapter 2 which consists of using a slack polynomial without

imposed SOS form in the Lyapunov decrease condition, as described in Section 3.3.

The following Section 3.2 introduces notation and formulates the problem addressed by the

chapter. Section 3.3 introduces the possibility of parallel multimodel uncertainty processing

into the synthesis method of Chapter 2. The method is experimentally verified in Section 3.4

by its application to a PID with anti-windup whose parameters are tuned to be robustly stable

with respect to the multimodel uncertainty in the considered mechanical experimental setup.
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3.2 Problem Formulation

For the purpose of avoiding cumbersome notation and better emphasizing the fundamental

aspects, the description will be done for the case involving regulation of the system state to

the origin of the state-space. The applicability of the method in case of reference tracking

can be achieved by shifting the origin of the state space and is demonstrated in application

Section 3.4. The development in this chapter will be done in discrete-time, but is applicable in

continuous-time framework as well.

Let S f = {1, . . . , M } denote the set containting indices of M different plant models. The actual

physical plant is assumed to be a stationary system that corresponds to exactly one of the

models m ∈ S f , and its (unknown) index will be denoted by m̂. Each of the models m ∈ S f is a

discrete-time polynomial system:

x+
m = fmx (xm ,um), (3.1a)

ym = fmy (xm), (3.1b)

where xm ∈Rnmx , um ∈Rnu and x+
m ∈Rnmx represent respectively the state vector, input vector

and successor state of the model m, and fmx : Rnmx+nu → Rnmx , fmy : Rnmx → Rny are respec-

tively the transition and output mapping of the model m. Notice that the inputs um and

outputs ym have dimensions which are independent of the model index m ∈ S f (the dimen-

sions nu and ny , respectively), while the dimensions of the state vectors xm are allowed to be

different for various models m ∈ S f . The mappings fmx and fmy are assumed to be vector-

valued multivariate polynomials ∀m ∈ S f , i.e., each component function of fmx and fmy is a

multivariate polynomial in (xm ,um) and xm , respectively.

During operation, the controller receives the output ym̂ of the actual physical plant m̂ and

computes the input um̂ to be applied. As in Chapter 2, the control law will be described in an

abstract form defined by the polynomial equalities and inequalities:

s = fs(ym̂ ;η), (3.2a)

Ks,η =
{
θ | ∃λ s.t. h(s,θ,λ;η) = 0, g (s,θ,λ;η) ≥ 0

}
, (3.2b)

um̂ ∈ κ(Ks,η;η), (3.2c)

where s ∈ Rns is the input to the controller, θ ∈ Rnθ and λ ∈ Rnλ internal variables, and the

functions fs :Rny →Rns , h :Rns+nθ+nλ →Rnh , g :Rns+nθ+nλ →Rng , and κ :Rnθ →Rnu are vector-

valued multivariate polynomials whose coefficients are parametrized by the controller’s tuning

parameters η ∈Rnη .

Remark 7. As indicated in Chapter 2, by the use of the KKT optimality conditions [11, 15], a

large variety of control structures can be written in the form of (3.2), such as for example the

EMPC control law as described Section 2.4, or the PID with anti-windup as demonstrated in the

experimental Section 3.4 of this chapter.
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Since the index of the actual physical model m̂ is unknown, the goal is to design the tuning

η so that the controller (3.2) is closed-loop stabilizing ∀m ∈ S f and has some user-specified

performance metric as good as possible. The closed-loop stability of the designed tuning

vector η will be provided in this chapter by ensuring that for each of the models m ∈ S f , there

exists a polynomial Lyapunov function Vm such that

Vm(xm ,θm ,λm)−Vm(x+
m ,θ+m ,λ+

m)−‖xm‖2
2 ≥ 0, (3.3a)

Vm(xm ,θm ,λm)−‖xm‖2
2 ≥ 0, (3.3b)

where θm and λm are the internal controller variables from (3.2) obtained when the actual

system m̂ corresponds to the system m ∈ S f involved in (3.3). In order to be able to enforce

the conditions (3.3) locally over some set, they should hold for all vectors

ξm ∈Ξm, (3.4)

where

ξm = (xm ,θm ,λm , x+
m ,θ+m ,λ+

m) (3.5)

is the vector containing all of the variables involved in (3.3), and the set

Ξm = {ξm |ψm(ξm) ≥ 0} (3.6)

represents some user-specified local set of interest over which the Lyapunov inequalities (3.3)

should hold for the model m, with the vector-valued functions ψm(ξm), m ∈ S f assumed poly-

nomial. A discussion of local stability for discrete-time systems can be found in Section 4.2.1

of Chapter 4.

3.3 Controller Synthesis with Parallel Multimodel Uncertainty Pro-

cessing

The control synthesis method of this chapter involves two phases, as the original version of

the method from Chapter 2. The first phase generates stabilizing tuning parameters and the

second phase then searches for the tuning parameters that optimize some user-specified

performance criteria.

3.3.1 Phase One - Search for stabilizing controller tunings

For the purpose of obtaining tuning parameters η characterized with the closed-loop stability

guarantees of the form (3.3) for each of the models m ∈ S f , slack polynomial functions pm(ξm),

m ∈ S f are going to be introduced into the Lyapunov decrease conditions (3.3a) for each
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m ∈ S f :

Vm(xm ,θm ,λm)−Vm(x+
m ,θ+m ,λ+

m)−‖xm‖2
2 ≥ pm(ξm), (3.7a)

Vm(xm ,θm ,λm)−‖xm‖2
2 ≥ 0, (3.7b)

where the introduced slack pm(ξm) is of a degree no smaller than the polynomial on the

left-hand side of (3.7a), and the relationship between the variables is defined by the control

law (3.1) and plant dynamics (3.2). The introduced slack pm(ξm) can be imposed to be of SOS

form whose integral over a unit box would be subsequently minimized, as in Chapter 2, but for

the sake of demonstrating another possible variation of the synthesis method, the polynomial

slack pm(ξm) will be taken in this chapter as an arbitrary polynomial whose `1-norm of the

coefficients will be minimized, as described in what follows. Since the function on the left side

of the inequality (3.7a) is polynomial and since the introduced slack pm(ξm) is a polynomial

function of degree no smaller than the left side of the inequality, for any fixed tuning vector η

there will always exist a polynomial pm(ξm) so that the inequalities (3.7) hold. The goal is thus

to find the tuning parameters η for which the inequalities (3.7) hold with all of the polynomials

pm(ξm) identically equal to zero (i.e., tuning η for which pm(ξm) ≡ 0 for all m ∈ S f ).

By representing each of the slack polynomials in the form pm(ξ) =∑nmβ

i=1 vmiβmi (ξm) where

(vmi )
nmβ

i=1 are the polynomial’s coefficients and (βmi )
nmβ

i=1 the corresponding monomials, con-

sider the `-1 norm of the pm(ξm) coefficients:

‖coef{pm}‖1 =
nmβ∑
i=1

|vmi |. (3.8)

The search for stabilizing tuning parameters η can then be formulated as the following opti-

mization problem:

min.
∑

m∈S f

Im(η)

s.t. η ∈ D,

(3.9)

where the set D models some basic requirements on the tuning parameters η (e.g., in case of

a QP controller, models that the Hessian in the cost function should be symmetric positive

definite), and the scalars Im(η) are the optimal values of the optimization subproblems

Im(η) := min. ‖coef{pm}‖1

s.t. (3.7a), (3.7b) over set (3.6),
(3.10)

As such, the Im(η) values are quantifying for each m ∈ S f what is the smallest size slack poly-

nomial pm(ξm) that has to be introduced in order to have the inequalities (3.7) satisfied. The

polynomial form requirements introduced so far were imposed in order to allow addressing

of the optimization problems of the form (3.10) by SOS programming techniques (see, e.g.,

[56], [45]), which as mentioned in Chapter 2 are able to exploit the polynomial structure to
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convert the optimization problems (3.10) into semidefinite programming (SDP) forms for

which efficient solution methods exist. The conversion of the problems such as (3.10) into a

form that can be addressed by SOS programming is described in Chapter 2 (in the way done

in [43], [42] and [61]) and will not be detailed in this chapter.

For any fixed value of η, the cost terms Im(η) in the optimization problem (3.9) can be evaluated

in parallel since their corresponding optimization problems (3.10) are mutually decoupled.

The solving of (3.9) that leads to stabilizing tuning parameters can be performed by using

a black-box global optimization method which can be run on a central unit with function

evaluations Im(η) performed in parallel for each fixed η. As in Chapter 2, the black-box

optimization technique which will be used in the application example of this chapter is

Bayesian optimization.

Remark 8. Instead of the `-1 norm, one could as well utilize other norms in (3.10) such as `-2

or `-∞ since they would also be convertible into the SDP optimization problem structure. In the

description given here, the `-1 norm is placed since it will be used in the application example.

3.3.2 Phase Two - Optimization of the performance metric

While the first phase of the method generates tuning parameters with closed-loop stabil-

ity guarantees, the second phase searches for the tuning parameters that have some user-

specified performance metric as good as possible. The second phase can be represented as an

optimization problem of the form

min.
∑

m∈S f

Pm(η)+δm(η)

s.t. η ∈ D,

(3.11)

where δm(η) is a function that indicates the existence of the closed-loop Lyapunov function

Vm for the system m (i.e., indicates that for a given η the obtained optimal value in (3.10) is

zero and thus pm(ξm) ≡ 0):

δm(η) =
{

0, for η with a stability certificate,

+∞, otherwise,
(3.12)

and the Pm(η) is a user-specified performance criteria for the closed-loop system involving

model m ∈ S f and tuning vector η.

The second phase of the synthesis method takes the stabilizing tuning parameters of (3.9)

generated by the first phase (e.g., twenty stabilizing η vectors) and uses them as initial condi-

tions for application of Bayesian optimization to (3.11). These intial points (which would be

different among themselves due to the exploration property) would provide some information

to the Bayesian optimization solving (3.11) about the location of the stabilizing region in the

space of tuning parameters, and by the exploitation property of Bayesian optimization it

31



Chapter 3. Extension to multimodel uncertainty and experimental verification

Table 3.1 – Identified coefficients of the models Gm(z), m ∈ {1,2,3}.

m b4m b3m b2m b1m b0m

1 0 0.0148 0.0160 −0.0098 −0.0111
2 0 0.0141 0.0143 −0.0102 −0.0104
3 0 0.0142 0.0182 −0.0036 −0.0077

m a4m a3m a2m a1m a0m

1 1 −1.0660 −0.7239 1.0665 −0.2670
2 1 −1.1378 −0.6832 1.1414 −0.3129
3 1 −0.7408 −0.8223 0.7436 −0.1599

would be a region of focus for further investigation while minimizing the performance criteria.

3.4 Experimental Verification

This section demonstrates the control synthesis method on an example involving tuning of

a PID controller with anti-windup so that it is robust to multimodel uncertainty. The SOS

programming problems are implemented by using YALMIP [48] as a modelling tool together

with MOSEK as SDP solver, and the Bayesian optimization is applied by using the Matlab’s

Statistics and Machine Learning Toolbox [49].

3.4.1 PID with anti-windup robust to multimodel uncertainty

The plant consists of three transfer functions of the form

Gm(z) = b4m z4 +b3m z3 +b2m z2 +b1m z +b0m

a4m z4 +a3m z3 +a2m z2 +a1m z +a0m
, (3.13)

where blm , al m , l ∈ {1,2,3,4} are model coefficients for m ∈ S f = {1,2,3}. The models Gm(z) are

obtained by the output error identification method applied on experimental data measured

with Ts = 20 ms from one of the degrees of freedom of Quanser 3DOF Gyroscope (shown

in Fig. 4.4) to which feedback-linearization was applied. The three models correspond to

three operating points which involve rotational speeds of the gyroscope’s disk of 300, 400 and

500RPM. The identified parameters of the models m ∈ S f are given in Table 3.1. The input

constraint is

−umax ≤ u ≤ umax, (3.14)

where the input bound is umax = 5.
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3.4. Experimental Verification

Figure 3.1 – The Quanser 3DOF Gyroscope used in the experiments.

The state-space model of Gm(z), m ∈ S f is denoted as

x+
m = Am xm +Bmum , (3.15a)

ym =Cm xm , (3.15b)

where Am ∈R4×4, Bm ∈R4×1, and Cm ∈R1×4 are the corresponding state-space matrices.

The system is controlled by a PID controller with anti-windup. In particular, the input u is

computed as

u = Kp e +Ki ui +Kd ud (3.16)

where e = r − y is the tracking error of the reference r , ud = y − y− is the derivative term being

the difference between the current output y and the previous output y−, and the integral term

ui is computed by using the anti-windup scheme which first updates the previous integrator

state u−
i to ũi = u−

i +e and then based on the value ui ,tst = Kp e +Ki ũi +Kd ud computes the

new ui as

ui =


1

Ki
(umax −Kp e −Kd ud ), if ui ,tst > umax,

ũi , if umax ≤ ui ,tst ≤ umax,
1

Ki
(−umax +Kp e +Kd ud ), if ui ,tst <−umax,

(3.17)
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Chapter 3. Extension to multimodel uncertainty and experimental verification

which prevents the violation of the input constraint (3.14). The synthesis is to be done with

the vector of tuning parameters η= [Kp ,Ki ,Kd ]T .

In order to apply the synthesis technique, the control law must be represented as a system of

polynomial equalities and inequalities. For this, the anti-windup part (3.17) can be represented

as a projection on the set Ui :

ui = arg min
v∈Ui

{1
2 ‖v − ũi‖

}
, (3.18a)

Ui =
{

v
∣∣∣ ∣∣Kp e +Ki v +Kd ud

∣∣≤ umax

}
, (3.18b)

for which the corresponding KKT system [15] is

ui − ũi +λhiKi −λloKi = 0, (3.19a)

λhi(Kp e +Ki ui +Kd ud −umax) = 0, (3.19b)

λlo(−Kp e −Ki ui −Kd ud −umax) = 0, (3.19c)

−Kp e −Ki ui −Kd ud +umax ≥ 0, (3.19d)

Kp e +Ki ui +Kd ud +umax ≥ 0, (3.19e)

λhi ≥ 0, (3.19f)

λlo ≥ 0, (3.19g)

where λ = [λhi,λlo]T ∈ R2 are dual variables, (3.19a) is the stationarity condition, (3.19b)-

(3.19c) complementarity slackness, (3.19d)-(3.19e) primal feasibility and (3.19f)-(3.19g) dual

feasibility.

Since the modelling of the control law for the purpose of computing (3.10) is an identical

procedure for each m ∈ S f , the index m will be omitted in the following equations in order to

make the notation lighter. Due to the reference tracking, the stability certification will be done

in delta space. For this purpose, steady-state target of x, u and ui which cause the steady-state

output y to be equal to a constant reference r will be computed. For a model m ∈ S f , these

target values will be denoted with subscript s as (xs .us ,ui s), and they are equal to[
xs

us

]
=

[
(A− I3×3) B

C 0

]−1 [
03×1

r

]
, (3.20a)

ui s = us/Ki . (3.20b)

The variables denoting the deviations from the steady-state targets will be preceded by ∆ (e.g.,

∆x = x −xs).

For each m ∈ S f , the vector of variables is selected as

ξ= (r,∆x,∆u−
i ,∆y−,λ,∆ui ,λ+) (3.21)
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and all other variables of the model m are expressed as a function of ξ. In particular, at all

places at which they appear, the variables∆x+ and∆u will be substituted by∆x+ = A∆x+B∆u

and ∆u = Kp e +Ki (ui s +∆ui )+Kd ud −us , the variables ∆y , e, ũi , ud by ∆y =C∆x, e =−∆y ,

ũi = ui s +∆u−
i + e, ud = ∆y −∆y−, and the variables ∆y+, e+, ũ+

i , u+
d by ∆y+ = C∆x+, e+ =

−∆y+, ũ+
i = ui s +∆ui +e+, u+

d =∆y+−∆y .

The Lyapunov function conditions (3.7) in delta space, written without the slack polynomial

pm(ξ), take the form

V (r,∆x,∆u−
i ,∆y−,λ)−V (r,∆x+,∆ui ,∆y,λ+) ≥ e2,

V (r,∆x,∆u−
i ,∆y−,λ) ≥∆xT∆x,

where it can be seen that the Lyapunov function depends on the reference r . For control

law (3.2), by selecting the input parameter s = e and the internal variable θ = ∆ui , and by

considering the previously given expression for ∆u = Kp e +Ki (ui s +∆ui )+Kd ud −us as the

output mapping κ, the h(e,∆ui ,λ;η) and g (e,∆ui ,λ;η) polynomials take the form

h =

 (ui s +∆ui )− ũi +λhiKi −λloKi

λhi(Kp e +Ki (ui s +∆ui )+Kd ud −umax)

λlo(−Kp e −Ki (ui s +∆ui )−Kd ud −umax)

 , (3.23a)

g =


−Kp e −Ki ui −Kd ud +umax

Kp e +Ki ui +Kd ud +umax

λhi

λlo

 . (3.23b)

The locality set (3.6) is used to incorporate the bound on the reference |r | ≤ rmax with rmax =
1.1 and a bound on the derivative term for which the synthesis is performed by selecting

|∆y−−∆y | ≤ ∆ymax and |∆y −∆y+| ≤ ∆ymax. Note that ∆ymax could also be an additional

tuning parameter in η, but here it will be selected to be a constant value ∆ymax = 20. The set

(3.6) is thus defined by

ψ=



r + rmax

−r + rmax

∆y−−∆y +∆ymax

−∆y−+∆y +∆ymax

∆y −∆y++∆ymax

−∆y +∆y++∆ymax


. (3.24)

The control synthesis is run with the Lyapunov function candidate V (r,∆x,∆u−
i ,∆y−,λ) of

order four, SOS and arbitrary polynomial multipliers of order two and SOS slack polynomial

of order four. The search ranges for parameters Kp , Ki and Kd are chosen to be [0,20], [0,5]

and [0,2], respectively, which constitutes the set D. After 60 Bayesian Optimization iterations

applied for the search of stabilizing solutions (3.9), 36 stabilizing tuning parameters η (i.e.,
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(a) Result obtained with minimization of squared tracking error, PSE(η).
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(b) Result obtained with minimization of settling time, PST(η).

Figure 3.2 – The Lyapunov function values (after the step change of reference at k = 10), the
output signals and input signals (both simulated and experimentally measured results) of the
obtained PID controllers. The displayed results correspond to model m = 1.

vectors in the set {η | ∑
m∈S f

Im(η) = 0,η ∈ D}) were obtained with an average time per Bayesian

optimization iteration (with sequential evaluation of Im(η) in (3.9)) of about 7.4 minutes (the

computing platform involved 3.0GHz Intel Core i7 processor and 16GB of RAM).

The obtained stabilizing tuning parameters were then used as initial points for Bayesian

optimization applied to performance optimization problem (3.11). To investigate the influence

of different performance metrics P(η) in (3.11), two cases were compared. The first case for the

performance metric uses PmSE which is the sum of squared tracking errors of a step response,

and the average over the values PmSE, m ∈ S f will be denoted PSE:

PSE(η) = 1

3

3∑
m=1

PmSE(η), PmSE(η) =
∞∑

k=0
e2

m(k), (3.25)

with em(k) denoting the step response tracking error at time k for the model m. The second

case for the performance metric uses the settling time (denoted by PmST) of the unit step

response defined as

PmST(η) = min{k | ∀i ≥ k,−0.01S% ≤ em,i ≤ 0.01S%}
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3.5. Conclusions

Table 3.2 – Comparison of obtained performances with two different choices for the perfor-
mance metric in (3.11).

Minimization of the squared step tracking errors sum, PmSE(η)

Settling time sample Sum of squared errors
Model 1 32 3.258
Model 2 34 3.321
Model 3 30 3.575
Average 32 3.385

Minimization of settling time, PmST(η)

Settling time sample Sum of squared errors
Model 1 22 3.586
Model 2 22 3.656
Model 3 19 3.824
Average 21 3.689

where the settling criterion was selected to be S% = 2%. The average settling time will be

denoted by PST:

PST(η) = 1

3

3∑
m=1

PmST(η), (3.26)

The computation of PmSE(η) and PmST(η) was done by simulations of the unit step response

for Nst = 1000 steps. The performance optimization problem was run with 120 Bayesian

Optimization iterations with PmSE(η) and 120 iterations with PmST(η) . The average time per

Bayesian iteration (sequential evaluation of PmSE and PmST in (3.11)) was about 1.7 minutes in

the case of PmSE and 1.4 minutes in the case of PmST.

The simulation and experimental results for the step response in case of the model m = 1 are

shown in Fig. 3.2. From the figure, it can be seen that the experimental measurement well

corresponds to the simulated behaviour. Table 3.2 shows the performance of the two obtained

controllers, where it can be seen that the PSE(η) as the performance metric involves an 8.24%

smaller average value of the sum of the squared tracking errors (3.385 in comparison to 3.689),

and PST(η) causes a 34.4% smaller average settling time of the step response (21 samples in

comparison to 32). To reduce the influence of noise, the results in the table correspond to an

average of five consecutively performed step experiments.

3.5 Conclusions

This chapter describes an extension of the tuning method from Chapter 2 to cases involving

multimodel plant uncertainty and provides an experimental validation of the method by its
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Chapter 3. Extension to multimodel uncertainty and experimental verification

application to an experimental mechanical system consisting of a feedback-linearized Quanser

3DOF Gyroscope. The chapter more prominently highlights the applicability of the synthesis

method from Chapter 2 to non-optimization-based control structures by demonstrating

it in case involving a PID with anti-windup which is in the considered experimental setup

synthesized robust to multimodel uncertainty. The chapter as well demonstrates an alternative

possibility for the method of Chapter 2 which consists of removing the SOS requirement on

the introduced slack polynomial.
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4 Automatic tuning based on
scenario approach technique

4.1 Introduction

In order to extend the benefits of the automatic tuning procedure presented in Chapter 2 to

problems of larger size, instead of using the SOS programming technique for computation of

Lyapunov functions, a method for numerical Lyapunov function estimation based on scenario

approach will be introduced in this chapter. This method allows a high accuracy numerical

estimation of Lyapunov functions in problems of much larger size than those that can be

addressed by the SOS programming. Nevertheless, the better scalability is achieved at a

cost of being able to compute the Lyapunov functions only up to some finite accuracy, as

a consequence of which the Lyapunov functions computed by the method of this chapter

should be referred to as numerical estimates of Lyapunov functions, as described in more

detail in what follows.

The method of this chapter is characterized by a flexibility that allows its application to a broad

variety of nonlinear system dynamics, controller structures, and user-specified performance

metrics. In addition to its ability to address problems of much larger size than the approach of

Chapter 2, it also does not require a polynomial form for the functions describing the system.

Instead of using SOS programming as the method of Chapter 2, the generation of closed-loop

Lyapunov functions is formulated in Section 4.2 as a robust optimization problem that is then

tackled by applying a Chebychev center [15] and scenario-based optimization [19, 20, 21] to

reformulate it into a linear programming (LP) optimization form. This Lyapunov function

generation technique is then used in Section 4.3 where the controller synthesis is formulated

as an optimization problem that can be tackled by using black-box optimization techniques,

such as Bayesian optimization which is used in the application examples of this chapter.

The performance of the method is demonstrated on two examples in Section 4.4 which cannot

be addressed by the SOS-based approach due to scalability and modelling limitations. The first

example involves the synthesis of an early-terminated optimization-based controller where

an extrapolated gradient-projection optimization algorithm with approximate evaluation of

projections is applied to a nonlinear control problem corresponding to a soft-constrained
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speed control of a (bilinear) permanent magnet synchronous machine (PMSM) model. It

is interesting to note that the early-terminated optimization algorithm employed in this

example does not involve mathematically rigorous convergence guarantees when run for an

infinite amount of time, but it does not represent a problem as the method’s focus is directly

on the obtained control policy and its consequent closed-loop behavior which are shaped

by tuning as well the optimization algorithm parameters (the stepsize and extrapolation

factor) together with the other available tuning parameters, as demonstrated in the example.

The SOCP is formulated without using the prediction horizon concept (similarly as in the

EMPC example of Section 2.4) and is actually obtained by assuming an SOCP structure whose

coefficients are then tuned (together with the optimization algorithm’s tuning parameters)

by the method in order to shape the control policy and its consequent closed-loop behavior.

The second example involves synthesis of a cascaded linear controller with saturations for

constrained control of a nonlinear plant, where the nonlinear plant dynamics correspond to a

gyroscope whose rotating disk’s position is to be controlled. The controller of this example is

synthesized directly for the nonlinear plant dynamics (without performing linearizations) of

the mechanical gyroscopic system.

The method of this chapter does not necessarily require for its application an analytical ex-

pression of the plant dynamics as, for example, the method of Chapter 2 requires an analytical

expression of polynomial form. Thanks to the utilization of the scenario approach, the method

needs only plant model simulations/evaluations in order to perform the controller synthesis.

Controller design methods that require only a simulator of the plant dynamics (i.e., do not

require an analytical expression for the plant model) can also be found in the field of dynamic

programming [7, 8]. These methods belong to the class of approximate dynamic program-

ming, also known under the names neuro-dynamic programming [10] and reinforcement

learning, and involve methods such as the rollout algorithm, approximation in value space

(e.g., Q-learning algorithm, approximate policy iteration) and approximation in policy space.

The approximation in policy space can be considered as the class closest to the method of this

chapter, since it involves selection of a problem-related parametrized control policy whose pa-

rameters are then searched for by minimizing a performance cost function using the gradient

method or some other algorithm such as random search. In the field of reinforcement learning,

the methods of this kind are known as policy search [28] and are classified to the methods

that (instead of a simulator) use trajectories experimentally obtained from the physical plant

(class known as model-free methods) and the methods that use a combination of a simulator

and experimentally generated trajectories which iteratively refine the simulator’s accuracy by

gradually providing more experimental data (class known as model-based methods) [62]. For

the purpose of the maximization of a performance metric (which is called a reward function),

the policy search reinforcement learning methods in some cases also utilize Bayesian opti-

mization [17, 46, 74], which is the black-box optimization technique used in this chapter as

well. While the aforementioned methods commonly use uncertain simulation-based plant

models (which are in the case of model-based reinforcement learning iteratively refined as

the algorithm progresses), the method of this chapter requires availability of an accurate
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deterministic simulation-based model and places focus on obtaining a controller for which

the Lyapunov function can be generated by using a Chebychev center and scenario-based

optimization, as described in Section 4.2. An application of the scenario approach for stability

verification was previously considered in case of robust linear systems control by the authors

in [19].

In comparison to the tuning method of Chapter 2, the method of this chapter involves ad-

vantages concerning both the problem scalability and modelling flexibility. In particular, the

Lyapunov function generation method to be presented in Section 4.2 allows one to circumvent

the need for employing a sum-of-squares (SOS) stability certification technique [42, 43, 56].

This makes the tuning method applicable to larger problems (in terms of the controller and

plant size), as demonstrated in the PMSM example of Section 4.4.1 whose addressing by SOS

techniques would not be possible due to SOS scalability limitations. Moreover, the method of

this chapter also involves better modelling flexibility since it does not require a polynomial

form for the functions describing the system, as demonstrated in the example of Section 4.4.2

where the involved gyroscope dynamics contain products of states and trigonometric func-

tions of states.

The rest of the chapter is structured as follows. Section 4.2 describes the Lyapunov function

generation technique which is then used in the synthesis method described in Section 4.3.

The method is then demonstrated on two examples provided in Section 4.4, and Section 4.5

contains conclusions.

4.2 Generation of Lyapunov functions based on Chebychev center

and scenario-based approach

This section describes a technique for generation of high accuracy Lyapunov function numeri-

cal estimates that will be used by the controller synthesis method. For both the continuous-

time and the discrete-time settings, the problem of generating a Lyapunov function is formu-

lated as a robust optimization problem which is then reformulated into a linear programming

(LP) form by applying a Chebychev center technique and scenario programming approach.

To avoid cumbersome expressions and to better emphasise the fundamental aspects, the

description of this section is done for the case involving regulation of the system state to the

origin of the state-space, while the extension to the reference tracking based on shifting of the

state-space origin is demonstrated in the application examples Section 4.4.
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4.2.1 Problem formulation

Continuous-time setting

The plant model has the form

ẋ = fx (x,u), (4.1a)

y = fy (x), (4.1b)

where x ∈ Rnx is the plant state vector, u ∈ Rnu the input vector, y ∈ Rny the output vector,

ẋ ∈ Rnx the derivative of the state, and fx : Rnx+nu → Rnx and fy : Rnx → Rny are the system

function and output mapping, respectively.

The control law can be modeled as a dynamical system

ż = fz (z, y ;η), (4.2a)

u = fu(z;η), (4.2b)

where z ∈ Rnz is the controller state vector, ż ∈ Rnx the derivative of the state, fz : Rnz+ny →
Rnz and fu : Rnz → Rny represent respectively the controller dynamics function and output

mapping, and η ∈Rnη is a vector containing the controller’s tuning parameters. Within this

Section 4.2, the tuning parameters of the controller η are assumed fixed to some value, and

the goal is to determine whether for that particular choice of η a Lyapunov function can be

generated (the tuning of η will be the object of focus in Section 4.3). For easier notation in

what follows, a vector θ ∈Rnθ with nθ = nx +nz is defined by

θ = (x, z), (4.3)

which represents the state of the overall closed-loop system comprising the aforementioned

plant (4.1) and controller (4.2). Its dynamics are thus defined by

θ̇ = fcl (θ;η) (4.4)

where

fcl (θ) =
[

fx
(
x, fu(z;η)

)
fz

(
z, fy (x);η

)] . (4.5)

The goal is to certify local stability of the origin θ = 0 for the closed-loop system (4.4) by finding

a continuously differentiable Lyapunov function V (θ) over a compact connected region of

interest Ξ that includes θ = 0 in its interior. Besides being zero at the origin:

V (0) = 0, (4.6)
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the Lyapunov function V (θ) should satisfy

−∇V (θ)T fcl (θ) ≥ ‖θ‖2
2, ∀θ ∈Ξ, (4.7a)

V (θ) ≥ ‖θ‖2
2, ∀θ ∈Ξ. (4.7b)

To ensure solution existence and uniqueness of the system of differential equations (4.4), the

system function fcl (θ) is assumed locally Lipschitz continuous over a region D ⊃Ξ, which

means that for every point θ̃ ∈ D there is a neighbourhood D̃ around θ̃ such that there holds∥∥ fcl (θ̃a)− fcl (θ̃b)
∥∥≤ L̃

∥∥θ̃a − θ̃b
∥∥ , ∀θ̃a , θ̃b ∈ D̃ (4.8)

where L̃ > 0 is a positive constant that depends on θ̃ ∈ D .

Under the above conditions, the existence of a Lyapunov function V (θ) ensures that the

equilibrium pont θ = 0 (i.e., the point θ = 0 satisfying 0 = fcl (0;η)) is locally asymptotically

stable; that is, there is a neighbourhood of θ = 0 such that all trajectories θ(t ) started within it

satisfy

lim
t→∞θ(t ) = 0 (4.9)

and do not leave the neighbourhood. The following theorem (adapted from [41], Theorem 3.3)

summarizes the above statements for the asymptotic local stability of θ = 0.

Theorem 1. Let θ = 0 be an equilibrium point for the closed-loop system (4.4) whose system

function fcl (θ) is locally Lipschitz continuous over a set D that contains a compact connected

region Ξ ⊂ Rnθ whose interior includes θ = 0. Let V : Rnθ → R, V (0) = 0 be a continuously

differentiable function that satisfies the Lyapunov conditions (4.7). Then, the equilibrium point

θ = 0 is locally asymptotically stable.

Remark 9. The formulation of this section assumes that the Lyapunov function V (θ) is a func-

tion of the state θ. It should be noted that the method to be presented also allows the Lyapunov

function to be a function of other variables that can be available, such as for example the dual

variables of the primal-dual optimal solution pair provided by the controller’s optimization

algorithm (assuming they are uniquely determined for each θ) or the slack variables of the

optimization-based controller with soft constraints.

Remark 10. From the point of view of the method to be presented, the terms ‖θ‖2
2 in (4.7)

imposing the decrease and positivity of the Lyapunov function can be replaced by functions

of more general form and can as well be weighted by positive weighting factors which can be

searched for by the method. For the sake of simplicity of the exposition, the terms ‖θ‖2
2 are used,

which as well turns out to suffice for the application examples given in this chapter..
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Discrete-time setting

The plant model has the form

x+ = fx (x,u), (4.10a)

y = fy (x), (4.10b)

where x ∈ Rnx is the plant state vector, u ∈ Rnu the input vector, y ∈ Rny the output vector,

x+ ∈ Rnx the plant’s successor state, and fx : Rnx+nu → Rnx and fy : Rnx → Rny are the plant

transition and output mapping, respectively.

The control law can be modeled as a dynamical system

z+ = fz (z, y ;η), (4.11a)

u = fu(z;η), (4.11b)

where z ∈Rnz is the controller state vector, z+ ∈Rnx the controller successor state, fz :Rnz+ny →
Rnz and fu :Rnx →Rny represent respectively the controller transition and output mapping,

and η ∈Rnη is a vector containing the controller’s tuning parameters. As noted in the descrip-

tion of the continuous-time setting, within this Section 4.2 the tuning parameters η of the

controller are assumed fixed to some value and the goal is to determine whether for that

particular choice of η a Lyapunov function can be generated. The closed-loop system state

vector θ ∈Rnθ with nθ = nx +nz is defined by

θ = (x, z), (4.12)

which represents the state of the closed-loop interconnection of the plant (4.10) and controller

(4.11). The closed-loop transition mapping is defined by

θ+ = fcl (θ;η) (4.13)

where

fcl (θ) =
[

fx
(
x, fu(z;η)

)
fz

(
z, fy (x);η

)] . (4.14)

The goal is to certify local stability of the origin of the closed-loop system (4.13) by finding

a continuous Lyapunov function V (θ) over a compact connected region of interest Ξ that

includes the origin θ = 0 in its interior. A function V (θ) should satisfy V (0) = 0 as well as

V (θ)−V (θ+) ≥ ‖θ‖2
2, ∀θ ∈Ξ, (4.15a)

V (θ) ≥ ‖θ‖2
2, ∀θ ∈Ξ, (4.15b)

The following theorem summarizes a set of sufficient conditions that provide local asymptotic

stability of the equilibrium point θ = 0 (i.e., of the point θ = 0 satisfying 0 = fcl (0;η)), where
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the local asymptotic stability means that there is a neighbourhood of θ = 0 such that for every

sequence {θk } started within it there holds

lim
k→∞

θk = 0 (4.16)

without any element of the sequence {θk } leaving the neighbourhood. The theorem involves

an assumption on (4.13) that the difference between any two subsequent states θ and θ+ is no

larger than an upper bound q > 0:∥∥θ−θ+∥∥
2 ≤ q, ∀θ ∈Ξ, (4.17)

and also that the set of all interior points of Ξwhose distance to the closest boundary point of

Ξ is larger than q :

Ξq =
{
θ | θ ∈ int(Ξ), inf

γ∈bnd(Ξ)

∥∥θ−γ∥∥
2 > q

}
(4.18)

is nonempty, where int(Ξ) and bnd(Ξ) denote the set of all interior points and boundary

points ofΞ, respectively. The condition (4.17) is convenient in cases of discrete-time dynamics

obtained by discretization of continuous-time systems since in these cases faster sampling

times result in reduced distances between pairs θ and θ+.

Theorem 2. Let θ = 0 be an equilibrium point for the closed-loop system (4.13) whose system

function fcl (θ;η) satisfies the condition (4.17) over a compact connected region Ξ⊂Rnθ which

has θ = 0 in its interior. Assume that the set Ξq defined in (4.18) is nonempty. Let V :Rnθ →R,

V (0) = 0 be a continuous function that satisfies the Lyapunov conditions (4.15). Then, the

equilibrium point θ = 0 is locally asymptotically stable.

Proof. Consider a set difference of Ξ and Ξq denoted as Ξs :

Ξs =Ξ\Ξq , (4.19)

which can be geometrically envisioned as a shell of thickness q which encloses the set Ξq .

Consider the infimum of the Lyapunov function V (θ) over the set Ξs :

a = inf
θ̃∈Ξs

{
V (θ̃)

}
. (4.20)

Since the setΞs is compact and V (θ) is continuous, by the Weierstrass theorem the infimum is

attained at some point, and due to (4.15b) the value a is strictly positive. For some b ∈ (0, a),

consider the level set of the Lyapunov function

Ωb = {
θ |V (θ) ≤ b, θ ∈Ξ}

. (4.21)

Since a > 0 and V (0) = 0, due to continuity of V , the set Ωb is nonempty. For an initial state

θ0 ∈Ωb , the subsequent states θk , k = 1,2, . . . do not leave the bounded set Ξq . This can be
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shown by contradiction, since if for some state θk ∈Ξq there happens θk+1 ∉Ξq , it would imply

θk+1 ∈Ξs due to (4.17). Since θk belongs to a sequence started with θ0 for which V (θ0) ≤ b,

due to (4.15a) there holds V (θk ) ≤ b, and since θk+1 ∈ Ξs there must hold V (θk+1) ≥ a due

to (4.20), resulting in V (θk ) ≤ b < a ≤V (θk+1) contradicting the condition (4.15a).

To show asymptotic stability of sequence {θk } started with θ0 ∈Ωb in addition to the sequence’s

boundedness, there should hold lim
k→∞

θk = 0, which means that for every ball of radius ε> 0

around 0, denoted as Bε(0) = {θ |‖θ‖2 ≤ ε}, there should be an integer K > 0 such that ∀k ≥ K ,

xk ∈Bε(0). This can be shown by contradiction. For a given ε, let

γ= inf
θ̃∈Ξq \Bε(0)

{‖θ̃‖2
2

}
, (4.22)

which is the smallest Lyapunov decrease guaranteed by (4.15a) over the set Ξq \Bε(0). Let

sequence {θk } be started with θ0 ∈Ω0. To arrive at a contradiction, assume it has an infinite

subsequence {θm}κ, m = 0,1, . . . such that θm ∈Ξq \Bε(0) for all m. For each θm , there holds

V (θm)−V (θm+1) ≥ γ, which is an inequality that follows from (4.22) because {θm} ⊂Ξq \Bε(0).

Since V (θ0) ≤ b, there holds

V (θm+1) ≤V (θm)−γ≤V (θ0)− (m +1)γ≤ b − (m +1)γ, (4.23)

where the right-hand side after some m > 0 must become negative, contradicting the strict

positivity of V over Ξq \Bε(0) guaraneed by (4.15b). Therefore, the subsequence {θm}κ of all

iterates outside of Bε(0) cannot be infinite, and thus there is a K > 0 such that all elements of

the sequence {θk } with k ≥ K are in the ball Bε(0), so lim
k→∞

θk = 0.

Remark 11. The observations from Remark 9 and Remark 10 stated in the continuous-time

setting also hold for the discrete-time setting.

4.2.2 Robust optimization problem for finding Lyapunov function

Assume that the continuous-time or discrete-time Lyapunov function V (θ) is a linear combi-

nation of nv basis functions:

V (θ) = cT
v M(θ), (4.24)

where cv ∈Rnv is a vector of Lyapunov weighting factors, and where M :Rnθ →Rnv , M(0) = 0

is a vector of basis functions (for instance, a vector containing all monomials up to a certain

degree). To make the following description applicable to both the continuous-time and the

discrete-time case, the corresponding Lyapunov conditions (4.7) and (4.15) are stated in a

unified way as

cT
v M̄(θ) ≥ ‖θ‖2

2, ∀θ ∈Ξ, (4.25a)

cT
v M(θ) ≥ ‖θ‖2

2, ∀θ ∈Ξ, (4.25b)
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where in the continuous-time case the M̄(θ) has the form

M̄(θ) =−∇M(θ)T fcl (θ) (4.26)

with M(θ) continuously differentiable, and in the discrete-time case

M̄(θ) = M(θ)−M(θ+) (4.27)

with M(θ) continuous. The problem of finding a Lyapunov function V (θ) will now be con-

sidered as a problem of finding weighting factors cv such that conditions (4.25) are satisfied

by the Lyapunov function (4.24). Moreover, the weighting factors cv which are as much as

possible in the interior of the set of all cv for which (4.25) holds will be sought. This is achieved

by an optimization problem which inscribes a ball of largest possible radius cr and center at cv

into the set of all Lyapunov weighting factors for which (4.25) holds. By denoting the ball of

radius cr whose center is at cv by

B(cv,cr) = {c̃v ∈Rnv | ‖c̃v − cv‖2 ≤ cr}, (4.28)

the optimization problem inscribing a ball of largest radius into the set of Lyapunov weighting

factors satisfying (4.25) takes the form:

max.
cv,cr

cr

s.t. c̃T
v M̄(θ) ≥ ‖θ‖2

2, ∀c̃v ∈B(cv,cr), ∀θ ∈Ξ,

c̃T
v M(θ) ≥ ‖θ‖2

2, ∀c̃v ∈B(cv,cr), ∀θ ∈Ξ,

cr ≤ cr,max,

(4.29)

where the third constraint with some fixed cr,max > 0 has been added to prevent the radius

from going to infinity, which may happen if the interior of the set of all Lyapunov weighting

factors for which (4.25) holds is not bounded.

It can be seen that the obtained optimization problem (4.29) involves robustness require-

ments with respect to all c̃v ∈B(cv,cr) and all θ ∈Ξ. These two robustness requirements will

be addressed in the following two subsections to obtain a more easily solved optimization

problem.

4.2.3 Application of Chebychev center technique

To address the robustness with respect to c̃v ∈B(cv,cr), the procedure known in the literature

as finding a Chebyshev center of a set [15] will be applied. To do this, for some fixed θ ∈Ξ, the

first and second constraint can be rewritten in the form

(cv +d)T M̄(θ) ≥ ‖θ‖2
2, ∀d : ‖d‖2 ≤ cr, (4.30a)

(cv +d)T M(θ) ≥ ‖θ‖2
2, ∀d : ‖d‖2 ≤ cr, (4.30b)
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which is equivalent to

inf
‖d‖2≤cr

{
(cv +d)T M̄(θ)

}≥ ‖θ‖2
2, (4.31a)

inf
‖d‖2≤cr

{
(cv +d)T M(θ)

}≥ ‖θ‖2
2, (4.31b)

and results in the reformulation

cT
v M̄(θ)− cr‖M̄(θ)‖2 ≥‖θ‖2

2, (4.32a)

cT
v M(θ)− cr‖M(θ)‖2 ≥‖θ‖2

2. (4.32b)

The optimization problem (4.29) thus takes the form

max.
cv,cr

cr

s.t. g1(cv,cr,θ) ≥ 0, ∀θ ∈Ξ,

g2(cv,cr,θ) ≥ 0, ∀θ ∈Ξ,

cr ≤ cr,max,

(4.33)

where the functions g1(cv,cr,θ) and g2(cv,cr,θ) are introduced to make the notation lighter

and are defined by

g1 = cT
v M̄(θ)− cr‖M̄(θ)‖2 −‖θ‖2

2, (4.34a)

g1 = cT
v M(θ)− cr‖M(θ)‖2 −‖θ‖2

2, (4.34b)

so that they represent the functions of the reformulation (4.32).

4.2.4 Application of scenario-based optimization technique

To address the robustness with respect to θ ∈ Ξ, instead of seeking a solution that holds

with perfect accuracy (i.e., holds for Λ% = 100% of the elements of Ξ), in order to facilitate

computational tractability a solution with negligibly small approximation error will be sought

(e.g., a solution that holds not forΛ% = 100%, but for at leastΛ% = 99.99% of the elements ofΞ),

with the approximation error bounded and inversely proportional to the invested computation

time. This can be achieved by application of the scenario approach whose theory provides a

trade-off between the selected accuracy Λ% and the required computation time (i.e., required

number of scenarios), providing thus the computation time and accuracy trade-off which is

standard in many fields of numerical mathematics (e.g., in numerical optimization). Due to

the imperfect accuracy which can be achieved by this computational procedure (i.e., inability

to achieveΛ% = 100% with finite computation time), the solutions generated by this approach

should be referred to as numerical Lyapunov estimates for the controller synthesis method.

To apply the scenario approach [20, 21], it should be noted that for every fixed θ ∈ Ξ the

functions g1(cv,cr,θ) and g2(cv,cr,θ) are linear in the decision vector (cv,cr). By assuming a
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uniform probability distribution of θ over the compact setΞ and by extracting Nsc independent

samples {θi }Nsc

i=1, the optimization problem (4.33) takes the form

max.
cv,cr

cr

s.t. g1(cv,cr,θi ) ≥ 0, i = 1, . . . , Nsc,

g2(cv,cr,θi ) ≥ 0, i = 1, . . . , Nsc,

cr ≤ cr,max,

(4.35)

which is an LP optimization problem and thus can be solved efficiently even for a large number

of scenarios Nsc. As will be stated more formally in the theorem that follows, even though the

problem (4.35) contains only a finite number of instances of θ from Ξ, the scenario approach

theory allows one to quantify the percentage Λ% of the elements θ from Ξ for which the

solution of (4.35) is feasible (i.e., the solution of (4.35) holds not only for the used {θi }Nsc

i=1, but

forΛ% elements of the setΞ), and the theory also quantifies that the statedΛ% is incorrect only

with some user-controlled probability σ. The scenario approach theory therefore provides

a relationship between the number of scenarios Nsc and the accuracy Λ% with which the

problem (4.35) approximates the original form (4.33), allowing thereby a trade-off between the

computational time (i.e., the number of used scenarios Nsc) and the accuracy of the obtained

solution (i.e., the achieved Λ%). As will be demonstrated in Section 4.4, in case of the problem

sizes considered in the application examples, the scalability of linear programming allows

numbers of scenarios Nsc with which practically convenient values ofΛ% and σ (e.g., accuracy

Λ% = 99.99% and probability σ = 10−7) are achievable. Figure 4.1 illustrates the scenario

approach concept and the Chebychev center technique.

To apply the scenario approach theory [21], the solution of the problem (4.35) should be veri-

fied to exist and be unique ([21], Assumption 1). To avoid the technical difficulties concerning

this requirement, as indicated in Section 3.1 of [20], the solution existence can be ensured by

adding a compact constraint set ‖(cv,cr)‖2 ≤ 1099 (whose presence guarantees the solution

existence by the Weierstrass theorem), and the solution uniqueness can always be ensured by

applying a tie-break rule.

The relationship between the number of scenarios Nsc, accuracyΛ% and confidenceσ is given

by Theorem 1 in [21], which is rephrased below to a form tailored to the present setting.

Theorem 3. Let Nsc be the number of uniformly sampled scenarios {θi }Nsc

i=1 from Ξwith which

the robust optimization problem (4.33) is converted into (4.35). Then, it holds that the solution

of (4.35) is feasible for at least Λ% percent of the elements θ ∈Ξ, with the probability σ that it is

not the case upper-bounded by the expression

σ≤ 1

100Nsc

nv∑
m=0

(
Nsc

m

)(
100−Λ%

)m(
Λ%

)Nsc−m , (4.36)

where nv is the number of basis functions used for the Lyapunov function in (4.24).
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cer
cev

car
cav

θiθ1

θNsc

Set Ξ

θ2

Exact set of cv
Approximate set of cv

g1(cv, cr, θi)

g2(cv, cr, θi)

θ space cv space

Figure 4.1 – A simplistic illustration of the application of the scenario approach. The optimiza-
tion problem (4.33) involves mapping of the set Ξ by the functions g1 and g2 into the orange
set represented in the space of cv, which as such results in the inscribed ball B(ce

v ,ce
r ) that

is the exact solution of (4.33). The scenario approach (4.35) considers only Nsc samples of
θ ∈Ξ, denoted {θi }Nsc

i=1, which are mapped through g1 and g2 into the blue polytopic set that
makes an outer approximation of the exact orange set, thus causing an approximate solution
B(ca

v ,ca
r ). The difference between the two sets is colored in gray. The scenario approach

theory states that only those elements which do not belong to a Λ% percentage of Ξ could
possibly generate some halfspaces which would not fully contain the ball B(ca

v ,ca
r ) in them, a

statement whose probability of not being true is σ.

The practical application of the above theorem can be performed by selecting an accuracyΛ%

and an upper bound σ̂ for the right-hand side in (4.36):

1

100Nsc

nv∑
m=0

(
Nsc

m

)(
100−Λ%

)m(
Λ%

)Nsc−m ≤ σ̂, (4.37)

and then tackling the above inequality by the bisection method on Nsc (due to the decreasing

monotonicity in Nsc of the left-hand side in (4.37)) in order to obtain the smallest number

of scenarios Nsc so that the inequality (4.37) holds, resulting also in some σ probability that

satisfies σ≤ σ̂. Another way to obtain an appropriate number of scenarios Nsc in (4.37) given

Λ% and σ̂ is by using the lower bound (see [20], Section 5):

Nsc ≥ 200

100−Λ%

[
ln

(
1

σ̂

)
+nv

]
, (4.38)

which will be used for obtaining the numbers of scenarios in the application examples of

Section 4.4.
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4.3 Controller Synthesis

The controller synthesis can be formulated as in the Chapter 2 through an optimization

problem of the form

min. P(η)+δst (η)

s.t. η ∈ D,
(4.39)

in which P(η) is a user-specified performance criteria for the closed-loop system with control

parameters η, the δst (η) is a function indicating that a Lyapunov function is estimated to exist

by (4.35) (i.e., there is a solution with positive radius cr):

δst (η) =
{

0, for η with positive cr from (4.35),

+∞, otherwise,
(4.40)

and the set D models some basic requirements on the tuning parameters η (e.g., a requirement

that the Hessian in the cost function of a QP-based controller should be symmetric positive

definite).

The solving of optimization problem (4.39) is approached in two phases, similarly as in the

method previously described in Chapter 2 which was based on SOS stability certification.

The first phase searches for control parameters η feasible in (4.39) (i.e., for parameters η for

which a Lyapunov function can be generated by (4.35)). The second phase takes the stabilizing

tuning parameters generated by the first phase as initial conditions which are providing an

indication about the location of a stabilizing region, and then starting from that data further

explores for improvement of the performance criteria P(η) by means of Bayesian optimization

and its data exploitation property. In comparison to the approach in Chapter 2, the first phase

of the method that will be described in this section does not require the introduction of a

slack polynomial into the Lyapunov decrease condition (4.25a) whose minimization provides

stabilizing tuning parameters. Instead, the stabilizing tuning parameters are searched for by

maximizing the radius of the inscribed ball from (4.35) as a function of the tuning parameters

η, as discussed in the following subsection.

4.3.1 Phase one - Search for stabilizing controllers

Denote with (c∗v ,c∗r ) the optimal solution of (4.35) obtained for some fixed tuning vector η. To

emphasize the dependence of this optimal solution on the tuning parameters η, the notation

(c∗v (η),c∗r (η)) will be used in what follows. In case of the tuning parameters η for which there

can be generated a Lyapunov function by (4.35), the value of the radius is nonnegative (i.e.,

c∗r (η) ≥ 0). Otherwise, in the case where η is such that there is no Lyapunov function that

can be generated by (4.35), a feasible optimal solution (c∗v (η),c∗r (η)) is still obtained, but it is

characterized by a negative value of the radius c∗r (i.e., c∗r (η) < 0). The magnitude |c∗r (η)| of this

negative radius provides indication about how far the selected tuning η is from being able to
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have a Lyapunov function generated.

The previous observations lead to the following optimization problem for the search of stabi-

lizing tuning parameters η:

max. Ir
(
c∗r (η)

)
s.t. η ∈ D,

(4.41)

where the set D models some basic design requirements on η as in (4.39), and the function

Ir :R→R introduces saturation for the positive values of its argument:

Ir (γ) =
{

0, for γ≥ 0,

γ, otherwise.
(4.42)

The reason for introducing the saturation function Ir (γ) is that it makes the cost function

in (4.41) equal to zero for all tuning parameters η for which a Lyapunov function from (4.35)

can be generated. As such, it eliminates bias towards the parameters η with larger radius

values c∗r (η) and allows a uniform exploration of the region with stabilizing parameters η

when Bayesian Optimization is applied to (4.41). In the application examples of this chapter,

the optimization problem (4.41) for obtaining stabilizing tuning parameters will be as well

addressed by using Bayesian optimization [17] as in Chapter 2, where in Section 2.3.2 an

overview of Bayesian optimization algorithmic concept is given.

4.3.2 Phase two - Optimization of performance criteria

The second phase takes the tuning parameters generated by the first phase for which it is esti-

mated that Lyapunov functions exist, and uses these tuning parameters as the initial condition

for solving the synthesis optimization problem (4.39). The second phase is identical to the

second phase of the SOS-based method previously described in Section 2.3.3, meaning that

the optimization problem (4.39) will be addressed by Bayesian optimization where a certain

number of tuning parameters η found by phase one will be used to provide some information

about the location of the stabilizing region in the space of tuning parameters, which would

then be a region of focus for further investigation while minimizing the performance criteria

P(η).

As in Chapter 2, there is a great amount of flexibility in the choice of the cost term P(η) in (4.39),

as it is allowed to be any performance criteria which can be evaluated for a fixed vector of

tuning parameters η. For example, the performance criteria described in Section 2.3.3 would

in the discrete-time setting involve an approximate evaluation of the integral of the infinite

horizon trajectory cost over some set W:

P(η) =
∫

W
C∞,η(x)d x , C∞,η(x) =

∞∑
k=0

l(xk ,uk ), (4.43)
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where C∞,η(x) is the infinite horizon trajectory cost obtained with controller η when starting

from the state x, the l(x,u) is some stage cost, and xk and uk are the state and input values at

the k-th step starting from x0 = x. The cost P(η) of (4.43) can be evaluated approximately by

using Monte Carlo (MC) approximation for the integral and finite horizon approximations for

the trajectory costs:

P(η) =
Nmc∑
j=1

C̃Nst ,η(x j ) , C̃Nst ,η(x) =
Nst∑
k=0

l(xk ,uk ), (4.44)

where C̃Nst ,η(x) is the finite horizon trajectory cost involving Nst simulation steps from the

initial state x, and the Nmc is the number of samples from the set W in the MC approximation

of the integral.

4.4 Application Examples

This section demonstrates the method on examples which involve the synthesis of easily

computable controllers for the constrained control of nonlinear systems. The first example

(given in Section 4.4.1) demonstrates the continuous-time version of the method by doing a

synthesis of a soft-constrained speed controller of a (bilinear) permanent magnet synchronous

machine (PMSM) model where the optimization-based controller involves an early-terminated

extrapolated gradient-projection optimization algorithm with approximate projections. The

second example (given in Section 4.4.2) demonstrates the discrete-time version of the method

by synthesizing a position controller of a gyroscope whose model is characterized by nonlinear

system dynamics and input constraints. The LP optimization problems for generation of

Lyapunov functions are implemented by using Yalmip [48] as a modelling tool together with

MOSEK [5] as LP solver, and the Bayesian optimization is applied by using Matlab’s Statistics

and Machine Learning Toolbox [49].

4.4.1 Controller with early-terminated extrapolated gradient projection algorithm
for soft-constrained control of a bilinear plant

This section provides an application example in the continuous-time setting by synthesiz-

ing an optimization-based controller with an early terminated optimization algorithm for

speed control of a (bilinear) permanent magnet synchronous machine (PMSM) with soft-

constrained stator current magnitude. Since the synthesis of the control policy (defined by

the optimization-based controller’s structure) is done in continuous-time, the subsequent

practical application of the obtained controller should be done by using a small control period

which approximates a continuous-time execution.

The optimization algorithm used to address the controller’s optimization problem is a gradient-

projection method with extrapolations, implemented with a constant stepsize and constant

extrapolation factor, and involves approximate projections on the constraint set. It is inter-
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esting to observe that this optimization algorithm does not have convergence guarantees, as

in order to attain the O(1/k2) iteration complexity (see, e.g., [52] or [13]) one requires exact

projections on the constraint set (instead of approximate ones used here) as well as a com-

plex updating scheme for the extrapolation factor (instead of using a constant one as here).

The ability of the synthesis method to consider a heuristic early-terminated optimization

algorithm originates from the fact that the method’s focus is only on the obtained control

policy and the consequent closed-loop behaviour, which can be shaped by tuning not only

the coefficients of the optimization problem data (i.e., the coefficients in matrices and vectors

describing the cost function and constraint set) but also the parameters of the optimization

algorithm (i.e., stepsize and extrapolation factor), as will be done in what follows. Thus, the

convergence guarantee of the optimization algorithm is not significant, as the actual control

policy and the closed-loop behavior are directly shaped by the method.

In comparison to the MPC scheme for PMSM developed in [24], the selected structure of the

optimization-based controller of this section allows incorporation of the soft constraint effect

in a manner that can bring a large reduction of the number of decision variables in comparison

to the optimization problem obtained in [24]. Furthermore, the controller synthesis of this

section directly deals with the bilinear model of the system, thus circumventing the need

for using a linear prediction model like in [24] which is valid only at nominal (or some other

fixed and in advance chosen) rotational speed. In addition, the synthesised controller of this

section removes the outer speed control loop based on a PI controller, and as indicated earlier

also involves the aforementioned early-terminated optimization algorithm which as such

has deterministic computational time. In comparison to the example in Section 2.4 where a

QP controller for PMSM was synthesized by using SOS-based method, the SOCP controller

of this section includes soft constraints, involves presence of a non-zero load torque, and

also involves the early-terminated first order optimization algorithm, which are the elements

whose adressing would not be possible by the approach of Chapter 2 due to the scalability

limitations arising form the presence of SOS programming.

The PMSM involved in this example is the same as the one considered in Section 2.4, and the

description of its continuous-time model and state/input vectors is repeated in this paragraph

to allow an easier following of the further developments. The continuous-time model of the

two-pole PMSM in the d q reference frame fixed to the rotor (see, e.g., [44]) has the form

d Id (t )

d t
=−Rs

Ls
Id (t )+Ωr (t )Iq (t )+ 1

Ls
Ud (t ), (4.45a)

d Iq (t )

d t
=−Rs

Ls
Iq (t )−

(
Id (t )+ Φ0

Ls

)
Ωr (t )+ 1

Ls
Uq (t ), (4.45b)

dΩr (t )

d t
= Kt

J
Iq (t )− 1

J
ΓL (t ), (4.45c)

where Id (t ) and Iq (t ) are the d and q component of the stator current vector I (t ) = [Id (t ), Iq (t )]T ,

Ωr (t ) is the rotational speed of the rotor, Ud (t ) and Uq (t ) are the d and q component of the

input voltage vector U (t ) = [Ud (t ),Uq (t )]T , ΓL (t ) is the load torque, the parameter Rs is stator
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resistance, Ls stator inductance, Φ0 the flux from the rotor’s permanent magnet, Kt torque

coefficient and J the rotational inertia of the rotor. The Table 2.1 contains the parameters

of PMSM from [24] which will be used in this numerical example. The system has an input

constraint ‖U (t )‖2 ≤Unom which concerns the magnitude of the input voltage vector. Due to

the thermal inertia of the machine, the stator current vector I (t ) is allowed to make temporary

violations of the constraint ‖I (t)‖2 ≤ Inom during transients and will thus be addressed as

a soft-constraint. By using the base values in Table 2.1, the following normalized model is

obtained:

did (τ)

dτ
=−rs

ls
id (τ)+ ωr (τ) iq (τ)+ 1

ls
ud (τ), (4.46a)

diq (τ)

dτ
=−rs

ls
iq (τ)−

(
id (τ)+ φ0

ls

)
ωr (τ)+ 1

ls
uq (τ), (4.46b)

dωr (τ)

dτ
=Kt iq (τ)− Γb

Jω2
b

γL (τ), (4.46c)

where τ = ωb t is per-unit time, id (τ) = Id (t)/Ib , iq (τ) = Iq (t)/Ib are per-unit stator current

components, ωr (τ) =Ωr (t )/ωb per-unit rotational speed, ud (τ) =Ud (t )/Ub , uq (τ) =Uq (t )/Ub

per-unit input voltage components, γL (τ) = ΓL (t)/Γb per-unit load torque, and the per-unit

parameters appearing in the model are as defined in Table 2.1. The input constraint for

the per-unit model takes the form ‖u(τ)‖2 ≤ 1, and the constraint on the current which

can be temporarily violated during transients ‖i (τ)‖2 ≤ 1. The corresponding state vector

is x = [id , iq ,ωr ]T and the input vector u = [ud ,uq ]T . It can be seen that the plant model is

bilinear as it involves products of state variables.

For the purpose of tracking a constant speed reference r by using the delta-space formulation,

the steady-state target operating point (xs ,us) of the form

xs =

 id s

iqs

ωr s

 , us =
[

ud s

uqs

]
, (4.47)

at which the rotational speed is equal to r is to be computed. In case involving a constant

load torque γL (which is assumed to be provided to the controller by an estimator), the

components of the steady-state target (xs ,us) are id s = 0, iqs = Γb

Kt Jω2
b

,ωr s = r , ud s =−lsωr s iqs ,

uqs = rs iqs +φ0ωr s . Consideration of a load torque of some different shape (e.g., a γL which

is a polynomial function of the rotational speed) is also possible and reflects itself on the

expression for the steady-state target (4.47).

The SOCP-based controller will be synthesized so that the SOCP optimization problem takes

as its inputs the state x, the target us and the deviation from the steady-state target∆x = x−xs ,

and as its output (its solution decision vector) provides the deviation ∆u from the steady-state

target us (i.e., the input signal to the PMSM is u = us +∆u). For the purpose of incorporating

the soft constraint on the current magnitude ‖i (t )‖2 ≤ 1, denote the current value predicted
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Ts = 100µs into the future by

i+sc (z; x,us) =
[

a11id +a12ωr iq +b1(usd + z1)

a21iq −a22ωr id −a23ωr +b2(usq + z2)

]
(4.48)

which is obtained from (4.46a)-(4.46b) by applying forward Euler’s method and involves

a11 = a21 = (1−Tsωbrs/ls), a12 = a22 = Tsωb , b1 = Tsωb/ls , a23 = Tsωbφ0/ls , b2 = Tsωb/ls . In

what follows, the i+sc (z; x,us) will be denoted by i+sc (z) to make the notation lighter. The form

of the SOCP is selected to be

minimize
ξ=[zT ,δ]T

1
2 zT H z +∆xT F z +mδ2

subject to ‖us + z‖2 ≤ 1,

‖i+sc (z)‖2 ≤ (1+δ),

(4.49)

where ξ = [zT ,δ]T ∈ R3 is the decision vector whose components z ∈ R2 correspond to the

input deviation ∆u to be applied to the PMSM and δ ∈ R corresponds to a slack variable,

H ∈R2×2 is a symmetric positive definite matrix, F ∈R3×2, and m ∈R is the slack penalty. The

first constraint of (4.49) represents the input constraint ‖u‖2 ≤ 1, while the second one is

supposed to introduce a soft constrained effect on ‖i‖2 ≤ 1. It is interesting to notice that

the input parameters are entering the optimization problem (4.49) in a nonlinear manner

through the function i+sc (z) since it involves products of the components of x (products of

the rotational speed ωr with the current components id and iq ), as can be seen in (4.48). The

elements of the H and F matrix, as well as the scalar m, will be considered as controller’s

tuning parameters and thus contained in η.

The optimization problem (4.49) is addressed by approximate extrapolated gradient-projection

algorithm with early termination after Nit = 10 iterations. The pseudocode of the algorithm

is given in Algorithm 1. Each iteration k of the algorithm involves three substeps. The first

substep represents extrapolation:

ξe,k = ξk +β(ξk −ξk−1), (4.50)

where ξe,k is the extrapolated vector, and β is a (constant) extrapolation factor which will be

included as one of the tuning parameters in η. In the first iteration (i.e., for k = 0), the algorithm

will be initialized with ξ0 = ξ−1 = 0. The second substep of each iteration is a gradient step

from the extrapolated vector ξe,k :

ξ̃k = ξe,k −α∇ξ f (ξe,k ), (4.51)

where f (ξ) denotes the cost function of the SOCP optimization problem (4.49), and α is a

constant stepsize which will as well be considered as a tuning parameter and thus contained

in η. The third substep of iteration represents the approximate projeciton on the feasible set

of (4.49). It is done by performing alternating projections for Npr = 5 times on the first and
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the second constraint in (4.49), with one additional projection on the first constraint at the

end in order to ensure the satisfaction of the input constraint. Each of these projections is a

projection on a second-order cone set, which as such has a closed-form expression (see, e.g.,

[6], Theorem 3.6.6).

Algorithm 1 Approximate gradient-projection with constant stepsize and extrapolation factor
for SOCP (4.49).

Require: Nit , Npr , α , β , ξ−1 = ξ0 = [zT
0 ,δ0]T ;

1: for k := 0 to Nit do
2: extrapolation:
3: ξe,k := ξk +β(ξk −ξk−1);
4: gradient step:
5: ξ̃k := ξe,k −α∇ξ f (ξe,k );
6: approximate projection:
7: do Npr alternating projections on the two constraints:
8: for j := 1 to Npr do
9: ξ̃k := projection of ξ̃k on ‖us + z‖2 ≤ 1;

10: ξ̃k := projection of ξ̃k on ‖i+sc (z)‖2 ≤ (1+δ);
11: end for
12: do one more projection on the first constraint:
13: ξ̃k := projection of ξ̃k on ‖us + z‖2 ≤ 1;
14: store the obtained ξk for the next iteration:
15: ξk := ξ̃k ;
16: end for

return ξNit .

The controller’s tuning parameters (the elements of vector η) thus consist of the coeficients

of the H and F matrix, the scalar m in the SOCP cost function, and the tuning parameters of

the optimization algorithm (the stepsize α and the extrapolation factor β), resulting in η ∈R12

(due to the symmetry of H).

For the purpose of tracking a constant speed reference, the Lyapunov conditions (4.7) are

formulated in delta space:

−∇∆xV (∆x,r,γL )T fcl (∆x,r,γL ) ≥ ‖∆x‖2
2, (4.52a)

V (∆x,r,γL ) ≥ ‖∆x‖2
2, (4.52b)

where it can be seen that the Lyapunov function is specified to also depend on the speed

reference r and the load torque γL , and the fcl (∆x,r,γL ) is the right-hand side of (4.46) with

the control input u corresponding to the described control policy.

The set Ξ over which the Lyapunov conditions are enforced is specified to involve bounds

on the speed reference |r | ≤ rmax with rmax = 1, bounds on the current magnitude ‖i‖2 ≤ imax

with imax = 2, bounds on the rotational speed |ωr | ≤ωmax with ωmax = 1.5, and bounds on the

load torque |γL | ≤ γmax with γmax = 1. The local set Ξ is thus defined by Ξ = {
x,r,γL |ψ≥ 0

}
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where the function ψ is

ψ=



r + rmax

−r + rmax

imax −‖i‖2

ωr +ωmax

−ωr +ωmax

γL +γmax

−γL +γmax


. (4.53)

The control synthesis is run with polynomial Lyapunov function V (∆x,r,γL ) where the vector

of basis functions M(∆x,r,γL ) contains all monomials of degree two, except the monomials

involving only combinations of r and γL which are constant and are thus excluded. Such

choice of the vector of basis functions M(∆x,r,γL ) in (4.24) results in cv ∈ R12 (i.e., nv = 12).

The search ranges for tuning parameters in η are chosen to be [−1,1] for the elements of H

and F matrices, [0,1] for the stepsize α and extrapolation β of the optimization algorithm and

[1,3] for the slack weighting m, which are all together with the positive-definiteness constraint

for the matrix H embedded into the set D involved in (4.41) and (4.39). The accuracy of the

Lyapunov function computation in (4.35) is selected to Λ% = 99.99%, which together with

σ̂= 10−7 results in 562362 scenarios in (4.35).

After 150 Bayesian optimization iterations applied to (4.41) as a part of phase one, 51 tuning

parameters η in the set {η | Ip (η) = 0,η ∈ D} were obtained, with an average time per Bayesian

optimization iteration of about 4.9 minutes. These parameters were then used as initial points

in a total of 300 Bayesian optimization iterations applied to the performance optimization

problem (4.39), with the average time per iteration of about 5.3 minutes. The performance

criteria used was the MC approximation of the integral of trajectory costs, as given in (2.19).

For it, the trajectories were simulated using Nst = 1000 steps of a discrete-time model obtained

by the forward Euler method with stepsize of 100µs, and Nmc was selected to Nmc = 180 which

was spread equally to the cases involving all combinations of the reference values r = 0, r = 0.8

and r = −0.8 and the load-torque values γL = 0.6γmax, γL = −0.6γmax and γL = 0. The stage

cost was selected to be

l (xk ,uk ) =
{

l̃ (xk ,uk ), for ‖ik‖ ≤ 1,

l̃ (xk ,uk )+qsc‖ik‖2
2, otherwise,

where the term

l̃ (xk ,uk ) =∆xT
k Q∆xk + (uk −uk−1)T R(uk −uk−1),

penalizes the distance of the state xk from the target xs as well as the difference of the input vec-

tor at the two consecutive time instants, and the term qsc‖ik‖2
2 introduces the soft-constraint

effect into the performance metric. The Q ∈ R3×3 is selected to be a diagonal matrix with 1,
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0 and 1 on its diagonal, the R ∈ R2×2 is diagonal with diagonal elements selected to 1, and

the soft-constraint weighting qsc was selected to 1. It can be seen that by the choice of Q, the

current component iq which produces the electromagnetic torque of the PMSM is left without

any penalty, which is fine since the soft constraint will moderate the current magnitude. The

set W used for initial states in (4.44) was selected identical to the local set Ξ specified by (4.53).

A slice of the control policy with the obtained H , F , m, α and β is represented on Fig. 4.2 with

ω, r and γL fixed to ω= 0, r = 1, γL = 0.2. The controller was tested in simulation by applying

it with the sampling time Ts = 100µs and starting it from many random initial points. Fig. 4.3

shows the state trajectory, the Lyapunov function values and the soft-constrained current

vectors [id , iq ]T obtained with speed reference r = 1, load torque γL = 0.2 and a randomly

generated initial state. It can be seen that the stator current vector involves a soft-constraint

effect for the vector magnitudes ‖i‖2 > 1.
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Figure 4.4 – The Quanser 3DOF Gyroscope used in the experiments.

4.4.2 Cascaded linear controller for input-constrained control of a nonlinear plant

This section demonstrates the described method in a discrete-time setting on an example

involving position control of a rotating disk of the gyroscope that was used in example of

Section 3.4. The nonlinear dynamics of the gyroscope will be addressed directly, without

introducing any linearizations. The goal is to perform input constrained nonlinear control

that makes the two angles describing the rotating disk’s position (α and β, as described below)

go to zero (i.e., α→ 0, β→ 0). Due to the symmetry of the system, the obtained controller

would also allow reference tracking of the β angle by shifting of the origin of the state-space.

The gyroscope considered in the example is the Quanser 3DOF Gyroscope that was used in

Section 3.4. It is represented again in Fig. 4.4 to allow an easier following of the description in

this paragraph. The disk (whose position should be controlled) rotates on a blue ring which

also carries a motor used to keep the disk’s rotational speed constant. The blue ring carrying

the disk is then connected to the outer red ring which as well contains a motor that can apply

torque on the blue ring. The red ring is furthermore carried by a grey frame whose position is

fixed in the experiments of this section and which also includes a motor that can apply torque

on the red ring. In what follows, the angular position of the blue ring relative to the red ring

will be denoted by α, and the angular position of the red ring relative to the grey frame by β.

Furthermore, the torque applied on the blue ring will be denoted with Mα and the torque

applied on the red ring with Mβ. Since the position of the grey frame is fixed, one degree of

60



4.4. Application Examples

Multiply with 
ks
11 ks

12

ks
21 ks

22

�Multiply with

Controller
Position

Controller
Speed Gyroscope

Model

States:

Inputs:

Saturation

Speed Loop

Position Loop


kp
11 kp

12

kp
21 kp

22

�

Input

[M̃↵ , M̃� ]T

[↵̇ , �̇]T

[↵ , �]T

↵ , � , ↵̇ , �̇

M↵ , M�

[s↵ , s� ]T

Figure 4.5 – Block diagram of the cascaded linear controller with input saturations (also
described in Algorithm 2) which is used for gyroscope position control. The tuning parameters
(the components of η) are the coefficients kp

i j and k s
i j with i , j ∈ {1,2} which are highlighted

in yellow in the figure. The input saturation block is saturating the components of the vector
[M̃α, M̃β]T at its input according to the expression (4.55).

Table 4.1 – Parameters of the gyroscope model.

Parameter Value Unit

Jx 0.0074 kg m2

Jy 0.0026 kg m2

Jz 0.0056 kg m2

J d
x 0.0056 kg m2

J r
Z 0.0286 kg m2

freedom of the gyroscope is removed, thus resulting in a gyroscope under consideration which

has two degrees of freedom (2DOF).

The dynamic model of 2DOF gyroscope can be derived by first principles modelling (see, e.g.,

[22]) and takes the form

Jy α̈− J d
x ωβ̇cos(α)+ (Jz − Jx )β̇2 sin(α)cos(α) =Mα, (4.54a)(

J r
Z + Jz cos2(α)+ Jx sin2(α)

)
β̈+ J d

x ωα̇cos(α)+
2(Jx − Jz ) β̇α̇sin(α)cos(α) =Mβ, (4.54b)

where α, β are the previously described angular positions, α̇, β̇ are their first time derivatives,

α̈, β̈ second time derivatives, ω is the angular speed of the disk’s rotation, Mα, Mβ are the

motor torques, and the parameters involved in the model are given in Table 4.1. In what

follows, the angular speed of the disk ω will be considered constant with value ω= 400 2π
60

r ad
s

which is maintained by the motor that controls the disc’s rotating speed. The state vector is

thus x = [α, α̇,β, β̇]T and the input vector is M = [Mα, Mβ]T .

The controller will be synthesized in discrete-time for a sampling period Ts = 20ms. To

formulate the optimization problem (4.35), it is necessary to be able to compute for each
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generated scenario x its consecutive x+ (the value of state after Ts). For each generated

scenario x, its corresponding x+ will be computed by using Matlab’s ordinary differential

equations ODE45 solver assuming constant input torques Mα, Mβ over the period Ts .

Algorithm 2 Cascaded linear controller with saturatioin.

Require: state variables α , β , α̇ , β̇ , matrices K p , K s ;
1: Position controller:[

sα
sβ

]
= K p

[
α

β

]
;

2: Speed controller:[
M̃α

M̃β

]
= K s

[
sα− α̇
sβ− β̇

]
;

3: Input saturation:
Saturate M̃α and M̃β by Msat(γ) in (4.55);

return Mα = Msat(M̃α) and Mβ = Msat(M̃β).

The considered control policy corresponds to the block diagram given in Fig. 4.5 and is

summarized in Algorithm 2. The input to the control policy is the state vector x = [α,β, α̇, β̇]T

and the output is the vector of torques M = [Mα, Mβ]T . To obtain Mα and Mβ, the position

loop first multiplies the position vector [α,β]T by matrix K p ∈R2×2 whose components kp
i j ,

i , j ∈ {1,2} are the tuning parameters of the controller (i.e., they belong to the vector of tuning

parameters η). The result of the multiplication is the speed reference vector [sα, sβ]T . The

difference of the speed references [sα, sβ]T and the speed values [α̇, β̇]T is then multiplied by

the matrix K s ∈R2×2 whose components k s
i j , i , j ∈ {1,2} are as well the tuning parameters of

the controller (and are thus contained in η). The obtained vector of desired torques [M̃α, M̃β]T

is then passed through the input saturation block which saturates each of the two components

by the function

Msat(γ) =


−Mmax, if γ≤−Mmax

γ, if −Mmax ≤ γ≤ Mmax

Mmax, if Mmax ≤ γ
, (4.55)

where γ represents the component which is being saturated and Mmax is the maximal ap-

plicable torque whose value is Mmax = 0.2Nm for both of the motors. The output of the

input-saturation block is the vector of torques [Mα, Mβ]T that is applied to the gyroscope. The

controller’s tuning parameters (the elements of vector η) are thus the elements of the K p and

K s matrices, resulting in η ∈R8.
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The Lyapunov conditions (4.15) are selected to have the form:

V (x)−V (x+) ≥ ‖x‖2
2, (4.56a)

V (x) ≥ ‖x‖2
2, (4.56b)

where the Lyapunov function is a function of the state vector x since the controller does not

have state variables and thus it holds that θ = x.

The set Ξ over which a Lyapunov function is searched for is specified to involve bounds on

the angular positions |α| ≤αmax, |β| ≤βmax with αmax =βmax =π/2, as well as bounds on the

angular speeds |α̇| ≤ α̇max, |β̇| ≤ β̇max with α̇max = β̇max =π. The local set Ξ is thus defined by

Ξ= {
x |ψ≥ 0

}
where the function ψ is

ψ=



α+αmax

−α+αmax

β+βmax

−β+βmax

α̇+ α̇max

−α̇+ α̇max

β̇+ β̇max

−β̇+ β̇max


. (4.57)

The control synthesis is run with polynomial Lyapunov function V (x) where the basis functions

are all monomials of degree two. Such choice of the vector of basis functions M(x) in (4.24)

results in cv ∈ R10 (i.e., nv = 10). The search ranges for tuning parameters in η (i.e., for the

coefficients of K p and K s matrices) are chosen to be [−1,1] for each of the tuning parameters,

which was embedded into the set D of (4.41) and (4.39). The accuracy of the Lyapunov

function computation in (4.35) is selected toΛ% = 99.9%, which together with σ̂= 10−7 results

in Nsc = 52237 scenarios according to (4.38).

After 1000 Bayesian Optimization iterations applied to (4.41) as a part of phase one, 47 pa-

rameters η in the set {η | Ip (η) = 0,η ∈ D} were obtained, with an average time per Bayesian

optimization iteration of about 1.45 minutes (the computing platform involved 3.0GHz Intel

Core i7 processor and 16GB of RAM). Note that the scenarios x for (4.35) and their corre-

sponding pairs x+ can be generated in a parallel manner which as such may decrease the

required time per Bayesian iteration, but this possibility was not used in the examples of this

chapter. The obtained parameters were then used as initial points in a total of 1500 Bayesian

optimization iterations applied to the performance optimization problem (4.39), with the

average time per iteration of about 2.3 minutes. The performance criteria P(η) used was a

sum of the trajectory costs obtained from three initial states x0 which were 0.6[π2 ,0, π2 ,0]T ,
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Figure 4.6 – Evolution of the gyroscope with the obtained controller starting from a randomly
generated initial state x that involves α=−14.94, β=−89.98, α̇= 79.32, β̇= 7.12, where the
values of positions α, β are given in degrees and the values of speeds α̇, β̇ in degrees per
second.

0.6[π2 ,0,0,0]T and 0.6[0,0, π2 ,0]T . Each trajectory cost had the form

Nst∑
k=0

l1(xk )+ l2(xk , xk−1)+ l3(Mk , Mk−1), (4.58)

where the number of simulation steps was Nst = 500 and the stage-cost terms were

l1(xk ) = xT
k Q1xk , (4.59a)

l2(xk , xk−1) = (xk −xk−1)T Q2(xk −xk−1), (4.59b)

l3(Mk , Mk−1) = (Mk −Mk−1)T Q3(Mk −Mk−1), (4.59c)

with diagonal matrix Q1 ∈ R4×4 whose diagonal elements were (1,0,1,0) resulting thus in l1

term which penalizes deviations of position angles from the target, diagonal matrix Q2 ∈R4×4

whose diagonal elements were (0,0.1,0,0.1) resulting thus in l2 term which penalizes changes

in angular speeds, and identity matrix Q3 ∈ R2×2 which penalizes the changes in the input

signal.

The obtained controller was tested in simulation by applying it with the control period

Ts = 20ms and starting it from many random initial points. Fig. 4.6 shows the evolutions

of the position angles (α,β), angular speeds (α̇, β̇), input torques (Mα, Mβ) and values of

the calculated Lyapunov function V (x) where the gyroscope was started from a randomly

generated initial state. It can be seen that the used random initial state x0 is outside of the

range around the target point where the plant model would be approximatively linear, that

the plant’s input constraints are satisfied, and that the values of the Lyapunov function are

decreasing along the trajectory.

The controller was implemented in an experimental setup by using LabVIEW for control of the

Quanser gyroscope shown in Fig. 4.4. The angular positions were measured by encoders, and

the angular speeds were calculated by using the difference of the last two measured positions
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Figure 4.7 – Experimentally measured (blue) and simulated (red) results of the gyroscope in
closed-loop with the obtained controller starting from initial state x that involves angular
positionsα= 0, β= 90 and angular speeds α̇= 0, β̇= 0 (the values given in degrees and degrees
per second, respectively).

divided by the sampling time. The obtained experimental measurements are given in Fig. 4.7

together with simulated results. It can be seen that the input torques contain noise (originating

from the noise present in the angular speeds fed back to the controller), which is however due

to the noise high-frequency nature not expected to significantly influence the evolution of the

states due to the low-pass filter nature of the mechanical system.

4.5 Conclusions

This chapter presented a method that extends the benefits of the automatic tuning procedure

presented in Chapter 2 to problems of larger size. The obtained method also provides better

modelling flexibility than the SOS approach as it does not require polynomial form for the

functions describing the system. Instead of using the SOS programming technique for com-

putation of Lyapunov functions, a procedure allowing a high accuracy numerical Lyapunov

function estimation is introduced. The procedure formulates the Lyapunov function search

as a robust optimization problem which is then tackled by applying a Chebychev center and

scenario-based optimization techniques. The concept is then incorporated into a controller

synthesis method whose demonstration is performed by application to two examples which

cannot be addressed by the SOS-based approach due to scalability and modelling limitations.
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5 Accelerated ADMM based on Acceler-
ated Douglas-Rachford Splitting

5.1 Introduction

The alternating direction method of multipliers (ADMM) is an optimization algorithm for

convex problems that has received an intensive attention in recent years due to its applicability

to large-scale machine learning and image processing problems [16]. Even though developed

a long time ago, the reasons for its renewed attention lie in its form conductive to distributed-

memory implementation, its possibility of formulating closed form solutions for subproblems

involved in the algorithm, and its practical performance which produces solutions with

accuracy sufficiently high for many applications of interest, as summarized in [29].

One of the two ADMM optimization models that commonly appear in the literature is the

Fenchel primal:

minimize f1(x)+ f2(Ax)

subject to x ∈Rn ,
(5.1)

where f1 :Rn → (−∞,∞] and f2 :Rm → (−∞,∞] are closed proper convex functions, A is an

m ×n matrix, and a feasible solution x is assumed to exist. The augmented Lagrangian for

(5.1) is

Lc (x, z,λ) = f1(x)+ f2(z)+〈λ, Ax − z〉+ c

2
‖Ax − z‖2, (5.2)

where λ ∈ Rm is a dual variable, c > 0 is a penalty parameter, and 〈a,b〉 denotes the inner

product aT b. The ADMM takes the form

xk+1 ∈ arg min
x∈Rn

Lc (x, zk ,λk ), (5.3a)

zk+1 ∈ arg min
z∈Rm

Lc (xk+1, z,λk ), (5.3b)

λk+1 =λk + c(Axk+1 − zk+1). (5.3c)
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The literature related to convergence of ADMM can be divided in two categories [13, 29]. The

first approaches convergence analysis by exploiting only elementary mathematical principles

and simple algebra to develop the conditions which lead to convergence of the algorithm

[9, 16]. Even though it is based only on elementary principles, due to the intricate algebraic ma-

nipulations involved in the development, this approach is mostly regarded as being incapable

of revealing the “deep structure” of the algorithm.

The second approach to analyse ADMM convergence is based on its relation to the generalised

proximal point algorithm for finding a zero of a set-valued maximal monotone mapping

[29, 30]. This relation is established by first observing that ADMM is a special case of Douglas-

Rachford splitting, and then by showing that Douglas-Rachford splitting is a special case

of the generalised proximal algorithm [30]. The established relation has allowed transfer of

knowledge regarding the convergence of the generalised proximal point algorithm to the

convergence of ADMM, which resulted in generalised ADMM involving inexact minimization

of subproblems and the possibility for overrelaxation [30]. Moreover, it revealed that the

basic engine behind ADMM is the same as that of the proximal point algorithm involved

in the augmented Lagrangian method, and emphasised that viewing ADMM as an inexact

minimization of the augmented Lagrangian involving only one cycle of block-coordinate

descent is misleading [13, 29].

A general property of first order methods, including the gradient method and ADMM, is

their slow convergence rate in comparison to advanced second order methods. A substantial

contribution to the performance of a gradient method is achieved through its acceleration

based on a sophisticated extrapolation rule between subsequent gradient steps. In the case

of a gradient projection method which applies to minimization of a convex differentiable

function f : Rn → R over a closed convex set X ⊂ Rn with f having a Lipschitz continuous

gradient satisfying

‖∇ f (x)−∇ f (y)‖ ≤ L‖x − y‖, ∀x, y ∈Rn , (5.4)

the version accelerated by extrapolation [13, 52] takes the form

yk = xk +βk (xk −xk−1), (5.5a)

xk+1 = PX
(
yk −α∇ f (yk )

)
, (5.5b)

where PX : Rn → Rn denotes projection on the set X , value x−1 = x0, α is a suitably chosen

stepsize and
{
βk

}
represents a sequence of extrapolation parameters. Under some very

particular choices of the extrapolation
{
βk

}
, [13, 52], one of which is defined as

β0 = 0, βk = k −1

k +2
, ∀k ≥ 1, (5.6)

a O(1/k2) iteration complexity is attained, improving the O(1/k) complexity of the non-

accelerated gradient method which is obtained when
{
βk

}
is βk ≡ 0 in (5.5). For some positive
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constant q , the iteration complexity O(1/kq ) is defined as an upper bound [13]:

min
l≤k

f (xl ) ≤ f ∗+ m

kq , (5.7)

in which {xk } is any sequence that the algorithm can produce and m is a positive constant that

may depend on the problem data and the starting point x0.

The acceleration technique of the gradient method has been successfully extended to acceler-

ation of the alternating minimization algorithm (AMA), an algorithm with a form similar to

ADMM, and this resulted in the fast alternating minimization algorithm (FAMA) [4, 37]. An

upgrade of ADMM by an extrapolation technique has been analysed in [37], where it has been

shown that if both functions involved in the cost are strongly convex with the second one

being quadratic, the dual function values converge with O(1/k2) iteration complexity provided

that the penalty parameter c is small enough.

This chapter derives an accelerated version of ADMM by using a recently proposed accelerated

Douglas-Rachford (DR) splitting [57] on the Fenchel dual problem. The obtained method

replaces the internal proximal point algorithm of classical ADMM by the accelerated gradient

method applied on a specially constructed scaled DR envelope function [57]. The derived

algorithm addresses the optimization model (5.1) with an assumption that the function f2(z)

is a strongly convex quadratic, and involves a O(1/k2) bound on the values of the scaled DR

envelope function when an upper bound on the penalty parameter is satisfied. A heuristic

modification of the obtained method which can potentially extend the benefit of extrapolation

for penalties beyond the upper bound is provided in the numerical results section.

The content of this chapter is based on the publication [58] and is structured as follows.

Section 5.2 summarizes some theoretical results that will be used in the later analysis. Section

5.3 derives the accelerated ADMM algorithm based on accelerated DR splitting. Section 5.4

contains numerical experiments. Section 5.5 presents conclusions.

5.2 Theoretical Tools

5.2.1 Accelerated DR splitting

This section summarizes the results of [57] by expressing them in a notation which will be

used in the later developments. The DR splitting addresses problems of the form

minimize d(λ) = d1(λ)+d2(λ)

subject to λ ∈Rm ,
(5.8)
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where d1 :Rm → (−∞,∞] and d2 :Rm → (−∞,∞] are closed proper convex functions. Given

v0 ∈Rm , the DR splitting algorithm consists of the steps

λk = proxcd2
(vk ) , (5.9a)

µk = proxcd1
(2λk − vk ) , (5.9b)

vk+1 = vk +ρk
(
µk −λk

)
, (5.9c)

where c > 0 is a penalty parameter,
{
ρk

} ⊂ [0,2] is a sequence of relaxation factors, and the

expression

proxch(v) = arg min
z∈Rm

{
h(z)+ 1

2c
‖z − v‖2

}
(5.10)

defines the proximal operator proxch :Rm →Rm which is single valued and whose existence is

guaranteed when the function h :Rm → (−∞,∞] is closed proper convex. Assuming that the

set of optimal solutions of (5.8) is nonempty, that 0 < infk
{
ρk

}≤ supk

{
ρk

}< 2, and that the

relative interiors of dom(d1) and dom(d2) have a point in common where

dom(d) = {
λ | d(λ) <∞}

(5.11)

represents the effective domain of a function d , the sequence {vk } converges to a fixed point

of the DR splitting v∗ which is related to λ∗ ∈ arg min{d(λ)} as λ∗ = proxcd2
(v∗). Because of

the relation between the fixed point of the DR splitting v∗ and the optimal solution λ∗, finding

a fixed point v∗ is essentially the same as finding an optimal solution λ∗ of the problem (5.8).

The following supplementary assumption ensures the existence of a convex differentiable

function referred to as DR envelope, which plays the key role in development of the accelerated

DR splitting.

Assumption 1. The function d2(λ) and the penalty c satisfy

d2(λ) = 1

2
λT Qλ+qTλ, c < 1

Ld2
, (5.12)

where Q ∈Rm×m is symmetric positive semidefinite, q ∈Rm , and Ld2 is the Lipschitz constant of

the function d2 (i.e., the maximal eigenvalue of Q).

The DR envelope F DR
c (v) whose existence is guaranteed under this additional assumption

takes the form

F DR
c (v) = d c

2 (v)− c‖∇d c
2 (v)‖2 +d c

1 (v −2c∇d c
2 (v)),

with v ∈Rm , and hc (v) denoting a Moreau envelope of a function h(v) defined by

hc (v) = inf
x∈Rm

{
h(x)+ 1

2c
‖x − v‖2

}
. (5.13)
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The set of stationary points of the DR envelope F DR
c (v) (i.e., of points v∗ ∈ arg min{F DR

c (v)})

coincides with the set of fixed points of the DR splitting.

The significance of the DR envelope is that one iteration of the scaled gradient method

vk+1 = vk −ρk D∇F DR
c (vk ) (5.14)

is equivalent to one iteration of the DR splitting (5.9), provided that D = c(2(I + cQ)−1 − I )−1

and the employed
{
ρk

}
is the same. By introducing a scaled variable w defined by v = Sw

using S = D
1
2 , the iteration (5.14) can be written as

wk+1 = wk −ρk∇h(wk ) (5.15)

where h(w) = F DR
c (Sw). Since it can be shown that the Lipschitz constant of ∇h(w) is

Lh = 1+ cLd2

1− cLd2

, (5.16)

it follows by convergence theory of the gradient method with constant stepsize [13] that the

algorithm converges by choosing ρk ∈ (0,2/Lh).

The established equivalence of one DR splitting cycle with one iteration of the gradient method

applied on h(w) allows the introduction of accelerated DR splitting, which is obtained by

applying the accelerated gradient method on the function h(w). Given y0 = v0 ∈ Rm , the

resulting accelerated DR splitting algorithm takes the form

λk = proxcd2
(yk ), (5.17a)

µk = proxcd1
(2λk − yk ), (5.17b)

vk+1 = yk +ρk (µk −λk ), (5.17c)

yk+1 = vk+1 +βk (vk+1 − vk ). (5.17d)

It can be shown that under the extrapolation rule
{
βk

}
given in (5.6), the accelerated version

has a O(1/k2) iteration complexity guaranteeing that

d(µk )−d∗ ≤ F DR
c (vk )−F DR∗

c ≤ 2

cρ(k +2)2 ‖v0 − v∗‖2, (5.18)

where F DR∗
c = F DR

c (v∗) = d∗ = infλ∈Rm {d(λ)} and ρ := ρk ≡ 1/Lh . By considering the strong

convexity properties of F DR
c (v) [57] and utilising the extrapolation rule

{
βk

}
from [52], a linear

convergence rate can as well be established. For the details related to development of the

previous results, the reader is referred to [57].
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5.2.2 Augmented Lagrangian and proximal algorithm

The proximal iteration

λ= proxcd (µ), λ,µ ∈Rm , (5.19)

where d :Rm → (−∞,∞] is closed proper convex, can be shown to be equivalent to finding a

decomposition [13] of the form

µ=λ+ cm, m ∈ ∂d(λ), (5.20)

where ∂d(λ) denotes the subdifferential of the function d at λ, which represents the set of all

subgradients g ∈Rm at λ satisfying d(γ) ≥ d(λ)+ g T (γ−λ), ∀γ ∈Rm .

In the case where the function d(λ) is defined by

d(λ) =− inf
x∈Rn

{
h(x)+〈λ, Ax −b〉}, (5.21)

where h :Rn → (−∞,∞] is closed, proper and convex, the proximal iteration on the function

d(λ) can be evaluated in a way which involves minimization of the augmented Lagrangian

function, as described in, for example, [29]:

Proposition 1. ( [29], Proposition 9) Given any µ ∈Rm , consider the problem

inf
x∈Rn

{
h(x)+〈µ, Ax −b〉+ c

2
‖Ax −b‖2

}
. (5.22)

If x̄ is an optimal solution to this problem, then setting λ=µ+ c(Ax −b) and m = b − Ax̄ yields

λ,m ∈Rm such that µ=λ+ cm and m ∈ ∂d(λ), where d(λ) is as defined in (5.21).

5.3 Accelerated ADMM based on Accelerated DR Splitting

The derivation of the accelerated ADMM algorithm based on the accelerated DR splitting

(5.17) from [57] will be performed in a way inspired by the development of standard ADMM in

[29]. The outcome will be a modified ADMM algorithm whose underlying working mechanism

is characterised by the O(1/k2) iteration complexity given in (5.18). The optimization model

addressed by the method to be developed is the Fenchel primal form given in (5.1), which can

be reformulated as

minimize f1(x)+ f2(z)

subject to Ax = z.
(5.23)
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By applying the standard Lagrange duality for equality constrained problems [12], one obtains

the Lagrange dual function:

q(λ) = inf
x∈Rn ,z∈Rm

{
f1(x)+ f2(z)+λT (Ax − z)

}
= inf

x∈Rn

{
f1(x)+ (ATλ)T x

}+ inf
z∈Rm

{
f2(z)−λT z

}
=−sup

x∈Rn

{
(−ATλ)T x − f1(x)

}− sup
z∈Rm

{
λT z − f2(z)

}
=− f ?1 (−ATλ)− f ?2 (λ) =−d1(λ)−d2(λ),

in which d1(λ) = f ?1 (−ATλ), d2(λ) = f ?2 (λ), and the f ?(λ) = supz∈Rm

{
λT z − f (z)

}
represents

the conjugate of a function f . This leads to a Fenchel dual problem

minimize d(λ) = d1(λ)+d2(λ)

subject to λ ∈Rm ,
(5.24)

which minimizes d(λ) =−q(λ) (i.e., maximises the dual function q(λ) defined above).

Accelerated ADMM is derived by applying the accelerated DR splitting (5.17) to the Fenchel

dual problem (5.24). For this purpose, (5.24) should satisfy the assumptions of Section 5.2.1

guaranteeing the existence of the DR envelope F DR
c (v).

Proposition 2. The functions d1(λ) and d2(λ) are closed, convex and proper. Moreover, under

the assumption that the function f2(z) is a strongly convex quadratic and the penalty c is small

enough:

f2(z) = 1

2
zT P z +pT z, c < 1

Ld2

, (5.25)

where P ∈Rm×m is symmetric positive definite, p ∈Rm and where Ld2 is a Lipschitz constant of

the function d2, the conditions of the Assumption 1 are satisfied, ensuring the existence of the

DR envelope F DR
c (v).

Proof. The closedness and convexity of d1(λ) and d2(λ) follow from Lemma 8 in [29], and

their properness from Prop. 1.6.1(b) in [12]. Since by the expression for conjugate of a strongly

convex quadratic [73] there holds

d2(λ) = f ?2 (λ) = 1

2
λT P−1λ−pT P−1λ, (5.26)

the function d2(λ) is strongly convex quadratic as P−1 of a positive definite matrix P is pos-

itive definite. Considering as well the bound imposed on the penalty c, the conditions of

Assumption 1 are satisfied.

The following lemma derives a form of the accelerated ADMM based on the accelerated DR

splitting. For this purpose, an additional assumption is introduced providing two sufficient
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conditions that ensure the existence of the optimal solution in the minimization (5.27a) below.

Assumption 2. It holds that the effective domain dom( f1) = {
x | f1(x) <∞}

is bounded and/or

that AT A is invertible.

Lemma 1. Given z0,λ0 ∈Rm , c > 0, a sequence
{
ρk

}⊂ [0,2] and a sequence
{
βk

}
, the sequence

of recursions applied to the Fenchel primal (5.1):

xk+1 ∈ arg min
x∈Rn

{
f1(x)+〈λk , Ax〉+ c

2
‖Ax − zk‖2

}
, (5.27a)

zk+1 ∈ arg min
z∈Rm

{
f2(z)−〈λk +Ek , z〉+ c

2

∥∥∥∥1

c
ξk − z

∥∥∥∥2}
, (5.27b)

λk+1 =λk +Ek +ξk − czk+1, (5.27c)

with ξk , Ek calculated as

ξk = c(ρk Axk+1 + (1−ρk )zk ), (5.28)

Ek =βk (λk −λk−1)+βk c A(ρk xk+1 −ρk−1xk )+βk c((1−ρk )zk − (1−ρk−1)zk−1), (5.29)

where E0 := 0, is mathematically equivalent to the accelerated DR splitting (5.17) applied to

the Fenchel dual (5.24), and therefore equivalent to the accelerated gradient method applied to

h(w) = F DR
c (Sw).

Proof. The starting point for the development is the accelerated DR splitting (5.17). Given the

initial λ0 ∈Rm , y−1 :=λ0 +cz0 and using v−1 := v0 in the first iteration, (5.17) can be rewritten

as

µk = proxcd1
(2λk − yk−1), (5.30a)

vk = yk−1 +ρk (µk −λk ), (5.30b)

yk = vk +βk (vk − vk−1), (5.30c)

λk+1 = proxcd2
(yk ), (5.30d)

which in comparison to (5.17) has the λk update moved to the end, and the indices of v and y

variable shifted from k +1 to k. By the equivalence of (5.19) and (5.20), the sequence (5.30)

can be equivalently written as

µk + cwk =λk − cmk , wk ∈ ∂d1(µk ), (5.31a)

vk = yk−1 +ρk (µk −λk ), (5.31b)

yk = vk +βk (vk − vk−1), (5.31c)

λk+1 + cmk+1 = yk , mk+1 ∈ ∂d2(λk+1), (5.31d)

where m0 = z0, and λk − cmk in (5.31a) is obtained by substituting the yk from (5.31d) for

yk−1 in (5.30a). By applying the evaluation of proximal iterate by augmented Lagrangian from
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Proposition 1, (5.31a) can be written as

xk+1 ∈ arg min
x∈Rn

{
f1(x)+〈λk − cmk , Ax〉+ c

2
‖Ax‖2

}
, (5.32a)

µk =λk − cmk + c Axk+1, (5.32b)

wk =−Axk+1, (5.32c)

as well as (5.31d) which becomes

zk+1 ∈ arg min
z∈Rm

{
f2(z)+〈yk ,−z〉+ c

2
‖−z‖2

}
, (5.33a)

λk+1 = yk − czk+1, (5.33b)

mk+1 = zk+1. (5.33c)

By Weierstrass theorem (Prop. 3.2.1, [12]), the existence of the solution of (5.32a) is ensured

by the Assumption 2, and in case of (5.33a) the existence is ensured by the presence of the

quadratic term ‖z‖2.

By using (5.33b) to express yk−1 and (5.32b), (5.33c) to express µk −λk , (5.31b) can be written

as

vk =λk + czk +ρk c (Axk+1 − zk ) =λk + c(ρk Axk+1 + (1−ρk )zk ). (5.34)

By introducing (5.34) into (5.31c) for vk and vk−1, one obtains

yk =λk +ξk +Ek , (5.35)

where ξk ,Ek are defined in (5.28) and (5.29). By specifying E0 := 0, the compliance of (5.35)

with v−1 := v0 assumed for (5.30) is obtained.

By using the expressions (5.32a)-(5.35), the cycle (5.31) gets expressed as

xk+1 ∈ arg min
x∈Rn

{
f1(x)+〈λk − czk , Ax〉+ c

2
‖Ax‖2}, (5.36a)

yk =λk +ξk +Ek , (5.36b)

zk+1 ∈ arg min
z∈Rm

{
f2(z)+〈yk ,−z〉+ c

2
‖−z‖2}, (5.36c)

λk+1 = yk − czk+1, (5.36d)

with ξk ,Ek defined as in (5.28), (5.29). By substituting (5.36b) into (5.36c) and (5.36d), and

by adding the constant terms c
2‖zk‖2 and c

2‖1
c ξk‖2 to (5.36a) and (5.36c), respectively, the

equations (5.36) take the form (5.27).

It can be noticed that by setting the extrapolation term βk ≡ 0, the accelerated ADMM (5.27)

reduces to the generalized ADMM [30] with relaxations, and by choosing as well the relaxations
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ρk ≡ 1 one obtains the classical ADMM given in (5.3). The following proposition summarizes

the preceding development, and provides a proof which is an adapted version of Proposition 15

in [29].

Proposition 3. Consider the optimization model (5.1) in its equivalent form (5.23). Let As-

sumption 2 hold, and let the function f2(z) be strongly convex quadratic f2(z) = 1
2 zT P z +pT z

with P ∈ Rm×m symmetric positive definite and p ∈ Rm . Assume that all subgradients of the

function d1(λ) =− infx∈Rn
{

f1(x)+ (ATλ)T x
}

at each point λ ∈Rm take the form −Ax̄ where x̄

attains the stated minimum over x. Then, there exists a primal-dual optimal solution pair

((x∗, z∗),λ∗), and if the sequences {xk } ⊂Rn , {zk } ⊂Rm and {λk } ⊂Rm conform to the recursion

(5.27) under the assumptions of Lemma 1 using (5.6) for
{
βk

}
and

ρk ≡ ρ = 1− cLd2

1+ cLd2

, c < 1

Ld2

, (5.37)

where Ld2 is the maximal eigenvalue of P−1, then λk → λ∞, zk → z∞ and Axk → Ax∞ = z∞

where x∞ is a limit point of {xk } and ((x∞, z∞),λ∞) corresponds to a primal-dual solution

pair ((x∗, z∗),λ∗). The algorithm is characterized by the O(1/k2) iteration complexity of the

form (5.18).

Proof. The existence of the primal-dual optimal solution pair ((x∗, z∗),λ∗) follows from Prop.

1.2.1(a)-(b) in [13], where the relative interior conditions are satisfied due to the quadratic

form of f2(z) and d2(λ).

The previous development shows that the recursion (5.27) is equivalent to the sequence

yk−1 = λk + cmk = λk + czk from (5.33b)-(5.33c) produced by the accelerated DR splitting

(5.30), which is furthermore equivalent to the application of the fast gradient method to the

scaled DR envelope h(w). Since the relaxation factor ρ is by (5.37) chosen in accordance with

the Lipschitz constant of ∇h(w) given in (5.16), the sequence {vk } of (5.30) converges to the

DR fixed point v∞ and by (5.30c) the sequence {yk } → v∞, if the point v∞ exists. Since the

primal-dual optimal solution pair exists, the point λ∗+cz∗ is just such a point v∞, so it exists.

Therefore the sequence {yk } converges to a DR splitting fixed point v∞ = y∞, and by Lemma

14 in [29] it has the form y∞ = λ∞+ cz∞ where z∞ ∈ ∂d2(λ∞) and −z∞ ∈ ∂d1(λ∞). By the

assumption regarding the subgradients of d1, there exists some x∞ such that −Ax∞ =−z∞, or

equivalently Ax∞ = z∞.

Since the proximal mapping proxcd2
(y) is nonexpansive (Prop. 5.1.8 in [13]), it is also continu-

ous. We have proxcd2
(y∞) =λ∞ and proxcd2

(yk ) =λk , and because of continuity of proxcd2
(y)

we also have λk = proxcd2
(yk ) → proxcd2

(y∞) = λ∞ and threfore zk = (yk−1 −λk )/c → z∞ =
(y∞−λ∞)/c. By using the first equation in (5.34) together with yk−1 = λk + czk → v∞, since

ρ > 0 due to (5.37) there holds Axk+1 − zk → 0, from where it follows that Axk+1 → Ax∞ = z∞

with x∞ being a limit point of {xk }.
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5.4 Numerical Experiments

The algorithm is tested by solving a quadratic programming (QP) problem of the form

minimize 1
2 xT P x +pT x

subject to lb ≤ x ≤ ub ,
(5.38)

where P ∈Rn×n is symmetric positive definite, p ∈Rn , and the lb ,ub ∈Rn represent the lower

and upper bound of the variable x, respectively. The QP data with n = 100 is generated

randomly using Matlab commands; in particular, the components of p, lb and ub with lb ≤ ub

are generated using normal distribution and P is generated by using P = V MV T where V

contains the eigenvectors of a symmetric matrix whose coefficients are uniformly distributed

and M is a diagonal matrix with elements equally spaced between 1 and 100, resulting thus in

the matrix P that has the eigenvalues equal to the diagonal elements of M .

The QP (5.38) is expressed in the form (5.23) by setting f1(x) = δX (x), f2(z) = 1
2 zT P z +pT z,

where δX (x) is the indicator function [12] of the box constraint X = {x | lb ≤ x ≤ ub}. The

equality constraint of (5.23) is thus x − z = 0.

The stopping criteria are derived as in Section 3.3 of [16]. The obtained primal and dual

residual are

rk+1 = Axk+1 − zk+1, (5.39a)

sk+1 = c(zk − zk+1)+Ek − c(1−ρk )(Axk+1 − zk ). (5.39b)

The stopping criteria used in the experiments are ‖rk‖ ≤ εpr i and ‖sk‖ ≤ εdual , with εpr i

and εdual chosen using the absolute and relative criterion from Section 3.3.1 of [16] with

εabs = 10−4, εr el = 10−2. The maximal number of iterations for which the experiments are run

is kmax = 10000. The initial conditions are set to zero vectors of appropriate dimensions.

The comparison of classical ADMM (5.3) with the accelerated version over the range of penal-

ties c ∈ (0,1] which ensures convergence of the accelerated version by Prop. 3 is given in

Fig. 5.1a and Fig. 5.2a. As the value of the penalty c approaches the upper bound cmax =
1/Ld2 = 1 from (5.37), the relaxation ρ tends to 0 according to (5.37) and thus the accelerated

version, characterised by the O(1/k2) complexity in (5.18), gradually worsens performance

and eventually stops converging.

For this reason, a heuristic version which uses ρ = 1 for every value of c is introduced and

tested. The results are given in Fig. 5.1b and Fig. 5.2b, where the heuristically accelerated

ADMM (i.e., the method with ρ = 1) is compared with the classical ADMM (5.3), the generalised

ADMM [29] with overrelaxation set to ρ = 1.9, and the Fast ADMM with and without restarting

([37], Algorithms 7 and 8). Nevertheless, the heuristic modification ρ = 1 may as well cause

divergence, as can be seen on Fig. 5.1c and Fig. 5.2c where a QP with a random matrix P

containing the eigenvalues equally spaced between 1 and 500 is considered. These results
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indicate that the heuristic version could benefit by introducing a restarting scheme, like the

one of the Fast ADMM with restarting [37], which would ensure convergence while keeping

the accelerated behaviour.

5.5 Conclusions

An accelerated version of ADMM based on accelerated Douglas-Rachford splitting is derived

resulting in a method characterised by a O(1/k2) complexity of the internal convergence mech-

anism. In comparison to the classical ADMM, the derived algorithm involves an additional

algebraic step which corresponds to the extrapolations in the underlying fast gradient method.

The numerical results show that the method can improve the performance of classical ADMM

over the allowed range of penalty parameters, and that a heuristic modification can potentially

extend the benefits of acceleration beyond this allowed range.
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Figure 5.1 – Accelerated ADMM and its heuristic modification, applied for solving a random
QP of the form (5.38).
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6 Power Converter Pulse Pattern
Optimal Control

6.1 Introduction

The field of medium-voltage power electronics has demonstrated itself as a fruitful ground for

application of Model Predictive Control (MPC) [68]. In comparison to the traditional control

approaches that exist in the field, the developed MPC schemes have shown an ability to get

the existing power electronics hardware closer to its full operating potential, providing better

efficiency and dynamic/steady-state performance [34]. To address the switching nature of

power electronic systems and obtain controllers that are computationally tractable in real-

time, the aforementioned MPC schemes consist of problem-tailored adaptations of the general

MPC concept and involve many engineering approximations and simplifications.

One of the most prominent examples of medium-voltage power electronics MPC is Model

Predictive Direct Torque Control (MPDTC) [35]. MPDTC is an extension of the classical Direct

Torque Control (DTC) [71] and involves a replacement of the DTC’s look-up table with an

optimization problem that minimizes the converter’s switching frequency along the prediction

horizon. The method was experimentally tested on an industrial medium-voltage drive system

in [55] and has experienced subsequent further refinements such as direct minimization of the

converter’s switching losses and more efficient solving of the involved optimization problem

by using branch-and-bound technique [31]. Another prominent MPC scheme, which could

be interpreted as an adaptation of the core MPDTC concept to the current control problem, is

Model Predictive Direct Current Control (MPDCC) [33] which instead of the torque control

provides control of the current and therefore can be used as an inner loop in the case of Field

Oriented Control (FOC) [14, 38]. To overcome a weakness of MPDTC and MPDCC which both

require computationally challenging long prediction horizons in order to achieve superior

total harmonic distortion (THD) in steady-state operation, another prominent MPC scheme

arose under the name Model Predictive Pulse Pattern Control (MP3C) [36]

The MP3C control scheme is conceptually closest to the method which will be the presented

in this chapter. MP3C was introduced in [36] and experimentally verified in [54] on a setup

involving a five-level active neutral-point-clamped (ANPC) inverter. One of the principal
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characteristics of MP3C is its usage of offline computed optimal steady-state input signals that

are also known in power electronics community as Optimized Pulse Patterns (OPPs) [18, 50, 67].

OPPs are generally considered as a mean whose utilization provides the best possible steady-

state performance, with an ability to reduce the steady-state current THD even up to 50%

in comparison to the traditional Space Vector Modulation (SVM) [32]. The usage of OPPs

allows MP3C to surpass the weakness of MPDTC and MPDCC, which is their need for long

and computationally demanding prediction horizons for achieving superior steady-state

performance. In the case of MP3C, the optimal steady-state OPP input is used as a baseline

whose switching times are reoptimized over a certain prediction horizon in order to achieve

zero tracking error at the end of the prediction horizon. While long horizons of MP3C turned

out to provide better noise resistance in comparison to a deadbeat MP3C version, they also

result in slower dynamic performance due to the penalization of the tracking error only at the

end of the prediction horizon and not along it. The internal model of MP3C represents the

power electronics system with two integrators, one for each of the two axes of the stationary

coordinate frame.

The method of this chapter belongs to the category of power electronics MPC schemes where

modulator (using SVM [23] or carrier-based PWM [40]) is eliminated, which is a category that

also involves MPDTC, MPDCC and MP3C. In comparison to the methods which use OPPs to

store the optimal steady-state operation in controller’s memory, the method of this chapter

also allows a usage of memory to store the information about dynamic system behavior,

thereby allowing an approximate low-computational complexity MPC that optimizes the

transient behavior of complex power electronics configurations for which it is not possible

to approximate the plant dynamics with two integrators, as is done in MP3C. In comparison

to MP3C, the method is thus more general (e.g., directly applicable in presence of LC filters)

and furthermore, it also penalizes the tracking error not only at the end of the prediction

horizon but along it, thus not experiencing a degradation of transient performance when

longer prediction horizons are used.

Besides its applicability to a large variation of different power electronics configurations, in

order to facilitate an easier exposition the method is described in this chapter with a focus

on an industrial power electronics case study involving a grid-tied converter with LC filter. It

is shown that the method can control such a system without a need for an additional active

damping loop [26, 27] by whose utilization the resonant behavior introduced with LC filter is

often tackled (for an adaptation of the active damping concept to the case of MP3C, see [39]),

removing thereby a need for having the converter’s switching frequency considerably larger

than the resonant frequency of the system. The combinaiton of OPPs and LC filter allows

achievement of very low THD values in steady-state, and as indicated in [34], with design of

OPPs one can also minimize the size and cost of the involved LC filter.

The description of the method is done by first introducing an optimal control problem (OCP)

which uses the OPPs as steady-state baseline signals, and the OCP is then tackled by using

a sequential approach to optimal control and a gradient projection algorithm. To achieve
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a low-computational approximation of the OCP, additional elements are then introduced.

In particular, a possibility of memory storage of the dynamic system behavior necessary

for efficient formulation of low-complexity OCP approximations is introduced, as well as a

computationally efficient way to approximately solve the obtained optimization problem.

The introduced approximations open a possibility for an implementation of some of the

controller’s versions on a field-programmable gate array (FPGA), for which some indications

regarding the required computational resources are provided in the numerical results section

of this chapter. The obtained approximate controller versions are tested in simulation by

comparison with the unapproximated OCP based on OPPs, giving an insight into the influence

which the introduced controller approximations have on the performance. The introduced

concept of memory storage of the dynamic information can also be beneficially applied in

case of a related method using OPPs in [3], which instead of an integral of the tracking error

considers the tracking error at a finite number of points along the prediction horizon for

minimization.

The work of this chapter is largly based on work published in [59] which was developed in

collaboration with Stefan Almer and Helfried Peyrl from ABB. This chapter involves further

refinement of the description from [59] as well as additional developments which allow more

efficient approximate solving of the OCP, the description of which is primarily located in the

subsections of Section 6.5. In collaboration with my colleague Harsh Shukla, one of the ap-

proximate versions of the method has been implemented on an FPGA by him, the description

of which is left out of this thesis with only basic characteristics of the implementation outlined

in Section 6.6.

The rest of the chapter is structured as follows. Section 6.2 describes the industrial power

electronics case study considered in the chapter. Section 6.3 states assumptions and provides

a mathematical model of the system. Section 6.4 describes basic notions and terminology of

OPPs, introduces an OCP based on OPPs, applies sequential approach to optimal control to

obtain an OCP form with a finite number of decision variables and describes application of

gradient algorithm to the obtained optimization problem. Section 6.5 introduces concepts for

achieving a low-computational approximation of the OCP, introducing among others memory

storage of the dynamic information and computationally efficient approximate solving of the

obtained optimization problem. Section 6.6 provides numerical experiments.

6.1.1 Notation

For given positive integers n and m, In×n ∈ Rn×n and 0n×m ∈ Rn×m denote the identity and

zero matrix of specified dimensions, respectively. For given vectors ai ∈Rni , i = 1, ...,m, the

vector c = [aT
1 , ..., aT

m]T is denoted by c = (a1, ..., am), which is thus an element of Rn1+...+nm .

For a three phase quantity xabc ∈R3 with components xabc = (xa , xb , xc ), the direct and inverse

Clarke transform (with neglected zero sequence component) to theαβ representation xαβ ∈R2
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Figure 6.1 – Three-level neutral-point-clamped (NPC) voltage source inverter connected to
the power grid via an LC filter.

with xαβ = (xα, xβ) are defined respectively by the matrices

P2×3 := 2

3

[
1 −1

2 −1
2

0
p

3
2 −

p
3

2

]
, P−1

3×2 :=


1 0

−1
2

p
3

2

−1
2 −

p
3

2

 , (6.1)

where xabc = P2×3xαβ is direct and xαβ = P−1
2×3xabc inverse transform [25].

6.2 Grid-tied Converter with LC Filter Case Study

The control method will be presented by considering an industrial medium-voltage power

electronics case study involving a grid-tied converter with LC filter. The configuration is

illustrated in Fig. 6.1. The actuator in the system is the power converter (NPC inverter), and

the goal of the controller is to ensure that a desired active and reactive power pair (Pg ,Qg ) is

injected into the grid.

The power converter is a three-phase three-level neutral-point-clamped (NPC) voltage source

inverter, which is a diode clamped converter topology capable of producing three voltage levels

per phase [51]. The NPC converter is interfaced to the power grid through an intermediate LC

filter, which is an additional passive component whose insertion is often required in order

to meet the relevant grid standards by reducing the harmonic distortions at the grid side. It

should be noted that the involved LC filter does not include resistive elements for damping of

resonance, which should therefore be tackled by the controller.
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6.3 Mathematical Model of the System

6.3.1 System assumptions

The case study system is addressed by involving a set of assumptions that is common in the

related literature. The assumptions concern the NPC inverter, LC filter and power grid. The

NPC inverter is assumed to be supplied by a dc-link voltage whose total value is constant.

The NPC inverter’s fluctuations of the neutral point potential are neglected, as well as the

voltage drops on the power semiconductor devices during conduction. The nonlinearity of

the magnetic materials in the inductive elements will be neglected, as well as the temperature-

dependence of the resistances. The grid voltage is assumed to be three-phase symmetric, and

the grid inductance is assumed constant.

6.3.2 State-space model of the LC L circuit and grid voltage

The state of the LC L circuit in Fig. 6.1 is described in stationary abc frame with state vector

xf = ( ifi,a , ifi,b , ifi,c , ifg,a , ifg,b , ifg,c , vf,a , vf,b , vf,c ) (6.2)

where for each phase p ∈ {a,b,c}, the ifi,p , ifg,p and vf,p respectively denote the inverter current,

grid current and capacitor voltage, as illustrated in Fig. 6.1. The LC L circuit dynamics are

ẋf(t ) = Afxf(t )+Bfs(t )+Ffwg(t ) (6.3)

where s = (sa , sb , sc ) ∈ {−1,0,1}3 is the vector of discrete-valued converter switch signals and

the vector wgabc = (wga , wgb , wgc ) ∈R3 represents the grid voltage. The system matrices are

obtained by applying Kirchhoff’s circuit laws and have the form

Af =


−Rfi

Lfi
I3×3 03×3 − 1

Lfi
I3×3

03×3 −Rfg

Lfg
I3×3

1
Lfg

I3×3

1
Cf

I3×3 − 1
Cf

I3×3 03×3

 , Bf =
1

Lfi

1

3


2 −1 −1

−1 2 −1

−1 −1 2

06×1 06×1 06×1

 vdc

2
,

Ff =

 03×3

− 1
Lfg

I3×3

03×3

 ,

where the parameters correspond to the elements as illustrated in Fig. 6.1.

The three-phase grid voltage wgabc = (wga , wgb , wgc ) is assumed (I) sinusoidal and (II) three-

phase symmetric:

(I) wga(t ) =Vg sin(2π fgt +ϕg), (6.4)

(II) wga(t ) = wgb(t −1/(3 fg)) = wgc (t +1/(3 fg)), (6.5)
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where Vg is the voltage amplitude, fg is the grid frequency and ϕg is the initial phase of the

grid. The sinusoidal three-phase symmetric voltage can be modeled in the αβ coordiante

system wgαβ(t ) = (wgα(t ), wgβ(t )) with

ẇgαβ(t ) = R2×2 wgαβ(t ), R2×2 :=
[

0 −ωg

ωg 0

]
, (6.6)

where ωg = 2π fg is the grid angular frequency. The three-phase voltage wgabc (t ) can then be

obtained from wgαβ(t ) by using the inverse Clarke transform:

wgabc (t ) = P−1
3×2wgαβ(t ). (6.7)

The above description leads to a state-space model involving the LC L electric circuit (6.3) and

the grid voltage model (6.6) which takes the form

ẋs(t ) = Asxs(t )+Bss(t ) (6.8)

where

xs =
[

xf

wgαβ

]
, As =

[
Af FfP

−1
3×2

02×9 R2×2

]
, Bs =

[
Bf

02×3

]
. (6.9)

6.3.3 State-space model of sinusoidal steady-state reference trajectory

The steady-state reference for each state of the LC L circuit (6.2) will be approximated by

a sinusoidal shape. Assuming a three-phase symmetric and sinusoidal steady-state, the

reference vector xrabc ∈R9 can be modeled in αβ coordinate frame by

ẋrαβ(t ) = R6×6 xrαβ(t ), R6×6 := blkdiag(R2×2,R2×2,R2×2), (6.10)

where

xrαβ = (ir,fiα , ir,fiβ , ir,fgα , ir,fgβ , vr,fα , vr,fβ) (6.11)

consists of LC L state references in the αβ frame, and R2×2 is the matrix defined in (6.6). To

convert the references from the αβ to the abc coordinate frame, one employs the inverse

Clarke transform:

xrabc (t ) = P−1
9×6xrαβ(t ), P−1

9×6 := blkdiag(P−1
3×2,P−1

3×2,P−1
3×2). (6.12)

Obtaining the value of the state vector xs in (6.8) at some t0 can be done by using measured/es-

timated values of the components of xs at time t0. On the other hand, in order to obtain the

reference trajectory value xrαβ in (6.10) at some t0, one needs to consider the desired active
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and reactive power reference (Pg ,Qg ) and the value of the grid voltage wgαβ(t0). The mapping

xrαβ(t0) = fr (Pg ,Qg , wgαβ(t0)) can be derived by using Kirchhoff’s laws and phasor notation,

as described in what follows. Given the grid voltage phasor Vg = wgα(t0)+ j wgβ(t0) =Vg e jθg

and the desired active and reactive power (Pg ,Qg ), the desired grid current has the value

Ifg = Ifge
j
{

arg
(
Vg

)
−φvi

}
, Ifg =

1

3Vg

√
P 2

g +Q2
g , φvi = atan

(
Qg

Pg

)
, (6.13)

with φvi = π
2 sign(Qg ) in case of Pg = 0. The desired capacitor voltage and inverter current are

Vf = Vg + jωgLfgIfg, Ifi = jωgCfVf + Ifg. (6.14)

The α and β components of the subvectors in xrαβ are then obtained by using the real and

imaginary parts of the computed Ifi, Ifg and Vf:

ir,fiα(t0) = Re
{

Ifi

}
, ir,fiβ(t0) = Im

{
Ifi

}
, (6.15a)

ir,fgα(t0) = Re
{

Ifg

}
, ir,fgβ(t0) = Im

{
Ifg

}
, (6.15b)

vr,fα(t0) = Re
{

Vf

}
, vr,fβ(t0) = Im

{
Vf

}
. (6.15c)

Note that the computed values also allow to obtain the desired steady-state sinusoidal voltage

to be supplied by the inverter (the inverter’s fundamental harmonic), which is given by the

phasor

Vi = Vf + jωgLfiIfi. (6.16)

6.3.4 Complete State-Space Model

The state-space model encompassing the system elements (NPC inverter, LC filter, power

grid), as well as also sinusoidally approximated desired trajectories for the systems states, is

obtained by combining the models of Sections 6.3.2 and 6.3.3 and has the form

ẋ(t ) = Ax(t )+B s(t ), (6.17a)

y(t ) = E x(t ), (6.17b)

where the matrices A, B , and E are given by

A =
[

As 011×6

06×11 R6×6

]
, B =

[
Bs

06×3

]
, E =

[
I9×9 09×2 −P−1

9×6

]
, (6.18)

and s(t ), y(t ) and x(t ) are respectivelly the system input, output and state, with components

as summarized below.

The system input s ∈R3 with s = (sa , sb , sc ) contains discrete-valued phase switching signals.
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For the three-level NPC topology, the allowed values for each phase switching signal sp ,

p ∈ {a,b,c} are sp ∈ {−1,0,1}.

The state vector x ∈R17 consists of two subvectors, x = (xs, xrαβ) where xs ∈R11 and xrαβ ∈R6.

The xs contains as its subcomponents xs = (ifi,abc , ifg,abc , vf,abc , wgαβ) where ifi,abc ∈ R3 is

the inverter-side current, ifg,abc ∈ R3 is the grid-side current, vf,abc ∈ R3 is the voltage of the

LC filter capacitor, and wgαβ ∈ R2 is the grid voltage. On the other hand, the xrαβ contains

subcomponents xrαβ = (ir,fiαβ, ir,fgαβ, vr,fαβ) where ir,fiαβ ∈ R2, ir,fgαβ ∈ R2 and vr,fαβ ∈ R2 are

sinusoidally approximated desired trajectories for the inverter-side current, grid-side current

and capacitor voltage, respectively.

The output vector y ∈ R9 is a tracking-error vector, which as such consists of the difference

between the LC circuit states (ifi,abc , ifg,abc , vf,abc ) and their sinusoidally approximated desired

trajectories determined from the xrαβ.

For a given initial condition x(t0) = xt0 and for some fixed value of the switching signal s(t ) = `,

∀t ≥ t0, the solution of the state-space model (6.17) for time t ≥ t0 is

x(t ) = e A(t−t0)xt0 +
∫ t

t0

e A(t−τ)B`dτ (6.19)

which can compactly be written in the form

x(t ) =Ce Ā`(t−t0)x̄t0 (6.20)

by introducing the definitions

C =
[

In×n 0n×1

]
, Ā` =

[
A B`

01×n 01×1

]
, x̄t0 =

[
xt0

1

]
.

It should be noted that for obtaining the state vector value x = (xs, xrαβ) at some time t0, the

subvector xs can be formed by using the measured/estimated vector component values at

t0, and the subvector xrαβ can be computed based on the desired active and reactive power

reference (Pg ,Qg ) and the value of the grid voltage wgαβ(t0), as described in Section 6.3.3.

6.4 Pulse Patterns Optimal Control Problem

The performance of power converter controllers is generally assessed based on the controller’s

ability to quickly reach a specified power reference (controller’s transient performance) and

based on the amount of higher harmonics of the current injected into the grid (controller’s

steady-state performance). In the case of medium-voltage power electronics applications,

determining the best steady-state command input is a nonconvex optimization problem

whose solving is too demanding to be performed online. Offline computed optimal steady-

state command signals are referred to in the power electronics literature as Optimized Pulse
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δ1 δ3 T/2

+1

−1

δ2
0

TT/4 3T/4

u(t)
û1

Figure 6.2 – An illustration of a three-level OPP signal u(t) with d = 3 switching times over
the first quarter of the period. The d switching times δ1, δ2 and δ3 determine the shape of
the OPP over the whole period T due to the quarter-wave symmetry imposed during OPP
computation. The OPP is characterized by its fundamental harmonic amplitude û1.

Patterns (OPPs). Since OPPs will be used in the development of this chapter, an overview

of their basic properties is provided in the next subsection, after which an optimal control

problem (OCP) using OPPs is formulated.

6.4.1 Optimal Steady-State Operation: Optimized Pulse Patterns

In the power electronics literature, OPPs are generally considered as a mean whose utilization

provides the best possible steady-state performance. An illustration of one period of an OPP

signal is given in Fig. 6.2, where the OPP signal is denoted with u(t ) and its first (fundamental)

harmonic amplitude with û1. A common assumption in the computation of OPPs is quarter-

wave symmetry, whose consequence is that an OPP is completely determined by the switching

times over the first quarter of its fundamental harmonic’s period; see Fig. 6.2. The OPPs are

computed for a fixed switching frequency, which is equivalent to fixing the number of available

switching times within the first quarter of the period. This number is in the OPP literature

called the pulse number, and will be denoted with d . The vector of d switching times over the

first quarter of the period will be denoted as δ= (δ1, ...,δd ).

The steady-state performance metric is the total harmonic distortion of the current injected

into the grid, which is a quantity proportional to a weighted sum of the squared OPP’s voltage

harmonics:

Jopp (δ) = ∑
i∈Θd

wi û2
i (δ), (6.21)

where wi are the weighting coefficients, ûi are the magnitudes of the OPP’s harmonics at

frequencies fi = i /T , andΘd denotes the set of indices of differential-mode harmonics, that

is, of non-triple odd harmonic numbers excluding number one.

For a specified desired magnitude of the fundamental harmonic m, which is in the OPP

literature also known as a modulation index, the OPP nonlinear optimization problem takes
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the form:

minimize
δ

Jopp (δ)

subject to û1(δ) = m,

ûk (δ) = 0, ∀k ∈Θe ,

0 ≤ δ1 ≤ ... ≤ δd ≤ T /4,

(6.22)

where Θe is the set of harmonics to be eliminated, and T /4 is a quarter of the fundamental

period. For a derivation of the harmonic magnitudes expressions ûk (δ) and a detailed descrip-

tion of OPP computation, the reader is referred to the Section 3.4 of [34] and the references

therein.

To allow an operation with various values of the fundamental harmonics, a common practice

is that the modulation indiex values m are gridded with a fine stepsize over a certain range

of interest [mmi n ,mmax ], the optimization problem (6.22) is solved for each of the gridding

values of m, and the obtained optimal switching times δ∗(m), which are now a function of the

modulation index, are stored in memory of the controller for online use. While the description

given in this section corresponds to the three-level NPC topology of the present case study, the

computation can also be generalized to topologies with higher numbers of levels. Furthermore,

in the case of a grid-tied converter with LC filter, OPP computation also allows a shaping of

the spectral content so that the size and weight of the LC filter are minimized. For these, and

many other OPP related discussions, the reader is referred to [34].

6.4.2 Power Converter OCP based on Optimized Pulse Patterns

The control algorithm is executed with a control period Ts . It is assumed that at the beginning

of each control period, perfect information of the system states is available and the control

input is computed and applied immediately (i.e., computation delay is neglected). In practice,

the computation delay of one control period can be approximately compensated by rotating

the measured current and voltage vectors in theαβ frame by angleωg Ts in the mathematically

positive direction, as is done in step one of the control method from [36].

Given an active and reactive power reference pair (Pg ,Qg ) and the grid voltage value wgαβ

at the current time instant, the fundamental voltage harmonic desired to be applied by the

inverter in steady-state is determined by the expression (6.16). This desired fundamental

harmonic determines the modulation index of the OPP which should be applied in eventual

steady-state operation; see Fig. 6.3 for an illustration.

The steady-state OPP will be used as a baseline input signal for transient optimization by

taking a certain number of OPP switching times to form the controller’s prediction horizon

and adjusting them to reach the desired steady-state operation with specified (Pg ,Qg ), as

described in what follows. For a specified number of switching times Nsw to be considered

within the controller’s prediction horizon as decision variables, each of the three phases will
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ta1

+1

−1

ta2
0

T

sa

−1

0
T

+1

+1

−1

0
T

sc

sb

tb1 tb2

tc1 tc2

Tp

Tp

Tp

Figure 6.3 – Based on the desired active-reactive power reference (Pg ,Qg ) and grid voltage
value, the fundamental inverter harmonic to be generated in steady-state is determined, and
is illustrated in the figure by dashed sinusoids in three phases. These fundamental harmonics
determine the modulation index of the OPP in the figure. An example of a prediction horizon
involving Nsw = 6 switching times is designated by the shaded region over the time interval
[0,Tp ], with the Nsw switching times being the ta1, ta2, tb1, tb2, tc1 and tc2. The value of Tp is
selected to be the seventh OPP switching time from the beginning of the prediction horizon.

have some number of switching times taken from the OPP within the prediction horizon, as

illustrated in Fig. 6.3. An illustration of the notation over the prediction horizon which will

be introduced below is given in Fig. 6.4. Since the plant model is time-invariant, the time

at the beginning of the controller’s prediction horizon will be set to zero. The number of

obtained switching times within phases a, b and c will be respectively denoted as na , nb and

nc , where Nsw = na +nb +nc holds. For each phase i ∈ {a,b,c}, the switching times of phase i

are collected in a vector

ti = (ti 1, . . . , ti ni ), i ∈ {a,b,c}, (6.23)

with ti ∈Rni . The vector of all switching times within the prediction horizon t̄ ∈RNsw is thus

t̄ = (ta , tb , tc ). (6.24)
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Figure 6.4 – An illustration of the switching signal s(t) over a prediction horizon involving
Nsw = 6. In the illustration, the switching times of each phase are ta = (ta1, ta2), tb = (tb1, tb2)
and tc = (tc1, tc2), resulting in a decision vector t̄ = (ta , tb , tc ) = (ta1, ta2, tb1, tb2, tc1, tc2). The
switching values in each phase are `∗a = (0,1,0), `∗b = (0,1,0) and `∗c = (0,−1,0). The vector
of three-phase switching times t̄ is sorted in ascending order in vector tI = (0,sort(t̄),Tp ) =
(0, tI 1, tI 2, tI 3, tI 4, tI 5, tI 6,Tp ) where tI 1 = tc1, tI 2 = tb1, tI 3 = ta1, tI 4 = tb2, tI 5 = ta2, tI 6 = tc2.
The three-phase switching values between pairs of subsequent times in tI are `∗I 0 = (0,0,0),
`∗I 1 = (0,0,−1), `∗I 2 = (0,1,−1), `∗I 3 = (1,1,−1), `∗I 4 = (1,0,−1), `∗I 5 = (0,0,−1), `∗I 6 = (0,0,0),
which can be collected into a matrix `∗I = [`∗I 0,`∗I 1,`∗I 2,`∗I 3,`∗I 4,`∗I 5,`∗I 6].

While t̄ will be a decision vector for the OCP, the star in the superscript t̄∗ will denote the value

of t̄ corresponding to the OPP switching times within the prediction horizon, which will in

what follows also be referred to as nominal (OPP) switching times. Furthermore, the values of

the switching signals for each phase i ∈ {a,b,c} which are obtained from the OPP are denoted

with

`∗i = (`∗i 1, . . . ,`∗i (ni+1)), i ∈ {a,b,c}, (6.25)

with `∗i ∈Rni+1, where the indexing is such that `∗i j for all j ∈ {1, ...,ni } denotes the switching

value from OPP existing before the time t∗i j , and the last `∗i (ni+1) is the switching value after the

last time t∗i ni
within the prediction horizon. For shorter notation, ¯̀∗ = (`∗a ,`∗b ,`∗c ) is defined.

The above definitions give rise to the input parametrization of s(t ) over the prediction horizion
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[0,Tp ] which will be denoted with

s̃(t ; t̄ , ¯̀∗), t ∈ [0,Tp ], (6.26)

and in case of s̃(t ; t̄∗, ¯̀∗) it represents the unmodified nominal OPP over the prediction hori-

zon.

To set up the OCP for a certain power reference (Pg ,Qg ) at some time instant t0, the OCP’s

initial state vector xt0 is formed from the measured/estimated states and the computed

initialization of the reference trajectory as described in Section 6.3.3. To obtain the OPP

nominal times t̄∗ and switching values ¯̀∗ within the prediction horizon, the desired value of

the inverter’s steady-state fundamental harmonic amplitude and angle is used (as computed

in Section 6.3.3), yielding also the desired OPP’s modulation index given by the expression

m = 2

vdc
Vi (6.27)

where Vi is the amplitude of the desired inverter’s steady-state fundamental harmonic. As

the OPP is computed by doing a fine gridding over the range of interest for the modulation

index values, the computed value m is rounded to the first available one without a significant

impact. The obtained t̄∗ and ¯̀∗ are fully determining the shape of the input parametrization

over the prediction horizon (6.26), and the first switching time in the OPP after the last one

within t̄∗ is taken to be the prediction horizon length Tp , which is thus a horizon length that

takes a different value at each new control period. By defining a cost term representing the

integral of the squared tracking error:

Jte (t̄ ) =
∫ Tp

0
y(t )T Q y(t )dt , (6.28)

the penalization of the devitaion of the switching times t̄ from the nominal t̄∗ switching times:

Jd s(t̄ ; t̄∗) = ‖t̄ − t̄∗‖2
2, (6.29)

and a polytopic constraint set preserving the sequence of the switching times ti , i ∈ {a,b,c}

within each phase:

Ξps =
{

t̄ | ∀i ∈ {a,b,c} and ∀ j ∈ {2, ...,ni }, 0 ≤ ti 1, ti ( j−1) ≤ ti j , ti ni ≤ Tp
}
, (6.30)

the OCP takes the form:

minimize
t̄ , x(·), y(·)

Jte (t̄ )+ Jd s(t̄ ; t̄∗)

subject to x(0) = xt0 ,

ẋ(t ) = Ax(t )+B s̃(t ; t̄ , ¯̀∗), t ∈ [0,Tp ],

y(t ) = E x(t ), t ∈ [0,Tp ],

t̄ ∈Ξps .

(6.31)
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The optimal solution of the OCP, which is the input waveform s̃(t ; t̄ , ¯̀∗) involving the computed

optimal t̄ , is applied by the converter over the control period [0,Ts] (the control period Ts is

much shorter than the prediction horizon Tp over which the input s̃ was optimized), and the

process is repeated at the beginning of the next control period.

Besides the finiteness of the horizon length Tp in (6.31), which is an obvious source of sub-

optimality in the obtained control law, the stated OCP also does not involve the sequence of

switching levels over the prediction horizion (the ¯̀∗) among its decision variables. The fixing

of the sequence of switching levels to the sequence existing in OPP removes the combinatorial

nature from the optimization problem (6.31), making it considerably easier to solve. Further-

more, there are also possibilities to reduce this source of suboptimality by employing the pulse

insertion techniques that already exist for other familiar methods; for description, the reader

is referred to Section 12.6 of [34].

6.4.3 Sequential Approach: Elimination of System Dynamics

One way to solve the OCP (6.31) is by substituting the system dynamics into the cost function

in a manner of the sequential approach to optimal control, resulting in an optimization

problem with a finite number of decision variables. In particular, given a vector t̄ , by sorting its

elements in an ascending order (with the operator sort used below), a vector-valued mapping

tI is introduced:

tI (t̄ ) = (0,sort(t̄ ),Tp ) = (0, tI 1, tI 2, . . . , tI Nsw ,Tp ), (6.32)

where tI : RNsw → RNsw+2 and in which the first and the last element of tI are constants

appended for later notational convenience (they will also be referred to as tI 0 and tI (Nsw+1)).

The prediction horizon can then be divided into subintervals:

[0,Tp ] = [0, tI 1]∪ [tI 1, tI 2]∪·· ·∪ [tI Nsw ,Tp ], (6.33)

where over each subinterval [tI k , tI (k+1)] with k ∈ {0, ..., Nsw } there is a three-phase switching

value `∗I k ∈R3 corresponding to the input parametrization (6.26); see Fig. 6.4 for an illustration.

These switching values `∗I k are uniquelly determined by s̃(t ; t̄ , ¯̀∗) and form a sequence of

three-phase switching values over the prediction horizon, which is a matrix-valued mapping

`∗I defined as:

`∗I (t̄ ) = [`∗I 0,`∗I 1, . . . ,`∗I Nsw
] (6.34)

where `∗I : RNsw → R3×(Nsw+1). Note that, based on the input parametrization (6.26), the

`∗I depends on the switching times t̄ since `∗I changes whenever any two switching times

of two different phases change their order with respect to each other. By using the above

notation, for any given t̄ one can compute the cost term Jte (t̄ ) by introducing into it the system
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dynamics (6.17) as follows:

Jte (t̄ ) =
∫ Tp

0
y(t )T Q y(t )dt =

Nsw∑
k=0

∫ tIk+1

tIk

y(t )T Q y(t )dt

=
Nsw∑
k=0

∫ tIk+1

tIk

(
E x(t )

)T Q
(
E x(t )

)
dt

=
Nsw∑
k=0

∫ tIk+1

tIk

(
ECe

Ā`∗
I k

(t−tIk
)
x̄k

)T Q
(
ECe

Ā`∗
I k

(t−tIk
)
x̄k

)
dt

=
Nsw∑
k=0

x̄T
k

∫ tIk+1

tIk

e
ĀT
`∗

I k
(t−tIk

)(
C T E T QC E

)
e

Ā`∗
I k

(t−tIk
)
dt x̄k

=
Nsw∑
k=0

x̄T
k Nk x̄k , (6.35)

where the equality at line two uses (6.17b), the equality at line three uses the state-space

solution (6.20) with x̄k = (x(tI k ),1) representing the values of state vectors (appended with

one) at the edges of the subintervals (6.33), and line five introduces Nk to denote the integral

from line four:

Nk =
∫ tIk+1

tIk

e
ĀT
`∗

I k
(t−tIk

)(
C T E T QC E

)
e

Ā`∗
I k

(t−tIk
)
dt .

The value of the integral can be computed by applying the results of [47] yielding

Nk = F T
k3Gk2, k ∈ {0, . . . , Nsw }, (6.36)

where Fk3 and Gk2 are submatrices of the matrix exponential

e
Â`∗

I k
(tIk+1

−tIk
) =

[
Fk2 Gk2

0(n+1)×(n+1) Fk3

]
(6.37)

which is formed by using

Â`∗I k
=

[ −ĀT
`∗I k

C T E T QEC

0(n+1)×(n+1) Ā`∗I k

]
. (6.38)

For a given initial state value xt0 , the optimization problem (6.31) thus takes the form involving

only t̄ as a decision vector:

minimize
t̄

Nsw∑
k=0

x̄T
k (t̄ ) Nk (t̄ ) x̄k (t̄ )+ Jd s(t̄ ; t̄∗)

subject to t̄ ∈Ξps .

(6.39)

where the matrix-valued mappings Nk (t̄), k ∈ {0,1, ..., Nsw } are defined by (6.36), (6.37) and
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(6.38) in which the tI (t̄ ) and `∗I (t̄ ) that correspond to a selected t̄ are used, and the x̄k (t̄ ) can

be evaluated by using x̄0 = (xt0 ,1) and recursively applying the equation (6.20) as

x̄k (t̄ ) = e
Ā`∗

I (k−1)
(tI (k)−tI (k−1))

x̄k−1(t̄ ) (6.40)

with tI (t̄ ) and `∗I (t̄ ) again determined based on t̄ . The obtained optimization problem can be

tackled for example by applying a gradient projection method, as described in the following

subsection.

6.4.4 Solution Approach based on Gradient Projection

By denoting the cost function in (6.39) by

Jtot (t̄ ) =
Nsw∑
k=0

x̄T
k (t̄ ) Nk (t̄ ) x̄k (t̄ )+ Jd s(t̄ ; t̄∗) = Jte (t̄ )+ Jd s(t̄ ; t̄∗), (6.41)

given an initial iterate t̄ 0 ∈RNsw , the gradient projection method [11] for (6.39) takes the form:

t̄ q+1 = PΞps

(
t̄ q − sq

gp∇Jtot (t̄ q )
)

, (6.42)

where t̄ q ∈RNsw is the vector of switching times at the q-th iteration of the gradient projection

algorithm, PΞps :RNsw →RNsw denotes the projection on the set Ξps as defined in (6.30), and

sq
gp > 0 is the stepsize at the iteration q chosen so that the following condition holds:

J (t̄ q )− J (t̄ q+1) ≥σ∇J (t̄ q )T (
t̄ q − t̄ q+1) , (6.43)

with σ ∈ (0,1). The stepsize sq
gp satisfying (6.43) at iteration q can be found by using back-

tracking, i.e., by examining for some fixed β ∈ (0,1) and sinit > 0 the sequence of values

{sinit,βsinit,β2sinit,β3sinit, ...} and taking as sq
gp the largest one for which (6.43) holds. An appro-

priate choice of the initial iterate t̄ 0 can be obtained by using the vector of nominal switching

times t̄∗.

The gradient projection iteration (6.42) requires the gradient ∇Jtot (t̄ q ). The partial derivatives

of Jtot (t̄) with respect to the components of t̄ are more easily stated with respect to the

corresponding components of the sorted vector tI defined in (6.32). By using the chain rule,

the partial derivative of the Jte (t̄ ) part of Jtot (t̄ ) with respect to tI j , j ∈ {1, . . . , Nsw } is given by

∂Jte (t̄ )

∂tI j
=

Nsw∑
k=0

(
∂x̄T

k (t̄ )

∂tI j
Nk (t̄ ) x̄k (t̄ )+ x̄T

k (t̄ )
∂Nk (t̄ )

∂tI j
x̄k (t̄ )+ x̄T

k (t̄ ) Nk (t̄ )
∂x̄k (t̄ )

∂tI j

)
. (6.44)

The gradient expression (6.44) involves the partial derivatives ∂x̄k /∂tI j and ∂Nk /∂tI j whose

expressions will be derived now. The expressions for the partial derivatives ∂x̄k /∂tI j are

obtained from (6.40) and have the following form:
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• For k > j +1

∂x̄k (t̄ )

∂tI j
=

k−1∏
m= j+1

e
Ā`∗Im

(tI (m+1)−tIm )
(−Ā`∗I j

)
j∏

m=0
e

Ā`∗Im
(tI (m+1)−tIm )

x̄0+

k−1∏
m= j

e
Ā`∗Im

(tI (m+1)−tIm )
Ā`∗I ( j−1)

j−1∏
m=0

e
Ā`∗Im

(tI (m+1)−tIm )
x̄0. (6.45)

• For k = j +1

∂x̄k (t̄ )

∂tI j
=(−Ā`∗I j

)
j∏

m=0
e

Ā`∗Im
(tI (m+1)−tIm )

x̄0+

e
Ā`∗

I j
(tI ( j+1)−tI j )

Ā`∗I ( j−1)

j−1∏
m=0

e
Ā`∗Im

(tI (m+1)−tIm )
x̄0. (6.46)

• For k = j

∂x̄k (t̄ )

∂tI j
= Ā`∗I (k−1)

k−1∏
m=0

e
Ā`∗Im

(tI (m+1)−tIm )
x̄0. (6.47)

• For k < j

∂x̄k (t̄ )

∂tI j
= 0. (6.48)

The expressions for the partial derivatives ∂Nk /∂tI j are obtained from (6.36)-(6.37). By using

(6.37), the Nk in (6.36) can be expressed as

Nk (t̄ ) =
[

0 I
]

e
ÂT
`∗

I k
(tI (k+1)−tI k )

[
0 0

I 0

]
e

Â`∗
I k

(tI (k+1)−tI k )

[
0

I

]
, (6.49)

where the I and 0 respectively denote I(n+1)×(n+1) and 0(n+1)×(n+1) with n = 17 being the order

of the state-space model (6.17). By introducing

T1 :=
[

0 I
]

, T2 :=
[

0 0

I 0

]
, T3 :=

[
0

I

]
, (6.50)

the partial derivatives of Nk matrices are:

• For k = j

∂Nk (t̄ )

∂tI j
= T1 ·

(
−ÂT

`∗I k

)
·e

ÂT
`∗

I k
(tI (k+1)−tI k ) ·T2 ·e

Â`∗
I k

(tI (k+1)−tI k ) ·T3+

T1 ·e
ÂT
`∗

I k
(tI (k+1)−tI k ) ·T2 ·

(
−Â`∗I k

)
·e

Â`∗
I k

(tI (k+1)−tI k ) ·T3. (6.51)
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• For k +1 = j

∂Nk (t̄ )

∂tI j
= T1 · ÂT

`∗I k
·e

ÂT
`∗

I k
(tI (k+1)−tI k ) ·T2 ·e

Â`∗
I k

(tI (k+1)−tI k ) ·T3+

T1 ·e
ÂT
`∗

I k
(tI (k+1)−tI k ) ·T2 · Â`∗I k

·e
Â`∗

I k
(tI (k+1)−tI k ) ·T3. (6.52)

• For k < j −1 or k > j

∂Nk (t̄ )

∂tI j
= 0(n+1)×(n+1). (6.53)

On the other hand, the partial derivatives of the term Jd s(t̄ ; t̄∗) in (6.41) with respect to tI j ,

j ∈ {1, . . . , Nsw } are given by

∂Jd s(t̄ ; t̄∗)

∂tI j
= 2

(
tI j − t∗I j

)
. (6.54)

where Jd s(t̄ ; t̄∗) is defined in (6.29).

Nevertheless, the amount of computation required for solving the problem (6.31) without ad-

ditional approximations is not convenient for real-time execution on an embedded hardware.

The following section describes approximations of the OCP (6.31) which will be introduced

through the form (6.39) to obtain a low computational complexity approximation of the op-

timal control policy. The solutions of (6.31) obtained by applying the gradient projection

algorithm of this section will be used for comparison to assess the influence which the intro-

duced approximations have on the obtained performance.

6.5 Approximate Pulse Patterns Optimal Control

The starting point for obtaining a low computational complexity approximation of the OCP

(6.31) is its QP approximation which will be described in this section. Consider the (nominal)

OPP sequence of switching times t̄∗ along the prediction horizon. It is uniquely determining

its sorted version t∗I (i.e., the tI (t̄∗)) and the corresponding three-phase switching values

`∗I (t̄∗). By using (6.20), one can perform a forward simulation of the plant dynamics for the

OPP input (the s̃(t ; t̄∗, ¯̀∗)) along the prediction horizon to obtain the values x̄k :

x̄k (t̄∗) = e
Ā`∗

I (k−1)
(t∗I (k)−t∗I (k−1))x̄k−1(t̄∗), (6.55)

where the index k in x̄k denotes that it is the value at the k-th time instant (the instant t∗I k )

with k ∈ {1, ..., Nsw } and the initial state is x̄0 = (xt0 ,1). For the values x̄k obtained for t̄∗, one

can perform a linearization of x̄k (t̄∗) with respect to the time deviations ∆tI :

x̃k (∆tI ; t̄∗) = x̄k (t̄∗)+∇x̄k (t̄∗)T∆tI , (6.56)
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where the vector ∆tI ∈RNsw is defined as

∆tI = (tI 1 − t∗I 1, . . . , tI Nsw − t∗I Nsw
), (6.57)

the matrix ∇x̄k (t̄∗)T represents the Jacobian (i.e., transposed gradient) matrix:

∇x̄k (t̄∗)T =
[
∂x̄k

∂tI 1
(t̄∗), . . . ,

∂x̄k

∂tI Nsw

(t̄∗)

]T

(6.58)

where for each i ∈ {1, ..., Nsw }, the column-vector ∂x̄k
∂tI i

(t̄∗) contains partial derivatives of the

components of x̄k (t̄∗) with respect to the i -th switching time tI i . The expressions for vectors
∂x̄k
∂tI i

(t̄), i ∈ {1, ..., Nsw } are given by the equations (6.45)-(6.48). Note that since the lineariza-

tion (6.58) is performed at t̄∗ which is characterized by its switching sequence `∗I (t̄∗), the

linearization is valid only as long as the switching times in different phases have not changed

their order with respect to each other, or more formally, as long as there holds ∆tI ∈Ξs where

Ξs(t̄∗) = {
∆tI |0 ≤ t∗I 1 +∆tI 1, t∗I Nsw

+∆tI Nsw ≤ Tp ,

∀i ∈ {1, ..., Nsw −1}, t∗I i +∆tI i ≤ t∗I (i+1) +∆tI (i+1)
}
. (6.59)

It should also be noted that the vector∆tI from (6.57) is of dimension Nsw , while tI from (6.32)

is of dimension Nsw +2 due to the appended zero and Tp . For the sake of better readability,

mathematical expressions of the form tI +∆tI will be interpreted in what follows as a sum

of the vector tI and the vector ∆tI to which zeros are appended as the first and as the last

component.

The QP approximation of (6.31) is obtained by substituting the linearized expressions x̃k (∆tI ; t̄∗)

from (6.58) in place of x̄k in (6.39). The cost function then has the form

Nsw∑
k=0

x̃k (∆tI ; t̄∗)T Nk (t̄∗) x̃k (∆tI ; t̄∗)+ J∆d s(∆tI ; t̄∗),

where J∆d s(∆tI ; t̄∗) is the cost term from (6.29) expressed as a function of ∆tI . By defining a

(polytopic) box constraint set

Ξb(δmax ) = {
∆tI |∀i ∈ {1, ..., Nsw }, |∆tI i | ≤ δmax

}
whose purpose is to keep the introduced linearizations x̃k (∆tI ; t̄∗) valid by bounding the

components of ∆tI , a QP of the following form is obtained:

minimize
∆tI

∆t T
I H(t̄∗)∆tI +h(t̄∗)∆tI + J∆d s(∆tI ; t̄∗)

subject to ∆tI ∈Ξb(δmax ),

∆tI ∈Ξs(t∗I ),

(6.60)

where the Hessian H (t̄ ), vector h(t̄ ), and a constant scalar term c(t̄ ) which is omitted from the
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cost of (6.60) are having the forms

H(t̄ ) =
Nsw∑
k=0

∇x̄k (t̄ )T Nk (t̄ )∇x̄k (t̄ ),

h(t̄ ) =
Nsw∑
k=0

x̄k (t̄ )T (
Nk (t̄ )+N T

k (t̄ )
)

x̄k (t̄ ),

c(t̄ ) =
Nsw∑
k=0

x̄k (t̄ )T Nk (t̄ ) x̄k (t̄ ).

To make the approach based on the QP from (6.60) computationally convenient for potential

real-time implementation, several additional aspects need to be considered. These aspects,

which are related to simulation of the system dynamics and efficient obtaining of an approxi-

mate solution to the optimization problem, are addressed in the following subsections.

6.5.1 Dynamic Information: Precomputed Matrix Exponentials

Similarly to the idea of storing the offline computed OPPs in the controller’s memory in order

to obtain a high-performance steady-state operation without the online OPP computation,

in order to perform prediction-based optimization of transients, the computational task of

predicting the state values by the equation (6.55) can potentially be done by storing the matrix

exponentials representing the system dynamics from expression (6.20) into the controller’s

memory. This is motivated by a finite number of voltage vectors that can be produced by the

power converter, which are illustrated in Fig. 6.5 for the case of a three-level converter. By

denoting with `abc = (`a ,`b ,`c ) ∈ {−1,0,1}3 the switching values (i.e., the state-space input

signal values s) that are allowed by the converter, although the total number of different

switching combinations is 33 = 27, the actual total number of voltage vectors viαβ that can be

produced by the inverter:

viαβ =
vdc

2
P2×3`abc (6.61)

is 19 (see Fig. 6.5). Denote with Labc a (non-unique) set of 19 switching values `abc which

cover all voltage vectors that can be produced. Any switching value `abc which is not in Labc

can always be mapped to at least one switching value in the set that produces the same voltage

vector. For each switching value `abc ∈ Labc , there is a corresponding matrix exponential

e Ā`abc
τ where the argument τ≥ 0 can take only non-negative values. By considering a certain

range of the argument values [0,τmax ], for each of the 19 switching values in Labc (i.e., for

each voltage vector that can be produced) one can perform a gridding of the range [0,τmax ]

with ng points Tg = {τg 0,τg 1, ...,τg ng } and store in the controller’s memory the set of matrix

exponentials:

S`abc (Tg ) =
{

e Ā`abc
τ |τ ∈Tg

}
. (6.62)
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Figure 6.5 – Volage vectors of a three-phase three-level NPC inverter inαβ frame. The switching
value `abc of each vector is written in rectangle with plus and minus signs denoting the
switching values one and negative one, respectively. Although the total number of rectangles
(switching values) is 27, the total number of voltage vectors that inverter can produce is 19.

During online operation, for a given switching value `abc and a given argument value τ, it is

possible to perform a convex combination of the stored matrix exponentials that correspond

to the `abc by taking the gridding points adjacent to the argument τ. More formally, these

are the points τg i ,τg (i+1) ∈Tg where i is such that τg i ≤ τ≤ τg (i+1), and the evaluation of the

matrix exponential e Ā`abc
τ by forming a convex combination of the stored matrix exponentials

takes the form:

e Ā`abc
τ ≈ τg (i+1)−τ

τg (i+1)−τg i
e Ā`abc

τg i + τ−τg i

τg (i+1)−τg i
e Ā`abc

τg (i+1) .

Alternatively, one can simply round the value τ to the closest available one within the grid Tg

and use its matrix exponential as an approximate evaluation. The memory-based evaluations

of matrix exponentials e Ā`abc
τ can be used both for the forward system simulation in (6.55) as

well as for forming of the Jacobian in (6.56) which involves the sensitivities of the predicted

states with respect to the switching times.

In addition to storing the matrix exponentials S`abc of the system dynamics, one can as well

store the matrix exponentials e Â`abc
τ of (6.37) needed for calculating the Nk terms (6.36) in the

cost function. Again, for selected gridding points Tg (which could possibly be different than
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the ones used for S`abc ) and for the switching values `abc ∈Labc , one stores in memory

C`abc (Tg ) =
{

e Â`abc
τ |τ ∈Tg

}
, (6.63)

which as well allows doing online convex combinations of the stored matrices or possibly

rounding of τ to the closest gridding value in Tg . In case of matrices of (6.37), one could

alternatively also directly store the matrices Nk of (6.36) for the gridding points Tg and operate

with them.

The memory requirements for storing of matrix exponentials can be reduced by exploiting their

sparsity and special structure. For example, the matrix exponential of system dynamics (6.20)

has a similar strucure for the switching values `abc that contain two zeros, such as (1,0,0),

(0,1,0) or (0,−1,0), providing a possibility of storing only one of them and obtaining the others

by simple row/column exchanges and changes of the signs of certain elements. Certain rows

of (6.20), like for example those corresponding to simulation of sinusoidal grid voltages, can be

separately stored as sinusoidal functions. Also, usage of a plant model inαβ frame instead of in

abc reduces the memory requirement by making the size of the involved matrix exponentials

smaller.

6.5.2 Constraint Set Approximation of the QP

The QP approximation (6.60) can be addressed by a large number of optimization algorithms

such as interior-point, active-set or operator splitting methods (see, e.g., [37, 53]). To efficiently

obtain an approximate solution of the QP (6.60) by a simple gradient-projection algorithm,

an additional approximation will be introduced by removing the sequence constraint set Ξs

and leaving only the box constraint Ξb . The main motivation for this simplification is the

projection substep involved in each gradient projection iteration whose execution can be

performed with particular computational efficiency in case of a box constraint shape.

The removing of the sequence constraint is additionally justified by the effect which the box

constraint has, which is the limiting of the departure that the switching times can have from

nominal switching times. This limiting reduces the probability that a change of the overall

three-phase sequence can happen, making thus the impact of the removal of the sequence

constraint less significant. In cases where this effect of the box constraint does not take place,

a preventing of the sequence changes can be achieved during forming of the QP by adapting

the upper and lover bounds in the box constraint in order to prohibit any change of sequence.

In the numerical experiments of this chapter involving the considered case study, a necessity

for utilization of an adaptation technique of this kind did not appear.

6.5.3 QP Solving: Early-Terminated Gradient-Projection

The obtained QP problem can be conveniently addressed by the gradient-projection optimiza-

tion algorithm [13]. For notational convenience in what follows, the QP (6.60) is written as
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minimize
∆tI

JQP (∆tI )

subject to ∆tI ∈Ξb(δmax ),
(6.64)

where JQP (∆tI ) is the quadratic cost from (6.60) and Ξb(δmax ) is the box constraint defined

previously. Starting from an initial guess for the QP solution ∆t 0, the gradient-projection

algorithm with backtracking line search has the form

∆t p+1
I = PΞb

(
∆t p

I −αp ∇JQP (∆t p
I )

)
, (6.65)

where p = 0,1,2, . . . is the iteration number, PΞb :RNsw →RNsw denotes projection on the set

Ξb(δmax ), and αp is the stepsize at iteration p selected to be αp =βmαg p where αg p is some

user-specified initial stepsize for backtracking, β ∈ (0,1), and m is the smallest positive integer

for which the inequality

JQP (∆t p
I )− JQP (∆t p+1

I ) ≥σ∇JQP (∆t p
I )T

(
∆t p

I −∆t p+1
I

)
holds, given some specified σ ∈ (0,1). A good choice for the initial point is ∆t 0 = 0Nsw×1, which

will be used in the numerical experiments of this chapter. Thanks to the box shape of the

constraint set Ξb(δmax ), the projection substep in (6.65) consists of a simple clipping of the

components of the vector to be projected.

An alternative to the gradient-projection method could be its accelerated version [52] which

involves an extrapolation mechanism between the iterations and can be shown to have better

iteration complexity. Nevertheless, the performance of the simple gradient-projection encoun-

tered in the numerical experiments was satisfactory, and a need to resort to the accelerated

version did not occur.

6.5.4 Iterative Trajectory Improvement

The previously described process of performing forward simulation, computing state sensi-

tivities and forming a QP to obtain ∆tI can be iteratively performed multiple times by the

controller within the control period. This multiple forming and solving of the QP problems

would lead to an iterative trajectory improvement.

Starting with some t̄ 0, for which a good initialization is the OPP t̄∗, for a certain number of

trajectory improvement iterations Ntr the method would first perform a forward simulation

of the system dynamics using the times t̄ q obtained from the previous iterate:

x̄k (t̄ q ) = e
Ā`∗

I (k−1)
(t∗I (k)−t∗I (k−1))x̄k−1(t̄ q ), (6.66)

in which `∗I (t̄ q ) is determined by the t̄ q , and it would also formulate the matrices of state

sensitivities ∇x̄k (t̄ q ) as well as the Nk (t̄ q ) matrices. These components, which all have a
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possibility to be evaluated by using memory-stored matrix exponentials, give rise to the QP

optimization problem performed by linearizing at the times t̄ q :

minimize
∆tI

∆t T
I H(t̄ q )∆tI +h(t̄ q )∆tI + J∆d s(∆tI ; t̄ q )

subject to ∆tI ∈Ξb(δmax ).
(6.67)

The optimal solution of the above QP, the ∆t q
I , determines the modification ∆t̄ q which should

be used to obtain the next iterate t̄ q+1 = t̄ q +∆t̄ q . The process is repeated until Ntr iterations

of trajectory improvement are executed.

The J∆d s(∆tI ; t̄ q ) quadratic penalty in (6.67) can be chosen as a penalty on the deviations from

the nominal times t̄∗:

J∆d s(∆tI ; t̄∗) = (t q
I +∆tI − t∗I )T (t q

I +∆tI − t∗I ), (6.68)

in which the t q
I is determined by t̄ q , or as a penalty from the previous iterate t̄ q :

J∆d s(∆tI ; t̄ q ) = (∆tI )T (∆tI ), (6.69)

which will be the form used in the numerical experiments.

As can be seen, the QP in (6.67) has the sequence constraint Ξs removed, which after iterating

the above procedure for a certain number of iterations could cause a t q+1
I whose components

are not monotonically non-decreasing. This violation can be prevented at the QP forming

phase by an adaptive box constraint tightening which would modify the box-constraint bounds

so that a change of three-phase sequence (i.e., violation of Ξs) is not possible. Another

possibility is to solve the QP without box-constraint adaptation and use some simple post-

processing of the obtained switching times in t q+1
I to correct its elements into a non-decreasing

sequence. For instance, this could be achieved by modifying the components t q+1
I i which are

breaking the sequence constraint (i.e., components for which t q+1
I (i−1) > t q+1

I i ) to be equal to

their preceding t q+1
I (i−1). This simple post-processing approach was utilized in the numerical

experiments of this chapter.

It should be observed that the effect of the described iterative trajectory improvement may

also be introduced by solving only one QP per control period and passing its solution to the

next control period for forming the new QP. This can be observed as an iterative trajectory

improvement where after each solving of the QP, the initial portion of the obtained input

trajectory is applied to the system and the remaining part of the obtained trajectory is then

further processed by the QP in the next control period.
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6.6 Performance Evaluation

The described control method has been tested in simulation by using Matlab. The perfor-

mances of the approximate controller versions was benchmarked against the performance

of the original unapproximated OCP based on OPPs (6.31) which was numerically tackled by

applying the gradient method as described in Section 6.4.4. The parameters of the medium-

voltage grid-tied power converter with LC filter are taken from [69] and are listed in Table 6.2.

The control period used in the experiments is set to Ts = 50µs, the pulse number of the used

OPP is d = 8 and the number of switches within the prediction horizon is Nsw = 9. The matrix

exponentials were stored for the range [0,τmax ] with τmax = 2 ms and ng = 10 gridding points,

and they were used online by doing convex combinations of them. A summary of the controller

parameters used in the experiments is given in Table 6.3.

The results in figures are given with vertical axes normalized with respect to the base quantities.

The selected base values for voltage, current, power and frequency are VB = p
2/3Vg , IB =p

2Ig n , SB = 8 MVA and fB = 50 Hz.

The QP approximation of the controller has been implemented on an FPGA model Kintex

KCU 1500, and the C code was synthesized using Vivado HLS. Table 6.1 summarizes the

latency (the number of clock cycles required for execution) and usage of FPGA resources for

an implementation optimized using pipelining and loop unrolling. Due to clock inaccuracy

of 1.25ns, the worst clock time is 10ns, resulting thus in 60µs required for execution of the

control method on the available FPGA model. The implementation on the available FPGA

demonstrates that an execution of the control method can be performed with time which is

within the order of magnitude of the desired one. Further decrease of the computation time

could be achieved by introducing more paralelism into the implementation, which would

require an FPGA with an additional amount of resources. The FPGA implementation is not a

contribution of this thesis, and its description is thus not further detailed.

Method QP formulation QP solve total

latency 5956 66 6022

clk [ns] 8.74 8.74 8.74

BRAM (%) 41 0 41

DSP (%) 92 7 99

FF (%) 19 1 20

LUT (%) 96 4 100

Table 6.1 – Latency and resource consumption on Kintex KCU 1500
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Table 6.2 – Converter, LC filter and grid parameters.

Parameter Value

Converter’s DC link voltage vdc 5200 V
LCL inverter-side inductance Lfi 600 µH
LCL inverter-side resistance Rfi 5 mΩ

LCL capacitance Cf 1 mF
LCL grid-side inductance Lfg 600 µH
LCL grid-side resistance Rfg 5 mΩ

Grid voltage Ug 3000 V
Grid nominal current Ign 1540 A
Grid frequency fg 50 Hz

6.6.1 Transient Performance

The transient performance of the controller has been tested by introducing step changes of

the reference active-reactive power pair (Pg ,Qg ). In particular, the tests were done by keeping

the reactive power reference at Qg = 0 and changing the reference active power Pg . The

reactive power reference Qg = 0 is a typical choice in the grid-connected power electronics

applications since it results in the best power factor. Results obtained when changing the

power reference from (0.6,0) in per-unit to (0,0) are represented in Fig. 6.6. It can be seen in

the figure that an increase of the number of QP iterations executed per control period leads

to a closer approximation of the performance obtained with the original unapproximated

OCP based on OPPs. The difference between the OCP and the approximate versions is less

pronounced for smaller step changes of references, as can be seen for example in Fig. 6.7

where a change of reference from (0.8,0) to (0.4,0) was involved.

Transient performance is also illustrated in Fig. 6.8 where the total (three-phase) instantaneous

power injected into the grid is plotted for the two cases illustrated in Fig. 6.6 and Fig. 6.7. It can

be observed how an increased number of QP iterations leads to a performance closer to the

unapproximated OCP. It should be noted that although the instantaneous power of each single

phase is not constant, the total three-phase instantaneous power is constant in steady-state,

as depicted in Fig. 6.8. Plots of instantaneous reactive power injected into the grid are not

considered as instantaneous reactive power is not a defined concept in electric circuits theory.
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Table 6.3 – Controller parameters.

Parameter Value

Control period Ts 50µs
OPP pulse number d 8
Switches in prediction horizon Nsw 9
Lower bound for the modulation indices mmi n 0
Upper bound for the modulation indices mmax 4/π
Number of modulation index gridding points nm 256
Upper bound for storing of exponentials τmax 2 ms
Number of gridding points for exponentials ng 10
Penalties in Q for inverter current Qfi 0
Penalties in Q for grid current Qfg 1
Penalties in Q for capacitor voltage Qf 0.1
Number of gradient-projection iterations for QP Ngp 10
QP’s bound of box constraint δmax 30µs

6.6.2 Steady-State Performance

The steady-state performance of the controller is quantified by total harmonic distortion

(THD) of the grid current, which is for the current in each phase p ∈ {a,b,c} defined as:

THD%p =
√∑∞

k=2 î 2
fgpk

îfgp1
·100%, (6.70)

with îfgpk denoting the k-th harmonic of the given phase signal ifgp (t ). An average THD over

the three phases is given by

THD% = 1

3
(THD%a +THD%b +THD%c ) . (6.71)

The THD values of different controller variants obtained at (Pg ,Qg ) = (0.8,0) with harmonics

computed by using one steady-state period are given in Table 6.4. It can be seen that the

approximate versions involve a slight degradation of the steady-state performance in compari-

son to the unapproximated OCP solution, although the values obtained are still very low and

demonstrate the performance of steady-state operation with combined usage of OPPs and LC

filter.

6.7 Conclusions

This chapter described an optimization-based power electronics control method based on

OPPs. The method is developed by first introducing an OCP based on OPPs which is then
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Figure 6.6 – A step change of the power reference pair (Pg ,Qg ) at 10 ms from (0.6,0) to (0,0).

addressed in order to obtain low-computational complexity approximations of its control

policy. In comparison to other methods which use OPPs to store the optimal steady-state

operation in controller’s memory, the method of this chapter uses integrated squared tracking

error as a cost function and also allows a usage of memory to store the information about

dynamic system behavior, thereby allowing an approximate low-computational complexity

MPC that optimizes transient behavior of complex power electronics configurations such as a

grid-tied power converter with LC filter. The obtained approximations provide a possibility

for implementation of one of the controller’s approximate versions on an FPGA.
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Figure 6.7 – A step change of the power reference pair (Pg ,Qg ) at 10 ms from (0.8,0) to (0.4,0).

Table 6.4 – The THD values of different controller versions obtained at reference (Pg ,Qg ) =
(0.8,0).

Controller Version THD%a THD%b THD%c THD%

1 QP Iteration 0.48 0.42 0.48 0.46
2 QP Iterations 0.51 0.42 0.50 0.48
3 QP Iterations 0.54 0.50 0.56 0.53

10 QP Iterations 0.51 0.48 0.53 0.51
OCP Solution 0.26 0.26 0.26 0.26
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7 Conclusions

This thesis presented several contributions related to the computational complexity required

for optimization-based controller execution. The main outcomes are summarized in what

follows, as well as some possible directions for future research.

Part I - Automatic Controller Tuning

This part provided an automatic controller tuning method for constrained control of nonlinear

systems. The method is capable of performing an offline controller tuning that optimizes some

user-specified performance metric while imposing closed-loop stability. As such, it allows

an easier design of low-complexity optimization-based controllers by performing tuning

of their parameters (possibly also of the parameters in the optimization algorithm). The

flexibility of the method also allows its application to tuning of the control structures that are

usually applied in a heuristic manner, as well as application to novel controller forms that a

user may find suitable for his problem (e.g., a control structure involving a user’s intuitively

designed optimization algorithm). Extensions of the initial sum-of-squares based controller

tuning to multimodel uncertainty case and non-polynomial larger size systems are presented.

The tuning procedure involves two phases, both of which are formulated as optimization

problems that can be tackled by applying Bayesian optimization. The application examples

involve synthesis of an explicit-MPC controller for speed control of the nonlinear PMSM

model, an anti-windup equipped PID for gyroscope position control which is synthesized

robust to multimodel uncertainty, an early terminated optimization-based controller for

soft-constrained speed control of PMSM, and a cascaded linear controller with saturation for

gyroscope position control.

A possible direction for future research is improvement of the method’s scalability, both in

terms of the number of controller tuning parameters that can be addressed as well as in

terms of the size of the system (the number of states). Another possible direction is to extend

the method into the safe reinforcement learning framework so that the performance metric

is evaluated experimentally during tuning while the constraint satisfaction is enforced in
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experiments to ensure safety until a controller with closed-loop stability and satisfactory

performance is eventually obtained. Applications of the scenario-based tuning by using

the control inputs directly computed by the available embedded hardware would also be an

attractive direction, as the tuning method would be able to take into account the present round-

off errors and tune as well the termination criteria of the optimization subalgorithms (e.g.,

termination criteria of a method solving subproblems of augmented Lagrangian algorithm)

so that the overall early-terminated control policy computed by the embedded hardware is

synthesized.

Part II - Accelerated ADMM based on Accelerated Douglas-Rachford Splitting

An accelerated version of ADMM based on accelerated Douglas-Rachford splitting is derived

resulting in a method characterised by a O(1/k2) complexity of the internal convergence

mechanism. In comparison to classical ADMM, the derived algorithm involves an additional

algebraic step which corresponds to the extrapolations in the underlying fast gradient method.

The numerical results show that the method can improve the performance of classical ADMM

over the allowed range of penalty parameters, and that a heuristic modification can potentially

extend the benefits of acceleration beyond this allowed range.

Besides exploration for more relaxed conditions which lead to guaranteed convergence prop-

erties, future work can also be oriented to the establishing of restarting schemes which can

enforce convergence of the heuristic accelerated version. The heuristic version’s acceleration

also can be exploited by the tuning methods of part one of the thesis, which can arrange the

penalty parameter and the overrelaxation factor such that the closed-loop system behavior is

directly addressed.

Part III - Power Converter Pulse Patterns Optimal Control

This part introduced an optimization-based power electronics control method using OPPs. In

comparison to the other methods which use OPPs to store the optimal steady-state operation

in the controller’s memory, the method of this chapter uses integrated squared tracking error

as the controller’s cost function and also allows a usage of memory to store the information

about the system’s dynamic behavior. This allows an approximate low-computational com-

plexity MPC that optimizes transient behavior of complex power electronics configurations,

such as the grid-tied converter with LC filter which was considered as a case study. The

low-complexity controller versions provide a possibility for implementation on embedded

hardware. The approximate controller versions were tested in simulation and compared with

the unapproximated optimal control based on OPPs in order to asses the impact which the

approximations introduced for computational reasons have on the obtained performance.

Besides exploring possibilities for further computational reduction of the control method,

future research can consider an experimental application on a power electronics test setup.
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By using the method’s flexibility in terms of the power electronics configurations that can

be addressed, a testing of the method’s performance when adapted to various problems of

practical interest, such as for example the case of non-symmetric operating conditions, is also

a valuable direction for further investigation.
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