
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Georgios PSAROPOULOS

Présentée le 25 octobre 2019

Thèse N° 9712

Improving Main-memory Database System Performance through
Cooperative Multitasking

Prof. A. Argyraki, présidente du jury
Prof. A. Ailamaki, directrice de thèse
Prof. J. Teubner, rapporteur
Dr T. Willhalm, rapporteur
Prof. J. Larus, rapporteur

à la Faculté informatique et communications
Laboratoire de systèmes et applications de traitement de données massives
Programme doctoral en informatique et communications

To those who made it possible. . .

Contents
Contents vi

List of figures viii

List of tables ix

Acknowledgements xi

Abstract (English/Deutsch) xiii

1 Introduction 1
1.1 The cost of indirection . 1
1.2 How humans write code and how hardware runs it 2
1.3 Thesis statement and contributions . 3
1.4 Thesis outline . 5

2 Preliminaries 7
2.1 Elements of computer architecture and performance analysis 7

2.1.1 The execution pipeline . 7
2.1.2 Memory and caches . 9
2.1.3 Top-down microarchitectural analysis 10

2.2 The SAP HANA column store . 11
2.3 Traditional memory latency mitigations . 12
2.4 Running example: binary search . 13

3 Interleaved Execution 15
3.1 Analytical model . 15
3.2 Implementing interleaved execution . 18

3.2.1 The coroutine construct . 18
3.2.2 Interleaving with C++ coroutines . 19
3.2.3 Interleaving with library-based coroutines 25
3.2.4 Interleaving arbitrary tasks . 28
3.2.5 Code complexity . 31

3.3 Related work . 32

v

Contents

3.3.1 Prior work . 32
3.3.2 Follow-up work . 36

3.4 Summary . 37

4 Performance Analysis & Applications 39
4.1 Experimental setup . 39
4.2 Microbenchmarks . 41

4.2.1 Comparison to GP and AMAC . 43
4.2.2 Microarchitectural analysis . 46
4.2.3 Choosing the group size . 51
4.2.4 Library- vs compiler-based coroutines 52
4.2.5 Hyperthreading and multithreading 53
4.2.6 The scalability of multithreaded interleaved execution 54
4.2.7 Interleaved execution on IBM POWER9 55

4.3 Analytics and transactions . 57
4.3.1 Index join . 57
4.3.2 Transactions . 61

4.4 DRAM vs NVM . 63
4.4.1 Microbenchmarks . 64
4.4.2 Index join . 65
4.4.3 Tuple reconstruction . 66

4.5 Summary . 68

5 Conclusions and Future Directions 69
5.1 What we did . 69
5.2 Discussion and future directions . 71
5.3 Parting thoughts . 74

Bibliography 80

Curriculum Vitae 81

vi

List of Figures
2.1 The physical representation of an attribute NAME in the SAP HANA column store. 11

3.1 Sequential vs interleaved execution. 16

3.2 Maximum speedup of interleaved execution according to Formula 3.4. 18

4.1 Binary searches over sorted array. Interleaving increases runtime robustness.
Coro performs similarly to AMAC, while the difference to GP is smaller for the
string case. 44

4.2 Binary searches over sorted array with sorted lookup values. Sorting increases
temporal locality, but does not eliminate compulsory cache misses. 45

4.3 Execution time breakdown of binary search. Interleaved execution reduces
memory stalls significantly. 47

4.4 Breakdown of L1D misses. Interleaved execution hides the latency of data cache
misses. 48

4.5 Coro on sorted integer array using (a) 4 kB pages, (b) 2 MB pages, and (c) 4 kB
pages and an index on top of the sorted array. Using either 2 MB pages or the
index leads to fewer TLB misses, smoothing out the related runtime jumps. . . 50

4.6 The effect of group size on runtime (for 256 MB integer array). Best group sizes:
10 for GP, 5–6 for AMAC, Coro. 52

4.7 Compiler-based (Coro) vs library-based (Cont) coroutines compiled with MSVC
(M) and Clang (C). Coro performs better than Cont because it has more lightweight
suspension/resumption. 53

4.8 Interleaving, hyperthreading, and multithreading. The combination of coroutines
and hyperthreading (CHT) performs better than non-interleaved multithreaded
execution on 4 cores (BMT4). 53

4.9 Combining multithreading (MT), hyperthreading (HT) and interleaving with corou-
tines (C) performs best. 54

4.10 10K binary searches on IBM POWER9. 55

4.11 10K binary searches on IBM POWER9 single-threaded, with SMT2, and with
SMT4. 56

vii

List of Figures

4.12 IN-predicate queries executed on SAP HANA with increasing dictionary sizes.
The original implementations incur evident runtime increases when the dictio-
naries do not fit in the cache (25 MB), due to expensive main memory accesses.
Interleaved implementations exhibit robust performance despite accessing main
memory. 60

4.13 YCSB (80% GET, 20% PUT) performance on Silo for scale factors 500, 5K, 50K,
and 500K. The depicted throughput, average latency, 99th percentile latency
measurements correspond to interleaved execution with different group sizes G
and are normalized to non-interleaved execution. Larger scale factors imply more
cache misses, hence more benefit from interleaving. In addition, relatively small
group sizes offer near maximum throughput without increasing operation latency
significantly. 62

4.14 Binary search performance on DRAM vs NVM. 64
4.15 Scalability of binary search for a 2 GB sorted array. 65
4.16 IN-predicate query on tables with 100M rows. 66
4.17 ‘SELECT (*)’ query on INTEGER tables with 1M rows and varying column counts. 67
4.18 ‘SELECT (*)’ query on a table with 1M rows and 1000 columns (of INTEGER,

DECIMAL(10,2), and VARCHAR(50) type), with and without frequency scaling. 67

viii

List of Tables
2.1 Characteristics of DDR4 DRAM, Intel Optane DC PMM, and a Samsung 983

ZET SSD. 10

3.1 Implementation complexity and code footprint of interleaving techniques. The
two Coro variants differ the least from the Baseline (13 LoC) and require the
least amount of code to support both sequential and interleaved execution. . . . 32

4.1 System parameters (only DRAM) . 40
4.2 System parameters (DRAM and NVM) . 42
4.3 Execution details of locate. 59
4.4 Pipeline slot breakdown for locate. 59
4.5 Performance metrics of non-interleaved YSCB execution on Silo. 61

ix

Acknowledgements

This PhD has been an adventure, the successful completion of which would not have been
possible without the help and support of my advisor, my colleagues, my friends, and my family.

First and foremost, I would like to thank my advisor, Prof. Anastasia Ailamaki. When I came
to Natassa’s group as a third year PhD student she made sure I find a research topic that would
not only advance the state of the art but also be feasible in the given timeframe. Thanks to the
confidence she put in me, I was able to drive my thesis from the conception of the general idea of
interleaved execution to the publication of my papers and writing of the present dissertation. At
the same time, she was always available to provide guidance and support on any matter, be it
research-related, or about personal life and career development.

Second, I would like to thank my SAP supervisors, Dr. Norman May and Dr. Thomas Legler.
While Natassa ensured my work has academic merit, Norman and Thomas helped me frame a
thesis with business value. Norman’s discrete but effective supervision allowed me to experiment
with many ideas, while his feedback substantially improved my papers and thesis. And Thomas
brought a more applied perspective to our discussions, while being essential in understanding
and working with SAP HANA.

I would also like to thank Prof. James Larus, Prof. Jens Teubner, and Dr. Thomas Willhalm for
serving in my thesis committee and contributing with their valuable comments; as well as Prof.
Katerina Argyraki who presided over my oral exam.

Next, I would like to thank my academic families. On the EPFL side, I am thankful to Onur,
Stavros, Cansu, Djordje, and Javier for teaching how to create a decent set of slides and how to
run experiments. Many thanks are also due to Danica and Manos for introducing me to database
research and brainstorming with me on potential research topics, as well as to Iraklis for helping
me to settle in Germany and at the new environment of SAP. Special thanks go to Eleni and
Mira, whose office armchair I occupied numerous afternoons while at EPFL, enjoying their
company and getting informed about the social events in Lausanne. Further, I am thankful to all
the amazing people I had the privilege to coincide with while at DIAS lab: Angelos, Aunn, Ben,
Bikash, Srinivas, Cesar, Darius, Diane, Dimitra, Erika, Foteini, Lionel, Matt, Odysseas, Panos,
Periklis, Raja, Renata, Satya, Sharareh, Stella, Tahir, Utku, and Viktor.

xi

Acknowledgements

On the SAP side, I would like to thank the SAP HANA Database Campus team: Arne, Axel,
David, Elena, Florian, Frank, Ismail, Lucas, Marcus, Max, Michael (senior), Michael (junior),
Robert, Robin, Thomas, Tiemo, and Stefan. Besides being valuable colleagues at work, these
people were also my budddies for lunch, dinner, board game, movie watching, hiking, and many
other activities. Particular mentions go to Ismail and Stefan, who were good friends and the most
critical readers of my papers, to Frank, Max, and Florian, with whom I had many casual dinners
and outings, and to Arne, for the great team culture he has created in the Campus; I am extra
gratefult to Stefan for translating the abstract of this dissertation in German. Finally, thanks goes
to Thomas and Roman, who were my go-to people regarding everything about Intel hardware.

Apart from my academic families, I would also like to thank my friends in Lausanne and
Heidelberg that brightened the days during the past six years. Special thanks go to Dimitris,
Giorgos, who stood with me in both good and bad times, to Mario, Arash, and Eleni, who
substantially facilitated my time between Lausanne and Heidelberg, to Kostas and Ioanna, for
making me feel as a member of their family, to Marios and Abdel, for being great neighbors in
Bahnstadt.

Last but not the least, my deepest gratitude goes to my parents Triantafyllos, Eleni, and my
siblings, Marialena and Iakovos, for their unconditional love and support.

Lausanne, 10 October 2019 Georgios Psaropoulos

xii

Abstract

Database systems access memory either sequentially or randomly. Contrary to sequential access
and despite the extensive efforts of computer architects, compiler writers, and system builders,
random access to data larger than the processor cache has been synonymous to inefficient
execution. Especially in the big data era, data processing is memory bound, and accesses to
DRAM and non-volatile memory each take several tens or hundreds of nanoseconds respectively,
posing a great challenge to current processors. Due to the mismatch between the way humans
write code and the way processors execute this code, workload execution stalls on main memory
access, instead of executing the other parallel work that typically exists in big data workloads.

This thesis establishes cooperative multitasking as the principal way to hide memory latency in
operations that consist of parallel tasks. We first systematize cooperative multitasking presenting
an analogue of Amdahl’s law for latency hiding. More importantly, we then introduce interleaving
with coroutines, a general-purpose and practical technique to interleave the execution of parallel
tasks within one thread interleaved execution and thereby hide memory access. This form
of cooperative multitasking enables significant performance improvements for analytical and
transactional use cases that suffer from unavoidable memory accesses, such as index joins and
tuple reconstruction, as well as concurrent GET and PUT operations in key-value stores. Given
enough parallel work, sufficient hardware support for concurrent memory accesses, and a low-
overhead mechanism to switch between tasks, interleaved execution renders important database
operations oblivious to memory latency and makes their execution behave as if all accessed data
resides in the processor cache.

Keywords. Main memory databases, random memory access, pointer chasing, memory latency,
data cache miss, memory stalls, cooperative multitasking, interleaved execution, coroutines, C++
coroutines, latency-bound operation, software hyperthreading.

xiii

Zusammenfassung

Datenbankmanagementsysteme greifen auf Daten im Speicher entweder sequenziell oder zufällig
zu. Doch trotz großer Anstrengungen von Computer-Architekten, Kompilerentwicklern und
Systemingenieuren ist der zufällige Speicherzugriff im Vergleich zum sequentiellen Zugriff nach
wie vor kostspielig und ineffizient, sobald die Daten größer als der Cache eines Prozessors sind.
Im Zeitalter von Big Data hängt die Geschwindigkeit der Datenverarbeitung maßgeblich von der
Zugriffsgeschwindigkeit des Speichers ab. So dauern Zugriffe auf DRAM oder nichtflüchtigen
Speicher mehrere zehn beziehungsweise hunderte von Nanosekunden. Auf Grund der unterschied-
lichen Art und Weise wie Entwickler Programmcode schreiben und dieser dann von Rechnern
ausgeführt wird, wird daher zur Programmausführung viel Zeit mit Warten auf den Speicher
verschwendet. Dabei könnte in dieser Zeit auch andere Arbeit parallel ausgeführt werden.

Diese Dissertation führt kooperatives Multitasking als wesentliche Möglichkeit zum Verbergen
von Speicherlatenzen innerhalb von parallelen Anwendungen und Aufgaben ein. Zunächst sy-
stematisieren wir das Konzept von kooperativem Multitasking und präsentieren eine Analogie
zum Amdahl’schen Gesetz für das Verbergen von Speicherlatenzen. Im Anschluss stellen wir
Verschränkung mit Koroutinen vor, eine allgemeine und praktikable Technik zum Verschränken
von parallelen Ausführungseinheiten innerhalb der Ausführung eines einzelnen Threads, um
Speicherlatenzen zu verbergen. Diese Form von kooperativem Multitasking ermöglicht signifi-
kante Leistungsverbesserungen für analytische und transaktionale Anwendungsfälle, die durch
eine Vielzahl von unvermeidbaren Speicherzugriffen verlangsamt werden. Dazu zählen beispiels-
weise der Index Join und die Tupelrekonstruktion sowie nebenläufige GET und PUT Operationen
einer Schlüssel-Werte-Datenbank. Sofern genügend parallele Arbeit zur Verfügung steht und die
Hardware parallele Speicherzugriffe sowie einen Mechanismus für effiziente Kontextwechsel
bereitstellt, macht die verschränkte Ausführung zentrale Datenbankoperationen unabhängig von
der Speicherlatenz. Dies führt dazu, dass Operationen so ausgeführt werden können, als wären
alle notwendigen Daten bereits im Cache des Prozessors verfügbar.

xiv

1 Introduction

For more than a decade, the database industry has been undergoing a shift towards main memory
systems, targeting faster workload execution. This shift from out-of-core to main memory data
management, while eliminating the previous main execution bottleneck, i.e., disk I/O, leaves
main memory as the slow component in the database system and the next frontier in the quest of
ever-increasing workload performance.

Fact is, the execution of both analytical and transactional workloads on modern database systems
is inefficient [9, 30, 56] due to instruction and data cache misses that lead to execution stalls.
Instruction cache misses can be avoided with code generation that reduces the instruction footprint
of a workload [25]; whereas data cache misses are eliminated with data structures optimized for
the cache hierarchy [27, 32, 51, 55, 61], or hidden with techniques like out-of-order execution
and software prefetching. This thesis studies unavoidable data cache misses that cause accesses
to main memory, whose latency is too high to hide with the aforementioned techniques.

1.1 The cost of indirection

Indirection constitutes the main source of data cache misses and the associated stalls. Database
systems rely on indirection for efficient random data access that avoids full table scans. They
typically employ index structures like B+-trees and hash-tables, or algorithms like binary search
to locate the desired records in sublinear time. Although these access methods avoid touching all
data, they exhibit memory access patterns that cannot be modeled and predicted by hardware.
Such memory accesses incur data cache misses with latencies up to a couple of hundred cycles,
resulting in the observed inefficiency. Naturally, significant investments have been made towards
cache-friendly data structures that minimize—but not eliminate—the number of cache misses.
The remaining cache misses are treated with software prefetching, which hides memory latency
by overlapping memory access with computation. However, index structure traversals involve
sequences of memory accesses where the previous access determines the following one, presenting
a dependency chain that reduces the potential of overlapping access with computation.

1

Chapter 1. Introduction

Data cache misses affect database workloads, owing to the pervasive use of index structures.
Along with table scans, index-heavy operators like index and hash joins or group-bys dominate
analytical (OLAP) workloads. When the indexes involved outsize the cache, these operations
compound the latency problem by comprising a multitude of lookups. These lookups do not
depend on each other but are executed sequentially, resulting execution profiles where most
execution time consists of memory stalls. At the same time, transactional (OLTP) workloads
concurrently locate and update multiple records using point queries that are facilitated by indexes.
In both analytical and transactional workloads, the use of indirection implies cache misses and
long memory stalls that are difficult to mitigate.

Many important database operations, such as the aforementioned joins and concurrent point
queries, penalize the overall workload execution with their cache misses. Still, they comprise
enough work which could in principle be executed while asynchronously fetching data, thereby
hiding the latency of main memory accesses. Instead, with the current system implementations,
the latency is exposed to the runtime, rendering these operations latency-bound.

1.2 How humans write code and how hardware runs it

The difficulty in hiding memory latency is rooted in the way humans think and write code.
Humans think in terms of coherent sequences of ideas, in which one idea leads to the next
one forming trains of thought. Furthermore, the human mind can cope with vast amounts of
knowledge only thanks to abstraction, which allows to focus on the right level of detail by
encoding away entire notions and ideas into single terms. These two characteristics of how people
think are reflected in how humans write code: the trains of thought are expressed as individual
tasks with dependency chains, whereas abstraction techniques are easily identified in structured
programming as the functions, classes, and modules that comprise a program.

Considering how hardware architectures have been designed to hide latency, we see a discrepancy
between human-written code and hardware mechanisms. Current general-purpose processor
architectures employ superscalar pipelines and complex out-of-order engines to maximize the
number of instructions executed per time unit, yet they are effective only on tasks with enough
instruction-level parallelism. Compilers try to increase the instruction-level parallelism in the
generated assembly by reordering instructions; however, the compiler can prove the correctness
of this reordering only within function bodies, limiting the reordering scope. Consequently, the
way humans write code implies low instruction-level parallelism, which limits the capability of
the hardware to hide latency, thus leading to memory stalls.

One approach to reconcile code and its execution by hardware is to manually rewrite the code,
reordering instructions to achieve the ideal execution schedule that hides latency with independent
work. However, tearing down abstractions and breaking dependency chains means the code no
longer resembles a coherent thought process, which makes it hard to read and reason about. Most
of the time and especially in production environments, the performance gains are not worth the

2

1.3. Thesis statement and contributions

unmaintainable codebase that would occur from such rewrites.

We need a principled way to change the order in which instructions enter the processor pipeline,
while preserving the logic and structure of the code these instructions correspond to. Changing
execution order while preserving logic and structure requires to separate the two by employing
the proper abstraction. This abstraction must keep each individual task intact, and allow to
cooperatively multitask, switching between different tasks upon cache misses in order to find
work to execute.

The current state of the art in multitasking is lacking when the goal is to hide the latency of
main memory access. On the hardware side, simultaneous multithreading has proven ineffective
as mainstream processors offer only coarse-grained control over context switching (via OS
threading) and support only a limited number of hardware contexts (2 in Intel, 8 in IBM Power)
which often comprise insufficient work to completely hide memory latency. On the software side,
the existing techniques comprise compiler optimizations (e.g., strip mining, loop distribution)
that automatically reorder code without programmer effort, and principled ways to rewrite code
(e.g., group prefetching, asynchronous memory access chaining), while preserving some notion
of individual tasks; still, the software techniques proposed to this day either apply only to limited
code patterns, or increase code complexity to a prohibitive extent. As a result, multitasking
remains a niche approach outside of the standard toolbox of latency hiding techniques.

1.3 Thesis statement and contributions

This thesis addresses the inefficiency problem main memory accesses impose to database system
implementations and aims to improve workload performance by eliminating processor stalls.

Thesis Statement

When database systems access main memory, the processor wastes valuable execution cycles
waiting for data to be fetched instead of executing work from the many other parallel tasks that
comprise a database workload. Cooperative multitasking—implemented efficiently leveraging
language and compiler support—minimizes processor stalls by overlapping memory access and
computation across parallel tasks, thereby drastically improving workload performance.

Our work establishes cooperative multitasking as the principal way to hide memory latency
in latency-bound operations that comprise parallel tasks. Using one processor core, a group
of tasks is normally executed sequentially, one task after the other. In this scenario, when a
data cache miss occurs in a task, the processor pipeline stalls, waiting for the requested data to
be fetched from memory, instead of executing work from the other tasks. With multitasking,
we can interleave task execution, so that a task is suspended upon a cache miss and control of
execution is transferred to another task, and in general as many tasks as necessary to retrieve

3

Chapter 1. Introduction

enough instructions to execute while fetching data. This way, memory latency is in effect hidden
and the processor does not stall.

We make the following key contributions:

• We identify index joins and tuple reconstruction in column stores to be fundamental
database operations that are latency-bound and comprise parallel tasks.

• We devise a practical form of cooperative multitasking that employs coroutines to in-
terleave task execution and hide main memory latency. Interleaving with coroutines is
the core technical contribution of this thesis, and we assess its effectiveness through mi-
crobenchmarks, as well as end-to-end experiments in two systems, SAP HANA and Silo.
In the microbenchmarks, our technique offers similar performance improvements to prior
software techniques, but, unlike them, it results into code that resembles the original code
structure, and is thus easy to implement and maintain. The end-to-end experiments provide
evidence that interleaving with coroutines applies also to tasks with complex codepaths,
for which the prior techniques would be impractical or even infeasible to use.

• We introduce a performance model that describes how task interleaving works, determines
the optimal number of tasks to interleave given the latency to hide, the task code, and
overhead of the interleaving technique. In addition, we provide a formula that estimates
the speedup to expect if we hide latency, serving as the analogue of Amdahl’s law for
interleaved execution. With our model, we fill a gap in the literature, systematizing
cooperative multitasking as an approach to hide any kind of latency.

The aforementioned contributions, serve as a platform to show the following key insights:

• Memory latency can be hidden, so long as there is work for the processor to execute. In
many latency-bound database operations, this work can be found in parallel tasks.

• Interleaved execution renders latency-bound operations either compute- or bandwidth-
bound, depending on the overhead introduced by the interleaving technique and the number
of concurrent memory requests generated by the size of the task group that comprises
the necessary amount of work. Provided with enough parallel work, sufficient number of
outstanding memory requests supported by hardware, and a low-overhead implementa-
tion of interleaved execution, any latency-bound operation can operate with predictable
performance, as if the entire working set fits into the cache.

• Interleaved execution improves the overall execution throughput of a group of tasks, at the
cost of higher clock time for individual tasks, when the work interleaved is more than the
latency to hide. In case individual task clock time matters, e.g., when the tasks correspond
to transactions, we can trade off throughput to meet service level objectives.

4

1.4. Thesis outline

• The coroutine construct is the proper abstraction to separate the order in which instructions
from a group of tasks reach the processor pipeline, from the logic and structure of the code
in each of these tasks.

1.4 Thesis outline

This thesis is organized as follows: Chapter 2 introduces the essential background for the
topics discussed in this thesis. Chapter 3 systematizes interleaved execution, introducing an
analytical model which helps to assess the optimal configuration parameter values and estimate
the resulting speedup. In the same chapter, we present how to use coroutines to interleave parallel
tasks, covering cases from simple lookups to one index to complex codepaths in production
database systems involving accesses to multiple different data structures. Further, Chapter 4
demonstrates a thorough performance analysis of interleaving with coroutines (a) compared to
prior software-based techniques and simultaneous multithreading, (b) scaling with the number of
cores, and (c) for both DRAM and NVM latency. Chapter 4 presents the impact of interleaving
on the performance of analytical and transactional workloads. Finally, Chapter 5 summarizes
takeways, describes other application areas for interleaving, and lays out directions for future
work.

Chapters 3 and 4 incorporate content published in [47, 48, 49]. Moreover, the effectiveness and
practicality of our coroutine-based approach has been independently corroborated by [24, 28, 45].

5

2 Preliminaries

In this chapter, we provide the reader with preliminary information, necessary to follow the rest
of this thesis. We first discuss the computer architecture elements that are essential to understand
the results of our performance analyses. Then, we describe the SAP HANA column store, on
which we base the main prototype we use in our end-to-end evaluation. Further, we categorize the
traditional software mitigations for main memory latency, explaining where multitasking fits in
the presented categorization. Finally, we introduce the running example of this thesis, the binary
search implementation on which we apply and analyse our latency-hiding technique, interleaving
with coroutines.

2.1 Elements of computer architecture and performance analysis

In this section, we describe the essentials of modern computer microarchitecture for understanding
our performance analyses using the Top-Down Microarchitectural Analysis Method (TMAM) by
Intel. The interested reader can find more information on computer architecture textbooks, e.g.,
[19], and the processor manuals provided by vendors such as Intel [23] and IBM [21].

2.1.1 The execution pipeline

A simplified model for the execution pipeline of a processor core comprises the following two
major components:

• The Front-end, which fetches program instructions and decodes them into one or more
micro-ops (µops) that are then issued to the Back-end.

• The Back-end, which executes a µop on an available execution unit, as soon as the operands
of the µop become available. µops that complete execution retire after writing their results
to registers or memory, as specified be the instruction.

7

Chapter 2. Preliminaries

In this thesis, the semantic difference between instructions and µops is not important, so we will
be using the former term.

To increase the number of instructions they retire per second (IPC), modern core pipeline designs
employ techniques, such as superscalar execution, out-of-order execution, speculative execution,
and simultaneous multithreading.

Superscalar execution leverages the multiple execution units (8 in the Intel Skylake microarchi-
tecture) per each core by issuing, executing, and retiring multiple instructions in parallel per cycle
(up to 4 on the Intel Haswell microarchitecture). Of course, the actual number of instructions
issued, executed, and retired in parallel depends on the Front-end supplying enough instructions,
and the Back-end having the resources to execute them.

Out-of-order execution executes instructions whose operands are available without waiting for
previous instructions to retire. However, out-of-order execution is transparent to the outer world,
so instructions retire in the order they were issued. The reorder buffer facilitates in-order retire
by tracking the issued but non-retired instructions. New instructions can keep being issued so
long as there is space in the reorder buffer; instructions with long latency, such as loads that fetch
data from main memory are typical examples when the reorder buffer becomes full, blocking
execution.

Speculative execution decodes and executes instructions before determining if the control flow
path they belong to should be executed. Branch speculation is the most common form of
speculative execution that works by taking a snapshot of the architectural state and speculatively
executing one of the two branches until the branch condition is evaluated [17]. In case of
conditions that involve fetching data from memory, speculation allows instruction execution
to continue until either the reorder buffer becomes full, or, in tight loops with branches, the
maximum number of snapshots are already taken—whichever happens first. On correct prediction
of the branch, the respective snapshot is dropped and the speculatively executed work is retired;
otherwise, the results of speculative execution are dropped and the snapshot becomes the starting
point from where execution continues. Besides to wasted work in the Back-end, bad speculation
translates also into problems in the Front-end, since fetching and decoding the instructions of
the correct branch may lead to instruction cache misses. Most of the time, however, branch
conditions are predictable and speculation improves performance.

Simultaneous multithreading (SMT) executes multiple sequences of instructions on the same
processor core, switching among them upon stalls to maximize the use of core resources. Each
instruction sequence corresponds to a different operating system thread and is mapped to a distinct
hardware context. Core resources, such as the register file and the reorder buffer, are statically
spit or dynamically shared among the hardware contexts. Intel Xeon implementations exhibit
2 hardware contexts per core, whereas IBM POWER implementations have 4 or 8 contexts per
core, depending on the model. Hyperthreading is Intel terminology for SMT, and we use the two
terms interchangeably.

8

2.1. Elements of computer architecture and performance analysis

From these 4 hardware techniques to increase IPC, superscalar execution leverages the instruction-
level parallelism (ILP) available in the instruction sequence that reaches the core, whereas the
other 3 try to extract ILP from a wider instruction scope. All 4 techniques are essentially hiding
short latencies, but due to physical and design limitations cannot hide the long latency of memory
access. This means, if 4 instructions can be executed per cycle with superscalar execution,
a latency of 75 ns (300 cycles at 4 GHz) translates into a wasted execution potential of 1200
instructions.

2.1.2 Memory and caches

In this thesis, we focus on main memory databases, hence the relevant parts of the memory
hierarchy are main memory and processor caches. Assuming basic familiarity with DRAM and
the cache hierarchy [14], here we elaborate on (a) how caches handle cache misses, (b) address
translation, and (c) non-volatile memory.

Cache miss handling

Processor caches in current Intel Xeon and IBM POWER microarchitectures do not block upon
cache misses, but continue to process subsequent memory requests while the cache miss is
being served by the other parts of the cache hierarchy. The Miss Status Handling Registers
(MSHR) handle the state of the outstanding cache misses, enabling the cache to accept more
memory requests, both hits and misses. The number of available MSHRs determines how
many outstanding cache misses are supported per cache. Each private L1 cache on recent Intel
Xeon processors has 10 MSHRs, whereas IBM POWER9 exhibits 8 MSHRs per L1 cache.
MSHRs exist also on the other levels of the cache hierarchy, but more importantly in the memory
controllers, which handle the memory requests that miss the last level cache and require access to
main memory.

The reason we discuss MSHRs here is because L1 MSHRs become a performance bottleneck
when we interleave code that is heavily latency bound. In the rest of this thesis, we will refer to
L1 MSHRs with their Intel name: Line Fill Buffers (LFB).

Non-volatile memory (NVM)

Main memory can be either volatile or non-volatile. Non-Volatile Memory (NVM), also called
Storage-Class Memory or Persistent Memory, is a class of memory technologies that combine
the low latency (although higher) and byte-addressability of DRAM with the non-volatility and
large capacity of storage media. Examples of NVM include Phase-Change Memory (PCM) [37],
Magnetic RAM (MRAM) [13], and Resistive RAM (RRAM) [18]. In the race to bring NVM
to market, Intel recently announced the commercial availability of its Optane DC Memory
technology in the DIMM form factor [6]: Optane DC Persistent Memory Modules (PMM) embed

9

Chapter 2. Preliminaries

up to 512 GB NVM, i.e., double the capacity of the largest DRAM DIMMs available today
(256 GB), enabling computer systems with more main memory per socket. However, Optane DC
PMM (and NVM in general) exhibits higher access latency and lower bandwidth in comparison
to DRAM, with writes being slower than reads. The latency and bandwidth of Optane DC PMM
can be masked with the Memory mode of operation, which leverages DRAM as a cache and has
no memory persistency. For persistency, applications can use the App Direct mode: the PMM
is exposed as a storage device that mapped to the address space of a process and subsequently
accessed like DRAM, with ordinary load and store instructions—still, a special programming
model is necessary to ensure that stores are persisted in case of power outage. The two modes are
detailed in [23], while our work employs the App Direct mode.

Table 2.1 compares the characteristics1 of DRAM, Optane DC PMM in the App Direct mode,
and a state-of-the-art SSD. We measured the characteristics of DRAM and Optane DC PMM
on a system with a second generation Intel Xeon Scalable processor, codenamed Cascade Lake,
using the Intel Memory Latency Checker [1]. As the table indicates, while noticeably faster than
SSDs, Optane DC PMM has 4× higher latency and 10× lower random read bandwidth compared
to DRAM.

Table 2.1 – Characteristics of DDR4 DRAM, Intel Optane DC PMM, and a Samsung 983
ZET SSD.

DRAM PMM SSD

Read Latency 73 ns 300 ns 15 µs
Seq. Read BW 110 GB/s 36 GB/s 3.4 GB/s
Rand. Read BW 100 GB/s 10 GB/s 3.0 GB/s
Byte-addressable Yes Yes No

2.1.3 Top-down microarchitectural analysis

To analyse the microarchitectural behavior of the code studied in this thesis, we use Intel’s
Top-Down Microarchitectural Analysis Method (TMAM) [23] as implemented in the Intel VTune
Amplifier.

TMAM uses pipeline slots to abstract the hardware resources necessary to execute one µop and
assumes there are four available slots per cycle and per core. In each cycle, a pipeline slot is
either filled with a µop, or remains empty (stalled) due to a stall caused by either the Front-end
or the Back-end. The Front-end may not be able to provide the Back-end with a µop due to, e.g.,
instruction cache misses; whereas the Back-end may be unable to accept a µop from the Front-end
due to data cache misses (Memory) or unavailable execution units (Core). In the absence of stalls,
the slot can either retire (Retirement) or execute non-useful work due to Bad Speculation.

1We do not discuss write operations and endurance; this work focuses on read operations, whereas endurance is
expected to be several years thanks to the wear leveling that Optane DC PMMs embed.

10

2.2. The SAP HANA column store

Figure 2.1 – The physical representation of an attribute NAME in the SAP HANA column
store.

2.2 The SAP HANA column store

The main system we use in the end-to-end evaluation of this thesis is a prototype based on
SAP HANA, a commercial main memory database system that supports both analytical and
transactional workloads on the same data copy. In this section, we provide a brief overview of
the SAP HANA column store, while the interested reader can find more information about the
overall system architecture in [8, 16].

To efficiently supports ACID transactions and analytical queries on the same data copy, the
physical representation of table attributes in the SAP HANA column store consists of the two
fragments: the Main and the Delta, as depicted in Figure 2.1. The Main comprises read-only data
in a compressed form optimized for space and analytics, whereas the Delta holds the changes
effected on the data by transactions; the Delta is regularly merged into the Main in the background,
and upon explicit request by the user or the administrator. This separation of read-only and
update-friendly data facilitates the use of NVM [8], with Main and Delta respectively placed on
NVM and DRAM.

Both Main and Delta fragments employ dictionary encoding [16, 33, 35, 46, 50], a common
compresssion technique that assigns a code to each distinct data value and stores the resulting
collection of codes for each column, along with the code-value mapping, i.e., the dictionary. In
the HANA nomenclature, codes and the code collections are respectively known as value ids
and index vectors. In the Main, the value ids are assigned in an order-preserving manner—the
dictionary is sorted—, whereas they are assigned in a first-come-first-served way in the Delta; the
Main dictionary is thus a sorted array, whereas the Delta dictionary is an unsorted array, indexed
by a cache-conscious B+-tree (CSB+-tree) [51] that provides a sorted view of the values. Main
dictionaries can be further compressed with compressions schemes that depend on the attribute
datatype.

11

Chapter 2. Preliminaries

Note that dictionary encoding and compression in general introduce one or more levels of
indirection in the physical representation of attributes. The indirection reduces space requirements
for datasets with redundancy, at the cost of additional cache misses when the involved data
structures outsize the cache. Fetching the value that corresponds to a row in a column, as well as
finding the rows that contain a specified value are pointer-chasing operations and thus latency-
bound. Both operations are the respective building blocks for the tuple reconstruction and the
index joins we study in this thesis, the two key database use cases where multitasking effectively
hides access to main memory.

2.3 Traditional memory latency mitigations

Given the hundrends of instructions that can be retired in the 73 ns it takes to fetch a cacheline
from main memory, the literature is full of software techniques that deal with cache misses. Based
on how they affect the number of cache misses and the incurred penalty, these techniques fall in
one of the following categories:

• Eliminate cache misses by increasing spatial and temporal locality. Locality is increased by
(a) eliminating indirection with cache-conscious data structure designs, e.g., CSB+-tree [51];
(b) matching the data layout to the access pattern of the algorithm, i.e, store data that are
accessed together in contiguous space; or (c) reorganizing memory accesses to increase
locality, e.g., with array [32] and tree blocking [27, 61]. However, unless data access be-
comes sequential, not all cache misses can be avoided; for sufficiently large data structures,
main memory accesses are inevitable.

• Reduce the cache miss penalty by scheduling independent instructions to execute after a
load; this approach increases instruction-level parallelism and leads to more effective out-of-
order execution. To reduce the penalty of accessing main memory, a non-blocking load is
introduced early enough, allowing independent instructions to execute while fetching data.
This is achieved by prefetching within a sequence of instructions, or by exploiting simulta-
neous multithreading with helper threads that prefetch data [60]. Still, in pointer-chasing
code, one memory access depends on the previous one and there are few independent
instructions in-between, so the benefit of these techniques is minimal.

• Hide the cache miss penalty by overlapping independent memory accesses. The memory
system can serve several memory requests in parallel (10 in current Intel CPUs) and
exploiting this memory-level parallelism increases memory throughput. Overlapping,
though, requires independent memory accesses which are scarce in pointer-chasing code.

The techniques in the first category mitigate memory latency by avoiding memory access (latency
avoidance techniques), whereas the other two categories tolerate latency (latency tolerance
techniques). In this thesis, we assume all these techniques have already been applied to the data

12

2.4. Running example: binary search

structures we study; the observed memory latency cannot be avoided and cannot be tolerated
within individual tasks, thus motivating for multitasking.

2.4 Running example: binary search

In this section, we describe binary search, a fundamental search algorithm that plays a significant
role in the SAP HANA column store and database systems in general. In the rest of this thesis,
we employ binary search as the main example of a latency-bound operation.

Searching for an element in sorted array is a basic operation of computer science that attracts even
today the attention of researchers who aspire to extract the best possible performance [54, 59].
The established algorithm to perform this operation is binary search. The binary search algorithm
splits the search array into two roughly equal subarrays, compares the element in the middle to
the searched element, and, so long the array contains more than one element, recursively calls
itself on the left or right subarray depending on the comparison result. In the lower bound variants
of binary search, the single element in the array of the last recursive call is either the searched
element if it appears in the range, or the first element that is larger than the searched element.

In Listing 2.1, we depict an iterative C++ implementation of the lower bound variant of binary
search. The lower_bound function we present here is used in our microbenchmarks as the
Baseline implementation we compare against. lower_bound accepts two arguments, the
sorted array table and the value to search for. The body of the while loop in lines 4–11
retrieves the value v from the probe position and continues the search to the left or right subarray
respectively if v is less than value or not (lines 7–9). The loop runs until the size of the occuring
subarray becomes less or equal to 1, and the if statement outside the loop ensures the lower
bound for the searched element is returned by incrementing the low variable in case after the loop
size == 1 and table[low] < value.

1 int lower_bound(vector<int>& table, int value) {
2 int size = table.size();
3 int low = 0;
4 while(size > 1) {
5 int probe = low + size / 2;
6 int v = table[probe];
7 if(v < value) {
8 low = probe;

9 }

10 size -= size / 2;

11 }

12 if(size == 1 && table[low] < value) {
13 low++;

14 }

15 return low;

13

Chapter 2. Preliminaries

16 }

Listing 2.1 – Binary search.

In this code, the array access in line 6 is effectively a random access that cannot be predicted
by hardware, incurring a cache miss when the array outsizes the cache. Given the work each
loop iteration comprises does not suffice to hide main memory latency, the cache miss translates
into memory stalls. As a result, although the sorted array exhibiting no pointers, binary search is
similar to pointer chasing in terms of microarchitectural behavior.

Moreover, the code the compiler generates for the if statement in lines 7–9 plays a major role
in terms of microarchitectural behavior. At each iteration, the search continues with the same
probability in either the left or the right subarray, depending on the result of the comparison in
line 7. If the compiler generates a conditional branch, the assembly looks as follows:

1 ...

2 cmp $v, $value

3 jl .LBL

4 mov $low, $probe

5 .LBL:

6 ...

In this case, the processor predicts which of the two alternative control flow paths will be chosen
and executes it speculatively. Given both alternatives have the same probability, the prediction is
wrong 50% of the time, so the speculatively executed instructions have to be rolled back. As we
show in Figure 4.3, bad speculation dominates execution for small array sizes, but becomes less
significant as the array size increases. This bad speculation can be avoided by using a predicated
instruction, such as the x86 cmov. In this case, the corresponding assembly looks as follows:

1 ...

2 cmp $v, $value

3 cmovge $low, $probe

4 ...

When main memory access dominates execution, runtimes are worse compared to speculative
execution. This means, in the absence of cache misses, predication is preferable since there is
little latency to hide, but in case data to be fetched from main memory, speculated execution is
better. Our focus in this thesis is hiding memory latency with multitasking, so we ensure our
Baseline is compiled with predication.

14

3 Interleaved Execution

Leveraging task parallelism to hide memory latency is an old idea. However, despite the extensive
research works by computer architects, system builders, language designers, and compiler writers,
the literature provides neither a model to estimate the performance benefits of hiding latency,
nor a practical methodology to interleave parallel tasks with cache misses in the general case.
The fact is, production systems waste processor cycles on cache misses because 1. hardware and
compiler limitations prohibit automatic task interleaving, and 2. existing techniques that involve
the programmer produce unmaintainable code and are thus avoided in practice.

In this chapter, we first systematize interleaved execution, introducing an analytical model based
on which one can decide how many tasks to interleave and estimate how much performance
can be improved by hiding memory latency. Then, we introduce interleaving with coroutines, a
generally applicable approach to interleave that is based on another old idea, i.e., coroutines.

3.1 Analytical model

In this section, we expand on the idea of interleaved task execution with a performance model
that helps to determine the cases for which interleaved execution makes sense and to estimate the
performance benefits over sequential execution.

We study the general case of multiple parallel tasks, some or all of which exhibit memory access
patterns that the hardware cannot identify. Our objective is to overlap memory accesses from one
task with computation from the others, keeping the processor pipeline filled with instructions
instead of incurring memory stalls. We interleave the execution of a group of tasks, switching to
a different task each time a load stalls on a cache miss.

In Figure 3.1, we illustrate this interleaved execution through an example with three parallel tasks,
A, B, and C. For simplicity, all tasks execute the same code, which causes three cache misses.
These cache misses effectively split each task into four computation stages of duration Tcompute.
With sequential execution, the three tasks run one after the other (we do not depict the execution

15

Chapter 3. Interleaved Execution

Figure 3.1 – Sequential vs interleaved execution.

of the third task for space reasons). After task A completes its execution, control switches to task
B, and then to task C. Every cache miss incurs a main memory access of duration Tstall. Contrary
to sequential execution, interleaved execution switches from one task to another at each memory
access, incurring an overhead Tswitch that overlaps with Tstall and decreases the effective stalls to
Ttarget = Tstall − Tswitch. In the example of Figure 3.1, when task A causes a cache miss during its
first stage, execution switches to the first stage of task B, then to the first stage of task C, and then
back to task A.

We generalize the example of Figure 3.1 to model a group of G parallel tasks, where each task i
has distinct values for the Ti,compute, Ti,switch, and Ti,target parameters. To eliminate Ti,target, i.e.,
the pipeline slots in which the processor executes no instructions, we need to select a group size
G such that:

Ti,target ≤

j,i∑
j∈[1..G]

(T j,compute + T j,switch) (3.1)

For identical model parameters across task, we can drop the indices:

Ttarget ≤ (G − 1) × (Tcompute + Tswitch)

⇔ G ≥
Ttarget

Tcompute + Tswitch
+ 1 (3.2)

Formula 3.2 estimates the optimal G, i.e., the minimum group size for which stalls are eliminated.
Interleaving more tasks does not further improve performance since there are no stalls left, i.e.,
the processor if fully utilized. To the contrary, larger values for G can harm performance by
leading to cache conflicts and additional cache misses—see Section 4.2.3. We should also note
here the implicit assumption that the hardware supports G outstanding memory requests at a time;
if the group of interleaved tasks issues more memory requests than the hardware-supported limit,
we should expect few to no performance benefits.

16

3.1. Analytical model

For a group of G parallel tasks with identical model parameters, we can also calculate the speedup
thanks to interleaved execution. The total time required to sequentially execute the group is
Tsequential = G × (Tcompute + Tstall). With interleaved execution, the necessary time becomes
Tinterleaved = G × (Tcompute + Tswitch) + Tremaining stalls, where Tremaining stalls is difficult to model
and depends on the model parameters and the group size. The ratio of these two quantities
determines the speedup:

Speedup =
Tsequential

Tinterleaved
=

G × (Tcompute + Tstall)
G × (Tcompute + Tswitch) + Tremaining stalls

=
Tcompute + Tstall

Tcompute + Tswitch +
Tremaining stalls

G

(3.3)

If Tremaining stalls = 0, i.e., all stalls have been eliminated, we get the maximum speedup:

Speedupmax =
Tcompute + Tstall

Tcompute + Tswitch
=

1
Tcompute+Tswitch
Tcompute+Tstall

=
1

Tcompute
Tcompute+Tstall

+
Tswitch

Tcompute+Tstall

=
1

%compute + %switch
(3.4)

where %compute =
Tcompute

Tcompute + Tstall
=

Tcompute

Tsequential

and %switch =
Tcompute

Tcompute + Tswitch
=

Tswitch

Tsequential
.

Formula 3.4 indicates that speedup is determined by the stalls observed in sequential execution
and the cost of switching from one task to another. In Figure 3.2, we depict the ideal speedup
as a function of %stall for different values of %switch. The lower the overhead added to the total
execution by the task switch mechanism, the better the speedup. In the ideal case of instant
switching between tasks, i.e., Tswitch = 0, the speedup Speedupmax depends only on %compute. In
this case, for Tstall that corresponds to 90% of the sequential runtime, we can expect 10× better
performance. As Tswitch increases, the speedup decreases, while Tswitch values larger than Tstall

lead to a slowdown. In essence, we are replacing Tstall with Tswitch, so interleaved execution
makes sense only if Tstall >> Tswitch.

Based on the observations above and the experimental analysis of Section 4.2, in Section 5.1,
we provide some general optimization guidelines for loops that suffer from unavoidable cache
misses.

Takeaway. Our analytical model can determine whether interleaved execution makes sense or
not: in analogy to Amdahl’s law and parallel execution, Formula 3.4 provides an ideal upper
bound for the speedup we achieve with interleaved execution, whereas Formula 3.2 helps to pick
the optimal group size.

17

Chapter 3. Interleaved Execution

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90

Sp
ee

du
p m

ax

%stall = 100% −%compute

%switch
0
1

10
20

50
100

Figure 3.2 – Maximum speedup of interleaved execution according to Formula 3.4.

3.2 Implementing interleaved execution

In this section, we describe how to effectively implement interleaved execution using coroutines,
which is the core contribution of this thesis. In principle, we can use any cooperative multitasking
technique to implement interleaved execution. However, as we explain in Section 3.1, the
mechanism to switch between tasks needs to have much lower overhead than the latency we want
to hide. In addition, the task switch mechanism should not cause additional cache misses.

These two restriction preclude implementations that encode concurrently running tasks as operat-
ing system (OS) threads and cooperatively multitask with thread synchronization. Preemptive
multithreading has non-negligible synchronization overhead, context switching involves system
calls and takes several thousand cycles to complete, while switching among full-blown thread
stacks likely thrashes the cache and the TLB. With OS threads, the overheads eclipse any memory
stalls we want to avoid.

Here we present interleaving with coroutines, our practical technique to interleave tasks with low
overhead. After briefly introducing the coroutine construct and the relevant support in current
programming languages, we describe C++ implementations based on (a) the C++20 language
feature and (b) the Boost library.

3.2.1 The coroutine construct

A coroutine is a control abstraction that generalizes subroutines [42]. A subroutine starts its
execution upon invocation by a caller and can only run to completion, at which point the control of
execution returns to the caller. The coroutine construct augments this lifetime with suspension and
resumption: a coroutine can suspend its execution and return control before its completion; the
suspended coroutine can be resumed at a later point, continuing its execution from the suspension
point onward. To resume a coroutine, one has to use the coroutine handle that is returned to the
caller at the first suspension.

18

3.2. Implementing interleaved execution

Although coroutines were introduced in 1963 [12], mainstream programming languages did not
support them until recently, except for restricted generator constructs in languages like C# [2]
and Python [5]. The advantages of coroutines gave rise to library solutions, e.g., Boost.ASIO
and Boost.Coroutine1, which rely on tricks like Duff’s device2, or OS support like Windows
fibers [53] and ucontext_t on POSIX systems [26]. Asynchronous programming and its rise
in popularity brought coroutines to the spotlight as a general control abstraction for expressing
asynchronous computations without requiring the use of callbacks or explicit state machines.
Languages like C#, Python, Scala and Javascript have adopted coroutine-like await constructs,
while C++ is expected to support coroutines as a language feature in the C++20 standard—at the
time of writing, coroutine support in C++ has the form of a technical specification [4], which is
implemented by the Visual C++ and Clang compilers.

Naturally, database implementations have also picked up coroutines to simplify asynchronous
I/O [52], but this thesis pioneers the use of coroutines for hiding memory latency.

3.2.2 Interleaving with C++ coroutines

Coroutines can yield control in the middle of their execution and be later resumed. This ability
makes them candidates for implementing interleaved execution, as already remarked by Kocberber
et al. [29]. An efficient implementation needs (a) a suspension/resumption mechanism that
consumes a few tens of cycles at most, and (b) a space footprint that does not thrash the cache.
C++20 coroutines satisfy these requirements, being compiled into assembly code that resembles
a state machine. In a sequence of transformation steps, the compiler splits the body of a coroutine
into distinct stages which are determined by the suspension/resumption points. These stages
correspond to the state machine stages that a programmer would otherwise had to derive manually;
in the coroutine case, however, the compiler performs the transformation, taking also care of
preserving the necessary state across suspension/resumption. The compiler identifies which
variables to preserve and stores them on the heap area of the address space of the process,
in a dedicated coroutine frame that is analogous to the memory required to store the state of
a manually-derived state machine. Beside these variables, the coroutine frame contains also
the resume address and some register values; these are stored during suspension and restored
upon resumption, adding an overhead of two function calls. An interested reader can find more
information about C++ coroutines in the current draft of the language standard [7] and in Lewis
Baker’s excellent blog: https://lewissbaker.github.io/.

Binary search as a coroutine

In Listing 3.1, we use the example of binary search to illustrate how to transform any C++
function to a coroutine that supports interleaved execution. Calling lower_bound_co() creates
a coroutine instance and returns a synthetic resumable<int> object (line 2), that keeps a private

1http://www.boost.org/doc/libs
2http://www.lysator.liu.se/c/duffs-device.html

19

https://lewissbaker.github.io/
http://www.boost.org/doc/libs
http://www.lysator.liu.se/c/duffs-device.html

Chapter 3. Interleaved Execution

handle to the coroutine instance. The class resumable<T> exposes the following methods:

• resume() resumes the execution of a suspended coroutine.

• done() returns true if the coroutine finished, and false otherwise.

• result() provides access to the result value of the original function, which has type T.
This method is not defined if T == void, i.e., there is no result value.

Listing 3.1 – Binary search coroutine.

1 template <bool suspend>
2 resumable <int> lower_bound_co(
3 vector<int>& table, int value
4) {

5 int size = table.size();
6 int low = 0;
7 while(size > 1) {
8 int probe = low + size / 2;
9 int v = co_await load<suspend >(table[probe]);

10 if(v < value) {
11 low = probe;

12 }

13 size -= size / 2;

14 }

15 if(size == 1 && table[low] < value) {
16 low++;

17 }

18 co_return low;
19 }

Lines 5–18 are identical to the original sequential implementation in Listing 2.1, except for lines 9
and 18. In line 9, table[probe], i.e., the array dereference that likely causes a cache miss for
large array sizes, is replaced with co_await load<suspend>(array[probe]). Depending
on the template parameter suspend, this co_await expression either loads array[probe]
immediately, or issues a prefetch to array[probe], suspends the execution of lower_bound_co
and loads the array[probe] value from the cache upon resumption. Leveraging the extension
points of the coroutine feature in C++, we have defined load as a library function that allows to
succinctly express the desired behavior. Alternatively, line 9 can be replaced with the following
lines of code:

1 if constexpr(suspend) {
2 prefetch(table[probe]);

3 co_await suspend_always{};

20

3.2. Implementing interleaved execution

4 }

5 int v = table[load];

The co_await suspend_always{} statement suspends the execution of the coroutine, return-
ing control to its caller. Furthermore, the condition of the if constexpr statement is guaranteed
to be evaluated at compile time, enabling the compiler to generate optimal assembly code depend-
ing on the suspend parameter. We carefully decide the value for suspend, relying on profiling
to identify cache misses, and introduce suspensions only when a memory dereference incurs a
cache miss most of the time—coroutine suspension and resumption has a non-negligible cost
that translates into slowdowns in case of cache hits. Ideally, we would make a precise decision
at runtime based on cache contexts, but we lack the necessary hardware support for informing
memory operations [20]. Finally, in line 18, co_return replaces the return keyword, and
makes the return value of the coroutine available for access through the resumable<int> object.

CSB+-tree lookup as a coroutine

Any function can be converted into a coroutine that supports interleaved execution, following the
same methodology as we did with binary search. Here we discuss a second example, a CSB+-tree
lookup that adheres to the original proposal of Rao et al. [51].

Listing 3.2 – CSB+-tree lookup coroutine.

1 template <bool suspend>
2 resumable <int> tree_lookup_co(
3 tree_t& tree, int value
4) {

5 node_t* node = tree.root;

6 while(node->level > 0) {
7 vector<int>& keys = node->keys;
8 resumable <int> h = lower_bound_co <false>(keys, value);
9 int child = h.result();

10 node_t& node = co_await
load_node <suspend >(node->children[child]);

11 }

12 vector<int>& keys = node->keys;
13 resumable <int> h = lower_bound_co <false>(keys, value);
14 vector<int>& records = node->records;
15 co_return records[h.result()];
16 }

In Listing 3.2, we depict the coroutine implementation for the CSB+-tree lookup. For simplicity,
we assume a cached root node; for all other inner nodes, we use the load_node function in line 10

21

Chapter 3. Interleaved Execution

to prefetch the cache lines of the appropriate child node, suspend, and return a reference to that
child node upon resumption. Note that for the binary search within nodes, we use the coroutine of
Listing 3.1 without suspension (lower_bound_co in line 8 is called with suspend == false);
the node prefetch brings the keys to the cache, so the binary search causes no cache misses.
Moreover, a leaf node differs from an inner node since the result of the binary search is used
to fetch the searched value from the valueList instead of a child node; this value is the result
returned in line 15.

Sequential and interleaved execution

An index lookup, such as the lower_bound_co and the tree_lookup_co described above, can
be executed with or without suspension, depending on the scheduler, i.e., the code implementing
the execution policy for the lookup sequence. In Listing 3.3, we present two schedulers:

run_sequential performs the lookups one after the other (lines 4–8). The coroutines are called
with suspend == false, so they do not suspend. The only difference to an ordinary
function is that we retrieve the result through the handle.

run_interleaved scheduler initializes a group of G coroutines, specifying suspend ==
true, and maintains a buffer of coroutine handles (line 14). G is a parameter provided by
the caller (line 11) and should be selected according to Formula 3.2 to eliminate memory
stalls without introducing unnecessary overhead (see Section 4.2.3 for how to calculate the
necessary parameters). Moreover, since lower_bound_co execution suspends, the while
loop over the buffer resumes unfinished binary searches (line 24), or retrieves the results
from the finished binary search (lines 26–27) and starts new ones (lines 28–34).

Either one of the two schedulers can be selected depending on the probability of cache misses
in the lookup and the number of values to look for; in cases like the node search in Listing 3.1,
or when there is no other work to interleave with, sequential execution is better as it incurs no
overhead. Since the schedulers are agnostic to the coroutine implementation, they can be used
with any task.

Finally, it is important to emphasize the distinction between these coroutine schedulers and
OS thread schedulers. Coroutine schedulers are normal functions that run on the thread which
called them. All coroutines created by these schedulers run, suspend, resume, and complete
their execution on the thread of their scheduler. By running multiple threads, each with its own
coroutine scheduler, we achieve multithreaded interleaved execution.

Performance considerations for C++ coroutines

The described way of interleaving with coroutines relies on an optimizing compiler to generate
assembly that (a) in interleaved execution, recycles coroutines from completed lookups for

22

3.2. Implementing interleaved execution

subsequent coroutine calls (line 30 in Listing 3.3), and (b) in sequential execution, allocates no
coroutine frame, since it is not necessary for non-suspending code (line 5 in Listing 3.3).

Listing 3.3 – Sequential and interleaved schedulers.

1 void run_sequential(
2 vector<int>& table, vector<int>& values, vector<int>& output
3) {

4 for(int v: values) {
5 resumable <int> handle = lookup<false>(index, value);
6 int low = handle.result();
7 output.push_back(low);

8 }

9 }

10

11 void run_interleaved(int G,
12 vector<int>& table, vector<int>& values, vector<int>& output
13) {

14 vector<resumable <int>> handles{G};
15 for(int i = 0; i < G; i++) {
16 int value = values[i];
17 handles[i] = lower_bound_co <true>(table, value);
18 }

19 int not_done = G;
20 int i = G;
21 while(not_done > 0) {
22 for(resumable <int>& handle: handles){
23 if(!handle.done()){
24 handle.resume();

25 } else {
26 int low = handle.result();
27 output.push_back(low);

28 if(i < values.size()) {
29 int value = values[i];
30 handle = lower_bound_co(table, value);

31 i++;

32 } else {
33 not_done --;

34 }

35 }

36 }

37 }

38 }

23

Chapter 3. Interleaved Execution

These optimizations avoid unnecessary overhead by eliding unnecessary frame allocations and
the instructions necessary to manage the lifetime of each coroutine. At the time of writing, no
compiler applied these optimizations reliably, so we apply them manually in separate implemen-
tations for sequential and interleaved execution. As compiler support for coroutines matures,
these optimizations will become unnecessary.

Listing 3.4 – Manual coroutine elision for interleaved binary searches.

1 using vec_it = vector<int>::iterator;
2

3 resumable <void> lower_bound_co(
4 vector<int>& table,
5 vec_it& current, vec_it end,

6 vector<int>& output, int& not_done
7) {

8 while(current < end) {
9 int value = *current++;

10 int size = table.size();
11 int low = 0;
12 while(size > 1) {
13 int probe = low + size / 2;
14 int v = co_await load<true>(table[probe]);
15 if(v < value) {
16 low = probe;

17 }

18 size -= size / 2;

19 }

20 if(size == 1 && table[low] < value) {
21 low++;

22 }

23 output.push_back(low);

24 }

25 not_done --;

26 }

In Listing 3.4, we demonstrate the implementation of lower_bound_co optimized for inter-
leaved execution—for sequential execution, we use the implementation described in Section 2.4.
lower_bound_co executes multiple binary searches so long as the current iterator, which is
shared among all coroutines, has not reached the end of the values vector (line 5). The low val-
ues are directly stored in output (line 23), so there is no return value and the template argument
of resumable is void. If end is reached, the coroutine finishes its execution after decrementing
not_done (line 25), which is also shared. These changes simplify the scheduler implementations,
since lower_bound_co iterates over values and signals its completion through not_done.

24

3.2. Implementing interleaved execution

run_sequential calls lower_bound_co and ignores the return value, whereas the while loop
in run_interleaved only resumes each of the handles so long as handle.done() returns
true and not_done has a positive value.

3.2.3 Interleaving with library-based coroutines

As already mentioned, libraries like Boost.Coroutine provide robust coroutine implementa-
tions without special compiler support. These implementations, however, have considerable
switching cost. Here, we study Boost.Context, a lightweight library that provides primitives
for one-shot continuations [15, 31], which are used by other Boost libraries as a building block
for implementing coroutines.

We implement interleaved execution with one-shot continuations instead of proper coroutines to
avoid abstraction overheads and thus assess the minimum overhead library-based coroutines can
have. In the case of Boost.Context, a continuation represents a suspended computation as a
data structure which, contrary to the coroutines of Section 3.2.2, has no special compiler support
and consists of a stack, a set of CPU register contents, and a program counter. Being one-shot
means the computation can be resumed only once.

Listings 3.5 and 3.6 illustrate the resulting code that resembles the structure of the coroutine
implementation, albeit with some key differences:

• Resuming a continuation (Listing 3.5, line 14) suspends the current execution context. The
suspended context is passed to the resumed context as a new continuation that gets stored
in continuation for later resumption.

• The callcc (call with current continuation) function creates a new context: callcc takes
one function argument (Listing 3.6, lines 27–29) that accepts a continuation and returns
the same or another continuation, suspends the current execution context and allocates a
new stack on which it starts its function argument called with a continuation containing the
remaining computation.

• Since the function argument of callcc returns a continuation, we store low directly to the
output vector which is passed by reference.

• The decision to interleave or not depends on the validity of the continuation value.

Performance considerations for library-based coroutines

In addition to the changes described in Section 3.2.2, our actual implementation with callcc
directly resumes the next continuation from the conts vector, eliding two unnecessary context
switches, to and from the scheduling context, which introduce significant overhead: given that the
switch logic is library code, it has no knowledge of what architectural state needs to be saved, so

25

Chapter 3. Interleaved Execution

Listing 3.5 – Binary search with Boost.Context
1 using cont_t = boost::context::continuation;
2

3 template <bool suspend>
4 cont_t lower_bound_ctx(
5 vector<int>& table, int value, vector<int>& output,
6 cont_t&& continuation
7) {
8 int size = table.size();
9 int low = 0;

10 while(size > 1) {
11 int probe = low + size / 2;
12 if constexpr(suspend) {
13 prefetch(table[probe]);
14 continuation = continuation.resume();
15 }
16 int v = table[probe];
17 if(v < value){
18 low = probe;
19 }
20 size -= size / 2;
21 }
22 if(size == 1 && table[low] < value) {
23 low++;
24 }
25 output.push_back(low);
26 return move(continuation);
27 }

26

3.2. Implementing interleaved execution

Listing 3.6 – Binary search with Boost.Context
1 void run_sequential(
2 vector<int>& table, vector<int>& values, vector<int>& output
3){
4 for(int v: values) {
5 lower_bound_ctx <false>(index, value, output, dummy_cont);
6 }
7 }
8

9 void run_interleaved(int G,
10 vector<int>& table, vector<int>& values, vector<int>& output
11) {
12 vector<cont_t> conts{G};
13 for(int i = 0; i < G; i++){
14 int value = values[i];
15 conts[i] = callcc([&](cont_t&& continuation) {
16 return lower_bound_ctx <true>(table, value, output,

move(continuation));
17 });
18 }
19 int not_done = G;
20 int i = G;
21 while(not_done > 0) {
22 for(cont_t& cont: conts) {
23 if(cont){
24 cont = cont.resume();
25 } else {
26 if(i < values.size()) {
27 cont = callcc([&](cont_t&& continuation) {
28 return lower_bound_ctx(table, value, output,

move(continuation));
29 });
30 i++;
31 } else {
32 not_done --;
33 }
34 }
35 }
36 }

27

Chapter 3. Interleaved Execution

it copies all registers out to the suspended stack and in from the resumed stack. We further reduce
the number of instructions involved in a switch by compiling a version that does not copy vector
or floating point registers, which are not used in our code. Moreover, we allocate small stacks
(still large enough to store the state of lower_bound_ctx) to reduce memory requirements and
avoid the TLB misses that appear if we use the default stack size, which is larger than a memory
page. In principle, both the switch code and the stack size could be automatically optimized by
the compiler, which knows what state to save and can assess, in the absence of recursion, how
much stack space is needed.

3.2.4 Interleaving arbitrary tasks

Seizing opportunities for interleaved execution in production codebases might not be as easy
as in the simple examples we considered so far. Good software engineering practices dictate
modularity, i.e., factoring out repeated functionality in separate functions, and abstracting behavior
into classes. As a result, the distance between the cache misses and the loop we need to interleave
can be several frames in a call stack. Moverover, each parallel task can be executing a different
code path, not only in terms of simple control flow divergence, but also with regards to diverse
behaviors enabled by compile and runtime polymorphism.

Tuple reconstruction is a concrete example exhibiting the aforementioned properties that compli-
cate interleaving. In the context of a column store like the one of SAP HANA, tuple reconstruction
is a loop over a requested set of columns that retrieves the attribute values for a particular row. Col-
umn stores often employ dictionary encoding, under which a column consists of a dictionary and
a data vector, each having a different physical representation that depends on the stored datatype
and the compression scheme used. Retrieving a value from such a column in a production-grade
system involves a long call chain that differs from column to column, depending mainly on the
data type and the compression scheme used in the dictionary and data vector implementations.

The deep call stacks in conjunction with the multitude of different code paths substantially
differentiate tuple reconstruction from the previous examples of multiple lookups to the same
data structure, which involve one lookup implementation with few nested function calls. The
same few nested function calls can be manually inlined, resulting into one function that can be
converted into a resumable<T> coroutine as explained in Section 3.2.2. However, the deeper
the call stack, the less likely is that a developer tears down the abstraction tower by inlining
everything. In addition, inlining is not an option when runtime polymorphism is used. For
instance, the columns in the materialization example above are objects with a common interface
but different implementations; the code for each column lookup is determined at runtime, so
inlining is precluded.

To address these shortcomings of interleaving with resumable<T> coroutines, Jonathan et
al. [24] suggest a different coroutine type: task<T> keeping track of the caller and resumes
it upon completion. With this behavior, task<T> supports coroutine composition and thus

28

3.2. Implementing interleaved execution

facilitates the conversion of legthy call stacks into suspendable coroutine chains. When the leaf
coroutine in a call chain is suspended, control returns to the scheduler, which, in turn, resumes
the next coroutine. We use a variation of the interleaving proposal of Jonathan et al. that resumes
the next coroutine upon suspension without returning to the caller. We achieve that by defining
our load to accept an additional parameter, a lookup context that comprises the following:

• An optional id that identifies each column lookup and facilitates debugging.

• A low-overhead allocator for coroutine frames: given the size of all coroutine frames in
a column lookup is bounded, we avoid the unnecessary overheads of a general purpose
allocator by using a private-per-lookup, append-only allocator with preallocated memory.
By reseting the allocator when the lookup finishes, we can reuse it in the next lookup.

• A reference to the coroutine scheduler. This reference enables load to directly resume the
next lookup with a tail call.

In Listing 3.7 we depict how to interleave a simplified version of tuple reconstruction. To
reconstruct the tuple that corresponds to a given key, we first look for the matching row in
the KEY column of table TBL (line 2). Then we iterate over all columns (lines 4–7) using a
custom for_each function that implements a run_interleaved scheduler. In each column, we
retrieve the attribute value of the desired row by calling get with the provided context (which
is different per iteration) and the row as arguments (line 6); we store the retrieved value in the
appropriate tuple position (tuple[col.id]). We should note here that context simplifies
the implementation of root_task, which was originally required to keep track of the current
suspended leaf coroutine [24].

Listing 3.7 – Interleaving tuple reconstruction.

1 tuple_t reconstruct(int key) {
2 int row = TBL.columns[KEY].find(key);
3 tuple_t tuple;

4 for_each(G, TBL.columns.begin(), TBL.columns.end(),

5 [&] (context_t& context, column_t& col) -> root_task {

6 tuple[col.id] = co_await col.get(context, row);
7 });

8 return tuple;
9 }

10

11 task<value_t> column_t::get(

12 context_t& context, int id
13) {

14 int code = co_await load(context, codes[id]);
15 co_return co_await dict.decode(context, code);
16 }

29

Chapter 3. Interleaved Execution

We already mentioned that each column implementation is different depending on the datatype
and the compression scheme of the column. In Listing 3.7, we also present an implementation of
the column_t::get method for a dictionary-encoded column: we first load the encoded row
value from a codes array (line 14) and then decode it using the dictionary dict (line 15). The
array access causes one cache miss, so we use the load to prefetch, suspend, and load, whereas
decode causes one or more cache misses depending on the dict implementation. Despite its
simplicity, this example is representative of the code changes necessary also for production-level
column implementations, such as the ones of SAP HANA—the only difference is the number of
functions we need to convert into tasks.

Listing 3.8 – Example of coroutine elision.

1 task<int> f_coroutine(context_t& context) {
2 co_return transform(co_await g(context));
3 }

4

5 wrapped<int> f_function(context_t& context) {
6 return wrapped<int>{g(context), transform};
7 }

More performance considerations for C++ coroutines

A column lookup comprises many small functions that are inlined by the compiler. Essential
to good performance is a compiler that inlines also the task counterparts of these functions,
eliding a plethora of small coroutine allocations [57] and the associated instructions that manage
coroutine lifetime.

At the time of writing, no compiler can reliably inline tasks, so we systematically replace
each task that co_awaits one nested task, with an ordinary function that has no co_await
nor co_return in its body. Consider the example in Listing 3.8: f_coroutine passes the
result of the co_await expression to a transform function before returning it (line 2). We
convert f_coroutine to f_function by wrapping the task<int> returned from g along with
the function transform in a wrapped<int> object. This object is not a separate coroutine,
but a wrapper that can participate in a co_await expression, with the distinctive property of
transforming the result of the wrapped coroutine before returning it. One variation of this pattern
has no result transformation, in which case the nested coroutine can be immediately returned
without a wrapper. In other cases, there are two or more code branches that co_await different
nested coroutines and apply distinct result transformations each; to unify the code branches, we
define the wrapper to accept not only different transformations but also coroutine types other
than task. Furthermore, to ensure a task does not outlive its parameters—a likely case when
we elide coroutines—we move call parameters either to the nested coroutine or the wrapper.
These considerations increase implementation complexity, but, as compiler support for coroutines
matures, we expect coroutine elision to become a job for the compiler and not the programmer.

30

3.2. Implementing interleaved execution

3.2.5 Code complexity

A glance over the interleaved implementations presented in this section indicates that interleaving
with coroutines is easy to implement and maintain. We quantify the complexity of our technique
through the example of binary search, comparing to the original sequential implementation, as
well as to group prefetching and asynchronous memory access chaining, i.e., the prior state
of the art that we present in detail in Section 3.3.1. In particular, we study the following
implementations:

• Baseline resembles the sequential code in Listing 2.1.

• Coro-U uses coroutines and supports both sequential and interleaved execution in the same
code, resembling Figures 3.1 and 3.3.

• Coro-S uses coroutines but has different implementations for sequential and interleaving
execution, incorporating the optimizations described in Section 3.2.2.

• Cont-U uses the continuations of the Boost.Context library and supports both se-
quential and interleaved execution in the same code, resembling Figures 3.5 and 3.6.

• Cont-S uses the continuations of the Boost.Context library but has different im-
plementations for sequential and interleaving execution, incorporating the optimizations
described in Section 3.2.3.

• GP implements group prefetching, resembling the code in Listing 3.9.

• AMAC implements asynchronous memory access chaining, resembling the code in List-
ing 3.10.

In Table 3.1, we juxtapose the lines of code (LoC) that are different between each interleaving
implementation and the original sequential code (Diff-to-Original), as well as the total LoC
one has to maintain per lookup algorithm, e.g., binary search, to support both sequential and
interleaved execution (Total Code Footprint). The first metric hints to the implementation
complexity, while the second one to maintainability; for both metrics, lower values are better.
Coro-U and Cont-U require the least modifications/additions (3 and 7 LoC) to the original code,
while they have the smallest code footprints (14 and 19 LoC) thanks to the unified codepath; all
other implementations have separate codepaths for each mode of execution and, thus, have two
implementations for the same lookup algorithm. The code of Coro-S and Cont-S is nonetheless
significantly smaller than that of GP and AMAC.

Why not use essential or cyclomatic complexity?

Contrary to the two LoC metrics we use above, standard metrics like essential and cyclomatic
complexity [40] reflect code properties that are not useful in determining which technique is easier

31

Chapter 3. Interleaved Execution

Table 3.1 – Implementation complexity and code footprint of interleaving techniques. The
two Coro variants differ the least from the Baseline (13 LoC) and require the least amount
of code to support both sequential and interleaved execution.

Technique GP AMAC Coro-U Coro-S Cont-U Cont-S

Interleaved 26 69 13 18 18 21
Diff-to-original 18 64 3 7 7 10

Total Code Footprint 39 82 14 31 19 34

to implement and maintain. Essential complexity assesses how structured the code is, examining
the entry and exit points of each control flow structure used in the code; depending on their
state, coroutines are entered and exited at different points, which means they have high essential
complexity although they are arguably easy to understand. Moreover, cyclomatic complexity is a
property of the control flow graph, which is almost identical for AMAC and Coro since they are
both state machines with the same states; consequently, AMAC and Coro have similar cyclomatic
complexity, despite the little resemblance between them, in analogy to how a switch statement
and the equivalent sequence of if statements have the same cyclomatic complexity. For these
reasons, we do not consider these two metrics.

3.3 Related work

In this section, we expand on the prior state of the art for implementing interleaved execu-
tion in software. Moreover, we present the two (at the time of writing) follow-up works that
independently corroborate the value of interleaving with coroutines.

3.3.1 Prior work

Prior proposals for interleaved execution fall into two categories: proposals that rely on the
hardware [36] and the compiler [43] to automatically interleave parallel tasks, and proposals that
require from the programmers to manually apply loop optimizations that should have been auto-
matically applied by the compiler [10], or convert their code into a state machine [29]. However,
mainstream processor architectures and compilers have yet to automate task interleaving, while
the development and maintenance costs of the manual techniques prohibit their use in production
code.

Here, we focus on the two works of the second category, which are found in the database literature.
The first, by Chen et al. [10], applies interleaved execution to hash joins and particularly to lookups
on hash tables with bucket lists. The second, by Kocberber et al. [29] expands the application
area to cover also lookups on other pointer-based data structures, such as trees and skip-lists.

32

3.3. Related work

Group Prefetching (GP)

Chen et al. [10] proposes to exploit the task parallelism across subsequent tuples in hash joins by
manually applying the strip mining and loop distribution transformations, that a general-purpose
compiler cannot consider due to lack of dependency information. Chen et al. propose two
techniques, group prefetching (GP) and software-pipelined prefetching (SPP), which transform
a fixed chain of N memory accesses into sequences of N+1 computation stages separated by
prefetches. GP executes each stage in a loop over the whole group of tasks before moving to the
next stage; whereas SPP executes a different task at each stage in a pipeline fashion.

Both GP and SPP interleave tasks with a fixed number of stages, yet the code of an index lookup
is a loop with a dynamic number of iterations that depends on the index size, meaning that neither
technique can be applied in its vanilla form. However, in the absence of early exits, all lookups
perform the same number of loop iterations and each iteration has a fixed number of stages.
These two properties enable us to share the loop among a group of tasks and statically couple
their execution, generalizing GP to support pointer chains whose length is only known at runtime.
This generalization of GP is a minor contribution of the present thesis.

In Listing 3.9, we present the generalized GP applied to binary search. To derive this implementa-
tion, we decompose the binary search loop (lines 4–11 in Listing 2.1) into a prefetch and a load
stage (lines 12–15 and 16–22 in Listing 3.9). The loop is shared among a group of G tasks. Each
task in the group corresponds to one binary search and each computation stage is executed for
the whole group before proceeding to the next stage. As the loop is shared, fewer state variables
have to be maintained for each task, reducing the executed instructions. However, the tasks are
statically coupled and have to execute the same instructions, precluding the cases described in
Section 3.2.4, where cache misses occur in nested function calls and the tasks executed rely on
runtime information.

Asynchronous Memory Access Chaining (AMAC)

Kocberber et al. [29] considered as a limitation the coupling imposed by group prefetching to the
otherwise independent tasks. This coupling complicates cases where each tasks follows a different
code path. To decouple the progress of different tasks, Kocberber et al. proposed asynchronous
memory access chaining (AMAC), a technique that encodes traversals of pointer-intensive data
structures as finite state machines. The traversal code is manually rewritten to resemble a state
machine, enabling each task in a group of traversals to progress independently from the others.

In Listing 3.10, we illustrate binary searches on a sorted dictionary interleaved with AMAC. The
state machine code is a switch statement (line 14–44) with one case for each stage. Every
task executes the stages defined by the same switch statement, but each task corresponds to a
dedicated state machine, whose state is stored in a circural_buffer (line 11) and retrieved

33

Chapter 3. Interleaved Execution

Listing 3.9 – Binary search with GP.
1 void lower_bound_gp(
2 int G,
3 vector<int>& table, vector<int>& values, vector<int>& output
4) {
5 vector<int> lows(G);
6 for(int start = 0; start < values.size(); start += G) {
7 int size = table.size();
8 for(int low: lows) {
9 low = 0;

10 }
11 while(size > 1) {
12 for(int i = 0; i < G; i++) {
13 int probe = lows[i] + size/2;
14 prefetch(table[probe]);
15 }
16 for(int i = 0; i < G; i++) {
17 int probe = lows[i] + size/2;
18 int v = table[probe];
19 if(v < values[start + i]) {
20 lows[i] = probe;
21 }
22 }
23 size -= size/2;
24 }
25 for(int low: lows) {
26 if(size == 1 && table[low] < value) {
27 low++;
28 }
29 output.push_back(low);
30 }
31 }
32 }

34

3.3. Related work

Listing 3.10 – Binary search with AMAC.
1 enum stage { A, B, C, Done };
2 struct state { int value; int size; int low; stage st = A; };
3 struct circular_buffer {
4 /* other members */
5 state& load_next_state() { ... }
6 };
7

8 void lower_bound_amac(int G,
9 vector<int>& table, vector<int>& values, vector<int>& output

10) {
11 circular_buffer bf(G); int not_done = G; int index = 0;
12 while(not_done > 0) {
13 auto& [value, size, low, st] = b_f.load_next_state();
14 switch (st){
15 case A: //Initialization
16 if(index < values.size()) {
17 value = values[index++];
18 size = table.size();
19 low = 0;
20 st = B;
21 } else {
22 not_done --;
23 st = Done;
24 }
25 break;
26 case B: //Prefetch
27 if(size > 1) {
28 int probe = low + size / 2;
29 prefetch(table[probe]);
30 size -= size / 2;
31 st = C;
32 } else {
33 if(size == 1 && table[low] < value) { low++; }
34 output.push_back(low);
35 st = A;
36 }
37 break;
38 case C: //Access
39 int probe = low + size / 2;
40 int v = table[probe];
41 if(v < value) { low = probe; };
42 st = B;
43 case Done: //No more values to look for
44 }
45 }
46 }

35

Chapter 3. Interleaved Execution

by calling its load_next_state() method3 (line 13) in a round-robin fashion until all state
machines reach the Done stage. The switch statement for binary search has the following stages:

• A is responsible for starting the lookup for the next value if there is one, setting the stage to
B (lines 16–21); if there are no more values to look for, stage A decrements the number of
active state machines and sets the stage to Done (lines 21–24).

• B executes either the prefetch stage of an iteration of binary search and sets the stage
to C (lines 27–32), or performs the last check, stores the result and sets the stage to A
(lines 32–36).

• C performs the load stage of the binary search iteration and sets the stage to B (lines 39–42).

• Done skips to the next state machine.

The switch examines the current stage of a task and decides which case to execute. The
conversion of tasks to state machines enables each task to proceed independent of the others, but
doing so incurs a significant development and maintenance cost that precludes the adoption of
AMAC in large codebases. Particularly when cache misses occur at arbitrary depths in the call
stack and need to be surfaced to the function that iterates over the columns, AMAC dictates to
convert all functions into state machines, thereby increasing code complexity to extreme levels.

3.3.2 Follow-up work

At the time of writing, there are two follow-up works that leverage coroutines to implement
interleaved execution.

The first, by Jonathan et al. [24], evaluates the technique presented in this thesis, interleaving with
C++20 coroutines, on code that is prone to cache misses. The studied data structures range from
hash tables and sorted arrays to the more complex Masstree and Bw-tree. Besides confirming
the usability benefits of coroutines in juxtaposition to GP and AMAC, Jonathan et al. propose
task<T>, a coroutine type that enables coroutine composition and thereby facilitates interleaving
entire call stacks, a capability that is essential for the codebase of the Masstree and the BW-tree.

The second, by Kyrianski et al. [28], proposes a domain-specific language (DSL) that supports
coroutines, and validates interleaved execution for sorted arrays, binary trees, hash tables, and
skip-lists. With full control over the coroutine implementation, this approach achieves best
performance by supporting both static interleaved execution similar to GP and dynamic like
AMAC. However, the proposed DSL has little resemblance to ordinary C++ code hampering
adoption. Using the frontend of native C++ coroutines with the code generation scheme of this
proposal would enable best performance in intuitive C++ code.

3Note that we get references to the variables comprising a state using a structured binding declaration from C++17.

36

3.4. Summary

3.4 Summary

Interleaved execution is a universal way to hide latency. In this chapter, we introduced a
simple analytical model that provides an analogue to Amdahl’s law for estimating the speedup of
interleaved execution, and determines how many tasks need to be interleaved, assuming (a) enough
parallel tasks in the workload, (b) hardware support for memory parallelism, and (c) a sufficiently
fast mechanism to switch between tasks. Furthermore, we presented two implementations of
task interleaving that rely on coroutines. Interleaving with coroutines, whether compiler- or
library-based, has two key properties:

1. The lookup logic is kept separate from the execution policy, enabling a single codepath to
be configured for sequential or interleaved execution;

2. The coroutine code is mostly the sequential code with a modified function signature and
suspending loads for addresses that cause cache misses.

Thanks to these properties, coroutines are practical to use, incurring only minor development and
maintenance costs that strongly contrast the prior state of the art.

37

4 Performance Analysis & Applications

Interleaved execution promises to eliminate memory stalls, improve processor utilization and
thereby the overall performance of database systems. The goal of this chapter is to demonstrate
that interleaving with coroutines not only constitutes a practical and generally applicable way to
implement interleaved execution, but also exhibits the execution characteristics that are essential
for significant performance improvements. Through microbenchmarks implementing binary
searches on sorted arrays stored in DRAM, we first compare interleaving with coroutines to non-
interleaved execution and the prior state of the art in terms of performance and microarchitectural
behavior. Secondly, we employ analytical and transactional use cases found in database systems
with large codebases to assess the practical aspect and effectiveness of our technique for large
database systems. Finally, we study the effectiveness of interleaving with coroutines in the case
of accesses to non-volatile memory instead of the usual DRAM.

4.1 Experimental setup

For the experiments of this chapter, we have used four different systems. The processor, operating
system, and compiler details of the DRAM-only systems used in Sections 4.2 and 4.3 are detailed
in Table 4.1, while Table 4.2 contains the corresponding information for the NVM-equipped
system used in Section 4.4.

Thread-to-core mapping. For our single-threaded measurements, we pin our microbenchmarks
on one core, and have simultaneous multithreading (SMT) disabled in all experiments, but the
related ones in Sections 4.2.5, 4.2.6, and 4.2.7 to simplify the interpretation of the results [39].
For our multi-threaded measurements, we pin the microbenchmarks to one socket, and increase
the cores used from one to the number of cores on the socket, depending on how many threads
we want to use. All 4 systems have two or more sockets, and in our evaluation we avoid
external interference by executing our experiments on one socket, having all other processes
migrated to other sockets. Finally, unless otherwise mentioned, we run experiments with disabled
performance scaling (turbo mode off).

39

Chapter 4. Performance Analysis & Applications

System Identifier Windows Linux Power

Processor Xeon E5-2660v3 Xeon E5-2683v4 POWER9 SO
Architecture Haswell Broadwell Sforza
Technology 22 nm 22 nm 14 nm
Base Frequency 2.6 GHz 2.1 GHz 2.6 GHz
Max Frequency 3.3 GHz 3.0 GHz 2.6 GHz
Cores 10 16 16
SMT (Hyperthreading) 2 2 4
L1 I/D Capacity 32 kB/32 kB 32 kB/32 kB 32 kB/32 kB
L1 I/D Associativity 8/8-way 8/8-way 8/8-way
Line Fill Buffers 10 10 8
L2 Capacity 256 kB 256 kB 512 kB
L2 Granularity 1 core 1 core 2 cores
L2 Associativity 8-way 8-way 8-way
L3 Capacity 2.5 MB 2.5 MB 10 MB
L3 Granularity 1 core 1 core 2 cores
L3 Associativity 20-way 20-way 20-way
DTLB Entries (4 kB/2 MB) 64/32 64/32 64 (shared)
DTLB Associativity 4-way 4-way Full
STLB (4 kB/2 MB) 1024 1024 1024
STLB Associativity 8-way 8-way 4-way

OS Windows 10 1809 SLES 12 SP3 Ubuntu 18.04
Compilers MSCV 14.1/Clang 6 Clang 8 Clang 8

Table 4.1 – System parameters (only DRAM)

40

4.2. Microbenchmarks

Code compilation. We compile our code with two compilers: Microsoft Visual C++ (MSVC)
and Clang. The compilation flags are:

• MSVC: /Ox /std=c++17 /arch:AVX2 /await

• Clang: -std=c++17 -fcoroutines-ts -O3 -march=haswell

Note that on the Windows system, we use the MSVC standard library and ABI with both MSVC
and Clang, and on the Linux, IBM, and NVM systems we use the widely available GNU C++
Library (libstdc++). Using coroutines with Clang requires the experimental/coroutine
header from the C++ standard library of LLVM (libcxx); to avoid an additional dependency, we
use a modified copy of the header that works with the two aforementioned standard libraries.
Moreover, we use our implementation of the resumable type and a port of the task type from
Lewis Baker’s cppcoro library1.

Profiling. We profile our microbenchmarks and analyze their microarchitectural behavior on
Intel processors using Intel VTune Amplifier XE 2018 and 2019.

Software prefetching. The instruction-set architectures of the processors we use support tempo-
ral prefetch instructions that modify cache contents and non-temporal ones that circumvent the
cache hierarchy. In our microbenchmarks, we use non-temporal prefetches to avoid evictions due
to cache conflicts, since prefetched data has low temporal locality and the instruction distance
between a prefetch and the corresponding load is small. The latter is not true for the applications
we study, in which the Line Fill Buffer that holds the prefetched cacheline might be cleared
before the corresponding load instruction. In these cases, we use temporal prefetch instructions;
these potentially evict other data to slower cache levels, but, as observed also by Jonathan et
al. [24], fetching data that has been evicted to L2 or L3 due to collisions is preferable to fetching
again from main memory data after a non-temporal prefetch.

4.2 Microbenchmarks

In this section, we study interleaving with coroutines in comparison to (a) non-interleaved
execution, (b) group prefetching and asynchronous memory access chaining. In particular, we
use six binary search implementations: two for sequential execution and four for interleaved.
The sequential ones are std::lower_bound (abbreviated as std) from the standard library of
C++, and Baseline from Section 3.2.5. From the same Section, we get also our interleaved
implementations: GP for group prefetching, AMAC for asynchronous memory access chaining,
Coro for compiler-based coroutines, and Cont for library-based coroutines. The two coroutine
implementations as the interleaved implementations of Coro-S and Cont-S—we are interested
in the best possible performance of the coroutine implementations, so we do not evaluate the
performance of the unified implementations, Coro-U and Cont-U, which are currently not

1https://github.com/lewissbaker/cppcoro

41

https://github.com/lewissbaker/cppcoro

Chapter 4. Performance Analysis & Applications

System Identifier NVM

Processor Xeon Platinum 8280L
Architecture Cascade Lake
Technology 14 nm
Base Frequency 2.6 GHz
Max Frequency 3.9 GHz
Cores 28
SMT (Hyperthreading) 2
L1 I/D Capacity 32 kB/32 kB
L1 I/D Associativity 8/8-way
Line Fill Buffers 10
L2 Capacity 1 MB
L2 Granularity 1 core
L2 Associativity 16-way
L3 Capacity 1.375 MB
L3 Granularity 1 core
L3 Associativity 11-way
DTLB Entries (4 kB/2 MB) 64/32
DTLB Associativity 4-way
STLB (4 kB/2 MB) 1536
STLB Associativity 12-way

DRAM (per socket) 96 GB (6 × 16 GB)
Optane DC PMM (per socket) 768 GB (6 × 128 GB)

OS SLES 15
Compilers Clang 7

Table 4.2 – System parameters (DRAM and NVM)

42

4.2. Microbenchmarks

well-optimized by the compiler. Furthermore, we ensure the if statement, which conditionally
assigns the probe value to the low variable (lines 7–9 in Listing 2.1, and corresponding lines in
Listings 3.9, 3.10, 3.1, and 3.5), is executed not as a branch with speculative execution but as a
predicated mov instruction. For each interleaving implementation, we can configure the group
size, i.e., how many lookups run interleaved at any given point in time.

We use these single-threaded implementations to (a) demonstrate the advantages of interleaving
with compiler-based coroutines over sequential execution for binary searches over int and
string arrays (Section 4.2.1); (b) explain the performance gains through a microarchitectural
analysis of the int case, where we also show how to estimate the best group size G (Section 4.2.2);
(c) compare the performance of compiler- and library-based coroutines, highlighting the impact of
code generation by different compilers (Section 4.2.4). Since compiler-based coroutines (Coro)
are demonstrated to perform better than their library-based counterparts (Cont), the performance
of the latter is studied only in Section 4.2.4.

Apart from the single-threaded implementations, we implement also multi-threaded versions
of Baseline and Coro that lookup a different chunk of values on each thread. We study these
implementations in Section 4.2.5, where we compare interleaving coroutines to hyperthreading
and multithreading, and in Section 4.2.6, where we explain why multithreaded interleaved
execution scales better than simple multithreaded execution.

4.2.1 Comparison to GP and AMAC

We evaluate the five aforementioned implementations on sorted arrays whose size ranges from
1 MB to 2 GB. We generate the array values using the array indices: for integer arrays, the
values are the corresponding array indices, whereas for string arrays we convert the index to
a string of 15 characters, suffixing characters as necessary. Furthermore, the list of lookup
values is a subset of the array values, selected randomly using std::mt19937 with seed 0 and
std::uniform_int_distribution.

Figure 4.1 depicts the performance per binary search with lookup lists of 10K values. We
report the average runtime of 100 executions, and, for interleaving implementations, the depicted
measurements correspond to the best group size configuration (see Section 4.2.3). Since the
instructions executed in a binary search are a logarithmic function of the array size, the horizontal
axis has a logarithmic scale.

The difference between sequential and interleaved execution is clear for both integer and string
arrays. Both std and Baseline incur a significant runtime increase for arrays larger than
16 MB. These arrays outsize the last level cache (25 MB), so binary search incurs main memory
accesses that manifest as stall cycles, as we explained in Section 2.4. As a result, runtime diverges
significantly from the logarithmic function we described above. Contrary to this behavior, runtime
increases are less significant for GP, AMAC and Coro.

43

Chapter 4. Performance Analysis & Applications

0
5

10
15
20
25
30
35
40
45

1 4 16 64 256 1024

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Array size (log scale, in MB)

std
Baseline
GP
AMAC
Coro

(a) Integer array.

0
5

10
15
20
25
30
35
40
45

1 4 16 64 256 1024

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Array size (log scale, in MB)

std
Baseline
GP
AMAC
Coro

(b) String array.

Figure 4.1 – Binary searches over sorted array. Interleaving increases runtime robustness.
Coro performs similarly to AMAC, while the difference to GP is smaller for the string case.

Focusing on arrays larger than the last level cache, all interleaving implementations behave
similarly. GP constantly has the maximum speedup, in the range 2.7–3.7× for integers and
1.8–2.2× for strings. As further explained in Section 4.2.2, this behavior arises thanks to the
coupling of the binary searches in the group. Coro and AMAC follow with decent speedups, in the
ranges 2.0–2.4× and 1.8–2.3× for integers, and 1.4–2.1× and 1.2–1.9× for strings. We should
note that, thanks to compiler optimizations, Coro performs slightly better than AMAC, whose data
alignment and layout we have carefully optimized.

Finally, as array size increases, we observe a smoother increase of the interleaved execution for
strings than for integers. This observation reflects the computationally heavier string comparisons,
which de-emphasize cache misses. In Section 4.2.2, we focus on the integer case, identifying
how runtime behavior changes for different array sizes.

44

4.2. Microbenchmarks

0
5

10
15
20
25
30
35
40
45

1 4 16 64 256 1024

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Array size (log scale, in MB)

std
Baseline
GP
AMAC
Coro

(a) Integer array.

0
5

10
15
20
25
30
35
40
45

1 4 16 64 256 1024

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Array size (log scale, in MB)

std
Baseline
GP
AMAC
Coro

(b) String array.

Figure 4.2 – Binary searches over sorted array with sorted lookup values. Sorting increases
temporal locality, but does not eliminate compulsory cache misses.

Increasing locality with sorting

Sorting small lists is a cheap operation, and thus a valid preprocessing step. In this case, the
lookup values are sorted before starting the binary searches. Figure 4.2 depicts the corresponding
measurements for integers (strings). std and Baseline are up to 2.6× (1.8×) and 2.4× (1.8×)
faster, owing to increased temporal locality: since subsequent lookups access monotonically
increasing positions in the array, the values accessed in one lookup are likely to be cache hits
in later lookups. This additional temporal locality benefits also GP, AMAC and Coro up to 2.2×
(1.4×), 1.9× (1.3×) and 1.9× (1.3×) respectively. Still, sorting does not affect spatial locality:
if the lookup values are not close to each other, which is likely for arrays much larger than the
lookup lists, there will still be compulsory cache misses to hide.

Takeaway. Interleaved execution is robust to the increase of the array size, contrary to sequential
execution. Coro has slightly better performance than the functionally equivalent AMAC, while GP
performs best thanks to the minimal overhead of static interleaving. Furthermore, sorting the
lookup values increases temporal locality between subsequent lookups, but does not eliminate
compulsory cache misses.

45

Chapter 4. Performance Analysis & Applications

4.2.2 Microarchitectural analysis

To understand the effect of interleaved execution, we perform a microarchitectural analysis of our
binary search implementations. We study them for integer arrays and unsorted lookup values,
analyzing them with TMAM (described in Section 2.1.3). Furthermore, we leverage the same
analysis to determine the best group size for each implementation.

Where does the time go?

In Figure 4.3, we depict the execution time breakdown of a binary search as the array size
increases, with the best group size for each technique, i.e., 10 for GP, and 6 for AMAC and Coro
(Section 4.2.3 describes how to determine these values). We calculate the execution cycles spent
on front-end, memory or resource stalls, wasted due to bad speculation, or retired normally
(as specified by TMAM) by multiplying the respective percentages reported by VTune with the
measured cycles per search.

Owing to the small instruction footprint of our implementations, the front-end and bad speculation
components are negligible in all implementations except for std, which is penalized by bad
speculation as explained in Section 2.4. Notably, however, std runs faster than Baseline for
arrays larger than 16 MB; this means that speculation, even if it is bad half the time, is better that
waiting for the data to be fetched from the main memory.

Compared to std and Baseline, memory stalls are reduced in GP, AMAC and Coro. Memory
stalls are negligible until 4 MB, and they start to dominate GP execution from 32 MB. AMAC and
Coro exhibit fewer memory stalls than with GP, as they execute more load and store instructions
when switching. These additional instructions explain the more retiring instructions, as well as
the more core stalls, which incur as switching saturates the load and store units of the core.

Takeaway. Interleaved execution eliminates most memory stalls caused by data cache misses.

How does interleaving reduce memory stalls?

Memory stalls occur when a load instruction fetches data from an address that is not in the L1D
cache. In this case, the Line Fill Buffers (LFB) (L1D MSHR, see Section 2.1.2) are checked to see
if there is a memory request for the same cacheline. If not, a new memory request is created, an
empty LFB is allocated to track the status of the request, and the request itself gets forwarded to
the L2 cache. If the requested address is not in the L2, the request is next forwarded to the L3
cache (also called last level cache, LLC), which is shared among the cores in a socket for the
Intel processor used in our experiment. Finally, if the address is not in the L3, the request goes to
the memory controller and subsequently to the main memory (DRAM). Depending on the level
where the requested address is found, we categorize a load as a L1D hit, a LFB hit, a L2 hit, a L3
hit, or a DRAM access.

46

4.2. Microbenchmarks

0
5

10
15
20
25
30
35
40

1 4 16 64 256 1024
0
5

10
15
20
25
30
35
40

1 4 16 64 256 1024

0
5

10
15
20
25
30
35
40

1 4 16 64 256 1024
0
5

10
15
20
25
30
35
40

1 4 16 64 256 1024

0
5

10
15
20
25
30
35
40

1 4 16 64 256 1024

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Array size (log scale, in MB)

Front-End
Bad Speculation
Memory
Core
Retiring

std

Array size (log scale, in MB)

Baseline
C

yc
le

s
pe

rs
ea

rc
h

(×
10

0)

Array size (log scale, in MB)

GP

Array size (log scale, in MB)

AMAC

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Array size (log scale, in MB)

Coro

Figure 4.3 – Execution time breakdown of binary search. Interleaved execution reduces
memory stalls significantly.

47

Chapter 4. Performance Analysis & Applications

0
5

10
15
20
25
30

1 4 16 64 256 1024
0
5

10
15
20
25
30

1 4 16 64 256 1024

0
5

10
15
20
25
30

1 4 16 64 256 1024
0
5

10
15
20
25
30

1 4 16 64 256 1024

0
5

10
15
20
25
30

1 4 16 64 256 1024

L
oa

ds
pe

rs
ea

rc
h

Array size (log scale, in MB)

LFB hit
L2 hit
L3 hit
DRAM access

std

Array size (log scale, in MB)

Baseline

L
oa

ds
pe

rs
ea

rc
h

Array size (log scale, in MB)

GP

Array size (log scale, in MB)

AMAC

L
oa

ds
pe

rs
ea

rc
h

Array size (log scale, in MB)

Coro

Figure 4.4 – Breakdown of L1D misses. Interleaved execution hides the latency of data
cache misses.

48

4.2. Microbenchmarks

In Figure 4.4, we depict a breakdown of the load instructions per implementation and array size,
based on the memory hierarchy level in which they hit (we omit L1D hits as they do not cause
lengthy memory stalls). We generally observe that, with interleaved execution, most L1D misses
are LFB hits. The reason for this behavior is the use of prefetch instructions by the interleaving
techniques: each prefetch that misses in L1D creates a memory request allocating an LFB; the
corresponding load either finds the data in L1D in case enough instructions are executed between
the prefetch and the load, or finds the allocated LFB otherwise. The instructions GP injects
between a prefetch and the corresponding load are not enough to effectively hide L1D misses,
despite using the best group size (see Section 4.2.3 for an explanation); still, they reduce the
average miss latency, leading to the observed runtime improvement. Contrary to GP, AMAC and
Coro eliminate most L1D misses for arrays up to 32 MB; for larger arrays, the effected L1D
misses seem to be caused by address translation (see Section 4.2.2).

Takeaway. Interleaved execution introduces enough instructions between a prefetch and the
corresponding load, decreasing the average memory latency of load instructions.

Why does GP perform best?

The performance difference between the three interleaving techniques can be explained by their
respective instruction overhead: Compared to Baseline, from which they are derived, GP, AMAC
and Coro execute 1.8×, 4.4× and 5.4× more instructions. These instruction overheads, also
reflected as more retiring cycles in Figure 4.3, correspond to the overhead of switching among
tasks, which mainly consists of managing state.

Many binary searches on the same array is a best case scenario for group prefetching: all tasks
within a group execute the same code for the same number of iterations. The tasks share the
binary search loop, reducing the number of instructions executed and the number of state variables
that have to be tracked per task. As we describe in Listing 3.9, the tracked state variables include
only the searched value and the current low, whereas probe is inexpensively recomputed. In
addition to these variables, the non-coupling AMAC and Coro have to maintain the loop state
separately per task, which means they execute more load and store instructions when switching
between tasks.

Takeaway. Contrary to AMAC and Coro, GP shares computation among tasks and maintains less
state per task. In other words, GP executes fewer instructions than AMAC and Coro, and thus
performs best.

How does address translation affect execution?

In Section 4.2.1, we note that runtime increases smoothly for string arrays. However, in the
measurements for integer arrays, we observe runtime jumps when increasing the array size
from 4 MB to 8 MB, from 16 MB to 32 MB, and with every increase beyond 128 MB. Since the

49

Chapter 4. Performance Analysis & Applications

0

5

10

15

20

1 4 16 64 256 1024

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Array size (log scale, in MB)

4 kB Pages
2 MB Pages
4 kB Pages + Index

Figure 4.5 – Coro on sorted integer array using (a) 4 kB pages, (b) 2 MB pages, and (c) 4 kB
pages and an index on top of the sorted array. Using either 2 MB pages or the index leads
to fewer TLB misses, smoothing out the related runtime jumps.

memory load analysis of Section 4.2.2 cannot explain these runtime jumps, we monitor and
analyze the address translation behavior.

Profiling shows most loads hit in the DTLB, the first-level translation look-aside buffer for data
addresses. However, DTLB misses can hit in the STLB, the second-level TLB for both code and
data addresses; or perform a page walk to find the address mapping in the page tables. In the latter
case, the appropriate page tables can be located in any level of the memory hierarchy—we denote
the page walks that hit L1D, L2, L3 and DRAM as PW-L1, PW-L2, PW-L3 and PW-DRAM
respectively.

The aforementioned runtime jumps correspond to parameters related to address translation. The
first runtime jump from 4 MB to 8 MB matches the STLB size, and our profiling results show
PW-L1 hits for larger arrays, while the second one, from 16 MB to 32 MB, corresponds to PW-L2
hits. Since the latencies of L1D and L2 are partially hidden by out-of-order execution, the two
first jumps are small. However, the PW-L3 hits that cause the third jump cannot be hidden, so
increasing the array size beyond 128 MB incurs the most evident runtime increases.

We should note that interleaving works thanks to prefetch instructions. A prefetch does not block
the pipeline in case of an L1D miss, and thereby allows subsequent instructions in the task to
execute. Yet, the pipeline is blocked until the prefetched virtual address is translated to a physical
one, possibly involving long page walks.

Reducing TLB misses

We can avoid TLB misses by using either large pages or an index. Beside the standard 4 kB
pages, modern processors can address memory with 2 MB and 1 GB pages, and thereby reduce
the stress on the TLB. Still, choosing a larger page size is a non-trivial decision, as their use
requires special privileges, manual OS configuration, and special system calls so they cannot

50

4.2. Microbenchmarks

be considered a general-purpose solution; transparent huge pages eliminate this configuration
overhead, at the cost of a best-effort operation that does not guarantee the use of the appropriate
page size. Alternatively, we can introduce a B+-tree index with page-sized nodes on top of the
sorted array. Lookups on this structure traverse the tree nodes, performing binary searches within
each of them. By construction, each binary search in a node avoids TLB misses, since the
involved memory accesses touch only one page.

In Figure 4.5, we compare these two alternatives to Coro with 4 kB pages. Both solutions
improve performance for large arrays by eliminating TLB misses; 2 MB pages lead to strictly
faster execution compared to 4 kB pages, up to 1.9×, whereas index traversal involves more
instructions, which explains the slowdown for arrays smaller than 32 MB.

Takeaway. Larger array sizes cause TLB misses that interleaving cannot hide; yet we can avoid
them with large pages or an index on top of the sorted array.

4.2.3 Choosing the group size

As already mentioned, the results we present correspond by default to the best group size
configurations for each implementation. Given that all lookups execute the same instructions,
we can estimate the best group sizes by applying the interleaving model of Section 3.1 to the
profiling measurements. From Baseline, we map memory stalls to Tstall and all other cycles to
Tcompute. Further, we compute Tswitch as the difference in retiring cycles between Baseline and
each of the three interleaved implementations for group size 1. We apply these parameters to
Formula 3.2 for a 256 MB integer array, yielding GGP ≥ 12 and GAMAC = GCoro ≥ 6. Based on
Formula 3.4, we expect the speedups to be at most 5.7×, 3.7× and 3.3× respectively.

To verify these results, we run our microbenchmarks for a 256 MB integer array and depict, in
Figure 4.6, our runtime measurements as a function of the group size, which ranges between 1
and 12 concurrent binary searches (performance varies little for larger group sizes). We observe
that the best group sizes are 10 for GP, and 5–6 for AMAC and Coro. For GP, Gestimated differs
from Gobserved owing to a hardware bottleneck: current Intel architectures have 10 LFBs (see
Section 4.2.2), limiting the number of outstanding memory accesses and, thus, the benefit of
interleaving (hence the smaller observed speedup). Nevertheless, 10 LFBs suffice for AMAC and
Coro, matching our estimates2.

We should note that interleaved execution with group size 1 makes no sense: GP, AMAC and Coro
are slower than Baseline due to the overhead of the switching mechanism. The non-negligible
overhead emphasizes the need for implementations that switch only in case of interleaved
execution; otherwise, the switching mechanism should be bypassed. Finally, similar observations
to the ones above can be made for the other array sizes and for string arrays. Varying the array
size affects the number of cache misses and not the Tcompute nor the Tstall per cache miss, whereas

2The observed speedups differ from the expected ones mainly due to rounding; group sizes cannot be floats.

51

Chapter 4. Performance Analysis & Applications

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9 10 11 12

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Group size

Baseline
GP

AMAC
Coro

Figure 4.6 – The effect of group size on runtime (for 256 MB integer array). Best group
sizes: 10 for GP, 5–6 for AMAC, Coro.

Tcompute for comparing strings with 15 characters seems to not differ significantly from integer
comparison.

Takeaway. Knowing the available computation, the memory stalls, and the switch overhead per
task, we can assess the effect of an interleaving technique on a group of lookups. Since the above
parameters are similar for all lookups, Formula 3.2 provides a reasonable estimate of the best
group size, as long as the hardware supports the necessary memory-level parallelism.

4.2.4 Library- vs compiler-based coroutines

To understand why it is important for coroutines to be supported and optimized by a compiler,
we compare Coro to the lightweight Boost.Context implementation described in Section 3.2.3
(Cont). We compile these two implementations along with Baseline using both the MSVC
14.13 (M variants) and Clang 6.0 (C variants) compilers. In Figure 4.7, we report their performance
as we increase the array size.

Coro (C) is slightly faster than Coro (M), owing to the more comprehensive set of coroutine-
related optimizations that Clang applies—the assembly instructions for binary search itself are
identical. Cont (M) is 25% slower than Coro (M), solely due the significantly more instructions
Cont (M) executes to replace the execution context —a few registers vs the whole register file—
despite the manual optimizations we apply to reduce the number of registers we replace (see
Section 3.2.2). Moreover, the assembly generated by Clang causes more branch mispredictions
leading to 70% longer execution time for Cont (C) compared to Coro (C). Still, all Coro and
Cont variants effectively hide cache misses for large array sizes.

Takeaway. As we also explain in Section 3.1, the cost of switching determines the performance
of interleaved execution. A library-based context switch needs to be defensive and save all state
when suspending execution. Contrary to that, a compiler-optimized suspension stores only the
necessary state, which in binary search consists of two variables.

52

4.2. Microbenchmarks

0
5

10
15
20
25
30
35
40
45
50

1 4 16 64 256 1024

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Array size (log scale, in MB)

Baseline (M)
Coro (M)
Cont (M)
Baseline (C)
Coro (C)
Cont (C)

Figure 4.7 – Compiler-based (Coro) vs library-based (Cont) coroutines compiled with
MSVC (M) and Clang (C). Coro performs better than Cont because it has more lightweight
suspension/resumption.

0
5

10
15
20
25
30
35
40
45
50

1 4 16 64 256 1024

C
yc

le
s

pe
rs

ea
rc

h
(×

10
0)

Array size (log scale, in MB)

Baseline
Coro (G=2)
Coro (G=6)
CHT (G=4)

BHT
BMT2
BMT3
BMT4

Figure 4.8 – Interleaving, hyperthreading, and multithreading. The combination of corou-
tines and hyperthreading (CHT) performs better than non-interleaved multithreaded exe-
cution on 4 cores (BMT4).

4.2.5 Hyperthreading and multithreading

Since interleaved execution assumes the existence of several independent tasks, one would first
exploit this embarrassing parallelism with multithreaded execution. As explained in Section 2.1.1,
modern Intel processors support hyperthreading, a form of interleaved execution implemented
in hardware. Hyperthreading comes very close to the ideal form of interleaving that has instant
context switches, and thus can hide arbitrarily short latencies, as long as the two hyperthreads have
enough computation to execute; not the case for lookup code, which has only a few instructions
between cache misses. On the other hand, coroutines support an arbitrary number of tasks, but
have non-zero suspension/resumption cost.

To compare interleaving to hyperthreading and multithreading, we use multithreaded versions of
Baseline and Coro; the former uses a simple parallel for loop, while the latter interleaves lookup
execution per thread. Figure 4.8 depicts multithreaded performance (a) with hyperthreading

53

Chapter 4. Performance Analysis & Applications

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

ov
er
B
a
s
e
l
i
n
e

#Cores

MT
HT+MT
MT+C
HT+MT+C

Figure 4.9 – Combining multithreading (MT), hyperthreading (HT) and interleaving with
coroutines (C) performs best.

enabled (BHT for Baseline and CHT for Coro), on 2 logical cores sharing the same physical
one; and (b) with hyperthreading disabled (BMT2-4 for Baseline), on 2 to 4 different physical
cores. Note that we focus on the actual execution, not taking into account the non-trivial costs of
creating and managing an OS thread. BHT is faster than Coro with two interleaved tasks (G=2),
owing to the almost instant context switch between the two hyperthreads. Since the instructions
of two binary search iterations can only partially hide memory latency, Coro with G=6, which
is the optimal group size (see Section 4.2.3), outperforms not only hyperthreading but also real
multithreaded execution with 2 and 3 cores, being somewhat slower than multithreaded execution
with 4 physical cores. Nevertheless, combining coroutines with hyperthreading in CHT results
in the best implementation of interleaved execution in a single core. Hyperthreading replaces a
suspension/resumption pair with almost instant context switching, so more useful instructions can
be executed. increasing the optimal group size per hyperthread from G=3, i.e., half the group size
of the single-threaded execution, to G=4, This allows CHT to perform better than multithreaded
execution on 4 physical cores.

Takeaway. For binary search, combining coroutines with hyperthreading is the most efficient
way to interleave on a core, outperforming multithreaded execution with 4 cores.

4.2.6 The scalability of multithreaded interleaved execution

Interleaved execution improves single-thread performance by eliminating stalls. Here, we as-
sess how this improvement scales with multiple threads. We use the multithreaded versions of
Baseline and Coro described in Section 4.2.5, increasing the number of physical cores they run
from 1 to 10 (the number of cores per socket) and we run with and without hyperthreading.

In Figure 4.9, we present the four aforementioned executions over Baseline for a 2 GB integer
array. MT denotes multithreaded execution, HT means hyperthreading is enabled, and C implies
interleaved execution with coroutines. As we observe also in Section 4.2.5, one physical core with
hyperthreading achieves almost the same performance as two physical cores for non-interleaved

54

4.2. Microbenchmarks

0

10

20

30

40

50

1 4 16 64 256 1024 4096

C
yc

le
s

pe
rs

ea
rc

h
(x

10
0)

Array size (log scale, in MB)

std
Baseline
Coro

Figure 4.10 – 10K binary searches on IBM POWER9.

execution, while the benefit of hyperthreading, although visible, is much smaller for interleaved
execution.

Moreover, MT scales linearly, whereas MT+HT achieves almost the same performance on 6 cores
as MT on 10 cores; still, neither MT nor MT+HT gets 10× faster by fully utilizing the socket. The
reason for this behavior is the increasing contention for LLC space: running more threads in
parallel changes the overall memory access pattern and hurts temporal locality, increasing the
data cache misses per thread. On the other hand, MT+C scales superlinearly and at 10 threads
the speedup is 10.6× than Coro, because (a) interleaving decreases the dependency of lookup
execution on array contents being in the cache or not, and (b) the multiple threads access the
same page tables in parallel, increasing their temporal locality and thus reducing the latency
of page walks. Finally, MT+HT+C with 20 hyperthreads is 11.4× faster than Coro (35.5× faster
than Baseline) because hyperthreading hides stalls from the Core part of the breakdown in
Figure 4.3.

Takeaway. Interleaving improves the scalability of a multithreaded implementation because
it does not require the prefetched data to be in the cache and reduces the latency of address
translation. Multithreaded interleaved execution on a 10-core socket with hyperthreading enabled
shows a 35.5× speedup over single-threaded non-interleaved execution.

4.2.7 Interleaved execution on IBM POWER9

Our analysis so far has focused on Intel microarchitectures. However, interleaved execution
applies to any microarchitecture that supports out-of-order execution, multiple outstanding
memory requests, and software prefetching. In this subsection, we analyze the performance
of interleaving with coroutines on our Power system (see Table 4.1), which features an IBM
POWER9 processor that supports 2- and 4-way simultaneous multithreading (SMT2 and SMT4).

We run the std, Baseline, and Coro implementations of our binary search microbenchmark
with int arrays. Figure 4.10 depicts the best runtimes, i.e., with the optimal group sizes, for

55

Chapter 4. Performance Analysis & Applications

0

10

20

30

40

50

1 4 16 64 256 1024 4096

C
yc

le
s

pe
rs

ea
rc

h
(x

10
0)

Array size (log scale, in MB)

Baseline
BHT2
BHT4

Coro
CHT2
CHT4

Figure 4.11 – 10K binary searches on IBM POWER9 single-threaded, with SMT2, and
with SMT4.

each implementation for array sizes that range between 1 MB and 4 GB increased by 1 kB to
reduce TBL conflicts and thereby TLB misses. The runtimes of std and Baseline increase
significantly in the area of 10 MB, i.e., the size of the L3 slice that corresponds to the executing
core. Accesses that miss in the corresponding slice are served with increasing latency either over
the internal interconnect by other L3 slices which assume the role of victim caches, or by the
memory controller which fetches the data from DRAM [21]. On the other hand, Coro exhibits
runtimes that increase almost linearly, without visible L3 or TLB misses.

To compare with simultaneous multithreading (SMT), we use the multithreaded versions of
Baseline and Coro described in Section 4.2.5. We run each implementation without SMT
(Baseline, Coro), with 2-way SMT (BHT2, CHT2), and with 4-way SMT (BHT4, CHT4). The
corresponding runtimes are depicted in Figure 4.11. Similarly to Figure 4.8, we observe that
simultaneous multithreading almost doubles Baseline performance for array sizes where execu-
tion is dominated by cache misses, exploiting memory stalls for executing instructions from the
other threads. Again, Coro also benefits from SMT, which not only replaces suspension/resump-
tion pairs with instant context switch among SMT contexts, but also hides latencies that are too
small for coroutine suspension/resumption to make sense.

Since SMT with enough hardware contexts outperforms coroutines when switching, one could
argue that if we simply increase the number of SMT contexts, coroutines are an unnecessary
complexity. However, we should keep in mind that, for general-purpose processors, adding
hardware contexts might not be the best use of the available silicon, while no given number of
contexts is guaranteed to suffice for future applications and the longer latencies of new memory
technologies that have yet to come. A software-based interleaving technique, like coroutines, can
adapt to new demands more flexibly than a hardware only technique.

Takeaway. Simultaneous multithreading (SMT) is the ideal implementation of interleaved
execution in case the available hardware contexts provide enough work for the targeted latency.
For long latencies, the combination of coroutines and SMT offers optimal performance.

56

4.3. Analytics and transactions

4.3 Analytics and transactions

As already mentioned, a key differentiator between interleaving with coroutines and prior software-
based interleaving techniques is the applicability of our technique to large codebases. In this
section, we provide evidence that coroutines deliver on the promises of interleaved execution
on two representative use cases from analytics and transactions. The index join we present first
is a fundamental database operation that, in the form of hash join, consitutes the main hotspot
in analytical workloads [30], whereas the GET and PUT we interleave next are key transactional
operations for key-value stores.

4.3.1 Index join

When choosing the physical operator for an equi-join between two relations, A and B, a query
optimizer checks if either of them has an index on the join attribute. Such an index, e.g., on A,
can be used in an index join algorithm that scans B, looking up A’s index to retrieve the matching
records. In the absence of an index, the optimizer may decide to perform a hash join, i.e., build
a hash index on one relation and probe it while scanning the other. Whether using an existing
index or building a transient one, these join algorithms dominate analytical workloads.

Both the index join, as well as the probe phase of a hash join, are essentially a sequence of
independent index lookups, like B+-tree traversals, hash table lookups, or binary searches on
sorted arrays. This sequence can be trivially expressed as a loop, which performs well so long as
the index involved fits in the processor cache. Otherwise, the irregular memory access pattern of
the lookup code leads to poor performance and execution times that are dominated by memory
stalls due to data cache misses.

Without loss of generality, we focus on IN-predicate queries, a case of an index join found in
main memory column stores that employ dictionary encoding. First, we elaborate on how column
stores use dictionary encoding and explain why IN-predicate queries [41], i.e., dictionary lookups
performed in bulk, are instances of index joins. We then quantify the negative effect of main
memory accesses on dictionary lookups when the dictionary outsizes the last level cache, and
present how to eliminate these effects with interleaved execution.

Dictionary encoding in main memory colunm stores

Dictionary encoding is a common compression method for main memory column stores [16,
33, 35, 46, 50] that maps the value domain of one or more columns to a contiguous integer
range [9, 11, 16, 22, 25, 34]. This mapping replaces column values with unique integer codes and
is stored in a separate dictionary, a data structure that supports two access methods, extract and
locate; extract returns the value for a code, whereas locate returns the code for a value that
exists in the dictionary, or a special code that denotes absence. The resulting vector of codes and
the dictionary constitute the encoded column representation. The code vector is usually smaller

57

Chapter 4. Performance Analysis & Applications

than the original column, reflecting the smaller representation of codes, whereas the dictionary
size is determined by the value domain, which can comprise from few to billions of distinct
values as encountered by database vendors in customer workloads [44].

Here, we focus on the column store of SAP HANA, introduced in Chapter 2.2, As explained,
the SAP HANA column store has two fragments per column: the read-optimized Main and the
update-friendly Delta. A Main dictionary is a sorted array of the domain values, where the array
positions correspond to codes, similarly to [16, 33, 50]. Hence, extract is a simple array lookup,
whereas locate is a binary search on the array contents for the appropriate array position. On the
other hand, Delta dictionaries are implemented as unsorted arrays indexed by a cache-conscious
B+-tree (CSB+-tree) [51]; extract is again an array lookup, but locate is now an index lookup
on the CSB+-tree.

Sorted or not, a dictionary array can be considered a relation D(code, value) that is indexed on
both attributes: codes are encoded as array indices, whereas values can be retrieved through
binary search or index lookup, respectively in the sorted and the unsorted case; here, we focus on
the value index. Since a sequence of values is also a relation S (value), every value lookup from a
column involves a join S ./ D, which uses the dictionary index in case |S | << |D|. Such index
joins dominate the IN-predicate queries that we discuss next.

IN predicates and their performance

IN predicates [41] are commonly used in ETL processes to extract interesting items from a table.
An IN predicate is encountered in the WHERE clause of a query, introducing a subquery or
an explicit list of values that the referenced column must match. Listing 4.1 illustrates an IN
predicate from Q8 of TPC-DS [3], which extracts all zip codes from the customer_address table
that belong in a specified list of 400 predicate values.

Listing 4.1 – IN predicate excerpt from TPC-DS Q8.

1 SELECT substr(ca_zip ,1,5) ca_zip FROM customer_address
2 WHERE substr(ca_zip ,1,5) IN (’24128’, ..., ’35576’)

When IN-predicate queries are executed on dictionary-encoded data, the predicate values need to
be encoded before the corresponding rows can be searched in the code vector. This encoding
comprises a sequence of locate operations, which, as already described, can be viewed as an
index join.

Like all index lookups, dictionary lookups become disproportionally expensive when the dictio-
nary outsizes the last level cache of the processor. Figure 4.12 illustrates this disproportionality in
the response time of the query SELECT COUNT(*) FROM TBL WHERE COL IN LIST running
on a prototype based on SAP HANA, on our Windows system (see Table 4.1). We vary the size of
TBL from 1 MB to 2 GB and we construct the LIST with 10K random predicate values. For both
Main and Delta, we observe a runtime increase as the dictionaries outgrow the last level cache

58

4.3. Analytics and transactions

(25 MB). To identify what causes the evident runtime increase, we profile the query execution for
the smallest and largest dictionary sizes, i.e., 1 MB and 2 GB. The resulting list of hotspots in
Table 4.3 identifies dictionary lookups (locate) as the main execution component.

Table 4.3 – Execution details of locate.

Main Delta
1 MB 2 GB 1 MB 2 GB

Runtime % 21.4 65.7 34.3 78.8
Cycles per Instruction 0.9 6.3 0.7 4.2

In the 1 MB case, locate contributes 21.4% (34.3%) of the total execution time for Main (Delta),
a number which surges to 65.7% (78.8%) for the 2 GB case. These surges can be attributed to the
7× (6×) increase in the cycles per instruction (CPI) ratio between the 1 MB and the 2 GB cases.

Table 4.4 – Pipeline slot breakdown for locate.

Main Delta
1 MB 2 GB 1 MB 2 GB

Front-End 10.4% 3.5% 0.7% 0.2%
Bad speculation 43.3% 26.1% 0.0% 0.3%
Memory 2.8% 46.0% 30.8% 85.9%
Core 16.4% 20.5% 28.9% 7.3%
Retiring 27.0% 3.9% 40.0% 6.3%

In Table 4.4, we present the TMAM breakdown of locate’s execution retrieved from a profiling
session of 60 seconds. In the 2 GB case, memory stalls account for 46.0% and 85.9% of the
pipeline slots, respectively for Main and Delta, while they are relatively less prominent in the
1 MB case. The stalls occur from random accesses to the dictionary array for Main and to the
index nodes for Delta. The 1 MB dictionary fits in the last level cache, so accesses to it incur
small latencies [23] that do not dominate execution. For the 2 GB dictionary, however, only the
first few binary search iterations (Main) or tree levels (Delta) are expected to be in a warmed-up
cache, while the rest of the data requests lead to main memory accesses that translate into stalls.

Furthermore, Main execution exhibits a significant of bad speculation that arise from the binary
search involved in Main dictionary lookups. As we have explained in Section 2.4, the decision
on which subarray to search in the next iteration is inherently unpredictable, challenging branch
predictors of the processor. The Delta uses such a predicated implementation for binary search in
the tree nodes, so no pipeline slots get wasted due to bad speculation.

Moreover, we believe bad speculation is also the main reason for the front-end stalls we observe
in Main, given that these stalls are negligible in Delta, and do not appear in the non-speculative
microbenchmarks we study in Section 4.2. Finally, the core fraction in both Main and Delta
comprises stalls due to unavailable execution units.

59

Chapter 4. Performance Analysis & Applications

0

5

10

15

20

1 2 4 8 16 32 64 128 512 2048Q
ue

ry
re

sp
on

se
tim

e
(i

n
µs

)

Data size (log scale, in MB)

Main (Sequential)
Main (Interleaved)
Delta (Sequential)
Delta (Interleaved)

Figure 4.12 – IN-predicate queries executed on SAP HANA with increasing dictionary sizes.
The original implementations incur evident runtime increases when the dictionaries do not
fit in the cache (25 MB), due to expensive main memory accesses. Interleaved implementa-
tions exhibit robust performance despite accessing main memory.

IN predicates with interleaving

To interleave the execution of the IN-predicate query we consider, we convert into resumable
coroutines the involved dictionary lookups in both the Main (binary search) and Delta (CSB+-tree
lookup). Since resumable is not composable, we manually inline nested function calls into the
main lookup functions, which we then convert into coroutines. The Main implementation is
straightforward, but the Delta one differs from the CSB+-tree described in Section 3.2.2: leaf
nodes contain codes instead of values, so comparisons against the values of a leaf node incur
accesses to the dictionary array to retrieve the actual values, adding an extra suspension point on
the access to the dictionary array.

We evaluate the two implementations in the execution of IN-predicate queries with 1K, 5K, 10K,
and 50K predicate values over INTEGER arrays with distinct values and dictionaries whose size
ranges in 1 MB–2 GB. Figure 4.12 depicts the query response time for the 10K case. In the
other cases, lookups account for a smaller part of total execution and the benefit of interleaving
is less evident. For dictionaries larger than 16 MB, interleaving reduces the Main runtime for
dictionary sizes larger than the cache, from 9% at 32 MB to 40% at 2 GB, corroborating the
microbenchmark results. On the other hand, the Delta runtime is reduced for all dictionary sizes,
from 10% at 1 MB to 30% at 2 GB; this can be explained by the memory stalls that Delta exhibits
in the 1 MB case.

Takeaway. For both Main and Delta, interleaved execution hides the cache misses of dictionary
lookups that appear as the dictionary grows larger than the last level cache. As a result, IN-
predicate queries become robust to dictionary size.

60

4.3. Analytics and transactions

4.3.2 Transactions

Transactional workloads also make heavy use of index structures and are thus susceptible to
memory stalls. Contrary to analytical queries, transactions typically exhibit low intra-transaction
parallellism, operating on one or few records each. At the same time, many transactions run
concurrently, and this inter-transaction parallelism can be leveraged to hide memory access
latency through interleaved execution and thereby increase transaction throughput.

Here, we study the effects of transaction interleaving on Silo [58], an in-memory transactional
engine that implements optimistic concurrency control (OCC) and employs the cache-efficient
Masstree [38] for its indexes. Interleaving of Masstree operations has been studied by Jonathan
et al. [24] in isolation, whereas we focus on the behavior of a complete transactional system
that happens to use the Masstree. Moreover, we are interested not only in the throughput of
the interleaved transactions but also their latency, which should satisfy given service quality
guarantees.

We interleave the GET and PUT operations of the Yahoo! Cloud Serving Benchmark (YCSB) using
task coroutines (Section 3.2.4). We introduce prefetches and suspensions to the traversals both
operations perform on the Masstree, but we execute the tree modifications for the PUT operation
“atomically”, i.e., without any suspensions; the nodes to modify are already fetched in cache
during the traversal, so there is no memory latency to hide. Since the YCSB driver in Silo has
multiple worker threads, each of which generates and executes operations one after the other in
a loop, we interleave by replacing the loop with our for_each. These changes do not alter the
transactional guarantees of system, since multithreading subsumes multitasking in one thread.

Table 4.5 – Performance metrics of non-interleaved YSCB execution on Silo.

Scale Factor Throughput Average Latency 99th Percentile Latency
(in 106 ops/s) (in µs) (in µs)

500 1.8 0.5 1.0
5K 1.4 0.7 1.2
50K 1.0 0.9 1.6
500K 0.8 1.2 1.9

To evaluate Silo with interleaving, we use the Silo variation of the YCSB A workload [58],
comprising 80% GET and 20% PUT operations. We execute this workload for 30 s with scale
factors 500 (5 MB), 5K (50 MB), 50K (500 MB), and 500K (5 GB) running single-threaded on
the Linux system (see Table 4.1). In Figure 4.13, we report the throughput, the average latency,
and the 99th percentile latency of YCSB on Silo with interleaved execution; each of these three
metrics is normalized to the corresponding measurements with non-interleaved execution, which
are presented in Table 4.5). Note that operations in Silo are not queued, so latency does not
include wait time—each new operation is created and submitted for execution only after the
previous operation finishes.

61

Chapter 4. Performance Analysis & Applications

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

T
hr

ou
gh

pu
t

Group Size (G)

SF500
SF5K

SF50K
SF500K

(a) Throughput.

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

A
ve

ra
ge

L
at

en
cy

Group Size (G)

SF500
SF5K

SF50K
SF500K

(b) Average Latency.

0
2
4
6
8

10
12

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

99
th

Pe
rc

en
til

e
L

at
en

cy

Group Size (G)

SF500
SF5K

SF50K
SF500K

(c) 99th Percentile Latency.

Figure 4.13 – YCSB (80% GET, 20% PUT) performance on Silo for scale factors 500, 5K,
50K, and 500K. The depicted throughput, average latency, 99th percentile latency measure-
ments correspond to interleaved execution with different group sizes G and are normalized
to non-interleaved execution. Larger scale factors imply more cache misses, hence more
benefit from interleaving. In addition, relatively small group sizes offer near maximum
throughput without increasing operation latency significantly.

62

4.4. DRAM vs NVM

For scale factor 500, interleaving penalizes throughput, while leading to throughput increases up
to 1.11×, 1.25×, and 1.40× respectively for scale factors 5K, 50K, and 500K. These maximum
speedups correspond to group sizes 11, 8, and 12, for which the average and 99th percentile latency
are 4×–7× longer than without interleaving. We observe that latency increases linearly with the
group size, a side effect of the varying instruction distance between subsequent suspensions: a
dynamic number of instructions need to be executed to modify the tree in a PUT operation, whereas
going from one node to the appropriate child when traversing the tree involves a fixed number of
instructions. To guarantee that memory latency is always hidden, we need to always account for
the smallest possible instruction distance, which leads to high group sizes. Nevertheless, we also
observe that throughput quickly becomes insensitive to the group size, with even small group
sizes yielding near optimal speedup. 94% of the maximum throughput is already attained at
group size 3, which means we can trade 6% throughput increase for roughly 2× better latency.

Takeaway. In transactional workloads, performance is determined not only from the aggregate
throughput of the system but also from the latency of each individual transaction. This means,
we can interleave to increase throughput, so long as transaction latency does not violate service
levels guarantees.

4.4 DRAM vs NVM

Everything described so far about interleaving with coroutines applies to any use case with data-
or task-level parallelism in which memory latency is exposed to runtime. What changes by placing
data and/or working set to NVM, is the 4× latency increase and the 10× bandwidth reduction (see
Section 2.1.2). To hide the higher latency, more instructions are needed. These instructions can
be found by increasing the group size, i.e., the number of interleaved coroutines. However, the
maximum memory-level parallelism (MLP) supported by current Intel processors is 10 in-flight
memory requests per core [23]. This limit means higher group sizes offer little to no benefit in
case all prefetches go to main memory. Furthermore, scaling interleaved execution to multiple
cores is bound to reach the bandwidth limit of NVM—even in the absence of scans. Under these
constrains, interleaving converts execution from latency- to MLP- or bandwidth-bound.

In this section, we show that interleaving with coroutines drastically narrows the performance
gap between NVM and DRAM for latency-bound operations despite the significant latency
difference. To that end, we interleave two types of operations: (a) lookups on a single index, and
(b) lookups on different indexes. In Section 4.4.1, we compare the single-thread runtime and the
scalability of interleaved and non-interleaved binary searches having sorted arrays on DRAM
and NVM. Then, we assess the gap between DRAM and NVM and the effect of interleaving on
the end-to-end execution of two queries running on a prototype based on SAP HANA: a query
with an IN-predicate (Section 4.4.2), and a simple SELECT(*) query (Section 4.4.3). For our
experiments, we compile our code with Clang 7.0 and use the NVM system, which is equipped
with an Intel Xeon Platinum 8280L processor, 6 DRAM DIMMs, and 6 Optane DC PMMs per
socket (see Table 4.2) and SUSE Linux Enterprise Server 15 (Linux kernel 4.12).

63

Chapter 4. Performance Analysis & Applications

0
20
40
60
80

100
120

1 2 4 8 16 32 64 256 1024 4096

C
yc

le
s

pe
rs

ea
rc

h
(x

10
0)

Array size (log scale, in MB)

Baseline (DRAM)
Baseline (NVM)
Coro (DRAM)
Coro (NVM)

Figure 4.14 – Binary search performance on DRAM vs NVM.

4.4.1 Microbenchmarks

We use the binary search microbenchmark described in Section 4.2, as representative of a simple
index join. We use two implementations that look for a list of values in a sorted array of 32-bit
signed (int32_t) integers. We use the Baseline and Coro implementations, as described
in Section 4.2, respectively for sequential and interleaved execution. The sorted array sizes
range between 1 MB–4 GB, increased by 1 kB to circumvent alignment issues that hurt TLB
performance (see Section 4.2.2). For the lookup list we select 10K values from the sorted array
using std::mt19937 with a fixed seed of value 0 and std::uniform_int_distribution.
We run our experiments with the array placed first in DRAM and then in NVM.

Increasing the array size. Figure 4.14 depicts the cycles per binary search for all array sizes
and for the optimal group sizes, i.e., the one for which Coro has the best performance. First, for
Baseline, we notice the performance gap between DRAM and NVM, a gap that widens from 2.3×
to 4.2× as the number of cache misses increases with the array size. For Coro, the performance
difference ranges from 1.7× at 1 MB to 2.4× at 4 GB. The corresponding optimal group sizes are
in the range 21–44 for DRAM and 22–49 for NVM. We observe values in the upper part of these
ranges with small arrays and, conversely, values in the lower part with large arrays. For small
arrays most accesses hit in the cache, allowing to interleave more than 10 coroutines at a time
and thereby hide most of the latency of the few main memory accesses. As the number of main
memory accesses increases, the hardware-imposed limit on in-flight memory requests becomes a
bottleneck and decreases the optimal group size; still, the group size is above 20 because array
values of the first binary search iterations fit in the cache, so the respective prefetches finish
fast, allowing new prefetches to be issued3. The hardware-imposed limit explains also why
interleaved execution does not eliminate the difference: the 7 assembly instructions that exist
between subsequent array lookups in a binary search are inadequate for eliminating the latency
gap given the group size limit. Still, interleaving improves NVM performance by up to 5× for

3Note that the difference to the optimal group size 10 reported in Section 4.2 is due to the higher suspension/re-
sumption overhead of the code generated by the Microsoft Visual C++ compiler. Compiler support matters and has
been improving over the years.

64

4.4. DRAM vs NVM

0

10

20

30

40

50

1 2 3 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28

R
el

at
iv

e
pe

rf
or

m
an

ce
w

.r.
tB
a
s
e
l
i
n
e
(
D
R
A
M
)

,1
co

re

Physical cores

Baseline (DRAM)
Baseline (NVM)
Coro (DRAM)
Coro (NVM)

Figure 4.15 – Scalability of binary search for a 2 GB sorted array.

4 GB arrays, reaching runtimes similar to Baseline on DRAM.

Scaling up to 28 cores. We assess the scalability of inteleaved execution on NVM by running
the multithreaded versions of Baseline and Coro on one socket using 1–28 physical cores.
Figure 4.15 shows the speedups over Baseline (DRAM) with 1 core. Contrary to the latency-
bound Baseline, that scales well on both DRAM and NVM, Coro on NVM becomes bandwidth-
bound with 18 cores, reaching a maximum speedup of 8× and incurs a slight slowdown as the
number of cores used increases further to 28 due to increasing resource contention on the socket;
on DRAM performance scales linearly up to 8 cores and then sublinearly due to again resource
contentions, reaching a maximum speedup of 50× at 28 cores.

4.4.2 Index join

In addition to the binary search microbenchmark, we evaluate the respective effects of NVM
latency and interleaved execution on the semijoin of IN-predicate clauses involving dictionary-
encoded columns. Similarly to Section 4.3.1, we run the following IN-predicate query on our
prototype: SELECT COUNT(*) FROM TBL WHERE COL IN LIST. However, since our focus
here is the difference between NVM and DRAM, we use only a TBL size with 100M rows that
is placed first in DRAM and then in NVM, LIST contains 10K randomly generated values,
and for COL we analyze two datatypes: either INTEGER or VARCHAR(15). Note that we use the
composable task coroutine type, converting the call stacks of dictionary lookups into coroutine
chains.

In Figure 4.16, we report the average runtimes of 1000 executions per datatype. For the Baseline
implementations and both datatypes, NVM runtime is 2× the DRAM runtime, while coroutines
(Coro) reduce the difference to 30%—the difference is not eliminated because the index lookup
is a variant of binary search with additional compression-related indirection and thus lacks the
amount of work required to completely hide NVM latency. Still, Coro performs better than
Baseline.

65

Chapter 4. Performance Analysis & Applications

0

10

20

30

40

50

Baseline Coro
0

10

20

30

40

50

Baseline Coro

Q
ue

ry
ru

nt
im

e
(i

n
m

s)

INTEGER

DRAM NVM

VARCHAR(15)

Figure 4.16 – IN-predicate query on tables with 100M rows.

4.4.3 Tuple reconstruction

To evaluate the effect of interleaved execution on tuple reconstruction, we use the query SELECT(*)
FROM TBL WHERE KEY=X, where KEY has unique values.

Ranging column count. We assess the worst-case slowdown due to NVM by executing the
query on a TBL with 1M rows and 10, 100, and 1000 INTEGER columns with unique values each.
Retrieving the value from each INTEGER column incurs two cache misses—one when accessing
the data vector and another one when accessing the dictionary—that dominate execution. In
Figure 4.17, we depict the average runtime of 10K query executions, having placed TBL on
DRAM and NVM, with (Coro) and without (Baseline) interleaving. We observe the runtime
gap between Baseline and Coro widen from 6% to 150%, as the work in the reconstruction
loop increases along with the column count; for Coro, the gap is 1%–8% and not eliminated due
to lack of instructions. More interestingly, for 1000 columns, Coro on NVM is 30% faster than
Baseline on DRAM.

Mixed datatypes. We show interleaving of three distinct codepaths by executing the query
on a table TBL of 1000 columns, of which one third have datatype INTEGER, another third
DECIMAL(10,2), and the last third VARCHAR(50). Moreover, we highlight the effect of processor
frequency on execution by running the experiment with frequency scaling enabled (Turbo On)
and disabled (Turbo Off). In Figure 4.18, we see interleaved execution reduces the performance
gap from 123% to 37% for Turbo On. Lookups in DECIMAL and VARCHAR columns involve
more instructions compared to INTEGER columns, explaining the higher runtime compared to
the 1000 column case in Figure 4.17. However, the dictionaries of VARCHAR columns use prefix
compression, which means dictionary lookups first retrieve the prefix and then the rest of the

66

4.4. DRAM vs NVM

0

0.2

0.4

0.6

0.8

1

1.2

Baseline Coro
0

0.2

0.4

0.6

0.8

1

1.2

Baseline Coro
0

0.2

0.4

0.6

0.8

1

1.2

Baseline Coro

Q
ue

ry
ru

nt
im

e
(i

n
m

s)
10 cols (38 MB)

DRAM NVM

100 cols (381 MB) 1000 cols (4 GB)

Figure 4.17 – ‘SELECT (*)’ query on INTEGER tables with 1M rows and varying column
counts.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Baseline Coro
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Baseline Coro

Q
ue

ry
ru

nt
im

e
(i

n
m

s)

Turbo On (4Ghz)

DRAM NVM

Turbo Off (2.7GHz)

Figure 4.18 – ‘SELECT (*)’ query on a table with 1M rows and 1000 columns (of INTEGER,
DECIMAL(10,2), and VARCHAR(50) type), with and without frequency scaling.

67

Chapter 4. Performance Analysis & Applications

value with an additional indirection; contrary to the latter access that is a guaranteed cache miss
for different values, the prefix is found in cache often enough to not justify a blind suspension
for DRAM accesses, leading to the 37% gap for Coro—hardware support for cache content
introspection would be beneficial for this case. Again, Coro runtime on NVM is faster than
Baseline on DRAM. Finally, for Turbo Off, we see the gap reduces from 106% to 7% due to
the lower frequency: the work needed to hide a given latency is less at 2.7 GHz than at 4 GHz.

Takeaway. Non-volatile memory exhibits a higher access latency that penalizes latency-bound
operations. Interleaved execution eliminates this penalty, reducing the gap between NVM and
DRAM by more than 65%, and exhibits runtimes better than even the original ones on DRAM.

4.5 Summary

Interleaved execution eliminates stalls due to main memory access, and transforms latency-bound
code into compute- or bandwidth-bound, depending on which hardware resource is exhausted
first. Given enough work, execution becomes compute-bound, so only more computation units in
the processor core can increase performance. Otherwise, either the buffers that keep track of the
outstanding memory request become exhausted at some level of the memory hierarchy, or the
installed memory modules do not provide enough bandwidth. This is an impressive phenomenon,
typical for sequential and not random access patterns.

Our coroutine-based technique constitutes a flexible software implementation of interleaved
execution. Being a software technique without particural hardware support, interleaving with
coroutines provides task switching that is slower than simultaneous multithreading, which is
the hardware form of interleaving. However, our technique works, given the proper compiler
support, on any platform that supports software prefetching or out-of-order execution. And, given
hardware with simultaneous multithreading, latency-bound code performs best when combining
software with hardware interleaving.

Finally, the benefits of interleaving can be reaped even in complex systems. The analytical and
transactional use cases we interleave provide evidence that coroutines not only are indeed a
practical way to implement code but also effectively hide the latency of both DRAM and NVM.

68

5 Conclusions and Future Directions

Main memory access is inherent to the von Neumann architecture and its latency poses a
fundamental performance challenge for database systems and data-intensive applications in
general. Locality of reference allows for drastic reduction of data fetch through caching, yet main
memory accesses are inevitable. That said, memory access does not necessarily imply problems:
given enough work to execute while fetching data, memory latency can be hidden. However,
despite decades of work on latency hiding by computer architects, compiler writers, and systems
builders, modern database systems still waste large numbers of CPU cycles in latency-bound
operations, waiting for data to be fetched from memory.

This thesis demonstrates that cooperative multitasking is a general approach to hide the latency
of unavoidable memory accesses in operations comprised of latency-bound tasks that do not
depend on each other. By interleaving task execution upon memory operations that miss the
cache, we can hide latency given enough independent work in the form of parallel tasks, sufficient
memory parallelism, as well as a lightweight mechanism to switch among tasks. In this final
chapter, we summarize our work and discuss the application scope, requirements, and limitations
of interleaving with coroutines, ultimately presenting directions for future work.

5.1 What we did

The profound inefficiency of index join execution on modern database systems has motivated our
study of latency-bound loops that consist of independent tasks. While such loops magnify the
problem of exposed memory latency, they also hold the key to mitigating latency: task parallelism.
The old idea of cooperative multitasking converts task parallelism into intruction-level parallelism,
which out-of-order processors can leverage to avoid execution stalls, improving efficiency and
thereby performance.

Despite the simplicity of the idea, cooperative multitasking has only been fully implemented in
exotic processor architectures, or in limited form as simultaneous multithreading. On the soft-
ware side, the compiler optimizations that essentially multitask has restricted application scope,

69

Chapter 5. Conclusions and Future Directions

whereas manual code rewrites to put instructions in the optimal order results in incomprehensible
code that nobody wants to maintain. As a result, memory latency penalizes the performance of
computer systems to this day.

With this thesis, we have established interleaved execution as a general-purpose way to hide
latency. First, we have modeled interleaved execution, augmenting the literature with the analogue
to Amdahl’s law for cooperative multitasking. Our model captures the intuition that, to avoid
stalls due to main memory access, we need sufficient work to execute and this work can be found
in one or more other tasks. Furthermore, the maximum performance improvement to expect from
multitasking corresponds to an execution without stalls. In case of tasks with similar parameters,
our model determines the optimal number of coroutines necessary to hide latency and estimates the
performance benefits for any given interleaving technique. More importantly, we have introduced
a practical way to implement this form of cooperative multitasking in software, finding that
coroutines constitute the right abstraction to separate code logic from code execution and thereby
avoid maintainability problems. Thanks to this separation, interleaving with coroutines applies
to any group of parallel tasks with cache misses, can hide longer latencies than hardware-based
interleaving techniques, and is practical to implement in production codebases, requiring only
few focused changes that retain code structure.

Our evaluation provides evidence for these three characteristics, while independent follow-up
works have corroborated our findings in a wider range of data structures, verifying the value of
our technique. Based on our findings, we can provide a rule of thumb for when to interleave a
parallel loop. For simplicity, we make the following assumptions: (a) no other processes run on
the sockets we use, and (b) the conditional branches in the code are not mispredicted. Using the
microarchitectural profile of any given parallel loop, we can decide whether to interleave or not
based on the percentage of stalls:

%stall << 50% : Eliminating memory stalls will have minimal to no positive performance
impact, so the only ways to improve performance are vectorization (if applicable) and
multithreading.

%stall ≈ 50% : From Figure 3.2, we see that only a very lightweight interleaving technique can
meaningfully eliminate stalls and achieve the 2× speedup estimated by our performance
model, so use simultaneous multithreading to improve single-thread performance, along
with vectorization and multithreading.

%stall >> 50% : In this case, simultaneous multithreading is insufficient, calling for software-
based interleaving. If available, use coroutine-based coroutines to achieve the maximum
speedup; otherwise, more heavyweight techniques can be used to hide the longer laten-
cies of disk and network I/O. With most stalls minimized, consider vectorization and
multithreading as above.

70

5.2. Discussion and future directions

5.2 Discussion and future directions

Interleaving with coroutines has a wide application scope, is easy to implement, and offers
remarkable speedups. The programmers needs to first identify the independent tasks and in each
task the loads that cause cache misses—in this thesis, we relied on offline profiling to identify the
cache misses. Then, the programmer need to convert the functions of each task into coroutines,
replace each memory load causing a cache miss with our load helper function, which prefetches
the specified memory address, suspend the execution of the current coroutine, and loads the data
upon resumption. Finally, the resulting coroutine chains need to be executed using an interleaved
scheduler similar to the one we proposed.

With interleaving, random access no longer implies memory stalls, enabling us to rethink our data
structures—with more indirection and less data preprocessing. Further, opportunities arise for
hardware-software co-design: Can we ask the cache if a piece of data is there, so that we suspend
only when necessary? Even better, can we eliminate the cost of coroutine suspension/resumption?
Here, we discuss the application scope and requirements of interleaved execution, as well as
desirable compiler and hardware support to lift current limitations.

Application scope and requirements

Interleaving with coroutines applies to any group of latency-bound parallel tasks, since it depends
not on the code logic, but on the ability to switch between independent tasks. As we have
demonstrated, this approach can effectively hide memory latency on the two distinct codepaths of
binary search and CSB+-tree traversal, while it also applies to all use cases covered by Kocberber
et al. [29], i.e., the build and probe phases of a hash join, a group-by operator, bulk lookups in
binary search trees and bulk insertions in lock-free skip-lists. Furthermore, Jonathan et al. [24]
have shown that our technique is also effective in hiding not only the memory latency in bulk
operations with even more complex data structures, like the Masstree and the Bw-tree, but also
the remote access latency in NUMA environments.

Interleaved execution and multitasking in general are universal latency-hiding techniques [36]
and, as such, they can be employed in any data- or task-parallel operation, like sorting, or
operations related to the state management of the lock and the transaction manager. However,
if the amount of computation and stalls varies among tasks, we have to consider statistical
distributions of task parameters instead of concrete values, resulting in a statistical performance
model. Moreover, since coroutines allow task execution to progress asynchronously, even
different operations on multiple data-structures can, in principle, be interleaved, from simple
lookups to whole transactional queries. The simple GET/PUT transactional scenario we studied
indicates that individual task latency poses a restriction—unlike in a join—, while care should
be taken to not increase instruction cache misses as well as to avoid deadlocks when combining
cooperative multitasking with thread synchronization mechanisms. Finally, the identification
of cache misses and the statical introduction of suspensions as described above becomes tricky

71

Chapter 5. Conclusions and Future Directions

as the same load instruction might only occasionally cause a cache miss; for such cases, extra
hardware support is required as described in Section 5.2.

On the other hand, the interleaved tasks need not be all latency-bound; compute-bound tasks can
also be interleaved by introducing additional suspensions—not upon cache misses, but at such
places to ensure the compute-bound tasks do not monopolize execution. Given compute-bound
tasks, any latency can be hidden even with small group sizes, avoiding bandwidth problems such
as the ones we observe in binary searches when combining interleaving with multithreading.
Therefore, overlapping memory- with compute-bound operations is a promising direction to
efficiently use the available computate resources.

Since the problem of memory latency transcendes databases, workloads like graph processing and
machine learning could also benefit from interleaving with coroutines, so long as the following
four requirements are satisfied: there is sufficient work to execute while fetching data, the latency
to hide is that of a DRAM access or longer, the compiler used has a coroutine implementation
similar to that of C++, and the processor supports software prefetching. Modern processors
provide prefetch instructions, whereas at the time of writing already two major C++support
coroutines, which means interleaving with coroutines can be applied todays to task-parallel
operations that suffer from main memory accesses. All in all, the application potential of
interleaved execution is vast and calls for further study.

Desirable compiler and hardware support

As we have mentioned, interleaving with coroutines is effective thanks to the low switch overhead
of C++ coroutines. The compiler support for C++ coroutines is still maturing, and is not specific
to interleaved execution, but covers all coroutine use cases. This means that interleaved coroutines
are always converted into state machines, even in cases where the coupling of group prefetching
enables better performance. Kiriansky et al. [28] show that a compiler can generate a state
machine or GP-like assembly based on hints provided by the programmer; such hints allow to
express interleaving with coroutines and still get assembly code that performs best in all cases.

Another negative aspect of C++ coroutines is the limited inlining performed by current compilers.
When we want to suspend a deeply nested function, we have to convert the call stack into a
coroutine chain, where each coroutine is allocated on the heap and has individually managed
lifetime, both of which imply overhead. An efficient implementation relies not only on avoiding
heap allocations per coroutine, but also on inlining coroutines to their parents, so that there are
few coroutine objects to manage. At the time of writing, this coroutine elision is manual, while
allocation avoidance is a fragile compiler optimization. Stackful coroutines such as the studied
Boost.Context avoid these problems altogether by using a stack instead of translating functions
into state machines with heap allocated state; however, instead of just a library, stackful coroutines
should be a programming language feature with proper compiler support that minimizes switch
overhead and enables stack allocation with the optimal stack capacity per case.

72

5.2. Discussion and future directions

The aforementioned compiler optimizations improve the performance of interleaving with corou-
tines, yet they do not eliminate the overhead of task switching. Ideally, we want an almost
instant switch mechanism that is similar to simultaneous multithreading, with the difference of
assigning coroutines instead of OS threads to each hardware context. Such a switch mechanism
would eliminate the need to swap register contents per coroutine switch and at the same time
avoid the expensive creation of an OS thread per task. Still, this approach would require as
many hardware contexts as the maximum number of coroutines we might interleave; such a
large number of hardware contexts, if not infeasible, would not be the best transistor investement
for a general-purpose processor that is not dedicated to interleaving. In addition, no number of
contexts is guaranteed to suffice for all future applications that might arise.

The flexibility of a software-based technique is a desirable property, and a promising alternative
to one hardware context per coroutine would be to have two hardware contexts in total, supporting
interleaving among an arbitrary number of coroutines. In this scheme, one context is active and
the other passive; while coroutine in the active context is running, the state of the coroutine in
the passive context would be swapped in the background, overlapping short stalls in the active
coroutine with the background context switch. We essentially introduce data movement between
registers and cache and thereby limit the number of hardware contexts to two. Further, to be
able to hide smaller latencies, the scheme described here could be augmented with a second pair
of contexts that would enable simultaneous multithreading between the coroutines in the active
contexts, while the coroutines in the passive contexts would be swapped in the background.

Nevertheless, even if we cannot make coroutine switching instant, we could still improve the
performance of interleaving by suspending upon actual cache misses In this thesis, suspension
are defensively introduced by the programmer upon loads that incur cache misses most of the
time—as determined offline through profiling. This coarse-grained approach implies unnecessary
suspensions for the few times that the load instruction does not miss the cache. In addition, in
case of loads that occasionally miss the cache and for which suspension is deemed non-beneficial,
there are memory stalls to avoid. To be able to suspend upon and only upon actual cache misses,
suspension needs to be decided at runtime, based on whether the load is an L1 miss or not. A
branch instruction that tests if the accessed addressed is cached in L1 would suffice to avoid
introducing pure overhead when all data is in L1. The same capability for L2 and L3 would have
a non-negligible cost, as it requires a roundtrip to these caches to retrieve the information; it
is also unnecessary given that the cost of a coroutine switch is equivalent to two function calls.
Such an instruction would be a fast way to extract cache contents, lending itself for use in security
attacks that target speculative execution, e.g. Spectre; as a result, unless we embrace the fact
that microarchitectural behavior is observable, such an instruction is unlikely to be provided by
mainstream processors.

All the points discussed here indicate on the one hand that compiler support is still maturing
and on the other hand that some hardware support is missing. Still, they should not be deemed
as drawbacks that diminish the current value of interleaving with coroutines, but rather as
opportunities towards an ideal technique that will arise through the synergy of compiler writers,

73

Chapter 5. Conclusions and Future Directions

computer architects, and system builders.

5.3 Parting thoughts

Imagine we could fit big data in the processor cache and access data without spending hundreds
of stall cycles on data cache misses. This is probably an infeasible fantasy, yet cache-like
performance is within reach for workloads that consist of parallel tasks. Parallel tasks can be
interleaved so that, when one waits for memory, others can use the otherwise idle processor core.
Our thesis shows interleaved execution is practical to implement in real systems today and brings
the old idea of cooperative multitasking back into the spotlight as the way to hide latency.

74

Bibliography

[1] 2013. Intel Memory Latency Checker. http://www.intel.com/software/mlc [Online;
accessed 18-March-2019].

[2] 2015. C# Reference. https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/

keywords/yield [Online; accessed 16-May-2018].

[3] 2016. Transaction Processing Performance Council. TPC-DS Benchmark Version 2.3.0.
http://www.tpc.org/tpcds/ [Online; accessed 14-August-2017].

[4] 2017. Programming Languages – C++ Extensions for Coroutines. Proposed Draft Technical
Specification ISO/IEC DTS 22277 (E). http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2017/n4680.pdf [Online; accessed 16-May-2018].

[5] 2018. Generators. Python Wiki. https://wiki.python.org/moin/Generators [Online; accessed
16-May-2018].

[6] 2019. Intel Optane DC Persistent Memory Module. www.intel.com/

optanedcpersistentmemory [Online; accessed 20-March-2019].

[7] 2019. Working Draft, Standard for Programming Language C++. http://eel.is/c++draft/
dcl.fct.def.coroutine [Online; accessed 25-March-2019].

[8] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze, Carsten Thiel,
Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, Sebastian Seifert, Suren-
dra Vishnoi, Daniel Booss, Thomas Peh, Ivan Schreter, Werner Thesing, Mehul Wagle, and
Thomas Willhalm. 2017. SAP HANA Adoption of Non-volatile Memory. Proc. VLDB
Endow. 10, 12 (Aug. 2017), 1754–1765. https://doi.org/10.14778/3137765.3137780

[9] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. 1999. Database Architecture Op-
timized for the New Bottleneck: Memory Access. In Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB ’99). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 54–65. http://dl.acm.org/citation.cfm?id=645925.671364

[10] Shimin Chen, Anastasia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. 2004. Improving
Hash Join Performance Through Prefetching. In Proceedings of the 20th International

75

http://www.intel.com/software/mlc
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/yield
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/yield
http://www.tpc.org/tpcds/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4680.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4680.pdf
https://wiki.python.org/moin/Generators
www.intel.com/optanedcpersistentmemory
www.intel.com/optanedcpersistentmemory
http://eel.is/c++draft/dcl.fct.def.coroutine
http://eel.is/c++draft/dcl.fct.def.coroutine
https://doi.org/10.14778/3137765.3137780
http://dl.acm.org/citation.cfm?id=645925.671364

Bibliography

Conference on Data Engineering (ICDE ’04). IEEE Computer Society, Washington, DC,
USA, 116–. http://dl.acm.org/citation.cfm?id=977401.978128

[11] Maria Colgan. 2015. Oracle Database In-Memory. Technical Report. Ora-
cle Corporation. http://www.oracle.com/technetwork/database/in-memory/overview/

twp-oracle-database-in-memory-2245633.pdf [Online; accessed 16-May-2018].

[12] Melvin E. Conway. 1963. Design of a Separable Transition-diagram Compiler. Commun.
ACM 6, 7 (1963), 396–408. http://doi.acm.org/10.1145/366663.366704

[13] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Helen Li, and Yiran Chen. 2008.
Circuit and Microarchitecture Evaluation of 3D Stacking Magnetic RAM (MRAM) As a
Universal Memory Replacement. In Proceedings of the 45th Annual Design Automation
Conference (DAC ’08). ACM, New York, NY, USA, 554–559. https://doi.org/10.1145/

1391469.1391610

[14] Ulrich Drepper. 2007. What Every Programmer Should Know About Memory. https:
//people.freebsd.org/~lstewart/articles/cpumemory.pdf

[15] R. Kent Dybvig. 2009. The Scheme Programming Language, 4th Edition (4th ed.). The
MIT Press.

[16] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe,
and Jonathan Dees. 2012. The SAP HANA Database – An Architecture Overview. IEEE
Data Eng. Bull. 35, 1 (2012), 28–33.

[17] Brian Fields, Shai Rubin, and Rastislav Bodík. 2001. Focusing Processor Policies via
Critical-path Prediction. In Proceedings of the 28th Annual International Symposium on
Computer Architecture (ISCA ’01). ACM, New York, NY, USA, 74–85. https://doi.org/10.
1145/379240.379253

[18] B Govoreanu, GS Kar, YY Chen, V Paraschiv, S Kubicek, A Fantini, IP Radu, L Goux, S
Clima, R Degraeve, et al. 2011. 10× 10nm2 Hf/HfOx crossbar resistive RAM with excellent
performance, reliability and low-energy operation. In IEEE International Electron Devices
Meeting (IEDM). IEEE, 31–6.

[19] John L. Hennessy and David A. Patterson. 2017. Computer Architecture, Sixth Edition: A
Quantitative Approach (6th ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[20] Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith. 1996.
Informing Memory Operations: Providing Memory Performance Feedback in Modern
Processors. SIGARCH Comput. Archit. News 24, 2 (May 1996), 260–270. https:
//doi.org/10.1145/232974.233000

[21] IBM Corporation. 2018. POWER9 Processor User’s Manual.

76

http://dl.acm.org/citation.cfm?id=977401.978128
http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.pdf
http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.pdf
http://doi.acm.org/10.1145/366663.366704
https://doi.org/10.1145/1391469.1391610
https://doi.org/10.1145/1391469.1391610
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://doi.org/10.1145/379240.379253
https://doi.org/10.1145/379240.379253
https://doi.org/10.1145/232974.233000
https://doi.org/10.1145/232974.233000

Bibliography

[22] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullender, and Martin
Kersten. 2012. MonetDB: two decades of research in column-oriented database architectures.
IEEE Data Eng. Bull. 35, 1 (2012), 40–45.

[23] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Optimization Reference Manual.

[24] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski, and Gor
Nishanov. 2018. Exploiting Coroutines to Attack the "Killer Nanoseconds". PVLDB 11, 11
(July 2018), 1702–1714. https://doi.org/10.14778/3236187.3236216

[25] Alfons Kemper and Thomas Neumann. 2011. HyPer: a hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In Proc. ICDE. 195–206.

[26] Michael Kerrisk. 2010. The Linux Programming Interface: A Linux and UNIX System
Programming Handbook (1st ed.). No Starch Press, San Francisco, CA, USA.

[27] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D. Nguyen, Tim
Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey. 2010. FAST: Fast Architec-
ture Sensitive Tree Search on Modern CPUs and GPUs. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’10). ACM, New
York, NY, USA, 339–350. https://doi.org/10.1145/1807167.1807206

[28] Vladimir Kiriansky, Haoran Xu, Martin Rinard, and Saman Amarasinghe. 2018. Cimple:
Instruction and Memory Level Parallelism: A DSL for Uncovering ILP and MLP. In
Proceedings of the 27th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’18). ACM, New York, NY, USA, Article 30, 16 pages. https://doi.org/

10.1145/3243176.3243185

[29] Onur Kocberber, Babak Falsafi, and Boris Grot. 2015. Asynchronous Memory Access
Chaining. PVLDB 9, 4 (2015), 252–263. https://doi.org/10.14778/2856318.2856321

[30] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and Parthasarathy
Ranganathan. 2013. Meet the Walkers: Accelerating Index Traversals for In-memory
Databases. In Proc. of the 46th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-46). ACM, New York, NY, USA, 468–479. http://doi.acm.org/10.1145/

2540708.2540748

[31] Oliver Kowalke and Nat Goodspeed. [n. d.]. call/cc (call-with-current-continuation): A
low-level API for stackful context switching. http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2017/p0534r3.pdf [Online; accessed 16-May-2018].

[32] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. 1991. The Cache Performance
and Optimizations of Blocked Algorithms. In Proc. ASPLOS. 12. http://doi.acm.org/10.
1145/106972.106981

[33] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann, and
Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on Compressed Storage

77

https://doi.org/10.14778/3236187.3236216
https://doi.org/10.1145/1807167.1807206
https://doi.org/10.1145/3243176.3243185
https://doi.org/10.1145/3243176.3243185
https://doi.org/10.14778/2856318.2856321
http://doi.acm.org/10.1145/2540708.2540748
http://doi.acm.org/10.1145/2540708.2540748
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0534r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0534r3.pdf
http://doi.acm.org/10.1145/106972.106981
http://doi.acm.org/10.1145/106972.106981

Bibliography

Using Both Vectorization and Compilation. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16). ACM, New York, NY, USA, 311–326.
https://doi.org/10.1145/2882903.2882925

[34] Per-Ake Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson, Mostafa Mokhtar, Michal
Nowakiewicz, Vassilis Papadimos, Susan L. Price, Srikumar Rangarajan, Remus Rusanu,
and Mayukh Saubhasik. 2013. Enhancements to SQL Server Column Stores. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD

’13). ACM, New York, NY, USA, 1159–1168. https://doi.org/10.1145/2463676.2463708

[35] Per-Ake Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Sriku-
mar Rangarajan, Aleksandras Surna, and Qingqing Zhou. 2011. SQL Server Col-
umn Store Indexes. In Proceedings of the 2011 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’11). ACM, New York, NY, USA, 1177–1184.
https://doi.org/10.1145/1989323.1989448

[36] James Laudon, Anoop Gupta, and Mark Horowitz. 1994. Interleaving: A Multithreading
Technique Targeting Multiprocessors and Workstations. In Proceedings of the Sixth Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS VI). ACM, New York, NY, USA, 308–318. https://doi.org/10.1145/

195473.195576

[37] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu,
and Doug Burger. 2010. Phase-Change Technology and the Future of Main Memory. IEEE
Micro 30, 1 (Jan. 2010), 143–143. https://doi.org/10.1109/MM.2010.24

[38] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache Craftiness for Fast
Multicore Key-value Storage. In Proceedings of the 7th ACM European Conference on
Computer Systems (EuroSys ’12). ACM, New York, NY, USA, 183–196. https://doi.org/10.
1145/2168836.2168855

[39] Jackson Marusarz. 2015. Understanding How General Exploration Works
in Intel® VTune™ Amplifier XE. https://software.intel.com/en-us/articles/
understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe [Online; ac-
cessed 16-May-2018].

[40] T. J. McCabe. 1976. A Complexity Measure. IEEE Trans. Softw. Eng. 2, 4 (July 1976),
308–320. https://doi.org/10.1109/TSE.1976.233837

[41] Jim Melton. 2002. Advanced SQL 1999: Understanding Object-Relational, and Other
Advanced Features. Elsevier Science Inc.

[42] Ana Lúcia De Moura and Roberto Ierusalimschy. 2009. Revisiting Coroutines. ACM
Trans. Program. Lang. Syst. 31, 2, Article 6 (Feb. 2009), 31 pages. https://doi.org/10.1145/

1462166.1462167

78

https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1145/2463676.2463708
https://doi.org/10.1145/1989323.1989448
https://doi.org/10.1145/195473.195576
https://doi.org/10.1145/195473.195576
https://doi.org/10.1109/MM.2010.24
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/2168836.2168855
https://software.intel.com/en-us/articles/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe
https://software.intel.com/en-us/articles/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/1462166.1462167

Bibliography

[43] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. 1992. Design and Evaluation of a
Compiler Algorithm for Prefetching. In Proceedings of the Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS V).
ACM, New York, NY, USA, 62–73. https://doi.org/10.1145/143365.143488

[44] Ingo Müller, Cornelius Ratsch, and Franz Färber. 2014. Adaptive String Dictionary Com-
pression in In-Memory Column-Store Database Systems. In Proc. EDBT. 283–294.

[45] Gor Nishanov. 2018. Memory Latency Troubles You? Nano-coroutines to the Res-
cue! (Using Coroutines TS, of Course). https://cppcon2018.sched.com/event/FnKT/

memory-latency-troubles-you-nano-coroutines-to-the-rescue-using-coroutines-ts-of-course
CppCon 2018.

[46] M. Poess and D. Potapov. 2003. Data Compression in Oracle. Proc. VLDB (2003), 937–947.

[47] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki. 2017. Inter-
leaving with Coroutines: A Practical Approach for Robust Index Joins. PVLDB 11, 2 (Oct.
2017), 230–242. https://doi.org/10.14778/3149193.3149202

[48] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki. 2018. In-
terleaving with coroutines: a systematic and practical approach to hide memory latency in
index joins. The VLDB Journal (14 Dec 2018). https://doi.org/10.1007/s00778-018-0533-6

[49] Georgios Psaropoulos, Ismail Oukid, Thomas Legler, Norman May, and Anastasia Ailamaki.
2019. Bridging the Latency Gap Between NVM and DRAM for Latency-bound Operations.
In Proceedings of the 15th International Workshop on Data Management on New Hardware
(DaMoN’19). ACM, New York, NY, USA, Article 13, 8 pages. https://doi.org/10.1145/

3329785.3329917

[50] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk,
Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu, Guy M. Lohman,
Tim Malkemus, Rene Mueller, Ippokratis Pandis, Berni Schiefer, David Sharpe, Richard
Sidle, Adam Storm, and Liping Zhang. 2013. DB2 with BLU Acceleration: so Much More
Than Just a Column Store. PVLDB 6, 11 (2013), 1080–1091. https://doi.org/10.14778/

2536222.2536233

[51] Jun Rao and Kenneth A. Ross. 2000. Making B+-Trees Cache Conscious in Main Memory.
In Proc. ACM SIGMOD. 475–486. http://doi.acm.org/10.1145/342009.335449

[52] RethinkDB Team. 2010. Improving a large C++ project with coroutines. https://www.
rethinkdb.com/blog/improving-a-large-c-project-with-coroutines/ [Online; accessed 16-
May-2018].

[53] Mark E. Russinovich, David A. Solomon, and Alex Ionescu. 2012. Windows Internals, Part
1: Covering Windows Server 2008 R2 and Windows 7 (6th ed.). Microsoft Press.

79

https://doi.org/10.1145/143365.143488
https://cppcon2018.sched.com/event/FnKT/memory-latency-troubles-you-nano-coroutines-to-the-rescue-using-coroutines-ts-of-course
https://cppcon2018.sched.com/event/FnKT/memory-latency-troubles-you-nano-coroutines-to-the-rescue-using-coroutines-ts-of-course
https://doi.org/10.14778/3149193.3149202
https://doi.org/10.1007/s00778-018-0533-6
https://doi.org/10.1145/3329785.3329917
https://doi.org/10.1145/3329785.3329917
https://doi.org/10.14778/2536222.2536233
https://doi.org/10.14778/2536222.2536233
http://doi.acm.org/10.1145/342009.335449
https://www.rethinkdb.com/blog/improving-a-large-c-project-with-coroutines/
https://www.rethinkdb.com/blog/improving-a-large-c-project-with-coroutines/

Bibliography

[54] Lars-Christian Schulz, David Broneske, and Gunter Saake. 2018. An Eight-dimensional
Systematic Evaluation of Optimized Search Algorithms on Modern Processors. Proc. VLDB
Endow. 11, 11 (July 2018), 1550–1562. https://doi.org/10.14778/3236187.3236205

[55] Jason Sewall, Jatin Chhugani, Changkyu Kim, Nadathur Satish, and Pradeep Dubey. 2011.
PALM: Parallel Architecture-Friendly Latch-Free Modifications to B+ Trees on Many-Core
Processors. Proc. VLDB 4 (2011), 795–806.

[56] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. 2016. Micro-architectural
Analysis of In-memory OLTP. In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD ’16). ACM, New York, NY, USA, 387–402. https:
//doi.org/10.1145/2882903.2882916

[57] Richard Smith and Gor Nishanov. 2018. Halo: coroutine Heap Allocation eLision Opti-
mization: the joint response. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/

p0981r0.html [Online; accessed 15-March-2019].

[58] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. 2013.
Speedy Transactions in Multicore In-memory Databases. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (SOSP ’13). ACM, New York,
NY, USA, 18–32. https://doi.org/10.1145/2517349.2522713

[59] Peter Van Sandt, Yannis Chronis, and Jignesh M. Patel. 2019. Efficiently Searching In-
Memory Sorted Arrays: Revenge of the Interpolation Search?. In Proceedings of the 2019
International Conference on Management of Data (SIGMOD ’19). ACM, New York, NY,
USA, 36–53. https://doi.org/10.1145/3299869.3300075

[60] Jingren Zhou, John Cieslewicz, Kenneth A. Ross, and Mihir Shah. 2005. Improving
Database Performance on Simultaneous Multithreading Processors. In Proc. VLDB. 49–60.
http://dl.acm.org/citation.cfm?id=1083592.1083602

[61] Jingren Zhou and Kenneth A. Ross. 2003. Buffering Accesses to Memory-resident Index
Structures. In Proc. VLDB. 405–416.

80

https://doi.org/10.14778/3236187.3236205
https://doi.org/10.1145/2882903.2882916
https://doi.org/10.1145/2882903.2882916
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/3299869.3300075
http://dl.acm.org/citation.cfm?id=1083592.1083602

Georgios Psaropoulos
Address: Zollhofgarten 6, 69115 Heidelberg, DE

Phone: +4915237967014 • +41791386185

Email/Skype: gpsar@outlook.com

LinkedIn: georgios-psaropoulos

Nationality: Hellenic (Greek)

Summary
Research-oriented software engineer with experience in large codebases and a solid background on computer

systems, compilers, language design, and computer architecture. Currently, a PhD student researching ways to

improve database performance without sacrificing code maintainability.

Experience
Doctoral Assistant – École Polytechnique Fédérale de Lausanne (EPFL), Switzerland 09.2013 – present

- Main work on hardware-aware database systems (collaboration with the SAP HANA Database team).

- Presented work at 2 top-tier conferences and 6 other venues.

- Assisted in teaching 5 courses (material preparation, exercise sessions, exam grading).

- Participated in the ACM SIGMOD Programming Contest 2018 with a top-5 finalist team.

Developer Associate (Internship) – SAP, Germany 03.2016 – 08.2016

- Optimized the evaluation of IN predicates in SAP HANA (C++, Git, Gerrit, CMake, Python).

Systems Developer (Trainee) – Consolidated Contractors Company (CCC), Greece 02.2013 – 04.2013

- Automated a set of GUI tests for C3D Interactive (Scala, Java Swing, FEST framework).

- Developed an AutoCAD-to-C3D file converter (C#, F#, Microsoft Excel).

Education
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland expected 2019

Ph.D. in Computer Science

Thesis: Improving Main-Memory Database System Performance through Cooperative Multitasking

Advisor: Prof. Anastasia Ailamaki

- Courses: Principles of Computer Systems • Foundations of Software • Topics on Datacenter Design

- Participated in summer schools on DSL Design and Implementation and Data Management Techniques.

- Received a 1-year fellowship from the EPFL IC Doctoral School and a 3-year scholarship from SAP.

National Technical University of Athens (NTUA), Greece July 2013

Diploma (M.Eng. equivalent) in Electrical and Computer Engineering

GPA: 9.1/10

Thesis: Concurrency and Parallelism in Erlang, F#, and Scala – A Comparative Study

Advisor: Prof. Kostis Sagonas

- Core modules: Software Engineering • Algorithms and Complexity • Programming Languages •

Databases • Operating Systems • Computer Architecture • Control Systems

- Received two awards for academic excellence.

81

Publications & Patents
- Bridging the latency gap between NVM and DRAM for latency-bound operations

DAMON 2019 • G. Psaropoulos, I. Oukid, T. Legler, N. May, and A. Ailamaki • DOI: 10.1145/3329785.3329917

- Interleaving with coroutines: a systematic and practical approach to hide memory latency in index joins

VLDBJ 2018 • G. Psaropoulos, T. Legler, N. May, and A. Ailamaki • DOI: 10.1007/s00778-018-0533-6

- Interleaving with coroutines: a practical approach for robust index joins

PVLDB 2017 • G. Psaropoulos, T. Legler, N. May, and A. Ailamaki • DOI: 10.14778/3149193.3149202

- Coroutines for optimizing memory access

Patent (pending) • Assignee: SAP SE • Inventors: G. Psaropoulos, T. Legler, N. May, A. Ailamaki

- Access pattern based optimization of memory access

Patent (pending) • Assignee: SAP SE • Inventors: G. Psaropoulos, T. Legler, N. May, A. Ailamaki

Notable projects
EPFL studies

- A practical coroutine-based technique to hide memory latency in task-parallel operations (C++).

- A DSL to traverse pointer-based data structures using a research hardware accelerator (Scala).

- An interpreter, a type checker and a type inferencer for the simply typed lambda calculus (Scala).

- A port of the CloudSuite data caching benchmark to Docker (Memcached, Docker).

NTUA studies

- A compiler for a C-like procedural language (F#).

- An information system to regulate media companies (JSF, PL/SQL, Oracle Database Express Edition).

- Additional functionality modules for the SIP Communicator application (Java, Scala).

Hobby projects

- A port of an educational emulator of the 8085 microprocessor from C# to F# (F#, FParsec).

- Α Windows Phone app for querying information about public transportation in Athens (C#, XAML).

Technical Skills
Programming languages: C++ • F# • Scala • C# • Java • C • Bash • PowerShell • Python • Erlang • Prolog

Programming paradigms: Procedural • Functional • Object-oriented • Message Passing

Database systems: SAP HANA • PostgreSQL • MySQL • SQL Server • Oracle Database Express Edition

Development tools: Git • Gerrit • CMake

Debugging & profiling: Visual Studio Debugger • GDB • Intel VTune Amplifier

Miscellaneous: Microsoft Office • Latex

Language Skills
Greek: Native proficiency

English: Full professional proficiency

German: Limited working proficiency

French: Elementary proficiency

82

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

	Contents
	List of figures
	List of tables
	Acknowledgements
	Abstract (English/Deutsch)
	Introduction
	The cost of indirection
	How humans write code and how hardware runs it
	Thesis statement and contributions
	Thesis outline

	Preliminaries
	Elements of computer architecture and performance analysis
	The execution pipeline
	Memory and caches
	Top-down microarchitectural analysis

	The SAP HANA column store
	Traditional memory latency mitigations
	Running example: binary search

	Interleaved Execution
	Analytical model
	Implementing interleaved execution
	The coroutine construct
	Interleaving with C++ coroutines
	Interleaving with library-based coroutines
	Interleaving arbitrary tasks
	Code complexity

	Related work
	Prior work
	Follow-up work

	Summary

	Performance Analysis & Applications
	Experimental setup
	Microbenchmarks
	Comparison to GP and AMAC
	Microarchitectural analysis
	Choosing the group size
	Library- vs compiler-based coroutines
	Hyperthreading and multithreading
	The scalability of multithreaded interleaved execution
	Interleaved execution on IBM POWER9

	Analytics and transactions
	Index join
	Transactions

	DRAM vs NVM
	Microbenchmarks
	Index join
	Tuple reconstruction

	Summary

	Conclusions and Future Directions
	What we did
	Discussion and future directions
	Parting thoughts

	Bibliography
	Curriculum Vitae

