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aCMCS – Chair of Modeling and Scientific Computing
MATHICSE – Mathematics Institute of Computational Science and Engineering
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Abstract

In this paper, we propose a semi–implicit approach for the time discretization of the Navier–Stokes equa-
tions with Variational Multiscale–Large Eddy Simulation turbulence modeling (VMS–LES). For the spatial
approximation of the problem, we use the Finite Element method, while we employ the Backward Differ-
entiation Formulas (BDF) for the time discretization. We treat the nonlinear terms arising in the variational
formulation of the problem with a semi–implicit approach leading to a linear system associated to the fully
discrete problem which needs to be assembled and solved only once at each discrete time instance. We solve
this linear system by means of the GMRES method by employing a multigrid (ML) right preconditioner
for the parallel setting. We validate the proposed fully discrete scheme towards the benchmark problem of
the flow past a squared cylinder at high Reynolds number and we show the computational efficiency and
scalability results of the solver in a High Performance Computing framework.

Keywords: Navier–Stokes equations, Variational Multiscale modeling, Backward Differentiation
Formulas, Finite Element method, Large Eddy Simulation, High Performance Computing.

1. Introduction

In this work, we consider the Navier–Stokes equations with Variational Multiscale–Large Eddy Simu-
lation (VMS–LES) modeling of turbulence for incompressible Newtonian fluids at high Reynolds number,
with the focus being on their efficient time discretization and, more in general, their numerical solution in
a parallel setting. Indeed, the accurate and efficient simulation of turbulent flows still represents a major
challenge, even in a High Performance Computing framework. The Direct Numerical Simulation (DNS) of
turbulent flows requires the full representation of the whole range of spatial and temporal turbulent scales
at the discrete level [23, 37, 39]; as consequence, even for moderate Reynolds numbers, the DNS may
be unfeasible for several problems of practical interest. Conversely, with Large Eddy Simulation (LES)
approaches [38, 39, 46] only the “large” scales of the flow field are fully represented and resolved at the
discrete level, while the effect of the “small” unresolved scales is taken into account by means of suitable
models based on the resolved scales, thus making the computational costs more affordable; among the
others, examples of established LES models are the Smagorinsky [48] and dynamic Smagorinsky [17, 34]
models.
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The concept of defining LES models for the Navier–Stokes equations by means of the Variational Mul-
tiscale method (VMS) ([28, 33]) has been introduced in [30] and further extended in [31, 32]; since then, the
so called VMS–LES method has been widely developed and used for the numerical simulation of turbulent
flows in several benchmarking and applicative contexts [1, 2, 3, 4, 12, 19, 24, 27, 29]. Indeed, the VMS–LES
method is advantageous since it provides a unified framework for the definition of spatial approximation
schemes which are stable in the sense of the well–posedness, capable of controlling the numerical instabil-
ities arising in the convective regimes at high Reynolds numbers, and adequate to represent the turbulence
LES modeling.

In this work, we focus on efficient spatial and, above all, time discretization schemes for the incom-
pressible Navier–Stokes equations with VMS–LES modeling of turbulence by aiming at the simulation of
flows at high Reynolds number in a parallel framework. In particular, the problem is first discretized in
space by using the Finite Element method [42], mainly with basis functions of low polynomial degree, and
then in time by means of Finite Differences [40]. More specifically, we approximate the time derivative
in the Navier–Stokes equations by means of Backward Differentiation Formulas (BDF) of orders 1, 2, or
higher; see e.g. [18, 40]. Then, in order to obtain an efficient formulation, we propose a semi–implicit
treatment of the nonlinear terms appearing in the fully discrete scheme, for which we “linearize” the dis-
crete problem at each discrete time instance by means of temporal extrapolations based on Newton–Gregory
backward polynomials [43]. The approach proposed leads to assemble and solve a unique linear system for
each discrete time instance; conversely, a fully implicit approach, e.g. using the Newton method, would
require, in principle, repeated assembly and solutions of a linear system. While our semi–implicit BDF
method for VMS–LES modeling may require restrictions on the time step due to stability issues of the time
discretization scheme, these can be offset by the larger computational costs associated instead to a fully
implicit approach; in practice, our numerical experience indicates that stable solutions for the semi–implicit
BDF scheme are obtained also for relatively “large” time steps, conversely to explicit schemes for which
limitations on their size are generally more severe. We remark that, in literature, VMS–LES formulations
of the Navier–Stokes equations are often discretized in time by means of implicit schemes [2, 19, 27] as the
generalized–α method ([20]), low order semi–implicit schemes as the backward Euler method with Picard
“linearization” [12], or explicit schemes as done in [24] with a Runge–Kutta scheme. In this respect, we
remark that the main contribution of this work consists in defining a semi–implicit BDF scheme for the
approximation of the Navier–Stokes equations with turbulence VMS–LES modeling, which allows efficient
and accurate numerical solutions of the problem, without incurring in severe restrictions of the time step.

Since we aim at solving large scale problems at high Reynolds number, the use of parallel architec-
tures is necessary [21]. In such parallel framework, in addition to suitable choices of the spatial and time
discretization schemes, we stress the fact that the use of an efficient linear solver is often mandatory to
make the numerical simulations computationally feasible. Nevertheless, the efficacy of the linear solver and
preconditioning strategies for VMS–LES formulations are relatively little explored in literature; in [12] a
balancing Neumann-Neumann domain decomposition method is used for preconditioning with the GMRES
iterative solver, while in [19] algebraic multigrid ([45]) strategies for VMS–LES modeling are discussed. In
this work, we combine our semi–implicit BDF time discretization scheme for the Navier–Stokes equations
with VMS–LES modeling together with a parallel multigrid right preconditioner based on the package ML
of Trilinos [16] applied to the GMRES linear iterative solver. In this manner, we obtain an efficient solver
for the High Performance Computing implemented in the open–source Finite Element library LifeV [53].

The proposed numerical scheme is tested for the vortex shedding benchmark problem of an incompress-
ible fluid flow at high Reynolds number (Re = 22, 000) past a squared cylinder; this benchmark allows us
to validate our numerical strategy against the results obtained with other LES models [24, 44, 49] and also
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by means of experimental tests [5, 35]. In our study, we present and discuss the numerical results obtained
by considering both first and second degree Lagrange polynomials for the Finite Element representation
of the fluid velocity and pressure fields, first and second order semi–implicit BDF scheme, and different
time steps. Furthermore, we analyze the energy spectra obtained for the spatial discretizations under con-
sideration. Then, regarding the efficiency of the linear parallel solver, we investigate its strong scalability
properties by solving the benchmark problem at hand on supercomputer machines. Finally, we discuss the
choice of the stabilization parameters appearing in the VMS–LES formulation and their role in obtaining
numerical simulations which feature affordable computational costs. In particular, we consider in this work
stabilization parameters which involve the time step in the quasi–static approximation of the fine scale dif-
ferential operator, similarly to [2]. In this respect, we compare, for the vortex shedding benchmark problem,
the spatial distribution of stabilization parameters, chosen both as dependent and independent of the time
step, and we highlight their impact on the efficiency of the GMRES solver with multigrid preconditioner.

The paper is organized as follows. In Section 2, after recalling the Navier–Stokes equations with VMS–
LES modeling of turbulence, we introduce the spatial discretization of the coarse scale velocity and pressure
fields by means of the Finite Element method. In Section 3, we focus on the semi–implicit time discretiza-
tion of the problem by means of BDF formulas. Then, in Section 4, we describe the parallel solver developed
for the fully discrete problem, as well as the multigrid preconditioner used. In Section 5, we report and dis-
cuss the numerical results on the squared cylinder benchmark problem and we analyze the choice of the
stabilization parameters associated to the VMS–LES formulation. Conclusions follow in Section 6.

2. Variational Multiscale LES modeling for the Navier–Stokes equations

In this section we start by recalling the strong formulation of the incompressible Navier–Stokes, the
VMS–LES modeling and the spatial approximation based on the Finite Element method.

2.1. The incompressible Navier–Stokes equations
Let Ω ⊂ Rd be the spatial fluid domain with piecewise smooth boundary Γ ≡ ∂Ω, for which we consider

the dimension d = 3; we denote with ΓD the subset of Γ where the essential (Dirichlet) boundary conditions
are applied, while natural (Neumann) boundary conditions will be considered on ΓN = Γ\ΓD. The Navier–
Stokes equations for an incompressible fluid read :

ρ
∂u
∂t

+ ρu · ∇u − ∇·σ(u, p) = f in Ω × (0,T ), (1)

∇·u = 0 in Ω × (0,T ), (2)

u = g on ΓD × (0,T ), (3)

σ(u, p)n̂ = h on ΓN × (0,T ), (4)

u(0) = u0 in Ω × {0}, (5)

where the dependent variables u and p indicate the velocity and the pressure of the fluid, respectively, ρ is
the density, f is the vector of external forces, n̂ is the outward directed unit normal vector to ΓN , and σ is
the stress tensor defined, for a Newtonian fluid, as:

σ(u, p) = −pI + 2µε(u); (6)

we denoted by µ the dynamic viscosity of the fluid and by I the second order identity tensor, while ε(u) is
the strain tensor:

ε(u) =
1
2

(
∇u + (∇u)T

)
. (7)
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The functions g and h indicate the Dirichlet and Neumann data, respecively, while u0 the initial data. We
recall that Eqs. (1)–(5) represent the balance of momentum in convective form, the mass conservation, the
essential and natural boundary conditions, and the initial condition on the velocity, respectively.

In view of the spatial approximation of the Navier–Stokes equations, we introduce the infinite dimen-
sional function spaces Vg := {u ∈

[
H1(Ω)

]d
: u|ΓD = g}, V0 := {u ∈

[
H1(Ω)

]d
: u|ΓD = 0}, and

Q := L2(Ω); in addition, we define the function spaces Vg := Vg × Q and V0 := V0 × Q. Then, the weak
formulation of the Navier–Stokes equations reads, for all t ∈ (0,T ) ([42]):

find U = U(t) = {u, p} ∈ Vg :(
w, ρ

∂u
∂t

)
+ (w, ρu · ∇u) +

(
∇w, µ

(
∇u + (∇u)T

))
− (∇·w, p) + (q,∇·u) = (w, f ) + (w,h)ΓN

for all W = {w, q} ∈ V0,

(8)

where u(0) = u0; (·, ·) denotes the standard L2 inner product with respect to the spatial domain Ω and (·, ·)ΓN

the one on ΓN .

2.2. Spatial approximation: Finite Element method and VMS–LES modeling
We consider the Variational Multiscale (VMS) [2, 33] method applied to the standard weak form of the

Navier–Stokes equations (8). The VMS method introduces a priori a decomposition of the solution into
coarse and fine scales. Accordingly, the weak formulation of the Navier–Stokes equations (8) is split into
coarse and fine scale subproblems. The coarse scale solution is identified with the numerical approximation
given by the Finite Element method, while the fine scale component needs to be modeled. We remark
that the fine scale component of the solution is often modeled analytically (in closed form), written in terms
depending both on the data of the problem and the coarse scale solution, and finally substituted in the coarse
scale subproblem. In virtue of a projection of the fine scale solution into the coarse one, a finite dimensional
system for the coarse scale component of the solution is obtained.

Let us introduce at this point a suitable Finite Element discretization, specifically with piecewise La-
grange polynomials of degree r ≥ 1 over the computational domain Ω that is triangulated with a mesh Th

comprised of tetrahedrons; in this respect, we indicate with Xh
r :=

{
vh ∈ C0(Ω) : vh|K ∈ Pr, for all K ∈ Th

}
the function space of Finite Element and with hK the diameter of the mesh element K ∈ Th.

We consider a multiscale direct–sum decomposition of a general function space V , which can be inter-
preted either as Vg or V0, into the coarse and fine scales subspaces as:

V = Vh ⊕ V ′, (9)

where Vh is the coarse scale function space associated to the Finite Element discretization and V ′ is an
infinite dimensional function space representing the fine scales not directly represented in the discretization;
more specifically, we have Vh = Vh

g × Qh or Vh = Vh
0 × Qh, with Vh

g := Vg ∩
[
Xh

r

]d
, Vh

0 := V0 ∩
[
Xh

r

]d
,

and Qh := Q ∩ Xh
r . We remark that we use the same Finite Element space Xh

r of degree r to define the
spatial discretization for both the velocity and pressure variables. Then, we have from Eq. (9) the following
decompositions:

w = wh + w′, (10)

q = qh + q′, (11)

u = uh + u′, (12)

p = ph + p′. (13)
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Without entering into the details of the derivation, we follow the approach proposed in [2], for which we
decompose Eq. (8) into coarse and fine scale equations, we integrate by parts the fine scale terms appearing
into the coarse scale equations, and finally we model the fine scale velocity and pressure variables as ([2]):

u′ ' −τM(uh) rM(uh, ph), (14)

p′ ' −τC(uh) rC(uh), (15)

where rM(uh, ph) and rC(uh) indicate the strong residuals of the momentum and continuity equations:

rM(uh, ph) = ρ
∂uh

∂t
+ ρuh · ∇uh + ∇ph − µ∆uh − f , (16)

rC(uh) = ∇·uh, (17)

respectively. Moreover, τM and τC are the stabilization parameters, which we choose similarly to [2] as:

τM = τM(uh) =

σ2ρ2

∆t2 +
ρ2

h2
K

|uh|2 +
µ2

h4
K

Cp

−1/2

, (18)

τC = τC(uh) =
h2

K

τM(uh)
, (19)

where Cp = 60 · 2p−2 is a constant obtained by an inverse inequality relation, σ is a constant equal to the
order of the time discretization chosen and ∆t is the time step that will be chosen for the time discretization.
We remark that the expression chosen for the stabilization parameter τM does not account for the projection
of the advective and diffusive terms onto the characteristic sizes of the mesh element along the Cartesian
components as e.g. in [2, 27, 50], but rather it is “averaged” for simplicity over the mesh element.

Finally, the semi–discrete variational multiscale formulation (VMS–LES) of the Navier–Stokes equa-
tions written in terms of the weak residual reads, for all t ∈ (0,T ):

find Uh = Uh(t) = {uh, ph} ∈ Vh
g : A(Wh,Uh) − F(Wh) = 0 for all Wh = {wh, qh} ∈ Vh

0 , (20)

with uh(0) = u0, where:

A(Wh,Uh) := ANS (Wh,Uh) + AV MS (Wh,Uh), (21)

F(Wh) := (wh, f ) + (wh,h)ΓN , (22)

with:

ANS (Wh,Uh) :=
(
wh, ρ

∂uh

∂t

)
+

(
wh, ρuh · ∇uh

)
+

(
∇wh, µ

(
∇uh + (∇uh)T

))
−

(
∇·wh, ph

)
+

(
qh,∇·uh

)
,

(23)

AV MS (Wh,Uh) :=
(
ρuh · ∇wh + ∇qh, τM(uh) rM(uh, ph)

)
−

(
∇·wh, τC(uh) rC(uh)

)
+

(
ρuh · (∇uh)T , τM(uh) rM(uh, ph)

)
−

(
∇wh, τM(uh) rM(uh, ph) ⊗ τM(uh) rM(uh, ph)

)
.

(24)

We remark that Eq. (23) defines the standard terms of the Navier–Stokes equations in weak formulation,
while Eq. (24) contains the terms obtained from the application of the VMS–LES method. In this respect,
the first row of Eq. (24) represents the classical Streamline–Upwind Petrov–Galerkin (SUPG) stabilization
terms, while the second and third rows contain terms peculiar of the VMS stabilization; specifically, the
second row indicates an additional stabilization term complementing the SUPG ones and finally the third
row models the Reynolds cross–stress, which realizes the LES modeling of turbulence [2].
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3. Time discretization: semi–implicit BDF schemes

We consider the time discretization of problem (20) by means of the Backward Differentiation Formulas
(BDF) [7, 15, 40], a family of linear multistep methods for which the first order derivative is replaced by a
one–sided, high order incremental ratio; such BDF schemes are often used in computational fluid dynamics,
as for example in [18].

3.1. Fully implicit BDF schemes

Let us partition the time interval [0,T ] into Nt subintervals of equal size ∆t =
T
Nt

for which the discrete

time instances are tn = n ∆t for n = 0, . . . ,Nt. Furthermore, let us denote with uh
n and ph

n the approximations
of the velocity uh and pressure ph fields at the time tn. According to the order σ of the BDF scheme, the
approximation of the time derivative of the velocity appearing in the Navier–Stokes equations reads:

∂uh

∂t
≈
ασuh

n+1 − uh
n,BDFσ

∆t
, (25)

where for BDF schemes of orders σ = 1, 2, 3 we have:

uh
n,BDFσ =



uh
n if n ≥ 0, for σ = 1 (BDF1),

2uh
n −

1
2

uh
n−1 if n ≥ 1, for σ = 2 (BDF2),

3uh
n −

3
2

uh
n−1 +

1
3

uh
n−2 if n ≥ 2, for σ = 3 (BDF3),

(26)

and

ασ =



1, for σ = 1 (BDF1),

3
2
, for σ = 2 (BDF2),

11
6
, for σ = 3 (BDF3).

(27)

According to the approximation of the time derivative, Eq. (25) is replaced in Eq. (20), while the other time
dependent terms are evaluated at the general discrete time instance tn+1. In this way, after the spatial and
time discretizations, the fully discrete formulation of problem (20) reads at time tn+1 and for a given BDF
scheme of order σ:

find uh
n+1 ∈ V

h
g and ph

n+1 ∈ Q
h :wh, ρ

ασuh
n+1 − uh

n,BDFσ

∆t

 +
(
wh, ρuh

n+1 · ∇uh
n+1

)
+

(
∇wh, µ

(
∇uh

n+1 + (∇uh
n+1)T

))
−

(
∇·wh, ph

n+1

)
+

(
qh,∇·uh

n+1

)
+

(
ρuh

n+1 · ∇wh + ∇qh, τM(uh
n+1) rM(uh

n+1, ph
n+1)

)
−

(
∇·wh, τC(uh

n+1) rC(uh
n+1)

)
+

(
ρuh

n+1 · (∇wh)T , τM(uh
n+1) rM(uh

n+1, ph
n+1)

)
−

(
∇wh, τM(uh

n+1) rM(uh
n+1, ph

n+1) ⊗ τM(uh
n+1) rM(uh

n+1, ph
n+1)

)
=

(
wh, f n+1

)
+

(
wh,hn+1

)
ΓN
,

for all wh ∈ Vh
0 and qh ∈ Qh, for all n ≥ σ − 1,

(28)
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given uh
n, . . . ,u

h
n+1−σ, with f n+1 = f (tn+1) and hn+1 = h(tn+1). We notice that the BDF1 scheme coincides

with the Backward Euler method. At each discrete time tn, the BDF scheme yields a nonlinear problem
to be solved, since (28) is nonlinear in the variables uh

n+1 and ph
n+1. An approximation of this nonlinear

problem can be obtained for example with the Newton method [40]. This requires, at each Newton iterate,
the assembly of the Jacobian matrix and the solution of a linear system. A fully implicit approach, although
obtained for different time discretizations, has been widely used for the study of incompressible fluid flows
in turbulent regimes as e.g. in [2, 24, 36]. However, while a fully implicit approach is generally yielding
a stable time discretization scheme, the associated computational costs may be significantly high due to
the repeated assembly of the residual vector and Jacobian matrix and the solution of the associated linear
system.

3.2. Semi–implicit BDF schemes
In this paper, in order to contain the computational burden associated to the use of a fully implicit BDF

approach (28), we consider instead a semi–implicit BDF scheme derived from problem (28), for which the
nonlinear terms in uh

n+1 and ph
n+1 are extrapolated by means of the Newton–Gregory backward polynomials

[9, 43]. Without entering into the details of the derivation, for which we refer the reader to e.g. [9, 43],
we consider the following extrapolations of orders σ = 1, 2, 3 for the velocity and pressure variables at the
discrete time tn+1:

uh
n+1,σ =


uh

n if n ≥ 0, for σ = 1 (BDF1),

2 uh
n − uh

n−1 if n ≥ 1, for σ = 2 (BDF2),

3 uh
n − 3 uh

n−1 + uh
n−2 if n ≥ 2, for σ = 3 (BDF3),

(29)

and similarly:

ph
n+1,σ =


ph

n if n ≥ 0, for σ = 1 (BDF1),

2 ph
n − ph

n−1 if n ≥ 1, for σ = 2 (BDF2),

3 ph
n − 3 ph

n−1 + ph
n−2 if n ≥ 2, for σ = 3 (BDF3).

(30)

Starting from from the fully implicit formulation (28), we use the above extrapolations by Newton–Gregory
backward polynomials. In this way, for a given BDF scheme of order σ, the fully discrete linearized semi–
implicit formulation of problem (28) reads:

find uh
n+1 ∈ V

h
g and ph

n+1 ∈ Q
h :wh, ρ

ασuh
n+1 − uh

n,BDFσ

∆t

 +
(
wh, ρuh

n+1,σ · ∇uh
n+1

)
+

(
∇wh, µ

(
∇uh

n+1 + (∇uh
n+1)T

))
−

(
∇·wh, ph

n+1

)
+

(
qh,∇·uh

n+1

)
+

(
ρuh

n+1,σ · ∇wh + ∇qh, τn+1,σ
M rn+1,σ

M (uh
n+1, ph

n+1)
)

−
(
∇·wh, τn+1,σ

C rC(uh
n+1)

)
+

(
ρuh

n+1,σ · (∇wh)T , τn+1,σ
M rn+1,σ

M (uh
n+1, ph

n+1)
)

−
(
∇wh, τn+1,σ

M r̂ n+1,σ
M ⊗ τn+1,σ

M r̃ n+1,σ
M (uh

n+1, ph
n+1)

)
−

∇wh, τn+1,σ
M r̂ n+1,σ

M ⊗ τn+1,σ
M ρ ασ

uh
n+1

∆t


+

∇wh, τn+1,σ
M rn+1,σ

M (uh
n+1, ph

n+1) ⊗ τn+1,σ
M ρ

uh
n,BDFσ

∆t

 =
(
wh, f n+1

)
+

(
wh,hn+1

)
ΓN
,

for all wh ∈ Vh
0 and qh ∈ Qh, for all n ≥ σ − 1,

(31)
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given uh
n, . . . ,u

h
n+1−σ, where the stabilization parameters are defined as follows:

τn+1,σ
M :=

σ2ρ2

∆t2 +
ρ2

h2
K

∣∣∣uh
n+1,σ

∣∣∣2 +
µ2

h4
K

Cp

−1/2

, (32)

τn+1,σ
C =

h2
K

τn+1,σ
M

, (33)

and the residuals read:

rn+1,σ
M (uh

n+1, ph
n+1) := ρ

ασuh
n+1 − uh

n,BDFσ

∆t

 + ρuh
n+1,σ · ∇uh

n+1

+∇ph
n+1 − µ∆uh

n+1 − f n+1,

r̂ n+1,σ
M := rn+1,σ

M (uh
n+1,σ, ph

n+1,σ),

r̃ n+1,σ
M (uh

n+1, ph
n+1) := ρuh

n+1,σ · ∇uh
n+1 + ∇ph

n+1 − µ∆uh
n+1 − f n+1.

(34)

Thanks to the time discretization proposed, the fully discrete semi–implicit formulation (31) yields a linear
problem in the variables uh

n+1 and ph
n+1 to be solved only once at each time tn. We remark that the Newton–

Gregory extrapolation of the pressure variable in Eq. (30) is required by the terms of the formulation which
carry the LES modeling. In this respect, we notice that a linearization of Eq. (28) by means of first order
Frechét differentiation would have led to a semi–implicit formulation with a larger number of terms than in
Eq. (31), thus resulting in a larger assembly cost than in the proposed semi–implicit BDF formulation.

Finally, we remark that semi–implicit BDF methods with Newton–Gregory extrapolation yield stable
time discretization schemes if the velocity field is divergence free a.e. in the computational domain. How-
ever, this requirement is not guaranteed for the spatially approximated velocity field uh

n obtained by solving
the Navier–Stokes equations in the VMS–LES formulation, which in principle would require restrictions
on the choice of the time step. Nevertheless, our numerical experience indicates that the use of relatively
“large” time steps still yields stable solutions for the proposed semi–implicit VMS–LES method with BDF
time discretization.

4. Linear parallel solver: GMRES with multigrid preconditioner

We implement the semi–implicit VMS–LES method with BDF time discretization in the open–source
Finite Element library LifeV [53] for the High Performance Computing of problems described by PDEs. In
our numerical tests, the linear system arising from Eq. (31) is solved in a parallel setting using the GMRES
method preconditioned by an algebraic three levels multigrid preconditioner based on the ML package of
Trilinos [16]; see e.g. [41, 51]. For the application of the multigrid (ML) right preconditioner to the matrix
we perform three sweeps of the Gauss–Seidel algorithm for pre– and post–smoothing, while the solution on
the coarsest level is based on a LU factorization [40]. In our computations, we consider the relative residual
as stopping criterion for the GMRES method with tolerance equal to 10−6.

5. Numerical Results

In this section we validate the semi–implicit BDF VMS–LES scheme towards the benchmark problem
of the vortex shedding induced by the fluid flow past a squared cylinder at high Reynolds number [24]. The
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Figure 1: Computational domain Ω considered for the squared cylinder benchmark problem.

simulations have been carried out for different orders of both the time and spatial discretizations and for
different time steps with the aim of studying their influence on the accuracy of the numerical solution. We
discuss the numerical performance of the solver and analyze the influence of the stabilization parameters on
the numerical results.

5.1. The benchmark problem: flow past a squared cylinder
As a validation test, we numerically simulate the flow past a squared cylinder at Reynolds number

Re = 22, 000. This problem has been already investigated both experimentally [5, 35] and numerically
by using Smagorinsky and dynamic LES models [44, 49], as well as with a VMS formulation for the
compressible Euler equations approximated by the Finite Volumes method [24].

The geometrical setting considered for this benchmark problem is schematically illustrated in Figure 1,
for which D = 1 m is the side length of the squared cylinder, Lin = 4.5 D and Lout = 15.5 D are the distances
between the cylinder and the inflow and outflow surface boundaries, respectively, Ls = 4 D is the width of
the domain and H = 6.5 D is the distance between the cylinder and the bottom and top walls.

Regarding the boundary conditions, at the surfaces on the top and bottom of the domain we set a null
normal component of the velocity vector u · n̂ = 0; similarly, at the lateral boundaries we set the normal
velocity component u · n̂ = 0. At the inflow of the domain Γin, we prescribe a velocity profile uin(t) that is
uniform along the inflow section and it is dependent only on the time independent variable as:

uin(t) =


V∞
2

(
1 − cos

(
π

t
Tr

))
if 0 ≤ t < Tr,

V∞ if t ≥ Tr,

where, in the numerical tests, we have consider Tr = 0.3 s and the reference inflow velocity V∞ = 22 m/s.
At the outflow boundary Γout, we consider the following natural boundary condition [3]:

−pn̂ + 2µ(∇u + (∇u)T ) · n̂ − ρ({u · n̂}−)u = 0 on Γout, (35)

where n̂ is the outward directed unit vector normal to Γout and {u · n̂}− denotes the negative part of u · n̂:

{u · n̂}− =

u · n̂ if u · n̂ < 0,
0 if u · n̂ ≥ 0.

The above boundary condition is introduced to weakly penalize the reverse flow induced by the vortexes at
Γout, which may render unstable the discrete formulation of the problem. Indeed, we observe that only if
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Figure 2: Computational mesh used for the numerical simulation of the flow past a squared cylinder.

FE discretization Number of dofs

P1–P1 1,323,056
P2–P2 9,209,040

Table 1: Number of degrees of freedom used in our simulations for the mesh of Figure 2.

u · n̂ < 0 on Γout, the last term in the left hand side of Eq. (35) is active; if u · n̂ ≥ 0 Γout, the outflow boundary
condition considered coincides with the well known stress–free condition. On the squared cylinder surface
we impose a no slip boundary condition (u = 0). We consider the fluid to have density ρ = 1, 000 kg/m3

and a dynamic viscosity µ = 1 Pa s. In this way the Reynolds number is Re =
ρV∞D
µ

= 22, 000.

We discretize the computational domain Ω by a mesh comprised of 330, 764 vertices and 1, 853, 500
tetrahedral elements. In Figure 2, two images of the computational mesh Th are presented: on the left
we show a vertical cut plane of the mesh and on the right an horizontal cut through the squared cylinder.
Along the side length of the cylinder we considered about 20 mesh elements, corresponding to a length
hbl = 0.05 m. We remark that the mesh size is not uniform in Ω and the ratio between the largest and the
smallest local mesh sizes is about 10–15.

We solve the benchmark problem using the semi–implicit VMS–LES method based on the BDF formu-
las. We analyze the performances of the method with respect to the use of first (σ = 1) and second (σ = 2)
order BDF schemes for different time steps (∆t = 0.005 s, ∆t = 0.0025 s, and ∆t = 0.00125 s) and different
degrees of polynomials used for the Finite Element approximation, specifically P1–P1 for r = 1 and P2–P2
for r = 2. The time interval considered for the simulations is such that t ∈ (0, 14) s. In Table 1 we re-
port the number of degrees of freedom associated to the discretized problem for the numerical simulations
performed.

In Figure 3 we show a post–processing of the solution obtained by using P2–P2 Finite Element and
BDF2 scheme at time t = 10 s for ∆t = 0.0025 s, i.e. when the turbulent flow is fully developed. Figure 3(a)
shows the coherent vortex structures characterizing the wake (we identified the structures by means of the
λ2 criterion [22]); in Figure 3(b), we highlight the considerable three–dimensional features of the turbulent
flow occurring in the wake region adjacent to the cylinder by means of a representation of the streamlines
colored by the vorticity field. Figure 3(c) illustrates the pressure field at a plane located at z = 0, as well as
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(a) Coherent vortex structures of the wake. (b) Streamlines.

(c) Pressure field. (d) Vorticity field.

Figure 3: Post–processing of the results at time t = 10 s. Solution obtained using P2–P2 Finite Element, BDF2, and ∆t = 0.0025 s.

some significant isosurfaces; we showed only negative values of the pressure field in order to highlight the
low pressure zones characterizing the center of the vortexes in the wake region. In Figure 3(d) we illustrate
the vorticity field, both on the squared cylinder and on a cut plane at z = 0, on which we also show, by
means of a surface LIC, the recirculation of the flow detaching from the cylinder.

In order to compare the results with those available in literature obtained by other LES methods, we
compute the drag and lift coefficients on the cylinder. Let us introduce v̂∞ =

v∞
‖V∞‖

, that is a unit vector

directed as the incoming flow, and n̂∞, a unit vector orthogonal to the direction v̂∞ of the incoming flow.
The aerodynamic drag and lift coefficients for the cylinder are defined as:

CD(u, p) = −
1

q∞|ΓBODY |

∮
ΓBODY

(σ(u, p) n̂) · v̂∞ dΓ, (36)

CL(u, p) =
1

q∞|ΓBODY |

∮
ΓBODY

(σ(u, p) n̂) · n̂∞ dΓ, (37)

where q∞ =
1
2
ρV2
∞ is the dynamic pressure, and |ΓBODY | is the surface area of the cylinder; in Eq. (36) the
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Figure 4: Results obtained by P1–P1 Finite Element and the BDF1 scheme; CD (left) and CL (right) vs. time t [s] for ∆t =

0.005 s (top), 0.0025 s (mid), and 0.00125 s (bottom).

minus sign takes into account that, by convention, the force is positive if acting on the fluid. In practice, we
compute the aerodynamic drag and lift coefficients by means of the weak residual form ([6, 13, 26]) which
ensures higher accuracy than the direct use of Eqs. (36) and (37); with this aim, we use the test functions
d∞ ∈ {[H1(Ω)]d : d∞|ΓBODY = v̂∞, d∞|∂Ω\ΓBODY = 0} and l∞ ∈ {[H1(Ω)]d : l∞|ΓBODY = n̂∞, l∞|∂Ω\ΓBODY = 0}
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Figure 5: Results obtained by P1–P1 Finite Element and the BDF2 scheme; CD (left) and CL (right) vs. time t [s] for ∆t =

0.005 s (top), 0.0025 s (mid), and 0.00125 s (bottom).

in Eq. (28). In Figure 4 we illustrate, for the different time steps considered, the evolution of the drag
(left–hand side) and lift (right–hand side) coefficients when using a first order scheme for both the spatial
and the time discretizations. In the same way, Figures 5 and 6 show the evolution of the coefficients using a
second order BDF scheme in time and a first and second order approximations in space, respectively. By a
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Figure 6: Results obtained by P2–P2 Finite Element and the BDF2 scheme; CD (left) and CL (right) vs. time t [s] for ∆t =

0.005 s (top), 0.0025 s (mid), and 0.00125 s (bottom).

comparison of the numerical results obtained using P1–P1 Finite Element (Figures 4 and 5) we highlight the
effects of the time discretization. In detail, we can observe that the amplitude of the oscillations of the lift
and drag coefficients are substantially reduced when using a second order time discretization with respect to
BDF1. In the same way, the results of Figures 5 and 6 (both obtained using the BDF2) allows to analyze the
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FE discretization Time step BDF order CD rms(CD) rms(CL) Strouhal

P1–P1

∆t = 0.01 s 1 2.51 0.250 1.59 0.127
∆t = 0.005 s 1 2.49 0.226 1.49 0.133
∆t = 0.0025 s 1 2.35 0.112 1.18 0.138
∆t = 0.00125 s 1 2.24 0.0785 0.895 0.142

∆t = 0.01 s 2 2.33 0.204 1.11 0.142
∆t = 0.005 s 2 2.27 0.0896 0.897 0.144
∆t = 0.0025 s 2 2.16 0.0622 0.658 0.146
∆t = 0.00125 s 2 2.05 0.0420 0.576 0.146

P2–P2
∆t = 0.005 s 2 1.98 0.102 0.580 0.142
∆t = 0.0025 s 2 2.24 0.121 0.986 0.141
∆t = 0.00125 s 2 2.71 0.153 1.49 0.129

Table 2: Results obtained by the semi–implicit BDF VMS–LES method by considering different time step s ∆t and orders for the
spatial and time discretizations.

LES method CD rms(CD) rms(CL) Strouhal

Finite Volumes VMS (Koobus et al. [24]) 2.10 0.18 1.08 0.136
Smagorinsky (Rodi et al. [44]) [1.66–2.77] [0.1–0.27] [0.38–1.79] [0.07–0.15]
Dynamic LES (Sohankar et al. [49]) [2.00–2.32] [0.16–0.20] [1.23–1.54] [0.127–0.135]

Table 3: Results obtained by different numerical simulations based on LES models (results between brackets indicate a range of
values).

effects of spatial discretization on the solution. More specifically, it is interesting to analyze the interplay
between the choice of the time step ∆t and the order of the spatial discretization. When using P1–P1 Finite
Element, the smaller ∆t reduces both the amplitudes of the oscillations of lift and drag coefficients, as well
as the mean drag coefficients CD. On the contrary, when a second order spatial discretization is adopted,
smaller time steps lead to wider oscillations of the coefficients and to higher mean values of the mean of the
drag.

In order to compare the numerical results with those available in literature, we evaluate the mean drag
coefficient CD, the root mean square of the lift and of the drag coefficients, say rms(CD) and rms(CL), and
the Strouhal number obtained from a Fourier analysis of the lift coefficient. In Table 2 we report the results
predicted by the semi–implicit BDF VMS–LES method, whereas Table 3 contains the values obtained by
other LES methods: in particular, we consider the results obtained with the VMS–Finite Volumes method
of Koobus et al. [24], LES models of Rodi et al. [44], and Smagorinsky models of Sohankar et al. [49].

The choice of the time step ∆t for the simulations has an important effect on the aerodynamic coefficients
independently from the order of the spatial and time discretizations. Indeed, from Table 2 we observe that
the estimation of the mean drag coefficient CD obtained with ∆t = 0.005 s and ∆t = 0.00125 s varies of
approximately ±5% with respect to the value obtained with ∆t = 0.0025 s. We notice that the use of P1–P1
Finite Element yields a mean drag coefficient CD that decreases as the time step gets smaller; on the contrary,
by using P2–P2 Finite Element to approximate the velocity and pressure fields, the value of CD increases
as ∆t decreases. The same consideration follows from the analysis of the root mean square values of both
the lift and drag coefficients. The results obtained using a first order spatial–time discretizations (P1–P1
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Figure 7: Relative energy spectra (energy vs. wave number) obtained using a first and second order spatial discretization for BDF2
and ∆t = 0.0025 s; logarithmic scales on both axes. The analysis is performed at time t = 10 s, when turbulence is fully developed,
and has been carried out by using the software AnaFlame [52].

and BDF1) are in line with those available in literature: although the largest time step under consideration
leads already to an accurate prediction of the Strouhal number, the smallest one, i.e. ∆t = 0.00125 s, yields
good estimation of all the coefficients. We notice that the use of a first order discretization in space and
second in time (P1–P1 and BDF2) leads to an underestimation of the root mean square of the lift and drag
coefficients with respect to the results available in literature for LES models, although the prediction of CD

is sufficiently accurate. Finally, by employing a second order spatial–time discretization (P2–P2 and BDF2)
we notice that the rms(CL) and rms(CD) are in line with those obtained with other LES methods, although
the smallest time step yields an overestimation of the mean drag coefficient CD.

5.2. Energy spectra

It is well known [39] that turbulence features a wide range of spatial and time scales. Fluctuation of the
energy is produced at the level of large eddies (with low wave numbers). Vortex stretching mechanisms then
generate smaller and smaller eddies and energy “drifts” down the spectrum to higher wave numbers. The
slope of the energy spectrum vs. the wave number in this range remains constant, as Kolmogorov showed
that this slope is −5/3, based on dimensional arguments. We denote by Ekin(k) the energy spectrum, where
k is the wave number (inversely proportional to the wavelength). In order to compute the energy spectrum,
the numerical solution (velocity field) obtained on the squared cylinder benchmark problem is evaluated
on a lattice of 106 equally spaced points. The points are located within a cube in the wake, centered in
5 m downstream the cylinder. The side length of the cube is L = 3 m and 102 points are equally spaced
along each direction; the results displayed in Figure 7 show the energy spectra obtained. The slope of the
energy spectra, for both the spatial discretizations considered, is in line with the one of the theoretical curve
(k, k−5/3).

5.3. Parallel performances of the solver

In Figure 8 we report a strong scalability study of the solver performed using the P2–P2 and BDF2
discretizations of the benchmark problem for ∆t = 0.0025 s. We recall that in this settings the total number
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(b) Time to solve the linear system.
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(c) Time to complete a time step.
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Figure 8: Scalability analysis of the solver. Simulations performed using P2 − P2 Finite Element, BDF2 and ∆t = 0.0025 s.

Number of compute nodes 1, 256
Processor Dual-socket Intel Xeon processor

E5-2690v3, 2.5 GHz
Memory 64GB per node in 1, 192 nodes

128GB per node in 64 nodes
Memory bandwidth Up to 137 GB/s per node
Network Dragonfly interconnect

Table 4: Piz Dora Cray XC40 technical data.

of degrees of freedom is equal to 9, 209, 040. In our investigation, we consider a varying number of CPUs
ranging from 64 to 4, 096 and we monitor the time to build the preconditioner (Figure 8(a)), to solve the
linear system by the preconditioned GMRES method (Figure 8(b)), and to perform a time step, i.e. the
sum of the time spent to update the convective and the VMS–LES terms in the assembly phase, to build the
preconditioner, and to solve the linear system (Figure 8(c)). Furthermore, in Figure 8(d) we show the mean
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(a) Velocity field at time 10.0 s. (b) Pressure field at time 10.0 s.

Figure 9: Reference velocity (a) and pressure (b) fields computed at time t = 10.0 s using P1–P1 Finite Element and the BDF2
scheme with ∆t = 0.0025 s; the velocity field is used to evaluate the stabilization parameters τn+1,σ

M and τn+1,σ
C .

number of GMRES iterations employed to solve the linear system with the prescribed tolerance. All the
computations are carried out using Piz Dora, a Cray XC40 supercomputer installed at the Swiss National
Supercomputing Center (CSCS) whose main technical specifications are reported in Table 4.

The results reported in Figure 8 show the excellent scalability properties of the solver up to 2, 048 CPUs:
in fact, all the indicators scale almost perfectly and the number of iterations of the GMRES solver remains
constant. More specifically, only when using 2, 048 CPUs we start to observe an initial deterioration in the
scalability of the time to build the preconditioner and to solve the linear system. Nevertheless, in terms of
time to perform a time step, remarkably only with 4, 096 CPUs we start to notice a slight deterioration of
the performance. This is due to the fact that, within the overall count of the operations required to perform
a time step, the assembly phase necessary to update the convective and VMS–LES stabilization terms is the
most expensive, taking around the 85% of the total time spent for a time step.

5.4. Stabilization parameters
We address, for the benchmark problem at hand, the dependency of the stabilization parameters τn+1,σ

M
and τn+1,σ

C of Eqs. (32) and (33) on the choice of the time step ∆t. With this aim, we visualize the spatial
distributions of τn+1,σ

M and τn+1,σ
C on the mid plane of the computational domain starting from the velocity

field computed at the time t = 10.0 s by means of P1–P1 Finite Element and the BDF2 scheme for ∆t =

0.0025 s; the corresponding computed velocity and pressure fields are reported in Figure 9, while the values
of τn+1,σ

M and τn+1,σ
C for the time steps ∆t = 0.01, 0.005, 0.0025, and 0.00125 s are reported in Figures 10

and 11. From Figure 10(a) we observe that the largest time step under consideration, ∆t = 0.01 s, leads to a
distribution of τn+1,σ

M that reflects the value of the local mesh size hK and velocity field uh
n+1,σ. However, as

the time step ∆t diminishes, the magnitude of the stabilization parameter τn+1,σ
M diminishes and its spatial

distribution only mildly depends on the local mesh size and the velocity magnitude. In fact, from the
definition of τn+1,σ

M in Eq. (32), we remark that the use of small time steps tends to annihilate the dependence

on hK and uh
n+1,σ, as it is possible to observe in Figure 10(d) where τn+1,σ

M mostly behaves as
∆t
ρ

for ∆t → 0.
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(a) ∆t = 0.01 s. (b) ∆t = 0.005 s.

(c) ∆t = 0.0025 s. (d) ∆t = 0.00125 s.

Figure 10: Spatial distribution (on the mid plane of Ω) of the stabilization parameter τn+1,σ
M computed from the reference velocity

field of Figure 9(a) using P1–P1 Finite Element and the BDF2 scheme for different time steps ∆t = 0.01, 0.005, 0.0025, and
0.00125 s.

We report in Figure 11 the behavior of the stabilization parameter τn+1,σ
C computed as in Eq. (33). We

notice that, since mild dependencies of τn+1,σ
M on hK and uh

n+1,σ are observed for the values of the ∆t under
considerations, the parameter τn+1,σ

C mostly depends on the local mesh size hk; indeed, we have considered
a variable mesh size as highlighted in Figure 2. As consequence, the ratio between the largest and smallest
local values of τn+1,σ

C in Ω is approximatively 150 regardless of the time step ∆t under consideration.
While it is well known that the stabilization parameters chosen as in Eqs. (32) and (33) degenerate as

the time step decreases (see e.g. [12, 27]), i.e τn+1,σ
M ∼ ∆t → 0 and τn+1,σ

C ∼
1
∆t
→ ∞ for ∆t → 0, and hence
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(a) ∆t = 0.01 s. (b) ∆t = 0.005 s.

(c) ∆t = 0.0025 s. (d) ∆t = 0.00125 s.

Figure 11: Spatial distribution (on the mid plane of Ω) of the stabilization parameter τn+1,σ
C computed from the reference velocity

field of Figure 9(a) and the parameters τn+1,σ
M of Figure 10 using P1–P1 Finite Element and the BDF2 scheme for different time

steps ∆t = 0.01, 0.005, 0.0025, and 0.00125 s.

the stabilization and turbulence LES modeling may be ineffective for relatively small values of ∆t ([12]),
we stress the fact that we did not encounter any stabilization issue in our numerical simulations for the time
steps under consideration. However, our experience based on numerical tests indicates that for very “small”
values of ∆t, i.e. when the term related to ∆t in τn+1,σ

M is not correctly balanced with respect to the other
ones, the degeneration of the parameters τn+1,σ

M and τn+1,σ
C is reflected at the numerical level by convergence

issues of the linear solver and eventually by the inability of assembling a suitable preconditioner.
An alternative formulation of the stabilization parameters of Eqs. (32) and (33) can be used by com-

pletely neglecting the effect of time dependency of the fine scale velocity u′ in the fine scale momentum
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(a) τ̃ n+1,σ
M . (b) τ̃ n+1,σ

C .

Figure 12: Spatial distribution (on the mid plane of Ω) of the stabilization parameters τ̃ n+1,σ
M and τ̃ n+1,σ

C computed from the reference
velocity field of Figure 9(a) using P1–P1 Finite Element.

equation, where one assumes that
∂u′

∂t
' 0. This leads to consider stabilization parameters τ̃ n+1,σ

M and τ̃ n+1,σ
C

in Eqs. (14) and (15) independent of the time step ∆t, which read:

τ̃ n+1,σ
C :=

 ρ2

h2
K

∣∣∣uh
n+1,σ

∣∣∣2 +
µ2

h4
K

Cp

−1/2

,

τ̃ n+1,σ
C =

h2
K

τ̃ n+1,σ
M

.

However, we remark that we were unable to successfully perform numerical simulations by using the previ-
ous definitions of the stabilization parameters, even for different choices of ∆t; specifically, we experienced
convergence issues using the GMRES solver with the ML preconditioner, which prevented the simulations
to significantly advance beyond the time Tv = 0.3 s. Our interpretation of this outcome is that a suitable
multigrid preconditioner can not be “easily” assembled when the stabilization parameters τ̃ n+1,σ

M and τ̃ n+1,σ
C

are significantly varying in the computational domain Ω. Following the procedure described before, we
plot in Figure 12 the spatial distributions of the parameters τ̃ n+1,σ

M and τ̃ n+1,σ
C ; in particular, we highlight

that τ̃ n+1,σ
M varies of approximately two orders of magnitude in Ω, while the ratio between the largest and

smallest local values of τ̃ n+1,σ
C is approximatively 3, 000, a value much larger than the one obtained with

τn+1,σ
C , which was about 150. We notice that τ̃ n+1,σ

M is relatively “large” where the velocity magnitude is
nearly zero, as it occurs in the boundary layers and some regions in the vortexes wake. This, in combina-
tion with the “small” mesh size hK in the boundary layers and wake regions, renders the parameter τ̃ n+1,σ

C
relatively “small” locally in Ω; conversely, this becomes “large” far from the cylinder, where the mesh is
locally coarse and the velocity magnitude nearly equal to V∞.

We finally remark that the choice of the stabilization parameters may have a significant impact on the
numerical results, especially if, as in this work, we take into account only in an approximate manner for the
time dependencies of the fine scales using the parameters τn+1,σ

M and τn+1,σ
C of Eqs. (32) and (33). While
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this can be improved by using dynamic subscales models [10, 11, 12], the latter require to solve systems
of ordinary differential equations to determine the fine scale solutions u′ and p′, which may increase the
accuracy of the results, but also the computational cost of the simulations. Since in this work we focus
on the efficiency aspects of the numerical solver, we decided to consider the stabilization parameters as in
Eqs. (32) and (33), which nevertheless represent a common choice in literature [2, 3, 14, 19, 50].

6. Conclusions

In this work we proposed a semi–implicit time discretization of the Navier–Stokes equations with Vari-
ational Multiscale–Large Eddy Simulation (VMS–LES) modeling of turbulence. We used Backward Differ-
entiation Formulas (BDF) for the time discretization and the Finite Element method for the spatial approx-
imation, considering the same space of Lagrange polynomials to represent the fluid velocity and pressure
fields. We “linearized” the fully discrete nonlinear problem by extrapolation based on Newton–Gregory
backward polynomials, thus obtaining a semi–implicit scheme for turbulence LES modeling. In this way,
we limit the computational costs of the simulation since only a linear system has to be assembled and
solved at each time step. In order to cope with the computational complexity of the problem, we developed
a parallel solver based on the GMRES method preconditioned by a multigrid (ML) preconditioner.

We validated the proposed numerical scheme by solving the benchmark problem of the flow past a
squared cylinder at high Reynolds number. We investigated how the accuracy of the solution is influenced
by the choice of the time step and of the orders of the spatial and time discretizations and, in this respect, we
discussed the role of the stabilization parameters. Furthermore, we studied the performance of the solver
implemented in a parallel setting, showing the good scalability properties up to thousands of CPUs. All the
numerical experiments performed yielded results that were in line with those available in literature obtained
by other LES models. This highlights that the proposed semi–implicit BDF time discretization scheme for
the Navier–Stokes equations with VMS–LES modeling is not only efficient, but also robust and accurate for
the simulation of turbulent flows.
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