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Abstract

We consider model order reduction of parameterized Hamiltonian systems describing nondissipative
phenomena, like wave-type and transport dominated problems. The development of reduced basis
methods for such models is challenged by two main factors: the rich geometric structure encoding
the physical and stability properties of the dynamics and its local low-rank nature. To address these
aspects, we propose a nonlinear structure-preserving model reduction where the reduced phase space
evolves in time. In the spirit of dynamical low-rank approximation, the reduced dynamics is obtained
by a symplectic projection of the Hamiltonian vector field onto the tangent space of the approximation
manifold at each reduced state. A priori error estimates are established in terms of the projection
error of the full model solution onto the reduced manifold. For the temporal discretization of the
reduced dynamics we employ splitting techniques. The reduced basis satisfies an evolution equation
on the manifold of symplectic and orthogonal rectangular matrices having one dimension equal to the
size of the full model. We recast the problem on the tangent space of the matrix manifold and develop
intrinsic temporal integrators based on Lie group techniques together with explicit Runge–Kutta
(RK) schemes. The resulting methods are shown to converge with the order of the RK integrator and
their computational complexity depends only linearly on the dimension of the full model, provided
the evaluation of the reduced flow velocity has a comparable cost.

MSC 2010. 37N30, 65P10, 15A24, 78M34.
Keywords. Hamiltonian dynamics, symplectic manifolds, dynamical low-rank approximation, re-

duced basis methods (RBM), Lie group integrators.

1 Introduction
We consider parameterized finite-dimensional canonical Hamiltonian systems describing nondissipative
flows or ensuing from the numerical discretization of partial differential equations that can be derived from
action principles. Let T := (t0, T ] be a temporal interval and let V2N be a 2N -dimensional symplectic
vector space. Let Γ ⊂ Rd, with d ≥ 1, be a compact set of parameters. For each η ∈ Γ, we consider the
initial value problem: For u0(η) ∈ V2N , find u(·, η) ∈ C1(T ,V2N ) such that ∂tu(t, η) = XH(u(t, η), η), for t ∈ T ,

u(t0, η) = u0(η),
(1.1)

where XH(u, η) ∈ V2N is the Hamiltonian vector field at time t ∈ T , and C1(T ,V2N ) denotes continuous
differentiable functions in time taking values in V2N .

In the context of long-time and many-query simulations model order reduction aims at pruning the
computational cost of solving systems like (1.1) by replacing the original high-dimensional problem
with a simplified model, such as a surrogate or low-fidelity model, without compromising the overall
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accuracy. When dealing with Hamiltonian systems additional difficulties are encountered to ensure that
the geometric structure of the phase space, the stability and the conservation properties of the original
system are not hindered during the reduction.

Reduced basis methods (RBM) relying on projection techniques consist in building, during a compu-
tationally intensive offline phase, a reduced basis from a proper orthogonal decomposition of a set of
high-fidelity simulations (referred to as snapshots) at sampled values of time and parameters. A reduced
dynamics is then obtained via projection of the full model onto the lower dimension space spanned by
the reduced basis. Projection-based RBM for Hamiltonian systems tailored to preserve the geometric
structure of the dynamics were developed in [15] and [5] using a variational Lagrangian formulation of the
problem, in [23, 2, 3] for canonically symplectic dynamical systems, and in [12] to deal with Hamiltonian
problems whose phase space is endowed with a nonlinear Poisson manifold structure.

Although the aforementioned approaches can provide robust and efficient reduced models, they might
require a sufficiently large approximation space to achieve even moderate accuracy. This can be ascribed
to the fact that nondissipative phenomena, like advection and wave-type problems, do not possess a
global low-rank structure, and are therefore characterized by slowly decaying Kolmogorov widths, as
highlighted in [22]. Hence, local reduced spaces seems a more effective instrument to deal with this kind
of dynamical systems.

In this work we propose a nonlinear projection-based model order reduction of parameterized Hamil-
tonian systems where the reduced basis is dynamically evolving in time. The idea is to consider a modal
decomposition of the approximate solution to (1.1) of the form

u(t, η) ≈
2n∑
i=1

Ui(t)Zi(t, η), n� N, ∀ t ∈ T , η ∈ Γ, (1.2)

where the reduced basis {Ui}i ⊂ R2N , and the expansion coefficients {Zi}i ⊂ R can both change in time.
The approximate reduced flow is then generated by the velocity field resulting from the projection of the
vector field XH in (1.1) into the tangent space of the reduced space at the current state. By imposing
that the evolving reduced space spanned by {Ui}i is a symplectic manifold at every time the continuous
reduced dynamics preserves the geometric structure of the full model.

Low-rank approximations based on a modal decomposition of the approximate solution with dy-
namically evolving modes similar to (1.2), have been widely studied in quantum mechanics in the
multiconfiguration time-dependent Hartree (MCTDH) method, see e.g. [17]. In the finite dimensional
setting, a similar approach, known as dynamical low-rank approximation [14], provides a low-rank factor-
ization updating technique to efficiently compute approximations of time-dependent large data matrices,
by projecting the matrix time derivative onto the tangent space of the low-rank matrix manifold. For the
discretization of time-dependent stochastic PDEs, Sapsis and Lermusiaux proposed in [24] the so-called
dynamically orthogonal (DO) scheme, where the deterministic approximation space adapts over time by
evolving according to the differential operator describing the stochastic problem. A connection between
dynamical low-rank approximations and DO methods was established in [21]. Further, a geometric
perspective on the relation between dynamical low-rank approximation, DO field equations and model
order reduction in the context of time-dependent matrices has been investigated in [10]. To the best of
our knowledge the only work to address structure-preserving dynamical low-rank approximations is the
work by Musharbash and Nobile [20], where the authors develop a DO discretization of stochastic PDEs
possessing a symplectic Hamiltonian structure. The method proposed in [20] consists in recasting the
continuous PDE into the complex setting and then applying a dynamical low-rank strategy to derive
field equations for the evolution of the stochastic modal decomposition of the approximate solution.
The approach we propose for the nonlinear model order reduction of problem (1.1) adopts a geometric
perspective similar to [10] and yields an evolution equation for the reduced solution analogous to [20],
although we do not resort to a reformulation of the evolution problem in a complex framework.

Concerning the temporal discretization of the reduced dynamics describing the evolution of the
approximate solution (1.2), the low-dimensional system for the expansion coefficients {Zi}i is Hamiltonian
and can be approximated using standard symplectic integrators. On the other hand, the development of
numerical schemes for the evolution of the reduced basis is more involved as two major challenges need
to be addressed: (i) a structure-preserving approximation requires that the discrete evolution remains on
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the manifold of symplectic and (semi-)orthogonal rectangular matrices; (ii) since the reduced basis forms
a matrix with one dimension equal to the size of the full model, the effectiveness of the model reduction
might be thwarted by the computational cost associated with the numerical solution of the corresponding
evolution equation.

Various methods have been proposed in the literature to solve differential equations on manifolds,
see e.g. [11, Chapter IV]. Most notably projection methods apply a conventional discretization scheme
and, after each time step, a “correction” is made by projecting the updated approximate solution to
the constrained manifold. Alternatively, methods based on the use of local parameterizations of the
manifold, so-called intrinsic, are well-developed in the context of differential equations on Lie groups, cf.
[11, Section IV.8]. The idea is to recast the evolution equation in the corresponding Lie algebra, which is
a linear space, and to then recover an approximate solution in the Lie group via local coordinate maps.
Instrinsic methods possess excellent structure-preserving properties provided the local coordinate map
can be computed exactly. However, they usually require a considerable computational cost associated
with the evaluation of the coordinate map and its inverse at every time step (possibly at every stage
within each step).

We propose and analyze two structure-preserving temporal approximations and show that their
computational complexity scales linearly with the dimension of the full model, under the assumption
that the velocity field of the reduced flow can be evaluated at a comparable cost. In the first algorithm
we extend the initial value problem for the reduced basis {Ui}i on the orthosymplectic matrix manifold
to a quadratic Lie group and, similarly to [16], use Lie group methods and conventional multi-stage
explicit RK integrators to solve the equivalent system on the corresponding Lie algebra. By exploiting
the structure of the dynamical low-rank approximation and the properties of the local coordinate map
supplied by the Cayley transform, we prove the computational efficiency of this algorithm with respect to
the dimension of the high-fidelity model. However, a polynomial dependence on the number of stages
of the RK temporal integrator might yield high computational costs in the presence of full models of
moderate dimension. To overcome this issue, we propose a discretization scheme based on the use of
retraction maps to recast the local evolution of the reduced basis on the tangent space of the matrix
manifold at the current state, inspired by the works [7, 8] on intrinsic temporal integrators for orthogonal
flows.

The remainder of the paper is organized as follows. In Section 2 the geometric structure underlying
the dynamics of Hamiltonian systems is presented, and the concept of orthosymplectic basis spanning
the approximate phase space is introduced. In Section 3 we describe the properties of linear symplectic
maps needed to guarantee that the geometric structure of the full dynamics is inherited by the reduced
problem. Subsequently, in Section 4 we develop and analyze a dynamical low-rank approximation strategy
resulting in dynamical systems for the reduced orthosymplectic basis and the corresponding expansion
coefficients in (1.2). In Section 5 efficient and structure-preserving temporal integrators for the reduced
basis evolution problem are derived. We present some concluding remarks and open questions in Section 6.

2 Hamiltonian dynamics on symplectic manifolds
The phase space of Hamiltonian dynamical systems is endowed with a differential Poisson manifold
structure which underpins the physical properties of the system. Most prominently, Poisson structures
encode a family of conserved quantities that, by Noether’s theorem, are related to symmetries of the
Hamiltonian. Here we focus on dynamical systems whose phase space has a global Poisson structure that
is canonical and nondegenerate, namely symplectic.

Definition 2.1 (Symplectic structure). Let V2N be a finite 2N -dimensional smooth manifold. A symplectic
structure on V2N is a nondegenerate closed 2-form ω. A manifold V2N endowed with a symplectic
structure ω is called a symplectic manifold and denoted with (V2N , ω). If V2N is a vector space, then
(V2N , ω) is called symplectic vector space.

The algebraic structure of a symplectic manifold (V2N , ω) can be characterized through the definition of
a bracket: Let dF be the 1-form given by the exterior derivative of a given smooth function F ∈ C∞(V2N ),
then

{F ,G}2N := 〈T∗V2N
dF ,J2N dG〉TV2N

= ω(J2N dF ,J2N dG), ∀F ,G ∈ C∞(V2N ), (2.1)
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where 〈T∗V2N
·, ·〉TV2N

denotes the duality pairing between the cotangent and the tangent bundle. The
application J2N : T ∗V2N → TV2N is a contravariant 2-tensor on the manifold V2N , commonly referred to
as Poisson tensor. The space C∞(V2N ) of real-valued smooth functions over the manifold (V2N , {·, ·}2N )
together with the bracket {·, ·}2N forms a Lie algebra [1, Proposition 3.3.17].

A Hamiltonian system is a triple (V2N , ω,H) where (V2N , ω) is a symplectic manifold andH ∈ C∞(V2N )
is a smooth function, called Hamiltonian, such that

dH = iXHω, (2.2)

where i denotes the contraction operator and XH ∈ TV2N . Since ω is nondegenerate, the vector
field XH ∈ TV2N , called Hamiltonian vector field, is unique. A vector field XH on a manifold V2N

determines a phase flow, namely a one-parameter group of diffeomorphisms ΦtXH : V2N → V2N satisfying
dtΦ

t
XH(u) = XH(Φt

XH(u)) for all t ∈ T and u ∈ V2N , with Φ0
XH(u) = u. The flow map Φt

XH of a vector
field XH ∈ TV2N is Hamiltonian if and only if ΦtXH is a symplectic diffeomorphism (symplectomorphism)
on its domain, i.e., for each t ∈ T , (ΦtXH)∗ω = ω.

Definition 2.2 (Symplectic map). Let (V2N , {·, ·}2N ) and (V2n, {·, ·}2n) be symplectic manifolds of finite
dimension 2N and 2n respectively, with n ≤ N . A smooth map Ψ : (V2N , {·, ·}2N ) → (V2n, {·, ·}2n) is
called symplectic if it satisfies

Ψ∗{F ,G}2n = {Ψ∗F ,Ψ∗G}2N , ∀F ,G ∈ C∞(V2n).

In addition to possessing a symplectic phase flow, Hamiltonian dynamics is characterized by the
existence of differential invariants, and symmetry-related conservation laws.

Definition 2.3 (Invariants of motion). A function I ∈ C∞(V2N ) is an invariant of motion of the dynamical
system (2.2), if {I,H}2N (u) = 0 for all u ∈ V2N . Consequently, I is constant along the orbits of XH.

The Hamiltonian, if time-independent, is an invariant of motion. A particular subset of the invariants
of motion of a dynamical system is given by the Casimir invariants, smooth functions C on V2N that
{·, ·}2N -commute with every other functions, i.e. {C,F}2N = 0 for all F ∈ C∞(V2N ). Since Casimir
invariants are associated with the center of the Lie algebra (C∞(V2N ), {·, ·}2N ), symplectic manifolds
only possess trivial Casimir invariants.

Resorting to a coordinate system, the canonical structure on a symplectic manifold can be characterized
by canonical charts whose existence is postulated in [1, Proposition 3.3.21].

Definition 2.4. Let (V2N , {·, ·}2N ) be a symplectic manifold and (U,ψ) a cotangent coordinate chart
ψ(u) = (q1(u), . . . , qN (u), p1(u), . . . , pN (u)), for all u ∈ U . Then (U,ψ) is a symplectic canonical chart if
and only if {qi, qj}2N = {pi, pj}2N = 0, and {qi, pj}2N = δi,j on U for all i, j = 1, . . . , N .

In the local canonical coordinates introduced in Definition 2.4, the vector bundle map J2N , defined in
(2.1), takes the canonical symplectic form

J2N :=

 0 Id

− Id 0

 : T ∗VN × T ∗VN −→ TV2N ,

where Id and 0 denote the identity and zero map, respectively. Symplectic canonical charts on a
symplectic vector space allow to define a global basis that is symplectic and orthonormal.

Definition 2.5 (Orthosymplectic basis). Let (V2N , ω) be a 2N -dimensional symplectic vector space and
let ω be the canonical symplectic form. Then, the set of vectors {ei}2Ni=1 is said to be orthosymplectic in
V2N if

ω(ei, ej) = (J2N )i,j , and (ei, ej) = δi,j , ∀i, j = 1 . . . , 2N,

where (·, ·) is the Euclidean inner product and J2N is the canonical symplectic tensor on V2N .
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Let (V2N , ω) be a symplectic vector space, and let U be a subspace of V2N . The symplectic complement
of U in V2N is the set of u ∈ V2N such that ω(u, v) = 0 for all v ∈ TV2N

∼= V2N . A subspace of a
symplectic vector space (V2N , ω) is called Lagrangian if it coincides with its symplectic complement in
V2N . As a consequence of the fact that any basis of a Lagrangian subspace of a symplectic vector space
(V2N , ω) can be extended to a symplectic basis in (V2N , ω), every symplectic vector space admits an
orthosymplectic basis, cf. for example [4, Section 1.2].

With the definitions introduced hitherto, we can recast the dynamical system (1.1) on a symplectic
vector space (V2N , ω) as a Hamiltonian initial value problem. For each η ∈ Γ, and for u0(η) ∈ V2N , find
u(·, η) ∈ C1(T ,V2N ) such that ∂tu(t, η) = J2N∇uH(u(t, η); η), for t ∈ T ,

u(t0, η) = u0(η),
(2.3)

where H(·, η) ∈ C∞(V2N ) is the Hamiltonian function, and ∇u denotes the gradient with respect to the
variable u. The well-posedness of (2.3) is guaranteed by assuming that, for any fixed η ∈ Γ, the operator
XH : V2N × Γ→ R defined as XH(u, η) := J2N∇uH(u; η) is Lipschitz continuous in u uniformly in t ∈ T
in a suitable norm.

3 Orthosymplectic matrices
In order to construct surrogate models preserving the physical and geometric properties of the original
Hamiltonian dynamics we build approximation spaces of reduced dimension endowed with the same
geometric structure of the full model. To this aim, the reduced space is constructed as the span of suitable
symplectic and orthonormal time-dependent bases, so that the reduced space inherits the symplectic
structure of the original dynamical system. In this Section we describe the properties of linear symplectic
maps between finite dimensional symplectic vector spaces.

Analogously to [1, p. 168], we can easily extend the characterization of symplectic linear maps to the
case of vector spaces of different dimension as in the following result.

Lemma 3.1. Let (V2N , ω) and (V2n, ω) be symplectic vector spaces of finite dimension 2N and 2n,
respectively, with N ≥ n. A linear mapping M+ : (V2N , ω) → (V2n, ω) is symplectic, in the sense of
Definition 2.2, if and only if M+J2NM

>
+ = J2n.

We define symplectic right inverse of the symplectic matrix M+ ∈ R2n×2N the matrix M =
J2NM

>
+ J
>
2n ∈ R2N×2n. It can be easily verified that M+M = I2n, and equivalently M>M = I2n.

Moreover, the symplectic condition M+J2NM
>
+ = J2n is equivalent to M>J2NM = J2n. Owing

to this equivalence, with a small abuse of notation, we will say that M ∈ R2N×2n is symplectic if
M ∈ Sp(2n,R2N ) := {L ∈ R2N×2n : L>J2NL = J2n}.

In this work we consider symplectic spaces spanned by basis which are also orthonormal.

Definition 3.2. A matrix M ∈ R2N×2n is called orthosymplectic if M ∈ U(2n,R2N ) := St(2n,R2N ) ∩
Sp(2n,R2N ), where St(2n,R2N ) := {M ∈ R2N×2n : M>M = I2n} is the Stiefel manifold.

Orthosymplectic rectangular matrices can be characterized as follows.

Lemma 3.3. Let M+ ∈ R2n×2N be symplectic and let M ∈ R2N×2n be its symplectic inverse. Then,
M+M

>
+ = I2n if and only if M = M>+ .

Proof. Let M = [A |B] with A,B ∈ R2N×n. The (semi-)orthogonality and symplecticity of M+ give
A>A = B>B = In and A>J2NB = In. These conditions imply that the column vectors of A and J2NB
have unit norm and are pairwise parallel, hence A = J2NB. Therefore, M = [A | J>2NA] with A>A = In
and A>J2NA = 0n. The definition of symplectic inverse yields M>+ = J>2NMJ2n = J>2N [A | J>2NA]J2n =
[J>2NA | −A]J2n = [A | J>2NA] = M .

Conversely, the symplecticity of M+ implies M+M
>
+ = M+M = M+J2NM

>
+ J
>
2n = I2n.
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In order to design numerical methods for evolution problems on the manifold U(2n,R2N ) of orthosym-
plectic rectangular matrices, we will need to characterize its tangent space. To this aim we introduce the
vector space so(2n) of skew-symmetric 2n× 2n real matrices

so(2n) := {M ∈ R2n×2n : M> +M = 02n},

and the vector space sp(2n) of Hamiltonian 2n× 2n real matrices, namely

sp(2n) := {M ∈ R2n×2n : MJ2n + J2nM
> = 02n}.

Throughout, if not otherwise specified, we will denote with G2n := U(2n) the Lie group of orthosymplectic
2n× 2n matrices and with g2n the corresponding Lie algebra g2n := so(2n) ∩ sp(2n), with the matrix
commutator as bracket.

4 Orthosymplectic dynamical reduced basis method
Assume we want to solve the parameterized Hamiltonian problem (2.3) at p ∈ N samples of the parameter
{ηj}pj=1 =: Γh ⊂ Rpd. To ease the notation we take d = 1, namely we assume that the parameter η is
a scalar quantity, for vector-valued η the derivation henceforth applies mutatis mutandis. Then, the
Hamiltonian system (2.3) can be recast as a set of ordinary differential equations in a 2N × p matrix
unknown. Let ηh ∈ Rp denote the vector of sampled parameters, the evolution problem reads: For
R0(ηh) :=

[
u0(η1)| . . . |u0(ηp)

]
∈ R2N×p, find R ∈ C1(T ,R2N×p) such that Ṙ(t) = XH(R(t), ηh), for t ∈ T ,

R(t0) = R0(ηh).
(4.1)

Let n� N , to characterize the reduced solution manifold we consider an approximation of the solution
of (4.1) of the form

R(t) ≈ R(t) =

2n∑
i=1

Ui(t)Zi(t, ηh) = U(t)Z(t)>, (4.2)

where U =
[
U1| . . . |U2n

]
∈ R2N×2n, and Z ∈ Rp×2n is such that Zj,i(t) = Zi(t, ηj) for i = 1, . . . , 2n, and

j = 1, . . . , p. Since we aim at a structure-preserving model order reduction of (4.1), we impose that the
basis U(t) is orthosymplectic at all t ∈ T , in analogy with the symplectic reduction techniques employing
globally defined reduced spaces. Here, since U is changing in time, this means that we constrain its
evolution to the manifold U(2n,R2N ) from Definition 3.2. With this in mind, the reduced solution is
sought in the reduced space defined as

Mspl
2n := {R ∈ R2N×p : R = UZ> with U ∈M, Z ∈ V p×2n}, (4.3)

where
M := U(2n,R2N ) = {U ∈ R2N×2n : U>U = I2n, U

>J2NU = J2n},
V p×2n := {Z ∈ Rp×2n : rank(Z>Z + J>2nZ

>ZJ2n) = 2n}.
(4.4)

Note that (4.3) is a smooth manifold of dimension 2(N + p)n− 2n2, as follows from the characterization
of the tangent space given in Proposition 4.1. The characterization of the reduced manifold (4.3) is
analogous to [20, Definition 6.2]. Let C ∈ R2n×2n denote the correlation matrix C := Z>Z. The full-rank
condition in (4.4),

rank(C + J>2nCJ2n) = 2n, (4.5)

guarantees that, for Z fixed, if UZ> = WZ> with U,W ∈M, then U = W . If the full-rank condition
(4.5) is satisfied, then the number p of samples of the parameter η ∈ Γ satisfies p ≥ n. This means that,
for a fixed p, a too large reduced basis might lead to a violation of the full rank condition, which would
entail a rank-deficient evolution problem for the coefficient matrix Z ∈ Rp×2n. This is related to the
problem of overapproximation in dynamical low-rank techniques, see [14, Section 5.3].
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The decomposition UZ> of matrices inMspl
2n is not unique: the map φ : (U,Z) ∈M× V p×2n 7→ R =

UZ> ∈Mspl
2n is surjective but not injective. In particular, (M× V p×2n,Mspl

2n , φ) is a fiber bundle with
fibers given by the group of unitary matrices U(2n), so thatMspl

2n is isomorphic to (M/U(2n))× V p×2n.
Indeed, let U1 ∈ M and Z1 ∈ V p×2n, then, for any arbitrary A ∈ U(2n), it holds U2 := U1A ∈ M,
Z2 := Z1A ∈ V p×2n, and U1Z

>
1 = U2Z

>
2 .

In dynamically orthogonal approximations [24] a unique characterization of the reduced solution
is obtained by fixing a gauge constraint in the tangent space of the reduced solution manifold. For
the manifoldMspl

2n the tangent space at R ∈ Mspl
2n is defined as the set of X ∈ R2N×p such that there

exists a differentiable path γ : (−ε, ε) ⊂ T → R2N×p with γ(0) = R, γ̇(0) = X. The tangent vector
at U(t)Z>(t) ∈ Mspl

2n is of the form X = U̇Z> + UŻ>, where U̇ and Ż denote the time derivatives
of U(t) and Z(t), respectively. Taking the derivative of the orthogonality constraint on U yields
U̇>U + U>U̇ = 0. Analogously, the symplecticity constraint gives U̇>J2NU + U>J2N U̇ = 0 which is
equivalent to U̇>UJ2n + J2nU

>U̇ = 0 owing to the fact that U ∈ Sp(2n,R2N ). Therefore, the tangent
space ofMspl

2n at UZ> is defined as

TUZ>M
spl
2n = {X ∈ R2N×p : X = XUZ

> + UX>Z with XZ ∈ Rp×2n,

XU ∈ R2N×2n, X>U U ∈ g2n}.
(4.6)

However, this parameterization is not unique. Indeed, let S ∈ g2n be arbitrary: if X>U U ∈ g2n then the
matrix (XU + US)>U belongs to g2n, and the pairs (XU , XZ) and (XU + US,XZ + ZS) identify the
same tangent vector X := XUZ

> + UX>Z . We fix the parameterization of the tangent space as follows.

Proposition 4.1. The tangent space ofMspl
2n at UZ> defined in (4.6) is uniquely parameterized by the

horizontal space H(U,Z) := HU × Rp×2n, where

HU := {XU ∈ R2N×2n : X>U U = 0, XUJ2n = J2NXU}. (4.7)

This means that the map
Ψ : H(U,Z) −→ TUZ>M

spl
2n

(XU , XZ) 7−→ XUZ
> + UX>Z ,

is a bijection.

Proof. We first observe that, if (XU , XZ) ∈ H(U,Z) then X>U U ∈ g2n is trivially satisfied, and hence
XUZ

> + UX>Z ∈ TUZ>M
spl
2n .

To show that the map Ψ is injective, we take X = 0 ∈ TUZ>M
spl
2n . By the definition of the tangent

space (4.6), the zero vector admits the representation 0 = XUZ
> + UX>Z with U>XU = 0. This implies

0 = U>(XUZ
> + UX>Z ) = X>Z . Hence, XUZ

> = 0 and

0 = XUZ
>Z + J2NXUZ

>ZJ>2n = XUZ
>Z + J>2NXUJ2nJ2nZ

>ZJ>2n = XU (Z>Z + J2nZ
>ZJ>2n),

which implies XU = 0 in view of the full-rank condition (4.5).
For the surjectivity of Ψ we show that

∀X ∈ TUZ>M
spl
2n ∃ (XU , XZ) ∈ H(U,Z) such that X = XUZ

> + UX>Z .

Any X ∈ TUZ>M
spl
2n can be written as X = U̇Z> + UŻ> where Ż ∈ Rp×2n and U̇ ∈ R2N×2n satisfies

U̇>U ∈ g2n. Hence, the tangent vector X can be recast as

X = U̇Z> + UŻ> = U(Ż> + U>U̇Z>) +
(
(I2N − UU>)U̇

)
Z>.

We need to show that the pair (XU , XZ), defined as XU := (I2N − UU>)U̇ and XZ := Ż + ZU̇>U ,
belongs to the horizontal space H(U,Z). From the orthogonality of U it easily follows that

U>XU = U>(I2N − UU>)U̇ = U>U̇ − U>U̇ = 0.
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To prove that XU = J>2NXUJ2n we introduce the matrix S := Z>Z + J2nZ
>ZJ>2n ∈ R2n×2n for which

it holds SJ2n = J2nS. We then show the equivalent condition XUSJ
>
2n = J>2NXUS. First, we add to

XU the zero term (I2N − UU>)U(Ż>Z + J2nŻ
>ZJ>2n), and use the symplectic constraint on U and its

temporal derivative to get

XU = (I2N − UU>)U̇ = (I2N − UU>)U̇SS−1

= (I2N − UU>)
(
U(Ż>Z + J2nŻ

>ZJ>2n) + U̇(Z>Z + J2nZ
>ZJ>2n)

)
S−1

= (I2N − UU>)(XZ + J2NXZJ
>
2n)S−1.

Then, using the commutativity of the symplectic unit J2N and the projection onto the orthogonal
complement to the space spanned by U , i.e. (I2N − UU>)J2N = J2N (I2N − UU>), results in

XUSJ
>
2n = (I2N − UU>)(XZ + J2NXZJ

>
2n)J>2n

= J>2N (I2N − UU>)J2N (XZJ>2n + J>2NXZ) = J>2NXUS.

Proposition 4.1 entails that the tangent space ofMspl
2n can be characterized as

TUZ>M
spl
2n = {X ∈ R2N×p : X = XUZ

> + UX>Z with XZ ∈ Rp×2n, XU ∈ R2N×2n,

X>U U = 0, XUJ2n = J2NXU},

Henceforth, we considerM endowed with the metric induced by the ambient space C2N×2n, namely the
Frobenius inner product 〈A,B〉 := tr(AHB), where AH denotes the conjugate transpose of the complex
matrix A, and we will denote with ‖·‖ the Frobenius norm.

4.1 Dynamical low-rank symplectic variational principle
For η ∈ Γ fixed in (2.3), the vector field XH at time t belongs to Tu(t)V2N . Taking the cue from dynamical
low-rank approximations [14], the dynamics on the reduced spaceMspl

2n is obtained via projection of the
velocity field XH of the full dynamical system (4.1) onto the tangent space ofMspl

2n at the current state.
The reduced dynamical system is therefore optimal in the sense that the resulting vector field is the best
dynamic approximation of XH at every point on the manifold V2N in the Frobenius norm. To preserve
the geometric structure of the full dynamics we construct a projection which is symplectic for each value
of the parameter ηj ∈ Γh, with 1 ≤ j ≤ p. To this aim, let us introduce on the symplectic vector space
(V2N , ω) the family of skew-symmetric bilinear forms ωj : R2N×p × R2N×p → R defined as

ωj(a, b) := ω(aj , bj), 1 ≤ j ≤ p, (4.8)

where aj ∈ R2N denotes the j-th column of the matrix a ∈ R2N×p, and similarly for bj ∈ R2N .

Proposition 4.2. Let TRMspl
2n be the tangent space of the symplectic reduced manifoldMspl

2n , defined in
(4.3), at a given R := UZ> ∈Mspl

2n . Then the map

ΠTRMspl
2n

: R2N×p −→ TRMspl
2n

w 7−→ (I2N − UU>)(wZ + J2NwZJ
>
2n)(Z>Z + J2nZ

>ZJ>2n)−1Z> + UU>w,

is a symplectic projection, in the sense that

p∑
j=1

ωj
(
w −ΠTRMspl

2n
w, y

)
= 0, ∀ y ∈ TRMspl

2n ,

where ωj is defined in (4.8).
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Proof. Let XU (w) := (I2N −UU>)(wZ+J2NwZJ
>
2n)(Z>Z+J2nZ

>ZJ>2n)−1 and XZ(w) = w>U . Using
a reasoning analogous to the one in the proof of Proposition 4.1, it can be shown that (XU , XZ) ∈ H(U,Z).
Moreover, by means of the identification TTRMspl

2n
∼= TRMspl

2n , we prove that Π := ΠTRMspl
2n

is a projection.
It can be easily verified that XZ(Πw) = (Πw)>U = XZ(w). Furthermore, let S := Z>Z + J2nZ

>ZJ2n ∈
R2n×2n and Fw := wZ + J2NwZJ

>
2n ∈ R2N×2n, then

XU (Πw) = (I2N − UU>)
(
(I2N − UU>)FwS

−1Z>Z + J2N (I2N − UU>)FwS
−1Z>ZJ>2n

)
S−1

= XU (w)Z>ZS−1 + J2NXU (w)Z>ZJ>2nS
−1.

Since XU (w)J2n = J2NXU (w), it follows that XU (Πw) = XU (w).
Assume we have fixed a parameter ηj ∈ Γ so that p = 1. Let v := wj ∈ R2N be the j-th column of the

matrix w ∈ R2N×p and, hence, Πv ∈ R2N . We want to show that ω(v −Πv, y) = 0 for all y ∈ TRMspl
2n .

By the characterization of the tangent space from Proposition 4.1, any y ∈ TRMspl
2n is of the form

y = YUZ
> + UY >Z where YZ ∈ R1×2n and YU ∈ HU . Therefore,

ω(v −Πv, y) = ω(v −Πv, YUZ
>) + ω(v, UY >Z )− ω(XUZ

> + UX>Z , UY
>
Z ),

where XU = XU (v) and XZ = XZ(v), but henceforth we omit the dependence on v. Using the definition
of XZ and the symplecticity of the basis U the last term becomes

ω(UX>Z , UY
>
Z ) = ω(UU>v, UY >Z ) = ω(v, J>2NUJ2nU

>UY >Z ) = ω(v, J>2NUJ2nY
>
Z ) = ω(v, UY >Z ).

Moreover, it can be easily checked that ω(XUZ
>, UY >Z ) = 0 by definition of XU and by the orthosym-

plecticity of U . Hence, the only non-trivial terms are ω(v −Πv, y) = ω(v, YUZ
>)− ω(Πv, YUZ

>). Any
YU ∈ HU can be written as YU = 1

2 (YU + J>2NYUJ2n); thereby

ω(v −Πv, 2y) = ω(v, YUZ
> + J>2NYUJ2nZ

>)− ω(XUZ
> + UX>Z , YUZ

> + J>2NYUJ2nZ
>) =: T1 − T2.

We need to prove that T1 and T2 coincide. Let Mi ∈ R2N denote the i-th column vector of a given matrix
M ∈ R2N×2n. The properties of the symplectic canonical form ω yield

T1 = ω

(
v,

2n∑
i=1

(YU )iZi

)
+ ω

(
J2Nv,

2n∑
i=1

(YU )i(J2nZ
>)i

)

=

2n∑
i=1

ω
(
v, (YU )i

)
Zi +

2n∑
i=1

ω
(
J2Nv, (YU )i

)
(J2nZ

>)i =

2n∑
i=1

ω
(
vZi + J2Nv(ZJ>2n)i, (YU )i

)
.

To deal with the term T2 first observe that ω(UX>Z , YUZ
>) = 0 since Y >U U = 0. Moreover, using once

more the fact that YU ∈ HU results in

T2 = ω
(
XUZ

>, YUZ
>)+ ω

(
XUJ2nZ

>, YUJ2nZ
>)

=

2n∑
i,j=1

ω
(
(XU )jZj , (YU )iZi

)
+ ω

(
(XU )j(J2nZ

>)j , (YU )i(J2nZ
>)i
)

=

2n∑
i,j=1

ω
(
(XU )j , (YU )i

)(
ZjZi + (J2nZ

>)j(ZJ
>
2n)i

)
.

The result follows by definition of XU (v).

To compute the initial condition of the reduced problem, we perform the complex SVD of R0(ηh) ∈
R2N×p truncated at the n-th mode. Then the initial value U0 ∈M is obtained from the resulting unitary
matrix of left singular vectors of R0(ηh) by exploiting the isomorphism betweenM and St(n,CN ), cf.
Lemma 4.6. The expansion coefficients matrix is initialized as Z0 = R0(ηh)>U0. Therefore, the dynamical
system for the approximate reduced solution (4.2) reads: Find R ∈ C1(T ,Mspl

2n ) such that Ṙ(t) = ΠTRMspl
2n
XH(R(t), ηh), for t ∈ T ,

R(t0) = U0Z
>
0 .

(4.9)
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For any 1 ≤ j ≤ p and t ∈ T , let Zj(t) ∈ R1×2n be the j-th row of the matrix Z(t) ∈ V p×2n, and let
Y (t) := [Y1| . . . |Yp] ∈ R2N×p where Yj := ∇UZ>j H(UZ>j , ηj) ∈ R2N×1, and ∇UZ>j denotes the gradient
with respect to UZ>j . Using the decomposition R = UZ> in (4.3), we can now derive from (4.9) evolution
equations for U and Z: Given R0(ηh) ∈ R2N×p, find (U,Z) ∈ C1(T ,M)× C1(T , V p×2n) such that

Żj(t) = J2n∇ZjH(UZ>j , ηj), t ∈ T , 1 ≤ j ≤ p,

U̇(t) = (I2N − UU>)(J2NY Z − Y ZJ>2n)(C + J>2nCJ2n)−1, t ∈ T ,

U(t0)Z(t0)> = U0Z
>
0 .

(4.10)

The reduced problem (4.10) is analogous to the system derived in [20, Proposition 6.9]. The evolution
equations for the coefficients Z form a system of p equations in 2n unknowns and correspond to the
Galerkin projection onto the space spanned by the columns of U , as obtained with a standard reduced
basis method. Here, however, the projection is changing over time as the reduced basis U is evolving.
For U fixed, the flow map characterizing the evolution of each Zj , for 1 ≤ j ≤ p, is a symplectomorphism
(cf. Definition 2.2), i.e. the dynamics is canonically Hamiltonian. The evolution problem satisfied by
the basis U is a matrix equation in 2N × 2n unknowns on the manifold of orthosymplectic rectangular
matrices introduced in Definition 3.2, as shown in the following result.

Proposition 4.3. If U(t0) ∈M then U(t) ∈ R2N×2n solution of (4.10) satisfies U(t) ∈M for all t ∈ T .

Proof. We first show that, for any matrix W (t) ∈ R2N×2n, if W (t0) ∈ M and Ẇ ∈ HW , with HW

defined in (4.7), then W (t) ∈ M for any t > t0. The condition Ẇ>W = 0 implies dt(W>(t)W (t)) =
Ẇ>W +W>Ẇ = 0, hence W>(t)W (t) = W>(t0)W (t0) = I2n by the assumption on the initial condition.
Moreover, the condition Ẇ = J>2NẆJ2n together with the dynamical orthogonality Ẇ>W = 0 results
in dt(W>(t)J2NW (t)) = Ẇ>J2NW +W>J2NẆ = J>2nẆ

>W +W>ẆJ>2n = 0. Hence, the symplectic
constraint on the initial condition yields W>(t)J2NW (t) = W>(t0)J2NW (t0) = J2n.

Owing to the reasoning above, we only need to verify that the solution of (4.10) satisfies U̇ ∈ HU . The
dynamical orthogonal condition U̇>U = 0 is trivially satisfied. Moreover, let S := Z>Z + J2nZ

>ZJ>2n ∈
R2n×2n, since SJ2n = J2nS, the constraint U̇ = J>2N U̇J2n is satisfied if U̇SJ>2n = J>2N U̇S. One can
easily show that A := J2NY Z − Y ZJ>2n = J2NAJ

>
2n. Therefore, U̇SJ>2n = (I2N − UU>)AJ>2n =

J>2N (I2N − UU>)J2NAJ
>
2n = J>2N U̇S.

Remark 4.4. Observe that the dynamical reduced basis technique proposed in the previous Section
can be extended to more general Hamiltonian systems endowed with a degenerate constant Poisson
structure. The idea is to proceed as in [12, Section 3] by splitting the dynamics into the evolution
on a symplectic submanifold of the phase space and the trivial evolution of the Casimir invariants.
The symplectic dynamical model order reduction developed in Section 4 can then be performed on the
symplectic component of the dynamics.

4.2 Conservation properties of the reduced dynamics
The velocity field of the reduced flow (4.9) is the symplectic projection of the full model velocity onto the
tangent space of the reduced manifold. For any fixed parameter ηj ∈ Γh, let Hj := H(·, ηj). In view of
Proposition 4.2, the reduced solution R ∈ C1(T ,Mspl

2n ) satisfies the symplectic variational principle

p∑
j=1

ωj
(
Ṙ− J2N∇Hj(R), y

)
= 0, ∀ y ∈ TRMspl

2n .

This implies that the Hamiltonian H is a conserved quantity of the continuous reduced problem (4.10).
Indeed,

p∑
j=1

d

dt
Hj(R(t)) =

p∑
j=1

(∇RjHj(R), Ṙj) =

p∑
j=1

ω(J2N∇RjHj(R), Ṙj) =

p∑
j=1

ωj(Ṙ, Ṙ) = 0.
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Therefore, if R0(ηh) ∈ span{U0} then the Hamiltonian is preserved,

p∑
j=1

(
Hj(R(t))−Hj(R(t))

)
=

p∑
j=1

(
Hj(R0)−Hj(R(t0))

)
=

p∑
j=1

(
Hj(R0)−Hj(U0U

>
0 R0)

)
.

To deal with the other invariants of motion, let us assume for simplicity that p = 1. Since the linear
map R2N → span{U(t)} associated with the reduced basis at any time t ∈ T cannot be symplectic, the
invariants of motion of the full and reduced model cannot be in one-to-one correspondence. Nevertheless,
a result analogous to [12, Lemma 3.9] holds.

Lemma 4.5. Let π∗+,t be the pullback of the linear map associated with the reduced basis U>(t) at time
t ∈ T . Assume that H ∈ Im(π∗+,t) for any t ∈ T . Then, I(t) ∈ C∞(R2n) is an invariant of Φt

Xπ∗
+,t
H

if

and only if (π∗+,tI)(t) ∈ C∞(R2N ) is an invariant of ΦtXH in Im(π∗+,t).

4.3 Convergence estimates with respect to the best low-rank approximation
In order to derive error estimates for the reduced solution of problem (4.9), we extend to our setting the
error analysis of [10, Section 5] which shows that the error committed by the dynamical approximation
with respect to the best low-rank approximation is bounded by the projection error of the full model
solution onto the reduced manifold of low-rank matrices. To this aim, we resort to the isomorphism
between the reduced symplectic manifoldMspl

2n defined in (4.3) and the manifoldMn of rank-n complex
matrices, already established in [20, Lemma 6.1]. Then, we derive the dynamical orthogonal approximation
of the resulting problem in the complex setting and prove that it is isomorphic to the solution of the
reduced Hamiltonian system (4.9). The differentiability properties of orthogonal projections onto smooth
embedded manifolds and the trivial extension to complex matrices of the curvature bounds in [10] allows
to derive an error estimate.

Let L(Ω) denote the set of functions with values in the vector space Ω, and let F : L(R2N×p)→ L(CN×p)
be the isomorphism

R(·) =

(
Rq(·)
Rp(·)

)
7−→ F(R)(·) = Rq(·) + iRp(·). (4.11)

Then, problem (4.1) can be recast in the complex setting as: For R0(ηh) ∈ R2N×p, find C ∈ C1(T ,CN×p)
such that  Ċ(t) = F(XH)(C(t), ηh) =: X̂H(C(t), ηh), for t ∈ T ,

C(t0) = F(R0)(ηh).
(4.12)

Similarly to dynamically orthogonal approximations we consider the manifold of rank-n complex matrices
Mn := {C ∈ CN×p : rank(C) = n}. Any C ∈ Mn can be decomposed, up to unitary n × n
transformations, as C = WY > where W ∈ St(n,CN ) = {M ∈ CN×n : MHM = In}, and Y ∈ Vp×n :=
{M ∈ Cp×n : rank(M) = n}. Analogously to [20, Lemma 6.1] one can establish the following result.

Lemma 4.6. The manifoldsMn andMspl
2n are isomorphic via the map

(U,Z) ∈M× V p×2n 7−→ (F(A),F(Z>)>) ∈ St(n,CN )× Vp×n, (4.13)

where F is defined in (4.11) and A ∈ R2N×n is such that U = [A | J>2NA] in view of Lemma 3.3.

For C(t0) ∈Mn associated with R(t0) ∈Mspl
2n via the map (4.13), we can therefore derive the DO

dynamical system: find C ∈ C1(T ,Mn) such that

Ċ(t) = ΠTCMn
X̂H(C(t), ηh), for t ∈ T , (4.14)

where ΠTCMn
is the projection onto the tangent space ofMn at C = WY >, defined as

TCMn = {X ∈ CN×p : X = XWY
> +WX>Y with XY ∈ Cp×n,

XW ∈ CN×n, XH
WW +WHXW = 0}.



12

The so-called dynamically orthogonal condition XH
WW = 0, allows to uniquely parameterize the tangent

space TCMn by imposing that the complex reduced basis evolves orthogonally to itself.
Let M∗ indicate the complex conjugate of a given matrix M . The projection onto the tangent space

ofMn can be characterized as in the following result.

Lemma 4.7. At every C = WY > ∈Mn, the map

ΠTCMn
: CN×p −→ TCMn

w 7−→ (IN −WWH)wY ∗(Y >Y ∗)−1Y > +WWHw,
(4.15)

is the ‖·‖-orthogonal projection onto the tangent space ofMn at C.

Proof. The result can be derived similarly to the proof of [10, Proposition 7] by minimizing the convex
functional J(XW , XY ) := 1

2‖w −XWY
> −WX>Y ‖2 under the constraint XH

WW = 0.

Using the expression (4.15) for the projection onto the tangent space of Mn, we can derive from
(4.14) evolution equations for the terms W and Y : Given C0 = ΠMnC(t0) ∈ CN×p orthogonal projection
ontoMn, find (W,Y ) ∈ C1(T ,St(n,CN ))× C1(T ,Vp×n) such that Ẏ ∗(t) = X̂H

H(WY >, ηh)W, t ∈ T ,

Ẇ ∗(t) = (IN −W ∗W>)X̂ ∗H(WY >, ηh)Y (Y HY )−1, t ∈ T .
(4.16)

Proposition 4.8. Under the assumption of well-posedness, problem (4.9) is equivalent to problem (4.14).

Proof. The proof easily follows from algebraic manipulations of the field equations (4.10) and (4.16) and
from the definition of the isomorphism (4.13).

In view of Proposition 4.8, we can revert to the error estimate established in [10].

Theorem 4.9 ([10, Theorem 32]). Let C ∈ C1(T ,CN×p) denote the exact solution of (4.12) and let
C ∈ C1(T ,Mn) be the solution of (4.14) at time t ∈ T . Assume that no crossing of the singular values
of C occurs, namely

σn(C(t)) > σn+1(C(t)), ∀ t ∈ T .
Let ΠMn be the ‖·‖-orthogonal projection onto Mn. Then, at any time t ∈ T , the error between the
approximate solution C(t) and the best rank-n approximation of C(t) can be bounded as

‖C(t)−ΠMn
C(t)‖ ≤

ˆ
T

(
LX +

‖XH(C(s), ηh)‖
σn(C(s))− σn+1(C(s))

)
‖C(s)−ΠMn

C(s)‖eµ(t−s) ds,

where LX ∈ R denotes the Lipschitz continuity constant of XH and µ ∈ R is defined as

µ := LX + 2 sup
t∈T

‖XH(C(t), ηh)‖
σn(C(t))

.

The remainder of this work pertains to numerical methods for the temporal discretization of the
reduced dynamics (4.10). Since we consider splitting techniques, see e.g. [11, Section II.5], the evolution
problems for the expansion coefficients and for the reduced basis are examined separately. The coefficients
Z(t) ∈ V p×2n of the expansion (4.2) satisfy a Hamiltonian dynamical system (4.10) in the reduced
symplectic manifold of dimension 2n spanned by the evolving orthosymplectic basis U(t) ∈ M. The
numerical approximation of the evolution equation for Z(t) can then be performed using symplectic
integrators, cf. [11, Section VI].

Observe that using standard splitting techniques might require the approximate reduced solution at a
given time step to be projected into the space spanned by the updated basis. This might cause an error
in the conservation of the invariants associated with the projection step, which can be controlled under
sufficiently small time steps. In principle, exact conservation can be guaranteed if the evolution of the
reduced basis evolves smoothly at the interface of temporal interval (or temporal subintervals associated
with the splitting), or in other words if the splitting is synchronous and the two systems are concurrently
advanced in time. We postpone to a future work the investigation and the numerical study of splitting
methods preserving the Hamiltonian.
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5 Numerical methods for the evolution of the reduced basis
Contrary to global projection-based model order reduction, dynamical reduced basis methods eschew
the standard online-offline paradigm. The construction and evolution of the local reduced basis (4.10)
does not require queries of the high-fidelity model so that the method does not incur a computationally
expensive offline phase. However, the evolution of the reduced basis entails the solution of a matrix
equation in which one dimension equals the size of the full model. Numerical methods for the solution
of (4.10) will have arithmetic complexity min{CR, CF} where CF is the computational cost required
to evaluate the velocity field of (4.10), and CR denotes the cost associated with all other operations.
Assume that the cost to evaluate the Hamiltonian at the reduced solution has order O(α(N)). Then, a
standard algorithm for the evaluation of the right hand side of (4.10) will have arithmetic complexity
CF = O(α(N))+O(Nn2)+O(Npn)+O(n3), where the last two terms are associated with the computation
of Y Z, and the inversion of C + J>2nCJ2n, respectively. This Section focuses on the development of
structure-preserving numerical methods for the solution of (4.10) such that CR is at most linear in N .
The efficient treatment of the nonlinear terms is out of the scope of the present study and will be the
subject of future investigations on structure-preserving hyper-reduction techniques.

To ease the notation, we recast (4.10) as: For Q ∈M, find U ∈ C1(T ,R2N×2n) such that U̇(t) = F(U(t)), for t ∈ T ,

U(t0) = Q,
(5.1)

where, for any fixed t ∈ T , the function F :M→ TM in (5.1) is defined as

F(U) := (I2N − UU>)(J2NY Z − Y ZJ>2n)(Z>Z + J>2nZ
>ZJ2n)−1. (5.2)

In a temporal splitting perspective, we assume that the matrix Z(t) ∈ V p×2n is given at each time instant
t ∈ T . Owing to Proposition 4.3, if Q ∈ M, then U(t) ∈ M for all t ∈ T . Then the goal is to develop
an efficient numerical scheme such that the discretization of (5.1) yields an approximate flow map with
trajectories belonging toM.

We propose two intrinsic numerical methods for the solution of the differential equation (5.1) within
the class of numerical methods based on local charts on manifolds [11, Section IV.5]. The analyticity and
the favorable computational properties of the Cayley transform, cf. Proposition 5.2 and [13], makes it
our choice as coordinate map on the orthosymplectic matrix manifold.

5.1 Cayley transform as coordinate map
Orthosymplectic square matrices form a subgroup U(2N) of a quadratic Lie group. We can therefore
use the Cayley transform to induce a local parameterization of the Lie group U(2N) near the identity,
with the corresponding Lie algebra as parameter space. The following results extend to orthosymplectic
matrices the properties of the Cayley transform presented in e.g. [11, Section IV.8.3].

Lemma 5.1. Let G2N be the group of orthosymplectic square matrices and let g2N be the corresponding
Lie algebra. Let cay : g2N → R2N×2N be the Cayley transform defined as

cay(M) =

(
I − M

2

)−1(
I +

M

2

)
, ∀M ∈ g2N . (5.3)

Then,

(i) cay maps the Lie algebra g2N into the Lie group G2N .

(ii) cay is a diffeomorphism in a neighborhood of the zero matrix 0 ∈ g2N . The differential of cay at
M ∈ g2N is the map dcayM : TMg2N

∼= g2N → Tcay(M)G2N ,

dcayM (A) =

(
I − M

2

)−1

A

(
I +

M

2

)−1

, ∀A ∈ g2N ,
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and its inverse is

dcay−1
M (A) =

(
I − M

2

)
A

(
I +

M

2

)
, ∀A ∈ Tcay(M)G2N . (5.4)

(iii) [9, Theorem 3] Let σ(A) denote the spectrum of A ∈ R2N×2N . If M ∈ C1(R, g2N ) then A :=
cay(M) ∈ C1(R,G2N ). Conversely, if A ∈ C1(R,G2N ) and −1 /∈

⋃
t∈R σ(A(t)) then there exists a

unique M ∈ C1(R, g2N ) such that M = cay−1(A) = 2(A− I2N )(A+ I2N )−1.

Proof. Let M ∈ g2N and let M := M/2. Since M is skew-symmetric then I −M is invertible.
(i) The Cayley transform defined in (5.3) can be recast as

cay(M) = −(I −M)−1(−2I + (I −M)) = 2(I −M)−1 − I
= −(−2I + (I −M))(I −M)−1 = (I +M)(I −M)−1.

(5.5)

Then, using (5.5) and the skew-symmetry of M ∈ g2N results in

cay(M)>cay(M) = (I −M)−>(I +M
>
M)(I −M)−1

= (I −M)−>(I −M −M> +M
>
M)(I −M)−1 = I.

Moreover, cay(M)J2N = J2Ncay(M) since

cay(M)J2N = (I +M)(−J2N +MJ2N )−1 = (I +M)(−J2N + J2NM)−1

= (I +M)J2N (I −M)−1 = (J2N − J2NM
>

)(I −M)−1

= (J2N + J2NM)(I −M)−1 = J2N cay(M).

(ii) The map cay (5.3) has non-zero derivative at 0 ∈ g2N . Therefore, by the inverse function theorem, it
is a diffeomorphism in a neighborhood of 0 ∈ g2N . Standard rules of calculus yield the expression (5.4),
cf. [11, Section IV.8.3, Lemma 8.8].

The factor 1/2 in the definition (5.3) of the Cayley transform is arbitrary and has been introduced to
guarantee that dcay0 = I2N , which will be used in Section 5.3 for the construction of retraction maps.

To derive computationally efficient numerical schemes for the solution of the basis evolution equation
(5.1) we exploit the properties of analytic functions evaluated at the product of rectangular matrices.

Proposition 5.2. Let M ∈ g2N and let k ∈ N, k < 2N . If M admits the low-rank splitting

M = αβ>, α, β ∈ R2N×k, (5.6)

then, for any Y ∈ R2N×k, cay(M)Y ∈ R2N×k can be evaluated with computational complexity of order
O(Nk2) +O(k3).

Proof. To evaluate the Cayley transform of M = αβ> in a computationally efficient way we exploit the
properties of analytic functions of low-rank matrices. More in details, let f(z) := z−1(cay(z)− 1) for any
z ∈ C. The function f is analytic with a pole at z = 0 and its Taylor expansion reads

f(z) = z−1(cay(z)− 1) =

∞∑
m=0

2−mzm.

For any m ∈ N \ {0} it holds Mm = (αβ>)m = α(β>α)m−1β>. Hence,

cay(M) = I2N +

∞∑
m=1

21−mMm = I2N +

∞∑
m=1

21−mα(β>α)m−1β> = I2N + αf(β>α)β>.

The cost to compute A := β>α ∈ Rk×k is O(Nk2). Moreover,

cay(M)Y = (IN + αf(β>α)β>)Y = Y + α(β>α)−1
(
cay(β>α)− Ik

)
β>Y.
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The evaluation of f(A) = A−1(cay(A) − Ik) ∈ Rk×k requires O(k3) operations. Finally, the matrix
multiplications αf(A)β>Y can be performed in O(Nk2) operations.

The approach suggested hitherto is clearly not unique. The invertibility of the matrix A is ensured
under the condition that the low-rank factors α and β are full rank. Although a low-rank decomposition
with full rank factors is achievable [6, Proposition 4], one could alternatively envision the use of Woodbury
matrix identity [25] to compute the matrix inverse appearing in the definition (5.3) of the Cayley transform.
This yields the formula

cay(M)Y = Y +
1

2
α
(
cay(β>α) + Ik

)
β>Y = Y − α

(
1

2
β>α− Ik

)−1

β>Y,

which can be evaluated in O(Nk2) +O(k3) operations.

5.2 Numerical integrators based on Lie groups
In this Section we propose a numerical scheme for the solution of (5.1) based on Lie group methods. The
idea is to extend the rectangular system (5.1) onM to the Lie group U(2N) of square orthosymplectic
matrices. A local coordinate map, as the Cayley transform, is employed to derive a differential equation
on the Lie algebra g2N , that is then solved using RK methods. Indeed, since RK methods preserve linear
invariants, they allow to derive discrete trajectories that remain in the Lie algebra.

The method we develop extends to the orthosymplectic manifold the scheme proposed in [16] for
the numerical solution of matrix differential systems on quadratic groups. The main computational
cost of this approach rests on the evaluation of the coordinate map at each RK stage in every temporal
interval. However, we derive an extension of problem (5.1) that possesses a low-rank structure amenable
to efficient algorithms for its numerical approximation.

Proposition 5.3. The evolution equation (5.1) with arbitrary F :M→ TM is equivalent to the problem:
For Q ∈M, find U ∈ C1(T ,M) such that U̇(t) = L(U(t))U(t), for t ∈ T ,

U(t0) = Q,
(5.7)

where L :M→ R2N×2N is a skew-symmetric and Hamiltonian operator defined as

L(U) =
1

2

(
S(U) + J>2NS(U)J2N

)
, S(U) := (I2N − UU>)F(U)U> − UF(U)>. (5.8)

If F :M→ TM is defined as in (5.2) then,

L(U) = F(U)U> − UF(U)>. (5.9)

Proof. First, observe that by introducing the function A :M→ R2N×2N defined as A(U) := F(U)U>

for any U ∈M, the evolution equation (5.1) can be trivially recast as U̇(t) = A(U(t))U(t) for all t ∈ T .
By deriving (in time) the orthogonality and symplecticity constraints on U , it can be easily shown that
the operator A is weakly skew-symmetric and weakly Hamiltonian, that is

U>
(
A(U) +A(U)>

)
U = 0, U>

(
A(U)>J2N + J2NA(U)

)
U = 0, ∀U ∈M.

Let us now consider at each time t ∈ T , an orthosymplectic extension Y (t) ∈ R2N×2N of U(t) by the
matrix W (t) ∈ R2N×2(N−n), such that Y (t) = [U(t) |W (t)] ∈ U(2N). Since Y (t) is orthosymplectic by
construction, it holds

0 =
d

dt
(Y >Y ) = Ẏ >Y + Y >Ẏ , =⇒ Ẏ = −Y Ẏ >Y,

0 =
d

dt
(Y >J2NY ) = Ẏ >J2NY + Y >J2N Ẏ , =⇒ Ẏ = −J>2NY Ẏ >J2NY.

(5.10)
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From (5.10) it follows that Ẏ = B(Y, Ẏ )Y for all t ∈ T with

B(Y, Ẏ ) = −1

2

(
Y Ẏ > + J>2NY Ẏ

>J2N

)
.

The orthogonality of Y implies that B(Y, Ẏ ) ∈ R2N×2N is skew-symmetric and Hamiltonian. Moreover,
by writing B(Y, Ẏ ) explicitly in terms of U and W , and using the evolution equation satisfied by U , yields

B(Y, Ẏ ) = −1

2

(
UU>A(U)> + J>2NUU

>A(U)>J2N +WẆ> + J>2NWẆ>J2N

)
. (5.11)

The skew-symmetric condition B(Y, Ẏ ) + B(Y, Ẏ )> = 0 can be written as

ẆW> +WẆ> = −A(U)UU> − UU>A(U)>. (5.12)

If W ∈ R2N×2(N−n) is such that ẆW> = −UU>A(U)>(I2N − UU>), then it satisfies (5.12) owing to
the weak skew-symmetry of A. Substituting this expression in (5.11) yields

L(U) = B(Y, Ẏ ) =
1

2

(
S(U) + J>2NS(U)J2N

)
,

with S(U) := −UU>A(U)> +A(U)UU> − UU>A(U)UU> and the expression (5.8) is recovered.
In particular, if F is defined as in (5.2), then U>F(U) = 0 for any U ∈M. Substituting in (5.8) and

using the fact that J>2NF(U)U>J2N = F(U)U> yields (5.9).

Analogously to [9, Theorem 5] it can be shown that, if U(t) ∈ M is solution of (5.7) with −1 /∈⋃
t∈T σ(U(t)), then U(t) = cay(M(t))U(t0) where M(t) ∈ g2N satisfies Ṁ(t) = dcay−1

M(t)

(
L
(
U(t)

))
, for t ∈ T ,

M(t0) = cay−1
(
[U(t0) |W0]

)
.

(5.13)

Here W0 ∈ R2N×2(N−n) provides an orthosymplectic extension of U(t0) as described in the proof of
Proposition 5.3. Note that, since dcay−1

M(t) : Tcay(M)G2N → g2N , the solution of (5.13) belongs to g2N at
any time t ∈ T . In order to numerically solve (5.13) on the Lie algebra g2N , one can then apply Runge–
Kutta methods analogous to [16, Section 2], which we briefly report here for the sake of completeness.
The skew-symmetric and Hamiltonian conditions on M are satisfied at any t ∈ T since RK methods
preserve linear invariants (besides explicit methods only involve linear combinations of elements belonging
to the Lie algebra). Let (bi, ai,j) for i = 1, . . . , s and j = 1, . . . , i− 1 be the coefficients of the Butcher
tableau describing an s-stage explicit Runge–Kutta method. Then, the numerical approximation of (5.13)
in the interval (tm, tm+1] reads: Given Um ∈M, compute

Mm+1 = ∆t
s∑
i=1

bi dcay−1
Mi
m

(
L(U im)

)
,

M1
m = 0,

M i
m = ∆t

i−1∑
j=1

ai,j dcay−1

Mj
m

(
L(U jm)

)
, i = 2, . . . , s,

U im = cay(M i
m)Um, i = 1, . . . , s,

Um+1 = cay(Mm+1)Um.

(5.14)

Note that choosing a sufficiently small time step for the temporal integrator can prevent the numerical
solution of of (5.13) from having an eigenvalue close to −1 for some t ∈ T . Alternatively, restarting
procedures of the algorithm (5.14) can be implemented similarly to [9, pp. 323-324].

The computational cost of algorithm (5.14) is assessed in the following result.
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Proposition 5.4. In any fixed temporal interval (tm, tm+1] ⊂ T , the Cayley Runge–Kutta algorithm
(5.14) for the numerical solution of the evolution problem (5.13) has computational complexity of order
O(Nn2s5) +O(n3s7) + CF , where s is the number of stages of the Runge–Kutta method, and CF is the
complexity of the algorithm to compute F(U) in (5.2) at any given U ∈M.

Proof. Assume that the temporal interval (tm, tm+1] is fixed. In view of Proposition 5.2, we want to show
that the terms {M i

m}si=1 and Mm+1 admit a low-rank splitting of the form (5.6) and find the dimension
k of this splitting.

Each term {L(U im)}si=1, with L defined in (5.9), can be written as L(U im) = cid
>
i where

ci :=
[
F(U im) | −U im

]
∈ R2N×4n, di :=

[
U im | F(U im)

]
∈ R2N×4n. (5.15)

For any i = 1, . . . , s let us introduce the 2N × 2N matrix

Ai := dcay−1
Mi
m

(
L(U im)

)
= dcay−1

Mi
m

(cid
>
i ).

We prove that Ai = eif
>
i with ei, fi ∈ R2N×4ni. For i = 1, M1

m = 0 and hence A1 = L(U1
m) = c1d

>
1 =:

e1f
>
1 owing to (5.15). For i = 2, it holds

M2
m = ∆t a2,1A1 = ∆t a2,1e1f

>
1 .

Hence, A2 = dcay−1
M2
m

(c2d
>
2 ) = e2f

>
2 with e2, f2 ∈ R2N×2(4n) defined as

e2 :=

[
c2 −

∆t

2
a2,1e1(f>1 c2)

∣∣∣∣ ∆t

2
a2,1c2(d>2 e1)− ∆t 2

4
a2

2,1e1(f>1 c2(d>2 e1))

]
,

f2 :=
[
d2 | f1

]
.

Note that the computation of each term in e2 can be performed in O(Nn2) operations. Proceeding in
this way, we obtain that for any i ≤ s it holds

Ai =

(
I2N −

M i
m

2

)
cid
>
i

(
I2N +

∆t

2

i−1∑
`=1

ai,`e`f
>
`

)
=: eif

>
i ,

where ei, fi ∈ R2N×4ni are defined as

ei :=

[(
I2N −

M i
m

2

)
ci

∣∣∣∣ ∆t

2
ai,1

(
I2N −

M i
m

2

)
ci(d

>
i e1)

∣∣∣∣ . . . ∣∣∣∣ ∆t

2
ai,i−1

(
I2N −

M i
m

2

)
ci(d

>
i ei−1)

]
,

fi :=
[
di | f1 | . . . | fi−1

]
.

This implies that

Mm+1 = ∆t

s∑
i=1

biAi = ∆t

s∑
i=1

bieif
>
i = ∆t

[
b1e1 | . . . | bses

][
f1 | . . . | fs

]>
=: αβ>,

where the matrices α and β have size 2N ×
∑s
i=1 4ni = 2N × 2ns(s + 1). Analogously, for every

i = 2, . . . , s, it holds

M i
m = ∆t

i−1∑
j=1

ai,jAj = ∆t

i−1∑
j=1

ai,jejf
>
j = ∆t

[
ai,1e1 | . . . | ai,i−1ei−1

][
f1 | . . . | fi−1

]>
=: γiδ

>
i .

The matrices γi and δi have size 2N ×
∑i−1
j=1 4nj = 2N × 2ni(i− 1), for any fixed i = 2, . . . , s.

In conclusion, we can apply the result of Proposition 5.2 for the computation of Um+1 with k = 2ns(s+
1) which implies a computational cost of order O(Nn2s4) +O(n3s6). For the terms {U im}si=1, we proceed
with an analogous reasoning and then sum over i the number of operations required to compute each U im.
Simple algebraic calculations yield an overall computational cost of order O(Nn2s5) +O(n3s7).
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Despite the scheme is linear in the full dimension, algorithm (5.13) might still incur a high computa-
tional cost associated with the dependence on the number s of stages of the RK algorithm. Note that, in
the practical implementation of algorithm (5.14), the computational complexity derived in Proposition 5.4
might prove to be pessimistic in terms of the polynomial dependence on s. In principle one can envision to
solve (5.1) by recasting problem (5.7) as an evolution equation on the Lie algebra g2N , similarly to (5.13)
but using the matrix exponential exp as coordinate map instead of the Cayley transform, in the spirit of
[19]. In this case, one would need to evaluate the exponential map at matrices M ∈ R2N×2N that admit a
low-rank splitting of the form M =

∑r
i=1 αiβ

>
i for some mild constant r ∈ N. One can then approximate

exp(tM) ≈ E(tM) with the function E(tM) := Πr
i=1 exp(t αiβ

>
i ). Similarly to Proposition 5.2, it is

possible to show that the product E(tM)Y for Y ∈ R2N×2n can be performed in O(Nn2) operations
and results in a milder dependence on the number s of the RK scheme. However, in order to guarantee
that exp(tM) belongs to G2N we need that each low-rank term {αiβ>i }i belongs to the Lie algebra g2N .
Moreover, since these terms do not necessarily commute, a truncation of the Baker–Campbell–Hausdorff
series would yield only an approximation of the exponential coordinate map. Standard approximations of
the exponential map yield methods of order one, and stricter conditions on the factors of the low-rank
splitting are required for higher order approximations. These are however not satisfied in general by the
low-rank factors {αiβ>i }i from Proposition 5.4 obtained in each RK stage. The rather crude estimate in
terms of stages of the RK scheme might also be mitigated with techniques that exploit the structure of
the operators involved in algorithm (5.14).

In the following Section we improve the efficiency of the numerical approximation of (5.1) by developing
a scheme which is structure-preserving and has a computational cost O(Nn2s), namely only linear in the
dimension N of the full model and in the number s of RK stages.

5.3 Tangent methods on the orthosymplectic matrix manifold
In this Section we derive a tangent method based on retraction maps for the numerical solution of the
reduced basis evolution problem (5.1). The idea of tangent methods is presented in [7, Section 2] and
consists in expressing any U(t) ∈ M in a neighborhood of a given Q ∈ M, via a smooth local map
RQ : TQM→M, as

U(t) = RQ(V (t)), V (t) ∈ TQM. (5.16)

Let RQ be the restriction of a smooth map R to the fiber TQM of the tangent bundle. Assume that
RQ is defined in some open ball around 0 ∈ TQM, and RQ(V ) = Q if and only if V ≡ 0 ∈ TQM.
Moreover, let R′Q : TTQM∼= TQM× TQM−→ TM be the tangent of the map RQ. Let us fix the first
argument of R′Q so that, for any U, V ∈ M, the tangent map R′Q∣∣

U

: TQM→ TRQ(U)M is defined as

R′Q∣∣
U

(V ) = R′Q(U, V ). Assume that the local rigidity condition R′Q∣∣
0

= Id TQM is satisfied. Under these

assumptions, R is a retraction and, instead of solving the evolution problem (5.1) for U , one can derive
the local behavior of U in a neighborhood of Q by evolving V (t) in (5.16) in the tangent space ofM at
Q. Indeed, using (5.1) we can derive an evolution equation for V (t) as

U̇(t) = R′Q∣∣
V (t)

(V̇ (t)) = F
(
RQ(V (t))

)
.

By the continuity of V and the local rigidity condition, the map R′Q∣∣
V (t)

is invertible for sufficiently small

t (i.e., V (t) sufficiently close to 0 ∈ TQM) and hence

V̇ (t) =

(
R′Q∣∣

V (t)

)−1

F
(
RQ(V (t))

)
. (5.17)

Since the initial condition is U(t0) = Q it holds V (t0) = 0 ∈ TQM.
This strategy allows to solve the ODE (5.17) on the tangent space TM, which is a linear space, with

a standard temporal integrator and then recover the approximate solution on the manifoldM via the
retraction map as in (5.16). If the retraction map can be computed exactly, this approach yields, by
construction, a structure-preserving discretization. The key issue here is to build a suitable smooth
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retraction R : TM→M such that its evaluation and the computation of the inverse of its tangent map
can be performed exactly at a computational cost that depends only linearly on the dimension of the full
model.

In order to locally solve the evolution problem (5.17) on the tangent space to the manifold M at
a point Q ∈ M we follow a similar approach to the one proposed in [8] for the solution of differential
equations on the Stiefel manifold. Observe that the velocity field (5.2) describing the flow of the reduced
basis on the manifoldM belongs to the linear subspace of TM defined as T ?M := TM∩{M ∈ R2N×2n :
MJ2n = J2NM}. We therefore construct a tangent method restricted to this subspace. In more details,
for any Q ∈ M, we construct a retraction RQ as composition of three applications: a linear map ΥQ

from the space T ?QM to the Lie algebra g2N associated with the Lie group G2N acting on the manifold
M, the Cayley transform (5.3) as coordinate map from the Lie algebra to the Lie group and the group
action Λ : G2N ×M→M,

Λ(G,Q) = ΛQ(G) = GQ, ΛQ : G2N −→M,

that we take to be the matrix multiplication. This is summarized in the diagram below,

TG2N g2N G2N

T ?QM M

dcay cay

ΛQΛ′Q
ΨQ ΥQ

RQ

In more details, we take ΥQ to be, for each Q ∈M, the linear map ΥQ : T ?QM⊂ TQM→ g2N such that
ΨQ ◦ΥQ = Id T?QM where ΨQ = Λ′Q

∣∣
e

◦ dcay0.

To build the retraction RQ, let us characterize the tangent space to the manifold M at Q ∈ M.
Analogously to (4.6), temporal integration of the constraints onM yields

TQM = {V ∈ R2N×2n : Q>V ∈ g2n}, and T ?QM = {V ∈ R2N×2n : Q>V ∈ so(2n), V J2n = J2NV }.
(5.18)

The tangent space ofM can be equivalently characterized as follows.

Proposition 5.5. Let Q ∈M be arbitrary. Then, V ∈ TQM if and only if

∃Θ ∈ R2N×2n with Q>Θ ∈ sp(2n) such that V = (ΘQ> −QΘ>)Q.

Proof. (⇐=) Assume that V ∈ R2N×2n is of the form V = (ΘQ> −QΘ>)Q for some Θ ∈ R2N×2n with
Q>Θ ∈ sp(2n). To prove that V ∈ TQM, we verify that Q>V ∈ g2n. Using the orthogonality of Q, and
the assumption Q>Θ ∈ sp(2n) results in

Q>V = Q>(ΘQ> −QΘ>)Q = Q>Θ−Θ>Q = −Q>(QΘ> −ΘQ>)Q = −V >Q.
Q>V J2n = (Q>Θ−Θ>Q)J2n = −J2n(Θ>Q−Q>Θ) = −J2nV

>Q.

(=⇒) Let V ∈ TQM, i.e. Q>V ∈ g2n. Let Θ := V +Q
(
S − Q>V

2

)
with S ∈ Sym(2n) ∩ sp(2n) arbitrary.

We first verify that Q>Θ ∈ sp(2n). Using the orthogonality of Q, the fact that V ∈ TQM and S ∈ sp(2n)
results in

Q>ΘJ2n + J2nΘ>Q =
Q>V

2
J2n + J2n

V >Q

2
+ SJ2n + J2nS

> = SJ2n + J2nS
> = 0.

We then verify that, with the above definition of Θ, the matrix (ΘQ> −QΘ>)Q = Θ−QΘ>Q coincides
with V . Using the fact that S ∈ Sym(2n) and V ∈ TQM yields

Θ−QΘ>Q = V +QS −QQ
>V

2
−QV >Q−Q

(
S> − V >Q

2

)
= V −QQ

>V

2
−QV

>Q

2
= V. (5.19)
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We can therefore characterize the tangent space of the orthosymplectic matrix manifold as

TQM = {V ∈R2N×2n : V = (ΘS
Q(V )Q> −QΘS

Q(V )>)Q,

with ΘS
Q(V ) := V +Q

(
S − Q>V

2

)
, forS ∈ Sym(2n) ∩ sp(2n)}.

This suggests that the linear map ΥQ can be defined as

ΥQ : T ?QM −→ g2N ,

V 7−→ ΘS
Q(V )Q> −QΘS

Q(V )>.
(5.20)

Note that ΥQ(V ) = V Q> −QV > +QV >QQ> and hence ΥQ(V ) ∈ g2N in view of the characterization
of T ?QM in (5.18). Indeed, since Λ′Q

∣∣
e

(G) = GQ and dcay0 = I, it holds (ΨQ ◦ΥQ)(V ) = ΥQ(V )Q = V

for any V ∈ T ?QM. This stems from the definition of ΥQ in (5.20) since

ΨQ(ΥQ(V )) =
(
ΛQ∣∣

e

◦ dcay0 ◦ΥQ

)
(V ) = ΛQ∣∣

e

(ΥQ(V ))

= ΥQ(V )Q =
(
ΘS
Q(V )Q> −QΘS

Q(V )>
)
Q = V,

where the last equality follows by (5.19). Note that ΨQ = Λ′Q
∣∣
e

◦ dcay0 is not injective as ΥQ(T ?QM) is a

proper subspace of g2N .

Proposition 5.6. Let cay : g2N → G2N be the Cayley transform defined in (5.3). For any Q ∈ M and
S ∈ Sym(2n) ∩ sp(2n), we define

ΘS
Q : TQM −→ TQ Sp(2n,R2N ) = {M ∈ R2N×2n : Q>M ∈ sp(2n)}

V 7−→ V +Q

(
S − 1

2
Q>V

)
.

Then the map RQ : T ?QM→M defined for any V ∈ T ?QM as

RQ(V ) = cay(ΘS
Q(V )Q> −QΘS

Q(V )>)Q, (5.21)

is a retraction.

Proof. We follow [8, Proposition 2.2]. Let V = 0 ∈ TQM, then ΘS
Q(0) = QS and then, using the fact

that S ∈ Sym(2n) and cay(0) = I2N , it holds RQ(0) = cay
(
Q(S − S>)Q>

)
Q = cay(0)Q = Q.

Let ΥQ be defined as in (5.20). Since, by construction ΥQ admits left inverse it is injective and then
ΥQ(V ) = 0 if and only if V = 0 ∈ T ?QM. Then, RQ(V ) = Q if and only if cay(ΥQ(V )) = I2N , which
implies V = 0 ∈ T ?QM. Moreover, since RQ = ΛQ ◦ cay ◦ ΥQ, the definition of group action and the
linearity of Υ result in R′Q∣∣

0

= ΨQ ◦ΥQ = Id T?QM. It can be easily verified that RQ(V ) ∈M for any

V ∈ T ?QM.

Note that the matrix S ∈ Sym(2n) ∩ sp(2n) in the definition of the retraction (5.21) is of the form

S =

A B

B −A

 , with A,B ∈ Sym(n).

Its choice affects the numerical performances of the algorithm for the computation of the retraction and
its inverse tangent map, as pointed out in [8, Section 3].

In the following Subsections we propose a temporal discretization of (5.17) with an s-stage explicit
Runge–Kutta method and show that the resulting algorithm has arithmetic complexity of order CF +
O(Nn2) at every stage of the temporal solver.
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5.3.1 Efficient computation of retraction and inverse tangent map

In the interval (tm, tm+1] the local evolution on the tangent space, corresponding to (5.17), reads

V̇ (t) =

(
R′Um

∣∣
V (t)

)−1

F
(
RUm(V (t))

)
=: fm(V (t)).

Let (bi, ai,j) for i = 1, . . . , s and j = 1, . . . , i− 1 be the coefficients of the Butcher tableau describing the
s-stage explicit Runge–Kutta method. Then the numerical approximation of (5.17)-(5.16) reads: Given
U0 := Q ∈M and V0 = 0 ∈ TQM, for m = 0, 1, . . .

Vm+1 = ∆t
s∑
i=1

biA
i
m,

A1
m = F(Um),

Aim = fm

(
∆t

i−1∑
j=1

ai,jA
j
m

)
, i = 2, . . . , s,

Um+1 = RUm(Vm+1).

(5.22)

Other than the evaluation of the velocity field F at RUm(V ), the crucial points of algorithm (5.22) in
terms of computational cost, are the evaluation of the retraction and the computation of its inverse
tangent map. If we assume that both operations can be performed with a computational cost of order
O(Nn2), then algorithm (5.22) has an overall arithmetic complexity of order O(Nn2s) +CFs, where CF
is the cost to compute F(U) in (5.2) at any given U ∈M.

Computation of the retraction. A standard algorithm to compute the retraction RQ (5.21) at
the matrix V ∈ R2N×2n requires O(N2n) for the multiplication between cay(ΥQ(V )) and Q, plus the
computational cost to evaluate the Cayley transform at ΥQ(V ) ∈ R2N×2N . However, for any V ∈ T ?QM,
the matrix ΥQ(V ) ∈ g2N admits the low-rank splitting

ΥQ(V ) = ΘS
Q(V )Q> −QΘS

Q(V )> = αβ>,

where
α :=

[
ΘS
Q(V ) | −Q

]
∈ R2N×4n, β :=

[
Q |ΘS

Q(V )
]
∈ R2N×4n. (5.23)

We can revert to the results of Proposition 5.2 (with k = 4n) so that the retraction (5.21) can be
computed as

RQ(V ) = cay(ΥQ(V ))Q = Q+ α(β>α)−1
(
cay(β>α)− I4n

)
β>Q,

with computational cost of order O(Nn2).

Computation of the inverse tangent map of the retraction. Let Q ∈ M and V ∈ T ?QM. Using
the definition of retraction (5.21) we have

RQ(V ) = cay(ΥQ(V ))Q = (ΛQ ◦ cay ◦ΥQ)(V ).

Then, the tangent map R′Q reads

R′Q = Λ′Q ◦ cay′ ◦Υ′Q : TT ?QM−→ Tg2N
∼= g2N −→ TG2N −→ TQM.

Fixing the fiber on TT ?QM corresponding to V ∈ T ?QM results in

R′Q∣∣
V

(Ṽ ) = R′Q(V, Ṽ ) = Λ′Q
∣∣
cay(ΥQ(V ))

◦ dcayΥQ(V )(ΥQ(Ṽ ))

= dcayΥQ(V )(ΥQ(Ṽ )) cay(ΥQ(V ))Q = dcayΥQ(V )(ΥQ(Ṽ ))RQ(V ),

where we have used the linearity of the map ΥQ.
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Assume we know W ∈ T ?RQ(V )M. We want to compute Ṽ ∈ T ?QM such that

R′Q∣∣
V

(Ṽ ) = dcayΥQ(V )(ΥQ(Ṽ ))RQ(V ) = W. (5.24)

It is possible to solve problem (5.24) with arithmetic complexity O(Nn2) by proceeding as in [8,
Section 3.2.1]. Since, for our algorithm, the result of [8] can be extended to the case of arbitrary matrix
S ∈ Sym(2n) ∩ sp(2n) in (5.21), we report the more general derivation in Appendix A.

Note that for S = 0 and explicit Euler scheme the two numerical integrators (5.14) and (5.22) are
equivalent.

5.3.2 Convergence estimates for the tangent method

Since the retraction and its inverse tangent map in (5.22) can be computed exactly, the smoothness
properties of R allow to derive error estimates for the approximate reduced basis in terms of the numerical
solution of the evolution problem (5.17) in the tangent space.

Proposition 5.7. The retraction map R : TM→M defined in (5.21) is locally Lipschitz continuous in
the Frobenius ‖·‖-norm, namely for any Q ∈M, RQ : T ?QM→M satisfies

‖RQ(V )−RQ(W )‖ ≤ 3‖V −W‖, ∀V, W ∈ T ?QM.

Proof. Let U := RQ(V ) = cay(ΥQ(V ))Q and Y := RQ(W ) = cay(ΥQ(W ))Q. Using the definition of
Cayley transform (5.3) we have, for ΥQ(·) := ΥQ(·)/2,

0 =
(
I2N −ΥQ(V )

)
U −

(
I2N −ΥQ(W )

)
Y −

(
I2N + ΥQ(V )

)
Q−

(
I2N + ΥQ(W )

)
Q

=
(
I2N −ΥQ(V )

)
(U − Y )−

(
ΥQ(V )−ΥQ(W )

)
(Q+ Y ).

Since ΥQ is skew-symmetric
(
I2N − ΥQ(V )

)−1 is normal. Then ‖
(
I2N −ΥQ(V )

)−1‖2 = ρ
[(
I2N −

ΥQ(V )
)−1] and ρ[(I2N −ΥQ(V )

)−1] ≤ 1. Hence, since Q and Y are (semi-)orthogonal matrices, it holds

‖U − Y ‖ ≤ ‖
(
I2N −ΥQ(V )

)−1‖2‖ΥQ(V )−ΥQ(W )‖ ≤ ‖ΥQ(V )−ΥQ(W )‖.

Using the definition of ΥQ from (5.20) results in

‖ΥQ(V )−ΥQ(W )‖ = ‖(V −W )Q> −Q(V −W ) +Q(V > −W>)QQ>‖ ≤ 3‖V −W‖.

It follows that the solution of (5.22) can be computed with the same order of accuracy of the RK
temporal scheme.

Corollary 5.8. For Q ∈M given, let RQ be the retraction map defined in (5.21). Let U(tm) = RQ(V (tm)),
where V (tm) is the exact solution of (5.17) at a given time tm and let Um = RQ(Vm), where Vm is
the numerical solution of (5.17) at time tm obtained with algorithm (5.22). Assume that the numerical
approximation of the evolution equation for the unknown V on the tangent space ofM is of order O(∆t k).
Then, it holds

‖U(tm)− Um‖ = O(∆t k).

6 Concluding remarks and future work
Nonlinear dynamical reduced basis methods for parameterized finite-dimensional Hamiltonian systems
have been developed. These techniques provide an attractive computational approach to deal with the
local low-rank nature of Hamiltonian dynamics while preserving the geometric structure of the phase
space even at the discrete level.
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Possible extensions of this work involve the numerical study of the proposed algorithm including
high order splitting temporal integrators, numerical approximations ensuring the exact conservation
of Hamiltonian, restarting procedures of the Cayley RK algorithm (5.14), and the investigation of the
robustness of the temporal integrator under over-approximation of the full model solution [18].

Our dynamical reduced basis method engenders a smooth approximation of the solution of the
full Hamiltonian model. Analogous to dynamical low-rank approximations of matrices, we rely on the
assumption that the projection error of the full model solution onto the evolving reduced space (of fixed
rank) remains small at all times. However, dynamical modes that have been neglected in the reduction
might become relevant over time (the problem of crossing of singular values [14]). Restarting algorithms
and dynamical approximations with adaptive rank might be envisioned in this case.

Finally, the extension of dynamical reduced basis methods to Hamiltonian systems with a nonlinear
Poisson structure would allow nonlinear structure-preserving model order reduction of a large class of
problems, including Euler and Vlasov–Maxwell equations.

Some of these topics will be investigated in forthcoming works.
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A Efficient computation of the inverse tangent map
We propose an algorithm to solve (5.24) with a computational cost of order O(Nn2). We proceed exactly
as in [8, Section 3.2.1] with the only difference that we consider any arbitrary S ∈ Sym(2n) ∩ sp(2n).

Using the definition of the derivative of the Cayley transform (5.4) we can recast (5.24) as

ΥQ(Ṽ )(I2N + ΥQ(V ))−1RQ(V )− (I2N −ΥQ(V ))W = 0, ΥQ(V ) :=
ΥQ(V )

2
. (A.1)

Moreover, using the definition of RQ(V ) in (5.21) results in

2RQ(V ) =
(
I2N + ΥQ(V )

)
RQ(V ) +

(
I2N −ΥQ(V )

)
RQ(V )

=
(
I2N + ΥQ(V )

)
RQ(V ) +

(
I2N −ΥQ(V )

)(
I2N −ΥQ(V )

)−1(
I2N + ΥQ(V )

)
Q

=
(
I2N + ΥQ(V )

)(
RQ(V ) +Q

)
.

Therefore, substituting in (A.1) and using the definition of ΥQ from (5.20) gives

ΘS
Q(Ṽ )Q>(RQ(V ) +Q)−QΘS

Q(Ṽ )>(RQ(V ) +Q)− (2I2N −ΥQ(V ))W = 0. (A.2)

We proceed by solving problem (A.2) for Θ̃ := ΘS
Q(Ṽ ) ∈ TQ Sp(2n,R2N ) and then, in view of (5.19), we

recover Ṽ ∈ T ?QM as Ṽ = Θ̃−QΘ̃>Q, at a computational cost of order O(Nn2).
It is possible to recast problem (A.2) as ΘS

Q(Ṽ ) = QT1(Ṽ ) + T2, where

T1(Ṽ ) := ΘS
Q(Ṽ )>(RQ(V ) +Q)(Q>RQ(V ) + I2n)−1,

T2 := (2I2N −ΥQ(V ))W (Q>RQ(V ) + I2n)−1.

The term T2, independent of Ṽ , can be computed in O(Nn2 +n3) operations. Indeed, since ΥQ(V ) = αβ>

as defined in (5.23), the term ΥQ(V )W can be computed as α(β>W ) in O(Nn2) flops. The term T1(Ṽ )

can be expressed as T1(Ṽ ) = Q>ΘS
Q(Ṽ ) +QT2. Using the fact that Q>ΘS

Q(Ṽ ) + ΘS
Q(Ṽ )>Q = 2S, the

symmetric part of T1 reads T1 + T>1 = 2S −Q>T2 + T>2 Q. Moreover,

(RQ(V ) +Q)>ΘS
Q(Ṽ ) = (RQ(V ) +Q)>T2 + (RQ(V )>Q+ I2n)T1(Ṽ ),

(RQ(V )>Q+ I2n)T1(Ṽ )> = (Q>RQ(V ) + I2n)>(Q>RQ(V ) + I2n)−>(RQ(V ) +Q)>ΘS
Q(Ṽ ).

The skew-symmetric part of T1 is then T1 − T>1 = −(RQ(V )>Q+ I2n)−1(RQ(V ) +Q)>T2. Therefore,

2T1(Ṽ ) =
(
(T1(Ṽ ) + T1(Ṽ )>) + (T1(Ṽ )− T1(Ṽ )>)

)
= 2S − (Q>T2 − T>2 Q)− (RQ(V )>Q+ I2n)−1(RQ(V ) +Q)>T2.

It is straightforward to show that all operations involved in the computation of T1 can be done with
complexity of order O(Nn2).
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