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Abstract

A new approach is proposed to detect edges based on an artificial neural network (ANN). Some
elementary continuous and discontinuous functions interpolated in the polynomial space and their con-
tinuity are used as the training sets to train a back propagation neural network containing two hidden
layers. The ANN edge detector is used to detect the edges in an image and the locations of discontinuity
in the hybrid fifth order Compact-WENO nonlinear (Hybrid)scheme for solving hyperbolic conservation
laws with solutions containing both discontinuous and complex fine scale structures. Several classical
examples in the image processing show that ANN edge detector can capture an edge accurately with
fewer grid points than the classical multi-resolution (MR) analysis. Furthermore, as oppose to the M-
R analysis, ANN edge detector is robust with no problem dependent parameter, in addition to being
accurate and efficient. The performance of the Hybrid scheme with the ANN edge detector is demon-
strated with several one and two-dimensional benchmark examples in shallow water equations and Euler
equations.
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1 Introduction

Characteristic-wise weighted essentially non-oscillatory (WENO) conservative finite difference schemes, as
a class of high order/resolution nonlinear scheme for the solutions of hyperbolic conservation laws in the
presence of shocks and small scale structures, was initially developed by [11] (for details and history of
the WENO scheme, see [2, 3, 22]and references therein). However, the WENO scheme is fairly complex
to implement, computationally expensive and too dissipative for certain classes of problems. A natural
way to alleviate some of these difficulties is to construct a hybrid scheme conjugating a nonlinear WENO
scheme in the non-smooth stencils with a linear (Compact, fintie difference, or spectral) scheme in the
smooth stencils [4, 8, 14, 16, 20]. The key issue in any hybrid scheme is the design of an accurate, robust,
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and efficient high order shock detection algorithm that is capable of determining the smoothness of the
solution at any given grid point and at any given time.

In the last two decades, many shock detection methods for the hybrid scheme for solving hyperbolic
conservation laws have been developed. Costa et al. [4, 5] described the arbitrary order multi resolution
(MR) analysis by Harten [10] for identifying the non-smooth and smooth stencils in the hybrid scheme.
Generally speaking, high order MR analysis is preferable to a low order shock detector and the conjugate
Fourier shock detector in the high order hybrid scheme for its efficiency (with its O(N) floating point
operations count). Don et al. [7] proposed the conjugate Fourier shock detector which uses the conjugate
Fourier partial sum and its derivative in detecting discontinuities in a function. It is a parameter free
technique and successfully has been employed in the high order hybrid Compact-WENO finite difference
scheme (Hybrid) for solving hyperbolic conservation laws. MR analysis perform well as long as a suitable,
problem-dependent parameter is chosen. This parameter is used in a threshold which decides whether or
not to label an element as a troubled cell. Gao et al.[9] combined the Tukeys boxplot method and MR
analysis for solving the hyperbolic conservation laws with the hybrid scheme. The improved Tukeys boxplot
method essentially removes the need of specifying the MR Tolerance €jrr, and thus greatly improves the
robustness of the hybrid scheme.

Artificial Neural Networks (ANN) is an interconnection network composed of simple neurons. The neurons
that make up such a parallel and extensive network are often adaptable. The organization of the network
can “simulate the interaction of biological nervous system with real world objects” [12]. Back Propagation
(BP) network is one of the most widely used neural network. It was proposed by Rumelhart and McCelland
[19] in 1986. It is a multi-layer feedforward network trained by the error back propagation algorithm. BP
neural network can learn and store a large number of related mathematical models without revealing and
describing the mathematical equation of the mapping relationship between input and output beforehand.

Ray and Hesthaven [17] proposed a new approach to detect discontinuities using ANN to find a troubled-cell
where the limiter should be used in the Runge-Kutta discontinuous Galerkin (RKDG) method for solving
hyperbolic conservation laws. The training process is performed offline on a robust data set consisting of
canonical samples characterizing the local solution structures of conservation laws. The numerical results
demonstrate that the ANN troubled-cell indicator does not need the parameters related to the problem
and performs better than the TVB limiter with an optimally chosen parameter M.

The main goal in this study is to construct an ANN edge detector, which can be used in the image processing
and in the Hybrid scheme for the solutions of hyperbolic conservation laws. We first improve the training
sets in [17] with an extensive set of basis function in the polynomial space P* (here, k = 5 is the optimal
order of the WENO finite difference scheme, which is used in the Hybrid scheme). Secondly, three mean
values in the RKDG method is replaced by five point values of function in data sets in the Hybrid scheme.
The detailed training process including the input, output, network structure and data set will be shown in
Section 2. Last but not least, we construct a two hidden layers BP network with {8,4} neurons, which uses
less training time than that in [17] containing five hidden layers with {256, 128,64,32,16} neurons. The
accuracy of the ANN edge detector is demonstrated by capturing an edge in the classical images with about
two grid points. Finally, we investigate the applicability of the ANN edge detector in high order Hybrid
scheme for solving hyperbolic conservation laws. Compared with the Hybrid scheme with the classical MR
analysis [4, 27] (Hybrid-MR) in terms of accuracy and efficiency, the Hybrid scheme with the ANN edge
detector (Hybrid-ANN) use similar CPU time, but usually generate much sharper discontinuous stencils.
Its percentage of the WENO reconstruction is only half of that in the Hybrid-MR scheme.



This paper is organized as follows. In Section 2, we briefly introduce the BP network and present the
algorithm of the ANN edge detector. In Section 3, representative examples in the edge detection of the
one-dimensional function with multiple discontinuities and two-dimensional Shepp-Logan image are given.
In Section 4, the Hybrid scheme is briefly reviewed. In Section 5, several one- and two-dimensional shocked
problems are simulated to illustrate the performance of the Hybrid scheme. Concluding remarks are given
in Section 6. The sixth order compact finite difference scheme, fifth WENO-Z finite difference scheme and
MR analysis are given in Appendix.

2 Artificial Neural Network edge detector

In this section, we will design an edge detection algorithm based on ANN. We focus on a Back Propagation
(BP) neural network [19], which is one of the most widely used neural network at present. BP network
can learn and store a large number of related mathematical models without revealing and describing the
mathematical equation of the mapping relationship between input and output beforehand. Its network
model topology includes input layer, hidden layers and output layer, which is shown in Fig. 1.
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Figure 1: BP neural network for edge detection.

The learning process of BP neural network can be divided into two steps. They are the forward calculation
process and the error back propagation process. In the forward calculation process, the preprocessed input
is entered into the network from the input layer, and then calculated layer by layer through the hidden
layer. Finally, it is transferred to the output layer. The state of each layer of neurons only affects the state
of the next layer of neurons. If the output value of the output layer does not satisfy the expectation, it
enters the error back propagation process. The error signal returns along the original connection path, and
adjusts the weights and thresholds of each layer of the network one by one until the input layer is reached,
and then repeats the forward calculation. These two processes alternate and repeat, constantly adjusting
and updating the weights and thresholds of each layer. When the network error is minimal or has met the
expectations, the learning process ends.

2.1 Input and Output

In this work, the number of neurons in the input layer is Ny = 5, and the input value of the network is se-
lected as the function values f = (fi_o, fi—1, fi, fi+1, fi+2) at the five uniformly spaced points (z;—2, z;—1, z;,
Tit1, Tit2) with a constant cell size Ax around z;. A linear normalization algorithm is used to preprocess



the input data and to normalize the input function values into [—1,1] :

; i

fi= :
kil 1
max (|fivxl, 1)

[RRRE}

j=i—2,...,i+2, (1)

where f is a normalized vector of f.

The output value O; represents the smoothness of f;, and the number of neurons in the output layer is
No = 1. Rounding O; , [O;] is used to mark whether the function is discontinuous or smooth at the point
of interest x; by a Flag; as

1, discontinuous,

(2)

0, smooth.

Flag(z;) = Flag, = (0] = {

2.2 Network Structure

As an operation model, neural network is composed of a large number of nodes (or neurons) connected
with each other. The number of neurons and the selection of activation function play an important role in
the neural network. The BP neural network constructed for the edge detection in this study contains two
hidden layers H; and Ha, and the number of neurons of hidden layer is set to { Ny, , N, } = {8,4}.

The purpose of activation function is to introduce nonlinearity into the network model. We choose the
Relu activation function f(x) = max(0,z) in the hidden layers H; and Ha, which will expand the feature
effect in the process of cycling. In the output layer, the sigmoid function (f(x) = H%) is used to map
the output number O; to the range (0,1). Thus, O; means the probability that the point x; is identified
as a discontinuous point or not.

2.3 Data Set

As mentioned in Section 2.1, the input values £ = (f;—2, fi—1, fi, fit1, fir2) of the data set are the point
values of the function f(z) at a point x; and (x;—9, x;—1,x;, Ti+1, Ti+2) are the locations of the grid point
(assuming to be uniformly spaced with cell size Az in this study) in the function definition domain D.
By reasonably selecting functions and parameters, the function values in the data set are normalized in
[—1,1]. There are four steps when creating a data set:

1. Choose a function f(x) and its parameters in Table I.
2. Pick a point z; and set a meshsize Az such that (z; — 2Az, x; + 2Az) € D.
3. Compute the function values £ = (fi_2, fi—1, fi, fi+1, fi+2)-

4. Set the true output Flag, = O; where O; = 1 if the function is discontinuous at the point x; and
O; = 0 otherwise.

The number of functions, parameter values, definition fields, discontinuity marks and the number of func-
tions selected in the data set are shown in Table I. 75% of the data set is taken as the training set and the



Table I: Data set: Functions f(z) , parameter values, definition domains D , discontinuous identifiers Flag
and the number of functions in the data set.

f(x) parameter D Flag number
sin(27x) - (0,1) 0 18000

kz k€ (-10,10) (-7, 1 +4Az) 0 40000

k|z| k€ (—10,10) (—z, 1 +4Ax) 1 10000

ka® k€ (-10,10),a=2,...,5 (-, +4Az) 0 40000

l(x < x0) + r(x > 20) le(—1,1),re (- 1, 1) (0,1) 1 80000
c ce(—1,1) (0,1) 0 20000

rest 25% as the test set. Once we obtain the trained network, the ANN edge detector can be designed by
the algorithm as shown as follow.

Algorithm: (ANN edge detector)

1. Create the data sets f and O in Section 2.3.

2. Training the BP network constructed in Section 2.2, get and save the corresponding relationship
between input and output, that is the network N.

3. For the function value fZ at the point Z; need to be judged smooth or not, compute and normalize
(fl g,fl 1,fz,fl+1,fz+2) to obtain f to be used as the network input. The output O and
Flagl [O;] are computed through the saved network N

Table 1T shows the accuracy for identifying the discontinuities of the last 25% of test data set through the

saved network A after k trainings. It can be observed that the accuracy of each training session is above
96%.

Table II: 10 times accuracy test for 25% test set.

k 1 2 3 4 5 6 7 8 9 10
Accuracy | 97.8% 97.3% 98.3% 96.8% 97.4% 972% 97.3% 96.7% 97.1% 97.4%

3 Numerical Results for Edge Detection

In this section, we will present some one-dimensional and two-dimensional benchmark images to illustrate
the ability of discontinuity capture in image edge detection. The edge set S here contains all the centers
which are identified as the edges/boundaries/sharp gradients, which means S = {z;|Flag(z;) =1, Vi}.



3.1 One-dimensional Multi-Wave Functions

Multi-wave function includes smooth Gauss function, discontinuous square function, piecewise linear tri-
angular function and continuous elliptic function. This function tests the abilities of any discontinuity
detector in identifying a smooth function and discontinuities in the function and/or its first derivative
under various grid resolutions. Its function expression is as follows:

[F(z,a,a —8) + 4F (z,,a) + F(z,a,a 4+ 6)], x € [0.4,0.6],

%[G(m,ﬁ,z—é)+4G(x,5,z)+G(:c,ﬁ,z+5)], € [-0.8,—0.6],
1, € [-0.4,-0.2],
flz) = 1—110(95—0.1);, F) ,0.2], (3)
6
0
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—
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@

where G(z,8,2) = e~Bla—2)% F(x,a,a) = /max (1 — a%(z — a)2,0), and z = —0.7, § = 0.005, 8 = ;)06%3,
a=0.5, a=10.

Fig. 2 shows the detection results, where the red dots and blue triangles denote the set of points in the
edge set S detected by the ANN edge detector and the MR analysis with €37z = 2 x 1072. The locations of
all the discontinuities (both in the jump in the function and its first derivative) of the multi-wave function
Eq. (3) are identified more clearly and accurately by the ANN edge detector. For the step function, the
location of jump in the function at x = —0.4 and x = —0.2 are accurately determined by the ANN edge
detector, due to the step function I(z < xg) + r(z > x0) in training set. Because of the absolute value
function k|x|, the ANN edge detector also can capture jump in the first derivative at = —0.7 and = = 0.1.
No false positive result from the ANN edge detector is observed in both the lower (N = 150) and higher
(N = 250) resolution solutions.
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Figure 2: Edge detection of multi-wave function by the ANN edge detector and the MR analysis with
(Left) N =150 and (Right) N = 250.



3.2 One-dimensional Piecewise Function

In this example, a piecewise function with five discontinuities of different jump heights is considered. As
shown in Fig. 3, the degree of edge (strength) of the function varies greatly in different regions. The jumps
of the function are ranged from 1 to 16. This example tests the ability of the edge detector in capturing
edges of a multi-scales function. The red dots in Figure 3 show the detection results of ANN edge detector
and the blue triangles show the results of MR analysis with ej;g = 1 x 107!, The results show that present
method can not only capture every discontinuity, but also only with two grid points around it. The MR
analysis, however, needs at least four grid points. Hence, ANN edge detector is more accurate than the
MR analysis.
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Figure 3: Discontinuity detection of a piecewise function by the ANN edge detector and the MR analysis
with N = 50.

3.3 Edge Detection of Two-Dimensional Image

Next, we test the performance of the ANN edge detector in the two-dimensional image edge detection. In
the calculation process, the dimension splitting method is used. That is, edges are detected along the z—
and y— directions respectively, and the final edge set is the union of the edge sets detected along the x—
and y— directions.

Shepp-Logan image is a classic image, which is used to simulate the gray image of human brain, and it is
also a two-dimensional piecewise function. Shepp-Logan image consists of a large ellipse (representing the
brain, the corresponding function value is large) and several small ellipses (representing some characteristic
structures of the brain, the corresponding function value is small). The intensity of each edge of the image
varies greatly, where the minimum and maximum jump are 0.1 and 1 respectively, so it is often used to
test the ability of edge detection method in capturing edges with muti-scales discontinuous. Furthermore,
the image is densely distributed, and can also be used to test the ability of the edge detection method to
capture “continuous” discontinuities. As shown in Fig. 4, under the image resolution N x M = 256 x 256,
the ANN edge detector can accurately capture both the large and small discontinuities simultaneously.



Shepp-Logan Image z—direction y—direction x— and y—directions

Figure 4: Edge detection of Shepp-Logan image with N x M = 256 x 256 . From left to right: the original
image, the edges in z—direction, the edges in y—direction and the edges in both x— and y— directions.
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Fig. 5 shows the edge detection results of Shepp-Logan image along the x— direction at y = 111 using
the ANN edge detector and the MR analysis with ey;g = 5.0 x 107°. The accuracy of edge detection
can be observed more intuitively. Edge detection method based on artificial neural network not only can
detect the edges with jump size of discontinuity accurately, but also perform well in detecting multiple
”continuous” edges. The results show that the ANN edge detector behaves better than the MR analysis
in identifying the locations of edges with a fewer grid points.
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Figure 5: Detection results of Shepp-Logan image with N x M = 256 x 256 along the x—direction at
y = 111.

The final detected edges of a sunflower and three other classical photos are shown in Fig. 6 respectively.
One can easily see that the ANN edge detector works very well in detecting edges with both large and
small jumps even when some photos contain very fine scale structures.



Sunflower Airplane Resolution

0 l
1 _TE
i -,- W=

n

w

Original images

0 1

2 = Ui El|l.-=.;

3 == EEEF{“ : HIZs
=0 TS, BE <

4 =) B ec ME:
5 21 e cmczs O

8 Z 1l = |

f

Edges

Figure 6: Final edges of images with N x M = 256 x 256. (Top) The original images and (Bottom) the
detected edges by the ANN edge detector.



4 Hybrid Scheme

In this section, we present the temporal-spatial adaptive algorithm of the higher order hybrid Compact-
WENO finite difference scheme that is used for solving both the shallow water equations and the Euler
equations [9, 7, 27]. The details for implementation of the numerical schemes (the sixth order compact
finite difference scheme, the fifth order characteristic-wise WENO-Z finite difference scheme with the global
Lax-Friedrichs flux splitting via the Roe eigensystem, the eighth order finite difference filtering and the
third order Runge-Kutta TVD scheme) used in this study can be found in [7, 9, 27] and will be briefly
introduced in Appendix. Other temporal-spatial adaptive hybrid algorithms using different shock-detection
algorithms/troubled-cell indicators, for example [4, 8, 9, 14, 16, 20] can be used as an alternative method
of [7, 9, 27]. Interested readers are referred to references and contained therein for the details.

The hybrid algorithm consists of four main steps that, 1) at the beginning of the Runge-Kutta time step,
determine the smoothness of solution at a given grid point by a shock detection method, 2) markup the
grid points with a Flag, 3) setup a buffer zone (blue circle in Fig. 7) around the non-smooth grid point,
4) compute the derivative of the flux with the WENO-Z scheme at the non-smooth stencils and with the
central compact scheme otherwise, and 5) at the end of the Runge-Kutta time step, stabilize the solution
by a finite difference filtering [23] in the smooth stencils if needed.

Compact WENO Compact

—0—0—0—0—0—{0——0—0—0—0—0—{0—0—0—0—0—0—

o o o o o0 1 1 1 1 1 1 1 1 O O O O O
O:Flag=0 @:Flag=1 @: Buffer Zone (Flag =1) []: Boundary for Compact

Figure 7: Diagram of the buffer zone.

In the following discussion, we shall denote the hybrid Compact-WENO finite difference scheme using the
MR analysis and ANN edge detector as the Hybrid-MR scheme and Hybrid-ANN scheme respectively, and
collectively refer to both schemes as the Hybrid schemes.

5 Numerical Results for Hybrid scheme

To demonstrate the performance of the Hybrid-ANN scheme, we present the numerical results of several
shocked flow problems in the one- and two-dimensional shallow water equations and Euler equations. We
shall provide the numerical solutions computed by the WENO-Z, Hybrid-MR and Hybrid-ANN schemes
and give their corresponding CPU timing results. The WENO percentage is defined as the percentage
of non-smooth stencils solved by the WENO-Z scheme in the whole domain. In all the examples below,
the third order TVD Runge-Kutta method [2] with CFL = 0.45 is used for the temporal evolution of the
resulted ODE at each grid points.
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5.1 Shallow water equation

The two-dimensional shallow water equations take the form
Qt+Fx+Gy:S7 (4)

where the conservative variables Q, the fluxes F and G in the x— and y—directions, respectively, are
1 1
Q = (h,hu,hv)*, F = (hu, hu®+ 5gh2, huv)?, G = (hu, huv, hv* + 5gh2)T, S = (0, —ghb,, —ghb,)",

and h is the water height, (u,v)” is the velocity vector, b(x, %) is the bottom topography and g = 9.812 is
the gravitational constant. The well-balanced technique [26] is used in the Hybrid schemes to reformulate
the source terms to maintain the exact C-property.

5.1.1 One-dimensional Dam-breaking Problem over a Rectangular Bump

In this section, a classical test case in [24] is selected to study the ability of hybrid schemes to capture
shocks in complex situations. We simulate the one-dimensional dam-breaking problem on rectangular
bulge, which involves unstable flow over discontinuous bottom topography

(8, if |z —T750] < 1500/8,
bz) = { 0, otherwise.

The initial conditions are

[ 20—b(x), if x <750,

(@, 0) = { 15 — b(x), otherwise, u(z,0) = 0.

The final time is t = 15. In Fig. 8, we compare the solutions computed by the Hybrid-ANN scheme and the
Hybrid-MR scheme with N = 500 cells. The temporal history of the WENO-Z reconstruction at each grid
point computed by two Hybrid scheme are shown to demonstrate the performance of the Hybrid schemes
in Fig. 9. In this example, although the water depth h contains discontinuities at x = 562.5 and x = 937.5,
it is clear that the essentially non-oscillatory solutions are obtained accurately and agree very well with
the reference solution. As shown in Table III, the Hybrid schemes are faster, and at high resolution,
can be almost three times faster than the WENO-Z scheme. Furthermore, the WENO percentage in the
Hybrid-ANN scheme is only half of that in the Hybrid-MR scheme. It will be confirmed in the following
examples.

5.1.2 Two-dimensional Dam-breaking Problem

Here, we investigate the performance of the Hybrid-ANN method in simulating the two-dimensional dam-
breaking problem. The computational domain is [0,200]2. The width of the dam is set to be 5 and the
breach is located from x = 97 to x = 102 and between y = 65 and y = 135. The boundary conditions are
reflective at the top and bottom boundaries, and the inflow and outflow boundary conditions are imposed
in the left and right boundaries respectively.
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Figure 8: One-dimensional dam-breaking problem over a rectangular bump with N = 500 cells. (Left) The
water surface level h + b and (Right) momentum hu at time ¢t = 15.
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Figure 9: Temporal history of the WENO-Z reconstruction as computed by the Hybrid-MR scheme and
Hybrid-ANN scheme.
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Table III: One-dimensional dam-breaking problem over a rectangular bump. The CPU timings, speedup
factors (SF) and WENO percentage of the WENO-Z and Hybrid schemes.

N WENO Hybrid-MR Hybrid-ANN
seconds seconds SF percentage seconds  SF percentage
100 5.6E-3 4.1E-3 1.36 45.5% 2.6E-3 2.15 20.8%
500 8.0E-2 3.3E-2 243 10.8% 3.1E-2  2.62 5.0%
5000 7.74 2.8 2.76 1.28% 2.82 2.74 0.5%

The initial conditions are

i <
h(a;,y,O):{ 10, if z <100 ’

5, otherwise
(5)

hu(z,y,0) = hv(z,y,0) = 0.
The water surface level and its velocity field are shown in Fig. 10 at time ¢t = 7.2s. The sharp water front

formed by the breaking of the dam is captured essentially oscillations free. The shear vortical structures
generated at the tips of the breach is in a good agreement with those shown in [1].

Table IV shows a comparison on the CPU times and speedup factors of the WENO-Z scheme, Hybrid-ANN
scheme and Hybrid-MR scheme with ey;r = 5 x 1074, We can clearly find that the Hybrid schemes allow
a speedup up to a factor of two compared to the WENO-Z scheme. The WENO percentage of the ANN
edge detector is smaller than the MR analysis.

h+0b Flag, Flag,
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Figure 10: Two-dimensional dam-breaking problem. (Left) The water surface level h 4+ b and (middle)
Flag, and (right) Flag, identified by the ANN edge detector under resolution 400 x 400 at time ¢ = 7.2.

5.2 Euler Equation

We consider the two-dimensional Euler equations for gas dynamics in a conservation form:

Q+F,+G,=0, (6)
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Table IV: Two-dimensional dam-breaking problem. The CPU timings, speedup factors (SF) and WENO
percentage of the WENO-Z and Hybrid schemes.

N x M WENO Hybrid-MR Hybrid-ANN
seconds seconds SF percentage seconds SF percentage
200 x 200 108.9 48.7 2.24 25.3% 44.9 2.43 12.2%
400 x 400 428.5 144.6 2.96 14.5% 144.3 2.97 7.1%

where the conservative variables Q, the fluxes F and G in the x and y directions, respectively, are
Q= (pa pu, P, E)T7 F= (P%PUZ + P, puv, (E + P)U)T7 G = (P%PUUa IOU2 + P, (E + P)U)T7
and the equation of state (EOS) is
1
P=(y-1) (E — §p(u2 + 1}2)> , v =1.4.

The p,u,v, P, and E are the density, velocity in - and y-directions, pressure and total energy respectively.

5.2.1 One-Dimensional Shock-Density Wave Interaction Problem

This test case proposed in [21] describes the interaction of a right moving shock with an oscillatory smooth
wave. Its initial condition is given by

27 4v35 31 if x < —4
(p7u>p) = (A .’ 3 . , T &€ [_575] . (7)
(14 0.2sin(52),0,1) ifx>—4

The boundary conditions are reflective boundary conditions. The solution is simulated on a mesh with
N = 400 and N = 800 cells, until the time ¢ = 1.8. Fig. 11 shows the density p and the temporal
history of the WENO-Z reconstruction at each grid point. In the case of low mesh resolution N = 400,
high frequency waves can not be fully recognized. With the increase of mesh resolution N = 800, high
frequency waves can be accurately identified. The CPU timings and WENO percentage are shown in Table
V, the Hybrid-ANN scheme is as efficient as the Hybrid-MR scheme with ej;g = 5 x 1073, especially in
the high mesh resolution case.

Table V: One-dimensional shock-density wave interaction problem. The CPU timings in seconds and
speedup factors of the WENO-Z and Hybrid schemes.

N WENO Hybrid-MR Hybrid-ANN
seconds seconds  SF percentage seconds  SF percentage
N =400 0.75 0.56 1.34 17.5% 0.59 1.27 11.9%
N =800 1.92 147 1.31 8.99% 1.49 1.29 4.49%
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Figure 11: (Left) The density p and WENO Flag of the shock-density wave interaction problem as computed
by the Hybrid-ANN scheme at ¢t = 1.8, and (Right) temporal history of the WENO-Z reconstruction as
computed by the Hybrid-ANN scheme, using (Top) N = 400 and (Bottom) N = 800.
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5.2.2 Two-Dimensional Riemann Initial Value Problem

To examine the performance of the Hybrid scheme for higher dimensional problems, we solve the classical
Riemann initial value problem. According to [18], there are 19 genuinely different admissible configurations
for polytropic gas, separated by the three types of one-dimensional centered waves. We refer readers to
[18] for details. Here, we show the representative results of configurations 3 with a mesh resolution of
N x M = 400 x 400, the center is (zo,y0) = (0.8,0.8) to allow a longer time simulation for a further
development of the fine scale structures. The initial conditions are

( 1.5, 1.5, 0, 0 ), ifz>uazpandy >y,

_ )« 0.3, 0.5323, 1.206, 0 ), ifx<zpandy > yo,
Q=(Ppuwv) =9 ¢ (02 0135, 1.206. 1.206 ). if z <o andy <o,
( 0.3, 0.5323, 0, 1.206 ), if x>z and y < yp.

The density with flooded contours and lines are shown in Fig. 12. The large scale structures of the flow
agree well with those in the literature. We remark that the WENO flag Flag in x- and y-directions are
very sharp with only a few grid points contained in each segment showing the accuracy of the ANN shock
detection algorithm. Table VI presents the CPU timings along with the speedup factor in the simulation
of configuration 3 with the WENO-Z, Hybrid-MR and Hybrid-ANN schemes. From the results, we can
see that the Hybrid schemes are substantially faster than the WENO-Z scheme with a speedup factor
increased about two as the mesh resolution increases, and the Hybrid-ANN scheme is faster with less
WENO percentage.

Table VI: The CPU timings, percentage of the WENO-Z reconstruction, and speedup factors (SF) of the
WENO-Z and Hybrid schemes.

N x M WENO Hybrid-MR Hybrid-ANN
seconds seconds  SF percentage seconds  SF percentage
200 x 200 218.5 151.3 1.44 33.3% 112.6 1.94 11.1%
400 x 400 1863 888.2 2.09 19.2% 717.7  2.59 5.81%

5.2.3 Two-Dimensional Mach 10 Double Mach Reflection Problem

To illustrate the efficiency of the Hybrid schemes in a more practical problem, we applied both Hybrid
schemes to solve the two-dimensional Mach 10 double Mach reflection (DMR) problem. In this problem,
a Mach 10 normal shock wave impinges onto a wedge with a given angle of inclination. By changing
the frame of reference to the surface of the wedge, we setup the computational domain as [0,4] x [0, 1].
The Mach 10 oblique shock makes contact with the lower domain boundary at 60 degree angle with the
horizontal z-axis. The initial conditions are

(8,8.25cos0, —8.25sin6,116.5), = < x0+y/V3,
= P =
Q=(puv.P) { (1.4,0,0,1), x> o+ y/V3,
with zg = % and 6 = 7/6. Supersonic inflow and free-stream outflow boundary conditions are specified at

x = 0 and x = 4, respectively. At the lower boundary y = 0, reflective boundary conditions are applied in
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Density p Flag, Flag,

Figure 12: Configuration 3 : (Left) Density p and (middle) Flag, and (right) Flag, identified by the ANN
edge detector under resolution 400 x 400 at time ¢ = 0.8.

the interval [z(,4]. At the upper boundary y = 1, the exact solution of the Mach 10 moving oblique shock
is imposed. The problem and its numerical results are well documented in the literature [25].

We run both the Hybrid-MR and Hybrid-ANN schemes with mesh resolution N x M = 400 x 100 uniform
cells to the final time t; = 0.2. The density flooded contours and lines and the WENO Flag in 2- and
y-directions of the Hybrid-ANN scheme with different mesh resolutions are shown in the Fig. 13. The CPU
timings, percentage of the WENO-Z reconstruction, and speedup factors are shown in Table VII. Generally
speaking, the Hybrid-ANN scheme captures the high gradients more accurate than the Hybrid-MR, scheme.

Table VII: The CPU timings, percentage of the WENO-Z reconstruction, and speedup factors (SF) of
the WENO-Z and Hybrid schemes, using mesh resolutions (Top) N x M = 400 x 100 and (Bottom)
N x M = 800 x 200.

N x M WENO Hybrid-MR Hybrid-ANN
seconds seconds  SF percentage seconds  SF percentage
400 x 100 150.8 92.6 1.63 26.5% 75.3  2.00 11.8%
800 x 200 1242 527  2.56 14.3% 465.8 2.67 6.1%

6 Conclusion

In this work, we develop a new edge detector without problem dependent parameter based on a simple back
propagation artificial neural network (ANN), which only contains two hidden layers with {8,4} neurons.
The ANN edge detector has been successfully employed in the image edge detection and the high order
hybrid Compact-WENO (Hybrid) scheme for the solutions of hyperbolic conservation laws respectively. It
can capture the image edges accurately with fewer grid points than the multi-resolution (MR) analysis.
Furthermore, the Hybrid scheme with the new edge detector use similar CPU time to that with the MR
analysis in solving the Euler and shallow water equations with the solutions containing discontinuities. But
the number of non-smooth grid points captured by the new edge detector is only half of that detected by
the MR analysis with a user tunable parameter.
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Figure 13: The Mach 10 double Mach shock reflection problem. (Top) Density p and (middle) Flag, and
(bottom) Flag, identified by the ANN edge detector under mesh resolutiones (left) N x M = 400 x 100
and (right) N x M = 800 x 200 at time ¢ = 0.2.
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Appendix

A Multi-resolution analysis

The general idea of multi-resolution (MR) analysis [10] is to generate a coarser grid of averages of the point
values of a function and measure the differences (MR coefficients) d; between the interpolated values from
this sub-grid and the point values themselves. Given an initial number of the grid points Ng + 1 and grid
spacing Az in the domain [0, 1], we shall consider a set of nested dyadic grids up to level L < logy Ny,

GF={zF, i=0,...,N;}, 0<k<IL, (8)
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where xf = iAxy, with Az, = 28Axg, N = 27Ny and the cell averages of function u at xf

’k—i " u(x)dr
e 9)

k
Ti—1

Let ﬁgi_l be the approximation to ﬂgi_l by a unique polynomial of degree n,z = 2s that interpolates
ﬂf;rl, lI| < s at :L"i-‘;rl, where ¢ = 2s + 1 is the order of approximation .

The approximation error (or multi-resolution coefficients), taking k = 1 for a single-level MR, d; = ﬁgi_l —
@9, , at x;, has the property that if u(z) is a CP~! function, then

d-~{ Azt p<q
v (

, (10)
u-q)Ax({ p>q

where [-] and (-) denote the jump ([f;] = |fi+1 — fi|) and the derivatives of the function (fi(p) = d%f(a:i)),
respectively. The MR coefficient d; measures how close the data at the finer grid can be interpolated by
the data at the coarser grid.

Hence, one can determine the local smoothness of the function at a given point using the MR coefficients
d; and set the MR flag, Flag, at z;, as

(11)

Flag. — 1, |di| > emr Discontinuous,
i = 0, otherwise Smooth,

where €, is the MR tolerance and it is a user tunable parameter. €,,z = 1072 is used in this study without
state otherwise.

B Compact Finite Difference Schemes

The sixth order compact finite difference scheme [13] can be written compactly as
Ag' =Bg+b, (12)

where A and B are the banded coefficient matrices,

0 28 1
1}3 1{3 1/3 —28 0 28 1

A B 1 -1 =28 0 28 1 13
N 1'5 1'5 s ’ T 36Ax o (13)

/ 1§3 { -1 -28 0 28

-1 =28 0

The vector b is
b = L(—9—1 — 2890, ~ 90,0, - , 0, gn, 289N + gn11) " — ! (90,0,0,---,0,0 9§V)T (14)
SGA:I/' ) ) ) ) ) ) 3 ) ) ) ) ) )

where g_1 = g (xg — Az) and gy4+1 = g (rn§ + Ax) are the ghost points.
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C Weighted Essentially Non-Oscillatory Schemes

We briefly review the fifth order WENO-Z nonlinear scheme [6, 2]. The 5-point global stencil S° =
(xi—2,- -+ ,Tit2) is subdivided into three 3-point substencils Sy = (zi4x—2, Titk—1,Titk), (k = 0,1,2). The

fifth degree polynomial approximation IP’?Jr , in the stencil S° is built through the convex combination of
2

three second order interpolation polynomials P?(z) in each substencil Sy, at the cell boundaries T 1.
2

2
]P)?-‘r% - ZkaQ(xH%)’ (15)
k=0

where

p
T5 O
ap=dy 1+ , wp = —— 16
’ "< (ma)) T 1o

Here 75 = |Bp — 2|. The sensitivity and power parameters are e = 107!? and p = 2 respectively. The ideal
weights dj, are dg = %, dy = %, dy = %. The regularity (smoothness) in the substencil is measured by the
(lower order local) smoothness indicators S, which are given by

r—1 T, 1 dl ) 2
po=>artt [ (@) an (17
=1 T,

i—

NI

References

[1] K. Anastasiou, C. T. Chan, Solution of the 2D shallow water equations using the finite volume method
on unstructied triangular meshes. Int. J. Numer. Methods Fluid 24, (1997) 1225-1245.

[2] R. Borges, M. Carmona, B. Costa and W.S. Don, An improved weighted essentially non-oscillatory
scheme for hyperbolic conservation laws, J. Comput. Phys. 227 (2008) 3191-3211.

[3] M. Castro, B. Costa and W. S. Don, High Order Weighted Essentially Non-Oscillatory WENO-Z
Schemes for Hyperbolic Conservation Laws, J. Comput. Phys. 230 (2011) 1766-1792.

[4] B. Costa and W.S. Don, High order Hybrid Central-WENO finite difference scheme for conservation
laws, J. Comput. Appl. Math. 204 No. 2 (2007) 209-218.

[5] B. Costa and W.S. Don, Multi-domain hybrid spectral-WENQO methods for hyperbolic conservation
laws, J. Comput. Phys. 224 (2007) 970-991.

[6] W. S. Don and R. Borges, Accuracy of the Weighted Essentially Non-Oscillatory Conservative Finite
Difference Schemes, J. Comput. Math. 205 (2013) 347-372.

[7] W. S. Don, Z. Gao, P. Li, X. Wen, Hybrid compact-WENO finite difference scheme with conjugate
Fourier shock detection algorithm for hyperbolic conservation laws, STAM J. Sci. Comput. 38 (2016)
A691-AT11.

20



8]

[20]

[21]

[22]

[23]

Z. Gao and W. S. Don, Mapped Hybrid Central-WENQO Finite Difference Scheme for Detonation
Waves Simulations, J. Sci. Comput. 55 (2012) 351-371.

Z. Gao, X. Wen, W. S. Don, FEnhanced Robustness of the Hybrid Compact-WENQO Finite Difference
Scheme for Hyperbolic Conservation Laws with Multi-resolution Analysis and Tukeys Boxplot Method,
J. Sci. Comput. 73 (2017) 736-C752.

A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983)
357-393.

G. S. Jiang and C. W. Shu, Efficient Implementation of Weighted ENO Schemes, J. Comput. Phys.
126 (1996), 202—228.

T. Kohonen, An introduction to neural computing, Neural Networks, 1(1) (1988) 3-16.

S.A. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 No.1
(1992) 16-42.

G. Li, C. Lu and J. Qiu, Hybrid Well-balanced WENO Schemes with Different Indicators for Shallow
Water Equations, J. Sci. Comput. 51 (2012), 527-559.

Y. Niu, Z. Gao, W.S. Don, S.S. Xie and P. Li, Hybrid Compact-WENQO Finite Difference Scheme For
Detonation Waves Simulations, Spectral and High Order Methods for Partial Differential Equations
ICOSAHOM 2014. R. M. Kirby, M. Berzins, J. S. Hesthaven (eds.), Lect. Notes Comput. Sci. Eng.
106 (2015), Springer.

S. Pirozzoli, Conservative Hybrid Compact-WENQO Schemes for Shock-Turbulence Interaction, J. Com-
put. Phys. 178 No. 1 (2002), 81-117.

D. Ray, J. S.Hesthaven, An artificial neural network as a troubled-cell indicator J. Comput. Phys. 367
(2018), 166—-191.

C. W. Schulz-Rinne, Classification of the Riemann problem for Two-dimensional Gas Dynamics, STAM
J. Math. Anal. 24 (1993) 76-88.

D. E. Rumelhart, J. L. Mcclelland, On learning the past tenses of English verbs // Parallel distributed
processing: explorations in the microstructure of cognition, vol. 2. MIT Press, 1986.

K. Shahbazi, J. Hesthaven, X. Zhu, Multi-dimensional hybrid Fourier continuation- WENQO solvers for
conservation laws, J. Comput. Phys. 253 (2013) 209C-225.

C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes,
II, J. Comput. Phys. 83 (1989) 32-78.

C.W. Shu, High order Weighted Essentially Nonoscillatory Schemes for convection dominated prob-
lems, SIAM Rev. 51 No. 1 (2009) 82-126.

O. Vasilyev, T. Lund and P. Moin, A General Class of Commutative Filters for LES in Complex
Geometries, J. Comput. Phys.146 No. 1 (1998) 82-104.

21



[24] S. Vukovic and L. Sopta, ENO and WENO schemes with the exact conservation property for one-
dimensional shallow water equations, SJ. Comput. Phys. 179 (2002) 593-621.

[25] P. Woodward and P. Collela, The numerical simulation of two dimensional fluid flow with strong
shocks, J. Comput. Phys. 54 (1984) 115-173.

[26] Y. L. Xing, C.-W. Shu, High order finite difference WENO schemes with the exact conservation
property for the shallow water equations, J. Comput. Phys. 208 (2005) 206—227.

[27] Q.Q. Zhu, Z. Gao, W.S. Don, X.Q. Lv, Well-balanced hybrid compact-WENQO schemes for shallow
water equations, Appl. Numer. Math. 112 (2017) 65-78.

22



