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Abstract— For successful rehabilitation of a patient after a
stroke or traumatic brain injury, it is crucial that rehabilitation
activities are motivating, provide feedback and have a high
rate of repetitions. Advancements in recent technologies provide
solutions to address these aspects where needed. Additionally,
through the use of gamification, we are able to increase the
motivation for participants. However, many of these systems
require complex set-ups, which can be a big challenge when
conducting rehabilitation in a home-based setting. To address
the lack of simple rehabilitation tools for arm function for
a home-based application, we previously developed a system,
Cellulo for rehabilitation, that is comprised of paper-supported
tangible robots that are orchestrated by applications deployed
on consumer tablets. These components enable different fea-
tures that allow for gamification, easy setup, portability, and
scalability. To support the configuration of game elements
to patients’ level of motor skills and strategies, their motor
trajectories need to be classified. In this paper, we investigate
the classification of different motor trajectories and how game
elements impact these in unimpaired, healthy participants. We
show that the manipulation of certain game elements do have
an impact on motor trajectories, which might indicate that
it is possible to adapt the arm remediation of patients by
configuring game elements. These results provide a first step
towards providing adaptive rehabilitation based upon patients’
measured trajectories.

I. INTRODUCTION

Success of rehabilitation after stroke or traumatic brain
injury depends on three different factors: feedback, repetition
and motivation [1]. With the advancement in computer-
based technologies and interaction modalities in the last
decades, new rehabilitation technologies are designed with
these three factors in mind. In order to improve engagement
and increase the intensity of exercise, new rehabilitation
technologies commonly include game-like elements such as
entertaining graphics, automated difficulty adaptation, and
feedback mechanism [2], [3], [4].

Prominent examples for these systems include virtual
environments, video capture systems, game consoles and
robots. With these new technologies, motor rehabilitation
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Fig. 1: Expected exercise activities during game motions [8].

can be made much more attractive for patients than con-
ventional neuromotor rehabilitation, which is often repetitive
and frustrating [5]; many previous studies agree that patient
motivation can be significantly improved with the use of such
new rehabilitation tools [5], [6], [3]. However, many of these
tools do not address the challenges of home rehabilitation,
such as the re-purposing of rooms, shared devices such as
TV and computer and available space in the home [7], [8].
Current tools typically need a special room or an isolated
space in the therapy center and home with a dedicated
computer or TV, limiting the portability of the system.

To provide more compact and intuitive rehabilitation for
home-therapy, we previously proposed a novel rehabilitation
platform, Cellulo, composed of small-sized, graspable and
haptic-enabled tangible robots. In a typical Cellulo game,
patients move their designated tangible robot(s) while other
robots perform their own, autonomous motions to affect the
patients’ motion. By augmenting the therapy with robotic
technologies such as precise localization and locomotion, we
hypothesized that various aspects of rehabilitation can be
improved [8].

Taking into account the multi-faceted nature of stroke,
and the evidence that not all patients benefit equally from
rehabilitative treatments, it becomes clear that precision
medicine strategies with the goal to tailor the interventions
to the individual patient is promising. In the case of Cellulo,
this can be done by shaping individual patients’ specific
motion trajectories performed during the game; which, if



done according to the patient motion needs during the
respective training sessions, would translate into more fitting
rehabilitation exercises overall [9]. We anticipate that we can
analyze the user motion trajectories in order to understand
their level of motor skills and playing strategies, and use
these to modulate our game elements to drive the user into
the required trajectories.

This paper presents the evaluation of 33 unimpaired par-
ticipants’ motion trajectories while playing games on our
rehabilitation platform with varying configurations. The goal
of these evaluations is to determine how different config-
urable game elements affect the user’s motion trajectory
and to examine how user performance is related to these
trajectories. We show that it is indeed possible to adapt the
arm remediation of patients by configuring certain elements
of our game, and lay the foundation for future adaptive
gamified exercise platforms designed for participants with
chronic upper limb impairment.

In the future, we aim to adapt these game elements to
also encourage the patients to do the required arm motions.
By learning from observations of the patient’s trajectory, we
aim to subsequently produce new patient-specific physiother-
apeutic tasks and configuration suggestions.

II. GAMIFIED REHABILITATION PLATFORM
WITH TANGIBLE ROBOTS

Our gamified rehabilitation platform consists of tangible
Cellulo robots and different mazes on paper sheets designed
with a theme close to the Pacman game [8]. Cellulo is a
handheld, small-sized, mobile, haptic robot that operates on
printed paper sheets. The platform provides fast and accurate
localization of many such robots so we can deploy and log
data to record all the interactions during the game. The
activity itself is printed on paper sheets that can feature any
desired graphical game elements defined as active zones.

The Cellulo for rehabilitation project aims to provide
practical, easy to use and intuitive gamified upper-arm reha-
bilitation by using these tangible robots as game agents and
objects. Our first game, Pacman, is designed iteratively with
participation of stroke, brachial plexus and cerebral palsy
patients (18 in total) and seven therapists in four different
therapy centers [8].

A number of game elements are designed for tuning speed,
accuracy, range of motion and challenge level; these are:
(1) Different maps with various mazes or sizes, (2) One or
two ghost(s) robot(s) chasing the Pacman, (3) Speed of the
chasing robot(s) and (4) Optional rules: (4.a) Turn rule where
the user can only collect the fruits by rotating the robot on
top of them, (4.b) Cross border penalty rule where the user
loses the last eaten fruit when he/she crashes into a wall, (4.c)
Haptic feedback rule to provide haptic informative assistance
when the user crashes into a wall [8].

Since the map is designed according to the possible range
of motion of the human, the basic stroke rehabilitation exer-
cise motions, namely elbow flexion and extension, shoulder
abduction and adduction, grasping and wrist ulnar and radial
deviation are expected during gameplay (see Fig. 1)

III. ANALYSIS OF MOTION TRAJECTORIES

We collected data from 33 unimpaired participants aged
between 18 and 80. All participants took part in two sessions
in our laboratory at EPFL Lausanne Campus or Geneva Cam-
pus Biotech after obtaining their informed written consent.
Each participant played 52 games on three different maps
within two consecutive days of experiments with changing
game configurations and increasing difficulty per map.

There are six targets in the game that have been gamified
as apples for the Pacman to eat. The user is expected to
collect all six apples as quickly and precisely as possible
to finish the game. In our game, precision is defined as not
crashing into the maze walls. The ghost robot(s) chase(s)
the user’s robot during the game in order to catch it; all
previously collected apples are lost if caught. The game then
continues until six apples are eventually collected.

Since this data would be a baseline for rehabilitation
purposes, we began with very easy games and increased
the difficulty by introducing a new game element one at a
time. Each participant played with three different maps with
changing orders. These are the small yellow (42cm x 62cm),
large orange (42cm x 96cm) and large green maps (42cm x
96cm), which will henceforth be referred to as Map Y, Map O
and Map G respectively.

Each participant played 27 games the first day1 and 26
games the second day, with 11 different configurations. The
speed of the ghost is set to 20 mm/s for the very first game
of the each day, which is set to 40, 60 and 60 mm/s for the
next three games. Next, haptic feedback is turned on and two
more games with 60 mm/s are played. After that, the penalty
rule is introduced and two more games are played with 60
and 100 mm/s ghost speed. Then, the turn rule is introduced
and two more games with 60 and 100 mm/s ghost speed.
Afterwards, a second ghost is introduced and three more
games are played with 60, 100 and 100 mm/s. Then, the
map is changed and all above configurations (except 20 and
40 mm/s ghost speed) are repeated with this second map.
After this repetition, two extra games are played with the
hardest configuration (penalty rule, 100 mm/s speed, second
ghost and turn rule).

For the goal of providing an adaptive game platform,
our method is to use the trajectory data to estimate the
user strategy, which will allow us to choose the appropriate
counter strategy for the ghosts to make the game more
adaptive to the level of the user. Game movements are time-
series of user’s Pacman robot coordinates, recorded from
the start of the each game until collecting the last apple.
During the game, position (x,y) and orientation of each
robots are recorded with close to 100Hz frequency and sub-
mm accuracy.

Dynamic Time Warping (DTW) is a well known distance
method used in trajectory analysis in human activity monitor-
ing [10]. This makes DTW particularly suitable for Pacman
play data since it allows to measure the similarity between

1The first day was closed with an extra easy configuration game to
measure any overnight learning effect, which is not discussed here.
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Fig. 2: Example game trajectories in blue colored clusters
(light to dark denotes start to end).
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Fig. 3: Dendogram of clusters in Map Y.

temporal sequences without being affected by speed differ-
ences between participants, or by intervals when participants
remained idle in one location.

For trajectory classification, namely the model construc-
tion for predicting the class labels of moving objects based on
their trajectories, a number of methods have been reported in
the literature. Many of these methods use the shapes of whole
trajectories for classification, leading to limited classification
capability when discriminative features appear at parts of
trajectories or are not relevant to the shapes of trajectories
[11]. For this reason, we choose hierarchical clustering [12]
as it captures the lower-level trajectory-based features using
movement patterns.

Pacman gameplay trajectories typically include paths con-
taining several backward movements depending on the ghost
behaviours and positions. During several gameplays, users
learn shortest paths in the maps for collecting apples in an
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Fig. 4: Example game trajectories in Map G corresponding
to 3 different participants (light to dark denotes start to end).
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Fig. 5: Example game trajectories in Map Y corresponding
to 3 different participants (light to dark denotes start to end).

optimized manner and without being caught by the ghosts.
Since each map has different maze type and size, cluster-

ing is done per map. One example dendogram representing
clusters of map Y can be seen in Fig. 3. It can be observed
that hierarchical clustering provides some clusters with less
distance difference such as yellow and purple clusters in Map
Y, which mostly corresponds to shorter paths on the maps.
Furthermore, the large clusters marked with blue in each map
correspond to paths having several backward motions, more
directional changes within the maze and passes through the
same maze parts several times. Trajectories within the blue
cluster therefore include more motion. An example trajectory
within the blue cluster of each map is shown in Fig. 2.
Finally, some example trajectory paths of other clusters can
be seen in Fig. 4 and Fig. 5. In these figures, the direction
of the trajectory is indicated with increasingly darker colors.

IV. RESULTS

A. Relationship Between Trajectory and Performance

Performance of a user in a given game is calculated using
the total time to finish the game (collecting 6 apples) and the
mean deviance from the middle of the path while moving
along the maze, as follows: 1/(Ttotal × Dmean). These
two metrics also take into account the time lost by making
accuracy related errors, namely losing the last eaten apple
due to the border crossing penalty rule, time lost by being
caught by a ghost and the speed of the user. Fig. 6 shows the
relationship between game performances and trajectory types
for each map. Having longer paths, the blue cluster of each
map has the one of the lowest performances as expected.

B. Effect of Game Elements on Trajectory Distribution

Several elements can be adapted within a game setting that
will change the way users travel through the map (different
strategies). This section will only focus on the effects of the
number of ghosts, speed of the ghost(s) and map type on
users’ trajectories.

1) Effect of number of ghosts: Fig. 7 shows the effect
of ghost number to cluster distributions for each map: The
proportion of blue cluster increases in Map G and Map O
with the addition of the second ghost, which could suggest
that users have less defined and less shortest path strategies
when the complexity of the game increases. Concerning Map
Y, the proportion of blue cluster remains similar since the
small size of this map internally inhibits emergence of clear
strategies, as the ghost can always be found near the user’s
position.

If the results are interpreted by focusing only on the other
colors than blue, it can be observed that some dominant
cluster sizes change with increasing number of ghosts. For
instance, in Map G, dark-green and light purple clusters have
the highest impact in 1 ghost condition, which are largely
replaced by the yellow cluster in 2 ghosts condition. In
order to build a deeper understanding of the reason behind
such changes, visually examining some trajectories within
these clusters becomes highly informative: Fig. 8 shows
that the clusters of games having only one ghost involve
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Fig. 6: Game performance v.s. clusters. We observe that the blue cluster has one of the lowest performances in each map,
as expected.
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Fig. 8: Dark green, light purple and yellow cluster trajectories
of Map G (light to dark denotes start to end).

trajectories where the user is travelling through the middle
of the map vertically (see dark green, light purple). On
the other hand, in the yellow cluster, users chose to travel
around the map borders with more horizontal motions to
be away from two ghosts chasing them. Similar horizontal
movement tendencies are also seen in the clusters of other
maps that have increased percentage with 2 ghosts condition.
This shows that adding more ghost to the game can increase
the probability of having wider shoulder motions.

This result suggests that in the future, looking more in
detail into the nature of trajectory clusters may help us to
extract further results in what the clusters mean in a kine-
matic or strategic sense, e.g. favouring change in direction,
favoring easy v.s. difficult target to pick first etc.

2) Effect of speed increase: A number of game configu-
ration transitions during the experiment induces ghost speed
increase while other rules in the configuration stay the same.
The effect of some of these transitions are shown in Fig. 9.

Fig. 9 left part shows the cluster distributions in 20, 40
and 60 mm/s ghost speeds. 20 mm/s belongs to the very first
game of each day with a new map, which naturally results
in higher exploration tendency, which can be seen as higher
blue cluster percentage. As the learning of the map increases
through time (while the ghost speed increases from 20 to 40
and then 60 mm/s), participants may naturally move towards
clusters with shorter path trajectories. This effect is visible as

generally decreasing blue cluster impact over time. However,
since learning and speed increase are jointly affecting the
clusters, it cannot clearly be said which of these two factors
has the greater impact, or whether the speed increase has a
significant effect in decreasing the blue cluster impact.

When the speed is increased while there are two ghosts in
the game, the proportion of blue cluster in Map Y becomes
approximately twice as much of the slower speed, showing
more increase compared to the one ghost condition. This
suggests that two ghosts with high speed in the small maze
can push the user to move more and prevent winning the
game with a short path.

We summarize our interpretations of the speed effect as
follows: The speed increase may result in more motion if
the speed is high enough to push the user to run away from
the ghosts. 20, 40 and 60 mm/s might not be challenging for
unimpaired users, seeing that they can come up with short
path trajectories with less motion over different game runs.
However, increasing speed to 100 mm/s, which is observed
to be challenging even for unimpaired users, generally results
in more motion.

3) Effect of map type: The different types of maps are
designed according to the possible range of motion of slightly
and moderately impaired patients for future use, and are
expected to result in different strategies when played; Fig. 10
shows the cluster distributions with respect to these types.
The blue cluster is more present in the Map Y since its
small size makes it more difficult for the users to follow a
strategy without being disturbed by the ghost(s).

In the Map O, we can see that no clusters (except the
blue one) seem to clearly arise contrary to the Map G (the
pink and dark green clusters together represent more than
30% of the distribution) or to the Map Y (the light blue
and the yellow cluster together represent around 25% of the
distribution). This may be due to the complexity of the Map
O, that allows a higher number of possible strategies. This
complexity can be explained in two ways: (1) Around the
path crossings, there are 3 or 4 possible directions to follow,
which increase the variety of paths compared to following
only corridors or corners. These crossings also help ghosts to
find shorter paths to reach the Pacman. Only Map O includes
such crossings with 4 connections. (2) Initial ghost positions
in Map O have shorter distance paths to the initial position
of the Pacman compared to the other maps. In Map Y and G,
ghosts have to turn around a wall after starting their motion
horizontally, while in Map O they move vertically without
having a barrier.
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V. CONCLUSION AND DISCUSSIONS

In the context of upper-arm home rehabilitation therapy,
non-invasive and accurate metrics that can measure the
effectiveness of rehabilitation can be crucial to adapt motor
learning and motor rehabilitation to the individual patient.
In this paper, we showed that the analysis of end-effector
motion trajectories allow to observe performance differences
and in particular the effect of game elements on motion
performance.

Trajectories in this game can reflect both cognitive and
motor abilities. A sudden trajectory change could be planned
as part of a player’s strategy to avoid the chasing ghost,
or be attributed to motor limitations. This work was done
as a first step towards building a data-driven cognitive and
motor model of the players. This model would then be
used to adapt the difficulty of the cognitive aspect (to
keep the game challenging and engaging) and the motor
aspect (to make the patient work on the specific motion
that the therapist recommends). As part of this adaptation,
we described several game elements, such as the number of
ghost and their speed that can be tuned to reinforce the use
of certain types of trajectory. This work will be improved by
defining gesture matches between expected motion types and
trajectories to provide more precise adaptation for expected
exercise activities.

The main limitation of this study is that it was conducted
with unimpaired participants rather than patients with neuro-
logical injuries, which may limit the conclusions for patients
and have to be evaluated in patient studies. Therefore, as
a future study, we will verify these baseline results with
impaired patients in need of upper limb motor rehabilitation.

Our longer term plans include designing a real-time diffi-
culty adaptation algorithm with trajectory expectation and
evaluating it with participants with neurological injuries.
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[4] Maja Goršič, Minh Ha Tran, and Domen Novak. Cooperative cooking:
A novel virtual environment for upper limb rehabilitation. In 2018 40th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 3602–3605. IEEE, 2018.

[5] C Bryanton, J Bosse, Marie Brien, Jennifer Mclean, Anna McCormick,
and Heidi Sveistrup. Feasibility, motivation, and selective motor
control: virtual reality compared to conventional home exercise in
children with cerebral palsy. Cyberpsychology & behavior, 9(2):123–
128, 2006.

[6] Bruno Bonnechère, Bart Jansen, Lubos Omelina, Jan Van Sint, et al.
The use of commercial video games in rehabilitation: a systematic
review. International journal of rehabilitation research, 39(4):277–
290, 2016.

[7] Lesley Axelrod, Geraldine Fitzpatrick, Jane Burridge, Sue Mawson,
Penny Smith, Tom Rodden, and Ian Ricketts. The reality of homes fit
for heroes: design challenges for rehabilitation technology at home.
Journal of Assistive Technologies, 3(2):35–43, 2009.

[8] Arzu Guneysu Ozgur, Maximilian J. Wessel, Wafa Johal, Kshitij
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