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Abstract:The objective of this series is to studymetric geometric properties of disjoint unions of Cayley graphs
of amenable groups by group properties of the Cayley accumulation points in the space of marked groups.
In this Part II, we prove that a disjoint union admits a �bred coarse embedding into a Hilbert space (as a
disjoint union) if and only if the Cayley boundary of the sequence in the space of marked groups is uniformly
a-T-menable. We furthermore extend this result to ones with other target spaces. By combining our main
results with constructions of Osajda and Arzhantseva–Osajda, we construct two systems of markings of a
certain sequence of �nite groups with two opposite extreme behaviors of the resulting two disjoint unions:
With respect to onemarking, the space has property A. On the other hand, with respect to the other, the space
does not admit �bred coarse embeddings into Banach spaces with non-trivial type (for instance, uniformly
convex Banach spaces) or Hadamard manifolds; the Cayley limit group is, furthermore, non-exact.
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1 Introduction
The main topics of this paper are the �bred coarse embeddings of disjoint unions of Cayley graphs and equiv-
ariant coarse embeddings of groups. Before proceeding to these two concepts, we �rst recall the de�nition
of (genuine) coarse embeddings. By generalized metrics, we mean metrics that possibly take the value +∞.
A basic example of generalized metric spaces is constructed as follows. For a sequence of metric spaces
(Xm , dm)m∈N, we de�ne a generalized metric d on ⊔m∈N Xm by d(x, y) = dm(x, y) if x, y ∈ Xm for some m
and d(x, y) = +∞ otherwise. We call the resulting generalized metric space (⊔m∈N Xm , d) the disjoint union,
and simply write it as⊔m∈N Xm.

De�nition 1.1. Let (X, dX) be a generalized metric space and M be a non-empty class of (genuine) metric
spaces.

(1) Let (M, dM) be a (generalized) metric space. A (possibly discontinuous and possibly non-injective) map
f : X → M is said to be a coarse embedding, if there exist two non-decreasing functions ρ, ω : [0,∞) →
[0,∞) that are proper (namely, limr→+∞ ρ(r) = limr→+∞ ω(r) = +∞) such that for all x1, x2 ∈ X such that
dX(x1, x2) < +∞,

ρ(dX(x1, x2)) ≤ dM(f (x1), f (x2)) ≤ ω(dX(x1, x2))
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holds true. The ρ, ω, (ρ, ω) are, respectively, called a compression function, an expansion function and a
control pair for f .

(2) We say that X admits a coarse embedding intoM if there existM ∈M and a coarse embedding f : X → M.
(3) We say the pair (ρ, ω) of two non-decreasing proper functions [0,∞)→ [0,∞) is a control pair for X into

M if there existM ∈M and a coarse embedding f : X → M such that (ρ, ω) is a control pair for f . Denote
by CPM(X) the set of all control pairs for X intoM.

(4) If X = G is a marked group (with the metric dG; see Subsection 3.1), we write CPM(X) as CP*M(G) in order
to distinguish it from the set CP]

M
(G) of equivariant control pairs; compare with De�nition 3.10.

We make a remark that our convention on coarse embeddability of generalized metric spaces, as in (i)
above, is slightly non-standard. More precisely, we impose no condition on any pair of points with in�nite
distance to formulate coarse embeddabilty. This is because our model example of generalized metric spaces
is the disjoint unions of an in�nite family of connected graphs; in that case, it is natural to put no conditions
on pairs of two vertices in distinct components.

The notion of �bred coarse embeddingswas introduced by Chen–Wang–Yu [17]. This is aweakening of the
(genuine) coarse embeddability; seeRemark 3.6. In this paper, sincewe consider thedisjoint unionof possibly
in�nite graphs, we relax the condition on exceptional sets, and call the modi�ed notion that of �bred coarse
embeddings as a disjoint union; see De�nition 3.4. This new notion coincides with the original notion of [17]
for a coarse disjoint union of �nite graphs; see Remark 3.5. In [17], they proved that if a coarse disjoint union X
of �nite graphs of uniformly bounded degree admits a �bred coarse embedding into a Hilbert space, then the
maximal Baum–Connes conjecture holds for X. Furthermore, Chen–Wang–Wang [16] proved that if X above
admits a �bred coarse embedding into a complete, connected and simply connected Riemannian manifold
with non-positive sectional curvature (it is called an Hadamard manifold), then the coarse Novikov conjec-
ture holds for X. M. Finn-Sell [24] studied a coarse disjoint union of �nite connected graphs with uniformly
bounded degree, in relation with the associated boundary groupoid, that admits a �bred coarse embedding
into a Hilbert space; he deduced the coarse strong Novikov conjecture for such a metric space.

The concept of equivariant coarse embedding is de�ned for �nitely generated groups in terms of isometric
actions. It relates to Gromov’s a-T-menability if the target space is a Hilbert space, and to a-M-menability in
general cases; see De�nition 3.10.

We employ the space of (k-)marked groups G(k) to study a relationship between these two notions. This
space was intensively studied by R. I. Grigorchuk [25, Section 6], and it is the space of (equivalence classes
of) all pairs of a group and a k-generating ordered set. The space G(k) is equipped with the topology of local
convergence as rooted diagrams. This topology is sometimes called the Cayley topology, and it is compact and
metrizable. We will brie�y recall G(k) in Subsection 3.1. For a sequence (Gm)m∈N, we consider the following
two objects:

• The disjoint union ⊔m∈N Cay(Gm) of Cayley graphs, which is a generalized metric space without group
structure.

• The Cayley boundary ∂Cay(Gm)m∈N(⊆ G(k)), de�ned as follows.

De�nition 1.2. The Cayley boundary ∂Cay(Gm)m∈N is de�ned as the set of all accumulation points of
(Gm)m∈N in G(k) in the Cayley topology. Namely, ∂Cay(Gm)m∈N is de�ned as the set of all points in G(k)
that appear as the Cayley limit of some Cayley convergent subsequence (Gml )l∈N of (Gm)m∈N.

It forms a non-empty compact set, consisting of marked groups G∞ ∈ ∂Cay(Gm)m∈N.

De�nition 1.3. Let K be a non-empty subset of G(k) (k ∈ N≥1). For a non-empty class of metric spaces M,
we say that K is uniformly a-M-menable if it admits equivariant equi-coarse embeddings intoM. That means,
there exists a common pair (ρ, ω) of non-decreasing proper functions [0,∞) → [0,∞) such that for every
G ∈ K, (ρ, ω) is an equivariant control pair from G intoM. In short, it holds that⋂

G∈K
CP

]
M
(G) ≠ ∅;
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see De�nition 3.10 for related de�nitions.

Our main result, Theorem A, requires several technical terminologies for the statement. In this intro-
duction, instead of stating it, we exhibit a corollary to Theorem A, Theorem 1.4. It, in particular, relates �-
bred coarse embeddability into a Hilbert space (as a disjoint union) of the disjoint union of Cayley graphs of
amenable marked groups to uniform a-T-menability of the Cayley boundary. We refer the reader to Section 2
for the statement of Theorem A.

Theorem 1.4 (See Corollary B formore detailed statements.). Let (Gm)m∈N be a sequence of amenablemarked
groups in G(k). The disjoint union ⊔m∈N Cay(Gm) admits a �bred coarse embedding into a Hilbert space as a
disjoint union if and only if ∂Cay(Gm)m∈N is uniformly a-T-menable.

More generally, for �xed q ∈ [1,∞),⊔m∈N Cay(Gm) admits a �bred coarse embedding into Lq, that means
the Lebesgue Lq-space Lq([0, 1],R), if and only if ∂Cay(Gm)m∈N is uniformly a-Lq-menable.

Some work has been done by other researchers before our results in the context of box spaces for an RF
(Residually Finite) group. If a �nitely generated in�nite group G with a �nite generating set S admits a chain
(Nm)m∈N, Nm+1 6 Nm, of normal subgroups of �nite index in G such that ⋂m∈N Nm = {eG}, then the box
space of G is de�ned by

�G = �(Nm)mG =
∐
m∈N

Cay(G/Nm; S mod Nm),

where∐m denotes a coarse disjoint union (see [43, De�nition 2.17.(2)] and Subsection 3.2). Chen–Wang–Wang
[15] showed that �G admits a �bred coarse embedding into a Hilbert space if and only if G is a-T-menable.
They also showed that for a metric spaceM, if G is a-M-menable, then�G admits a �bred coarse embedding
intoM. The present paper supplies several examples that admit �bred coarse embeddings intoHilbert spaces,
but that do not admit genuine coarse embeddings; compare with Example 9.10.

Here we stress that the following points are visible only after extending the framework from the class of
box spaces to our general class; see the de�nitions of RF/LEF/LEA groups in De�nition 3.2.

(a) The Cayley boundary ∂Cay(Gm)m may consist of in�nitely many points.
(b) Even when ∂Cay(Gm)m is a singleton {G∞}, the Cayley limit group G∞ = limm Gm is in the class of LEA

(Locally Embeddable into Amenable groups) group when Gm, m ∈ N, is amenable; it is in the class of
LEF (Locally Embedabble into Finite groups) group when Gm, m ∈ N, is furthermore �nite. In general,
the implications

RF =⇒ LEF =⇒ LEA

hold. It is well known that none of the implications can be reversed; see, for instance, [43, Subsection 2.2]
for some concrete counterexamples.

(c) Coarse properties of ⊔m∈N Cay(Gm , Sm) may be considerably a�ected by the choice of the system (Sm)m
of generators of Gm, even when it might look a slight change.

To illustrate point (c) above, we study the following example. Here we set

Nodd = {3, 5, 7, . . .}.

(This set denotes the set of odd integers at least 3; this is for a technical reason to avoid using 2m + 1 every-
where in the example below.)

Example 1.5. Fix a prime p. For n ∈ N≥1, denote by Fpn the �nite �eld of order pn. It is well known that the
multiplicative groupF×pn is cyclic; for each p and each n, we �x a generator tn = tp,n ∈ Fpn of it. Fix a sequence
(nm)m∈Nodd of positive integers such that limm→∞ nm = +∞.

Let Gm = SL(m, Fpnm ). Then for m ∈ Nodd, we consider the following two systems (Sm)m∈Nodd , (Tm)m∈Nodd

of generators of Gm.
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• For m ∈ Nodd, Sm = (σ(m), υ(m), τ(m)). Here

σ(m) =



1 1 0 · · · 0

0 1 0
...

... 0 1 . . . ...

... . . . . . . 0
0 · · · · · · 0 1


, υ(m) =



1 tnm 0 · · · 0

0 1 0
...

... 0 1 . . . ...

... . . . . . . 0
0 · · · · · · 0 1


,

and

τ(m) =



0 · · · · · · 0 1
1 0 0

0 1 0
...

... . . . . . . . . . ...
0 · · · 0 1 0


.

De�ne X′ = X′p,(nm) =
⊔
m∈Nodd

Cay(Gm; Sm).
• For m ∈ Nodd, Tm = (σ(m), σ′(m), υ(m), τ(m)). Here σ(m), υ(m) and τ(m) are the same as above, and σ′(m) =

tσ(m) is the transpose of σ(m).
De�ne Y ′ = Y ′p,(nm) =

⊔
m∈Nodd

Cay(Gm; Tm).

For the proof of the fact that Sm and Tm are, respectively, markings of Gm, see [43, Remark 5.5].
For these X′ and Y ′, we have the following contrast.

Corollary 1.6 (See Corollary 2.2 for more detailed statements.). Let X′ and Y ′ be as in Example 1.5.

(1) ([43, Remark 5.10])The space X′ enjoys property A ofG. Yu [63]. In particular, X′ admits a coarse embedding
into every in�nite dimensional Banach space; see the discussion below.

(2) The space Y ′ does not admit a �bred coarse embedding as a disjoint union into Btype>1, the class of all
Banach spaces with (linear, also known as Rademacher) type > 1; see (4) of Example 4.11.

For the �rst item, see also [43, Corollary B and Proposition 2.22] in our Part I paper. In the current paper,
we do not recall the de�nition of property A; see [63] or [43, De�nition 2.19]. Yu [63] showed that property A
implies the coarse embeddability into a Hilbert space. By the Dvoretzky theorem [10, Chapter 12] and a theo-
remofM. I. Ostrovskii [50], it then follows that a locally �nite generalizedmetric spacewith property A admits
a coarse embedding into every in�nite dimensional Banach space. Thus we obtain the second assertion of (1)
above. At the other end of the spectrum, by (2), the space Y ′ above does not admit a �bred coarse embedding
as a disjoint union into a large class of Banach spaces, such as uniformly convex Banach spaces (see (7) of
Example 4.11 for the de�nition).We refer the reader to [59] and [10] as treatises on geometry of Banach spaces.

We investigate phenomena as in point (c) to a greater extent by employing standard (restricted) wreath
products G o H; see Subsection 8.1 for the de�nition. By making use of the absorption trick, observed by
L. Bartholdi and A. Erschler [7, Lemma 6.13] (we explain it in Subsection 8.2), we obtain the following ex-
treme example, which relates to non-exactness of groups. See [41] and [40] for further developments in this
direction; there, the �rst-named author constructed sequences of �nite groups and two systems of markings
of themwith respect to which the two Cayley limit groups have considerably contrasting group properties. In
these papers, we focus on group properties of �nitely generated dense subgroups of a pro�nite group. How-
ever, the reader may be able to construct examples of two box spaces (or two disjoint unions of �nite Cayley
graphs) out of the work in [41] and [40], which illustrate the point (c) above.

Theorem 1.7 (See Theorem C for the detailed statement.). There exist a sequence of �nite groups (G̃n)n∈N with
limn→∞ #(G̃n) = ∞ and d ∈ N such that the following holds true: There exist three systems (Sn)n, (Tn)n and
(Un)n of d-markings of G̃n such that the following hold true:

(1) The sequence ((G̃n; Sn))n∈N converges in the Cayley topology to an amenable group.
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(2) The sequence ((G̃n; Tn))n∈N converges in the Cayley topology to a groupwithout property A. In other words,
it is a non-exact group. The Cayley limit group is, however, a-T-menable.

(3) The sequence ((G̃n;Un))n∈N converges in the Cayley topology to a non-exact group; in addition, the Cayley
limit group is not a-M-menable forM = Btype>1.

In Theorem 1.7, we employ a constructions of D. Osajda [49] of an RF non-exact group. More precisely,
we use the LEF property for that non-exact group. This part of [49] is built on earlier work of Osajda [48] and
Arzhantseva–Osajda [3]; see the �rst part of Subsection 9.2. See also Remark 9.5 for item (2) above.

Three examples as in Theorem 1.7 provide three disjoint unions⊔
n
Cay(G̃n : Sn),

⊔
n
Cay(G̃n : Tn) and

⊔
n
Cay(G̃n : Un),

whose coarse geometric properties are noteworthily di�erent to each other; see discussions below Theorem C.
It may indicate that, beyond the world of box spaces, it is no longer reasonable to write disjoint unions as
‘⊔n G̃n’ without expressing markings.

In the results above, we furthermore consider classes of non-linearmetric spaces, such as certain classes
of CAT(0) spaces. See Section 2 for the precise statements in the full generality.

We, moreover, observe that point (a) above is striking in the study of �bred coarse embeddings: Unlike
amenability and property (T), uniformity is not automatic for a-M-menability. In what follows, we explain
what we mean by that. For a non-empty compact set K of the space of k-marked groups, if each element in K
is amenable (as a group), then there is a uniform estimate on Følner-type functions of all marked groups in K;
if each element in K has Kazhdan’s property (T) (as a group), then there is a uniform estimate on the Kazhdan
constants of all marked groups in K. See, respectively, [43, Proposition 3.4] and [42, Proposition 5.1], for the
precise statements of the two assertions above. On the other hand, in the setting above, even if each element
in K is a-M-menable, we observe that there is in general no uniform estimate on equivariant control pairs of
marked groups in K. Owing to this observation, we answer the question of Yu (in private communication)
which asks whether the �bred coarse embeddability into a Hilbert space is closed under taking �nite direct
products. The answer is that it is almost never true for (coarse) disjoint unions:

Proposition 1.8. Let (Γm)m∈N and (Λn)n∈N be two sequence of connected graphs of uniformly bounded degree.
Let X1 =

⊔
m∈N Γm and X2 =

⊔
n∈N Λn. Endow X1 × X2 with the structure of a disjoint union

X1 × X2 =
⊔

m,n∈N
(Γm × Λn),

where Γm × Λn is equipped with the `1-metric from dΓm and dΛn . Let M be a non-empty class of metric spaces
such that UP(M) ⊆M; see Subsection 4.2 for the symbol UP(M).

Then X1 × X2 admits a �bred coarse embedding as a disjoint union into M only if X1 and X2 both admit
(genuine) coarse embeddings into M. In particular, this assertion applies to the case where M = Hilbert, that
means, the class of all Hilbert spaces.

If all Γm and Λn are �nite, then we may replace disjoint unions above with coarse disjoint unions. In this
case, the product above is equivalent to the product as metric spaces and �bred coarse embeddings may be
taken in the original sense.

The argument for the proof of Proposition 1.8 provides the following exotic example as well; see also
Theorem D for another example.

Theorem 1.9. There exists a sequence (Γl)l∈N of �nite graphs of uniformly bounded degree such that all of the
following hold true.

(1) The sequence (Γl)l forms an expander family; see De�nition 9.6.
(2) The disjoint union ⊔l∈N Γl does not admit a �bred coarse embedding as a disjoint union into CAT(0)<1,

that means, the class of complete CAT(0) space with Izeki–Nayatani invariant strictly less than 1; see Def-
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inition 4.12. Neither does it admit a �bred coarse embedding as a disjoint union to Banach spaces that are
sphere equivalent (see below) to a Hilbert space.

(3) There exists a complete CAT(0) space M such that⊔l∈N Γl admits a biLipschitz embedding into M, namely,
it admits a coarse embedding with control pair (ρ, ω), where ρ and ω are both linear functions.

Here two Banach spaces are said to be sphere equivalent if there exists a bijection Φ between the unit
spheres such that Φ and Φ−1 are both uniformly continuous; see [39] for details. Many reasonable CAT(0)
spaces, includingHilbert spaces, all Hadamardmanifolds and all Euclidean buildings associatedwith simple
algebraic groups, belong to the class CAT(0)<1; see a paper of T. Toyoda [61] for other examples of elements
in CAT(0)<1.

In Section 2, we present the precise statements of our main results. In the last part of Section 2, we sketch
the idea to prove our main result (Theorem A); there we in addition explain relationships to relevant work by
other researchers, and the organization of the current paper.

Notation and Conventions:
We use G for a (non-marked) group and G for a marked group. We write the group unit of G as eG. A �nite
generating set S ofG is regarded as anordered set (sometimes anorderedmulti-set) S = (s1, s2, . . . , sk) so that
(G; S) is seen as a marked group. A marked group G = (G; S) is said to be �nite (respectively, amenable, and
a-T-menable) if so is G. For k ∈ N≥1, we denote by Fk the free k-marked group, namely, Fk = (Fk; a1, . . . , ak).
Here (a1, . . . , ak) denotes a free basis of Fk. For R ∈ R≥0, let bRc denote the integer part of R. For m ∈ N≥1,
let [m] = {1, 2, . . . ,m}. We use the terminology isometries for surjective ones; we use geodesics for minimal
ones, namely, a geodesic from y ∈ M to z ∈ M is an isometric embedding c : [0, d(y, z)] → M. We always
exclude the empty-set from metric spaces. For a metric spaceM, we write the class {M} consisting only ofM
as M for short. As mentioned in the introduction, we use the symbol

Nodd = {3, 5, 7, . . .}

for the set of odd integers at least 3. (This is a non-standard notation; nevertheless, we use it for simplicity of
description.)

2 Precise statements of main results and the organization of this
paper

In this section, we collect our main results for the reader’s convenience. Some of them require several termi-
nologies for the statements. We suggest the reader �rst cast a brief glance at this section to obtain a feel for
the main theorems in the present paper, and then proceed to subsequent sections. He/she may look back on
this section to recall the precise statement of some result when diving into the proof. In the last part of this
section, we describe the organization of the present paper.

To state Theorem A, we need to formulate several operations on classes of metric spaces:

M 7→ UP(M), Fq(M), FSq(M) and `q(M), for q ∈ [1,∞).

See Subsection 4.2, and Subsections 4.4 and 4.5, respectively, for the de�nitions and examples. See also Def-
initions 3.4 and 3.10, respectively, for CP�b and CP].

TheoremA (Main Theorem). LetM be a non-empty class of metric spaces. Let (Gm)m∈N be a sequence in G(k)
(k ∈ N≥1).
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(i) (1) Assume that all Gm, m ∈ N, are �nite. Then, for every q ∈ [1,∞), the following holds true: If⊔
m∈N Cay(Gm) admits a �bred coarse embedding intoM as a disjoint union, then ∂Cay(Gm)m∈N is uni-

formly a-Fq(M)-menable.
Moreover, it holds that for every q ∈ [1,∞),

CP�b
M

(⊔
m
Cay(Gm)

)
⊆

⋂
G∞∈∂Cay(Gm)m

CP
]
Fq(M)(G∞).

(2) Assume that all Gm, m ∈ N, are amenable. Assume moreover that

• either there exists q ∈ (1,∞) such that for every M ∈M, there exists an element L in Fq(M) that is
uniquely geodesic, see De�nition 4.2, or

• the classM consists only of Banach spaces (with no restriction on q ∈ [1,∞)).

Then for every such q in the �rst case (respectively, for every q ∈ [1,∞) in the second case) the fol-
lowing holds true: If⊔m∈N Cay(Gm) admits a �bred coarse embedding intoM as a disjoint union, then
∂Cay(Gm)m∈N is uniformly a-FSq(M)-menable.
Moreover, it holds that for every such q above,

CP�b
M

(⊔
m
Cay(Gm)

)
⊆

⋂
G∞∈∂Cay(Gm)m

CP
]
FSq(M)(G∞).

(ii) For every q ∈ [1,∞), the following holds true: If the Cayley boundary ∂Cay(Gm)m∈N is uniformly a-M-
menable, then the disjoint union⊔m∈N Cay(Gm) admits a �bred coarse embedding into `q(M) as a disjoint
union.
Moreover, it holds that for every q ∈ [1,∞),

⋂
G∞∈∂Cay(Gm)m

CP
]
M
(G∞) ⊆ CP�b

`q(M)

(⊔
m
Cay(Gm)

)
.

If (Gm)m∈N is a convergent sequence, then we may replace `q(M)with the original classM in the assertions
above; in that case, it holds that

CP
]
M
(G∞) ⊆ CP�b

M

(⊔
m
Cay(Gm)

)
,

where G∞ is the Cayley limit group of (Gm)m.

Theorem A, in particular, applies to the case whereM = Hilbert, the class of all Hilbert spaces. Thus we
obtain the former half of Theorem 1.4 from Theorem A. More generally, we have the following corollary. See
Examples 4.11 and 4.13 for main examples of the classM in the current paper.

Corollary B. Let (Gm)m∈N be a sequence of amenablemarked groups in G(k).

(1) The disjoint union⊔m∈N Cay(Gm) admits a �bred coarse embedding into a Hilbert space as a disjoint union
if and only if ∂Cay(Gm)m∈N is uniformly a-T-menable.

(2) LetM be either of the following classes. Then,⊔m∈N Cay(Gm) admits a �bred coarse embedding intoM as
a disjoint union if and only if ∂Cay(Gm)m∈N is uniformly a-M-menable.

(2-1) For q ∈ [1,∞), Lq denoting Lq([0, 1],R).
(2-2) For r ∈ (1, 2] and for C > 0, Btype

r,C being the class of all complex Banach spaces with linear type r with
constant C; see (4) of Example 4.11.

(2-3) For δ0 ∈ [0, 1], CAT(0)≤δ0 denoting the class of all complete CAT(0) spaces with Izeki–Nayatani in-
variant at most δ0; see De�nition 4.12.
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Furthermore, forM being the classHilbert or being as in (2), we have that

CP�b
M

(⊔
m
Cay(Gm)

)
=

⋂
G∞∈∂Cay(Gm)m

CP
]
M
(G∞).

Item (1) in Corollary B is essentially a special case of (2-1) with q = 2.
We provide a similar example to one in Example 1.5.

Example 2.1. Let (lm)m∈Nodd be a sequence of integers at least 2 such that limm→∞ lm = ∞. For m ∈ Nodd, set
Hm = SL(m,Z/lmZ) and take two markings Pm, Qm as follows:

• Set Pm = (σ(m), τ(m)), where σ(m) and τ(m) are the matrices with exactly the same entries of 0 and 1 as in,
respectively, σ(m) and τ(m) as in (1) above.
De�ne V ′ = V ′(lm) =

⊔
m∈Nodd

Cay(Hm; Pm).
• Set Qm = (σ(m), σ′(m), τ(m)), where σ(m) and τ(m) are the same as Pm, and σ′(m) = tσ(m).

De�neW ′ = W ′(lm) =
⊔
m∈Nodd

Cay(Hm;Qm).

In a similar argument to one in [43, Remark 5.5], it follows that Pm and Qm are both markings of Hm.
To state Corollary 2.2, for every prime p, set

δ(p) = 1 − 1
2
(
1 −

√p
p+1

) (∈ (0, 12));

see the discussion above Example 4.14 and Remark 9.3 for the background of this constant. For δ0 ∈ (0, 1],
let CAT(0)<δ0 denote the class of all complete CAT(0) spaces whose Izeki–Nayatani invariants are strictly less
than δ0.

Corollary 2.2. Let X′ and Y ′, and V ′ and W ′ be, respectively as in Examples 1.5 and 2.1.

(1) The spaces X′ and V ′ both have property A.
(2) The spaces Y ′, V ′,W ′ do not admit a �bred coarse embedding as disjoint unions into (∏<ℵ0 QT)`1 or into

(∏<ℵ0 M)`2 , where QT denotes the class of all quasi-trees andM is the class of all �nite dimensional, com-
plete, connected and simply connectedRiemannianmanifoldswith strictly negative sectional curvature that
are cocompact; see Remark 4.15 and De�nition 4.16 for the de�nitions.

(3) The space Y ′ = Y ′p,(nm)m does not admit a �bred coarse embedding as a disjoint union intoBtype>1. Neither
does Y ′ admit a �bred coarse embedding as a disjoint union into CAT(0)<δ(p).

(4) The space W ′ does not admit a �bred coarse embedding as a disjoint union into Bβ<1/2; see (5) of Exam-
ple 4.11.

For every prime p, the class CAT(0)<δ(p) as in (3) above includes CAT(0)≤0; the subclass CAT(0)≤0 con-
tains all (possibly in�nite dimensional) complete, connected and simply connected Riemannian manifolds
with non-positive sectional curvature (they are calledHadamardmanifolds). Hence, for every choices of p and
of (nm)m, the space Y ′ admits �bred coarse embeddings into none of such spaces. After work [11] of Bestvina–
Bromberg–Fujiwara, study of actions on �nite products of quasi-trees has been paid an intensive attention.

The precise fromof Theorem 1.7 is stated in the followingmanner. To deduce Theorem 1.7 fromTheoremC,
�x p and (ln), and let G̃n = Gn o SL(2n + 3, Fpln ).

Theorem C. There exist a sequence of �nite groups (Gn)n∈N and d ∈ N such that the following holds true: For
every prime p and for every sequence (ln)n∈N of integers at least 2 such that limn→∞ ln = ∞, there exist three
systems (Sn)n, (Tn)n and (Un)n of d-markings

Sn = (s(n)1 , s(n)2 , . . . , s(n)d ),
Tn = (t(n)1 , t(n)2 , . . . , t(n)d ),
Un = (u(n)1 , u(n)2 , . . . , u(n)d ),
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of (Hn,p(= Hn,p,(ln)n ) = Gn o SL(2n + 3, Fpln ))n∈N, such that the following hold true:

(1) For every n ∈ N and for every i ∈ [d], there exist hi = hn,p,i ∈ Hn,p and ki = kn,p,i ∈ Hn,p such that

h−1i s(n)i hi = t
(n)
i and k−1i s(n)i ki = u

(n)
i .

(2) The sequence ((Hn,p; Sn))n∈N converges in the Cayley topology to an amenable group.
(3) The sequence ((Hn,p; Tn))n∈N converges in the Cayley topology to a non-exact group, but the Cayley limit

group is a-T-menable.
(4) The sequence ((Hn,p;Un))n∈N converges in the Cayley topology to a non-exact group. Moreover, the Cayley

limit group is not a-M-menable forM = Btype>1 orM = CAT(0)<δ(p). Here δ(p) is as in Corollary 2.2.

By themain result of our Part I paper [43, TheoremA], the disjoint union⊔n∈N Cay(Hn,p; Sn) has property
A. By Theorem 1.4, ⊔n∈N Cay(Hn,p; Tn) admits a �bred coarse embedding into a Hilbert space. At the other
end of the spectrum, by (i) of Theorem A (in the current paper),⊔n∈N Cay(Hn,p;Un) does not admit a �bred
coarse embedding intoBtype>1 or CAT(0)<δ(p).

T. Pillon introduced a notion of �bred coarse amenability [52] and showed that a box space of a
group has this property if and only if the group is exact. In this aspect, it is furthermore plausible that⊔
n∈N Cay(Hn,p; Tn) and ⊔n∈N Cay(Hn,p;Un) both fail to enjoy �bred coarse amenability. D. Sawicki [55,

Proposition 7.4] also introduced a notion of piecewise property A in the context of warped cones, and showed
a similar statement in that framework under certain conditions.

The method of constructing (Γl)l as in Theorem 1.9 produces the following exotic example, which con-
cerns markings of �nite symmetric groups.

Theorem D. There exist (kl)l∈N of a sequence of natural numbers at least 2 with liml→∞ kl = ∞ and two
(ordered) systems of generators (Ξl)l∈N, (Ωl)l∈N of symmetric groups (Sym(kl))l∈N that satisfy all of the follow-
ing.

(1) For all l ∈ N, #(Ξl) = 8 and #(Ωl) = 9. For each l ∈ N, Ωl is constructed by adding one extra element to Ξl.
(2) The disjoint union⊔l∈N Cay(Sym(kl); Ξl) has property A.
(3) The disjoint union⊔l∈N Cay(Sym(kl);Ωl) does not admit a �bred coarse embedding as a disjoint union into

any of these spaces:

• Banach spaces of non-trivial type, and Banach spaces that are sphere equivalent to Banach spaces of
non-trivial type.

• Elements in CAT(0)<1.

The construction as in Theorem D is done in a completely explicit manner; see Subsection 9.6 for details.
For the proofs of Theorems 1.9 and D, we utilize the notion of embedded expanders; see De�nition 9.6 and
Proposition 9.12.

Our proof of Theorem A is inspired by a trick by Gromov, [21, Proposition 4.4] for Hilbert spaces and [45,
Section 9] for general Banach spaces, as we will explain in Sections 5 and 6. Independently to our results, S.
Arnt [2] applied this trick in a special situation where the coarse disjoint union is a box space (in particular,
all Gm,m ∈ N, are �nite) and the target class consists only of Banach spaces. For the case whereM = Hilbert,
V. Alekseev and Finn-Sell [1] extended the framework of TheoremA for the case where (Gm)m is a LEF approx-
imation of G∞, see De�nition 3.2, to a so�c approximation of a so�c group. However, in that generality, only
one direction (the direction of (i) in Theorem A) can be deduced; see the construction of a counterexample to
the other direction by T. Kaiser [31], which is explained below Theorem 5.3 in the concerning reference [31].
Compare also with our points (a), (b) with LEA approximations, and the case whereM is general.
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Organization of the paper:
In Section 3, we brie�y explain the space of marked groups and the Cayley topology, and the de�nition of
�bred coarse embeddings (as a disjoint union). In Section 4, we formulate several operations to classes of
metric spaces and provide examples of our interest. We also provide a model example in Subsection 4.3 to
prove closedness properties under formation of these operations. In section 5, we explain the key idea to
non-linear version of Gromov’s trick in relation to (pointed) metric ultraproducts. Section 6 is devoted to the
proof of (i) of Theorem A. It is done by the non-linear version of Gromov’s trick. In Section 7, we prove (ii)
of Theorem A and Corollary B (and hence Theorem 1.4 as well). Section 8 is for description of the absorption
trick, which plays a key role in the proof of Theorem C. In Section 9, we discuss various examples to apply
Theorem A (and Proposition 5.4), including the proofs of Corollary 2.2 (and hence Corollary 1.6 as well) and
Proposition 1.8. Theorem C (and hence Theorem 1.7 as well) is proved in Subsection 9.2; Theorem 1.9 and
Theorem D are veri�ed, respectively, in Subsections 9.5 and 9.6.

3 Preliminaries

3.1 Space of k-marked groups and Cayley topology

We recall basic facts of the Cayley topology fromour Part I paper [43]; see Subsection 2.1 there formore details.
Fix k ∈ N≥1. A k-marked group G = (G; S) = (G; s1, s2, . . . , sk) is a pair of a �nitely generated group G and an
ordered k-tuple S = (s1, . . . , sk) of generators of G (as a group). From a k-marked group G, we construct two
combinatorial objects, the Cayley diagram CayD(G) and the Cayley graph Cay(G) of G as follows. The former
is de�ned as a diagram (edge-colored and edge-oriented graph), with the edge coloring set [k], by setting the
vertex set as G and by putting edges of the form (g, sjg) with orientation from g to sjg in color j(∈ [k]) for every
j ∈ [k] and every g ∈ G. The latter is the graph (with no edge colorings or no edge orientations) constructed
by forgetting the edge-colorings/orientations of CayD(G). Both of them are endowed with the shortest path
metric dG (in CayD(G), we ignore the edge-orientation to consider dG) on the vertex set G. In this way, we
regard CayD(G) and Cay(G) as geometric objects. We also consider G itself as a metric space with this metric
dG; in other words, dG on G is the right-invariant word metric with respect to S.

We warn that in some case, Cayley graphs Cay(G) are not graph in the strict sense. More precisely, if
sj = eG for some j ∈ [k], then Cay(G) admits self-loops. If sj is of order 2 for some j ∈ [k], then for each g ∈ G,
two edges that connect g and sjg are drawn in CayD(G) with the label j; one is from g to sjg and the other is in
the opposite direction.We also allow themarking S = (s1, s2, . . . , sk) to have distinct i and j in [k] with si = sj;
in this case, the Cayley graph admits multiple edges. To summarize, we do not impose any condition on the
marking S = (s1, . . . , sk) so that the resulting Cayley diagram CayD(G) = CayD(G; S) is always 2k-regular
(each vertex has exactly k outgoing edges and exactly k incoming edges), possibly with self-loops or multiple
edges.

For ∅ ≠ Y ⊆ G and for R ∈ N≥1, denote by ∂G(Y , R) the R-neighborhood of Y in dG, namely, the set of
all h ∈ G such that there exists g ∈ Y such that dG(g, h) ≤ R. If Y = {g}, then we simply write ∂G({g}, R)
as BG(g, R) (closed ball of radius R centered at g). In this setting, we de�ne BCayD(G)(g, R) by restricting the
vertex set of CayD(G) to BG(g, R) and by taking the induced sub-diagram (more precisely, we collect all edges
connecting vertices in BG(g, R) with remembering its edge-colorings/orientations). By declaring g to be the
root, BCayD(G)(g, R) has the structure of a rooted diagram. Note that BCayD(G)(eG , R) completely remembers the
multiplication table of G up to word length bR/2c.

Denote byG(k) the set of all k-marked groups (up tomarked group isomorphisms). This space is equipped
with a natural topology, theCayley topology, which ismetrizable and compact. One de�nition of that topology
is the induced topology of the product topology on {0, 1}Fk to the set of all normal subgroups in Fk; there is a
natural one-to-one correspondence between that subset of {0, 1}Fk andG(k) by the standardmarked quotient
map Fk � G. Another characterization of this topology is the topology of local convergence (also known as
theGromov–Hausdor� convergence in this setting) among rooted diagrams, as stated in the following lemma
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(Lemma 2.4 in [43]). Here for two groups G, H and for two subsets eG ∈ K1 ⊆ G and eH ∈ K2 ⊆ H, a map
β : K1 → K2 is called a partial homomorphism if

for all g1, g2 ∈ K1 such that g1g2 ∈ K1, β(g1g2) = β(g1)β(g2)

holds true. The map β is called a partial isomorphism if it is furthermore bijective.
The Cayley topology on G(k) is identical to the relative topology of the Chabauty topology for Fk; see [43,

Remark 2.5] for more detailed explanation.

Lemma 3.1. In (Gm)m∈N converges to G∞ in the Cayley topology if and only if the following holds true:

“For every m ∈ N, there exists Rm ∈ N such that lim
m→∞

Rm = +∞ and (*)

BCayD(Gm)(eGm , Rm) ∼= BCayD(G∞)(eG∞ , Rm) as rooted diagrams.”

Here an isomorphism of rooted diagrams means a graph automorphism that preserves edge-colorings (in [k])
and edge-orientations and that sends the root of the former diagram to the root of the latter.

In other words, for G = (G; s1, . . . , sk) ∈ G(k), if we de�ne for each R ∈ N,

N(G, R) = {H = (H; t1, . . . , tk) ∈ G(k) : the map tj 7→ sj induces
a partial isomorphism βH,G,R : BH(eH , R)→ BG(eG , R).},

then {N(G, R)}R∈N forms an (open) neighborhood system of G.

Proof. For every m ∈ N, set Rm to be the largest R such that R ≤ m and that m ≥ mR, where mR is as in [43,
Lemma 2.4]. Then, it follows that limm→∞ Rm = +∞.

We write the convergence in the Cayley topology as limm→∞ Gm = G∞ or Gm Cay→ G∞. The readers who
are not familiar with the Cayley topology may consult Section 5 in our Part I paper [43], specially Lemma 5.1
therein, for pedagogical examples of the Cayley convergence.

We also recall the de�nitions of RF/LEF/LEA groups; recall these abbreviations from the introduction.

De�nition 3.2. Let G be a �nitely generated group.

(1) The group G is said to be RF if there exists a sequence (Nm)m∈N of �nite index normal subgroups of G
such that

liminfm→∞Nm(=
⋃
m∈N

⋂
n∈N≥m

Nn) = {eG}

holds true.
(2) The group G is said to be LEF if for some (equivalently, every) marking G of G, there exists a Cayley

convergent sequence consisting of �nite marked groups that converges to G .
(3) The group G is said to be LEA if for some (equivalently, every) marking G of G, there exists a Cayley

convergent sequence consisting of amenable marked groups that converges to G .

We say a sequence (Gm)m is a LEF (respectively, LEA) approximation of G if it consists of �nite (respectively,
amenable)marked groups converging toG in the Cayley topology. A LEF approximation ismoreover called an
RF approximation if it consists of marked group quotients; namely, for every m, there exists a group quotient
map φm : G � Gm that sends the marking S = (s1, . . . , sk) of G to that Sm = (s(m)1 , . . . , s(m)k ) of Gm with
preserving the orders on them: φm(sj) = s(m)j for every j ∈ [k]. An RF approximation of (G; S) is of the form
((G/Nm; S mod Nm))m∈N, where (Nm)m∈N satis�es the conditions of (1) of De�nition 3.2.

In (1) in the de�nition above, we may relax the condition of liminfm→∞Nm = {eG} to
⋂
m Nm = {eG};

indeed, if we set new (N′m)m as N′m = ⋂n∈N≤m Nn, then liminfm→∞N′m = {eG} is equivalent to
⋂
m N′m = {eG}.

However, if we hope to have an RF approximation out of (Nm)m by taking marked group quotients, then the
right condition is the former one, not the latter. These two conditions become equivalent if we in addition
assume that (Nm)m is nested, that means, for every m ∈ N, we have Nm+1 6 Nm.
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Remark 3.3. If a marked group G is �nitely presented (this is independent of the choice of markings), then
the set of all marked group quotients of G forms an open set. Hence, in that case, every LEF approximation
eventually is an RF approximation; see [62] and [43, Subsection 2.1].

3.2 Fibred coarse embeddings

Recall from the introduction the construction of the disjoint union ⊔m∈N Xm out of a sequence of metric
spaces (Xm , dm)m∈N. If every Xm has �nite diameter (the diameter is de�ned as the supremumof the distances
between two points in the metric space), then we may construct a coarse disjoint union∐m∈N Xm, which is a
(genuine) metric space. However, we do not go into details in this paper; instead, we refer the readers to [43,
De�nition 2.17.(2)] on this notion.

In this paper, we study �bred coarse embeddings from the disjoint union constructed above. For this
purpose, we relax the de�nition of the �bred coarse embeddings as follows. For a generalized metric space
X, we say that X is uniformly locally �nite if for every R ∈ R≥0, there exists C ∈ N such that every closed R-ball
(for every center x ∈ X) has cardinality at most C. For a sequence of metric spaces (Xm)m∈N, we say that it is
equi-uniformly locally �nite if every Xm is uniformly locally �nite and if moreover C = C(R) is taken uniformly
onm ∈ N for every R ∈ R≥0. If (Xm)m∈N is equi-uniformly locally �nite, then the disjoint union X = ⊔m∈N Xm
is uniformly locally �nite.

De�nition 3.4. LetM be a non-empty class of metric spaces. Let (X, d) = ⊔m∈N Xm be the disjoint union of
a sequence of metric spaces (Xm)m∈N that is equi-uniformly locally �nite. Let ρ, ω : [0,∞) → [0,∞) be two
non-decreasing proper functions.

(i) We say that X admits a (ρ, ω)-�bred coarse embedding into M as a disjoint union if there exists M ∈ M

such that the following holds true: There exist

• a �eld of metric spaces (Mx)x∈X over X such that each Mx is isometric to M,
• a section s : X → ⊔

x∈X Mx, (namely, s(x) ∈ Mx for every x ∈ X),

such that for every R ∈ R≥0 there exists m(R) ∈ N≥1 such that for each non-empty subset C ⊆ X \(⊔
N<m(R)

Xm
)
of diameter at most R, there exists a ‘trivialization’ tC,R : (Mx)x∈C → C × M such that the

followingholds. The restriction of tC,R to the �breMx, x ∈ C, is an isometry tC,R(x) : Mx → M that satis�es

(1) for every x1, x2 ∈ C,

ρ(d(x1, x2)) ≤ dM(tC,R(x1)(s(x1)), tC,R(x2)(s(x2)) ≤ ω(d(x1, x2));

(2) for every two subsets C1, C2 ⊆ X \
(⊔

m∈N<m(R)
Xm
)
of diameter at most R with C1 ∩ C2 ≠ ∅, there

exists an isometry tC1 ,C2 ,R : M → M such that tC1 ,R(x) ◦ tC2 ,R(x)−1 = tC1 ,C2 ,R for all x ∈ C1 ∩ C2.

(ii) We say (ρ, ω) is a control pair for �bred coarse embeddings as a disjoint union for X intoM if there exists a
(ρ, ω)-�bred coarse embedding from X intoM as a disjoint union. Denote byCP�b

M(X) the set of all control
pairs above. The functions ρ and ω are, respectively, called a compression function and an expansion
function in the setting above.

We say that X admits a �bred coarse embedding intoM as a disjoint union if for some pair (ρ, ω) of non-
decreasing and proper functions, the condition of (i) is satis�ed. This is equivalent to saying that

CP�b
M(X) ≠ ∅.

Note that if a non-empty subset C of X = ⊔m∈N Xm is of bounded diameter, then there exists a unique
m ∈ N such that C ⊆ Xm.

Remark 3.5. In the original formulation in [17, De�nition 2.1] (for the case M being the class of all Hilbert
spaces), for each R ∈ N, we are allowed to choose a bounded exceptional set K, and consider C of diameter at
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most R from X \ K. In our de�nition of �bred corase embeddability as a disjoint union, we relax this process
and allow to take K = ⊔m∈N<m(R)

Xm, the disjoint union of �nitely many components in X = ⊔m∈N Xm.
Therefore, in De�nition 3.4, if all Xm,m ∈ N, are �nite, then our notion of the �bred coarse embeddability

as a disjoint union coincides with that of the �bred coarse embeddability in the original sense from a coarse
disjoint union∐m∈N Xm.

In this paper, we discuss quantitative aspects (control pairs) for �bred coarse embeddings (as a disjoint
union) as well as qualitative aspects (the property itself). For this purpose, disjoint unions are more suited
than coarse ones.

Remark 3.6. The �bred coarse embeddability into M (as a disjoint union) is weaker than the the (genuine)
coarse embeddability. Indeed, if f : X = ⊔m Xm → M is a coarse embedding with control pair (ρ, ω), then set
m(R) = 0 for all R andMx = M for all x ∈ X. Let s : X → ⊔

x∈X M be s(x) = f (x), and tC,R = idM for all R and for
all C of diameter at most R. This gives rise to a (ρ, ω)-�bred coarse embedding as a disjoint union into M.

In this case, we set Mx = M for all x ∈ X and there is no need to distinguish each Mx with M. However,
in general case, to formulate the notion of �bred coarse embeddings, it is rather convenient that we do not
regard Mx ≡ M a priori but that we keep information on how we identify each Mx with M by isometry. This
idea gives rise to the �eld of metric spaces ⊔x∈X Mx and the family of (surjective) isometries (Mx → M)x∈X.
For instance, these ⊔x∈X Mx and (Mx → M)x∈X naturally appear if we consider Galois coverings of a metric
space in the study of �bred coarse embeddings; see [17] and [15] for more details.

If M consists of Banach spaces, then we furthermore assume that all isometries in the conditions as in
De�nition 3.4 are a�ne. However, by the Mazur–Ulam theorem [10, Chapter 14.1] and by formation of the
Taylor complexi�cation, this issue is not essential in many cases. Therefore, in the present paper, hereafter
we do not discuss this matter.

Remark 3.7. Though it was implicit in the original formulation [17, De�nition 2.1], the ‘trivialization’ tC = tC,R
in De�nition 3.4 is allowed to be incompatible on changing R. More precisely, for 0 ≤ R1 < R2 and for C ⊆
X \
(⊔

N<m(R2)
Xm
)
of diameter at most R1, we do not require that tC,R1 = tC,R2 . This observation is important

in our proof of (ii) of Theorem A.

We observe the following two lemmata. Here for a metric space X, x ∈ X and R ∈ R>0, denote by BX(x, R)
the closed ball of radius R centered at x.

Lemma3.8. Let (Xm)m∈N be a sequence ofmetric spaces that is equi-uniformly locally �nite. Let X = ⊔m∈N Xm.
LetMbea non-empty class ofmetric spaces. Let ρ, ω : [0,∞)→ [0,∞)be twonon-decreasing proper functions.
Then, X admits a (ρ, ω)-�bred coarse embedding into M as a disjoint union if and only if there exists M ∈ M

such that the following holds true: There exist

• a �eld of metric spaces (Mx)x∈X which are all isometric to M,
• there exists a section s : X → ⊔

x∈X Mx,
• a sequence of non-negative real numbers (R′m)m∈N such that limm→∞ R′m = +∞,
• a local trivialization tg,R′

m
: ⊔x∈BXm (g,R′

m)Mx → BXm (g, R′m) ×M, for each m ∈ N and each g ∈ Xm,

such that the following hold.

(1) For every n ∈ N, for every g ∈ Xm and every x ∈ BXm (g, R′m), the restriction tg,R′
m
(x) : Mx → M of tg,R′

m
is

isometry;
(2) for every x1, x2 ∈ BXm (g, R′m),

ρ(d(x1, x2)) ≤ dM(tg,R′
m
(x1)(s(x1)), tg,R′

m
(x2)(s(x2)) ≤ ω(d(x1, x2));

(3) if BXm (g1, R′m) ∩ BXm (g2, R′m) ≠ ∅, there exists an isometry tg1 ,g2 ,R′
m
: M → M such that tg1 ,R′

m
(x) ◦

tg2 ,R′
m
(x)−1 = tg1 ,g2 ,R for all x ∈ BXm (g1, R′m) ∩ BXm (g2, R′m).
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Lemma 3.9. In the setting of Lemma 3.8, let Y = ⊔n∈N Ymn be such that (mn)n∈N is a subsequence of (m)m∈N
and for each n ∈ N, Ymn is a non-empty subset of Xmn equipped with the induced metric. Then, if X admits a
�bred coarse embedding intoM as a disjoint union with control pair (ρ, ω), then so does Y.

Proofs of Lemma 3.8 and Lemma 3.9. Lemma 3.9 is obvious.
To show that the (ρ, ω)-�bred coarse embeddability as a disjoint union implies the conditions as in

Lemma 3.8, take R 7→ m(R) as in De�nition 3.4. set R′m = min{sup{r ∈ R≥0 : m ≥ m(r)},m} for every m ∈ N,
where we set m0 = 0. By construction, limm→∞ R′m = +∞. For g ∈ Xm, set tg,R′

m
as tBXm (g,R′

m),R′
m
.

To show the converse direction, for each R ∈ R>0, set m(R) = max{m ∈ N : R′m < R} + 1. Since
limm→∞ R′m = +∞, it holds that mR ∈ N. For each C ⊆ X \

(⊔
m<m(R) Xm

)
of diameter at most R, there ex-

ist (unique) m ∈ N≥m(R) and (non-unique) g ∈ Xm such that C ⊆ BXm (g, R). Since R′m ≥ R for all m ∈ N≥m(R) ,
we may de�ne tC,R as the restriction of tg,R′

m
on C. There is an ambiguity on the choice of g; however, if we

�x the choices for all C, then condition (3) as in Lemma 3.8 ensures condition (2) as in De�nition 3.4. Recall
also Remark 3.7.

3.3 Equivariant coarse embeddings and a-M-menability

In Section 4 in our Part I paper [43], we recall the de�nition of a-T-menability for �nitely generated groups.
Here we generalize this concept in terms of other target spaces. The following property should be stated as
a-FM-menability in the strict sense. However, through communications with Arnt, we have agreed to use the
terminology of a-M-menability to avoid messes on notation. In the following de�nition, recall that a marked
group G is naturally equipped with the metric dG; see Subsection 3.1.

De�nition 3.10. Let G be a marked group andM be a non-empty class of metric spaces.

(1) Themarked groupG is said to be a-M-menable if there existM ∈M and a coarse embedding f : (G, dG)→
M such that the following condition is satis�ed: The map f is of the form

f (g) = y · α(g),

where α : M x G is a right action by isometries and y ∈ M. We say that a coarse embedding f is (G-
)equivariant if it satis�es the condition above.

(2) We say a �nitely generated group G is a-M-menable if for some (equivalently, all) marking G = (G; S) of
G, G is a-M-menable.

(3) The pair (ρ, ω) of two non-decreasing proper functions [0,∞) → [0,∞) is called an equivariant control
pair forG intoM if there existM ∈M and an G-equivariant coarse embedding f : G → M such that (ρ, ω)
is a control pair for f . In this case, we call ρ and ω, respectively, an equivariant compression function and
an equivariant expansion function from G intoM.

(4) We denote by CP]
M
(G) be the set of all equivariant control pairs for G intoM.

In the de�nition above, we take a right action, not a left action, because we equip marked groups with
right-invariant metrics.

LetHilbert denote the class of all Hilbert spaces. Then the notion of a-Hilbert-menablity coincides with
that of a-T-menability.

Remark 3.11. We warn that, unlike some other literature, the control pair (ρ, ω) is regarded as the pair of
concrete functions, not only as growth orders. In particular, if (ρ, ω) ∈ CP

]
M
(G) and if C1, C2 > 0, it does

not necessarily hold that (C1ρ, C2ω) ∈ CP
]
M
(G). If we consider a classM that is not necessarily closed under

rescaling, this remark applies even when C1 = C2. A similar issue to above applies to CPM(X) and CP�b
M(X).

For a �xed �nitely generated group G and for a �xed equivariant coarse embedding f : G → M, equivari-
ant compression functions for f depends on markings of G up to constant multiplication. Therefore, the set
CP

]
M
(G) does depend on the choice of markings; recall our discussion above. This observation is important
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because the Cayley boundary ∂Cay(Gm)m of a sequence (Gm)m may possibly consist of in�nitely manymarked
groups.

4 Several operations on (pointed) metric spaces
A pointed metric space (M, y) is a (genuine) metric space M = (M, dM) with a base point y ∈ M. We de�ne
certain operations on a class of metric spaces

M 7→ UP(M), Fq(M), FSq(M) and `q(M), for q ∈ [1,∞),

which appears in the statement of our main theorem, Theorem A. In this section, we �rst give formulations
of these operations; then we explain several classes of metric spaces that are closed under formation of these
operations.

4.1 Direct `q-products and metric ultraproducts

The direct `q-product of pointed metric spaces is de�ned as follows.

De�nition 4.1. Let q ∈ [1,∞). Let B be a non-empty set that is at most countable. Let (rj)j∈B be such that
rj ∈ (0,∞) for all j ∈ B. For a sequence (Mj , dj , yj)j∈B of pointedmetric spaces, de�ne the (pointed) `q-product
with scaling (rj)j, denoted by (∏j∈B(Mj , yj , rj))`q , by∏

j∈B
(Mj , yj , rj)


`q

=

(zj)j∈B :
∑
j∈B

(rjdj(zj , yj))q
1/q

< ∞


with the metric

dq,(rj)j ((zj)j , (wj)j) =

∑
j∈B

(rjdj(zj , wj))q
1/q

, (zj)j , (wj)j ∈

∏
j∈B

(Mj , yj , rj)


`q

and with the base point (yj)j.
If the scaling factor (rj)j is all 1 (rj = 1 for all j ∈ B), then we simply write (∏j∈B(Mj , yj , 1))`q as

(∏j∈B(Mj , yj))`q . This space is called the (pointed) `q-product of (Mj , yj)j. (If Mj are Banach spaces, then it
is usually called the pointed `q-sum.)

If #(B) < ∞, then (the isometry type of) the resulting space (∏j∈B(Mj , yj , rj))`q does not depend on the
choice (yj)j of base points. In that case, we write it as (∏j∈B(Mj , rj))`q for short.

We now switch our subject to (pointed) metric ultraproducts. An ultra�lter U over N has a one-to-one
correspondence to a probability mean ν (�nitely additive measure with ν(N) = 1) on N that is {0, 1}-valued
and is de�ned over all subsets ofN. The correspondence is given by setting that A ∈ U if and only if ν(A) = 1.
The co�nite �lter Uco�n = {A ⊆ N : #(N \ A) < ∞} is a �lter, but not an ultra�lter. A non-principal ultra�lter U
is an ultra�lter that includes Uco�n (as a sub�lter). In what follows, �x a non-principal ultra�lter U over N.

For a sequence (rm)m∈N in R and for r∞ ∈ R, we say that limU rm = r∞ if it holds that

for every ϵ > 0, {m ∈ N : |r∞ − rm| < ϵ} ∈ U.

By local compactness and Hausdor� property of R, it is standard to show that every bounded real sequence
(rm)m∈N has a unique U-limit. The limit in general depends on the choice of a non-principal ultra�lter U.
However, if limm→∞ rm exists, then limU rm coincides with the limit above.
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We now consider a sequence ((Mm , dm , ym))m∈N of pointed metric spaces. Set(∏
m∈N

(Mm , ym)
)
`∞

= {(zm)m∈N : sup
m∈N

dm(zm , ym) < ∞}

and de�ne dU by setting for (zm)m , (wm)m ∈ (
∏
m∈N(Mm , ym))`∞ ,

dU((zm)m , (wm)m) = lim
U
dm(zm , wm).

This is a pseudo-metric, namely, dU does not separate points in general. To obtain a genuine metric
space,introduce an equivalence relation ∼dU≡0 on (∏m∈N(Mm , ym))`∞ by de�ning (zm)m ∼dU≡0 (wm)m by
dU((zm)m , (wm)m) = 0. Finally, the quotient space

lim
U
(Mm , ym) =

(∏
m∈N

(Mm , ym)
)
`∞

/ ∼dU≡0

is equippedwith agenuinemetric dU.We call the resulting space the (pointed)metric ultraproduct of (Mm , ym)
with respect to U. We write the equivalence class with respect to∼dU≡0 of (zm)m as [(zm)m]U.

4.2 The classesUP(M),Fq(M),FSq(M) and `q(M)

De�nition 4.2. A metric space M is called a geodesic space if for every x, y ∈ M, there exists a geodesic
c : [0, d(x, y)]→ M connecting x and y.

The spaceM is moreover said to be uniquely geodesic if for every x, y ∈ M, there exists a unique geodesic
c : [0, d(x, y)]→ M from x to y. For a uniquely geodesic space M and for x, y ∈ M, let [x, y] be the (uniquely
determined) geodesic from x to y.

Here, recall from the introduction that by geodesics, we mean minimal ones.
We give the de�nitions of UP(M), Fq(M), FSq(M) and `q(M) out of a given classM. Here q ∈ [1,∞) is a

�xed exponent.

De�nition 4.3. LetM be a non-empty class of metric spaces. We de�ne UP(M) to be the class of all pointed
metric ultraproducts (after forgetting the base points) of a single space inM. More precisely, it is the class of
all spaces (isometric to those) of the form limU(M, ym). Here M ∈ M and for every m ∈ N, ym ∈ M; U runs
over all non-principal ultra�lters on N.

De�nition 4.4. Let M be a non-empty class of metric spaces. Fix q ∈ [1,∞). We de�ne the following two
new classes, Fq(M) and FSq(M), of metric spaces constructed fromM.

(1) We de�ne Fq(M) as the class of all metric spaces (that is isometric to ones) that are constructed by the
following three steps.

• (Step 1.) Take M ∈M.
• (Step 2.) Consider allmetric spaces of the form

(∏
f∈F(M, 1

(#(F))1/q )
)
`q

for non-empty �nite sets F. Here

( 1
(#(F))1/q )f∈F means that we take the constant scaling factor 1

(#(F))1/q .
• (Step 3.) Take an arbitrary sequence ((Nm , ym))m∈N, where for all m ∈ N, Nm = Nm(F(m)) lies in

the class of all metric spaces constructed in Step 2 that is associated with a �nite set F(m) such that
limm→∞ #(F(m)) = ∞ and ym ∈ Nm. Construct all metric spaces of the form limU(Nm , ym) (after
forgetting the base points) for non-principal ultra�lters U of N.

(2) The new class FSq(M) is de�ned if every element L in Fq(M) is a geodesic space. If this is the case, then
we construct FSq(M) in the following way.
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• IfM consists only of Banach spaces, then every element L in Fq(M) has a structure of a�ne Banach
spaces. Then set FSq(M) as the class of all Banach spaces isometrically a�nely isomorphic to non-
empty closed a�ne subspaces of L for all L ∈ Fq(M).

• Otherwise, de�ne FSq(M) to be the class of all metric spaces isometric to non-empty closed and
geodesically convex subsets L0 of L (equipped with the induced metric from L) for all L ∈ Fq(M).
Here a non-empty subset L0 ⊆ L is said to be geodesically convex if for every z, w ∈ L0 and for every
geodesic c : [0, d(z, w)]→ L from z to w in L, c (more precisely, the image c([0, d(z, w)])) is included
in L0.

De�nition 4.5. Let M and q be as in De�nition 4.4. Then, we de�ne `q(M) as the class of all metric spaces
(that is isometric to ones) of the form (∏j∈B(Mj , yj))`q (after forgetting the base point) for a non-empty atmost
countable sets B and for Mj ∈M and yj ∈ Mj for j ∈ B.

Note that unlike the construction of `q(M), in Step 1 of the construction of Fq(M), we use a single M ∈M

to take the `q-product with scaling. (Similarly for UP(M).) The symbol F in (1) of Dein�tion 4.4 stands for
�nite and Følner. The symbol FS in (2) of De�nition 4.4 stands for Følner and subspaces (or subsets).

Remark 4.6. The scaling factor ( 1
(#(F))1/q )f∈F in Step 2 as in (1) of De�nition 4.4 is chosen exactly in order to

ensure that the diagonal embedding M ↪→
(∏

f∈F(M, 1
(#(F))1/q )

)
`q
; z 7→ (z, z, . . . , z) is isometric.

4.3 A model example of closedness under formation of several operations

In the next subsection, we discuss several examples of classes M of metric spaces which are closed under
formation of (some of) operations

M 7→ UP(M), Fq(M), FSq(M) and `q(M),

for appropriate q ∈ [1,∞). The goal of this subsection is to provide a model example to verify closed-
ness above; in Subsections 4.4 and 4.5, we will omit the arguments for it because the basic idea is ex-
actly the same as one in this subsection. Our pedagogical example in this subsection is the class of all
complete CAT(0) spaces. The reader who is familiar with the argument for closedness may skip this subsec-
tion.

De�nition 4.7. A metric space M is said to be CAT(0) if it is a geodesic space (see De�nition 4.2) and if for
every x ∈ M and for every geodesic c : [0, d(y, z)]→ Mwith c(0) = y and c(d(y, z)) = z and for every 0 ≤ t ≤ 1,
the following inequality

d(x, ct)2 ≤ (1 − t)d(x, y)2 + td(x, z)2 − t(1 − t)d(y, z)2

holds true, where ct denotes c(td(y, z)).

See [13, Chapter II.1] for more details and for di�erent characterizations.
As we mentioned above, the goal of this subsection is to prove the following.

Lemma 4.8. Let CAT(0) denote the class of all complete CAT(0) spaces. Then forM = CAT(0), we have that

UP(M) ⊆M, FS2(M) ⊆M and `2(M) ⊆M.

Since F2(M) ⊆ FS2(M) in general, Lemma 4.8 also implies that F2(CAT(0)) ⊆ CAT(0). A complete
CAT(0) space is also called a Hadamard space, but we do not use this terminology in the current paper.

The following lemma is a key to the proof of Lemma 4.8.

Lemma 4.9. Let M ∈ CAT(0). Then M is uniquely geodesic.
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Furthermore, for every D > 0 and t ∈ [0, 1] and for every ϵ > 0, there exists κ = κ(D, t, ϵ) > 0with limϵ↓0 κ =
0 (for all �xed D and for all �xed t) such that the following holds true: Let x, y ∈ M with |d(x, y) − D| < ϵ. Let
z = ct ∈ M for c = [x, y]. Then, for every w ∈ M with

|d(x, w) − td(x, y)| < ϵ and |d(y, w) − (1 − t)d(x, y)| < ϵ,

it holds that d(z, w) ≤ κ(D, t, ϵ).

The latter part of the assertions of Lemma 4.9 roughly states that, not only M ∈ CAT(0) is uniquely
geodesic, but also for x, y ∈ M, all points w ∈ M that satisfy

d(x, w) ≈ td(x, y) and d(y, w) ≈ (1 − t)d(x, y)

are uniformly close (in terms of d(x, y) and t) to the point zwhich divides [x, y] internally in the ratio t : (1− t).

Proof. We give the proof which can be generalized to the case of r-uniformly convex metric spaces; see (2) of
Example 4.13.

To prove unique geodesic property, let x, y ∈ M and let c(1), c(2) : [0, d(x, y)] → M be two geodesic from
x to y. Fix t ∈ [0, 1]. Take a geodesic c′ : [0, d(c(1)t , c(2)t )] → M from c(1)t to c(2)t . Apply the inequality as in
De�nition 4.7 with t = 1/2 and c = c′ respectively for (x, y, z) = (x, c(1)t , c(2)t ) and for (x, y, z) = (y, c(1)t , c(2)t ).
Then we have that

d(x, c′1/2)2 ≤ t2d(x, y)2 − 1
4d(c

(1)
t , c(2)t )2, and

d(y, c′1/2)2 ≤ (1 − t)2d(x, y)2 − 1
4d(c

(1)
t , c(2)t )2,

If d(c(1)t , c(2)t ) > 0, then it would imply that

d(x, y) ≤ d(x, c′1/2) + d(y, c′1/2)
< (t2d(x, y)2)1/2 + ((1 − t)2d(x, y)2)1/2

= d(x, y);

a contradiction. Therefore, c(1) ≡ c(2), and we are done.
Next, we prove the latter assertion. Take a geodesic [z, w] and let u be themidpoint of it. Then in a similar

way to one above, we have that

d(x, u)2 ≤ 1
2
{
t2d(x, y)2 + (td(x, y) + ϵ)2

}
− 1
4d(z, w)

2, and

d(y, u)2 ≤ 1
2
{
(1 − t)2d(x, y)2 + ((1 − t)d(x, y) + ϵ)2

}
− 1
4d(z, w)

2.

Hence, we have that

d(x, y) ≤ d(x, u) + d(y, u)

≤
√

1
2
{
t2d(x, y)2 + (td(x, y) + ϵ)2

}
− 1
4d(z, w)

2

+
√

1
2
{
(1 − t)2d(x, y)2 + ((1 − t)d(x, y) + ϵ)2

}
− 1
4d(z, w)

2.

From the inequalities above, we may conclude the existence of κ = κ(D, t, ϵ) such that

d(z, w) < κ(= κ(D, t, ϵ))

and that it satis�es
lim
ϵ↓0

κ(D, t, ϵ) = 0.

Here our initial estimate of κ depends on d(x, y), t and ϵ; since D − ϵ ≤ d(x, y) ≤ D + ϵ, κmay be expressed as
a function on D, t and ϵ.
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Note that the function κ = κ(D, t, ϵ) above is universal: It can be determined only from CAT(0) geometry
(the inequality as in De�nition 4.7), and it does not depend on the choices of the pair (x, y).

Proof of Lemma 4.8. LetM = CAT(0). It is easy to see by Lemma 4.9 that `2(M) ⊆M. Indeed, every pointed
`2-product of complete and uniquely geodesic spaces is complete and uniquely geodesic. Moreover, since the
inequality

d(x, ct)2 ≤ (1 − t)d(x, y)2 + td(x, z)2 − t(1 − t)d(y, z)2

as in De�nition 4.7 is expressed only in terms of square sums and since validity of it is stable under formation
of rescalings, wemay con�rm that this inequality remains valid for every resulting `2-product space (possibly
with rescalings). Indeed, take the square sum of inequalities which are obtained coordinatewise (recall that
the resulting `2-product space is uniquely geodesic as well).

Secondly, we will show that UP(M) ⊆ M. Standard arguments on metric ultraproducts show that every
(pointed)metric ultraproduct of a geodesicmetric space is geodesic, and ametric ultraproduct is always com-
plete. Hence, what remains is to show the inequality as in De�nition 4.7. A basic philosophy to study metric
ultraproducts is the following: An inequality with uniform constants on uniformly �nitely many points in met-
ric spaces passes tometric ultraproducts.Wewill explain this philosophy in our example of the inequality for
CAT(0) spaces, as in De�nition 4.7. Strictly speaking, this inequality is not on uniformly �nitely many points
(because it involves a geodesic); however, Lemma 4.9 enables us to reduce the inequality to two inequalities
on there (or four) points.

Let M = (M, d) ∈M and take a pointed metric ultraproduct (MU, dU) = limU(M, ym). Let x(1)U
= [(x(1)m )m]

and x(2)
U

= [(x(2)m )m] be two points inMU. Let cU : [0, dU(x(1)U
, x(2)

U
)]→ MU be a geodesic from x(1)

U
and x(2)

U
. Let

uU = [(um)m] be in MU. Let t ∈ [0, 1]. Then, our goal is to prove that

dU(uU, cU,t)2 ≤ (1 − t)dU(uU, x(1)U )2 + tdU(uU, x(2)U )2 − t(1 − t)dU(x(1)U , x(2)U )2,

where cU,t = [(wm)m] is taken as cU(tdU(x(1)U
, x(2)

U
)). Let DU = dU(x(1)U

, x(2)
U
).

We claim that for every ϵ > 0, there exists Uϵ ∈ U such that the following holds: For every m ∈ Uϵ,

|d(x(1)m , x(2)m ) − DU| < ϵ, |d(x(1)m , wm) − td(x(1)m , x(2)m )| < ϵ
and |d(x(2)m , wm) − (1 − t)d(x(1)m , x(2)m )| < ϵ.

Indeed, by de�nition of metric ultraproducts, there exists V (1)
ϵ ∈ U such that for every m ∈ V (1)

ϵ , it holds
that |d(x(1)m , x(2)m ) − DU| < ϵ. Similarly, there exist V (2)

ϵ ∈ U and V (3)
ϵ ∈ U such that for every m ∈ V (2)

ϵ ∈ U,
|d(x(1)m , wm) − tDU| < ϵ holds and for every m ∈ V (3)

ϵ ∈ U, |d(x(2)m , wm) − (1 − t)DU| < ϵ is satis�ed. Then set

Vϵ = V (1)
ϵ ∩ V (2)

ϵ ∩ V (3)
ϵ .

Since an ultra�lter corresponds to �nitely additive {0, 1}-valued probability measures onN, the membership
of it is closed under formation of �nitely many intersections. Therefore, it follows that

Vϵ ∈ U.

Finally, set
Uϵ = V ϵ

2
(∈ U);

it is now easy to see that this Uϵ satis�es all of the conditions of the claim above. This argument explains
importance in the philosophy above to restirct ourselves to an inequality on uniformly �nitely many points in
metric spaces.

Let m ∈ Uϵ. Apply Lemma 4.9. Then we have that d(zm , wm) < κ(DU, t, ϵ) with

lim
ϵ↓0

κ(DU, t, ϵ) = 0,

where zm is the point that divides [x(1)m , x(2)m ] internally in the ratio t : (1 − t). The key here is the function κ
does not depend on the choice of m ∈ Uϵ; recall that κ was determined only by CAT(0) geometry. We may
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apply the inequality as in De�nition 4.7 for the triple (zm , x(1)m , x(2)m ) (because the original spaceM is CAT(0));
hence we have that for every m ∈ Uϵ,

d(um , zm)2 ≤ (1 − t)d(um , x(1)m )2 + td(um , x(2)m )2 − t(1 − t)d(x(1)m , x(2)m )2.

Since d(zm , wm) ≤ κ(DU, t, ϵ), we in addition have that

d(um , wm) ≤ d(um , zm) + κ(DU, t, ϵ).

Finally, we let ϵ ↓ 0. Then by the two inequalities above, it follows from the de�nition of themetric ultraprod-
uct that

dU(uU, cU,t)2 ≤ (1 − t)dU(uU, x(1)U )2 + tdU(uU, x(2)U )2 − t(1 − t)dU(x(1)U , x(2)U )2.

Therefore, we obtain our goal; it proves that MU ∈ CAT(0).
Once we showed `2(M) ⊆M and UP(M) ⊆M, it is straightforward to verify that F2(M) ⊆M. Indeed, in

general,
Fq(M) ⊆ UP(`q(M)).

holds true for every q ∈ [1,∞). Finally, to see that FS2(M) ⊆ M, observe that all conditions for complete
CAT(0) spaces (completeness, geodesic property and the inequality as in De�nition 4.7) pass to closed and
geodesically convex subsets. Hence it is deduced from the inclusion F2(M) ⊆M.

Remark 4.10. If our metric space M = E is a Banach space, then the philosophy as in the proof above on
metric ultraproducts is stated in the following way: An inequality with uniform constants on uniformly �nite
dimensional subspaces in Banach spaces passes to metric ultraproducts.

This statement above for Banach spaces is formulated in a rigorous manner as follows: For every Banach
space E, each metric ultrapower EU = limU(E, 0) of E is �nitely representable in E; see the de�nition and
discussions in [10, Chapter F]. It morallymeans that, quantitative information of �nite dimensional subspaces
of EU may be approximated as accurate as we hope by that of E.

4.4 Examples of classes of Banach spaces

We discuss several examples of classes of metric spaces of our interest. They are main examples ofM which
is closed under formation of (some of) the following operations

M 7→ UP(M), Fq(M), FSq(M) and `q(M),

for an appropriate exponent q ∈ [1,∞). In this subsection, we discuss certain classes of Banach space; in the
next subsection, we deal with those of non-linear metric spaces.

The reader may consult the proof of Lemma 4.8 for basic ideas behind the proofs of the closedness.

Example 4.11. First we consider classes of Banach spaces.

(1) Let r ∈ [1,∞). ThenM = `r(= {`r}) satis�es `q(M) ⊆M for q = r.
(2) More generally to (1), letM = BLr denote the class of all Lr-spaces (over all measure spaces). (We �xR or

C, and construct the class above over the �xed coe�cient �eld.) Then, `q(M) ⊆M for q = r. Furthermore,
Krivine showed that UP(M) ⊆M; see the survey [29]. It implies that Fr(M) ⊆M.
In particular, by letting r = 2, we observe that forM = Hilbert (the class of all Hilbert spaces), `2(M) ⊆M

and F2(M) ⊆ M; the proof of the latter item is much easier than that for the general Lr-space case. In
that case, moreover, FS2(M) ⊆M holds.

(3) More generally to (2), letM = BNCLr denote the class of all non-commutative Lr-spaces (associated with
all von-Neumann algebras). Then, `r(M) ⊆ M and UP(M) ⊆ M; the latter follows from the work of
Raynaud [54]. It also holds that Fr(M) ⊆M.
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(4) A Banach space E is said to be of non-trivial (linear or Rademacher) type if there exists r ∈ (1, 2] and a
constant C > 0 such that the following holds true: For every m ∈ N≥1 and for every (ξi)i∈[m] in E,

E(ϵi)i

‖∑
i∈[m]

ϵiξi‖r
 ≤ Cr ∑

i∈[m]
‖ξi‖r .

If the inequality above is satis�ed for �xed r and C, we say that E has a type r with constant C. Here
E(ϵi)i [·]means the expected value (average) over theuniformdistribution of (ϵi)i∈N over {−1, 1}m. LetM =
Btype>1 denote the class of all complexBanach spaces of non-trivial type. Then,UP(M) ⊆M andF2(M) ⊆
FS2(M) ⊆ M hold true. Indeed, having type > 1 is stated in terms of conditions on �nite dimensional
subspaces; recall Remark 4.10.
Moreover, for a �xed r ∈ (1, 2] and C > 0, if we consider the subclassBtype

r,C of all complex Banach spaces
that have type r with constants C, then `r(Btype

r,C ) ⊆ B
type
r,C . Indeed, the condition of the membership of

B
type
r,C is stated only in terms of `r-sums; recall the �rst part of the proof of Lemma 4.8. See [59] for details

of types of Banach spaces.
Celebrated work of V. La�orgue [34], [35] yield �xed point properties with respect to Btype>1; see (1) of
Theorem 9.2.

(5) N. Tomczak-Jaegermann [59, Chapter 6], and T. de Laat and M. de la Salle [22] studied quantities
(dk(E))k∈N≥1 and the class Bβ<1/2 (see also [23, Formula (1.1)]), which are de�ned as follows: For two
isomorphic (but not necessarily isometrically) Banach spaces E1 and E2, the Banach–Mazur distance
dBM(E1, E2) is de�ned to be the in�mum of ‖T‖‖T−1‖, where T : E1 '→ E2 runs over all isomorphisms
between E1 and E2, and ‖ ·‖ denotes the operator norm. For a complex Banach space E, for each k ∈ N≥1,
we de�ne dk(E) by

dk(E) = sup
{
dBM(E′, `dimC(E′)

2,C ) : dimC(E′) ≤ k
}
,

where E′ runs over all (complex) linear subspaces of Ewith the condition above. Here `m2,C denotes them-
dimensional complex `2-space for m ∈ N. The classBβ<1/2 is de�ned as the class of all complex Banach
spaces E for which there exist 0 < β < 1/2 and C > 0 such that the condition

for all k ∈ N≥1, dk(E) ≤ Ckβ

is satis�ed. Then, it follows that UP(Bβ<1/2) ⊆ Bβ<1/2 and that F2(Bβ<1/2) ⊆ FS2(Bβ<1/2) ⊆ Bβ<1/2.
Moreover, for �xed β ∈ (0, 1/2) and C > 0, if we denote by Bβ,C the class of all complex Banach spaces
such that the condition above holds for that pair (β, C), then `2(Bβ,C) ⊆ Bβ,C holds. The proofs of these
inclusions above go along the same line as ones in (4).
A fact states that a complex Banach space E is of non-trivial type if and only if limk→∞ k−1/2dk(E) = 0;
see [59]. In particular,Bβ<1/2 ⊆ Btype>1. It is not known whether the inclusion above is strict.
de Laat–Mimura–de la Salle [23] studied �xed point properties with respect to Bβ<1/2; see (3) of Theo-
rem 9.2.

(6) Similar to (4), for each r ∈ [2,∞) and each C > 0, we de�ne the classBcotype
r,C as that of all Banach spaces

that satisfy the cotype r inequality with constant C:

E(ϵi)i

‖∑
i∈[m]

ϵiξi‖r
 ≥ C−r ∑

i∈[m]
‖ξi‖r .

Here the expected value in the left-hand side is de�ned as one in (4). Then for M = B
cotype
r,C , in a similar

way to one in (4), it holds that `r(M) ⊆M,UP(M) ⊆M andFr(M) ⊆ FSr(M) ⊆M. The unionBcotype<∞ =⋃
r,C B

cotype
r,C equals the class of all Banach spaces of non-trivial cotype.

(7) A Banach space E is said to be uniformly convex if there exists a strictly positive real-valued function
∆ : (0, 2]→ R>0 which is non-decreasing such that the following holds: For every ξ , η ∈ S(E) with ξ ≠ η,

1 −
∥∥∥∥ ξ + η2

∥∥∥∥ ≥ ∆(‖ξ − η‖).
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Here S(E) denotes the unit sphere of E. For a �xed r ∈ [2,∞), if there exists C > 0 such that ∆ above satis-
�es that ∆(ϵ) ≥ Crϵr for all ϵ ∈ (0, 2], thenwe say that E is uniformly convex withmodulus of convexity of
power type r. Ball–Carlen–Lieb [6, Proposition 7] showed that the condition above is equivalent to saying
that there exists C′ > 0 such that for all ξ , η ∈ X and for all t ∈ [0, 1], the following inequality holds true:∥∥(1 − t)ξ + tη∥∥r ≤ (1 − t)‖ξ‖r + t‖η‖r − (C′)r t(1 − t)‖ξ − η‖r .
They also made estimate between C and C′ above. In this paper, we say a Banach space E is r-uniformly
convex with constant C′ if the inequality above is satis�ed; this terminology is compatible with that of
r-uniformly convex metric spaces in a more general framework; see (2) of Example 4.13.
A Banach space E is said to be superre�exive if every (equivalently, some) metric ultrapower limU(E, 0)
is re�exive. En�o’s characterization states that E is superre�exive if and only if E is isomorphic to a uni-
formly convex Banach space. A theorem of G. Pisier [53] shows that, moreover, for every superre�exive
Banach E, there exists r ∈ [2,∞) such that E is isomorphic to a uniformly convexBanach spacewithmod-
ulus of convexity of power type r. For r ∈ [2,∞), for C′ > 0 and for D ≥ 1, we de�ne the class Bsr

r,C′ ,D as
that of all Banach spaces whose Banach–Mazur distance at most D to r-uniformly convex Banach spaces
with constant C′. Then, forM = Bsr

r,C′ ,D, it holds that `r(M) ⊆M,UP(M) ⊆M andFr(M) ⊆ FSr(M) ⊆M.
Indeed, without the condition of Banach–Mazur distances, they follow from a similar argument to one in
(4). It may be easily veri�ed that the extra condition in terms of Banach–Mazur distances does not a�ect
the closedness properties above.
By aforementioned theorems in [6] and [53], the unionBsr =

⋃
r,C′ ,D B

sr
r,C′ ,D coincides with the class of all

superre�exive Banach spaces. It is known thatBsr ⊆ Btype>1 ⊆ Bcotype<∞ and that both of the inclusions
are strict; see [59] and [10].

We make a remark that if UP(M) ⊆M holds, then in many cases this inclusion happens to be strict. For
instance, letM = Hilbert. Then as we argued in Example 4.11, the inclusion above holds. It is a standard fact
that a metric ultrapower of an in�nite dimensional Banach space is always non-separable; see [10]. Hence,
the class UP(Hilbert) does not contain an in�nite dimensional separable Hilbert space.

4.5 Examples of classes of non-linear metric spaces

In this subsection, we discuss classes of non-linear metric spaces. Our main examples are subclasses of
CAT(0) as in Lemma 4.8, as the class CAT(0) itself is too enormous. For instance, to the best knowledge
of the authors, it might not be known whether there exists an in�nite RF (�nitely generated) group that has
the �xed point property with respect to the class CAT(0). In order to restrict to subclasses of CAT(0), we
employ the following numerical invariant of a complete CAT(0) space.

De�nition 4.12 (Izeki–Nayatani invariant; [30]). Let M ∈ CAT(0). Let P<ℵ0 (M) denote the set of all �nitely
supported probability measures on M supported on more than one point. In other words, each µ ∈ P<ℵ0 (M)
is of the form∑k

i=1 tiDiracpi with ti > 0 for i ∈ [k],∑k
i=1 ti = 1 and k ∈ N≥2. Here Diracp means the Dirac mass

at p. For such µ, there exists a unique point µ ∈ M that minimizes the function

M 3 x 7→
k∑
i=1

tidM(pi , x)2 ∈ R≥0;

this point µ is called the barycenter of µ. For such µ, de�ne

δ(µ) = inf


∥∥∥∑k

i=1 ti f (pi)
∥∥∥2∑k

i=1 ti‖f (pi)‖2
: ‖f (pi)‖ = dM(pi , µ), ‖f (pi) − f (pj)‖ ≤ dM(pi , pj)

 .

Here f runs over all maps from supp(µ) to L2 = L2([0, 1]) that satis�es the two conditions indicated above,
and i and j there vary all indices in [k].
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The Izeki–Nayatani invariant δ(M) is de�ned as

δ(M) = sup
µ∈P<ℵ0 (M)

δ(µ).

The Izeki–Nayatani invariant takes values in [0, 1]. For instance, ifM is a tree (orR-tree), a Hilbert space
or a (possibly in�nite dimensional) Hadamard manifold (recall from the introduction that it is a complete,
connected and simply-connected Riemannian manifold with non-positive sectional curvature), then δ(M) is
computed to be 0; see [30]. As we mentioned in the introduction, many reasonable CAT(0) spacesM, such as
all Euclidean buildings associated with simple algebraic groups, have δ(M) < 1; see [61]. For this reason, we
may regard M ∈ CAT(0) with δ(M) = 1 as a singular CAT(0) space.

Example 4.13. Here we discuss certain classes of non-linear metric spaces.

(1) Fix δ0 ∈ [0, 1]. We de�ne a class

CAT(0)≤δ0 = {M : M is complete and CAT(0), δ(M) ≤ δ0}.

Then for each δ0, the classM = CAT(0)≤δ0 satis�es

`2(M) ⊆M, F2(M) ⊆ FS2(M) ⊆M and UP(M) ⊆M.

Indeed, it is known from [30] and [60] that the Izeki–Nayatani invariant does not increase by formation
of metric ultraproducts or by taking closed and geodesically convex subsets. Also they showed that if for
every Mm ∈ CAT(0), m ∈ N, satis�es that δ(M) ≤ δ0, then for every choice (ym)m of base points, the
space

(∏
m∈N(Mm , ym)

)
`2

belongs to CAT(0)≤δ0 . Hence, the assertions above follow from Lemma 4.8.
For δ0 ∈ (0, 1], we de�ne the following class:

CAT(0)<δ0 =
⋃
δ′<δ0

CAT(0)≤δ′ .

Then forM = CAT(0)<δ0 , it holds that

F2(M) ⊆ FS2(M) ⊆M and UP(M) ⊆M.

However, it does not hold that `2(M) ⊆M; recall the discussion below De�nition 4.5.
Izeki and Nayatani [30] studied �xed point properties with respect to CAT(0)<δ0 for certain δ0; see (2) of
Theorem 9.2.

(2) Fix r ∈ [2,∞). Then, some `r-analogue of item (1) may be de�ned as follows: Let C ∈ (0, 1]. A geodesic
space M is said to be r-uniformly convex with constant C if for every x ∈ M and for every geodesic
c : [0, d(y, z)]→ M with c(0) = y and c(d(y, z)) = z and for every 0 ≤ t ≤ 1, the following inequality

d(x, ct)r ≤ (1 − t)d(x, y)r + td(x, z)r − Cr t(1 − t)d(y, z)r

holds true, where ct denotes c(td(y, z)). See also [46]; compare with the inequality of r-uniformly convex
Banach spaces in (7) of Example 4.11. The Clarkson inequality (see for instance [10]) shows that Lr is
r-uniformly convex with a certain constant Cr. For �xed C ∈ (0, Cr], we write the class of all complete
r-uniformly convex (geodesic) spaces with constant C as UCr,C. Note that UC2,1 = CAT(0).
Note thatwemaymodify the proof of Lemma4.8 to the current case. Indeed, the inequality above is stated
only in terms of `r-sums and that validity of it is stable under formation of rescalings. Furthermore, the
proof of Lemma 4.9 may be adapted to the current setting. Thus, we conclude that for every C ∈ (0, Cr],
the classM = UCr,C satis�es that

`r(M) ⊆M, Fr(M) ⊆ FSr(M) ⊆M and UP(M) ⊆M.

In addition, it follows that every M ∈ UCr,C is uniquely geodesic.
However, similar to CAT(0), the class M = UCr,C itself is too huge. We discuss some subclass in Exam-
ple 4.14.
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In the next example, we discuss certain subclasses of UCr,C into which �bred coarse embeddability may
be reasonable to study. Before proceeding to it, we explain importance of the Izeki–Nayatani invariant of a
complete CAT(0) space in relation to �xed point properties. Let M ∈ CAT(0). Let Γ = (V(Γ), E(Γ),m) be a
weighted �nite connected graph(we consider Γ as a directed graph by considering each unoriented edge as
two oriented edges). It means, m : E(Γ) → R>0, satis�es that m(v, w) = m(w, v) for all (v, w) ∈ E(Γ). For
v ∈ V(Γ), let m(v) = ∑w∈V(Γ):(v,w)∈E(Γ)m(v, w). For Γ = (V(Γ), E(Γ),m), de�ne the Wang-type non-linear
spectral gap with target in M by

λ1(Γ ,M) = 1
2 inf
f : V(Γ)→M

∑
e=(v,w)∈E(Γ)m(v, w)d(f (v), f (w))2∑

v∈V(Γ)m(v)d(f (v), f )2
.

Here f runs over all non-constant maps V(Γ) → M; f is the (2-)barycenter of f (V(Γ)) (recall De�nition 4.12).
Namely, f denotes the unique point in M that minimizes

M 3 x 7→
∑
v∈V(Γ)

m(v)d(f (v), x)2 ∈ R≥0.

It is known that if M = R, then λ1(Γ ,R) equals λ1(Γ), the �rst strictly positive eigenvalue of the weighted
graph Laplacian of Γ. The key property of δ(M) to the �xed point property is that for every Γ, the following
inequality

λ1(Γ ,M) ≥ (1 − δ(M))λ1(Γ)

holds; see [30, Proposition 6.3].
Now�x r ∈ [2,∞). LetM be a complete and r-uniformly convexmetric space. Then, in a similarway to one

above, we may de�ne a Wang-type non-linear r-spectral gap with target in M for a weighted �nite connected
Γ = (V(Γ), E(Γ),m) by

λ(r)(Γ ,M) = 1
2 inf
f : V(Γ)→M

∑
e=(v,w)∈E(Γ)m(v, w)d(f (v), f (w))r∑

v∈V(Γ)m(v)d(f (v), f (r))r
.

Here f runs over all non-constant maps V(Γ)→ M; f (r) is the r-barycenter of f (V(Γ)), that means, a point that
minimizes

M 3 x 7→
∑
v∈V(Γ)

m(v)d(f (v), x)r ∈ R≥0.

By r-uniform convexity and completeness ofM, f (r) uniquely exists. In this setting, it might not be reasonable
to require λ(r)(Γ ,M) to be bounded from below by some scalar multiple of λ(r)(Γ ,R). Instead, we consider
a function which controls the behavior of λ(r)(Γ ,M) for each weighted graph Γ in terms of λ(r)(Γ ,R). This
formulation yields the following example of subclasses of UCr,C.

Example 4.14. Fix r ∈ [2,∞). Fix a non-decreasing function

Ψ : [0, +∞)→ [0, +∞)

such that for all t ∈ [0, +∞), Ψ(t) ≤ t. For C ∈ (0, Cr], letUCΨr,C be the class of all complete r-uniformly convex
metric spaces with constant C such that the following holds true: For every weighted �nite connected graph
Γ, it holds that

λ(r)(Γ ,M) ≥ Ψ(λ(r)(Γ ,R)).

Then it may be showed that for every Ψ (and for every r and C), the subclassM = UCΨr,C ofUCr,C satis�es
that

`r(M) ⊆M, Fr(M) ⊆M and UP(M) ⊆M.

Indeed, in a similar argument to one in the proof of Lemma 4.9, we may show some stability (with respect
to approximations) of r-barycenters of maps. Then, for a �xed graph Γ and for a �xed ϵ > 0, the following
condition on M,

λ(r)(Γ ,M) ≥ ϵ
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can be essentially written as some inequalities with uniform constants on uniformly �nitely many elements
(the number is estimated in terms of #(V(Γ))) onM. It then follows thatUP(M) ⊆M. To show that `r(M) ⊆M,
observe that the condition on M above is stated only in terms of `r-sums.

For instance, if (r, C) = (2, 1) and if Ψ = Ψδ is of the form

Ψδ(t) = (1 − δ)t,

for some δ ∈ [0, 1], then it follows that
UCΨδ2,1 ⊇ CAT(0)≤δ .

As we mentioned above, non-linear spectral gaps relate to the study of �xed point properties; see Re-
marks 9.3 and 9.4.

We make a remark that this construction of UCΨr,C is not new: It has been studied by Naor [44] and other
researchers. See also [46]. In [44], Naor regarded a weighted �nite graph as a symmetric stochastic matrix via
the associated weighted adjacency matrix, and he considered r-Poincaré modulus. Although the formulation
may look di�erent, our example in Example 4.14 is essentially identical to his.

Remark 4.15. The main di�erence between Fq(M) and UP(M) is that the latter does not take (�nite) `q-
products (or rescaling) before takingmetric ultraproducts. Therefore, the latter proceduremay preserve some
‘dimension’ under certain conditions. First we consider the class RT of all R-trees (namely, geodesic 0-
hyperbolic metric spaces). By the four-point condition of Gromov-hyperbolicity [13, Chapter III. Remark 1.21],
it follows that UP(RT) ⊆ RT. Even if we consider a smaller class T of all simplicial trees (considered as
geodesic spaces, possibly with uncountably many vertices), then UP(T) ⊆ T. This is because we may endow
ametric ultraproduct with a simplicial structure by declaring vertices to be (equivalence classes of) bounded
sequence of vertices; we draw edges between those with the limit distance 1.

We consider the class QT of quasi-trees, namely, graphs (considered as geodesic spaces, possibly with
uncountably many vertices) that are quasi-isometric ([13, Chapter I. De�nition 8.14]) to simplicial trees. By
the argument above, we see that UP(QT) ⊆ QT; recall that we �x a single element of M and take pointed
metric ultraproducts of it to construct UP(M).

De�nition 4.16. LetM be a non-empty class of metric spaces and q ∈ [1,∞). Denote (∏<ℵ0 M)`q by the class
of all metric spaces (isometric to) �nite `q-products (

∏
j∈F Mj)`q , where 1 ≤ #(F) < ∞ andMj ∈M for all j ∈ F.

Since for a �xed m ∈ N≥2, taking an m-fold product is compatible with taking a metric ultraproduct,
we conclude that UP((∏<ℵ0 QT)`1 ) ⊆ (∏<ℵ0 QT)`1 . (We may replace `1 simultaneously with `q for each q ∈
(1,∞).)

Another construction is the following. Let M = M be a proper metric space that is cocompact. Here the
properness means that all closed bounded balls are compact; M is said to be cocompact if the full isometry
group ofM acts onM cocompactly. Then,UP(M) = M. Here the cocompactness assumption is needed in order
to make control on choices of base points (ym)m to take a pointed metric ultraproduct.

Remark 4.17. Here we make more precise on what ‘dimension’ means in examples in Remark 4.15. Gromov
[26] introduced an analogue of covering dimension in coarse geometry for a generalizedmetric spaceM. This
concept is called the asymptotic dimension, written as asdim; see [47, Chapter 2.2] for the de�nition. This is
an invariant under coarse equivalence. Moreover, it is showed that if f : X → M is a coarse embedding, then
it holds that

asdim(X) ≤ asdim(M).

Also, a �nite product of spaces with �nite asymptotic dimension has �nite asymptotic dimension. See [47,
Proposition 2.2.4, Theorem 2.2.5 and Example 2.4.1] for details of these facts. Every tree has asymptotic di-
mension at most 1 ([47, Proposition 2.3.1]; see also [14, Proposition 10.2.1] for R-trees). Hence, every element
in (∏<ℵ0 QT)`1 has �nite asymptotic dimension. For M a complete, connected and simply connected �nite
dimensional Riemannian manifold with sectional curvature strictly negative, results in 1.E′1 in [26] implies
the following: If such M is cocompact, then asdim(M) < ∞.
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5 Idea of the proof: Metric ultraproducts and the key to non-linear
version of Gromov’s trick

We explain how metric ultraproducts play a role in the proofs of Proposition 5.2 and (i) of Theorem A.

5.1 Metric ultraproducts and proof of Proposition 5.2

To illustrate the ideas, we �rst prove the following result.

Lemma 5.1. Let M be a non-empty class of metric spaces. Let (Gm)m∈N be a convergent sequence in G(k)
(k ∈ N≥1) and let G∞ be the limit. Let ρ, ω : [0,∞)→ [0,∞) be two non-decreasing proper functions. Then, the
following holds true: If ⊔m∈N Cay(Gm) admits a (genuine) coarse embedding into M with control pair (ρ, ω),
then G∞ admits a coarse embeddings into UP(M) with the same control pair (ρ, ω).

If M consists only of Banach spaces, then the following holds true: If ⊔m∈N Cay(Gm) admits a coarse em-
bedding intoM, then G∞ admits a coarse embedding into the original classM.

One key to the proof of Lemma 5.1 is (*) in Lemma 3.1: For each m ∈ N, take Rm ∈ N as in there. Hence,
βGm ,G∞ ,Rm gives a complete identi�cation between Rm-balls BCayD(Gm)(eGm , Rm) and BCayD(G∞)(eG∞ , Rm); also,
Rm → +∞ as m → ∞. By employing this identi�cation and by taking a pointed metric ultraproduct asso-
ciated with a well-chosen sequence of base points (ym)m∈N, we construct a coarse embedding Cay(G∞) →
limU(M, ym) out of the original coarse embedding ⊔m∈N Cay(Gm) → M. The precise argument goes as fol-
lows.

Proof of Lemma 5.1. Let M ∈M. Suppose there exists a coarse embedding

f :
⊔
m∈N

Cay(Gm)→ M

with control pair (ρ, ω). For every m ∈ N, take Rm as above.
Now, for each g ∈ G∞, we associate the following sequence (y(g)m)m∈N of points in M:

y(g)m =
{
f ((βGm ,G∞ ,Rm )−1(g)), if g ∈ BCay(G∞)(eG∞ , Rm),

f (eGm ), otherwise.

By (*), we observe the following:

• For every g ∈ G∞,
sup
m∈N

dM(y(g)m , f (eGm )) ≤ ω(dG∞ (eG∞ , g))(< ∞).

• For every g1, g2 ∈ G∞, let mg1 ,g2 be the smallest m such that for every n ≥ m, it holds that g1, g2 ∈
BCay(G∞)(eG∞ , Rn). (Since limm→∞ Rm = +∞, such m exists.) Then, for all m ≥ mg1 ,g2 , it holds that

ρ(dG∞ (g1, g2)) ≤ dM(y(g1)m , y(g2)m) ≤ ω(dG∞ (g1, g2)).

Finally, �x a non-principal ultra�lter U over N and take the pointed metric ultraproduct MU =
limU(M, dM , f (eGm )); we de�ne the following map

f∞ : (Cay(G∞), dG∞ )→ MU; g 7→ [(y(g)m)m∈N]U.

By the two observations above, we conclude that this f∞ is well-de�ned, and that it is a coarse embedding
with the same control pair (ρ, ω) as one for the original f .

IfM = E is a Banach space, then the arguments in the paper of Ostrovskii [50] indicate a way to construct
a coarse embedding from Cay(G∞) to the original E out of the metric ultraproduct construction above; this
procedure will a�ect the control pair by some multiplicative errors.
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Lemma 5.1 can be generalized to the following proposition, which deals with the general case where the
sequence of marked groups may not converge in the Cayley topology.

Proposition 5.2. LetM be a non-empty class of metric spaces. Let (Gm)m∈N be a sequence in G(k) (k ∈ N≥1).
If⊔m∈N Cay(Gm) admits a �bred coarse embedding intoM as a disjoint union, then ∂Cay(Gm)m∈N admits equi-
coarse embeddings into UP(M); that means,⋂

G∞∈∂Cay(Gm)m

CP*UP(M)(G∞) ≠ ∅.

IfM consists only of Banach spaces, then the following holds true: If⊔m∈N Cay(Gm) admits a �bred coarse
embedding intoM as a disjoint union, then ∂Cay(Gm)m∈N admits equi-coarse embeddings into the original class
M.

See Proposition 5.4 for a further generalization to disjoint unions of connected graphs with uniformly
bounded degree, not necessarily those of Cayley graphs.

Proof. Let M ∈ M. Suppose there exists a �bred coarse embedding from⊔m∈N Cay(Gm) into M with control
pair (ρ, ω). Let G∞ ∈ ∂Cay(Gm)m∈N. By de�nition, there exists a subsequence (Gmn )n of (Gm) that converges
to G∞ in G(k). By Lemma 3.9, there exists a �bred coarse embedding from ⊔n Cay(Gmn ) into M with control
pair (ρ, ω). Thus, we may assume that (Gm)m∈N itself converges to G∞.

For everym ∈ N≥1, take Rm as in (*) and take R′m as in Lemma 3.8. Let R′′m be theminimum of Rm and R′m.
By construction, limm→∞ R′′m = +∞. Take the local trivialization

teGm ,R′
m
:

⊔
x∈BCay(Gm )(eGm ,R′

m)
Mx → BCay(Gm)(eGm , R

′
m) ×M.

De�ne a map
fm : BCay(Gm)(eGm , R

′
m)→ M; x 7→ teGm ,R′

m
(x)(s(x)).

By (2) in Lemma 3.8, this fm is a coarse embedding with compression pair (ρ, ω).
Then, we maymodify the construction of (y(g)m) as in the proof of Lemma 5.1 by setting for everym ∈ N,

y(g)m =
{
fm((βGm ,G∞ ,R′′

m
)−1(g)), if g ∈ BCay(G∞)(eG∞ , R

′′
m),

fm(eGm ), otherwise.

Then it will complete our proof of Proposition 5.2.

Remark 5.3. To prove these lemma and proposition, we do not use the property that βGm ,G∞ , is an isomor-
phism as rooted diagrams; what we needed above is this map is an isomorphism as rooted (non-labelled,
non-oriented) graphs. From this point of view, we consider the space of rooted graphs with bounded degree
and generalize Proposition 5.2 in the following manner; see Proposition 5.4 for the conclusion.

Fix k ∈ N≥2, We set R(k) as the space of all connected graphs (without labellings/orientations) (Γ , rΓ)
with roots rΓ(∈ V(Γ)) such that the degrees of all vertices are at most k. We say ϕ : (Γ1, rΓ1 )

'→ (Γ2, rΓ2 ) is
an isomorphism as rooted graphs if ϕ(rΓ1 ) = rΓ2 and if ϕ is a graph isomorphism. In R(k), we identify two
rooted graphs that are isomorphic in the sense above. We endowR(k) with the topology of local convergence
as rooted graphs. This means, ((Γm , rΓm ))m∈N converges to (Γ∞, rΓ∞ ) if for every R ∈ N≥1, there exists mR ∈ N
such that for every m ≥ mR, the R-balls BΓm (rΓm , R) and BΓ∞ (rΓ∞ , R), centered at roots, are isomorphic as
rooted graphs. The space R(k), equipped with this topology, is a compact metrizable space.

Consider a sequence (Γm)m∈N of connected graphs with all degrees at most k. Then, each Γm forms a
(possibly, non-singleton) subset Γ̃m = {(Γm , v) : v ∈ V(Γm)} of R(k); we de�ne the rooted graph boundary of
(Γm)m by the set of all possible accumulation points of⋃m∈N Γ̃m inR(k) asm →∞.Wewrite it as ∂r(Γm)m∈N.
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Proposition 5.4. Let k ∈ N≥2. Let M be a non-empty class of metric spaces. Let (Γm)m∈N be a sequence of
connected graphs with all degrees at most k. If⊔m∈N Γm admits a �bred coarse embedding intoM as a disjoint
union, then the rooted graph boundary ∂r(Γm)m∈N admits equi-coarse embeddings into UP(M); that means,⋂

(Γ∞ ,r∞)∈∂r(Γm)m

CPUP(M)(Γ∞) ≠ ∅.

IfM consists only of Banach spaces, then the following holds true: If⊔m∈N Γm admits a �bred coarse em-
bedding intoM as a disjoint union, then ∂r(Γm)m∈N admits equi-coarse embeddings intoM.

5.2 Metric ultraproducts of fragmentary actions

In Subsection 5.1, we saw how to recover (non-equivariant) coarse embeddings from Cayley limit groups out
of a (�bred) coarse embeddings of the disjoint union.

In this subsection,we discuss some recovery procedure of equivariant coarse embeddings. One important
point here is that for this, what we need is not the global actions of the whole groups Gm, but local actions of
balls; compare with the proof of Lemma 5.1. Here we give the de�nition of a fragmentary action of a subset of
a group, which is a local version of the action of the whole group.

De�nition 5.5. Let M be a metric space. Let G be a group and eG ∈ K ⊆ G be a subset. A partial homomor-
phism from K to the isometry group Isom(M) is called a fragmentary action of K onM. In other words, a right
fragmentary action α : M x K (where for all g ∈ K, α(g) is an isometry onM) satis�es the following property:
For every g1, g2 ∈ K such that g1g2 ∈ K,

z · α(g1g2) = (z · α(g1)) · α(g2)

for all z ∈ M.

We use the word ‘fragmentary’ because the terminology ‘partial action’ is referred to a quite di�erent
concept in the literature.

Proposition 5.6. Let Gm Cay→ G∞. Let ρ, ω : [0,∞) → [0,∞) be two non-decreasing proper functions. Assume
that for every m ∈ N, there exists rm ∈ N≥1 with limm→∞ rm = +∞ such that the following holds: For every
m ∈ N, there exists an pointed isometric right fragmentary action (αm ,Mm , ym) of BGm (eGm , rm)

α : Mm x BGm (eGm , rm), ym ∈ Mm

such that the orbit map of ym is an (equivariant) coarse embedding of (BGm (eGm , rm), dGm ) with (equivariant)
control pair (ρ, ω).

Then, for every non-principal ultra�lterU overN, there exists a pointed isometric right action (αU,MU, yU)
of G∞ such that the orbit map of yU is an (equivariant) coarse embedding of (G∞, dG∞ )with equivariant control
pair (ρ, ω). Here MU = limU(Mm , ym) and yU = [(ym)m]U.

Compare the statement of Proposition 5.6 with the standard argument, for instance, in a survey of Y.
Stalder [58, Theorem 3.12].

Proof. For everym ∈ N, take Rm ∈ N and βGm ,G∞ ,Rm as in (*). Set R′′m = min{Rm , rm}. For each g ∈ G∞, de�ne
α′m(g) : Mm → Mm; z 7→ z · α′m(g) by

z · α′m(g) =
{
z · αm((βGm ,G∞ ,Rm )−1(g)), if g ∈ BG∞ (eG∞ , R′′m),

z, otherwise.

By construction, the restriction of α′m on BG∞ (eG∞ , R′′m) is a fragmentary action.
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Finally, for every g ∈ G∞, de�ne αU(g) : MU → MU by

[(zm)m]U · αU(g) = [(zm · α′m(g))m]U for every [(zm)m]U ∈ MU.

It is straightforward to check that this is well-de�ned. Since limm→∞ R′′m = +∞, this αU is a (global) action of
G∞ on MU (by isometries). By assumption, it furthermore holds that for every g1, g2 ∈ G∞,

ρ(dG∞ (g1, g2)) ≤ dMU
(yU · αU(g1), yU · αU(g2)) ≤ ω(dG∞ (g1, g2)),

as desired; compare with the proofs of Lemma 5.1 and Proposition 5.2.

5.3 Key to the non-linear version of Gromov’s trick

Proposition 5.6 will be used for the proof of (i).(1) of Theorem A. To deal with (i).(2), we employ the following
de�nition.

De�nition 5.7. Let G be a group and eG ∈ K ⊆ G be a subset. Let M be a metric space and y ∈ M. Let ϵ ≥ 0.
We say that a map α : K → Isom(M) is an ϵ-almost fragmentary (right) action at y if the following condition
is ful�lled: For every g1, g2 ∈ K such that g1g2 ∈ K,

d(y · α(g1g2), (y · α(g1)) · α(g2)) ≤ ϵ.

If K = G and α is a 0-almost fragmentary at y, then α : G → Isom(M) gives rise to a genuine action on the
G-orbit {y · α(g) : g ∈ G} of y.

Proposition 5.8. Let Gm Cay→ G∞. Let ρ, ω : [0,∞) → [0,∞) be two non-decreasing proper functions. Assume
that for every m ∈ N, there exist rm ∈ N≥1 with limm→∞ rm = +∞, a sequence (ρm , ωm)m of two non-decreasing
proper functions [0,∞)→ [0,∞), ϵm ≥ 0with limm→∞ ϵm = 0 and ym ∈ Mm such that the following conditions
hold:

• For every m ∈ N, there exists an ϵm-almost (right) fragmentary action αm at ym of BGm (eGm , rm) (by
isometries) on Mm.

• Two sequences (ρm)m and (ωm)m, respectively, converge to ρ and ω pointwise.
• For every m ∈ N and for every g1, g2 ∈ BGm (eGm , rm), it holds that

ρm(dGm (g1, g2)) ≤ dMm (ym · αm(g1), ym · αm(g2)) ≤ ωm(dGm (g1, g2)).

Assume that there exists a non-principal ultra�lterU overN such that MU = limU(Mm , ym) isuniquely geodesic.
Then, for every suchUoverN, there exist a closedandgeodesically convex subset L0 ofMU andan isometric

right (genuine)action (αU, L0) of G∞ that satisfy all of the following conditions:

• For yU = [(ym)m]U, it holds that {yU · αU(g) : g ∈ G∞} ⊆ L0.
• The orbit map of yU by αU is an (equivariant) coarse embedding of (G∞, dG∞ ) (into L0) with equivariant

control pair (ρ, ω).

Here we equip L0 with the induced metric from that of MU.

Proof. For each g ∈ G∞, the construction of αU(g) : MU → MU is exactly the same as one in the proof of
Proposition 5.6. Indeed, since each αm(h), for h ∈ BGm (eGm , rm), is isometric, αm is ϵ-almost fragmentary
action at y and the ‘orbit map’ of ym by αm is a coarse embedding with control pair (ρm , ωm), it follows that
for each g ∈ G∞,

sup
m∈N

dMm (zm · α
′
m(g), ym) < ∞ for every (zm)m ∈

(∏
m
(Mm , ym)

)
`∞

;
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recall that ρm and ωm are non-decreasing. The construction of αU(g) above is well-de�ned, and αU(g) is an
isometry. We, however, warn that in general, αU(gh) may not coincide with αU(g) ◦ αU(h) (the composition
is from left to right) as maps MU → MU.

Nevertheless, we observe that αU : G∞ → Isom(MU) is 0-almost fragmentary action at yU because
limm→∞ ϵm = 0. Therefore, it is a genuine action on L′ = {yU · αU(g) : g ∈ G∞}. For every g1, g2 ∈ G∞,
de�ne

Lg1 ,g2 = {z ∈ MU : z · (α(g1) ◦ α(g2) ◦ α(g1g2)−1) = z}.
Because α(g1) ◦ α(g2) ◦ α(g1g2)−1 is an isometry and we assume that MU is uniquely geodesic, each Lg1 ,g2 is
a closed and geodecially convex subset ofMU with L′ ⊆ Lg1 ,g2 . (Observe that every isometry sends geodesics
to geodesics.) Finally, take

L0 =
⋂

g1 ,g2∈G∞
Lg1 ,g2 (⊇ L′).

Then L0 = L0 · αU(G∞) holds, and αU gives rise to a genuine action on L0. We rewrite the restriction of αU on
L0 as αU : L0 x G∞; it satis�es the required two conditions.

Remark 5.9. We may remove the assumption of the unique geodesic property on MU = EU ifM = E consists
only of Banach spaces. Indeed, if we assume that all αm are complex a�ne, then take L0 as the closure of
the algebraic complex a�ne span of L′; this L0 is a non-empty complex a�ne subspace of EU. Even if we do
not assume it, the Mazur–Ulam theorem states that all αm are real a�ne. Then we can take a desired L0 as a
non-empty real a�ne subspace of EU.

6 From �bred coarse embeddings to equivariant embeddings of
groups in the Cayley boundary

In this section, we prove item (i) of Theorem A. As mentioned in the introduction, our idea of the proof(s) is
based on a trick of Gromov. We �rst demonstrate the proof of (i).(1) in Subsection 6.1. Then we proceed to the
proof of (i).(2) in Subsection 6.2.

6.1 Proof for �nite marked group sequences

We already know from Proposition 5.2 the way to recover (non-equivariant) coarse embeddings of groups in
the Cayley boundary from local information from the �bred coarse embedding. The point in our proof is how
to recover moreover equivariant coarse embeddings. The key tool here is Proposition 5.6.

Proof of (i).(1) of Theorem A. Similar to the proof of Proposition 5.2, wemay assume that (Gm)m∈N is a conver-
gent sequence. LetG∞ be the Cayley limit of it. Assume that⊔m∈N Cay(Gm) admits a �bred coarse embedding
into M, M ∈M, with control pair (ρ, ω). Take as s, R′m, tg,R′

m
, tg1 ,g2 ,R′

m
as in Lemma 3.8. Fix q ∈ [1,∞).

For each m ∈ N, set

Mm,q =

 ∏
x∈Gm

(M,
(

1
#(Gm)

)1/q
)


`q

;

recall De�nition 4.1.
For every g ∈ BGm (eGm , R′m), de�ne αm(g) : Mm,q → Mm,q by

(zx)x∈Gm · αm(g) = (tx,gx,R′
m
(zgx))x∈Gm , for (zx)x ∈ Mm,q.

We claim the following.

Lemma 6.1. (1) This αm is a fragmentary action (by isometries)

Mm,q x BGm (eGm , R
′
m).
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(2) Let ym = (ym,x)x∈Gm ∈ Mm,q, where ym,x = tx,R′
m
(x)(s(x)) for every x ∈ Gm. Then the orbit map of ym by

the fragmentary action αm is an (equivariant) coarse embedding from BGm (eGm , R′m) into Mm,q with control
pair (ρ, ω).

Proof of Lemma 6.1. Since all tx,gx,R′
m

are isometries, αm(g) is an isometry for all g ∈ Gm. Assume that
g1, g2, g1g2 ∈ BGm (eGm , R′m). Then since for each x ∈ Gm, g1g2x ∈ BGm (g1g2x, R′m) ∩ BGm (g2x, R′m) ∩
BGm (x, R′m), it holds that

tx,g2x,R′
m
◦ tg2x,g1g2x,R′

m
= tx,R′

m
(g1g2x) ◦ (tg2x,R′

m
(g1g2x))−1 ◦ tg2x,R′

m
(g1g2x) ◦ (tg1g2x,R′

m
(g1g2x))−1

= tx,R′
m
(g1g2x) ◦ (tg1g2x,R′

m
(g1g2x))−1

= tx,g1g2x,R′
m
.

Therefore, we have that by setting wx = tx,g1x,R′
m
(zg1x),

((zx)x · α(g1)) · α(g2) = (tx,g2x,R′
m
(wg2x))x

= (tx,g2x,R′
m
◦ tg2x,g1g2x,R′

m
(zg1g2x))x

= (tx,g1g2x,R′
m
(zg1g2x))x

= (zx)x · α(g1g2).

This proves (1).
For (2), observe that for every g ∈ BGm (x, R′m) and every x ∈ Gm,

dM(ym,x , tx,gx,R′
m
(ym,gx)) = dM(tx,R′

m
(x)(s(x)), tx,R′

m
(gx)(s(gx)).

By assumption and by recalling Remark 4.6, we verify (2).

By applying Proposition 5.6 with rm = R′m, we obtain from Lemma 6.1 an equivariant coarse embedding
from G∞ into limU(Mm,q , ym) with equivariant control pair (ρ, ω). Since limU(Mm,q , ym) ∈ Fq(M), it proves
the desired assertions.

6.2 Non-linear version of Gromov’s trick and proof for amenable group sequences

In order to extend the argument as in Subsection 6.1 to the case of amenable marked group sequences, we
employ a Følner set of Gm instead of Gm itself and utilize Proposition 5.8. This idea dates back to Gromov, and
well known ifM = Hilbert. We extend this framework to possibly non-linear settings.

For ϵ > 0 and for R ∈ N, an (ϵ, R)-Følner set F of a marked group G is a non-empty �nite subset of G that
satis�es

#(∂G(F, R))
#(F) < ϵ.

Amenability of G is characterized by the existence of (ϵ, R)-Følner sets for all ϵ(> 0) and for all R (this property
does not depend on the choices of markings of G).

Proof of (i).(2) of Theorem A. We describe the modi�cations needed from the proof (i).(1) of Theorem A. Fix
q ∈ [1,∞). For each m ∈ N, choose δm > 0 appropriately (we will specify later) and take an (δm , R′m)-Følner
set F(m) of Gm. Set

Mm,q =

 ∏
x∈F(m)

(M,
(

1
#(F(m))

)1/q
)


`q

.

For every g ∈ BGm (eGm , R′m), let αm(g) : Mm,q → Mm,q be (zx)x∈F(m) · αm(g) = (wx)x for (zx)x ∈ Mm,q. Here
wx ∈ M is de�ned by

wx =
{
tx,gx,R′

m
(zgx), if gx ∈ F(m),

zx , otherwise.

We claim the following.
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Lemma6.2. Let ym = (ym,x)x∈Gm ∈ Mm,q, where ym,x = tx,R′
m
(x)(s(x)) for every x ∈ Gm. Let δ′m,q = δ1/qm ω(R′m).

(1) For every g ∈ BGm (eGm , R′m), αm(g) is an isometry.
(2) This αm is a 3δ′m,q-almost fragmentary action of BGm (eGm , bR′m/2c) at ym; recall De�nition 5.7.
(3) For every g1, g2 ∈ BGm (eGm , bR′m/2c), it holds that

(1 − 2δm)ρ(dGm (g1, g2)) ≤ dMm (ym · αm(g1), ym · αm(g2)) ≤ ω(dGm (g1, g2)) + 2δ
′
m,q .

Proof of Lemma 6.2. Item (1) is by construction. For (2), let g1, g2 ∈ BGm (eGm , bR′m/2c) such that g1g2 ∈
BGm (eGm , bR′m/2c). Let F

(m)
good = F

(m) ∩ (g−11 F(m)) ∩ (g−12 F(m)) ∩ ((g1g2)−1F(m)) and F(m)bad = F
(m) \ F(m)good. Then, by

the Følner property for F, #(F(m)bad) ≤ 3δm#(F
(m)). Note that by the proof of Lemma 6.1, for all x ∈ F(m)good,

((ym · α(g1)) · α(g2))(x) = (ym · α(g1g2))(x),

where (·)(x) indicates the x-th coordinate.
Now let x ∈ F(m)bad. Then, similar to one above, we have that

dM((ym · α(g1)) · α(g2))(x), (ym · α(g1g2))(x))
≤ max{ω(dGm (γ, γ

′)) : γ, γ′ ∈ {eGm , g1, g2, g1g2}}
= ω

(
max{dGm (γ, γ

′) : γ, γ′ ∈ {eGm , g1, g2, g1g2}}
)

≤ ω(R′m).

By recalling that we take the scaling factor (1/#(F(m)))1/q to construct Mm,q from M, we conclude that

dMm,q ((ym · α(g1)) · α(g2), ym · α(g1g2))) ≤
(
3δm#(F(m)) · ω(R

′
m)q

#(F(m))

) 1
q

≤ 3δ1/qm ω(R′m),

as desired. Item (3) will be proved in a manner quite similar to one above.

For given q ∈ [1,∞), ω : [0,∞) → [0,∞) and (R′m)m, we can choose (δm)m, δm > 0, such that
limm→∞ δm = 0 and limm→∞ δ′m,q = 0. Finally, apply Proposition 5.8 with rm = bR′m/2c, ϵm =
max{2δm , 3δ′m,q} and (ρm , ωm) = ((1 − ϵm)ρ, ω + ϵm), and we thus obtain the conclusion. If M only con-
sists of Banach spaces, then consult also Remark 5.9.

By setting Gm ≡ G for a �xed amenable group and by restricting embeddings to genuine coarse embed-
dings (recall Remark 3.6), we in particular have the following corollary. It may be regarded as a non-linear
version of Gromov’s trick. Although this may have been previously observed by other researchers, we include
it for the sake of convenience of the readers; compare with [45, Theorem 9.1] for the case of Banach spaces.

Corollary 6.3. LetM be a non-empty class ofmetric spaces that satis�es the conditions as in Theorem A.(i).(2).
Assume that for some of such q, it holds that FSq(M) ⊆ M. Then for every amenablemarked group G, it holds
that

CP*M(G) = CP
]
M
(G).

On the other hand, for non-amenable marked groups, CP]
M
(G) is much restrictive than CP*M(G). For in-

stance, E. Guentner and J. Kaminker [28, proposition 4.2] showed that for every a ∈ (0, 1), there exist C, C′ > 0
such that ((Cra − C′) ∨ 0, r) ∈ CP*Hilbert(F2). However, they [28, Theorem 5.3] also proved that if there exist
a ∈ (1/2, 1] and C, C′ > 0 such that ((Cra − C′) ∨ 0, r) ∈ CP

]
Hilbert(G), then Gmust be amenable.
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7 From equivariant equi-coarse embeddings of the Cayley
boundary to �bred coarse embeddings

Here we prove (ii) of Theorem A. Unlike the proofs in Section 6, we do not need to impose conditions on Gm,
m ∈ N. First, we provide the proof where (Gm)m is a convergent sequence.

Proof of (ii) of Theorem A for the case where #(∂Cay(Gm)m) = 1. Let G∞ be the Cayley limit of (Gm)m. For each
m ∈ N, take Rm and βGm ,G∞ ,Rm as in Lemma 3.1. Assume that there exist M ∈ M and an equivariant coarse
embedding from G∞ into M with equivariant control pair (ρ, ω), Let α : M x G∞ be an action by isometries
and y ∈ M such that the orbit map G∞ 3 g∞ 7→ y · α(g) ∈ M gives the (equivariant) coarse embedding above.
Write as X = ⊔m∈N Cay(Gm).

Let R′m = bRm/2c for everym ∈ N andMx = M for every x ∈ X. De�ne a section s : X → ⊔
x∈X M by s(x) =

y(∈ M = Mx) for every x ∈ X. Now for m ∈ N, g ∈ Gm, de�ne a local trivialization tg,R′
m
: ⊔x∈BGm (g,R′

m)M →
BGm (g, R′m) ×M by

(tg,R′
M
(x))(z) = z · α(βGm ,G∞ ,Rm (xg

−1)), for x ∈ BGm (g, R
′
m) and z ∈ M.

Here note that since Gm acts on CayD(Gm) by right, BGm (g, R′m)g−1 = BGm (eGm , R′m).
In what follows, wewill verify conditions (1)–(3) of Lemma 3.8. For (1), for each x ∈ BGm (g, R′m), themap

tg,R′
M
(x) : M → M is an isometry. For x1, x2 ∈ BGm (g, R′m),

dM((tg,R′
M
(x1))(s(x1)), (tg,R′

M
(x2))(s(x2))) = dM(y · α(βGm ,G∞ ,Rm (x1g

−1)), y · α(βGm ,G∞ ,Rm (x2g
−1))

Since

dG∞ (βGm ,G∞ ,Rm (x1g
−1), βGm ,G∞ ,Rm (x2g

−1)) = dGm (x1g
−1, x2g−1)

= dGm (x1, x2),

it follows (2). Finally, we check (3). Let BGm (g, R′m)∩BGm (g′, R′m) ≠ ∅. For each x ∈ BGm (g1, R′m)∩BGm (g2, R′m),

((tg1 ,R′
M
(x)) ◦ (tg2 ,R′

M
(x))−1)(z) = (z · α((βGm ,G∞ ,Rm (xg

−1
2 ))−1)) · α(βGm ,G∞ ,Rm (xg

−1
1 ))

= (z · α((βGm ,G∞ ,Rm (g2x
−1))) · α(βGm ,G∞ ,Rm (xg

−1
1 ))

= z · α(βGm ,G∞ ,Rm (g2x
−1)βGm ,G∞ ,Rm (xg

−1
1 ))

= z · α(βGm ,G∞ ,Rm (g2x
−1xg−11 ))

= z · α(βGm ,G∞ ,Rm (g2g
−1
1 )).

Indeed, here we observe that βGm ,G∞ ,Rm is a partial isomorphism from BGm (eGm , Rm) to BG∞ (eG∞ , Rm) and
that g2g−11 ∈ BGm (eGm , 2R′m) ⊆ BGm (eGm , Rm). The expression in the very below side of the equalities above
is independent of x ∈ BGm (g1, R′m) ∩ BGm (g2, R′m). It proves (3), and hence our proof completes. Moreover, it
follows from our arguments that

(ρ, ω) ∈ CP�b
M (X).

We proceed to the proof of the general case; we here employ the class `q(M). Recall the de�nition of an
open neighborhood N(G, R) of G from Lemma 3.1.

Proof of (ii) of Theorem A in full generality. For each R ∈ N, {N(H, R) : H ∈ ∂Cay(Gm)m} is an open cover of
∂Cay(Gm)m. By compactness of ∂Cay(Gm)m, there exist i(R) ∈ N and H(R)

0 , . . . ,H(R)
i(R) such that

i(R)⋃
i=0
N(H(R)

i , R) ⊇ ∂Cay(Gm)m .



Group Approximation in Cayley Topology, II | 95

Let H(R)
0 , . . . , H(R)

i(R) be, respectively, the underlying groups of H(R)
0 , . . . ,H(R)

i(R). By de�nition of ∂Cay(G)m, for
each R, there exists nR ∈ N≥1 such that,

i(R)⋃
i=0
N(H(R)

i , R) ⊇ (Gm)m
Cay \ {G0, . . . ,GnR−1}

holds, where { }Cay denotes the closure in the Cayley topology. Note that for R = 0, then the left-hand side
above, in fact, includes (Gm)m

Cay. For each R ∈ N and for every m ∈ N≥nR , choose 0 ≤ i ≤ i(R) such that
Gm ∈ N(H(R)

i , R) (if there exist at least two such i, choose the smallest i). We write this i as i(R)m .
Set a new disjoint union as

X′ =
⊔
R∈N

 ⊔
0≤i≤i(R)

 ⊔
nR≤m≤nR+1+R : i(R)m =i

Cay(Gm)

 .

Now assume that ∂Cay(Gm)m is uniformly a-M-menable; there exists a pair (ρ, ω) of non-decreasing
proper functions [0,∞)→ [0,∞) such that

(ρ, ω) ∈
⋂

H∈∂Cay(Gm)m

CP
]
M
(H).

In particular, for every R ∈ N and for every 0 ≤ i ≤ i(R), there exist M(R)
i ∈ M, y(R)i ∈ M(R)

i and an action
α(R)i : M(R)

i x H(R)
i such that the orbit map H(R)

i 3 h 7→ y(R)i · α(R)i (h) ∈ M(R)
i is an (equivariant) coarse embed-

ding with equivariant control pair (ρ, ω). Fix q ∈ [1,∞) and de�ne

Mq =

∏
R∈N

 ∏
0≤i≤i(R)

(M(R)
i , y(R)i )


`q

.

Note that this is an (at most) countable `q-product; hence Mq ∈ `q(M).
By Lemma 3.9, it su�ces to construct a �bred coarse embedding as a disjoint union from X′ into Mq. Let

(Mq)x = Mq for all x ∈ X′ and s : X′ → ⊔
x∈X′ Mq be s(x) = (y(r)j )r,j. For each nR ≤ m ≤ nR+1 + R with i(R)m = i,

consider the component Cay(Gm) in X′ associated with these R and i. Set R′m = bR/2c and construct tg,R′
m
by

(tg,R′
m
(x))((z)r,j) = (wr,j)r,j

for x ∈ BGm (g, R′m) and for (z)r,j ∈ Mq, where,

wr,j =
{
zR,i · α(R)i (βGm ,H(R)

i ,R(xg
−1)), if (r, j) = (R, i),

zr,j , otherwise.

Then in a similar argument to one in the previous proof for the case where #(∂Cay(Gm)) = 1, we may verify
conditions (1)–(3) in Lemma 3.8; recall also Remark 3.7. Furthermore, we obtain that

(ρ, ω) ∈ CP�b
Mq

( ⊔
m∈N

Cay(Gm)
)
.

Proof of Corollary B. For the case where M = Hilbert, Btype
r,C or CAT(0)≤δ0 , the assertions immediate follow

from Theorem A; see also arguments in Examples 4.11 and 4.13. For M = Lq, Naor and Y. Peres employed
the classi�cation of separable closed subspaces of Lq-spaces and indicated a way to coming back to Lq from
FSq(Lq); see the last assertion of [45, Theorem 9.1] for more details.
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8 The absorption trick
In this section, we explain the absorption trick, which appeared in the work of Bartholdi and Erschler [7]. We
employ this trick to prove Theorem C.

8.1 Standard (restricted) wreath products

We recall the de�nition of standard (restricted)wreath products; see also [43, Proposition 2.11]. For two groups
G and H, G oH is de�ned to be

(⊕
h∈H G

)
oH, where H acts by permutation of coordinates by right. For g ∈ G

and h ∈ H, by gδh we denote the element in⊕h∈H G whose h-entry is g and all of the other entries are eG.
We use e for the group unit of⊕h∈H G. If G = (G; s1, . . . , sk) and H = (H; t1, . . . , tl) are two marked groups,
then we endow G o H with the standard (k + l)-marking as follows:

((s1δeH , eH), (s2δeH , eH), . . . , (skδeH , eH), (e, t1), (e, t2), . . . , (e, tl)).

We write the marked group of G o H with the standard marking above as G o H. Then, for Gm → G∞ and
Hn → H∞ (respectively in G(k) and G(l)) in the Cayley topology, we have that as min{m, n} →∞,

Gm oHn
Cay−→ G∞ oH∞ in G(k + l);

see §2.4. Theorem in [62] or [41, Lemma 4.6] for more detailed explanation. This may be clear to the reader
who is familiar with a relationship between wreath products and random walks.

8.2 The absorption trick

The following lemma enables us to absorb a group into some abelian group by taking the wreath product by
an in�nite group. For this reason, we call the idea of it the absorption trick. The original form in the paper of
Bartholdi and Erschler [7] stated it in terms of permutational (restricted) wreath products; here we formulate
it for a simpler case.

Lemma 8.1 (A prototype of the absorption trick; Special case of Lemma 6.13 in Bartholdi–Erschler [7]). Let
G be a �nitely generated group and �x (g1, . . . , gk) a marking of G. For each j ∈ [k], let Cj be the cyclic group of
the same order as of gj; in other words, Cj ' 〈gj〉 holds true. Then, for every in�nite and �nitely generated group
P, there exists a system of marking (Sm)m∈N of G o P with �xed size such that

(G o P; Sm) Cay−→ (C1 × C2 × · · · × Ck) o P,

with a suitable marking of the Cayley limit group.

For the sake of completeness, we include (idea of) the proof. See [41, Subsection 5.2] for a more detailed
demonstration for P = Z.

Proof. Fix a marking T = (t1, . . . , tl) of P. Since P is in�nite, for every m ∈ N, there exists eP =
x(m)1 , x(m)2 , . . . , x(m)k ∈ P such that BCayD(P;T)(x(m)j ,m), j ∈ [k], are mutually disjoint. Now, de�ne a system
(Sm)m∈N of markings of G o P by

Sm = ((g1δeP , eP), (g2δx(m)2
, eP), . . . , (gkδx(m)k

, eP), (e, t1), . . . , (e, tl)),

where e means the group unit of⊕P G. Let (Sm)1 be the set of the �rst k elements in the marking Sm. Then
the following holds true: For γ1, γ2 elements in G o P of the form τ−1στ, σ ∈ (Sm)1, τ ∈ P, if γ1, γ2 and γ1γ2 are
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all contained in the ball B(GoP;Sm)(eGoP ,m) of radius m, then γ1 and γ2 commute. By a similar reasoning to one
in the proof of [43, Lemma 5.1], we conclude that as m →∞,

(G o P; Sm) Cay−→ (C1 × C2 × · · · × Ck) o P,

with a suitable marking of the Cayley limit group. See [41, the proof of Lemma 5.3] for more details.

Since the constant sequence of G o P with a �xed standard marking converge to itself, Lemma 8.1 can
be utilized as a source of producing two systems of di�erent markings of a group that produce Cayley limit
groups of quite di�erent nature. For instance, we have the following.

Lemma 8.2 (A variant of the absorption trick). Let G be a LEF group. Let (Gm)m∈N be a sequence of �nite
groups that is obtained from the underlying groups of a LEF approximation of G (with a �xed marking). Then,
there exist two di�erent systems of markings (Sm)m and (Tm)m of (Gm o (Z/mZ))m∈N≥3 such that the following
two conditions hold true:

• The sequence (Gm o (Z/mZ); Sm)m∈N≥3 converges in the Cayley topology to a solvable marked group.
• The sequence (Gm o (Z/mZ); Tm)m∈N≥3 converges in the Cayley topology to G o Z with a suitable marking.

We will make use of another variant of the absorption trick in the proof of Theorem C.

Proof. Fix (g1, . . . , gk) a marking of G. For every m ∈ N≥3, let (g(m)1 , . . . , g(m)k ) be the corresponding marking
of Gm in the LEF approximation. Note that ((Z/mZ; 1))m∈N≥3 converges to (Z; 1) in the Cayley topology; here
we can take Rm = b(m − 1)/2c as in (*) in Lemma 3.1. For every m ∈ N≥3, set

rm = min{Rm ,
⌊
diam(CayD(Z/mZ); 1)

4k

⌋
}.

Then, limm→∞ rm = +∞. There exist 0 = x(m)1 , x(m)2 , . . . , x(m)k ∈ Z/mZ such that BCayD(Z/mZ;1)(x(m)j , rm), j ∈ [k],
are mutually disjoint. Finally, de�ne two systems (Sm)m and (Tm)m of markings of (Gm o (Z/mZ))m∈N≥3 by

Sm = ((g(m)1 δeZ/mZ , eZ/mZ), (g(m)2 δx(m)2
, eZ/mZ), . . . , (g(m)k δx(m)k

, eZ/mZ), (e, 1)),

Tm = ((g(m)1 δeZ/mZ , eZ/mZ), (g(m)2 δeZ/mZ , eZ/mZ), . . . , (g(m)k δeZ/mZ , eZ/mZ), (e, 1)),

where e means the group unit of⊕Z/mZ Gm. (Hence Tm is the standard marking of Gm o (Z/mZ).) Then, we
have that

(Gm o (Z/mZ); Sm) Cay−→ (C1 × C2 × · · · × Ck) o Z,

(Gm o (Z/mZ); Tm) Cay−→ G o Z,

where for every j ∈ [k], Cj is the cyclic group of the same order as for gj.

Remark 8.3. K.W. Gruenberg [27] showed that a wreath product G oH with an in�nite H is never RF unless G is
abelian. Hence, our construction as in Lemma 8.2 may be available only after we extend the framework from
RF approximations to LEF ones. In addition, if G is not abelian, then the Cayley convergence of (Gm o Pm; Sm)
to the amenable marked group (C1 × · · · × Ck) o P above is a LEF approximation, but not an RF one. This is
because C1 × · · · × Ck is abelian while Gm for large m is not.

We refer the reader to [41] for a further development on the absorption trick.
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9 Examples

9.1 Special linear groups

Here we discuss coarse properties of X′, Y ′, V ′ and W ′ as in Examples 1.5 and 2.1. In our Part I paper [43,
Remark 5.10], we observed that

(Gm; Sm) Cay−→ N>(Z, Fp[t])oZ , (Gm; Tm) Cay−→ SL(Z, Fp[t])oZ,

(Hm; Pm) Cay−→ N>(Z,Z)oZ , (Hm;Qm) Cay−→ SL(Z,Z)oZ,

with respectively suitable markings of the Cayley limit groups. Here for a unital commutative ring A (asso-
ciative), the group SL(Z, A) denotes the union of SL(K, A) = {g ∈ MatK×K(A) : det(g) = 1} over all �nite
non-empty sets K ⊆ Z (via the natural inclusion SL(K, A) ↪→ SL(Z, A)). Similarly, N>(Z, A) denotes the union
of

N>(K, A) = {g ∈ MatK×K(A) : (g)i,i = 1 for all i ∈ K, (g)i,j = 0 for all i > j, i, j ∈ K}

over all �nite non-empty sets K ⊆ Z. Here > is the standard total order on Z. The actions of Z in the semi-
direct products above are given by the right translation of Z on the coordinate set Z. In the Part I paper [43,
Remark 5.10], we deduced property A for X′ and V ′ by amenability of the Cayley limit groups N>(Z, Fp[t])oZ
and N>(Z,Z)oZ.

De�nition 9.1. LetM be a non-empty class of metric spaces. We say that a group G has property (FM) if for
every M ∈M, every action α : M x G by isometries admits a global �xed point.

The following are showed by several researchers.

Theorem 9.2. (1) (V. La�orgue [34], [35]) For every prime p and for every n ∈ N≥3, the group SL(n, Fp[t]) has
property (FBtype>1 ).

(2) (Izeki–Nayatani [30]) For every prime p and for every n ∈ N≥3, the group SL(n, Fp[t]) has property
(FCAT(0)≤0 ).

(3) (de Laat–Mimura–de la Salle [23]) For every E ∈ Bβ<1/2, there exists NE ∈ N≥3 such that for every n ∈ N≥NE ,
the group SL(n,Z) has property (FE).

Indeed, (2) is deduced from the following argument: First, we consider a uniform lattice in
SL(n, Fp((t−1))). Consider the �rst strictly positive Laplace eigenvalue λ1 for the link graph associated to it;
recall the argument above Example 4.14. Then, exactly the same estimate as one for a uniform lattices in
SL(n,Qp) applies. This is because local information is the same for buildings associated with PGL(n,Qp) and
for those associated with PGL(n, Fp((t−1))). By [30, Section 6, Example 1], the estimate is given as

λ1 = 1 −
√p
p + 1 .

For every prime p, the estimate above of λ1 is strictly bigger than 1/2. Then, by [30, Theorem 1.1], every uni-
form lattice in SL(n, Fp((t−1))) has property (FCAT(0)≤0 ). Even though SL(n, Fp[t]) is a non-uniform lattice in
SL(n, Fp((t−1))), we obtain the same conclusion as in (2) through L2-induction process; see [5, Section 8].

Item (1) of Theorem 9.2 has been generalized to other higher rank lattices over non-archimedean �elds;
see [36].

Remark 9.3. On (2) of Theorem 9.2, with the aid of [30, Proposition 6.3], the following strengthening holds
true: For every prime p and for every n ∈ N≥3, the group SL(n, Fp[t]) has property (FM), where M =
CAT(0)<δ(p) and δ(p) is described above Corollary 1.6. The key here is for every δ0 < δ(p), it holds that

(1 − δ0)
(
1 −

√p
p + 1

)
> 1
2 .
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By combining this with the inequality

λ1(Γ ,M) ≥ (1 − δ(M))λ1(Γ)

as in the argument above Example 4.14, we have that for every M in CAT(0)<δ(p), the Wang-type non-linear
spectral gap of the link graph with target inM is greater than 1/2. Then, [30, Theorem 1.1] applies and estab-
lishes property (FM).

Proof of Corollary 1.6. Item (1) follows from the main result [43, Theorem A] of our Part I paper, because the
Cayley limit groups for X′ and V ′ are both amenable. To show (2), observe that SL(Z, Fp[t])oZ, N>(Z,Z)oZ,
SL(Z,Z)oZ have in�nite asymptotic dimension. Then combine it with Proposition 5.2 and Remark 4.17. Items
(3) and (4) both follow from (i).(1) of TheoremA (and Corollary B) and Theorem 9.2, together with Remark 9.3.
Note that if a group G contains an isomorphic copy of an in�nite group with property (FM), then G fails to be
a-M-menable.

We make a remark that similar constructions to ones above are available for even numbers m by slight
modi�cation; see the last part of [43, Remark 5.10].

Remark 9.4. The proof of (2) of Theorem 9.2 by Izeki and Nayatani [30] has been generalized to the case of
�xed point properties with respect to r-uniformly convex metric spaces. More precisely, if

Ψ(λ(r)(Γ ,R)) > T

is satis�ed for a large enough T = T(r, C) (for instance, T = 1/2 works for several situations), then wemay es-
tablish property (FUCΨ

r,C
) for the corresponding group. In thismanner, results in [12] may be utilized to demon-

strate certain �xed point properties for groups acting on Ã2-buildings.

9.2 Three markings one of whose limit is amenable but the others are non-exact

We prove Theorem C. The main ingredient is a remarkable result by Osajda [49] of the existence of a (�nitely
generated) RF group that is non-exact. In fact, what we need in our construction is the LEF property. This
property is deduced in a much simpler way than the full argument in [49]: Indeed, it is automatic because
this group is constructed as a limit in the Cayley topology of RF groups, and such groups are always LEF. In
[48] and [3], discussion on the LEF property was not explicitly written. In aforementioned work of Osajda
[49], the construction that satis�es the condition above was given.

Remark 9.5. Osajda pointed out to the authors that although it is implicit in his paper, the resulting group (RF
but non-exact) in [49] is furthermore a-T-menable. To see this, he used amethod developed in [48] to transfer
wall structures on the �nite presented graphical small cancellation groups in his construction at all �nitary
stages to that on the in�nitely presented limit group. See also [48] and [3]. We employ this a-T-menability in
our proof of Theorem C.

An outline of our construction as in Theorem C goes as follows: We combine the absorption trick in Sub-
section 8.2 with our examples as in Subsection 9.1 (Example 1.5),

(SL(m, Fpnm ); σ(m), υ(m), τ(m))
Cay−→ N>(Z, Fp[t])oZ,

(SL(m, Fpnm ); σ(m), σ′(m), υ(m), τ(m))
Cay−→ SL(Z, Fp[t])oZ,

with respect to suitable markings of the Cayley limit groups. Here recall that the former limit group
N>(Z, Fp[t]) o Z is amenable, whereas the latter SL(Z, Fp[t]) o Z contains a copy of SL(3, Fp[t]), which has
property (FM) forM = Btype>1 andM = CAT(0)<δ(p).

Proof of Theorem C. Let G be the (�nitely generated) non-exact RF group constructed in [49], and S =
(g1, . . . , gk) be a k-marking of G. Take (Gn)n∈N an RF approximation of (G; S) (in fact, what we need here
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in principle are a non-exact LEF group and a LEF approximation of it; see also [48] and [3]). For every n ∈ N,
write Gn = (Gn; g(n)1 , . . . , g(n)k ). Recall from Remark 9.5 that this G is a-T-menable.

Recall two systems (σ(m), υ(m), τ(m))m∈Nodd and (σ(m), σ′(m), υ(m), τ(m))m∈Nodd of markings of
(SL(m, Fpnm ))m∈Nodd from Example 1.5. Set m = 2n + 3, and rewrite nm and σ(m), σ′(m), υ(m), τ(m), re-
spectively, as ln and σn , σ′n , υn , τn. Hence, we have two markings (σn , υn , τn) and (σn , σ′n , υn , τn) of
SL(2n + 3, Fpln ).

Let Hn,p = Gn o SL(2n + 3, Fpln ). Let d = k + 4. Then,

(SL(2n + 3, Fpln ); σn , υn , τn)
Cay−→ N>(Z, Fp[t])oZ,

with the suitable marking of N>(Z, Fp[t])o Z. For each n ∈ N, take Rn ∈ N as in (*) in Lemma 3.1 associated
with the convergence above. Let

rn = min{Rn ,
⌊diam(CayD(SL(2n + 3, Fpln ); σn , υn , τn))

4k

⌋
}.

Then limm→∞ rn = +∞. By de�nition of rn, for each n ∈ N, there exists x(n)1 = eSL(2n+3,Fpln ), x
(n)
2 , . . . , x(n)k ∈

SL(2n+3, Fpln ) such that the rn-balls in the Cayley diagramCayD(SL(2n+3, Fpln ); σn , υn , τn) centered at x(n)j ,
j ∈ [k], are mutually disjoint. Finally, for every n ∈ N, set a marking Sn of Hn,p as

Sn = ((g(n)1 δeSL(2n+3,Fpln ) , eSL(2n+3,Fpln )), (g
(n)
2 δx(n)2

, eSL(2n+3,Fpln )) . . . , (g
(n)
k δx(n)k , eSL(2n+3,Fpln )),

(e, σn), (e, (σn)−1), (e, υn), (e, τn)),

where e is the group unit of⊕SL(2n+3,Fpln )
Gn. (The (e, (σn)−1) above is redundant as a marking; this element

is added only in order to meet assertion (1) of the theorem.)
For the other two markings (Tn)n and (Un)n, without employing x(n)1 , . . . , x(n)k , we simply set

Tn = ((g(n)1 δeSL(2n+3,Fpln ) , eSL(2n+3,Fpln )), . . . , (g
(n)
k δeSL(2n+3,Fpln ) , eSL(2n+3,Fpln )),

(e, σn), (e, (σn)−1), (e, υn), (e, τn)),

Un = ((g(n)1 δeSL(2n+3,Fpln ) , eSL(2n+3,Fpln )), . . . , (g
(n)
k δeSL(2n+3,Fpln ) , eSL(2n+3,Fpln )),

(e, σn), (e, σ′n), (e, υn), (e, τn)).

Then as n →∞, respectively with suitable markings of the Cayley limit groups, we have the following Cayley
convergences:

(Hn,p; Sn) Cay−→ (C1 × C2 × · · · × Ck) o (N>(Z, Fp[t])oZ),

(Hn,p; Tn) Cay−→ G o (N>(Z, Fp[t])oZ),

(Hn,p;Un) Cay−→ G o (SL(Z, Fp[t])oZ),

where C1, . . . , Ck are as in Lemma 8.1. Indeed, the �rst Cayley convergence follows from a variant of the
absorption trick; compare with Lemmata 8.1 and 8.2. By Theorem 9.2 and Remark 9.3, we con�rm (2) and (4);
note that exactness of countable discrete groups passes to subgroups. To see (3), recall Remark 9.5 and the
fact that in a short exact sequence of countable discrete groups,

1 −→ G1 −→ G2 −→ G3 −→ 1,

G2 is a-T-menable if G1 is a-T-menable and if G3 is amenable; see [19, Example 6.1.6]. Assertion (1) is by
construction; observe that (σn)−1 and σ′n are conjugate in SL(2n + 3, Fpln ). It ends our proof.

9.3 Embedded Banach expanders

In this subsection, we give a de�nition of embedded Banach expanders.
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De�nition 9.6. Let E be a non-empty class of Banach spaces and �x q ∈ [1,∞). A sequence of �nite con-
nected graphs (Γm)m∈N of uniformly bounded degree is said to admit embedded Banach (E, q)-expanders if
there exist a subsequence (mn)n∈N of (m)m and a sequence of �nite connected graphs (Λmn )n∈N such that all
of the following hold true:

• There exists D > 0 such that for each n ∈ N, there exists an injectivemap ιmn : V(Λmn )→ V(Γmn ) between
the vertex sets such that the map ιmn : (V(Λmn ), dΛmn )→ (V(Γmn ), dΓmn ) is D-Lipschitz.

• There exists d ∈ N≥2 such that for every n, each vertex of Λmn has degree at most d.
• The number #(V(Λmn )) tends to ∞ as n →∞.
• (Poincaré-type inequality) For every E ∈ E, there exists CE > 0 such that the following holds true: For

every n ∈ N and for every map fmn : V(Λmn )→ E, it holds that

1
#(V(Λmn ))

∑
v∈V(Λmn )

‖fmn (v) − m(fmn )‖q ≤ CE

 1
#(V(Λmn ))

∑
e=(v,w)∈E(Λmn )

‖fmn (v) − fmn (w)‖q
 ,

where m(fmn )n denotes the mean of fmn :

m(fmn ) =
1

#(V(Λmn ))

 ∑
v∈V(Λmn )

fmn (v)

 (∈ E).

The sum on the right-hand side of the inequality above runs over all edges e ∈ E(Λmn ) in Λmn , and for
each e ∈ E(Λmn ), by writing e = (v, w) we express that e connects the vertices v and w.

We say that (Γm)m∈N is a family of Banach (E, q)-expanders if we can take mn = m and Λmn = Γm (that also
means that ιm = idV(Γm)) for every n ∈ N.

The concept of ordinary expanders is one with (E, q) = (Hilbert, 2). It is known from work of Q. Cheng
[18] that the condition of being Banach (E, q)-expanders does not depend on the choice of the exponent
q ∈ [1,∞). Also, the Poincaré-type inequality above naturally relates to (unweighted and non-normalized
version of) Wang-type non-linear spectral gaps; see Example 4.14. Here we use the mean of f , instead of the
r-barycenter, thanks to the linear structure of the Banach space E.

The following is a variant of the well-known fact asserting that expanders do not admit a coarse embed-
ding into a Hilbert space. For the sake of completeness, we provide a proof; compare with the proof of [47,
Theorem 5.6.5].

Proposition 9.7. Let E be a non-empty class of Banach spaces and let q ∈ [1,∞). If a sequence of �nite
connected graphs (Γm)m∈N of uniformly bounded degree admits embedded Banach (E, q)-expanders (Λmn )n∈N,
then for the disjoint union⊔m∈N(Γm , dΓm ) does not admit a coarse embedding into E.

In particular, if (Γm)m∈N admits embedded (ordinary) expanders, then ⊔m∈N(Γm , dΓm ) does not admit a
coarse embedding into a Hilbert space.

Proof. Suppose that there exists a coarse embedding f : ⊔m∈N(Γm , dΓm ) → E with control pair (ρ, ω). Then
for every n ∈ N and for every v, w ∈ V(Λmn ) adjacent in Λmn , it holds that ‖f (ι(v)) − f (ι(w))‖ ≤ ω(D). By the
Poincaré-type inequality in the conditions above, we therefore have that

1
#(V(Λmn ))

∑
v∈V(Λmn )

‖f (ιmn (v)) − m((f ◦ ιmn )|V(Λmn ))‖
q ≤ CEd · ω(D)q .

Since the right-hand side of the inequality above is independent of n, the images f (ιmn (V(Λmn ))) must be
concentrated around its mean m((f ◦ ιmn )|V(Λmn )). It contradicts the properness of ρ as n →∞, because ιmn is
injective, #(V(Λmn ))→∞, and (Γm)m is of uniformly bounded degree.

The proof above works for a more general setting of graphs that admit weakly embedded expanders; see
[4].

The following is deduced from [39, Theorem A]; compare with [44, Theorem 1.10] and [51, Appendix A].
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Proposition 9.8. Let F be a Banach space and let q ∈ [1,∞). Let E be a Banach space that is sphere
equivalent to F, namely, there exists a bijection Φ : S(F) → S(E) between unit spheres such that Φ and Φ−1
are both uniformly continuous. If a sequence of �nite connected graphs (Γm)m∈N admits embedded Banach
(F, q)-expanders, then it admits embedded Banach (E, q)-expanders.

Recall that [30, Proposition 6.3] shows the following inequality for (Wang-type) non-linear sepctral gaps:
For M ∈ CAT(0) and for every weighted �nite connected graph Γ,

λ1(Γ ,M) ≥ (1 − δ(M))λ1(Γ).

From this, the following may be showed in a similar manner to one in the proof of Proposition 9.7.

Proposition 9.9. If a sequence of �nite connected graphs of uniformly bounded degree (Γm)m∈N admits em-
bedded expanders, then⊔m∈N Γm does not admit a coarse embedding into CAT(0)<1.

Mendel and Naor [38] constructed a complete CAT(0) spaceM and a sequence of graphs (Γm)m such that
(Γm)m forms an expander family with respect to M, but that expanders coming from random graphs are not
expanders with respect to M. This M must have the Izeki–Nayatani invariant 1.

9.4 Uniformity is not automatic for a-M-menability

For a non-empty class of metric spaces, we say that a non-empty set K ⊆ G(k) is pointwise a-M-menable if
every G ∈ K is a-M-menable. Concerning amenability and property (T), uniformity is automatic for Cayley-
compact subsets, namely, the pointwise property automatically implies the uniform one; see [43, Proposi-
tion 3.4] and [42, Proposition 5.1]. In contrast, concerning a-M-menablity, uniformity is not automatic, as the
example below indicates.

Example 9.10. The classical ping-pong argument shows that F2 ∼= (G0;
(

1 2
0 1

)
,
(

1 0
2 1

)
) as marked

groups, where G0(' F2) is the group generated by these two elements. For each odd prime p, consider the
mod p reduction. Then G0 maps onto SL(2, Fp) and

(SL(2, Fp);
(

1 2
0 1

)
mod p,

(
1 0
2 1

)
mod p) Cay−→ F2,

as p → ∞. We write the marked group in the left-hand side as Gp. Then K = {Gp : p odd prime.} ∪ {F2} is a
compact subset in G(2). This set K is pointwise a-T-menable, but not uniformly a-T-menable. Indeed, for the
latter assertion, by work of A. Selberg [56], it follows that (Cay(Gp))p forms an expander family; see also [37].
By Proposition 9.7, there does not exist a common pair (ρ, ω) that serves as a control pair of all of the Gp, p
odd primes.

In this example, the obstruction to uniformity is the coarse non-embeddability, not the equivariant one of
the sequence. Hence, we are able to utilize this observation to prove Proposition 1.8 in the following manner.

Proof of Proposition 1.8. By the way of contradiction. Assume that ⊔m∈N Γm does not admit a coarse em-
bedding into M. Choose an element Λ∞ in the rooted graph boundary ∂r(Λn)n∈N; recall the de�nition from
Remark 5.3. Then, for every m ∈ N, the subsequence (Γm × Λn)n∈N, with changing roots, has Γm × Λ∞ as an
accumulation point in the space of rooted graphs. Hence by Proposition 5.4, in particular, (Γm×Λ∞)m∈N, must
admit equi-coarse embeddings intoM. This contradicts coarse non-embeddability of⊔m∈N Γm intoM.

9.5 Upper triangular products

We saw in the previous subsection that by taking the disjoint union⊔m,n∈N(Γm × Λn), we can embed a copy
of each Γm and Λn (as an isometrically embedded subgraph) in the rooted graph boundary. In what follows,
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we slightly modify this construction and call the resulting object the upper triangular product. We exhibit it
in the context of the space of marked groups.

Let (Gm)m∈N ⊆ G(k1) and (Hn)n∈N ⊆ G(k2). For each G = (G; s1, . . . , sk1 ) and G = (H; t1, . . . , tk2 ), de�ne
the direct product marked group G ×H by

G ×H = (G × H; (s1, eH), . . . , (sk1 , eH), (eG , t1), . . . , (eG , tk2 ))(∈ G(k1 + k2)).

De�nition 9.11. The upper triangular product of⊔m∈N Cay(Gm) and
⊔
n∈N Cay(Hn) is de�ned by⊔

(m,n)∈N×N,m≤n
Cay(Gm ×Hn)

equipped with the total order given by comparison �rstly on n and secondly on m on the index set {(m, n)};
namely, (0, 0) < (0, 1) < (1, 1) < (0, 2) < (1, 2) < (2, 2) < (0, 3) < · · · . If (Gm)m and (Hn)n are indexed by sets
that are respectively order isomorphic to (N, >), then we modify the order accordingly.

Wewrite the sequence (Gm ×Hn)(m,n)∈N2 , m≤n in G(k1+k2), with the enumerationwith respect to the order
above, identi�ed with that by l ∈ N, as (Gm)m 5 (Hn)n.

Note that for the upper triangular product,

∂Cay((Gm)m 5 (Hn)n) =
( ⋃
m∈N

(Gm × ∂Cay(Hn)n)
)
∪

 ⋃
G∞∈∂Cay(Gm)m

(G∞ × ∂Cay(Hn)n)


In this way, we can embed (isomorphic and isometric copies of) (Gm)m in the Cayley boundary (as subgroups
of respectively suitable Cayley boundary groups).

Proof of Theorem 1.9. Take the sequence of marked groups (Gp)p over odd primes p as in Example 9.10, and
construct the upper triangular product (Hl)l∈N = (Gp)p 5 (Gp)p. Set Γl as Cay(Hl). Since (Cay(Gp))p forms
an expander family, so does (Γl)l∈N. The Cayley boundary of that sequence contains an isometric copy of
(Cay(Gp))p; hence by Proposition 5.2 together with Propositions 9.7, 9.8 and 9.9, we con�rm the second as-
sertion. To see the third assertion, G. A. Margulis showed that there exists c > 0 such that for all odd prime
p,

girth(Cay(Gp)) ≥ c · diam(Cay(Gp))

holds, where the girth of a connected graph is the length of shortest cycle; see [20, Appendix A]. For such a
sequence of �nite graphs (Cay(Gp))p, T. Kondo [32] constructed a complete CAT(0) spaceM0 = M0((Cay(Gp))p)
such that the disjoint union ⊔p Cay(Gp) embeds biLipschitzly into M0. Therefore, the disjoint union of (Γl)l
admits a biLipschitz embedding into M = (M0 ×M0)`2 .

9.6 Embedded expanders from �xed point property, and exotic examples from
symmetric groups

Here we prove Theorem D. First we prove the following proposition, which may be of its own interest. It may
be regarded as a generalization of [42, Corollary 1.2] of our Part III paper.

Proposition 9.12. Let (Gm = (Gm; s(m)1 , . . . , s(m)k ))m∈N be a Cayley convergent sequence consisting of �nite
marked groups and G = (G; s1, . . . , sk) be the limit. Let E be a non-empty class of Banach spaces that satis�es
both of the following two conditions:

(1) There exists q ∈ [1,∞) such that for every E ∈ E, it holds that `q(N, E) ∈ E.
(2) The class E can be written as a union of subclasses

E =
⋃
λ
Eλ
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such that each such subclass Eλ satis�es the following: For every (Em)m∈N with Em ∈ Eλ for every m, there
exists a non-principal ultra�lter U over N such that limU(Em , 0) ∈ Eλ.

Assume that G contains an in�nite subgroup H with property (FE). Then the sequence of Cayley graphs
(Cay(Gm))m∈N admits embedded Banach (E, q)-expanders.

By combining this with Proposition 9.7, we deduce that the disjoint union ⊔m∈N Cay(Gm)) of such a se-
quence does not admit a coarse embedding into E.

To prove Proposition 9.12, we employ the following three results.

Lemma 9.13. Assume that a non-empty class of Banach spaces E satis�es condition (1) as in Proposition 9.12.
Then, if a countable discrete group H satis�es property (FE), then H is �nitely generated.

Proof. Generalize the proof of [9, Proposition 2.4.1 and Corollary 2.4.2].

Proposition 9.14. Assume that a non-empty class of Banach spaces E satis�es condition (1) as in Proposi-
tion 9.12. Let H = (H; T) be an in�nite marked group such that H has property (FE). Let (Hn = (Hn; Tn))n∈N be
a sequence of �nite marked group quotients (recall the de�nition fromDe�nition 3.2) such that limn→∞ #(Hn) =
∞.

Then, the sequence (Cay(Hn))n∈N forms a family of Banach (E, q)-expanders.

Proof. By [5, 3.a], H has property (TE) in the sense of Bader–Furman–Gelander-Monod. For each E ∈ E.
in particular, H has property (T`q(N,E)). This implies that the (τ)-type constant associated with (H, `q(N, E)),
de�ned in our Part I paper [43, De�nition 6.6.(2)], is strictly positive. Then, in a similar argument to one in
the proof of [43, Lemma 6.8] (by replacing the square sums there with q-sums), we deduce that (Cay(Hn))n∈N
satis�es the Poincaré-type inequality as in De�nition 9.6. By construction, degrees are bounded by 2k, and
(∞ >)#(Hn)→∞.

Proposition 9.15. Assume that a non-empty class of Banach spaces E satis�es condition (2) as in Proposi-
tion 9.12 with Eλ = E. Let H = (H; T) be an in�nite marked group such that H has property (FE). Then there
exists a �nitely presented marked group H̃ such that it has property (FE) and there exists a marked quotient
map H̃� H.

Proof. This follows from a well-known Gromov–Schoen argument; see the survey [58] of Stalder. More pre-
cisely, [58, Theorem 1.5] implies that the subset of all marked groups in G(k) with property (FE) forms an open
subset in the Cayley topology. Here k = #(T). If H itself is �nitely presented, then we are done. Otherwise,
there exists a Cayley convergent sequence (H̃m)m∈N to H

H̃0 = Fk � H̃1 � H̃2 � · · ·� H̃m � · · · Cay−→ H

consisting of �nitely presentedmarked groups, constructed by putting relations ofH one by one. By the open-
ness property above, there must exist m ∈ N such that H̃m has property (FE). This H̃m is a desired H̃.

On Proposition 9.15, the case where E = Hilbert was proved by Shalom [57]; see also [33]. In this case,
property (FHilbert) (for countable discrete groups) is equivalent to the celebrated property (T) of D. Kazhdan;
see [9] on property (T), including this equivalence (the Delorme–Guichardet theorem).

Proof of Proposition 9.12. By Lemma 9.13, H is �nitely generated. Fix a �nite generating set T = (t1, . . . , tl) of
H. Then, each tj, j ∈ [l], may be written as a product of elements in S = (s1, . . . , sk); �x such an expressions
for each j ∈ [l]. For eachm ∈ N, t(m)j , j ∈ [l], be the element in Gm constructed by replacing si with s(m)i in that
expression for all i ∈ [k]. Let Hm(6 Gm) be the group generated by these t(m)1 , . . . , t(m)k . Then for everym ∈ N,
Hm is �nite, and

(Hm; t(m)1 , . . . , t(m)k ) Cay−→ H.
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Now�x E ∈ E. Then by condition (1) and (2), there exists a subclassEλ as in (2) ofE that contains `q(N, E).We
apply Proposition 9.15 to Eλ and take �nitely presented marked lift H̃ of H with property (FEλ ). Then by �nite
presentation of H̃, the set of all marked group quotients of H̃ is an open neighborhood ofH; recall Remark 3.3.
In particular, the sequence ((Hm; t(m)1 , . . . , t(m)k ))m eventually consists of marked group quotient of H̃. There-
fore, Proposition 9.14 applies and (Λm)m = (Cay(Hm; t(m)1 , . . . , t(m)k ))m forms a Banach (E, q)-expander family.
(Strictly speaking, for smallm, themarked groupmight not be amarked group quotients of H̃. However, since
these are only �nitely many, they do not a�ect the Banach (E, q)-expander property.) Because this holds for
each E ∈ E, (Λm)m forms a Banach (E, q)-expander family.

Finally we go back to the original graphs (Γm)m∈N = (Cay(Gm))m∈N. First, the vertex set V(Λm) = Hm
injects into V(Γm) = Gm via ιm : Hm ↪→ Gm (as a subgroup Hm 6 Gm). Moreover, by construction of
(t(m)1 , . . . , t(m)l ), there exists D > 0 such that for every m ∈ N, the map (Λm , dΛm ) → (Γm , dΓm ) induced by
ιm is D-Lipschitz. This ends our proof.

Before proceeding to the proof of Theorem D, we state the following lemma, which enables us to encode
information of a Cayley convergence into symmetric groups. Here, for a non-empty set B, denote by Sym(B)
the full symmetric group, and by Sym<ℵ0 (B) the symmetric groupwith �nite support, namely, the group of all
permutations on B that �x all but �nitely many elements in B. For l ∈ N≥1, we abbereviate Sym([l]) as Sym(l).

Lemma 9.16 (Encoding into symmetric groups). Let k ∈ N≥1. Let (Gm)m∈N = (Gm; s(m)1 , . . . , s(m)k ))m be a LEF
approximation of an in�nite groupG∞ = (G∞; s(∞)

1 , . . . , s(∞)
k ). Assume that for every m ∈ N∪{∞} and for every

j ∈ [k], it holds that s(m)j ≠ eGm .
Then we have the following Cayley convergence in G(2k):

(Sym(Gm); χs(m)1
, . . . , χs(m)k

, θs(m)1
, . . . , θs(m)k

)
Cay−→ (Sym<ℵ0 (G∞)o G∞; χs(∞)

1
, . . . , χs(∞)

k
, θs(∞)

1
, . . . , θs(∞)

k
).

Here, G∞ acts on Sym<ℵ0 (G∞) as permutations induced by right multiplication; for a countable group G
and for γ ∈ G \ {eG}, we de�ne elements χγ ∈ Sym<ℵ0 (G) and θγ ∈ Sym(G) by

χγ = (the transposition on {eG , γ}),
θγ = (the permutation on G given by the right-multiplication of γ).

For the proof, see [41, the proof of Lemma 4.9].

Proof of Theorem D. We take two sequences of marked groups ((Gm; Sm))m∈Nodd and ((Gm; Tm))m∈Nodd as in
Example 1.5. More precisely, Gm = SL(m, Fpnm ), Sm = (σ(m), υ(m), τ(m)) and Tm = (σ(m), σ′(m), υ(m), τ(m)). Let
(Hn)n∈N≥3 = ((Z/nZ; 1))n. Then, take upper triangular products

(Il)l∈N = ((Gm; Sm))m 5 (Hn)n in G(4),
(Jl)l∈N = ((Gm; Tm))m 5 (Hn)n in G(5).

By construction, concerning Cayley boundaries, we have that

∂Cay(Il)l = {(Gm; σ(m), υ(m), τ(m)) : m ∈ Nodd} × Z
∪ {(N>(Z, Fp[t])oZ; σ(∞), υ(∞), τ(∞)) × Z},

∂Cay(Jl)l = {(Gm; σ(m), σ′(m), υ(m), τ(m)) : m ∈ Nodd} × Z
∪ {(SL(Z, Fp[t])oZ; σ(∞), σ′(∞), υ(∞), τ(∞)) × Z},

for some markings (σ(∞), υ(m), τ(∞)) and (σ(∞), σ′(∞), υ(m), τ(∞)). Here Z = (Z; 1).
Note that for each l ∈ N, the underlying groups of Il and Jl are the same; we write it as Kl. The marking

of Il is of the form (b(l)1 , b(l)2 , b(l)3 , c(l)) and the one of Jl is of the form (b(l)1 , b′1
(l), b(l)2 , b(l)3 , c(l)). Here b1, b′1, b2,

b3 are associated, respectively, with σ, σ′, υ, τ, and c corresponds to the generator 1 of Hn.
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Finally, we employ the encoding into symmetric groups as in Lemma 9.16. More precisely, consider two
systems of markings (Ξl)l∈N and (Ω)l∈N of (Sym(Kl))l∈N by

Ξl = (χb1(l) , χb2(l) , χb3(l) , χc(l) , θb1(l) , θb2(l) , θb3(l) , θc(l) ),
Ωl = (χb1(l) , χb2(l) , χb3(l) , χc(l) , θb1(l) , θb2(l) , θb3(l) , θc(l) , θb′1(l) ).

In what follows, we will verify the assertions as in Theorem D. Item (1) is by construction. To see (2), all
underlying groups appearing in ∂Cay(Il)l are

Sym<ℵ0 (Gm × Z)o (Gm × Z), m ∈ Nodd, and Sym<ℵ0 (G̃∞)o (G̃∞),

where G̃∞ = (N>(Z, Fp[t])o Z) × Z. Since all of them are amenable, [43, Theorem A] implies that the disjoint
union⊔l Cay(Il) has property A.

Finally, we deal with (3). In a similar argument to one above, we see that the Cayley boundary ∂Cay(Jl)l
contains an isomorphic and isometric copies of ((Gm; Tm))m∈Nodd (as subgroups of respectively suitable Cayley
boundary groups). Now recall that

(Gm; Tm) Cay−→ SL(Z, Fp[t])oZ

with respect to a suitable marking of the limit, and that the Cayley limit group contains SL(3, Fp[t]), which
has property (FBtype>1 ). Note that the classBtype>1 ful�lls the two conditions in Proposition 9.12. Indeed, to see
(2), decompose as

Btype>1 =
⋃

r∈(1,2], C>0
B
type
r,C .

Hence by Proposition 9.12, we conclude that (Cay(Gm; Tm))m∈Nodd admits embedded Banach (Btype>1, 2)-
expanders. This with Propositions 9.7, 9.8 and 9.9 imply that ∂Cay(Jl)l does not admit equi-coarse embeddings
into M, where M is either of the two classes as in the assertion of (3). Thus by Proposition 5.2 we complete
the proof. Here for every l ∈ N, we set kl = #(Kl) and identify Sym(kl) with Sym(Kl).

Remark 9.17. In this speci�c example above, we do not need to appeal to Proposition 9.15 to obtain a �nitely
presented lift with property (FBtype>1 ). Indeed, it follows from work of H. Behr [8] that SL(n, Fpr [t]) is �nitely
presented for every prime p and for every r ∈ N≥1, provided that n ≥ 4. Thus the Cayley limit group
SL(Z, Fp[t])oZ of our concern in the example above contains a copy of a �nitely presented group SL(4, Fp[t])
with property (FBtype>1 ) as a subgroup.

We make a �nal remark, which is similar to one in the Part I paper [43]: The construction above is ‘semi-
explicit’ because in general, there is an issue to have an explicit generator of F×pnm . To obtain a fully explicit
construction, replace coe�cient rings (Fpnm )m with explicit other quotient rings of Fp[t]; for instance take
(Fp[t]/(tnm − t))m, and replace (tnm ∈ Fpnm )m with (t ∈ Fp[t]/(tnm − t))m.
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