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Spectral methods for multiscale stochastic differential
equations

A. Abdulle∗ G.A. Pavliotis† U. Vaes‡

Abstract

This paper presents a new method for the solution of multiscale stochastic differential
equations at the diffusive time scale. In contrast to averaging-based methods, e.g., the
heterogeneous multiscale method (HMM) or the equation-free method, which rely on Monte
Carlo simulations, in this paper we introduce a new numerical methodology that is based on a
spectral method. In particular, we use an expansion in Hermite functions to approximate the
solution of an appropriate Poisson equation, which is used in order to calculate the coefficients
of the homogenized equation. Spectral convergence is proved under suitable assumptions.
Numerical experiments corroborate the theory and illustrate the performance of the method.
A comparison with the HMM and an application to singularly perturbed stochastic PDEs are
also presented.

Keywords: Spectral methods for differential equations, Hermite spectral methods, singularly
perturbed stochastic differential equation, multiscale methods, homogenization theory, stochastic
partial differential equations.
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1 Introduction

Multiscale stochastic systems arise frequently in applications. Examples include atmosphere/ocean
science [35] and materials science [16]. For systems with a clear scale separation it is possible,
in principle, to obtain a closed—averaged or homogenized—equation for the slow variables [45].
The calculation of the drift and diffusion coefficients that appear in this effective (coarse-grained)
equation requires appropriate averaging over the fast scales. Several numerical methods for
multiscale stochastic systems that are based on scale separation and on the existence of a coarse-
grained equation for the slow variables have been proposed in the literature. Examples include the
heterogeneous multiscale method (HMM) [50, 52, 1] and the equation-free approach [27]. These
techniques are based on evolving the coarse-grained dynamics, while calculating the drift and
diffusion coefficients “on-the-fly” using short simulation bursts of the fast dynamics.

A prototype fast/slow system of stochastic differential equations (SDEs) for which the aforementioned
techniques can be applied is 1

dXε
t =

1

ε
f(Xε

t , Y
ε
t ) dt+

√
2σx dWxt, (1a)
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1 In this paper we will consider the fast/slow dynamics at the diffusive time scale, or, using the terminology

of [45], the homogenization problem.
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dY εt =
1

ε2
h(Xε

t , Y
ε
t ) dt+

√
2

ε
σy dWyt. (1b)

where Xε
t ∈ Rm, Y εt ∈ Rn, ε � 1 is the parameter measuring scale separation, σx ∈ Rm×d1 ,

σy ∈ Rn×d2 are constant matrices, and Wx, Wy are independent d1 and d2-dimensional Brownian
motions, respectively.2 For fast-slow systems of this form, a direct numerical approximation of the
full dynamics would be prohibitively expensive, because resolving the fine scales would require a
time step δt that scales as O(ε2). Under appropriate assumptions on the coefficients and on the
ergodic properties of the fast process Y εt , it is well known that the slow process converges, in the
limit as ε tends to 0, to a homogenized equation that is independent of the fast process and of ε [45,
Ch. 11]:

dXt = F(Xt) dt+ A(Xt) dWt. (2)

The drift and diffusion coefficients in (2) can be calculated by solving a Poisson equation involving
the generator of the fast process,3

− Lyφ = f , (3)

where Ly = h(x, y) · ∇y + σ2
y∆y, together with appropriate boundary conditions, and calculating

averages with respect to the invariant measure µx(dy) of Y εt :

F(x) =

∫
Rn

∇xφ(x, y) f(x, y)µx(dy), (4a)

A(x)A(x)T =

∫
Rn

[f(x, y)⊗ φ(x, y) + φ(x, y)⊗ f(x, y)] µx(dy). (4b)

Once the drift and diffusion coefficients have been calculated, then it becomes computationally
advantageous to solve the homogenized equations, in particular since we are usually interested in the
evolution of observables of the slow process alone. The main computational task, thus, is to calculate
the drift and diffusion coefficients that appear in the homogenized equation (2). When the state
space of the fast process is high dimensional, the numerical solution of the Poisson equation and
calculation of the integrals in (3) using deterministic methods become prohibitively expensive and
Monte Carlo-based approaches have to be employed. In recent years different methodologies have
been proposed for the numerical solution of the fast-slow system (1) that are based on the strategy
outlined above, for example the Heterogeneous Multiscale Method (HMM) [50, 52, 1] and the
equation-free approach [27]. In particular, the PDE-based formulas (4) are replaced by Green-Kubo
type formulas [52, Sec. 1] that involve time averages and numerically calculated autocorrelation
functions. The equivalence between the homogenization and the Green-Kubo formalism has been
shown for a quite general class of fast/slow systems of SDEs [43]. See also [29, 31]. While offering
several advantages, time and ensemble averages, on which these methods are based, imply that
accurate solutions are computationally very expensive to obtain. Based on the analysis of [52], one
deduces that the computational cost needed to obtain an error of order 2−p scales as O(2p(2+1/l)),
where l is the weak order of accuracy of the micro-solver used.

When the dimension of the state space of the fast process is relatively low, numerical approaches
that are based on the accurate and efficient numerical solution of the Poisson equation (3) using
“deterministic” techniques become preferable. This is particularly the case when the structure of
the fast-slow system (1) is such that spectral methods can be applied in a straightforward manner.
Such an approach was taken in [9] for the study of the diffusion approximation of a kinetic model
for swarming [12]. In dimensionless variables, the equation for the distribution function fε(x, v, t)

2 It is straightforward to consider problems where the Brownian motions driving the fast and slow processes are
correlated. This scenario might be relevant in applications to mathematical finance. See e.g. [13].

3 We are assuming that the centering condition is satisfied, see Eq. (Hf ) below.
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reads
∂fε

∂t
+

1√
ε

(v · ∇rfε −∇rΨ · ∇vfε) =
1

ε
Q(fε), (5)

where Ψ is a potential that is defined self-consistently through the solution of a Poisson equation, Q(·)
denotes a linearized “collision” operator, with the appropriate number and type of collision invariants.
It was shown in [9] that in the limit as ε tends to 0, the spatial density ρ(x, t) =

∫
f(x, v, t) dv of

swarming particles converges to the solution of an aggregation-diffusion equation of the form

∂ρ

∂t
−∇ · (D∇ρ+K(∇U ? ρ)ρ) = 0, (6)

where ? denotes the convolution product, U is the interaction potential, and the drift and diffusion
tensors K and D, respectively, can be calculated using an approach identical to (3) and (4): we first
have to solve the Poisson equations4

−Huχ = v
√
M and −Huκ =

1

θ
∇vW

√
M, (7)

where W (·) is a potential in velocity, M(v) = Z−1e−W (v)/θ is the Maxwellian distribution at
temperature θ, with Z being the normalization constant, H = −θ∆v + Φ(v) and

Φ(v) = −1

2
∆vW (v) +

1

4θ
|∇vW (v)|2 . (8)

Then the effective coefficients can be calculated by the integrals

D =

∫
Rd

H(uχ)⊗ uχ dv and K =

∫
Rd

H(uχ)⊗ uκ dv. (9)

We note that the operator H that appears in (7) is a Schrödinger operator whose spectral properties
are very well understood [46, 24]. In particular, under appropriate growth assumptions on the
potential Φ given in (8), the operator H is essentially selfadjoint, has discrete spectrum and its
eigenfunctions form an orthonormal basis in L2

(
Rd
)
. The computational methodology that was

introduced and analyzed in [9] for calculating the homogenized coefficients in (6) is based on the
numerical calculation of the eigenvalues and eigenfunctions of the Schrödinger operator using a
high-order finite element method. It was shown rigorously and by means of numerical experiments
that for sufficiently smooth potentials the proposed numerical scheme performs extremely well;
in particular, the numerical calculation of the first few eigenvalues and eigenfunctions of H are
sufficient for the very accurate calculation of the drift and diffusion coefficients given in (9).

In this paper we develop further the methodology introduced in [9] and we apply it to the numerical
solution of fast/slow systems of SDEs, including singularly perturbed stochastic partial differential
equations (SPDEs) in bounded domains. Thus, we complement the work presented in [2], in which
a hybrid HMM/spectral method for the numerical solution of singularly perturbed SPDEs with
quadratic nonlinearities [7] at the diffusive time scale was developed.5 The main difference between
the methodology presented in [9] and the approach we take in this paper is that, rather than obtaining
the orthonormal basis by solving the eigenvalue problem for an appropriate Schrödinger operator,
we fix the orthonormal basis (Hermite functions) and expand the solution of the Poisson equation (3)
(after the unitary transformation that maps it to an equation for a Schrödinger operator) in this

4 We first perform a unitary transformation that maps the generator of a diffusion process of the form Ly that
appears in (3) to an appropriate Schrödinger-type operator; see [44, Sec. 4.9] for details.

5 When the centering condition (see Equation (Hf )) is not satisfied, one needs to study the problem at a shorter
time scale (called the advective time scale). This problem is easier to study since it does not require the solution of a
Poisson equation. The rigorous analysis of the HMM method for singularly perturbed SPDEs at the advective time
scale was presented in [11].
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basis. We show rigorously and by means of numerical experiments that our proposed methodology
achieves spectral convergence for a wide class of fast processes in (1). Consequently, our method
outperforms Monte Carlo-based methodologies such as the HMM and the equation-free method,
at least for problems with low-dimensional fast processes. We discuss how our method can be
modified so that it becomes efficient when the fast process has a high-dimensional state space in
the conclusions section, Section 7.

In this paper we will consider fast/slow systems of SDEs for which the fast process is reversible, i.e.
it has a gradient structure [44, Sec. 4.8]6

dXε
t =

1

ε
f(Xε

t , Y
ε
t )dt+α(Xε

t , Y
ε
t ) dWxt, Xε

0 = x0, (10a)

dY εt = − 1

ε2
∇V (Y εt )dt+

√
2

ε
dWyt, Y ε0 = y0, (10b)

where Xε
t (t) ∈ Rm, Y εt (t) ∈ Rn, α(·, ·) ∈ Rm×p, Wx and Wy are standard p and n-dimensional

Brownian motions, and V (·) is a smooth confining potential. SDEs of this form appear in several
applications, e.g. in molecular dynamics [15, 30]. Furthermore, several interesting semilinear
singularly perturbed SPDEs can be written in this form, see Section 6. It is well known [44, Sec. 4.9]
that the generator of a reversible SDE is unitarily equivalent to an appropriate Schrödiner operator.
Consequently, the calculation of the drift and diffusion coefficients in the homogenized equation
corresponding to (10) reduces to a problem that is very similar to (7) and (9). Our approach is to
first solve this Poisson equation for the Schrödinger operator via a spectral method using Hermite
functions and then use this solution in order to calculate the integrals in (4). For smooth potentials
that increase sufficiently fast at infinity our method has spectral accuracy, i.e. the error decreases
faster than any negative power of the number of floating point operations performed. This, in
turn, via a comparison for SDEs argument, implies that we can approximate very accurately the
evolution of observables of the slow variable Xε

t in (10) by solving an approximate homogenized
equation in which the drift and diffusion coefficients are calculated using our spectral method. For
relatively low dimensional fast-processes, this leads to a much more accurate and computationally
efficient numerical method than any Monte Carlo-based methodology. We remark that our proposed
numerical methodology becomes (analytically) exact when the fast process is, to leading order, an
Ornstein-Uhlenbeck process, since in this case, for a suitable choice of the mean and the covariance
matrix, the Hermite functions are the eigenfunctions of the corresponding Schrödinger operator.

The rest of the paper is organized as follows. In Section 2, we summarize the results from
homogenization theory for the fast/slow system (10) that we will need in this work. In Section 3
we present our numerical method in an algorithmic manner. In Section 4, we summarize the
main theoretical results of this paper; in particular we show that our method, under appropriate
assumptions on the coefficients of the fast/slow system, is spectrally accurate. The proofs of our
main results are given in Section 5. In Section 6 we present details on the implementation of our
numerical method, discuss the computational efficiency and present several numerical examples,
including an example of the numerical solution of a singularly perturbed SPDE; for this example,
we also present a brief qualitative comparison of our method with the HMM method. Section 7 is
reserved for conclusions and discussion of further work. Finally in the appendices we present some
results related to approximation theory in weighted Sobolev spaces that are needed in the proof of
the main convergence theorem.

6 We could, in principle, also consider reversible SDEs with a diffusion tensor that is not a multiple of the identity.
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2 Diffusion Approximation and Homogenization

In this section, we summarize some of our working hypotheses and the results from the theory of
homogenization used to derive the effective SDE for the system (10). Throughout this paper, the
notation |·| denotes the Euclidian norm when applied to vectors, and the Frobenius norm when
applied to matrices. In addition, for a vector v ∈ Rd, the components are denoted by v1, v2 · · · , vd.
We start by assuming that V (·) is a smooth confining potential, [44, Definition 4.2]:

V ∈ C∞(Rn), lim
|y|→∞

V (y) =∞ and e−V (·) ∈ L1 (Rn) . (HV )

These hypotheses guarantee that the fast process has a well defined solution for all positive times,
with a unique invariant measure whose density is given by 1

Z e
−V (y), where Z is the normalization

constant. Without loss of generality, we may assume that Z = 1. To these assumptions, we add

lim
|y|→∞

∇V · y =∞ and lim
|y|→∞

W (y) := lim
|y|→∞

(
1

4
|∇V (y)|2 − 1

2
∆V (y)

)
=∞, (HW )

which guarantee that the law of y(t) converges to its invariant distribution e−V exponentially fast
(e.g. in relative entropy), see [37]. We assume furthermore that the drift coefficient in the slow
equation of system (10) satisfies

f(x, y) ∈ (C∞(Rm ×Rn))
m
,∫

Rn

f(x, y) e−V (y) dy = 0, and

|f(x, y)| ≤ p(y) ∀x ∈ Rm and ∀y ∈ Rn,

(Hf )

where p(·) is a polynomial. Under Assumptions (HV ) and (Hf ), the uniform ellipticity of the
generator of the fast dynamics and [40, Theorem 1] ensure that there exists for all x ∈ Rm a
solution that is smooth in y of the Poisson equations:

− Lφi(x, y) := − (∆y −∇yV · ∇y)φi(x, y) = fi(x, y) for i = 1, . . . ,m. (11)

The difference in sign was adopted to lighten the notation in the analysis presented in Section 5.
We consider solutions that are locally bounded and grow at most polynomially in y. The solution
to the Poisson equations (11) are unique, up to constants. Without loss of generality, we can set
these constants to be equal to 0:∫

Rn

φ(x, y) e−V (y) dy = 0, ∀x ∈ Rm. (12)

In addition to the previous assumptions, we add the following assumption on the Lipschitz continuity
with respect to x of the coefficients.

|f(x, y)− f(x′, y)|+ |α(x, y)−α(x′, y)| ≤ C(y) |x− x′| , (HL)

and the following assumptions on the growth of the coefficients:

|f(x, y)| ≤ K(1 + |x|)(1 + |y|m1),

|∇xf(x, y)|+
∣∣∇2

xf(x, y)
∣∣ ≤ K(1 + |y|m2),

|α(x, y)| ≤ K(1 + |x|1/2)(1 + |y|m3),

(HG)
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for positive integers m1,m2,m3 and a positive constant K. It follows from this that φ(·, y) belongs
to
(
C2(Rm)

)m for all values of y. This can be shown by using the Feynman-Kac representation of
the solution of (11) that was studied in [40]:

φi(x, y) =

∫ ∞
0

Eyfi(x, z
y
t ) dt, i = 1, . . . ,m, (13)

where zyt is the solution of

dzyt = −∇yV (zyt ) dt+
√

2 dWt with zy0 = y.

Using the Feynman-Kac formula (13), one can show [40, p. 1073] that there exist L, q > 0 such
that:

|φ(x, y)|+ |∇yφ(x, y)| ≤ L(1 + |x|)(1 + |y|q),
|∇xφ(x, y)|+ |∇y∇xφ(x, y)|+ |∇x∇xφ(x, y)|+ |∇y∇x∇xφ(x, y)| ≤ L(1 + |y|q).

(14)

Using the previous assumptions we can prove the following homogenization/diffusion approximation
result [40, Theorem 3].

Theorem 2.1. Let Eqs. (HV ) to (Hf ), (HL) and (HG) be satisfied. Then for any T > 0, the
family of processes {Xε

t , 0 ≤ t ≤ T} solving (10) is weakly relatively compact in (C ([0, T ]))
m. Any

accumulation point Xt is a solution of the martingale problem associated to the operator:

G =
1

2
D(x) : ∇y∇y + F(x) · ∇x

where
F(x) =

∫
Rn

∇xφ(x, y) f(x, y) e−V (y) dy, (15)

and
D(x) =

∫
Rn

(
α(x, y)α(x, y)T + f(x, y)⊗ φ(x, y) + φ(x, y)⊗ f(x, y)

)
e−V (y) dy, (16)

where φ(x, y) is the centered solution of the Poisson equation (11). If, moreover, the martingale
problem associated to G is well-posed, then Xε

t ⇒ Xt (convergence in law), where Xt is the unique
diffusion process (in law) with generator G.

In view of this theorem, writing D(x) = A(x)A(x)T we obtain the functions F(x), A(x) that
appear in the homogenized SDE (2).

3 Numerical Method

In this section, we describe our method for the approximation of the effective dynamics, the analysis
of which is postponed to Section 5. We start by introducing the necessary notation. We will denote
by L2 (Rn) the space of square integrable functions on Rn, by 〈·, ·〉0 the associated inner product,
and by ‖ · ‖0 the associated norm. The notation L2 (Rn, ρ), for a probability density ρ, will be used
to denote the space of functions f such that √ρf ∈ L2 (Rn). Weighted Sobolev spaces associated
to a probability density are defined in Definition A.2. whereas scales of Sobolev spaces, associated
to an operator, are defined in Definition A.3.

In addition to these function spaces, we will denote by Pd(R
n) the space of polynomials in n

variables of degree less than or equal to d, and by Hα(y;µ,Σ) the Hermite polynomials on Rn
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defined in Appendix B:

Hα(y;µ,Σ) = H∗α(S−1(y − µ)), with α ∈ Nn and H∗α(z) =
∏n

k= 1
Hαk(zk). (17)

Here Hαk(·) denotes one-dimensional Hermite polynomial of degree αk, Σ ∈ Rn×n is a symmetric
positive definite matrix, D and Q are diagonal and orthogonal matrices such that Σ = QDQT ,
S = QD1/2 and µ ∈ Rn. We recall from Appendix B that these polynomials form a complete
orthonormal basis of L2(Rn, G(µ,Σ)), where Gµ,Σ denotes the Gaussian density on Rn with mean
µ and covariance matrix Σ. Finally, we will use the notation hα(y;µ,Σ) to denote the Hermite
functions corresponding to the Hermite polynomials (17), see Definition B.3.

We recall from Section 2 that obtaining the drift and diffusion coefficients F(X) and A(X),
respectively, of the homogenized equation

dX = F(X) dt+ A(X) dWt, (18)

requires the solution of the Poisson equations (11). To emphasize the fact that x appears as
a parameter in (11), we will use the notations φx(·) := φ(x, ·) and fx(·) := f(x, ·). The weak
formulation of the Poisson equation (11) is to find φx ∈ H1

(
Rn, e−V

)
such that for i = 1, . . . ,m,

aV (φxi , v) :=

∫
Rn

∇φxi · ∇v e−V dy =

∫
Rn

fxi v e
−V dy ∀v ∈ H1

(
Rn, e−V

)
, (19)

with the centering condition

M(φx) :=

∫
Rn

φx e−V dy = 0. (20)

We recall that in order to be well-posed the conditionM(fx) = 0 must be satisfied.

We start by performing the standard unitary transformation that maps the generator of a reversible
Markov process to a Schrödinger operator: e−V/2 : L2

(
Rn, e−V

)
→ L2 (Rn). Introducing

H := e−V/2L
(
eV/2·

)
= ∆−

(
1

4
|∇V |2 − 1

2
∆V

)
= ∆−W (y), (21)

and ψx = e−V/2φx, the Poisson equation (11) can be rewritten in terms of the operator (21) as:

−Hψx = e−V/2fx. (22)

The weak formulation of this mapped problem reads: find ψx ∈ H1 (Rn,H) satisfying M̂(ψx) :=∫
Rn ψ

x e−V/2dy = 0 and such that, for i = 1, . . . ,m,

a(ψxi , v) :=

∫
Rn

∇ψxi · ∇v +W (y)ψxi v dy =

∫
Rn

fxi v e
−V/2dy ∀v ∈ H1 (Rn,H) , (23)

where H1 (Rn,H) =
{
u ∈ H1 (Rn) :

∫
Rn |W |u2 dy <∞

}
. The centering condition becomes:

M̂(ψx) :=

∫
Rn

ψxe−V/2dy = 0. (24)
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The formulas for the effective drift and diffusion coefficients can be written as

F(x) =

∫
Rn

∇xψx
(
fx e−V/2

)
dy, (25a)

D(x) =

∫
Rn

ααT (x, y)µx(dy) + A0(x) + A0(x)T , (25b)

where
A0(x) =

∫
Rn

ψx ⊗
(
fx e−V/2

)
dy. (26)

The advantage of using the unitary transformation is that the solution of this new problem and its
derivative lie in L2 (Rn), rather than in a weighted space.

To approximate numerically the coefficients of the effective SDE, we choose a finite-dimensional
subspace Ŝd of H1 (Rn,H), specified below, and consider the finite-dimensional approximation
problem: find ψxd ∈ Ŝd such that, for i = 1, . . . ,m,

a(ψxdi, vd) =

∫
Rn

fxi vd e
−V/2dy ∀vd ∈ Ŝd. (27)

While the centering condition for ψx serves to guarantee the uniqueness of the solution to (23),
it does not affect the coefficients (15), (16) of the simplified equation. Existence and uniqueness—
possibly up to a function in the kernel of H—of the solution of the finite-dimensional problem are
inherited from the infinite-dimensional problem (23).

For a given basis {eα}|α|≤d of Ŝd, the finite-dimensional approximation of ψx can be expanded
as ψxd =

∑
|α|≤dψ

x
α eα, and from the variational formulation (27) we obtain the following linear

systems: ∑
|β|≤d

a(eα, eβ)ψxβ = fxα with fxα =

∫
Rn

fx eα e
−V/2 dy. (28)

We will use the notation Aαβ = a(eα, eβ) for the stiffness matrix. In view of formula (25) we see
that we also need an approximation the gradient of the solution, which we denote by ∇xψxd . This
can be obtained by solving (28) with the right-hand side (∇xfx)α =

∫
Rn(∇xfx) eα e

−V/2 dy.

Once the solutions ψxd and ∇xψxd are computed, we can calculate the approximate drift and diffusion
as follows. Then, by substituting the approximations of ψxd , ∇xψ

x
d , and e−V/2f

x in (25), we obain

Fd(x) =
∑
|α|≤d

∑
|β|≤d

〈eα, eβ〉0 (∇xψx)α · fxβ , (29a)

A0d(x) =
∑
|α|≤d

∑
|β|≤d

〈eα, eβ〉0ψxα ⊗ fxβ , (29b)

Dd(x) =

∫
Rn

ααT (x, y) e−V dy + A0d(x) + A0d(x)T , Ad(x)Ad(x)
T

= Dd(x). (29c)

Using these coefficients, we obtain the approximate homogenized SDE

dXd = Fd(Xd)dt+ Ad(Xd)dWt. (30)

This equation can now be easily solved using a standard numerical method, e.g. Euler-Maruyama.

Our numerical methodology is based on the expansion of the solution to (22) in Hermite functions:

Ŝd = span{hα(y;µ,Σ)}|α|≤d. (31)

8



A good choice of the mean and covariance, µ and Σ, respectively, is important for the efficiency of
the algorithm. In our implementation we choose

µ =

∫
Rn

y e−V (y)dy and Σ = λ

∫
Rn

(y − µ)(y − µ)
T
e−V (y) dy, (32)

where λ > 0 is a free parameter independent of the first two moments of e−V . This choice for the
mean and covariance guarantees that our method is invariant under the rescaling Ỹ εt = σ(Y εt −m).
An example illustrating why this is desirable is when the mass of the probability density e−V is
concentrated far away from the origin. Using Hermite functions centered at 0 would provide a
very poor approximation in this case, but choosing Hermite functions around the center of mass of
e−V leads to a much better approximation. Note that this is not the only choice that guarantees
invariance under rescaling, but it is the most natural one.

Remark 3.1. When the potential V is quadratic, say V (y) = 1
2 (y −m)

T
S(y−m), the eigenfunctions

of the operator H (defined in (21)) are precisely the Hermite functions hα(y;m,S). Hence choosing
these as a basis, i.e. eα = hα(y;m,S), leads to a diagonal matrix A in the linear systems (28),
because a(eα, eβ) = λαδαβ , with λ defined in Eq. (85). This choice corresponds to λ = 1 in (32).
The optimal choice for the parameters µ and Σ for a general density e−V and function f has
been partially studied. In particular, it was shown in [22] that O(p2) Hermite polynomials are
necessary to resolve p wavelengths of a sine function, when keeping the scaling parameter fixed.
This result carries over to the case of normalized Hermite functions, where the associated covariance
matrix would play the role of the scaling parameter. More recently, it was shown in [48] that
much better results could be obtained by choosing the scaling parameter as a function of the
degree of approximation. In particular, it was shown that that by choosing this parameter inversely
proportional to the number of Hermite functions, only O(p) functions are needed in order to resolve
p wavelengths in one spatial dimension.

Summary of the Method In short, the method can be summarized as follows.

For a given initial condition Xε(0) = X0, n = 0, 1, 2, . . ., a given stochastic integrator
Xn+1
d = Ψ(Xn

d ,Fd,Ad,∆t, ξn), and a chosen time step ∆t, set Xn
0 = X0 and

1. Compute the solution ψX
n
d

d and ∇xψ
Xnd
d of (28);

2. Evaluate Fd(X
n
d ),Ad(X

n
d ) from (29);

3. Compute a time step Xn+1
d = Ψ(Xn

d ,Fd,Ad,∆t, ξn), and go back to 1.

4 Main Results

In this section we present the main results on the analysis of our numerical method, the proof
of which will be presented in Section 5. We first need to introduce some new notations. We will
denote by 〈·, ·〉e−V the inner product of L2

(
Rn, e−V

)
, defined by 〈u, v〉e−V =

∫
Rn u v e

−V dy, and by
‖ · ‖e−V the associated norm. We will also use the notation ‖ · ‖k,e−V for the norm of Hk

(
Rn, e−V

)
,

and ‖ · ‖k,O, where O is an operator, for the norm of Hk (Rn,O), see Appendix A. We will denote
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by π(·) the projection onto mean-zero functions of L2
(
Rn, e−V

)
, defined by

π(v) = v − 〈v, 1〉e−V , v ∈ L2
(
Rn, e−V

)
. (33)

We will work mostly with the Schrödinger formulation (22) of the Poisson equation. In that context,
we will employ the L2 (Rn) projection operator on {v̂ ∈ L2 (Rn) : M̂(v̂) = 0}, see Eq. (24), which
we denote by π̂(·) :

π̂(v̂) = v̂ − 〈v̂, e−V/2〉0 e−V/2, v̂ ∈ L2 (Rn) . (34)

Finally, we will say that a function g ∈ L2 (Rn) ∩ C∞(Rn) decreases faster than any exponential
function in the L2 (Rn) sense if ∫

Rn

g(x)
2
eµ|y| dy <∞ ∀µ ∈ R, (35)

and denote by E(Rn) the space of all such functions.

In addition to the hypotheses presented in Section 2, we will employ the following assumptions.

Assumption 4.1. The potential W (y), introduced in (HW ), is bounded from above by a polynomial
of degree 4k, for some k ∈ N. Furthermore, for every multi-index α, there exist constants cα > 0

and µα ∈ R such that ∣∣∂αy V ∣∣ ≤ cα eµα|y|,
where V (·) is the potential that appears in (10b).

Assumption 4.2. The drift vector f(x, y) in (10a) is such that e−V (·)/2 ∂αy f(x, ·) ∈ (E(Rn))
m and

e−V (·)/2 ∂αy∇xf(x, ·) ∈ (E(Rn))
m×m for all α ∈ Nn and x ∈ Rm.

For the proof of our main theorem we will need to have control on higher order derivatives of the
solution to the Poisson equation (11). To obtain such bounds we need to strengthen our assumptions
on f(x, y) in (10a). In particular, in addition to (HG), we assume the following:

Assumption 4.3. For all α ∈ Nn, there exist constants Cα > 0 and `α ∈ N such that∣∣∂αy f ∣∣+
∣∣∂αy∇xf ∣∣ ≤ Cα (1 + |y|`α). (36)

In addition, the diffusion coefficient in the right-hand side of (10a) satisfies

|α(x, y)| ≤ K(1 + |y|m3), (37)

for constants K and m3 independent of x.

From the Pardoux-Veretennikov bounds (14), a bootstrapping argument, Assumptions 4.1 and 4.3
and the integrability of monomials with respect to Gaussian weights we obtain the bounds

‖φx‖s,Lµ,Σ ∨ ‖∇xφ
x‖s,Lµ,Σ ∨ ‖f

x‖e−V ≤ C(s), (38)

for s ∈ N and a constant C(s) independent of x, and where a ∨ b denotes the maximum between
a and b. Assumption 4.3 and the moment bounds from [40] guarantee that the coefficients of
the homogenized equation (2) are smooth and Lipschitz continuous. Combined with the Poincaré
inequality from (A.4), they imply that the approximate coefficients calculated by (29) are also
globally Lipschitz continuous.

Remark 4.1. In Assumption 4.3 we assumed that the derivatives of the drift vector in (10a) with
respect to y are bounded uniformly in x. This is a very strong assumption and it can be replaced
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by a linear growth bound as in (HG). Under such an assumption the proof of Theorem 4.4 has to
be modified using a localization argument that is based on the introduction of appropriate stopping
times. Although tedious, this is a standard argument, see e.g. [23], and we will not present it in
this paper. Details can be found in [49].

Theorem 4.2 (Spectral convergence of the Hermite-Galerkin method). Under Assumptions 4.1
and 4.2, there exists for all x ∈ Rm and s ∈ N a constant C(x, s) such that the approximate
solutions ψxd and ∇xψxd satisfy the following error estimate:

‖π̂(ψxd)−ψx‖0 ∨ ‖π̂(∇xψxd)−∇xψx‖0 ≤ C(x, s) d−s.

Using this result, we can prove spectral convergence for the calculation of the drift and diffusion
coefficients.

Theorem 4.3 (Convergence of the drift and diffusion coefficients Fd and Ad). Suppose that
Assumptions 4.1, 4.2 and 4.3 hold. Then the error on the approximate drift and diffusion coefficients
decreases faster than any negative power of d, uniformly in x, i.e. for all s ∈ N there exists D(s)

such that
sup
x∈Rm

|Fd(x)− F(x)| ∨
∣∣Ad(x)Ad(x)T −A(x)A(x)T

∣∣ ≤ D(s) d−s.

Using the spectral convergence of the approximate calculation of the drift and diffusion coefficients,
we can now control the distance between the solution of the homogenized SDE and its approxi-
mation (30). Denoting by X(t) the exact solution of the homogenized equation and by Xd(t) the
approximate solution, we use the following norm to measure the error:

|||X(t)−Xd(t)||| :=
(
E

[
sup

0≤ t≤T
|X(t) − Xd(t)|2

])1/2

. (39)

Theorem 4.4. Let Assumptions 4.1 to 4.3 hold. Then the error between the approximate and exact
solutions of the simplified equation satisfies

|||X(t) − Xd(t)||| ≤
√

4 (T + 4)D(s)T d−s exp (2 (T + 4)CL T ) , (40)

for any s ∈ N and T > 0.

Now we consider the fully discrete scheme. We need to consider an appropriate discretization of the
approximate homogenized equation (30). For simplicity we present the convergence results for the
case when we discretize the homogenized SDE using the Euler-Maruyama method:

Xn+1
d = Xn

d + ∆tFd(X
n
d ) + Ad(X

n
d ) ∆Wn, (41)

but we emphasize that any higher order integrator, e.g. the Milstein scheme, could be used [28, 39].
The following is a classical result on the convergence of Xn

d for which we refer to [28, 39, 23] for a
proof.

Theorem 4.5 (Convergence of the SDE solver). Assume that X0 is a random variable such that
E|X0|2 <∞ and that Assumptions 4.1 to 4.3 hold. Then

(
E

[
sup

n∆t∈[0,T ]

|Xn
d − Xd(tn)|2

]) 1
2

≤ C(T )
√

∆t. (42)

for any choice of T , where Xn
d denotes the solution of (41).

11



Combined, Theorem 4.4 and Theorem 4.5 imply the weak convergence of the solution of (41) to the
solution of the homogenized equation (18).

5 Proofs of the Main Results

5.1 Convergence of the Spectral Method for the Poisson Equation

In this section we establish the convergence of the spectral method for the solution of the Poisson
equation (19). Since the variable x only appears as a parameter in the Poisson equation, we
will consider in this section that it takes an arbitrary value and will omit it from the notation.
Additionally, to disencumber ourselves of vectorial notations, we will consider an arbitrary direction
of Rn, defined through a unit vector e, and denote by f the projection f · e.

We recall from [40, 41] that there exists a unique smooth mean-zero function of φ ∈ H1
(
Rn, e−V

)
satisfying the variational formulation

aV (φ, v) := 〈∇φ,∇v〉e−V = 〈f, v〉e−V ∀v ∈ H1
(
Rn, e−V

)
. (43)

We now define a finite-dimensional subset Sd of H1
(
Rn, e−V

)
by Sd = eV/2Ŝd, where Ŝd is the

approximation space defined in eq. (31), and consider the following problem: find φd ∈ Sd satisfying:

aV (φd, vd) = 〈f, vd〉e−V ∀vd ∈ Sd. (44)

Note that, by definition of f , φ = φ · e and φd = φd · e. The convergence of φd to φ can be obtained
using techniques from the theory of finite elements, in particular Céa’s lemma and an approximation
argument. We will use the notation that was introduced at the beginning Section 4.

Lemma 5.1 (Céa’s lemma). Let φ be the solution of (43) satisfyingM(φ) = 0 and φd be a solution
of (44). Then,

‖φ− π(φd)‖1,e−V ≤ C inf
vd∈Sd

‖φ− vd‖1,e−V .

Proof. The main ingredient of the proof is a Poincaré inequality for the measure e−V dx = µ(dx)

recalled in Appendix A, Proposition A.4. From this inequality, we obtain the coercivity estimate
c a(v, v) ≥ ‖π(v)‖21,e−V for all v ∈ H1

(
Rn, e−V

)
. Combining this with Galerkin orthogonality,

a(φ− φd, vd) = 0 for all vd ∈ Sd and the continuity estimate a(v1, v2) ≤ ‖v1‖1,e−V ‖v2‖1,e−V for all
v1, v2 ∈ H1

(
Rn, e−V

)
gives the result.

Since we will be working mostly with the Schrödinger formulation of Poisson equation, we need
an analogue of Lemma 5.1 for the transformed PDE. We recall from Appendix A that the space
H1 (Rn,H) is equipped with the norm

‖ψ‖21,H = ‖ψ‖20 +

∫
Rn

|∇ψ|2 dy +

∫
Rn

Wψ2 dy.

Lemma 5.2. Let ψ be the unique solution of (23) satisfying M̂(ψ) = 0 and ψd be a solution
of (27). Then the projections ψ = ψ · e and ψd = ψd · e satisfy

‖ψ − π̂(ψd)‖1,H ≤ C inf
vd∈Ŝd

‖ψ − vd‖1,H. (45)
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Proof. The result follows directly by using the fact that e−V/2 is also a unitary transformation from
H1
(
Rn, e−V

)
to H1 (Rn,H).

Next, we focus on establishing a result that will allow us to control the right-hand side of (45). In [19,
Lemma 2.3] the authors show that any smooth square integrable function such that (−∆ +W )v = g

lies in the space E(Rn) introduced in (35), provided that g ∈ E(Rn) and that Assumption (HW )
holds. Differentiating the equation with respect to yi, we obtain:

(−∆ +W ) ∂yiv = ∂yig − ∂yiW v,

so it is clear by Assumption 4.1 that ∂αψ ∈ E(Rn) for all values of α ∈ Nn. This implies that ψ
belongs to the Schwartz space S(Rn). We now generalize sligthly [19, Lemma 3.1]. This result will
enable to control the norm ‖ · ‖1,H on the right-hand side of (45) by a norm ‖ · ‖k,Hµ,Σ , where Hµ,Σ
is an operator defined in Appendix A. From this appendix, we recall that the operator Hµ,Σ, with
µ ∈ Rn and Σ a symmetric positive definite matrix, is defined by Hµ,Σ = −∆ +Wµ,Σ(y), where
Wµ,Σ denotes the quadratic function (y − µ)TΣ−2(y − µ)/4− tr Σ−1/2.

Lemma 5.3. For every k ∈ N and v ∈ S(Rn),∫
Rn

|y|4k v2(y) dy ≤ C(k, µ,Σ)‖v‖22k,Hµ,Σ ,

where C(k, µ,Σ) is a constant independent of v.

Proof. We set Qµ,Σ = (y − µ)TΣ−2(y − µ)/4. Following the methodology used to prove lemma 3.1
in [19], we establish that:

‖Qµ,Σ(y)k+1v‖20 ≤ ‖Qµ,Σ(y)k
(
Hµ,Σ + tr Σ−1/2

)
v‖20 + C1(k,Σ)‖Qµ,Σ(y)kv‖20,

for all k ∈ N, and where C1(k,Σ) = (4k + 2)(k ρ(Σ−2) + tr Σ−2/4). Reasoning by recursion and
applying the triangle inequality, this immediately implies

‖Qµ,Σ(y)kv‖20 ≤
k∑
i=0

ci(k,Σ) ‖
(
Hµ,Σ + tr Σ−1/2

)i
v‖20

≤ C2(k,Σ)‖v‖22k,Hµ,Σ ,

To conclude, note that
|y|4k ≤ C3 + C4Qµ,Σ(y)2k,

for suitably chosen C3 and C4 depending on Σ and µ.

A finer version of the previous inequality could be obtained by following the argumentation of in
[19, Theorem 3.2], but this will not be necessary for our purposes. Lemma 5.3 can be used to show
the following result.

Lemma 5.4. If W (y) is bounded above by a polynomial of degree 4k, there exists a constant C
depending on k, µ, Σ, and W such that any v ∈ S(Rn) satisfies

‖v‖1,H ≤ C ‖v‖2k,Hµ,Σ .
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Proof. This follows from the considerations of Appendix A. First we note that

‖v‖21,H = ‖v‖21,Hµ,Σ +

∫
Rn

(W −Wµ,Σ)v2 dy.

To bound the second term, we use Assumption 4.1 on W , together with Lemma 5.3:∫
Rn

(W −Wµ,Σ)v2 dy ≤
∫
Rn

(C1 + C2 |y|4k)v2 dy ≤ C3‖v‖22k,Hµ,Σ ,

with C1, C2, C3 depending on k, µ, Σ.

Upon combining the results presented so far in this section, we can complete the proof of Theorem 4.2.

Proof of Theorem 4.2. By Lemmas 5.2 and 5.3, and the fact that the exact solution ψ and its
derivatives are smooth and decrease faster than exponentials, we have:

‖ψ − π̂(ψd)‖1,H ≤ C inf
vd∈Ŝd

‖ψ − vd‖1,H ≤ C inf
vd∈Ŝd

‖ψ − vd‖2k,Hµ,Σ .

Using Corollary B.5 on approximation by Hermite functions, we have for any s > 2k

‖ψ − π̂(ψd)‖1,H ≤ C(d+ 1)−
s−2k

2 ‖ψ‖s,Hµ,Σ ,

≤ C(d+ 1)−
s−2k

2 ,

where we used the first estimate of (38) and the fact that ‖ψ‖s,Hµ,Σ = ‖φ‖s,Lµ,Σ . The same
reasoning can be applied to ∇xψ. Since s was arbitrary, this proves the statement.

5.2 Convergence of the Drift and Diffusion Coefficients

In this section we prove the convergence of the drift and diffusion coefficients obtained from the
approximate solution of the Poisson equation.

Proof of Theorem 4.3. From the expressions of F and Fd we have:

F(x)− Fd(x) =

∫
Rn

[
∇xψx · (fx e−V/2)−∇xψxd · (f

x
d e
−V/2)

]
dy

where fxd e
−V/2 is the L2 (Rn)-projection of fx e−V/2 on the space spanned by Hermite functions

with multi-index α such that |α| ≤ d. Clearly,
∫
Rn ∇xψxd · (f

x
d e
−V/2) dy =

∫
Rn ∇xψxd · (f

x e−V/2) dy,
and so using Theorem 4.2 together with the Cauchy-Schwarz inequality we deduce that there exists
for any value of s ∈ N a constant C(s) such that

|Fd(x)− F(x)| ≤ ‖∇xψx −∇xψxd‖0 ‖f
x e−V/2‖0

≤ C(s) d−s‖fx‖e−V .

The error on the diffusion term can be bounded similarly:

|A0d(x)−A0(x)| =
∫
Rn

(ψxd −ψ
x)⊗ (fx e−V/2) dy

≤ C(s) d−s ‖fx‖e−V .
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The proof can then be concluded using the last bound from (38).

5.3 Convergence of the Solution to the SDE

As we have already mentioned, homogenization/diffusion approximation theorems are generally of
the weak convergence type. Furthermore, the effective diffusion coefficient of the simplified equation
is not uniquely defined—see Equation (16) and the fact that D(x) = A(x)A(x)T . Consequently, it
is not clear whether it is useful to prove the strong convergence of the solution to the approximate
SDE (30) to the solution to the homogenized SDE (18). However, by calculating Ad(x) by Cholesky
factorization, the difference |Ad(x)−A(x)| converges to 0 faster than any negative power of d, as is
the case for

∣∣Ad(x)Ad(x)T −A(x)A(x)T
∣∣. For this particular choice, it is possible to prove strong

convergence of solutions of (30) to the solution of (18), from which weak convergence follows. This
is the approach taken in this section.

The argument we propose is based on the proof of the strong convergence for the Euler-Maruyama
scheme in [23, Theorem 2.2]. Recall that by (38), there exists a Lipschitz constant CL such that

|F(a)− F(b)|2 ∨ |A(a)−A(b)|2 ≤ CL|a− b|2, (46)

for all a, b ∈ Rm, and by Theorem 4.3 there exists for every s ∈ N a constant D(s) independent of
d and x such that

|Fd(x)− F(x)|2 ∨ |Ad(x)−A(x)|2 ≤ D(s) d−s, (47)

for any x ∈ Rm. Upon combining (46) and (47), Theorem 4.4 can be proved.

Proof of Theorem 4.4. The error ed(t) = X(t) − Xd(t) satisfies

ed(t) =

∫ t

0

F(X(τ)) − Fd(Xd(τ)) dτ +

∫ t

0

A(X(τ)) − Ad(Xd(τ)) dWτ .

Using the inequality (a+ b)2≤ 2a2 + 2b2 and Cauchy-Schwarz, we have

E

[
sup

0≤ t≤T
|ed(t)|2

]
≤ 2T E

[∫ T

0

|F(X(τ)) − Fd(Xd(τ))|2 dτ

]

+ 2E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

A(X(τ)) − Ad(Xd(τ)) dWτ

∣∣∣∣2
]
.

(48)

The first term in the right-hand side can be bounded by using the triangle inequality with the
decomposition F(X(τ)) − Fd(Xd(τ)) = (F(X(τ)) − F(Xd(τ))) + (F(Xd(τ)) − Fd(Xd(τ))), the
Lipschitz continuity of F(·) and the convergence of Fd to F:

E

[∫ T

0

|F(X(τ)) − Fd(Xd(τ))|2 dτ

]

≤ E

[
2D(s)T d−s + 2CL

∫ T

0

|X(τ) − Xd(τ)|2 dτ

]

≤ 2D(s)T d−s + 2CL

∫ T

0

E

[
sup

0≤ t≤ τ
|ed(t)|2

]
dτ

(49)

The second term can be bounded in a similar manner by using Burkholder–Davis–Gundy inequality,
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see for example [26, Theorem 3.28], and Itô isometry :

E

[
sup

0≤ t≤T

∣∣∣∣∫ t

0

A(X(τ)) − Ad(Xd(τ)) dWτ

∣∣∣∣2
]

≤

∣∣∣∣∣
∫ T

0

A (X(τ)) − Ad(Xd(τ)) dWτ

∣∣∣∣∣
2

≤ 8D(s)T d−s + 8CL

∫ T

0

E

[
sup

0≤ t≤ τ
|ed(t)|2

]
dτ.

(50)

Using (49) and (50) in (48), we obtain:

E

[
sup

0≤ t≤T
|ed(t)|2

]
≤ 4 (T + 4)

(
D(s)T d−s + CL

∫ T

0

EE

[
sup

0≤ t≤ τ
|ed(t)|2

]
dτ

)
.

By Gronwall’s inequality, this implies:

E

[
sup

0≤ t≤T
|ed(t)|2

]
≤ 4 (T + 4)D(s)T d−s exp (4 (T + 4)CL T ) , (51)

which finishes the proof.

Remark 5.5. Note that, as mentioned in Section 4, the convergence of the solution can still be
proved if we only assume that the Lipschitz continuity and convergence of the coefficients hold
locally, provided there exists p > 2 and a constant K independent of d such that the solutions of
the equations

dX = F(X) dt + A(X) dWt, X(0) = X0,

and
dXd = Fd(Xd) dt + Ad(Xd) dWt, Xd(0) = X0,

satisfy the moment bounds

E

[
sup

0≤t≤T
|X(t)|p

]
∨E

[
sup

0≤t≤T
|Xd(t)|p

]
≤K.

With these alternative assumptions, we can show that:

E

[
sup

0≤ t≤T
|X(t) − Xd(t)|2

]
≤ 4 (T + 4)DR(s)T d−s exp (4 (T + 4)CR T )

+ 2K

(
2p δ

p
+

p− 2

Rp p δ
2
p−2

)
.

for any δ > 0 and R > X0, and where CR and DR are the local constants for the assumptions.
The proof of this estimate is very similar to the one of the strong convergence of Euler-Maruyama
scheme in [23, Theorem 2.2], and will thus not be repeated here. From this estimate, we deduce
that the solution of the approximate homogenized equation converges to the exact solution when
d → ∞.
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6 Implementation of the Algorithm and Numerical Experi-
ments

In this section, we discuss the implementation of the algorithm and present some numerical
experiments to validate the method and illustrate our theoretical findings.

6.1 Implementation details

We discuss below the quadrature rules used and the approach taken for the calculation of the matrix
and right-hand side of the linear system of equations (28).

The algorithm requires the calculation of a number of Gaussian integrals of the type:

I =

∫
Rn

f(y)G(µ,Σ)(y) dy. (52)

Several approaches, either Monte Carlo-based or deterministic, can be used for the calculation of
such Gaussian integrals. Probabilistic methods offer an advantage when the dimension n of the
state space of the fast process is large, but since the HMM is more efficient than our approach
in that case, in practice we don’t use them. Instead, we use a multi-dimensional quadrature rule
obtained by tensorization of one-dimensional Gauss-Hermite quadrature rules.

For the calculation of the stiffness matrix, we can take advantage of the diagonality of A when the
potential is equal to Vµ,Σ := 1

2 (y−µ)Σ−1(y−µ) + log(
√

(2π)n det Σ).7 Using the notation Hµ,Σ to
denote the same operator as in Lemma 5.3, and the shorthand notations Hα and hα, for α ∈ Nn,
in place of Hα(y;µ,Σ) and hα(y;µ,Σ), respectively, we have:

Aαβ = −
∫
Rn

(H−Hµ,Σ)hα hβ dy −
∫
Rn

Hµ,Σ hα hβ dy =: Aδαβ +Dαβ , (53)

where D is a diagonal matrix whose entries can be computed explicitly and

Aδαβ =

∫
Rn

(W −Wµ,Σ) fαfβ dy =

∫
Rn

(W −Wµ,Σ)G(µ,Σ)HαHβ dy, (54)

where Wµ,Σ is the potential obtained from Vµ,Σ according to Eq. (HW ). To simplify the calculation
of these coefficients, we can expand the Hermite polynomials in terms of monomials:

Hα(y;µ,Σ) =
∑
|β|≤d

cαβ y
β . (55)

With this notation, we can write:

Aδαβ =
∑
|ρ|≤d

∑
|σ|≤d

cαρ cβσ

∫
Rn

(W −Wµ,Σ)G(µ,Σ) y
ρ+σ dy =:

∑
|ρ|≤d

∑
|σ|≤d

cαρ cβσIρ+σ, (56)

The integrals Iα are computed using a numerical quadrature. Denoting by wi and qi the weights
and nodes of the Gauss-Hermite quadrature, respectively, Iα is approximated as

Iα ≈
Nq∑
i=1

wi (W (qi)−Wµ,Σ(qi)) G(µ,Σ)(qi) q
α
i , |α| ≤ 2d, (57)

7 The constant log(
√

(2π)n det Σ) in V (µ,Σ) is chosen so that
∫
Rn e

−V dy = 1.
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where Nq denotes the number of points in the quadrature. Only the last factor of the previous
expression depends on the multi-index α, so the numerical calculation of these integrals can be
performed by evaluating for each grid point the value of wi (W (qi)−Wµ,Σ(qi)) G(µ,Σ)(qi) and the
values of qαi for |α| ≤ 2d.

A similar method can be applied for the calculation of the right-hand side, whose elements are
expressed as:

bα =

∫
Rn

e−V/2f eα dy. (58)

By expanding the Hermite functions in terms of Hermite polynomials multiplying G1/2
(µ,Σ), the

previous equation can be rewritten as

bα =
∑
|β|≤d

cαβ

∫
Rn

(
e−V

G(µ,Σ)

) 1
2

f(x, y) yβ G(µ,Σ) dy, (59)

which is a Gaussian integral that can also be calculated using a multi-dimensional Gauss-Hermite
quadrature.

6.2 Numerical experiments

Now we present the results of some numerical experiments.

The Euler-Maruyama scheme is used to approximate both X(t) and Xd(t) with a time step of
0.01 for T = 1, and Nr = 50 replicas of the driving Brownian motion are used for the numerical
computation of expectations. The ith replica of the discretized approximations of X(t) and Xd(t)

are noted Xn,i and Xn,i
d respectively. In most of the numerical experiments below, the error is

measured by:

E(d) =

(
1

Nr

Nr∑
i=1

max
0≤n∆t≤1

|Xn,i − Xn,i
d |

2

) 1
2

, (60)

which is an approximation of the norm ||| · ||| used in Theorem 4.4.

In the numerical experiments presented in this paper, we have chosen the scaling parameter λ in
Eq. (32) by trial-and-error. A natural extension of the work presented in this paper is to develop a
systematic methodology for identifying the optimal scaling parameter, see also the discussion in
Remark 3.1.

6.2.1 Test of the method for single well potentials

For the two problems in this section, the scaling parameter is chosen as λ = 0.5 for all degrees of
approximation. We start by considering the following problem.

dx0t = −1

ε
L [cos (x0t + y0t + y1t)] dt,

dx1t = −1

ε
L [sin (x1t) sin (y0t + y1t)] dt,

dy0t = − 1

ε2
∂y0

V (y) dt+
1

ε
[cos (x0t) cos (y0t) cos (y1t)] dt+

4

ε
dW0t,

dy1t = − 1

ε2
∂y1

V (y) dt+
1

ε
[cos (x0t) cos (y0t + y1t)] dt+

4

ε
dW1t,

(61)
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Figure 1: Error E(d), see Eq. (60), for the fast-slow SDE (61). A super-algebraic convergence is
observed.

with
V (y) = y2

0 + y2
1 + 0.5

(
y2

0 + y2
1

)2
, (62)

and where L = −∇V · ∇+ ∆. We have written the right-hand side of the equations for the slow
processes x0t and x1t in this form to ensure that the centering condition is satisfied. The convergence
of the approximate solution of the effective equation for this problem is illustrated in Fig. 1. Here
the potential is very centered, so Hermite functions are well suited for the approximation of the
solution, which is reflected in the very good convergence observed.

In the next example, the state space of the fast process has dimension 3:

dx0t = −1

ε
L [cos (x0t + y0t + y1t)] dt,

dx1t = −1

ε
L [sin (x1t) sin (y0t + y1t + 2y2t)] dt,

dy0t = − 1

ε2
∂y0V (y) dt+

1

ε
[cos (x0t) cos (y1t) cos (y0t + y2t)] dt+

√
2

ε
dW0t,

dy1t = − 1

ε2
∂y1V (y) dt+

1

ε
[cos (x0t) cos (y0t + y1t)] dt+

√
2

ε
dW1t,

dy2t = − 1

ε2
∂y2V (y) dt+

√
2

ε
dW2t,

(63)

with
V (y) = y4

0 + 2y4
1 + 3y4

2 . (64)

Because computing the effective coefficients is much more expensive computationally than in the
previous case, we measure the error for a given value of the slow variables, by

e(d, x) =
|F(x)− Fd(x)|
|F(x)|

+
|A(x)−Ad(x)|
|A(x)|

. (65)
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Figure 2: Relative error of the homogenized coefficients, e(d, x), see Eq. (65), for the fast/slow SDE
(63) at x = (0.2, 0.2). In this case, the convergence is also super-algebraic.

The value we chose for the comparison is x = (0.2, 0.2), for which the denominators in the previous
equation are non-zero. The relative error on the homogenized coefficients is illustrated in Fig. 2.
In this case, the method also performs very well, although it is slightly less accurate than in the
previous example.

6.2.2 Test of the method for potentials with multiple wells

Now we consider multiple-well potentials that lead to multi-modal distributions. The first potential
that we analyze is the standard bistable potential,

V (y) = y4/4− y2/2. (66)

We consider the fast/slow SDE system:
dxt = −1

ε
L (xt sin(yt)) dt,

dyt = − 1

ε2
∂yV (yt) dt+

√
2

ε
dWt.

(67)

We choose the parameter λ in Eq. (32) to be λ = 0.5. The convergence of the method is illustrated
in Fig. 3. Although the method is less accurate than in the previous cases, a super-algebraic
convergence can still be observed, and a very good accuracy can be reached by choosing a high
enough value for the degree of approximation. Note that the computational cost in this case is very
low—the numerical solution can be calculated in a matter of seconds on a personal computer.

Next we consider the tilted bistable potential

V (y) = y4/4− y2/2 + 10y, (68)
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Figure 3: Error E(d), see Eq. (60), for the fast/slow SDE (67).

which corresponds to the case γ = 1, δ = 10 in the examples considered in [9], and the fast/slow
SDE 

dxt = −1

ε
L
(
xt sin(yt) + y2

t

)
dt,

dyt = − 1

ε2
∂yV (xt, yt) dt+

√
2

ε
dWt.

(69)

The convergence of the solution in this case is presented in Fig. 5, for the scaling parameter λ = 1.
Due to the presence of a strong linear term, the potential is actually very localized, see Fig. 4, which
results in good convergence of the spectral method.

Finally, we consider a three-well potential in R2,

V (y) =
(

(y0 − 1)
2

+ y2
1

)(y0 +
1

2

)2

+

(
y1 −

√
3

2

)2
(y0 +

1

2

)2

+

(
y1 +

√
3

2

)2
 , (70)

and the following fast/slow SDE:

dx0t = −1

ε
L [cos (x0t + y0t + y1t)] dt,

dx1t = −1

ε
L [sin (x1t) sin (y0t + y1t)] dt,

dy0t = − 1

ε2
∂y0

V (y) dt+
1

ε
[cos (x0t) cos (y0t) cos (y1t)] dt+

√
2

ε
dW0t,

dy1t = − 1

ε2
∂y1

V (y) dt+
1

ε
[cos (x0t) cos (y0t + y1t)] dt+

√
2

ε
dW1t.

(71)

For this fast/slow SDE, we choose λ = 0.35. A contour plot of the potential is shown in Fig. 6,
and the convergence graph is presented in Fig. 7. In this case the error is very large for degrees
of approximation lower than 10, beyond which the convergence is clear and super-algebraic. The
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Figure 4: Probability density e−V (·)/Z associated to the potential (68).
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Figure 5: Error E(d), see Eq. (60), for the fast/slow system (69).

accuracy reached with a degree of approximation equal to 30 is of the order of 1× 10−4, which is
good in comparison with the accuracy that can be achieved using Monte Carlo-based methods.
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Figure 7: Error E(d), see Eq. (60), for the fast/slow system (71).

6.2.3 Discretization of a multiscale stochastic PDE

As mentioned in the introduction, our numerical method is particularly well-suited for the solution
of singularly perturbed stochastic PDEs (SPDEs), and constitutes a very good complement to the
method proposed in [2]. Let us recall how the method introduced in [2] works for a singularly
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perturbed SPDE of the following form

∂u

∂t
=

1

ε2
Au+

1

ε
F (u) +

1

ε
QẆ , (72)

posed in a bounded domain of Rm with suitable boundary conditions. In Eq. (72), A is a differential
operator, assumed to be nonpositive and selfadjoint in a Hilbert space H, and with compact
resolvent. It is furthermore assumed that A has a finite dimensional kernel, denoted byM. The
term W denotes a cylindrical Wiener process on H and Q denotes the covariance operator of
the noise. It is assumed that Q and A commute, and that the noise acts only on the orthogonal
complement of M, denoted by M⊥. The function F (·) is a polynomial function representing a
nonlinearity that has to be such that the above scaling makes sense.8

Since A is selfadjoint with compact resolvent, there exists an orthonormal basis of H consisting
of eigenfunctions of A. We denote by {λk, ek} the eigenvalues and corresponding eigenfunctions
of A. We arrange the eigenpairs by increasing absolute value of the eigenvalues, so the m first
eigenfunctions are in the kernel of the differential operator,M = span{e1, . . . , em}. Formally, the
cylindrical Brownian motion can be expanded in the basis as W (t) =

∑∞
i=1 ei wi(t), where {wi}

∞
i=1

are independent Brownian motions. The assumption that the covariance operator Q commutes with
the differential operator A means that this operator satisfies Qei = qi ei, while the assumption
that the noise only acts on M⊥ implies that qi = 0 for i = 1, 2, . . . , m.

We now summarize how the dynamics of the slow modes in (72) can be approximated by solving a
multiscale system of SDEs using the methodology developed in [2].

First, we write the solution of (72) as

u = x+ y, with x =

m∑
k=1

xk ek and y =

∞∑
k=m+1

yk ek.

Note that x = Pu, and y = (I − P)u, where P is the projection operator from H onto M. By
assumption, the noise term can be expanded in the same way, as

∑∞
k=1 qk ek ẇk(t). Substitution of

these expansions in the SPDE gives:

d

dt

(
m∑
k=1

xk ek +

∞∑
k=m+1

yk ek

)
= − 1

ε2

∞∑
k=m+1

λk yk ek +
1

ε
F (u) +

1

ε

∞∑
k=m+1

qk ek ẇk(t).

The equations that govern the evolution of the coefficients xk and yk can be obtained by taking
the inner product (of H) of both sides of the above equation by each of the eigenfunctions of the
operator, and using orthonormality :

ẋi =
1

ε
〈F (u), ei〉 i = 1, . . .,m;

ẏi = − 1

ε2
λi yi +

1

ε
〈F (u), ei〉+

1

ε
qi ẇi i = m+ 1,m+ 2, . . .

(73)

Equation (73) can be written in the form
ẋ =

1

ε
a(x, y),

ẏ =
1

ε2
A y +

1

ε
b(x, y) +

1

ε
Q Ẇ ,

(74)

8 i.e., the centering condition is satisfied.
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where a(x, y) and b(x, y) are the projections of F (u) onM andM⊥, respectively:

a(x, y) =

m∑
i=1

ai(x, y) ei with ai(x, y) = 〈F (x+ y), ei〉,

and

b(x, y) =

∞∑
i=m+1

bi(x, y) ei with bi(x, y) = 〈F (x+ y), ei〉.

The scale separation now appears clearly. We now truncate the fast process in Eq. (74) as
y≈

∑m+n
i=m+1 yi ei to derive the following finite dimensional system is obtained:

ẋi =
1

ε
ai(x, y) i = 1, . . .,m;

ẏi = − 1

ε2
λiyi +

1

ε
bi(x, y) +

1

ε
qi ẇi i = m+ 1, . . .m+ n,

(75)

In [33], the authors investigate the use of the heterogeneous multiscale method (HMM) for solving
the problem (75), and show that a good approximation can be obtained using this method. However,
when the nonlinearity is a polynomial function of u, the function a in the system above, which
also appears on the right-hand side of the Poisson equation, is polynomial in x and y. In addition,
the generator of this system of stochastic differential equations is of Ornstein-Uhlenbeck type to
leading order, and so its eigenfunctions are Hermite polynomials. This means that the right-hand
side can be expanded exactly in Hermite polynomials, and so the exact effective coefficients can be
computed. Note that although equivalent, applying the unitary transformation is not necessary in
this case, as we can work directly with Hermite polynomials in the appropriate weighted L2 space.

We consider the SPDE (72), with A = ∂2

∂x2 + 1 and F (i) = u2 ∂u2

∂x , posed on [−π, π] with periodic
boundary conditions:

∂u

∂t
=

1

ε2

(
∂2

∂x2
+ 1

)
u +

1

ε
u2 ∂u

2

∂x
+

1

ε
QẆ . (76)

The eigenfunctions of A on [−π, π] with periodic B.C. are

ei =


1√
π

sin

(
i+ 1

2
x

)
if i is odd,

1√
π

cos

(
i

2
x

)
if i is even,

and the corresponding eigenvalues are λi = 1− (i+1)2

4 if i is odd and λi = 1− i2

4 if i is even. In this
case the null space of A is two-dimensional. We consider a noise process of the form:

QẆ =

∞∑
i=3

qi ẇi. (77)

Following the methodology outlined above, we approximate the solution by a truncated Fourier
series:

u = x1 e1 + x2 e2 +

n+ 2∑
i= 3

yi ei. (78)

Substituting in the nonlinearity and taking the inner product with each of the eigenfunctions, a
system of equation of the type (75) is obtained. The operator A and the nonlinearity were chosen
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so that the centering condition is satisfied. The homogenized equation for the slow variables (x1, x2)

reads
dXt = F(Xt) dt+ A(Xt) dWt, (79)

where F(·) and A(·) are given by equations (4a) and (4b), respectively, and W is a standard Wiener
process in R2. The Euler-Maruyama solver was used for both the macro and micro solvers, and the
parameters of the HMM were chosen as

(δt/ε2, NT ,M,N,N ′) = (2−p, 16, 1, 10×23p, 2pp). (80)

Here δt is the time step of the micro-solver, NT is the number of steps that are omitted in the
time-averaging process to reduce transient effects, M is the number of samples used for ensemble
averages, and N , N ′ are the number of time steps employed for the calculation of time averages
and the discretization of integrals originating from Feynman-Kac representation formula (13),
respectively. See [52, 50] for a more detailed description of the method and a detailed explanation of
the parameters in (80). In Figs. 8 and 9, we compare the solutions obtained using the HMM method
with the one obtained using our approach, using the same macro-solver and the same replica of
the driving Brownian motion for both, and with the initial condition xi0 = 1.2 for i = 1, . . . ,m.
The former is denoted by X̂n and the latter by Xn. Notice that when the value of the parameter p
increases, the solution obtained using the HMM converges to the exact solution obtained using the
Hermite spectral method.

We now investigate the dependence on the precision parameter p of the error between the homoge-
nized coefficients. The same error measure as in [52] is used to compare the two methods:

Ep =
∆t

T

 ∑
n≤T/∆t

|FpHMM (Xn)− FSp(X
n)| + |Ap

HMM (Xn) − ASp(X
n)|

 . (81)

Here FpHMM and Ap
HMM are the drift and diffusion coefficients obtained using the HMM with the

precision parameter equal to p, while FSp and ASp are the coefficients given by the Hermite spectral
method developed in this paper. Given the choice of parameters (80), the theory developed in [52]
predicts that the error should decrease as O(2−p). This error is presented in Fig. 10 as a function
of the precision parameter p, showing a good agreement with the theory developed in [2, 52].

For the SPDE described above our method based on the solution of the Poisson equation associated
with (75) using Hermite polynomials does recover exactly the corresponding effective parameters,
and the only source of error is the macroscopic discretization scheme. This is in sharp contrast
with the HMM-based method developed in [1], for which the micro-averaging process to recover the
effective coefficients represents a non-negligible computational cost.
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Comparison of (X̂n)1 and (Xn)1 in (79) for the SPDE (76)

p = 3 p = 4

0 0.2 0.4 0.6 0.8 1

p = 5

0 0.2 0.4 0.6 0.8 1

p = 6

Figure 8: Evolution of the coefficient x1 of the first term in the Fourier expansion (78) of the the
solution to the SPDE (76), obtained numerically by the HMM (black) and the Hermite spectral
method (red), for one sample of the driving Brownian motion.
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Comparison of (X̂n)2 and (Xn)2 in (79) for the SPDE (76)

p = 3 p = 4

0 0.2 0.4 0.6 0.8 1

p = 5

0 0.2 0.4 0.6 0.8 1

p = 6

Figure 9: Evolution of the coefficient x2 of the second term in the Fourier expansion (78) of the the
solution to the SPDE (76), obtained numerically by the HMM (black) and the Hermite spectral
method (red), for one sample of the driving Brownian motion.
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Figure 10: Error between the homogenized coefficients (see Eq. (81)) for the SPDE (76), as a
function of the precision parameter p. The green line, obtained by polynomial fitting, has slope
−1.01 in the p − log2(Ep) plane, which is close to the theoretical value of -1, showing a perfect
agreement with the theory.
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7 Conclusion and Further Work

In this paper, we proposed a new approach for the numerical approximation of the slow dynamics
of fast/slow SDEs for which a homogenized equation exists. Starting from the appropriate Poisson
equation, the same unitary transformation as in [9] was utilized to obtain formulas for the drift
and diffusion coefficients in terms of the solution to a Schrödinger equation. This equation is
solved at each discrete time by means of a spectral method using Hermite functions, from which
approximations of the homogenized drift and diffusion coefficients were calculated. A stochastic
integrator was then used to evolve the slow variables by one time step, and the procedure is repeated.

Building on the work of [19], spectral convergence of the homogenized coefficients was rigorously
established, from which weak convergence of the discrete approximation in time to the exact
homogenized solution was derived. In the final section, the accuracy and efficiency of the proposed
methodology were examined through numerical experiments.

The method presented, although not as general as the HMM, has proven more precise and more
efficient for a broad class of problems. It performs particularly well for singularly perturbed SPDEs,
and constitutes in this case a good complement to the HMM-based method presented in [2]. It also
works comparatively very well when the fast dynamics is of relatively low dimension—typically less
than or equal to 3—and especially so when the potential is localized, since fewer Hermite functions
are required to accurately resolve the Poisson equations in this situation. Our method also has
several advantages compared to the approach taken in [9]: it does not require truncation of the
domain, does not require the calculation of the eigenvalues and eigenfunctions of the Schrödinger
operator, and has better asymptotic convergence properties.

The limitations of the method are two-fold; its generality is limited by the requirement of the
gradient structure for fast dynamics, and its efficiency is limited by the curse of dimensionality,
which causes the computation time to become prohibitive when the dimension of the state space of
the fast process increases.

The extent to which some of these constraints can be lifted constitutes an interesting topic for future
work. We believe that it is possible to generalize our method to a broader class of problems while
retaining its efficiency and accuracy. In addition, high-dimensional integrals could be computed
more efficiently. For example, an alternative to the tensorized quadrature approach taken in this
work is to use a sparse grid method; such a method can in principle offer the same degree of
polynomial exactness with a significantly lower number of nodes, see e.g. [20, 25].
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A Weighted Sobolev Spaces

In this section, we recall a few results about weighted Sobolev spaces that are needed for the analysis
presented in Section 5. For more details on this topic, see [19, 53, 8, 34]. Throughout the appendix,
V denotes a smooth confining potential, whose derivatives are all bounded above by a polynomial,
and such that ρ := e−V is normalized.
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Definition A.1. The weighted L2 space L2 (Rn, ρ) is defined as

L2 (Rn, ρ) =

{
u measurable :

∫
Rn

u2 ρ dy <∞
}
.

It is a Hilbert space for the inner product given by:

〈u, v〉ρ =

∫
Rn

u v ρ dy.

Definition A.2. The weighted Sobolev spaces Hs (Rn, ρ), with s ∈ N, is defined as

Hs (Rn, ρ) =
{
u ∈ L2 (Rn, ρ) : ∂αu ∈ L2 (Rn, ρ) ∀ |α| ≤ s

}
.

It is a Hilbert space for the inner product given by:

〈u, v〉s,ρ =
∑
|α|≤s

〈∂αu, ∂αv〉ρ

We also define the following spaces.

Definition A.3. Given s ∈ N and a nonnegative selfadjoint operator −L on a Hilbert space H
of functions on Rn, we define Hs (Rn,L) as the space obtained by completion of C∞c (Rn) for the
inner product:

〈u, v〉s,L =

s∑
i=0

〈(−L)iu, v〉H .

The associated norm will be denoted by ‖ · ‖s,L.

It can be shown that C∞c (Rn) is dense in H1 (Rn, ρ), see [51]. By integration by parts, this implies
that H1 (Rn, ρ) = H1 (Rn,L), where −L is the nonnegative selfadjoint operator on L2 (Rn, ρ)

defined by L = ∆−∇V · ∇. We now make the additional assumption that the potential V satisfies

lim
|y|→∞

(
1

4
|∇V |2 − 1

2
∆V

)
=∞ and lim

|y|→∞
|∇V | =∞. (82)

With this, the following compactness result holds.

Proposition A.4. Assume that (82) holds. Then the embedding H1 (Rn, ρ) ⊂ L2 (Rn, ρ) is
compact, and the measure ρ satisfies Poincaré inequality:∫

Rn

(u− ū)
2
ρ dy ≤ C

∫
Rn

|∇u|2 ρ dy ∀u ∈ H1 (Rn, ρ) ,

where ū =
∫
Rn u ρ dy.

Proof. See [34], sec. 8.5, p. 216.

Remark A.5. Alternative conditions on the potential that ensure that the corresponding Gibbs
measure satisfies a Poincaré inequality are presented in [32, Theorem 2.5].

Now we consider the unitary transformation e−V/2 : L2 (Rn, ρ)→ L2 (Rn), and characterize the
spaces obtained by applying this mapping to the weighted Sobolev spaces.
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Proposition A.6. The multiplication operator e−V/2 is a unitary transformation from Hs (Rn,L)

to Hs (Rn,H), where −H is the nonnegative selfadjoint operator on L2 (Rn) defined by

−H = e−V/2 L eV/2 = −∆ +

(
|∇V |2

4
− ∆V

2

)
=: −∆ +W.

Proof. Since (−H)i = e−V/2 (−L)i eV/2, 〈u, v〉s,L = 〈e−V/2u, e−V/2v〉s,H for any u, v ∈ C∞c (Rn)

and any exponent i ∈ N, from which the result follows by density.

The space H1 (Rn,H), for H defined as above, is of particular relevance to this paper. It is a simple
exercise to show that this space can be equivalently defined by

H1 (Rn,H) =

{
u ∈ H1 (Rn) :

∫
Rn

|W |u2 dy <∞
}
,

and that for u ∈ H1 (Rn,H),

‖u‖21,H = ‖u‖20 +

∫
Rn

|∇u|2 dy +

∫
Rn

Wu2 dy.

B Hermite Polynomials and Hermite Functions

In this appendix, we recall some results about Hermite polynomials and Hermite functions that are
essential for the analysis presented in this paper.

Hermite polynomials In one dimension, it is well-known that the polynomials

Hr(s) =
(−1)

r

√
r!

exp

(
s2

2

)
dr

dsr

(
exp

(
−s2

2

))
r = 0, 1, 2, . . . (83)

form a complete orthonormal basis of L2
(
R, G(0,1)

)
, where G(0,1) is the Gaussian density of mean

0 and variance 1. These polynomials can be naturally extended to the multidimensional case. For
µ ∈ Rn and a symmetric positive definite matrix Σ ∈ Rn×n, consider the Gaussian density G(µ,Σ)

of mean µ and covariance matrix Σ. Let D and Q be diagonal and orthogonal matrices such that
Σ = QDQT , and note S = QD1/2, such that Σ = SST . With these definitions, the polynomials
defined by

Hα(y;µ,Σ) = H∗α(S−1(y − µ)), with α ∈ Nn and H∗α(z) =
∏n

k= 1
Hαk(zk), (84)

form a complete orthonormal basis of L2(Rn, G(µ,Σ)). Note that the Hermite polynomial corre-
sponding to a multi-index α depends on the orthogonal matrix Q chosen. When µ and Σ are clear
from the context, we will sometimes omit them to simplify the notation.

In addition to forming a complete orthonormal basis, the Hermite polynomials defined above are
the eigenfunctions of the Ornstein-Ulhenbeck operator

−Lµ,Σ = Σ−1(y − µ) · ∇ −∆.
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The eigenvalue associated to Hα(y;µ,Σ) is given by

λα =

n∑
i=1

αiλi, (85)

where {λi}ni=1 are the diagonal elements of D−1. Naturally, the operator −Lµ,Σ is nonnegative and
selfadjoint on L2

(
Rn, G(µ,Σ)

)
.

Hermite polynomials have very good approximation properties for smooth functions in L2
(
Rn, G(µ,Σ)

)
.

In what follows, we note π (·,Pd) : L2(Rn, G(µ,Σ)) → Pd the L2(Rn, G(µ,Σ)) projection operator
on the space of polynomials of degree less than or equal to d.

Proposition B.1. For u ∈ Hs (Rn,Lµ,Σ),

‖u‖2s,Lµ,Σ =
∑
α

(1 + λα + λ2
α + · · ·+ λsα)c2α, where cα = 〈u,Hα〉G(µ,Σ)

.

In addition u ∈ Hs (Rn,Lµ,Σ) if and only if the sum in the right-hand side converges.

Proof. Let −L =
∑s
i=0(−Lµ,Σ)i and µα = 1 + λα + λ2

α + · · ·+ λsα. Assume first that u ∈ C∞c (Rn),
so −Lu ∈ C∞c (Rn) also. Using the selfadjoint property of −L, it is clear that −Lu =

∑
α µαcαHα.

Taking the norm and expanding the functions

‖u‖2s,Lµ,Σ =

∫
Rn

(∑
α

µαcαHα

) (∑
α

cαHα

)
G(µ,Σ) dy =

∑
α

µαc
2
α.

We consider now the general case u ∈ Hs (Rn,Lµ,Σ). By definition of Hs (Rn,Lµ,Σ) there exists
{un}∞n=1 ∈ C∞c (Rn) such that ‖u − un‖s,Lµ,Σ → 0. By the previous equation, this means that∑
α µα(cα,n − cα,m)2 → 0 when m,n → ∞, where cα,k = 〈uk, Hα〉, which by a completeness

argument implies that
∑
α µαc

2
α,n →

∑
α µαc

2
α.

It remains to show that if the series is convergent, then u ∈ Hs (Rn,Lµ,Σ). The main idea, for
this part, is to show that the sequence uN =

∑
|α|≤N 〈u,Hα〉G(µ,Σ)

Hα is Cauchy in Hs (Rn,Lµ,Σ),
which is a routine check.

Noting that 1 + r + r2 + · · ·+ rs ≤ e 1
r rs for r > 0, and that λα →∞ when |α| → ∞, the previous

result implies that c20 +
∑
|α|>0

λsαc
2
α

 ≤ ‖u‖2s,Lµ,Σ ≤ L
c20 +

∑
|α|>0

λsαc
2
α

 , (86)

where L = max|α|>0 e
1
λα .

Corollary B.2 (Approximation by polynomials in weighted spaces). Let Σ be a symmetric positive
definite matrix, and suppose that f ∈ Hs (Rn,Lµ,Σ). Then

‖f − π (f,Pd) ‖r,Lµ,Σ ≤ C(Σ, r, s) d−
(s−r)

2 ‖f‖s,Lµ,Σ ,

for r ∈ N such that 0 ≤ r ≤ s.
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Proof. See [19, Theorem 3.1]. From (86), we have that

‖f − π (f,Pd) ‖2r,Lµ,Σ ≤ L
∑
|α|>d

λrαc
2
α ≤ LMr−s

∑
α∈Nn

λsαc
2
α ≤ LMr−s‖f‖2s,Lµ,Σ ,

with cα = 〈f,Hα〉0,Lµ,Σ and M = min|α|>d λα. Since λα > C(Σ) |α|, the conclusion follows.

Hermite Functions Hermite functions can be defined from Hermite polynomials as follows:

Definition B.3. Given µ ∈ Rn, and Σ ∈ Rn×n positive definite, we define the Hermite functions
hα(y;µ,Σ) by:

hα(y;µ,Σ) =
√
G(µ,Σ)Hα(y;µ,Σ) for α ∈ Nn.

The Hermite functions form a complete orthonormal basis of L2 (Rn). Since they are obtained from
the Hermite polynomials by a multiplication with

√
G(µ,Σ), we immediately obtain the following:

Proposition B.4. Given µ ∈ Rn and Σ ∈ Rn×n positive definite, the Hermite functions hα(y;µ,Σ)

are the eigenfunctions of the operator:

−Hµ,Σ = (G(µ,Σ))
1
2 (−Lµ,Σ) (G(µ,Σ))

− 1
2 = −∆ +

(
(y − µ)TΣ−2(y − µ)

4
− tr Σ−1

2

)
,

with the same eigenvalues as in (85).

Hermite functions inherit the good approximation properties of the Hermite polynomials expressed
in Corollary B.2. In the following result, π refers to the L2 (Rn) projection operator, so

π
(
f,
√
G(µ,Σ)Pd

)
=
∑
|α|≤d

〈f, hα(·;µ,Σ)〉hα(·;µ,Σ). (87)

Corollary B.5 (Approximation by Hermite functions in flat space). Let µ ∈ Rn and Σ ∈ Rn×n

be a symmetric positive definite matrix, and suppose that f ∈ Hs(Rn, Hµ,Σ). Then

‖f − π
(
f,
√
G(µ,Σ)Pd

)
‖r,Hµ,Σ ≤ C(Σ, r, s) d−

(s−r)
2 ‖f‖s,Hµ,Σ ,

for any r ∈ N such that 0 ≤ r ≤ s.
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