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NUMERICAL HOMOGENIZATION AND MODEL ORDER

REDUCTION FOR MULTISCALE INVERSE PROBLEMS

ASSYR ABDULLE∗
AND ANDREA DI BLASIO†

Abstract. A new numerical method based on numerical homogenization and model order
reduction is introduced for the solution of multiscale inverse problems. We consider a class of elliptic
problems with highly oscillatory tensors that varies on a microscopic scale. We assume that the
micro structure is known and seek to recover a macroscopic scalar parametrization of the microscale
tensor (e.g. volume fraction). Departing from the full fine scale model that would require mesh
resolution for the forward problem down to the finest scale, we solve the inverse problem for a
coarse model obtained by numerical homogenization. The input data, i.e., measurement from the
Dirichlet to Neumann map, are solely based on the original fine scale model. Furthermore, reduced
basis techniques are used to avoid computing effective coefficients for the forward solver at each
integration point of the macroscopic mesh. Uniqueness and stability of the effective inverse problem
is established based on standard assumptions for the fine scale model and a link with this latter
model is established by means of G-convergence. A priori error estimates are established for our
method. Numerical experiments illustrate the efficiency of the proposed scheme and confirm our
theoretical finding.
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1. Introduction. Many applications in engineering and the sciences require
solving inverse problems for partial differential equations (PDEs). We mention appli-
cations in heat conduction, geoscience and wave scattering, medical imaging, etc [14].
In this paper we are interested in PDEs that vary on very fine scale that come, e.g.,
from heterogeneity in the medium. Assuming that the nature of the micro structure
is known, we search for an unknown macroscopic parametrization of this fine scale
structure from the knowledge of measurements coming from the Dirichlet to Neu-
mann map. A typical example is multi-phase medium whose constituents are known
but whose volume fraction or its macroscopic orientation are unknown. Classical ap-
proaches for such problem would require the resolution of forward problems requiring
mesh resolution of the fines scale. Repeated solutions of such high dimensional prob-
lem represent a formidable computational challenge and is often not tractable. Using
coarse graining techniques and model order reduction can overcome this computa-
tional issue for classes of multiscale PDEs. Among such problems we consider the
following multiscale elliptic problem. Let Ω ∈ Rd, d ≥ 2, be an open, bounded, con-
nected set with sufficiently smooth boundary ∂Ω and consider the problem of finding
the weak solution uε ∈ H1(Ω) to

(1.1)
−∇ · (Aε∇uε) = 0 in Ω ,

uε = g on ∂Ω ,

where g ∈ H1/2(∂Ω). The tensor Aε = Aε(x), x ∈ Ω belongs to M(α, β,Ω), where

M(α, β,Ω) :=

{A ∈ L∞(Ω, Symd) : α|ξ|2 ≤ A(x)ξ · ξ , |A(x)ξ| ≤ β|ξ| , ∀ξ ∈ Rd , and a.e. x ∈ Ω} ,
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where Symd denotes the class of d×d real valued symmetric matrices. The superscript
in Aε indicates that the tensor varies on a fine scale ε that is much smaller than the
size of the computational domain Ω. In turn, the solution of (1.1) itself has variations
on such micro scales.

Next, we introduce the Dirichlet to Neumann map associated to the boundary
value problem (1.1) as the operator ΛAε : H1/2(∂Ω) → H−1/2(∂Ω) given by

g 7→ Aε∇uε · ν|∂Ω ,

where ν denotes the exterior unit normal to ∂Ω. In this work we are concerned with the
inverse conductivity problem of determining Aε from the knowledge of the Dirichlet
to Neumann map ΛAε . The inverse conductivity problem, which is also known as
electrical impedance tomography (EIT), was proposed firstly by Calderón [11], and it
has gained great popularity in the last decades. Many authors have studied important
questions that arise when facing the inverse conductivity problem, such as uniqueness
of Aε given ΛAε , the recovery of Aε from ΛAε , and finally the stability or continuity
of the inverse map ΛAε 7→ Aε [8, 27, 29, 33].

We mention that multiscale inverse problems for elliptic equations have already
been treated in [30]. However there the authors are interested in recovering the ef-
fective tensor A0 given some measurements of the full fine scale solution uε in the
domain’s interior. Moreover no use of numerical homogenization is employed. Here
instead our measurements consists of multiscale fluxes at the boundary, and we use nu-
merical homogenization to retrieve low dimensional parameters in order to recover the
full multiscale tensor Aε. Hence the setting is different from the one considered in our
paper, as well as the theoretical and numerical results. We also mention the work [15],
where a geometric framework for homogenization and inverse homogenization is intro-
duced. The numerical method builds on harmonic coordinate transformations which
require to solve multiple fine scale problems over the whole domain. Again this setting
differs from the one we propose in our contribution.

In this paper we are interested in a class of parametrized anisotropic locally
periodic multiscale tensor Aε(x) = A(σ∗(x), x/ε) = A(σ∗(x), y) Y−periodic in the y
variable (here without loss of generality we assume that Y is a cube Y = (0, 1)d). The
map (t, x) 7→ A(t, x/ε) is assumed to be known and σ∗ has to be determined. When
the tensor does not exhibit a multiscale variation, i.e., for (t, x) 7→ A(t, x), uniqueness
and stability at the boundary were proved by G. Alessandrini and R. Gaburro [7],
under some regularity assumptions on the map (t, x) 7→ A(t, x). While this results
is still valid for highly oscillating tensors, the stability estimates will depend on a
constant that scales as O(ε−1). In turn, classical numerical techniques such as finite
element methods (FEMs) to compute numerically the inverse problem will need scale
resolution (i.e. mesh size resolving the smallest scale ε) which represents often a
prohibitive cost. Therefore we combine the inverse problem with a coarse grained
strategy, which simplifies remarkably the computational effort, but on the other hand
introduces additional discrepancies between “reality” (model (1.1), from where the
data are obtained) and the model used for inversion.

Homogenization theory [9,25] ensures that the solution to problem (1.1) converges
(in a weak sense) to a homogenized solution u0, solving the elliptic problem

(1.2)
−∇ · (A0∇u0) = 0 in Ω ,

u0 = g on ∂Ω .

In this work we want to analyse the possibility of retrieving Aε, in the case where
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the observed data are obtained from the full multiscale model (1.1), but using as
forward model the Dirichlet to Neumann map defined by the homogenized model (1.2).
Numerically, the explicit form of A0 is usually not known and can only be recovered at
some quadrature points of the macroscopic computational mesh. We therefore rely on
the finite element heterogeneous multiscale method (FE-HMM) [1, 3, 5] that recovers
such tensors with input data only given by the fine scale model (1.1), by solving
appropriate micro problems. Furthermore, as such coarse grain forward solution relies
on increasingly accurate micro solutions, we further employ reduced basis techniques
to precompute a reduced number of conductivity tensors that are then appropriately
interpolated when solving the forward problem following the methodology developed
in [4].

This type of multiscale inverse problem has first been introduced in [19], where
by means of numerical investigation, it is shown that the numerical homogenization
can be used for the considered class of multiscale inverse problems. In our paper, we
generalize the applicability of the numerical homogenization, we provide a theoretical
investigation both on the model problem and on the computational approach for such
coarse graining strategy and we further introduce model reduction strategy for the
numerical method. We briefly discuss the main contribution of our paper. First,
while in [19] it assumed that the scalar parameter σ∗ is accurately parametrized by
piecewise smooth coefficients, we consider instead general scalar parameter where no
specific form of t → A(t, x/ε) is taken into account. Second, assuming that the fine
scale inverse problem is well posed, we show that the effective inverse problem, with
observed data consisting of the homogenized Dirichlet to Neumann map, is also
well posed and we establish stability results independent of the small scale ε. As
the full Dirichlet to Neumann map is usually not available, we discuss a numerical
strategy based on finite measurements of this map. For our more general class of
mutiscale tensors, regularization is needed and we analyse this strategy in the context
of multiscale inverse problems. Then in this framework, by means of G-convergence,
we characterize the convergence of the solution of the effective inverse problem with
mulsticale observations as ε → 0 . Finally we provide a new numerical strategy
based on the HMM framework and reduced basis techniques for solving the inverse
problem. A priori error estimates for the computation of effective boundary fluxes
is analysed for this method and convergence of the discrete optimization problem
is established. The outline of the work is as follows. In Section 2 we recall briefly
results of uniqueness and stability for the class of inverse problems that we consider,
and we give motivation for the need of a coarse graining strategy to solve the inverse
problem. In Section 3 we establish a convergence result for the solution to the inverse
problem in the context of Tikhonov regularization. In Section 4 we describe how the
multiscale inverse problem is solved numerically. In particular, we introduce numerical
homogenization and we give a priori error estimates for the approximated flux at the
boundary. An analysis on the discrete solution of the multiscale inverse problem is also
given. Finally in Section 5 we present some numerical results to test our theoretical
findings and illustrate our numerical method.

2. Calderón’s problem, multiscale data and homogenization. Let Ω be
an open bounded set in Rd and let Aε(x) be of the form A(σ∗(x), x/ε), for a certain
scalar function σ∗ : Ω → R. The problem we are interested in is to recover the function
σ∗ from measurements of the Dirichlet to Neumann map, in order to retrieve the full
conductivity tensor Aε. The inverse conductivity problem was firstly introduced by
Calderón [11], while inverse conductivity problems for special anisotropic tensors of
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the form A(x) = A(σ∗(x), x) are analysed in details in [7]. In particular in [7] results
on uniqueness and stability at the boundary for the inverse problem are proved in
the case where some prior knowledge on the map (t, x) 7→ A(t, x) is assumed. It is
required that the tensor A(t, x), t ∈ [σ−, σ+], 0 < σ− < σ+, x ∈ Ω, belongs to some
special class of matrix functions that we recall below. In what follows we will use the
following norms

||A||Lp(Ω) =





∫

Ω

d∑

i=1

d∑

j=1

|aij(x)|p dx





1/p

, 1 ≤ p <∞ ,

||A||L∞(Ω) = max
1≤i,j≤d

ess sup
x∈Ω

|aij(x)| , p = ∞ .

for a matrix A(x) = {aij(x)}1≤i,j≤d , x ∈ Ω.
Definition 2.1. [Definition 2.2 in [7]]. Given p > d, α, β,E1 > 0, and denoting

by Symd the class of d× d real valued symmetric matrices, we say that A : [σ−, σ+]×
Ω → Symd belongs to H if the following conditions hold for all t ∈ [σ−, σ+], 0 <
σ− < σ+:

1. A ∈ W 1,p([σ−, σ+]× Ω, Symd).
2. ∂tA ∈W 1,p([σ−, σ+]× Ω, Symd).
3. ess sup

t∈[σ−,σ+]

(||A(t, ·)||Lp(Ω)+||∇xA(t, ·)||Lp(Ω)+||∂tA(t, ·)||Lp(Ω)+||∂t∇xA(t, ·)||Lp(Ω))

≤ E1 .
4. Condition of uniform ellipticity:

α|ξ|2 ≤ A(t, x)ξ · ξ , |A(t, x)ξ| ≤ β|ξ|, for a.e. x ∈ Ω

and ∀t ∈ [σ−, σ+], ξ ∈ Rd .

5. Condition of monotonicity with respect to the variable t:

∂tA(t, x)ξ · ξ ≥ E−1
1 |ξ|2, for a.e. x ∈ Ω

and ∀t ∈ [σ−, σ+] , ξ ∈ Rd.

In [7] the following stability result at the boundary for the unknown function σ∗

has been shown, in the case where A(x) = A(σ∗(x), x), σ∗ ∈ W 1,p(Ω), A(·, ·) ∈ H.
Theorem 2.2. [Theorem 2.1 in [7]]. Given p > d, let Ω be a bounded domain

with Lipschitz boundary. Given E > 0, let σ1, σ2 satisfy

(2.1) σ− ≤ σ1(x) , σ2(x) ≤ σ+ for every x ∈ Ω ,

and

||σ1||W 1,p(Ω) , ||σ2||W 1,p(Ω) ≤ E .(2.2)

Let A(·, ·) ∈ H. Then we have

||A(σ1(x), x) −A(σ2(x), x)||L∞(∂Ω) ≤ C||ΛA(σ1,x) − ΛA(σ2,x)||L(H1/2(∂Ω),H−1/2(∂Ω)) ,

where C depends on σ−, σ+, E, p, and Ω.
A uniqueness result is also provided in [7].

Theorem 2.3. [Theorem 2.4 in [7]]. Given E > 0, let be σ1 and σ2 two scalar
functions satisfying (2.1) and (2.2) with p = ∞, and A(·, ·) ∈ H. Moreover assume

4



A ∈ W 1,∞([σ−, σ+] × Ω, Symd). In addition, suppose that Ω can be partitioned into
a finite number of Lipschitz domains {Ωj}Nj=1 such that σ1 − σ2 is analytic on each

Ωj. If

ΛA(σ1,x) = ΛA(σ2,x)

then we have

A(σ1(x), x) = A(σ2(x), x) in Ω.

The same results hold for matrix functions of the type Aε(x) = A(σ∗(x), x/ε), for fixed
ε. However in this case the constant E1 in Definition 2.1 scales as 1/ε, and therefore
as ε → 0, such results may become useless. Moreover, in numerical experiments,
when ε is very small, trying to solve the problem numerically by using as model for
inversion an approximation of (1.1) is prohibitive in terms of computational cost, and
therefore a different strategy has to be preferred. Then the motivation for a coarse
graining approach which we obtain by using the framework of homogenization.

Definition 2.4. Let {Aε}ε>0 be a sequence of matrices in M(α, β,Ω). We say
that it G-converges to the matrix A0 ∈ M(α, β,Ω) iff for every function f ∈ H−1(Ω),
g ∈ H1/2(∂Ω), the solution uε of

(2.3)
−∇ · (Aε∇uε) = f in Ω ,

uε = g on ∂Ω ,

is such that

uε ⇀ u0 weakly in H1(Ω) ,

where u0 is the unique solution of

(2.4)
−∇ · (A0∇u0) = f in Ω ,

u0 = g on ∂Ω .

Moreover in the symmetric case we have that

Aε∇uε ⇀ A0∇u0 weakly in (L2(Ω))d .

Theorem 2.5. One has the following compactness result. Let {Aε}ε>0 be a
sequence of matrices in M(α, β,Ω). Then there exists a subsequence {Aε′}ε′>0 and a
matrix A0 ∈ M(α, β,Ω) such that {Aε′}ε′>0 G-converges to A0.
In particular let us consider for now the case where Aε is the Y -periodic matrix
defined by

Aε(x) = A(x, x/ε) = A(x, y) , A(x, ·) ∈ M(α, β, Y ) , ∀x ∈ Ω ,

Aε(x) = {aεij(x)}1≤i,j≤d a.e. on Rd ,

where

aεij(x) = aij(x, x/ε) = aij(x, y) , aij(x, ·) is Y -periodic , ∀x ∈ Ω , ∀i, j = 1, . . . , d ,
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where Y denotes the reference unit cell (0, 1)d.
In this particular case we have that the whole sequence {Aε}ε>0 G-converges to the
tensor A0 ∈ M(α, β,Ω), A0(x) = {a0ij(x)}1≤i,j≤d, which is elliptic and it is given by

a0ij(x) =
1

|Y |

∫

Y

aij(x, y)dy − 1

|Y |

d∑

k=1

∫

Y

aik(x, y)
∂χj

∂yk
dy ∀ i, j = 1, . . . , d .

The micro functions χj , j = 1, . . . , d, are defined to be the unique solutions of the
cell problems: find χj ∈W 1

per(Y ) such that

∫

Y

A(x, y)∇yχj · ∇yv dy =

∫

Y

A(x, y)ej · ∇yv dy , ∀v ∈W 1
per(Y ) ,(2.5)

where {ej}dj=1 is the canonical basis of Rd and

W 1
per(Y ) = {v ∈ H1

per(Y ) :

∫

Y

v dy = 0} ,

where H1
per(Y ) is defined as the closure of C∞

per(Y ) for the H1-norm (where C∞
per(Y )

denotes the subset of C∞(Rd) of periodic functions in Y ). In definition 2.1 we have
listed the regularity properties that the map (t, x) 7→ A(t, x/ε) has to satisfy to ensure
stability and uniqueness of the inverse problem. However we already mentioned that
for the class of problems we are interested in, results obtained in [7] are dependent of
ε, and a new strategy based on homogenization is preferred. As first step we want
to analyse under which conditions on Aε, the map t 7→ A0(t) satisfies the regularity
properties to ensure stability and uniqueness for the homogenized inverse problem.
First, let us introduce as a corollary of Theorem 2.2 and 2.3 the conditions that A0

has to satisfy to ensure stability and uniqueness.
Corollary 2.6. Given α, β,E2 > 0 and p > d, let us consider a d×d symmetric

matrix valued function t 7→ A(t), t ∈ [σ−, σ+], 0 < σ− < σ+, satisfying the conditions

|∂tA(t)|+ |∂2tA(t)| ≤ E2 , ∀t ∈ [σ−, σ+] .(2.6)

α|ξ|2 ≤ A(t)ξ · ξ , |A(x)ξ| ≤ β|ξ| , ∀t ∈ [σ−, σ+] , ξ ∈ Rd .(2.7)

∂tA(t)ξ · ξ ≥ E−1
2 |ξ|2 , ∀t ∈ [σ−, σ+] , ξ ∈ Rd .(2.8)

Let σ1 and σ2 two scalar functions satisfying (2.1)-(2.2). Then we have the following
results.

1. The following estimate holds:

||A(σ1)−A(σ2)||L∞(∂Ω) ≤ C||ΛA(σ1) − ΛA(σ2)||L(H1/2(∂Ω),H−1/2(∂Ω)) ,

where C depends on σ−, σ+, E, p, and Ω.
2. Let σ1 and σ2 satisfy (2.1) and (2.2) with p = ∞. In addition suppose that

Ω can be partitioned into a finite number of Lipschitz domains {Ωj}Nj=1 such

that σ1 − σ2 is analytic on each Ωj. If

ΛA(σ1) = ΛA(σ2)

then we have

A(σ1) = A(σ2) in Ω .
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We also mention the following lemma which establishes a regularity result for the
solutions of the cell problems (2.5) with respect to the variable t [6].

Lemma 2.7. Assume that A(t, x/ε) is uniformly elliptic and the map t 7→
A(t, x/ε) is of class C1([σ−, σ+], Symd). Consider the micro functions χj(t, y), j =
1 , . . . , d, unique solutions of: find χj ∈ W 1

per(Y ) such that

∫

Y

A(t, y)∇yχj · ∇yv dy =

∫

Y

A(t, y)ej · ∇yv dy ∀v ∈W 1
per(Y ) .(2.9)

Then the map t 7→ χj(t, y) ∈W 1
per(Y ) is of class C1([σ−, σ+]) and satisfies

∂tχj(t, y) = φj(t, y) , ∂t∇yχj(t, y) = ∇yφj(t, y) ,(2.10)

where φj(t, y) ∈W 1
per(Y ) and satisfies

∫

Y

A(t, y)∇yφj(t, y) · ∇yv dy =

∫

Y

∂tA(t, y)(ej −∇yχj(t, y)) · ∇yv dy ∀v ∈ W 1
per(Y ) .

Then we can establish the following theorem whose proof is given in the appendix.

Theorem 2.8. Let x/ε = y ∈ Y . Given α, β,E1 > 0, p > d, consider the
class of d × d symmetric matrix functions (t, y) 7→ A(t, y), where aij is Y -periodic,
∀i, j = 1, . . . , d, t ∈ [σ−, σ+], 0 < σ− < σ+. Assume

A ∈W 1,∞([σ−, σ+]× Y, Symd) , ||A||W 1,∞([σ−,σ+];W 1,∞(Y )) ≤ E1 .

(2.11)

∂tA ∈W 1,∞([σ−, σ+]× Y, Symd) , ||∂tA||W 1,∞([σ−,σ+];W 1,∞(Y )) ≤ E1 .

(2.12)

α|ξ|2 ≤ A(t, y)ξ · ξ , |A(x)ξ| ≤ β|ξ|, for a.e. y ∈ Y and ∀t ∈ [σ−, σ+], ξ ∈ Rd .

(2.13)

∂tA(t, y)ξ · ξ ≥ E−1
1 |ξ|2, for a.e. y ∈ Y and ∀t ∈ [σ−, σ+] , ξ ∈ Rd.

(2.14)

Then the homogenized tensor A0 satisfies (2.6)-(2.8).
Hence, under appropriate regularity assumptions on Aε, we established stability and
uniqueness for the inverse conductivity problem in the case the measurements at the
boundary consist of the homogenized Dirichlet to Neumann map. However, as already
mentioned in the introduction, this is not the case we are interested in, since we aim
at solving the inverse problem when the data consists of the multiscale Dirichlet to
Neumann map ΛA(σ∗,x/ε). Moreover in real experiments we do not have full knowledge
of the map ΛA(σ∗,x/ε). Indeed we would have to know the results of all possible
boundary measurements for any Dirichlet boundary conditions g, which is impossible.
In practice, we consider a set of L experiments, described by a finite set of Dirichlet
conditions {gl}Ll=1 ∈ H1/2(∂Ω), and for each of them we measure the corresponding
boundary flux. Let us define

U = {σ ∈W 1,∞(Ω) : σ− ≤ σ(x) ≤ σ+ , 0 < σ− < σ+} ,
Uad = {σ ∈ U : ||σ(x)||W 1,∞(Ω) ≤ E ,E > 0} .
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Then we would like to solve the following minimization problem

min
σ∈Uad

L∑

l=1

||ΛA(σ∗,x/ε)gl − ΛA0(σ)gl||2H−1/2(∂Ω) ,(2.15)

subject to

−∇ · (A0(σ(x))∇u0) = 0 in Ω ,

u0 = gl on ∂Ω ,

where A0(σ(x)) is the homogenized tensor corresponding to A(σ(x), x/ε). It is im-
portant to remark that G-convergence of A(σ∗(x), x/ε) to A0(σ∗(x)) does not imply
convergence of the corresponding fluxes at the boundary in the H−1/2(∂Ω)-norm, but
only weak* convergence, as stated in the following lemma.

Lemma 2.9. Let us consider a sequence of tensors {Aε}ε>0 in M(α, β,Ω) which
G-converges to A0 ∈ M(α, β,Ω) as ε → 0. Then {ΛAεg}ε>0 converges weakly* to
ΛA0g in H−1/2(∂Ω) for all g ∈ H1/2(∂Ω) as ε→ 0.

Proof. From the definition of G-convergence we have that, for any ψ ∈ H1(Ω),

∫

Ω

(Aε∇uε −A0∇u0) · ∇ψ dx→ 0 as ε→ 0 ,

where uε, u0 ∈ H1(Ω) are the weak solutions of (1.1) and (1.2) respectively. Then,
using integration by parts, we obtain that

(2.16) 〈ΛAεg − ΛA0g, ψ〉H−1/2(∂Ω),H1/2(∂Ω) → 0 as ε→ 0 ,

for each g, ψ ∈ H1/2(∂Ω). Then

ΛAεg ⇀ ΛA0g weakly* in H−1/2(∂Ω) .

3. Tikhonov regularization, multiscale and coarse-grained minimizers.

Due to the difficulties of working with fractional-order Sobolev spaces when perform-
ing numerical experiments, we will consider the L2(∂Ω)-norm to evaluate the distance
between data and numerical results produced by the homogenized model, where it is
assumed gl ∈ H3/2(∂Ω), ∀l = 1, . . . , L. Let Φε : U → R be defined as

Φε(σ) =

L∑

l=1

||ΛA(σ∗,x/ε)gl − ΛA0(σ)gl||2L2(∂Ω) ,

and let us consider the minimization problem

Φε = inf
σ∈Uad

Φε(σ) .(3.1)

Since Uad is a closed convex and bounded set in W 1,∞(Ω) it is possible to prove
that any minimizing sequence {σε

n}n>0 for (3.1) contains a subsequence which weakly
converges to σε, for which we have Φε = Φε(σε). The proof is quite standard. Let us
recall that H1(Ω) embeds compactly into Lr(Ω), r < ∞ in two dimensions, r < 6 in
three dimensions. Then the key point consists in proving that Φε : Lr(Ω) ∩ U → R

+
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is continuous. Such result is stated in the lemma below, whose proof is reported in
the appendix.

Lemma 3.1. Let A0(·) satisfy (2.6)-(2.7). Let the sequence {σn}n>0 ⊂ U converge
to some σ ∈ U in Lr(Ω), r ≥ 1. Then the sequence {ΛA0(σn)g}n>0 converges to

ΛA0(σ)g in H−1/2(∂Ω). If u0 ∈ H2(Ω), then the sequence {ΛA0(σn)g}n>0 converges
to ΛA0(σ)g in L2(∂Ω).
However in numerical experiments we may prefer to adopt indirect methods to ensure
stability of the inverse problem instead of directly impose a constraint during the
minimization procedure. Among the possible methods to regularize inverse problems
we choose Tikhonov regularization (see for example [16,18]). Tikhonov regularization
ensures well posedness by adding to the cost functional a convex variational penalty,
so that the new minimization problem reads.

Ψε = inf
σ∈U

Ψε(σ)(3.2)

where

Ψε(σ) = Φε(σ) + γR(σ) ,(3.3)

where γ is the regularization parameter, and R is the penalty term. Such term
induces a priori knowledge on expected conductivity. In what follows we consider
R(σ) = ||σ− σ0||2H1(Ω), where σ0 is a prior guess of σ∗. The regularization parameter
controls the trade-off between the two terms and has to be properly chosen. The choice
of γ represents a problem of considerable interest and will affect how much oscillation
is allowed in any minimizing sequence. As the regularization parameter γ varies, we
obtain different regularized solutions having properties that vary with γ. However
how to choose γ is not the main subject of study of this particular work. For sake
of completeness we mention that several methods have been proposed in literature,
as the Morozov’s discrepancy principle [26,32] or the L-curve method [23,24]. Let us
introduce the functional Ψ0 : U → R, such that

Ψ0 = inf
σ∈U

Ψ0(σ)(3.4)

where

Ψ0(σ) = Φ0(σ) + γ||σ − σ0||2H1(Ω) ,

and

Φ0(σ) =

L∑

l=1

||ΛA0(σ∗)gl − ΛA0(σ)gl||2L2(∂Ω) .

Remark. From the non-negativity of Ψε(σ) and Ψ0(σ), it follows that Ψε(U) and
Ψ0(U) are subsets of R+, and therefore there exist minimizing sequences {σε

n}n>0

and {σ0
n}n>0 such that

Ψε = lim inf
n→∞

Ψε(σε
n) = inf

σ∈U
Ψε(σ) ,

Ψ0 = lim inf
n→∞

Ψ0(σ0
n) = inf

σ∈U
Ψ0(σ) .

The following lemma is an adaptation of a classical result in non-linear Tikhonov
regularization theory (see e.g. [17]).
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Lemma 3.2. Let u0 ∈ H2(Ω), and consider a minimizing sequence {σ0
n}n>0 for

(3.4). Then it contains a weakly convergent subsequence in H1(Ω) with limit σ0 ∈ U
which attains the infimum: Ψ0 = Ψ0(σ0).

Proof. The set U is a non-empty closed convex subset ofH1(Ω), hence sequentially
weakly closed. From the minimizing property of {σ0

n}n>0 and the non-negativity of
Φ0(σ) it follows that {σ0

n}n>0 is bounded in H1(Ω). Indeed if this is not the case,
there exists a subsequence {σ0

n′}n′>0 such that ||σ0
n′ ||H1(Ω) → ∞ as n′ → ∞, hence

Ψ0(σ0
n′) ≥ γ||σ0

n′ − σ0||2H1(Ω) → ∞ ,

and therefore Ψ0 = ∞. Then {σ0
n}n>0 admits a subsequence {σ0

n′}n′>0 such that
σ0
n′ ⇀ σ0 weakly in H1(Ω). Since Φ0 : Lr(Ω) ∩ U → R

+ is continuous (Lemma 3.1)
and the H1(Ω)-norm is weakly lower semi-continuous we have that

Ψ0(σ0) ≤ lim inf
n′→∞

Ψ0(σ0
n′ ) = Ψ0 .

Since Ψ0(σ0) ≥ Ψ0, the result follows.
Using the same arguments the following lemma can also be proved.
Lemma 3.3. Let u0 ∈ H2(Ω), and consider a minimizing sequence {σε

n}n>0 for
(3.2). Then it contains a weakly convergent subsequence in H1(Ω) with limit σε ∈ U
which attains the infimum: Ψε = Ψε(σε).

We now state the main result that quantifies (in a weak sense) the link between
the minimization problem (3.2) involving the fine scale Dirichlet to Neumann map
ΛA(σ∗,x/ε) and the homogenized map ΛA0(σ), and the problem (3.4) involving only
homogenized maps.

Theorem 3.4. Consider the sequence of minimization problems of type (3.2) for
ε → 0. The sequence of minimizers {σε}ε>0, such that Ψε = Ψε(σε) for all ε > 0,
contains a weakly convergent subsequence in H1(Ω) with limit σ ∈ U which attains
the infimum: Ψ0 = Ψ0(σ).

Proof. The minimizing property of {σε}ε>0 and the non-negativity of Φε(σ) imply
that the sequence {σε}ε>0 is bounded in H1(Ω). Indeed we have that for each ε > 0,
Ψε(σε) is bounded by Ψε(σ∗), which is in turn bounded with respect to ε. From
calculations similar as in the proof of Lemma 3.1 we obtain

Ψε(σ∗) =

L∑

l=1

||ΛA(σ∗,x/ε)gl − ΛA0(σ∗)gl||2L2(∂Ω) + γ||σ∗ − σ0||2H1(Ω)

≤
L∑

l=1

2β2||gl||2H3/2(∂Ω) + γ||σ∗ − σ0||2H1(Ω) .

Then {σε}ε>0 admits a subsequence {σε′}ε′>0 which converges weakly in H1(Ω) to
some σ ∈ U . We know that

(3.5) Ψε′(σε′) ≤ Ψε′(σ0) ∀ε′ > 0 .

Moreover for each σ ∈ U and ε > 0 the following identity holds

(3.6)

Ψε(σ) =Φε(σ∗) + Φ0(σ) + γ||σ − σ0||2H1(Ω)

+ 2
L∑

l=1

〈ΛA(σ∗,x/ε)gl − ΛA0(σ∗)gl,ΛA0(σ∗)gl − ΛA0(σ)gl〉L2(∂Ω),L2(∂Ω) .

10



Inserting (3.6) into (3.5) we obtain

Ψ0(σε′) ≤ Ψ0(σ0) + 2

L∑

l=1

〈ΛA(σ∗,x/ε′)gl − ΛA0(σ∗)gl,ΛA0(σε′ )gl − ΛA0(σ0)gl〉L2(∂Ω),L2(∂Ω) .

From Lemma 3.1 and the weak lower semi-continuity of the H1(Ω)-norm we have that

Ψ0(σ) ≤ lim inf
ε′→0

Ψ0(σε′)

≤ lim inf
ε′→0

(

Ψ0(σ0) + 2
L∑

l=1

〈ΛA(σ∗,x/ε′)gl − ΛA0(σ∗)gl,ΛA0(σε′ )gl − ΛA0(σ0)gl〉L2(∂Ω),L2(∂Ω)

)

≤Ψ0(σ0)

+ lim sup
ε′→0

2
L∑

l=1

〈ΛA(σ∗,x/ε′)gl − ΛA0(σ∗)gl,ΛA0(σε′)gl〉L2(∂Ω),L2(∂Ω)

+ lim sup
ε′→0

2

L∑

l=1

〈ΛA(σ∗,x/ε′)gl − ΛA0(σ∗)gl,−ΛA0(σ0)gl〉L2(∂Ω),L2(∂Ω) .

Using G-convergence of A(σ∗(x), x/ε) to A0(σ∗(x)) one obtains that

Ψ0(σ) ≤Ψ0(σ0)

+ lim sup
ε′→0

2
L∑

l=1

〈ΛA(σ∗,x/ε′)gl − ΛA0(σ∗)gl,ΛA0(σε′)gl〉L2(∂Ω),L2(∂Ω)

≤Ψ0(σ0)

+ lim sup
ε′→0

2
L∑

l=1

〈ΛA(σ∗,x/ε′)gl − ΛA0(σ∗)gl,ΛA0(σ)gl〉L2(∂Ω),L2(∂Ω)

+ lim sup
ε′→0

2

L∑

l=1

〈ΛA(σ∗,x/ε′)gl − ΛA0(σ∗)gl,ΛA0(σε′)gl − ΛA0(σ)gl〉L2(∂Ω),L2(∂Ω)

≤Ψ0(σ0)

+ lim sup
ε′→0

4
L∑

l=1

β||gl||H3/2(∂Ω)||ΛA0(σε′)gl − ΛA0(σ)gl||L2(∂Ω)

=Ψ0(σ0) = Ψ0 .

Since Ψ0(σ) ≥ Ψ0, the result follows.
As consequence we have than that Ψ0(σε) → Ψ0(σ0) up to a subsequence when

ε → 0. Hence we have established a link between the solutions to the multiscale
problem (3.2) and the solutions to the coarse grained minimization problem (3.4).

4. Numerical solution of the inverse problem. In this section we discuss
the numerical solution of the inverse conductivity problem. At first we describe the
forward solver employed to approximate the homogenized boundary flux. Given the
problem

(4.1)
−∇ · (Aε∇uε) = f in Ω ,

uε = g on ∂Ω ,

11



we need an efficient method to evaluate the boundary flux ΛA0g for the homogenized
tensor A0. However given Aε, analytic solutions for the corresponding A0 are usually
not available, hence we need numerical homogenization.

4.1. Numerical homogenization. For the numerical homogenization proce-
dure, we choose the Finite Element Heterogeneous Multiscale Method (FE-HMM)
which approximates the homogenized problem originating from (4.1) taking as input
only the multiscale data. The FE-HMM it has been studied extensively in literature
and for more details we refer to [1, 3, 5]. We state here the simplest version involving
only piecewise linear macro and micro elements. The method is based on a macro
finite element space

S1
0(Ω, TH) = {vH ∈ H1

0 (Ω) : vH |K ∈ P1(K) , ∀K ∈ TH} ,(4.2)

where TH is a partition of Ω in simplicial elementsK of diameterHK , and P1(K) is the
space of linear polynomials on K (quadrilateral elements could also be used, provided
an adequate quadrature formula [2]). For each macro element, an approximation of
the homogenized tensor on each integration point xK is needed. Such approximation
is obtained by solving a micro problem defined on the sampling domains Kδ = xK +
(−δ/2, δ/2)d, (δ ≥ ε). For a sampling domain Kδ we define a micro finite element
space

S1(Kδ, Th) = {zh ∈W (Kδ) : zh|T ∈ P1(T ) ∀T ∈ Th} .(4.3)

The space W (Kδ) is defined as

W (Kδ) =W 1
per = {z ∈ H1

per(Kδ) :

∫

Kδ

z dx = 0}

in case we ask for periodic coupling, or

W (Kδ) = H1
0 (Kδ)

for a coupling with Dirichlet boundary conditions. We make the assumption of Aε of
being locally periodic and admitting explicit scale separation between slow and fast
spatial variables, so that Aε(x) = A(x, x/ε). Let uH be the approximate solution
to the homogenized problem originating from (4.1). Then the numerical method is
defined as follows: find uH ∈ S1(Ω, TH), uH = g on ∂Ω, such that

BH(uH , vH) = FH(vH) ∀vH ∈ S1
0(Ω, TH) ,

where

BH(vH , wH) :=
∑

K∈TH

|K|
|Kδ|

∫

Kδ

A(xK , x/ε)∇vhK · ∇wh
K dx ,(4.4)

and

FH(vH) :=
∑

K∈TH

|K|(fvH)(xK) .
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In (4.4) vhK (respectively wh
K) denotes the solution to the micro problem: find vhK such

that vhK − vH ∈ S1(Kδ, Th) and

(4.5)

∫

Kδ

Aε∇vhK · ∇zh dx = 0 ∀zh ∈ S1(Kδ, Th) .

We conclude this brief section by recalling the convergence estimates for the numerical
method which have been extensively studied in the literature [1, 3]:

||u0 − uH ||H1(Ω) ≤ C

(

H1 +

(
h

ε

)2

+ eMOD

)

,

||u0 − uH ||L2(Ω) ≤ C

(

H2 +

(
h

ε

)2

+ eMOD

)

.

Moreover for the homogenized tensor we have

sup
K∈TH
x∈K

||A0(x)−A0,h(x)||F ≤ C

(

H1 +

(
h

ε

)2

+ eMOD

)

,

where || · ||F denotes the Frobenius norm and A0,h is defined in (4.17). The term
eMOD is the so called modelling error and does not depend on H and h. For locally
periodic tensors which admit explicit separation between the slow and fast variable,
if collocated at the slow variable, this term vanishes (see [1, 3]).

Remark. We emphasize that the method can be generalized for macro and micro
finite element spaces of higher orders r and q respectively. Let TH be a simplicial
mesh and Sr

0(Ω, TH) be the macro finite element space of polynomials of total degree
r, and let {xKp , ωKp}Pp=1 a quadrature formula exact for polynomials in Pr∗(K),
r∗ = max{2r − 2, r} (quadrilateral elements and polynomials of total degree at most
r in each variable could also be used provided appropriate changes in the numerical
quadrature formula). Then the homogenized tensor has to be computed for each
quadrature point by solving micro problems on sampling domains Kδp . The bilinear
form of the method becomes then

BH(vH , wH) :=
∑

K∈TH

P∑

p=1

ωKp

|Kδp |

∫

Kδp

A(xKp , x/ε)∇vhKp
· ∇wh

Kp
dx ,

where vhKp
(respectively wh

Kp
) denotes the solution to the micro problem: find vhKp

such that vhKp
− vHlin,p ∈ Sq(Kδp , Th) and

∫

Kδp

Aε∇vhKp
· ∇zh dx = 0 ∀zh ∈ Sq(Kδp , Th),

where vHlin,p := vH(xKp) + (x − xKp) · ∇vH(xKp).

4.2. Approximate boundary flux calculations. Here we describe a numer-
ical method to approximate the flux at the boundary. This method is based on a
Galerkin projection, and is analysed in detail in [31] in its classical finite element for-
mulation. In particular it allows to obtain superconvergence of the approximate flux
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Figure 1: An example of a domain characterized by six edges and corners. On the
right the strip of elements X1(Ω, TH) is represented. On the corners the flux at the
boundary is specified by the Dirichlet condition g.

in the L2(∂Ω)-norm, and we show how such superconvergence result can be extended
in the context of FE-HMM . In what follows we assume Ω to be a polygonal domain,
and ∂Ω = ∪J

j=1Γj , where Γj are the straight interface portions defining ∂Ω. Since the
normal flux at the corners of Ω is not well defined, we assume that the approximate
flux at the corners is specified from direct calculations with the given Dirichlet condi-
tion. For example, for the case given in Figure 1, this direct calculation is performed
as follows:

∇u · ν2(x2) = ∇g(x2) · (aτ2 + bτ1) ,

a = (ν2 · ν1)/(τ2 · ν1) , b = 1/(τ2 · ν1) .
Finally the method aims at computing the normal flux at the boundary by considering
one straight interface Γj at the time, so that the ΛA0g = {(ΛA0g)j}Jj=1, where

(ΛA0g)j = A0∇u0 · ν|Γj .

Let us introduce the following subspaces of S1(Ω, TH) :

S1
c (Ω, TH) = {vH ∈ S1(Ω, TH) : vH = 0 at the corners of Ω} ,
S1
i (Ω, TH) = {vH ∈ S1(Ω, TH) : vH = 0 at the interior nodes of Ω} .

Let us denote as S1
0(Γj , TH), j = 1, . . . , J , the finite dimensional spaces of functions

which are restrictions on the boundary portions Γj of functions in S1
c (Ω, TH). Finally

let Xj(Ω, TH) denote the strip of all the elements in TH , which have at least one vertex
on Γj , j = 1, . . . , J . Using integration by parts we have the following relation for the
flux

−
∫

Γj

(ΛA0g)j · vH ds = Bj(u
0, vH)−

∫

Xj

fvH dx ,(4.6)

∀vH ∈ S1
c (Ω, TH) ∩ S1

i (Ω, TH), where

Bj(v, w) =

∫

Xj

A0∇v · ∇w dx .
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Then following [12, 31] an approximate flux can be constructed by progressively as-
sembling functions (ΛH

A0,hg)j ∈ S1
0(Γj , TH), j = 1, . . . , J , such that

(4.7) −
∫

Γj

(ΛH
A0,hg)j · vH ds = BH,j(u

H , vH)−
∫

Xj

fvH dx

∀vH ∈ S1
c (Ω, TH) ∩ S1

i (Ω, TH), where

BH,j(v
H , wH) =

∑

K∈Xj

|K|
|Kδ|

∫

Kδ

A(xK , x/ε)∇vhK · wh
K dx ,

for each j = 1, . . . , J . Let us remark that uH has been already computed, and so
constructing {(ΛH

A0,hg)j}Jj=1 leads then to solving J linear system whose unknowns
are the values of the flux on the interior nodes of each Γj . To obtain an error estimate
for the approximate boundary flux we recall the following lemma which relates the
functions in S1

i (Ω, TH) and their traces on ∂Ω.
Lemma 4.1. Let X = X(Ω, TH) denote a strip of elements in TH , with each

element having at least one vertex on ∂Ω, and let vH ∈ S1
i (Ω, TH). Then

||∇vH ||L2(X) ≤ CH−1/2||vH ||L2(∂Ω) .

Let IH(ΛA0g)j be the linear interpolation of (ΛA0g)j on Γj .
Lemma 4.2. The following interpolation error estimate holds:

〈(ΛA0g)j − IH(ΛA0g)j , v
H〉L2(Γj),L2(Γj) ≤ CH3/2||u0||H3(Ω)||vH ||L2(Γj) .

Proof. The proof is given in [31], and it is a consequence of the Bramble-Hilbert
lemma.

Following [31] we can then obtain the following theorem which establishes high
order convergence to zero of the error for the approximate flux in the L2(∂Ω)-norm.

Theorem 4.3. Consider a quasi-uniform family of macroscopic triangulations
{TH}H>0. Assume that the coupling between macro and micro meshes follows H =
O(h/ε). Let the solution u0 of the effective problem be in H3(Ω) and the coefficients
a0ij ∈ W 2,∞(Ω). Then the approximate boundary flux computed by means of (4.7)
satisfies

||ΛA0g − ΛH
A0,hg||L2(∂Ω) =





J∑

j=1

||(ΛA0g)j − (ΛH
A0,hg)j ||2L2(Γj)





1/2

≤ C

(

H3/2 +

(
h

ε

)3/2
)

,

where C is a constant independent on H, h, and ε.
Proof. Subtracting (4.7) from (4.6) we obtain, for j = 1, . . . , J ,

〈(ΛA0g)j − (ΛH
A0,hg)j , v

H〉L2(Γj),L2(Γj) = Bj(u
0, vH)−BH,j(u

H , vH)(4.8)

∀vH ∈ S1
c (Ω, TH) ∩ S1

i (Ω, TH). Next we define the bilinear forms

B0
H,j(v

H , wH) :=
∑

K∈Xj

|K|
∫

K

A0(xK)∇vHK · ∇wH
K dx ,
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and

B̃H(vH , wH) :=
∑

K∈Xj

K

|Kδ|

∫

Kδ

A(xK , x/ε)∇vK · ∇wK dx ,

where vK , wK are the exact solutions to the micro problem (4.5) in the space of
functions W (Kδ). Hence (4.8) can be estimated by

〈(ΛA0g)j − (ΛH
A0,jg)j, v

H〉L2(Γj),L2(Γj) ≤ |Bj(u
0, vH)−B0

H,j(IHu0, vH)|
︸ ︷︷ ︸

I1

+ |B0
H,j(IHu0, vH)− B̃H,j(u

H , vH)|
︸ ︷︷ ︸

I2

+ |B̃H,j(u
H , vH)−BH,j(u

H , vH)|
︸ ︷︷ ︸

I3

,

where IH denotes the linear interpolation operator. From [31] it follows that

I1 ≤ CH2(||u0||H3(Ω) + ||f ||H2(Ω))||∇vH ||L2(Xj) .

On the other hand, it is well known [1, 3] that

I3 ≤ C

(
h

ε

)2

||∇uH ||L2(Ω)||∇vH ||L2(Xj) ,

where C is a constant which is independent of δ and xK . The term I2 captures the
modelling error, which vanishes under the assumption that the locally periodic tensor
admits explicit separation between slow and fast variables, and it is collocated at the
slow variable. Hence from Lemma 4.1 we get that

〈(ΛA0g)j − (ΛH
A0,hg)j , v

H〉L2(Γj),L2(Γj) ≤ C

(

H3/2 +

(
h

ε

)2

H−1/2

)

||vH ||L2(∂Ω) .

Then we choose

vH =

{

IH(ΛA0g)j − (ΛH
A0,hg)j on Γj ,

0 on ∂Ω\Γj ,

where IH is the linear interpolation operator that appears in Lemma 4.2. Hence,
from the triangle inequality we obtain

||(ΛA0g)j − (ΛH
A0,hg)j ||L2(Γj) ≤ C

(

H3/2 +

(
h

ε

)2

H−1/2

)

,

for j = 1 . . . , J . Now, for H = O(h/ε) we can finally conclude that

||(ΛA0g)j − (ΛH
A0,hg)j ||L2(Γj) ≤ C

(

H3/2 +

(
h

ε

)3/2
)

,(4.9)

for each j = 1, . . . , J , and the desired assertion immediately follows.
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Remark. Let us note that for a given accuracy, the computational cost for solving
the micro problems is independent of ε, since the size of the micro domain δ ≥ ε is
proportional to ε. Let Nmac and Nmic be the degrees of freedom in one direction for
the macro domain and the micro domain respectively. Then (4.9) can be rewritten as

||(ΛA0g)j − (ΛH
A0,hg)j ||L2(Γj) ≤ C

(

N−3/2
mac +N

−3/2
mic

)

,(4.10)

for each j = 1, . . . , J . Hence, by choosing Nmac = Nmic = N for optimal convergence,
the total complexity is O(N2d) for an accuracy of O(N−3/2). Finally we emphasize
that the micro problems are independent one from another and can be solved in
parallel. Hence the complexity of the method can be further reduced.
We perform some numerical experiments to test the convergence of the method and

to observe how the micro error affects the approximate flux. We consider the elliptic
problem

−∇ · (Aε∇uε) = 0 in Ω ,

uε = g on ∂Ω .

The domain Ω is defined as

Ω = {x = (x1, x2) : 0 < x1, x2 < 1} ,

while

g = sin(π(x1 + x2)) .

We perform two numerical tests for two different choices of Aε. In the first experiment
we consider

a11(x, x/ε) = (16(x21 − x1)(x
2
2 − x2) + 1)(cos2

(

2π
x1
ε

)

+ 1) ,

a22(x, x/ε) = (16(x21 − x1)(x
2
2 − x2) + 1)(sin

(

2π
x2
ε

)

+ 2) ,

a12(x, x/ε) = a21(x, x/ε) = 0 .

We compute the approximate flux on the boundary nodes by means of the FE-HMM.
We solve the problem for different choices of H and h/ε. To compute the error we use
as reference solution the one obtained with H = h/ε = 1/64. The size of the micro
domain is such that δ = ε. Numerical results are shown in Table 1 and Figure 2.

H = 1/4 H = 1/8 H = 1/16 H = 1/32 H = 1/64
h/ε = 1/4 2.304 0.8864 0.5373 0.4643 0.4485
h/ε = 1/8 1.9243 0.5417 0.1601 0.0658 0.0469
h/ε = 1/16 1.8896 0.5140 0.1328 0.0331 0.0093
h/ε = 1/32 1.8827 0.5087 0.1280 0.0281 0.0019
h/ε = 1/64 1.8810 0.5074 0.1269 0.0270

Table 1: First experiment, error ||ΛA0g−ΛH
A0,hg||L2(∂Ω) for different choices of H and

h/ε (δ = ε).
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Figure 2: First experiment, convergence of the error ||ΛA0g − ΛH
A0,hg||L2(∂Ω) (δ = ε).

In the second experiment we consider the tensor

a11(x, x/ε) =

(√(

x21 + sin
(

2π
x1
ε

)

+ 1.2
)(

x1x2 + sin
(

4π
x1
ε

)

+ 1.5
))−1

,

a22(x, x/ε) =
((

x1x2 + sin
(

5π
x2
ε

)

+ 1.2
)(

x22 cos
(

2π
x2
ε

)

+ x1 + 1.5
))−1

,

a12(x, x/ε) = a21(x, x/ε) = 0 .

As shown in Table 1, 2 and Figure 2, 3, the error converges quadratically as we
decrease both H and h/ε. In particular for the problems considered the global error
seems to depend more on the macro mesh. For the micro error we can observe
quadratic convergence only for smaller values of H , while for bigger values the micro
error convergence saturates due to the dominant macro error. Finally let us mention
that the quadratic convergence has been observed also in [12] for the FEM formulation
of the method, suggesting that the error estimate obtained in [31] may not be sharp.

H = 1/4 H = 1/8 H = 1/16 H = 1/32 H = 1/64
h/ε = 1/4 0.4317 0.1508 0.0910 0.0845 0.0841
h/ε = 1/8 0.3975 0.1175 0.0400 0.0243 0.0222
h/ε = 1/16 0.3879 0.1107 0.0316 0.0117 0.0080
h/ε = 1/32 0.3843 0.1085 0.0294 0.0079 0.0016
h/ε = 1/64 0.3834 0.1079 0.0290 0.0076

Table 2: Second experiment, error ||ΛA0g − ΛH
A0,hg||L2(∂Ω) for different choices of H

and h/ε (δ = ε).

4.3. Solving the discrete inverse problem. We consider the discrete in-
verse problem regularized by means of the Tikhonov method introduced in Sec-
tion 3. To solve the inverse problem numerically we discretize the domain by using
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Figure 3: Second experiment, convergence of the error ||ΛA0g−ΛH
A0,hg||L2(∂Ω) (δ = ε).

simplicial elements, and we approximate both the macro and micro finite element
spaces with linear piecewise polynomials. Let us consider a locally periodic tensor
Aε(x) = A(σ∗(x), x/ε). Input parameters to solve the problem are the set of bound-
ary fluxes

(4.11) ΛA(σ∗,x/ε)gl , l = 1, . . . , L ,

the range for the unknown [σ−, σ+], and the matrix function (t, y) 7→ A(t, y), t ∈
[σ−, σ+], y = x/ε ∈ (0, 1)d. Next we define the discrete admissible set for the solution

UH = {σH ∈ S1(Ω, TH) : σ− ≤ σH ≤ σ+} .

The discrete minimization problem reads: find σε,H ∈ UH such that

Ψε
H,h(σ

ε,H) = inf
σH∈UH

Ψε
H,h(σ

H)(4.12)

where

Ψε
H,h(σ

H) =
L∑

l=1

||ΛA(σ∗,x/ε)gl − ΛH
A0,h(σH )gl||2L2(∂Ω) + γ||σH − σ0||2H1(Ω)

= Φε
H,h(σ

H) + γ||σH − σ0||2H1(Ω) .

The minimization problem is solved by means of the interior point algorithm (for
example see [10] for details). For each new admissible guess σH ∈ UH and for each
l = 1 , . . . , L we compute the approximate boundary flux by solving for each Γj ,
j = 1, . . . , J , ∂Ω = ∪J

j=1Γj , the linear system

−
∫

Γj

(ΛH
A0,h(σH )gl)j · vH ds = BH,j(u

H , vH) ∀vH ∈ S1
c (Ω, TH) ∩ S1

i (Ω, TH) ,
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with

BH,j(v
H , wH) =

∑

K∈Xj

|K|
|Kδ|

∫

Kδ

A(σH(xK), x/ε)∇vhK · wh
K dx .

When Ψε
H,h does not decrease any more, or the gradient of the objective function

decreases under a certain tolerance that we choose a priori, the minimization process
stops. The set UH is finite dimensional and uniformly bounded. Thus the existence
of a minimizer σε,H ∈ UH to the discrete optimization problem (4.12) is ensured for
any H > 0 by compactness and norm equivalence of finite dimensional spaces. One
question we would like to answer to, is whether the sequence {σε,H}H>0 of discrete
solutions converges to a minimizer σε of the continuous problem as we refine the mesh.
To this end we first state a discrete analogue of Lemma 3.1.

Lemma 4.4. Suppose the assumptions of Theorem 4.3 hold, and let the sequence
{σH}H>0 ∈ UH ⊂ U converges in Lr(Ω), r ≥ 1, to some σ ∈ U as H tends to zero.
The the sequence of approximations {ΛH

A0,h(σH )g}H>0 converges to ΛA0(σ)g in L2(∂Ω)

as H,h tend to zero.
Proof. The desired assertion easily follows from Lemma 3.1 and the estimate

(4.9).
Now, thanks to Lemma 4.4 we can state the convergence of the discrete approxi-

mate solutions {σε,H}H>0. Let σε be a solution of the regularized inverse problem in
the infinite dimension, so that

Ψε(σε) = inf
σ∈U

Ψε(σ) ,(4.13)

where

Ψε(σ) =

L∑

l=1

||ΛA(σ∗,x/ε)gl − ΛA0(σ)gl||2L2(∂Ω) + γ||σ − σ0||2H1(Ω)

= Φε(σ) + γ||σ − σ0||2H1(Ω) .

Theorem 4.5. Suppose the assumptions of Theorem 4.3 hold, and consider the
sequence of minimization problems of type (4.12) for H,h → 0. The sequence of
minimizers {σε,H}H>0 contains a subsequence that converges weakly in H1(Ω) to a
minimizer σε of problem (4.13) as H,h→ 0.

Proof. Our proof is inspired from [21]. Here we briefly sketch the main steps to
obtain the desired result. Let IH := U → UH be the linear interpolation operator.
We start by noting that the minimizing properties of {σε,H}H>0 imply that for each
H,h > 0, Ψε

H,h(σ
ε,H) is bounded by Ψε

H,h(IHσε), which is in turn bounded with

respect to H and h. Then {σε,H}H>0 admits a subsequence {σε,H′}H′>0 which
weakly converges to some σε in H1(Ω). Then from Lemma 4.4 and weak lower semi-
continuity of the H1(Ω)-norm we get that

Ψε(σε) ≤ lim inf
H,h→0

Ψε
H,h(σ

ε,H) .

It remains now to show that σε is indeed the minimizer of problem (4.13). Since
C∞(Ω) is dense in H1(Ω), we have that for any σ ∈ U , there exists a sequence
{σn}n>0 ∈ C∞(Ω) ∩ U such that

lim
n→∞

||σn − σ||H1(Ω) = 0 .(4.14)
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The minimizing properties of {σε,H}H>0 imply that

Ψε
H,h(σ

ε,H) ≤ Ψε
H,h(IHσn) ∀n > 0 .

Letting H,h/ε→ 0, we obtain from the approximation properties of IH , Lemma 4.4,
and (4.3), that

Ψε(σε) ≤ Ψε(σn) ∀n > 0 .

Since σ is arbitrary, by letting n→ ∞, we deduce from (4.14) and Lemma 3.1 that

Ψε(σε) ≤ Ψε(σ) ∀σ ∈ U ,

and the desired assertion follows.

4.4. Model order reduction. The FE-HMM, as it is defined, can result in be-
ing computationally expensive, since it requires the computation of a cell problem for
each macro element and each macro quadrature point, whose number increases as we
refine the macro mesh for an appropriate approximation of the homogenized solution.
This is particularly undesirable when solving inverse problems, since typically one
needs multiple evaluations of the cost functional for different guesses of the parameter
of interest. Here we explain how reduced basis methodology can be combined with
FE-HMM to design a new efficient method which drastically reduces the computa-
tional effort, by avoiding the repeated solutions of a large number of cell problems.
For a detailed description and analysis of the method, called the Reduced Basis Fi-
nite Element Heterogeneous Multiscale Method (RB-FE-HMM), we mention [4]. The
main idea is the following: instead of computing the micro solutions in each macro
element at the given macro quadrature points, during what is called the offline stage
we select a small number of carefully precomputed micro solutions to construct a
small subspace of micro functions. Then in the online stage each micro solution is
obtained as linear combination of the precomputed micro functions. The construc-
tion of the subspace is performed using a greedy procedure, and therefore a cheap
way to compute residuals, in order to have efficiency of the a posteriori error control,
is crucial. Assume Aε(x) = A(σ(x), x/ε) being locally periodic and admitting scale
separation between slow and fast variables. We start with the following reformulation
of the FE-HMM, which makes a link between the micro problems and the effective
tensor:

1

|Kδ|

∫

Kδ

A(σ(xK ), x/ε)∇vhK · ∇wh
K dx = A0,h(σ(xK))∇vH(xK) · ∇wH(xK) .(4.15)

We map the domain Kδ into the reference domain Y = (0, 1)d through x = GxK (y) =
xK + δ(y − 1/2) . Then we obtain

BH(vH , wH) :=
∑

K∈TH

|K|A0,h(σ(xK))∇vH(xK) · ∇wH(xK) ,(4.16)

where

(A0,h(σ(xK )))ik =

∫

Y

AxK (∇χi,h
K + ei) · (∇χk,h

K + ek)dy ,(4.17)
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where AxK = A(σ(xK), GxK (y)). Finally χi,h
K (respectively χk,h

K ) is the solution of
the micro problem

(4.18)

b(χi,h
K , zh) : =

∫

Y

AxK∇χi,h
K · ∇zh dy

= −
∫

Y

AxKei · ∇zh dy =: li(z
h) ∀zh ∈ S1(Y, Th) .

In the offline stage we construct a reduced space of N carefully precomputed micro
solutions, which we call SN (Y ). Details on how the procedure is carried on can be
found in [4]. To select the basis functions a greedy algorithm is used. We start by
randomly defining the training set ΞTrain = {(tn, ηn) : 1 ≤ n ≤ NTrain, 1 ≤ ηn ≤ d},
where tn ∈ [σ−, σ+], while ηn corresponds to the unit vector eηn of the canonical basis
of Rd. We compute the first basis function ζh1 and initialize the reduced space SN (Y ).
Then, successively we continue to add new basis functions to SN (Y ) until convergence
of the a posteriori error is detected. A crucial assumption to efficiently evaluate the
a posteriori error is that, for a given tn ∈ [σ−, σ+], the tensor A(tn, y) is available in
the affine form

A(tn, y) =

M∑

m=1

Θm(tn)Am(y) , ∀y ∈ Y .(4.19)

However in the case A(tn, y) is not directly available in the form (4.19), a greedy
algorithm, called the empirical interpolation method (EIM), can be applied to obtain
an affine approximation of A(tn, y) [22]. The output of the offline stage is the reduced
space

SN (Y ) = span{ζh1 , . . . , ζhN} .

Then we define a macro method similar to FE-HMM, with micro functions computed
on the reduced space. The method reads: find uH,RB ∈ S1(Ω, TH), uH,RB = g on ∂Ω,
such that

BH,RB(u
H,RB, vH) =

∫

Ω

fvH dx ∀vH ∈ S1
0(Ω, TH) ,

where

BH,RB(v
H , wH) :=

∑

K∈TH

|K|A0,N (xK)∇vH(xK) · wH(xK) ,(4.20)

where

(A0,N (xK))ik =

∫

Y

AxK (∇χi,N
K + ei) · (∇χk,N

K + ek)dy ,

where χi,N
K is the solution of (4.18) in the reduced basis space. Thanks to the affine

representation of the tensor Aε, solving the micro problems in the reduced space
consists with solving an N ×N linear system, which leads to a great saving of com-
putational effort. Then we will denote the normal flux at the boundary obtained by
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means of RB-FE-HMM as ΛH
A0,N g, where N stands for the dimension of the reduced

space of micro functions.
Remark. Convergence results established in Section 4.3 still holds. In the conver-

gence analysis we need to take into account the error due to the model order reduction.
This error is based on the distance between the reduced space SN(Y ) and S1(Y, Th).
Such distance can be quantified by means of the notion KolmogorovN -width (see [4]).

5. Numerical experiments. In this section we present numerical experiments
that illustrate the behaviour of the proposed numerical method for solving inverse
problems.We first explain how we define the Dirichlet conditions {gl}Ll=1 and how we
collect multiscale observations. Then we solve the inverse problem for two different
types of macroscopic parametrizations: an affine parametrization which controls the
amplitude of the micro oscillations characterizingAε, and a non-affine parametrization
controlling their orientation. In particular for the first parametrization, we perform
different numerical tests to observe the sensitivity of the results with respect to the
several parameters involved (γ, ε, H , L) and assess our theoretical findings. For
the second parametrization we fix the values of such parameters and we report the
solution obtained by means of the proposed algorithm for solving multiscale inverse
problems. To conclude we remark that the forward homogenized problem is computed
by means of RB-FE-HMM, and the offline stage is performed for the following choice
of the parameters: h/ε = 1/64, δ = ε, tolRB = 10−11, where tolRB is the prescribed
tolerance used as stopping criterion for the greedy process we use to select the micro
basis function.

5.1. Set-up. The set up of the numerical experiments is as follows. The domain
Ω is defined as

Ω = {x = (x1, x2) : 0 < x1, x2 < 1} .

We compute then the multiscale fluxes Λhobs

Aε gl for different Dirichlet conditions {gl}Ll=1

by means of FEMs, using a mesh size hobs << ε. In particular we take {gl}Ll=1 =
{
√
λlϕl}Ll=1, where {(λl, ϕl)}Ll=1 are the L eigenpairs corresponding to the largest

L eigenvalues of the one dimensional discrete Laplacian operator. Each gl is then
interpolated on the boundary ∂Ω to define the respective Dirichlet condition. This
procedure ensures that the functions {gl}Ll=1 are smooth and orthonormal, so that
each contribution is independent from the others. Moreover ||∇gl||L2(∂Ω) < C where
C is a constant independent of L. In Figure 4 the first five gl functions are shown.

5.2. 2D affine parametrization. For the first parametrization we consider a
tensor Aε given by

a11(σ
∗(x), x/ε) = σ∗(x)

(

cos2
(

2π
x1
ε

)

+ 1
)

+ cos2
(

2π
x2
ε

)

,

a22(σ
∗(x), x/ε) = σ∗(x)

(

sin
(

2π
x2
ε

)

+ 2
)

+ cos2
(

2π
x1
ε

)

,

a12(σ
∗(x), x/ε) = a21(σ

∗(x), x/ε) = 0 ,

where

σ∗(x) = 16(x21 − x1)(x
2
2 − x2) + 1 .

For this first set of numerical experiments σ∗ is a simple smooth parabola, and its
profile together with the one of Aε(x) is shown in Figure 5.
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Figure 4: First five Dirichlet conditions used for the numerical experiments.

(a) σ∗(x). (b) aε
11(x). (c) aε

22(x).

Figure 5: The true field σ∗ and the two components aε11 and aε22 of the multiscale
tensor (ε = 1/8).

Sensitivity with respect to γ. We start by observing how the solution to the
problem

Ψε
H,N (σε,H) = inf

σH∈UH
Ψε

H,N (σH)

= inf
σH∈UH

L∑

l=1

||Λhobs

A(σ∗,x/ε)gl − IhobsΛH
A0,N (σH)gl||2L2(∂Ω) + γ||σH − σ0||2H1(Ω) ,

behaves as we vary the regularization parameter γ, where IhobsΛH
A0,N (σH )gl is the lin-

ear extension of ΛH
A0,N (σH )gl on S1(∂Ω, Thobs

). We set σ0 = 1, while σ− and σ+ are

chosen to be equal to 0.5 and 2.5 respectively. We fix ε = 1/64, H = 1/16, L = 20,
and we solve the problem for different values of γ. The optimization problem is solved
by means of the interior point method, with initial guess equal to σ0. The relative
error we obtain is shown in Figure 6 for different norms and different values of γ. As
can been observed, the approximated solutions we obtain, have different properties
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which vary with the regularization parameter γ. The larger γ, the more regularized
is the inverse problem. Thus, if γ is too large the solution is too regularized, and it
can be far from the true scalar field we want to retrieve. On the other hand when γ
becomes too small, the problem becomes more unstable, and much more oscillations
are allowed in the reconstructed scalar field. For our problem we observe that the
L2-error is minimum when γ ∈ [2.5× 10−4, 5× 10−4].

γ
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||σ∗
− σ

ε,H ||L2(Ω)/||σ
∗||L2(Ω)

||σ∗
− σ

ε,H ||H1(Ω)/||σ
∗||H1(Ω)

Figure 6: Error behaviour with respect to the regularization parameter γ.

Convergence with respect to ε. In this other numerical test we set γ = 5 × 10−4,
and we verify the statement of Theorem 3.4. Moreover we check the convergence
of the approximated solution towards σ0,H , which is the approximated solution of
the discrete version of problem (3.4). Others parameters such as H and L are the
same as in the previous numerical test. From Figure 7 we can see that the error
|Ψ0

H,N (σ0,H) − Ψ0
H,N(σε,H)| converges to zero as ε → 0, as expected from Theo-

rem 3.4. Relative errors between σ0,H and σε,H are also shown in Figure 7 for both
L2 and H1 norms. We can observe convergence of σε,H to σ0,H as ε→ 0, in agreement
with Theorem 3.4. For relatively large values of ε, namely ε > H , the error we obtain
is relatively large and no convergence is observed. This is due to the fact that, since
ε > H , the approximate homogenized flux, which approximates at best the multiscale
flux, is capable of capturing its typical oscillations. Hence, such oscillations will affect
the retrieved solution as well.

Convergence with respect to H. To verify convergence with respect to discretiza-
tion, we fix γ = 5 × 10−4, ε = 1/64, L = 20, and use the discrete minimizer σε,H

obtained on the finest discretization as reference solution. In Figure 8 we show the
numerical errors obtained, and the picture agrees with what stated in Theorem 4.5.

Sensitivity with respect to L. Finally we let vary the number L of different Dirich-
let conditions used to define the inverse problem, and check if a larger value of L
leads to a better approximated solution. For this experiment γ = 5× 10−4, ε = 1/64,
H = 1/16, while we let vary L between 1 and 20. We can observe in Figure 9 that
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Figure 7: Error convergence as ε→ 0.
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Figure 8: Error convergence as H → 0.

the relative error between the exact function σ∗ and our approximation decreases
as L becomes larger. However it is also important to mention that as L increases,
we should decrease H since the functions gl becomes more and more oscillating as
L → ∞, and therefore we need a small mesh size to approximate them well. This
could be also the reason why the H1-error increases for the last larger values of L.

Finally in Figure 10 we show the conductivity tensor we retrieve with ε = 1/64,
γ = 5 × 10−4, H = 1/16, L = 20. It is important to remark that the results showed
in Figure 5 are obtained for ε = 1/64 (hence we obtain σε,H , ε = 1/64). However,
in order to well visualize the results and compare the profile of the multiscale tensor
with the one shown in Figure 5, we plot A(σε,H , x/ε′), where ε′ = 1/8. We can see a
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Figure 9: Error behaviour with respect of the number of Dirichlet conditions L.

good agreement between our solution and the true tensor shown in Figure 10.

(a) σε,H(x). (b) a11(σ
ε,H(x), x/ε′). (c) a22(σ

ε,H(x), x/ε′).

Figure 10: The approximated solution σε,H and the two components a11(σ
ε,H , x/ε′)

and a22(σ
ε,H , x/ε′) of the multiscale tensor (H = 1/16, ε = 1/64, ε′ = 1/8).

5.3. 2D non-affine parametrization. For the second experiment we consider
a non-affine parametrization of the multiscale tensor. In this case the function σ∗

controls the orientation of the oscillations of the full tensor Aε, which is defined as
follows,

a11(σ
∗(x), x/ε) = 4

(

sin

(
2πe1

⊤Qx

ε

)

+ 1.5

)

,

a22(σ
∗(x), x/ε) = 4

(

cos

(
2πe1

⊤Qx

ε

)

+ 1.5

)

,

a12(σ
∗(x), x/ε) = a21(σ

∗(x), x/ε) = 0 ,
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where Q = Q(σ∗(x)) is a rotation matrix depending on σ∗ and is defined as

Q =

(
cos (2πσ∗(x)) sin (2πσ∗(x))
− sin (2πσ∗(x)) cos (2πσ∗(x))

)

,

and

σ∗(x) = 1.05 + 0.15x1 .

Let us remark that for this parametrization the assumption (2.14) in Theorem 2.8 does
not hold. However Theorem 3.4 and Theorem 4.5 are still valid. The exact function
σ∗, and the components aε11, a

ε
22 are shown in Figure 11, for ε = 1/8. For solving the

(a) σ∗(x). (b) aε
11(x). (c) aε

22(x).

Figure 11: The true field σ∗ and the two components aε11 and aε22 of the multiscale
tensor for the non-affine parametrization (ε = 1/8).

problem we set ε = 1/64, H = 1/16, L = 8, σ− = 1, σ+ = 1.25, σ0 = 1.05. For this
experiment we slightly modify the regularization term. The exact field we want to
retrieve changes only with respect to the variable x1. Then we assume to know this
qualitative property of the unknown and we define the regularization term such that
variations with respect to the x2 direction are more penalized than variations with
respect the x1 direction. Observe that

||σ − σ0||2H1(Ω) = ||σ − σ0||2L2(Ω) + ||∂x1
(σ − σ0)||2L2(Ω) + ||∂x2

(σ − σ0)||2L2(Ω) ,(5.1)

then instead of multiplying the three addends in the right hand side of (5.1) by the
same parameter γ, we use different weights for each of the three addends. The new
penalty term is then defined as

γ1||σ − σ0||2L2(Ω) + γ2||∂x1
(σ − σ0)||2L2(Ω) + γ3||∂x2

(σ − σ0)||2L2(Ω) ,

and for the experiment we are considering we adopt γ1 = 0.1, γ2 = 0.1, γ3 = 4. Let us
remark that all the theoretical conclusions are still valid under this regularization term,
since it represents an equivalent norm to the H1(Ω)-norm. As the parametrization
is non-affine, in the offline stage we apply the Empirical Interpolation Method (EIM)
to obtain an affine approximation of the tensor, using tolEIM = 10−14, where tolEIM

is a prescribed tolerance used as stopping criterion for the a posteriori error control
in the EIM algorithm. In Figure 12 we show convergence of the residuals in the EIM
approximation, and for the reduced basis approximation. In total we get 24 affine
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terms for aε11, and 25 affine terms for aε22, while the reduced space is spanned by
N = 58 precomputed micro solutions. Therefore for each new value of the unknown,
approximating the new homogenized tensor at a macro quadrature point reduces in
solving a 58×58 linear system instead of a 4096×4096 linear system, leading to a great
saving of computational time. In Figure 13 we show then the approximated solution
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Figure 12: Residuals for the a posteriori error control in the offline stage.

we get by our proposed method. Again we remark that we show the conductivity
tensor we retrieve when ε = 1/64 (hence we obtain σε,H , ε = 1/64). However, in
order to well visualize the results and compare the profile of the multiscale tensor
with the one shown in Figure 11, we plot A(σε,H , x/ε′), where ε′ = 1/8. We can
notice that the orientation of the micro oscillations is well captured for most part of
the computational domain.

(a) σε,H(x). (b) a11(σ
ε,H(x), x/ε′). (c) a22(σ

ε,H(x), x/ε′).

Figure 13: The approximated solution σε,H and the two components a11(σ
ε,H , x/ε′)

and a22(σ
ε,H , x/ε′) of the multiscale tensor for the non-affine parametrization (H =

1/16, ε = 1/64, ε′ = 1/8).
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Appendix. Proof of Theorem 2.8. We start by showing (2.6). Let us observe
that the homogenized coefficients can be rewritten in the form

a0ij(t) =
1

|Y |

∫

Y

A(t, y)(ej −∇yχj(t, y)) · (ei −∇yχi(t, y))dy .(5.2)

Differentiating (5.2) with respect to the variable t we obtain after a straightforward
calculation

∂ta
0
ij(t) =

1

|Y |

∫

Y

(∂tA(t, y))(ej −∇yχj(t, y)) · (ei −∇yχi(t, y))dy .(5.3)

Then from Holder’s inequality we get

ess sup
t∈[σ−,σ+]

|∂ta0ij(t)|

≤ ess sup
t∈[σ−,σ+]

||∂tA(t, ·)||L∞(Y )||ej −∇yχj(t, ·)||L2(Y )||ei −∇yχi(t, ·))||L2(Y ) ,

and by using Lax-Milgram theorem, triangle inequality and (2.11) we obtain

ess sup
t∈[σ−,σ+]

|∂ta0ij(t)|

≤ ess sup
t∈[σ−,σ+]

||∂tA(t, ·)||L∞(Y )(1 + α−1||A(t, ·) · ej||L∞(Y ))(1 + α−1||A(t, ·) · ei||L∞(Y ))

≤ E1(1 + α−1E1)
2 = C1 .

Now, let t, s ∈ [σ−, σ+]. From (5.3) and Hölder’s inequality we have

|∂ta0ij(t)− ∂ta
0
ij(s)|

≤ ||∂tA(t, ·)− ∂tA(s, ·)||L∞(Y )||ej −∇yχj(t, ·)||L2(Y )||ei −∇yχi(t, ·)||L2(Y )

+ ||∂tA(s, ·)||L∞(Y )||∇y(χj(t, ·)− χj(s, ·))||L2(Y )||ei −∇yχi(t, ·)||L2(Y )

+ ||∂tA(s, ·)||L∞(Y )||ej − χj(s, ·)||L2(Y )||∇y(χi(t, ·)− χi(s, ·))||L2(Y ) .

Now, from the weak definition of the solution of the micro problems, we derive for
each i = 1, . . . , d, s, t ∈ [σ−, σ+], ∀v ∈ W 1

per(Y )
∫

Y

A(t, y)∇y(χi(t, y)− χi(s, y)) · ∇yv dy =

∫

Y

(A(t, y)−A(s, y))ei · ∇yv dy

+

∫

Y

(A(s, y)−A(t, y))∇yχi(s, y) · ∇yv dy .

By choosing v = χi(t, y)− χi(s, y) , using Hölder’s inequality and (2.11) we obtain

||∇y(χi(t, ·)− χi(s, ·))||L2(Y ) ≤ α−1||∂tA||L∞([σ−,σ+];L∞(Y ))(1 + α−1||A(s, ·)ei||L∞(Y ))|t− s|
≤ α−1E1(1 + α−1E1)|t− s|
= C2|t− s| .

Using this latter result and the previous inequality gives

|∂ta0ij(t)− ∂ta
0
ij(s)| ≤ (C1 + 2E1(1 + α−1E1)C2)|t− s|

= C1(1 + 2α−1E1)|t− s| = C3|t− s| ,
30



and (2.6) follows.
The condition of uniform ellipticity, namely

α|ξ|2 ≤ A0(t)ξ · ξ , |A0(t)ξ| ≤ β|ξ| , for a.e. t ∈ [σ−, σ+] , ξ ∈ Rd ,

follows from a well known property of the homogenized tensor (see for example The-
orem 6.1 in [13]).
Finally we show that the condition of monotonicity with respect to the variable t
holds. From (5.3), by using the notation ϕi = (ei−∇yχi(t, y)), i = 1 , . . . , d, we have
that

∂ta
0
ij(t) =

1

|Y |

∫

Y

∂tA(t, y)ϕj · ϕi dy .

Since ∂tA(t, y) is symmetric ∂tA
0(t) is also symmetric. Then, given ξ ∈ Rd,

∂tA
0(t)ξ · ξ = ξT∂tA

0(t)ξ

=
1

|Y |

∫

Y

d∑

j=1

d∑

i=1

ξiϕ
T
i ∂tA(t, y)ξjϕj dy

=
1

|Y |

∫

Y

(
d∑

i=1

ξiϕi

)T

∂tA(t, y)

(
d∑

i=1

ξiϕi

)

dy

≥ E−1
1

∫

Y

∣
∣
∣
∣
∣

d∑

i=1

ξiϕi

∣
∣
∣
∣
∣

2

dy ≥ 0 , for any ξ ∈ Rd .

In particular this inequality implies that

∂tA
0(t)ξ · ξ > 0 , for any ξ ∈ Rd , ξ 6= 0 ,(5.4)

as can be shown using a simple argument by contradiction. Indeed, if this was not
true, one would have some ξ 6= 0 such that

∣
∣
∣
∣
∣

d∑

i=1

ξiϕi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

d∑

i=1

ξi(ei −∇yχi)

∣
∣
∣
∣
∣
= 0 .

This means that

d∑

i=1

ξi(yi − χi) = constant ,

and then

d∑

i=1

ξiyi =
d∑

i=1

ξiχi + constant ,

which is impossible since the right hand side is periodic by definition and ξ 6= 0.
From (5.4) we easily derive (2.8) and the proof is complete.
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Before proving Lemma 3.1 let us recall Meyer’s theorem on regularity of ellip-
tic problems before proving a technical lemma on the continuity of the Dirichlet to
Neumann map with respect to parameter, used in Section 3.

Theorem 5.1. (N. G. Meyers, 1963, [20,28]). Let Ω ∈ Rd be a bounded open set,
with a Lipschitz continuous boundary. Let A ∈ M(α, β,Ω). There exists a constant
q1 > 2, depending on d, Ω, α and β only, such that if u is the unique weak solution of

−∇ · (A∇u) = f in Ω ,

u = g on ∂Ω ,

and f ∈ W−1,q′(Ω), g ∈ W 1/q,q(∂Ω), 1/q′ + 1/q = 1, q ∈ [2, q1), then u ∈ W 1,q(Ω)
and there exists a constant C1, depending on d, Ω, α, β and q only, such that

||u||W 1,q(Ω) ≤ C1(||Rg ||W 1,q(Ω) + ||f ||W−1,q′ (Ω)) ,

where Rg denotes the extension of g onto W 1,q(Ω).

Proof of Lemma 3.1. It follows from the weak formulation of u0(σn) and u0(σ)
that, for all v ∈ H1

0 (Ω), we have

∫

Ω

(A0(σ)∇u0(σ)−A0(σn)∇u0(σn)) · ∇v dx = 0 .

Then
∫

Ω

A0(σn)(∇u0(σ) −∇u0(σn)) · ∇v dx =

∫

Ω

(A0(σn)−A0(σ))∇u0(σ) · ∇v dx .

By choosing v = u0(σ)− u0(σn) ∈ H1
0 (Ω), and using Holder’s inequality we obtain,

(5.5)

||∇u0(σ) −∇u0(σn)||L2(Ω) ≤ α−1C1||A0(σ)−A0(σn)||Lp(Ω)||Rg||W 1,q(Ω)

≤ α−1C1E1||σ − σn||Lp(Ω)||Rg||W 1,q(Ω)

≤ C2||σ − σn||Lp(Ω) ,

where q ∈ [2, q1) and C1 come from Theorem 5.1, and p satisfies 1/p+1/q = 1/2. We
then set w = A0(σ)∇u0(σ) −A0(σn)∇u0(σn) and we obtain

∫

Ω

|w|2 dx =

∫

Ω

A0(σn)(∇u0(σ)−∇u0(σn)) · w dx

+

∫

Ω

(A0(σ) −A0(σn))∇u0(σ) · w dx

≤||A0(σn)||L∞(Ω)||∇u0(σ)−∇u0(σn)||L2(Ω)||w||L2(Ω)

+ ||A0(σ) −A0(σn)||Lp(Ω)||∇u0(σ)||Lq(Ω)||w||L2(Ω) ,

and hence, by using (5.5) we get

(5.6)
||A0(σ)∇u0(σ) −A0(σn)∇u0(σn)||L2(Ω) ≤ (E1 + α)C2||σ − σn||Lp(Ω)

≤ C4||σ − σn||Lp(Ω) .
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where the exponent q ∈ [2, Q1) comes from Theorem 5.1, and p satisfies 1/p +
1/q = 1/2. Observing that w ∈ H(Ω, div) and using the continuity of the map
w ∈ H(Ω, div) 7→ w · ν ∈ H−1/2(∂Ω), we can finally conclude

||ΛA0(σ)g − ΛA0(σn)g||H−1/2(∂Ω) ≤ C3C4||σ − σn||Lp(Ω) .

The desired assertion follows immediately if r ≥ p. Otherwise, if r < p, we can exploit
the L∞(Ω) bound of the set U , i.e., for any σ ∈ U we have

∫

Ω

|σ|p dx ≤ (σ+)r−p

∫

Ω

|σ|r dx .

Assume u0 ∈ H2(Ω). Then due to the regularity assumptions on A0(t), the admissible
set U , and u0, we have that the sequence {A0(σn)∇u0(σn)}n>0 is uniformly bounded
in (H1(Ω))d. Then there exists a subsequence {A0(σn′)∇u0(σn′)}n′>0 such that

A0(σn′)∇u0(σn′)⇀ ξ weakly in (H1(Ω))d ,

for some ξ ∈ (H1(Ω))d, hence

A0(σn′ )∇u0(σn′) → ξ strongly in (L2(Ω))d .

But from (5.6) all subsequence {A0(σn′)∇u0(σn′)}n′>0 must converge to the same
limit, hence

A0(σn)∇u0(σn)⇀ A0(σ)∇u0(σ) weakly in (H1(Ω))d ,

hence

A0(σn)∇u0(σn) · ν ⇀ A0(σ)∇u0(σ) · ν weakly in H1/2(∂Ω) ,

or

ΛA0(σn)g ⇀ ΛA0(σ)g weakly in H1/2(∂Ω) .

Finally the compact injection H1/2(∂Ω) ⊂ L2(∂Ω) yields

A0(σn)∇u0(σn) · ν → A0(σ)∇u0(σ) · ν strongly in L2(∂Ω) ,

or

ΛA0(σn)g → ΛA0(σ)g strongly in L2(∂Ω) .
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