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“You can be the strongest man in the world, and you're still

going to go through problems. And that's the one thing with me.

| don't ever want my medals to define who | am. What I'm doing now to have
a chance to save a life which is way bigger than ever winning a gold medal.”

— Michael Phelps
The most decorated Olympian of all time
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Abstract

Numerical simulation of Pelton turbine hydrodynamics is helpful to identify the energy loss
mechanisms in the runner and minimize their effect. However, it is a challenging task that
involves handling the unsteady free surface flow and moving boundaries requiring dynamic
mesh approach, as well as run-time local grid refinements at the interphase. Unlike the
mesh-based methods, the Lagrangian particle-based methods are robust in handling free
surface problems with moving boundaries such as Pelton turbine flow.

Within the framework of the present research, the 3-D Finite Volume Particle Method
(FVPM) has been developed and accelerated on Graphics Processing Unit (GPU). FVPM is
locally conservative and consistent, employing an Arbitrary Lagrangian-Eulerian (ALE)
approach for particle motion to achieve a reasonably uniform particle distribution. The
method is based on spherical-support top-hat kernels in which the particle interaction
vectors are computed and used to weigh the conservative flux exchange. To capture the
turbulence, the standard and realizable k-¢ as well as k-@ Shear Stress Transport (SST)
turbulence models have been implemented and integrated into ALE-based FVPM. The wall
function approach has been used for near-wall turbulence computations. The solver is called
GPU-SPHEROS and has been implemented from scratch in the CUDA C++ parallel
computing platform.

All the parallel algorithms and data structures have been designed specifically for the GPU
many-core architecture. The roofline analysis method has been utilized to assess the
performance of the CUDA kernels and define the appropriate optimization strategies. In
particular, the neighbor search algorithm, accounting for almost a third of the overall
computation time, features an efficient Space-Filling Curve (SFC) as well as an optimized
octree construction and traverse procedure. The memory-bound interaction vector
computation, accounting for almost two-thirds of the overall computation time, features
fixed-size memory pre-allocation and an efficient data ordering to reduce memory
transactions and avoid the cost of dynamic memory operations. A speedup by a factor of
almost six times has been achieved for a single NVIDIA® Tesla™ P100 16GB GPU with
GP100 Pascal architecture vs. a dual-setup Broadwell Intel® Xeon® E5-2690 v4 CPU node
with 28 total physical cores.

Once GPU-SPHEROS validated, it is used for jet interference investigation in a six-jet
Pelton turbine as an industrial-size practical application. The numerical simulations have
been performed at eight operating points ranging from N /N, =89% to
N /N, =131%, where N is the runner rotational speed and BEP is the Best Efficiency



Point. It is shown by the numerical results that a significant torque and efficiency drop
occurs at high speed factors due to jet interference, whereas large load fluctuations caused by
jet disturbance can occur at about any N # N, ,. Compared to the available experimental
data provided by Hitachi-Mitsubishi Hydro Corporation, the torque and efficiency trends, as
well as the range of the specific speed in which the jets interfere, are well-predicted, which
provides confidence in the use of the GPU-SPHEROS for the design optimization of Pelton
turbines. All the multi-jet Pelton turbine computations have been performed on Piz Daint, a
GPU-powered supercomputer with 5704 GPU nodes, developed and operated by Swiss
National Supercomputing Centre - CSCS.

Keywords: Pelton turbine, bucket, jet interference, torque, efficiency, GPU-SPHEROS,
parallelization, GPU, CUDA, CUDA kernel, memory access, memory-bound,
compute-bound, coalesced memory, flops, roofline performance model,
performance optimization
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Résumé

La simulation numérique des écoulements dans les turbines Pelton permet d’identifier les
mécanismes responsables des pertes énergétiques dans la roue et de les minimiser.
Cependant, I’écoulement étant caractérisé par une surface libre et des interfaces en
mouvement, sa simulation nécessite l'utilisation d'un maillage dynamique, avec des
raffinements aux interfaces en temps réel. Alternativement, des méthodes particulaires
peuvent étre utilisées pour éviter des difficultés liées au maillage. En raison de leur
formulation lagrangienne ces méthodes sont en effet particulierement robustes pour traiter
les problemes de surface libre avec des interfaces en mouvement tels qu’ils se peuvent se
présenter dans les turbines Pelton.

Dans le cadre de la recherche présentée ici, la méthode des Volumes Finis Particulaires
(FVPM) 3-D a été développée et accélérée sur Graphics Processing Unit (GPU) dans la
plate-forme de calcul parallele CUDA. FVPM est localement conservative et consistante,
utilisant une approche Arbitrairement Lagrangienne ou FEulérienne (ALE) pour le
mouvement des particules afin d'obtenir une distribution de particules raisonnablement
uniforme. La méthode est basée sur l'utilisation de noyaux a support sphérique et des
vecteurs d’interaction sont utilisés pour pondérer de 1'échange les flux entre particules
voisines. Pour saisir les caractéristiques de 1'écoulement moyen, les modeles de turbulence k-&
standard et réalisable ainsi que k-@ SST ont été implémentés et intégrés dans le code, GPU-
SPHEROS.

Tous les algorithmes paralleles et les structures de données ont été congus spécifiquement
pour l'architecture multi-coeur des GPU. Un modele de performance de « roofline » a été
utilisé pour évaluer la performance des noyaux CUDA et définir des stratégies d'optimisation
appropriées. En particulier, 1'algorithme de recherche des voisins, qui représente pres d'un
tiers du temps de calcul total, est basé sur l'utilisation d'une courbe de remplissage de
l'espace (SFC), méthode reconnue pour son rendement, ainsi que d'une procédure de
construction optimisée d’octree. Le calcul des vecteurs d'interaction, limité par la taille de la
mémoire et qui représente pres des deux tiers du temps de calcul total, est doté d'une pré-
allocation de mémoire de taille fixe et d'un ordonnancement des données permettant de
réduire les transactions et le cotit des opérations de mémoire dynamiques. Le temps de calcul
a ainsi été divisé par pres de six sur un seul GPU NVIDIA® Tesla™ P100 de 16 Go avec
architecture GP100 Pascal par rapport a un nceud équipé de deux CPU Broadwell Intel®
Xeon® E5-2690 v4 avec 28 coeurs physiques en tout, sans hyper-threading,.
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Une fois le solveur validé, il a été utilisé pour une application industrielle, a savoir I'étude des
interférences de jets dans une turbine Pelton multi-jets. Les simulations numériques ont été
effecctuées  pour huit points de fonctionnement allant de N /N, =89% a
N /N, =131%, o N est la vitesse de rotation de la roue en min" et BEP est le point
de meilleure rendement. Les résultats numériques montrent que le couple et le rendement
baissent drastiquement a haute vitesse de rotation, en raison de l'interférence des jets, alors

que la perturbation des jets, a toute vitesse différente de N donne lieu a une grande

fluctuation de la charge. Comparées aux mesures expérimeﬁi;les effectuées par Hitachi-
Mitsubishi Hydro Corporation, les tendances observées pour le couple et le rendement, ainsi
que la plage de vitesses dans laquelle les jets interferent, concordent avec les mesures
expérimentales. Cette validation confirme que GPU-SPHEROS peut étre un outil approprié
pour optimiser la conception des turbines Pelton. Tous les calculs ont été effectués sur Piz
Daint, le supercalculateur équipé de 5704 noeuds GPU, exploité par le Centre national suisse

de supercalcul - CSCS.

Mots-clés: Turbine Pelton, auget, interférence de jet, couple, rendement, GPU-SPHEROS,
parallélisation, GPU, CUDA, noyau CUDA, accés mémoire, limité par la
mémoire, limité par le calcul, mémoire « coalesced », flops, modele roofline,
optimisation des performances
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Abstrakt

Die numerische simulation der hydrodynamik in Pelton turbinen dient dazu, die
mechanismen, die zu energieverlusten im laufrad fithren, zu identifizieren und deren effekte
zu minimieren. Aufgrund der instationdren stromung mit einer freien oberfliche und
beweglichen grenzen ist dies jedoch eine anspruchsvolle aufgabe, die eine dynamische
definition des berechnungsrasters und eine lokale Laufzeit-Maschenverfeinerung an den
schnittstellen voraussetzen. Im gegensatz zu gitterbasierten methoden erlauben
partikelbasierte Lagrange ansitze eine robuste Handhabung der freien oberflichen mit
beweglichen grenzen, wie diese in Pelton stromungen zu finden sind.

Im rahmen dieses forschungsprojektes wurde die dreidimensionale partikelbasierte Finite
Volumen Methode (3-D Finite Volume Particle Method oder FVPM) weiterentwickelt und
auf Grafikkarten (Graphics Processing Units oder GPU) beschleunigt. FVPM ist
lokal konservativ und konsistent und verwendet einen arbitrary Lagrangian-FEulerian Ansatz
(ALE) fir partikelbewegungen, um eine angemessene Partikelverteilung zu erreichen. Die
Methode basiert auf sphérisch top-hat Kernel, in welchen die partikelinteraktionsvektoren
berechnet und zur gewichtung der konservativen Fliisse verwendet werden. Um die
turbulenz zu erfassen wurden standard k-¢ und k-@ Shear Stress Transport (SST) Modelle in
die ALE-basierte FVPM integriert. Fiir die bestimmung von wandnahen turbulenzen wurde
eine wandfunktion angewandt. Der Rechner wird GPU-SPHEROS genannt und von grund
auf in der CUDA C++ parallelen rechnerplattform implementiert.

Alle parallelen algorithmen und datenstrukturen wurden spezifisch fiir die GPU
Vielrechnerarchitektur ~ entworfen.  Die roofline  analyse methode wurde fiir die
leistungsbeurteilung der CUDA  kernel und fir die definition der geeigneten
optimierungsstrategien verwendet. Vor allem der nachbarn suchen algorithmus, welcher fast
ein drittel der gesamten rechenzeit einnimmt, beinhaltet eine effizienten Space-Filling
Curve (SFC) und eine optimierte octree konstruktion wund traverse prozedur. Zur
berechnung der speichergebundenen interaktionsvektoren, welche fast zwei drittel der
gesamten  rechenzeit  beansprucht, arbeitet die  methode mit einer festen
speicherplatzvorvergabe und einem effizienten datenordungsprinzip, um
speichertransaktionen zu reduzieren und kosten fiir dynamische speicheroperationen zu
verhindern. Eine fast sechsfache beschleunigung wurde erreicht fiir eine einzelne NVIDIA®
Tesla™ P100 16GB GPU mit GP100 Pascal architektur, gegeniiber einer dual-setup
Broadwell Intel® Xeon® E5-2690 v4 CPU node mit insgesamt 28 physischen rechenkernen.



Nach der validierung von GPU-SPHEROS wurde der rechner fiir die untersuchung in einer
einer 6-strahligen Pelton turbine im rahmen einer praktischen industriellen anwendung
verwendet. Die  numerischen simulationen wurden an acht betriebspunkten
von N / Npegp = 0.89 bis N / Npegr = 1.39 durchgefiihrt, wobei N die drehgeschwindigkeit
des schaufelrades und BEP der punkt des besten wirkungsgrades (Best Efficiency Point -
BEP) ist. Es konnte gezeigt werden, dass bei hohen geschwindigkeitskoeffizienten aufgrund
der wechselwirkungen zwischen den wasserstrahlen eine betrachtliche drehmoment und
wirkungsgradabnahme auftritt, wahrend grosse lastvariationen durch eine beeintrichtigung
der strahlen bei beliebigen Npgp, werten beobachtet werden koénnen. Aufgrund von
verfiigharen messdaten von Hitachi-Mitsubishi Hydro Corporation werden die drehmoment
und wirkungsgradtrends sowie die bandbreite der spezifischen geschwindigkeiten, bei welchen
die strahlen interferieren, gut vorausgesagt. Dies schafft vertrauen in die anwendung von
GPU-SPHEROS fiir die optimierung von Pelton turbinendesigns. Alle berechnungen von
mehrstrahligen Pelton turbinen wurden auf Piz-Daint durchgefiihrt, einem GPU-gepowertem
supercomputer mit 5'704 GPU knoten, entwickelt und betrieben durch das Swiss National
Supercomputing Centre — CSCS.

Schliisselworter: Pelton turbinen, Eimer, Jet-Interferenz, Drehmoment, Effizienz, GPU-
SPHEROS, Parallelisierung, GPU, CUDA, CUDA kernel, Speicherzugriff, Speicher
gebunden, rechner gebunden, verschmolzenes Gedéachtnis, flops, roofline Leistungsmodell,
Leistungsoptimierung



Astratto

La simulazione numerica dell'idrodinamica delle turbine Pelton e utile per identificare i
meccanismi che causano le perdite energetiche nella girante e per la minimizzazione dei
conseguenti effetti. Tuttavia per poter correttamente simulare il flusso di acqua, che e
caratterizzato da una superficie a pelo libero instabile e da un’ampia deformazione dei bordi,
¢ necessario utilizzare una mesh dinamica e una rifinizione locale della mesh nei bordi a ogni
instante temporale.

In alternativa, metodi particolati possono essere utilizzati per sormontare i problemi legati
alla mesh. Grazie alla loro natura Lagrangiana, questi metodi sono particolarmente robusti
per risolvere i problemi riguardanti superfici a pelo libero con ampie deformazioni dei bordi
come nel caso del flusso in una turbina Pelton.

Nel presente studio, il metodo dei volumi finiti particolati (FVPM) e stato sviluppato e
velocizzato sull’ unita di elaborazione grafica (GPU) nella piattaforma di calcolo parallelo
CUDA. FVPM & localmente conservativo e consistente, utilizza un approccio
arbitrariamente Lagrangiano o Euleriano (ALE) per il movimento delle particelle con lo
scopo d’ottenerne una distribuzione ragionevolmente uniforme.

Il metodo si basa sull'utilizzo di kernels a supporto sferico nei quali i vettori d’interazione
delle particelle sono calcolati e utilizzati per ponderare gli scambi di flusso conservativi tra
particelle vicine. Per determinare le caratteristiche del flusso medio, i modelli di turbolenza

k-& standard e k- SST sono stati implementati e integrati nel codice numerico, che prende
il nome di GPU-SPHEROS.

Tutti gli algoritmi paralleli e le strutture dei dati sono stati progettati nello specifico per
larchitettura multi-core della GPU. Un modello roofline e stato utilizzato per valutare la
performance dei kernels CUDA e per attuare delle strategie d’ottimizzazione appropriate. In
particolare, 'algoritmo che cerca le particelle vicine, che costituisce allincirca un terzo del
tempo totale di calcolo, si basa sull’utilizzo di una curva di riempimento dello spazio (SFC),
metodo noto per la sua efficacia, e di una procedura per la costruzione ottimizzata
dell’'octree. Il calcolo dei vettori d’interazione, limitato dalla memoria e che rappresenta
all'incirca i due terzi del tempo totale di calcolo, vanta una pre- allocazione della memoria di
taglia fissa e un’organizzazione dei dati che permette di ridurre le transazioni di memoria e il
costo delle operazioni dinamiche della memoria. Il tempo di calcolo e stato cosi ridotto di
circa sei volte in un solo GPU NVIDIA® Tesla™ P100 di 16 Go con un’architettura GP100
Pascal rispetto a un nodo dotato di due CPU Broadwell Intel® Xeon® E5-2690 v4 con 28
nuclei fisici e senza hyper-threading.
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Una volta validato, il solver ¢ stato utilizzato per lo studio delle interferenze dei getti
d’acqua in una turbina Pelton poligetto, per mostrarne l'efficacia in un’ applicazione pratica
su scala industriale. Le simulazioni numeriche sono state effettuate per otto punti di
funzionamento, da N / Npegr = 0.89 a N / Neepr = 1.31, dove N ¢ la velocita di rotazione della
girante in min' e Npgp € la velocita nel punto di massimo rendimento. I risultati numerici
mostrano che la coppia e il rendimento diminuiscono drasticamente quando la velocita di
rotazione ¢ elevata a causa dell'interferenza dei getti, mentre per tutte le velocita di
rotazione diverse da Npgp si puo osservare un’importante oscillazione del carico a causa della
perturbazione dei getti. Comparando questi risultati con le misure sperimentali effettuate da
Hitachi-Mitsubishi Hydro Corporation, la tendenza osservata per la coppia e il rendimento,
cosl come l'intervallo di velocita nel quale i getti possono interferire, sono in buon accordo
con le misure sperimentali. Questa validazione conferma che GPU-SPHEROS puo essere uno
strumento adatto per ottimizzare la progettazione delle turbine Pelton. Tutti i calcoli sono
stati effettuati su Piz Daint, un supercomputer dotato di 5704 nodi GPU, sviluppato e
utilizzato dal Centro Svizzero di Calcolo Scientifico (CSCS).

Parole chiave: Turbina Pelton, pala, interferenza del getto, coppia, rendimento, GPU-
SPHEROS, parallelizzazione, GPU, CUDA, Kernel CUDA; accesso alla memoria, limite
della memoria, limite di calcolo, memoria “coalescente”, flops, modello roofline,
ottimizzazione delle performances.
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Introduction

1.1 Motivation

The Pelton turbine is an impulse turbine invented in 1880 by an American inventor, Lester
Allan Pelton [1]. As of 2018, this machine type represents 8 and 17% of the world and Europe
hydroelectric capacity (see Figure 1.1), respectively. After almost one and a half century of
Pelton turbine evolution, designs still keep improving with extensive research carried out on
different aspects from distributor and nozzle optimization to silt erosion and cavitation which
all have an impact on the runner performance. Although an experimental investigation is a
reliable approach for most aspects of hydropower design, it requires a lengthy and costly trial
and error procedure. With the advent and development of modern Computational Fluid
Dynamics (CFD) boosted by ever increasing available computing power, the design process
can now benefit from numerical approaches by handling the costly trial and error design phase
with CFD and then performing reliability assessment with a limited number of experiments,
only in the final design phase. However, to deal with the process, a robust and reliable solver

is required, to able to provide accurate enough results in a reasonable time.

Among existing numerical approaches, the most mesh-based numerical methods such as the
Finite Volume Method (FVM) or Finite Element Method (FEM) can fulfill conservation and
consistency simultaneously, although they have difficulty to deal with moving boundaries and
the transient free surface formed during the complex interaction between the Pelton turbine
components, i.e., jet-bucket and jet-jet. The Lagrangian particle-based methods can be an
alternative approach to robustly cope with these difficulties. However, most of the particle-

based methods suffer from a lack of conservation or consistency.

This research is aimed at developing a high-performance conservative and consistent
particle-based solver for numerical simulation of free surface problems, especially those with
large boundary motions. Such a solver should be able to robustly handle the jet-jet and jet-
bucket interaction as well as tracking the complex free surface around the rotating buckets,
robustly. To achieve this goal, the Finite Volume Particle Method (FVPM) has been selected
as a conservative and consistent particle-based method. The method benefits from the
desirable features of both conventional mesh-based FVM and particle-based Smoothed Particle
Hydrodynamics (SPH) although the computational cost is higher due to FVPM more
sophisticated algorithm. The Graphics Processing Unit (GPU) many-core architecture with



Chapter 1. Introduction

thread-level parallel programming capability can be utilized to parallelize the computations

and improve the solver performance for industrial-size applications.

Numerical solvers can be used to investigate different loss mechanisms in a real-scale Pelton
turbine and in fact, in a broader scope. The developed GPU-accelerated 3-D FVPM solver is
then used to investigate a particular loss mechanism in the present research; the interference
between the jets in a multi-jet Pelton turbine. With simulating a full-size six-jet Pelton runner
at different off-design conditions, the solver provides unique information such as flow
visualizations, pressure distributions, and torque time-histories, which are all valuable in
further improving Pelton designs.
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Figure 1.1. The appropriate operating range for the different runner types,
where H (m), @Q (m’®-s') and N (min') are the rated head,
discharge and runner rotational speed, respectively.



1.2 Multi-jet Pelton Turbines

Figure 1.2. A vertical axis Pelton runner geometry with 22 buckets. This
geometry will be used in chapter 4 for numerical simulations of
multi-jet Pelton flow.

Figure 1.3. The main aspects of a single-jet Pelton runner. The runner rotates
about Z—axis and the jet is injected along the X—axis direction.

1.2  Multi-jet Pelton Turbines

The Pelton turbine is one of the most efficient impulse turbines typically installed for high
head hydropower plants. It generates power by transmitting the momentum of a water jet
impinging on rotating buckets into the runner [1], [2]. The discharge is controlled by the nozzle
spears, and the jet velocity C, is a function of the head H, ie., C, = cv\/2giH , where ¢ is the
nozzle loss coefficient. The most appropriate types of runner, including Pelton runner, are

reported in Figure 1.1 for a given head operating range as a function of the specific speed. As
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of 2018, Pelton turbines represent 8% share of the world 1'100 GW hydroelectric capacity.
The fluid flow inside the Pelton bucket is a transient free surface flow, and the pressure at the
inlet and outlet of the bucket is atmospheric pressure [2]. A vertical-axis Pelton runner, as well

as its principal dimensions, are shown in Figure 1.2 and 1.3, respectively.

The number of jets used in a Pelton turbine generally ranges from one to six. For a multi-jet
Pelton turbine, the proper number of jets depends on the values of both the head and turbine
specific speed. Given a hydroelectric site with a rated head H and discharge (), the main design
parameters are the turbine rotational speed N and the number of jets z, . The jet velocity C,
and therefore the optimum runner tangential speed U = znD, is defined by the rated head H
in which D; and n being the runner pitch diameter and rotational frequency, respectively. The
value of the runner pitch diameter D, is therefore fixed by the first design parameter N.
Similarly, the jet diameter D, and the bucket width B, are selected by the rated discharge @),
together with the second design parameter, z,. The size of the runner is then a consequence
of the design parameters N and z . This relationship is cast in the so-called runner unit
specific speed defined as n = N\JQ / 2 H*", which reveals the inevitable trade-off between the
runner performance and the turbine manufacturing cost. Given that n is proportional to the
bucket width per unit diameter B, / D, , high specific speed generating units are more compact,
implying less manufacturing and construction costs. However, this lower cost comes with a
higher risk of jet interference, i.e., the interaction between two water jets on the same bucket,
due to an increase of the discharge and the number of jets. Jet interference yields a torque
drop and therefore, efficiency loss, which becomes significant for z > 5. Moreover, Pelton
runners with a large number of jets have more flexibility to control the power over a broader

range, but the maximum number of jets is, however, limited by jet interference [3].

1.3 State of the art

1.3.1 Numerical simulation of Pelton turbine hydrodynamics

Numerical simulation of Pelton turbine flow is a challenging task featuring transient free
surface flow and moving boundaries. Mesh-based methods have been broadly used to
investigate Pelton turbine hydrodynamics. Zoppe et al. [4] employed the Volume of Fluid
(VOF) free surface modeling approach to computing the pressure field on the Pelton bucket
wall. Even though the numerical results for the bucket wall pressures were in a good agreement
with the experimental results, VOF underestimated the leakage through the cutout compared
to the experimental visualization. Kvicinsky et al. [5], [6] and Perrig et al. [7] used ANSYS
CFX finite volume solver with the homogenous VOF for free surface and the k-& turbulence
model for the RANS solver to compute the resulting force experienced the stationary bucket.
The numerical results showed a good agreement with the experimental results at the bucket
middle zone while showing less accuracy at the splitter zone. However, the numerical
simulation in the case of a stationary bucket is a simplified setup in which the boundary

motions are ignored. Zidonis & Aggidis [8] performed a single-jet numerical simulation of a

4
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rotating Pelton runner with the VOF model to optimize the number of buckets and improve
the hydraulic efficiency. Santolin et al. [9] and Jost et al. [10] simulated both nozzle and runner
with homogeneous and inhomogeneous VOF model to estimate the impact of the real jet shape
and velocity profile on the runner performance. Benzon et al. [11], [12] used both ANSYS
Fluent and CFX to optimize the injector design. They reported a reduction of the injector-
induced loss of 0.6% for the optimized geometry. Rossetti et al. [13] used CFX to investigate
the cavitation mechanism in a Pelton turbine with Rayleigh-Plesset cavitation model for
water-water vapor interphase transfer as well as a simplified computing domain featuring only
three buckets to reduce the number of mesh elements. The water vapor produced during the

water jet cut-in procedure has been reported.

However, mesh-based numerical simulation methods with Eulerian formulations face difficulty
to cope with such a complex transient free-surface problem with moving boundaries, and a
dynamic mesh approach, as well as run-time local grid refinements at the interphase, is
required to handle these sophisticated flow features. Also, the VOF method is numerically
diffusive and can lead to smearing of the free surface [14], [15]. The mesh-free (or particle-
based) methods can overcome these difficulties by taking advantage of their Lagrangian
approach. Koukouvinis et al. [14] used the standard Smoothed Particle Hydrodynamics (SPH)
method to simulate fluid flow in a Pelton turbine. Thanks to its mesh-free nature, the approach
was able to capture the flow features without diffusion at the air-water interface. However,
the bucket geometry was represented only by its interior surface, meaning that the jet impact
on the bucket backside was neglected. Their results were validated with ANSYS Fluent only.
Marongiu et al. [16] employed a hybrid SPH-ALE method to compute the Pelton runner
torque. The results highlighted a satisfactory agreement with the ANSYS CFX mesh-based
solver, although the computed wall pressure was noisier than the mesh-based results.
Anagnostopoulos and Papantonis [17] developed a Fast Lagrangian Solver (FLS) with a
reduced computational cost for the design and optimization of Pelton turbines. However, FLS
provides only an estimation of the integrated pressure based on the inlet and outlet particle

velocity vectors; neither the whole pressure field nor the exact water sheets are considered.

Ye-Xiang et al. [22] performed a Pelton flow analysis based on the animated cartoon frame
method to derive the fundamental equations of the dynamic performance of a single-jet Pelton
turbine. The results revealed an efficiency deterioration at high specific speeds due to the
interference between adjacent jets. Zidonis & Aggidis [8] also found an efficiency drop in model
tests for high flow rates due to jet interference. The operating range with a high risk of jet
interference was determined with both numerical and model test analyses. Kubota [3]
performed Pelton model tests with two adjacent jets to investigate the jet interference in a
six-jet Pelton turbine case using a camera and experimental torque measurements. The
experiments revealed a sudden efficiency deterioration at higher specific speeds wherein the

jets tend to interfere significantly.
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In 2015, Vessaz et al. [18] used SPHEROS, a 3-D Finite Volume Particle (FVPM) solver to
compute the torque on a single-jet rotating Pelton runner. To reduce the computational cost,
the numerical simulation was performed with only five adjacent buckets, and the intermediate
buckets torque were used for the overall torque computations. Since the intermediate buckets
provided the same torque time-history with the same trend due to geometry geometric
periodicity, the time-shifted torque copy of one bucket intermediate bucket torque time-history
accounting for the bucket periodicity can be superimposed and integrated, to find overall
torque. The computed pressure and torque were validated against experimental data with
reasonable accuracy. In the present research, the 3-D FVPM with spherical-support top-hat

kernels is used to investigate jet interference in a multi-jet Pelton turbine.

1.3.2 Particle-based methods

The particle-based methods have been developed to provide stable and accurate numerical
solutions for PDEs with various kind of boundary conditions (BCs) and arbitrary particle
distribution without any node connectivity [34]. Contrary to the Eulerian mesh-based
methods, particle-based methods with Lagrangian formulation are robust in handling free
surface problems with moving boundaries. The particle-based methods exist in both weak and
strong formulation. Unlike the strong formulation, the weak form of discretization provides
both consistency and conservation regardless of variation in particles size [30] even though the
integrations of the test function is required which applies higher computational costs. However,
this integral is usually approximated due to its complexity. Smoothed Particle Hydrodynamic
(SPH), Finite Particle Method (FPM), Diffuse Approximation Method (DAM), SPH-FPM
and Finite Volume Particle Method (FVPM), all are particle-based methods developed in
strong or weak form. The particle-based numerical simulation methods have been used in
broad research fields from astrophysics to fluid and solid mechanics [23]-[30]. The reader is

referred to Appendix A for the weak formulation of hyperbolic conservation laws.
FVPM was first introduced in 2000 by Hietel et al. [31] in 2-D. Later, in 2009, Nestor et al.

[32] extended the method to viscous incompressible flow with using a consistency-corrected
SPH approximation to evaluate velocity gradients. They applied the MUSCL scheme as well
as second-order temporal discretization to improve accuracy. In 2011, Quinlan et al. [33]
developed a fast approach for exact evaluation of particle area in 2-D using circular-support
top-hat kernels. A simple schematic of FVPM with overlapping circular-supported particles is
shown in Figure 1.4. The method was then extended to 3-D by Jahanbakhsh et al. [30] in 2015
featuring exact computation of particle volume and area for the cubic-support top-hat kernel.
They later upgraded the cubic-support version to spherical-support, which provided more
accurate and stable results thanks to its non-directionality and smooth interaction between
the particles, although it incurred an extra computational cost due to its more sophisticated
algorithm [11].
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FVPM benefits from the desired features of both particle-based SPH and mesh-based FVM
[30]. Unlike the standard SPH, FVPM is locally conservative and zero-order consistent
regardless of variations in particles size. Indeed, the method can be interpreted as generalized
conventional mesh-based FVM [19] in which the control volumes are replaced by overlapping
compact supports. A pair of vectors I'j and I’ are then computed to weight the conservative
flux exchange between each pair of neighbor particles F;. These vectors are called interaction
vectors, and their difference A; = T'; — Ty is analogous to the area vectors in FVM [30].
FVPM also features an Arbitrary Lagrangian-Eulerian (ALE) approach where the computing
nodes can arbitrarily move to achieve a reasonably uniform particle distribution. A brief
comparison between SPH, FVM, and FVPM is provided in Table 1.1. FVPM has been
extensively utilized to simulate the free surface flow in Pelton turbines from 2014 [36],[37],[38].
In the present research, a high-performance 3-D FVPM solver with spherical-support top-hat
kernels is developed for free surface simulations. The solver is used to investigate the influence
of the jet interferences in a multi-jet Pelton turbine, as a real application. Since the exact
computation of FVPM particle interaction vectors is an expensive task that should be
performed at every time step, the method has been accelerated on GPU. The accelerated
solver is called GPU-SPHEROS.

Figure 1.4. 2-D FVPM with circular-supported top-hat kernels; a simple
schematic of overlapping particles exchanging flux.

Table 1.1. Comparison of FVM, SPH and FVPM features

FVM SPH FVPM
Description method Eulerian Lagrangian ALE
Formulation weak strong weak
Conservation yes yes yes
Consistency yes no yes
Computational cost low medium high
Free surface tracking challenging robust robust
Handling moving boundaries complex simple simple
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1.3.3 Parallelization for GPU

1.3.3.1 GPU vs. CPU

GPUs and CPUs have significantly different architectures that make each one suited for
specific tasks. CPUs are optimized for handling a single (complex) task rapidly while GPUs
are fit for data-parallel simple tasks and hiding the latency with massive parallelism. A modern
CPU with multi-core architecture can support up to hundreds of concurrent threads by having
tens of cores while a modern GPU with many-core architecture features thousands of cores
able to support tens of thousands of concurrent threads. A CPU is designed to run a massive
and complex task as fast as possible by using pipelining, caching, and branch prediction. A
GPU, on the other hand, is not fit for dense and complex processing on an individual or a few
streams of data since the transistors are more dedicated to data processing rather than data
caching and flow control. Although a CPU core is substantially faster than a GPU core itself,
it cannot efficiently handle many streams of instructions simultaneously while GPU cores,
with a slower clock rate and fewer features, are well suited for handling many independent
simple tasks in parallel. This can explain why sometimes a well-optimized GPU-accelerated
application running on thousands of GPU cores is only two or three times faster than its well-
optimized CPU version running on a multi-core CPU setup having only tens of cores. Indeed,
using the capabilities of a GPU requires a significant degree of parallelism. A serial code
typically runs faster on a CPU than on a GPU. As a result, GPUs are never used alone but
only as an extension of a CPU-based machine [40], [39)].

1.3.3.2 GPU Parallel Computing Model

GPUs work based on the Single-Instruction Multiple-Threads (SIMT) execution model,
introduced by NVIDIA® [40], in which a single instruction is run simultaneously by multiple
threads enabling the developer to write thread-level parallel codes [40]. GPUs are built around
many multi-threaded Streaming Multi-processors (SMs) designed to run hundreds of
concurrent threads, which are queued up for work in groups of 32, called warps. All warps are
further grouped into thread-blocks and can communicate within their block. Multiple
thread-blocks run concurrently on an SM as far as the SM has sufficient resources and new
thread-blocks are launched once the SM is vacated. All threads in a warp execute the same
instruction in which each thread performs the operation on its private data. Since the threads
in a warp execute the same instruction at a time, full efficiency is not obtained if all the threads
of a warp do not follow the same path. This is called branch divergence and can turn a parallel
execution into serial. Each SM has its own registers and shared memory, which are partitioned

among warps and thread-blocks, respectively. A limited on-chip L1 cache is dedicated to each
SM while L2 cache is shared between all the SMs [40], [40] and [42].

A good performance on the GPU is only achievable if sufficient parallelism is exposed, the
algorithms are well suited to GPU hardware, memory has coalesced access pattern, execution

within warps is coherent, data transfer between host and device is minimized and/or
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overlapped with computations and GPU resources usage is balanced carefully [43]. The
coalesced memory access concept is explained in the next chapter, section 2.3.1. The technical
data and schematic of NVIDIA® Tesla™ P100 GPU architecture layout are given/shown in
Table 1.2 and Figure 1.5 [43], respectively.

1.3.3.3 Memory Hierarchy

A schematic of the NVIDIA® Tesla™ P100 memory hierarchy is shown in Figure 1.6. A CUDA
kernel, i.e., a function running on GPU in parallel, reads or writes the data into the device
memory (DRAM) through the logical addressing spaces and different data caching levels.
Global memory is the main memory of the GPU with a lifetime of allocating program. The
data stored in global memory are visible to all threads over the whole runtime. Although
global memory is large in size, it resides off-chip and features a long latency. The other GPU
memory type is the local memory, which is per-thread and used for the operations not fitted
into registers. Local memory is not a physical memory but an abstraction of global memory.
Local memory resides off-chip and is as expensive to access as global memory. The global and
local memory data are cached into L1 and L2 caches with roughly ~28 and ~300 clock-cycles
of hit latency, respectively. Apart from global and local memory, a fast 64 kB per SM on-chip
memory is available on each SM, which is called shared memory and features almost 100 times
shorter latency than the global memory. Shared memory provides fast data access for all the
threads within a thread-block. Unlike registers which are managed by the compiler, the shared
memory should be explicitly declared and managed by the developer. The other memory type
in GPU is the texture cache which is optimized for interpolation of multidimensional arrays
connected to this read-only cache. Tesla P100 features 24 kB of L1 per SM and 4’096 kB of
L2 for the full GPU. Altogether, registers and shared memory are the fastest GPU memory
types on a GPU while global memory is the slowest one, although it is large (16GB on Tesla™
P100 SXM-2) [44][45].

1.3.3.4 GPU-accelerated particle methods

General Purpose computing on GPU (GPGPU) became practical and fashionable after about
2001 [46]. Since then, GPUs have been used in different areas of computational physics, e.g.,
molecular dynamics, Lattice Boltzmann method, Monte Carlo, finite element method and
finite volume method to accelerate non-graphic computations [47]—-[53]. The capability of
GPUs to handle particle-based methods is demonstrated by [54]-[57]. GPU-SPH [54] and
DualSPHysics [55] are both examples of broadly-used open-source particle-based solvers

released during the last decade.
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Table 1.2. Technical specifications of NVIDIA® Tesla™ P100 GPU (Pascal

GP100) [44].

GPU NVIDIA® Tesla™ P100 16GB

Compute capability 6.0

Architecture GP100

Double Precision (DP) peak performance 5’300 GFlop s™

Peak memory bandwidth 732 GB 5!

Double Precision (DP) cores 1’792

Base clock rate 1.33 GHz

Number of Streaming Multi-processors (SMs) 56

Max threads per SM 2048

Max warps per SM 64

Max thread-blocks per SM 32

Max 32-bit registers per SM 65’536

Max registers per thread 255

Shared memory per SM 64 kB

L1 cache per SM 24 kB

L2 cache 4096 kB

Launch date Q372016

M, Warp scheduler SMg; Warp scheduler

Register File Register File

CUDA Cores oo CUDA Cores

Shared memory Unified cache

L2 cache

Shared memory Unified cache

Device memory (DRAM)

Figure 1.5. The schematic of the NVIDIA® Tesla™ P100 GPU hardware
architecture [44]. The Tesla™ P100 GP100 features 1’792 double

precision (DP) cores and 56 SMs (i.e.

, 32 DP cores per SM). Each

SM can handle up to 2048 parallel threads.
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Kernel
! ) ) !
Shared Texture Global Local
! ) { !
r:zamrzfy L1 / Texture Cache

I

L2 Cache

Device memory (DRAM)

Figure 1.6. The Tesla™ P100 memory model [45]. Unlike the DRAM, which is
the slowest memory type, the shared memory has the lowest latency
with almost 100 times shorter than global memory.

1.4  Research objective

The present doctoral research is aimed at developing a high-performance conservative and
consistent particle-based solver for industrial-size turbulent free-surface problems with or
without large moving of boundaries. In the context of this research, a GPU-accelerated 3-D
FVPM fluid solver has been developed to handle industrial-size free surface numerical
simulations such as multi-jet Pelton runner flow. In this regard, new embarrassingly parallel
algorithms have been designed to best use the potential of GPU hardware. The currently
accelerated solver, GPU-SPHEROS, has been developed in the CUDA parallel computing
platform. All the parallel algorithms and data structures have been designed specifically for
GPU many-core architecture, and a roofline performance model has been utilized to visualize
and determine the performance limiters to define the appropriate optimization strategies. In
particular, the neighbor search algorithm, accounting for almost a third of the overall running
time, features an efficient Space-Filling Curve (SFC) as well as an optimized octree
construction procedure. The memory-bound interaction vector computation, accounting for

almost two-thirds of the overall computing time, features fixed-size memory pre-allocation and
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an efficient data ordering to reduce memory transactions and cost of dynamic memory

operations, i.e., allocation and deallocation.

To capture the mean flow characteristics, standard and realizable k-& as well as k-@ Shear
Stress Transport (SST) have been implemented and integrated into ALE-based FVPM as two
broadly-used two equation RANS models. The wall function approach has been utilized for
the near-wall turbulence computations, and turbulence production limiters have been applied
to prevent unrealistic turbulence build-up. To compute the nearest wall distance field required
in SST, the diffusion-only equation with a source term of unity is solved within an iterative
Poisson solver. The implemented turbulence models are then utilized for numerical simulations

of Pelton turbine flow.

GPU-SPHEROS has been validated against the ANSYS CFX mesh-based commercial
software as well as experimental data for ¢) lid-driven cavity, ) fully developed turbulent flow
in a circular pipe, i) turbulent flow in a circular open channel, @) impinging jet on a flat
plate, and v) water jet deviation by rotating Pelton buckets. Once the solver validated, it has
been used to investigate the interaction between the adjacent jets inside and outside the
buckets, i.e., the jet interference and jet disturbance, respectively, in a six-jet Pelton runner as
an industrial-size application. According to Kubota [3], both aforementioned phenomena are
worth to be considered in the design process of a Pelton machine since they can significantly

contribute to energy loss.

All the numerical simulations of multi-jet Pelton runner flow have been performed on Piz
Daint, a GPU-powered supercomputer developed and operated by Swiss National

Supercomputer Centre — CSCS.

1.5 Outline

The present thesis is a compilation of two independent published and submitted research

articles in peer-reviewed journals.

This document contains five chapters, including the algorithms, implementation, optimization,
and application. In chapter 2, the discretized form of the governing equations are presented,
and the simulation flowchart, the parallel algorithms and the implementation methods have
been described. Once all the algorithms implemented, a roofline performance model is then
utilized in chapter 3 for performance analysis. The performance limiters are determined, and
appropriate optimization techniques are applied based on the limiters. The performance of the
optimized code is compared to the original one within the roofline model. The optimized and
validated solver is then used in chapter 4 for a six-jet Pelton flow simulation as an
industrial-size problem. The simulations are performed at eight operating points ranging from
N/N,, =8% toN/N,, =131%, and the jet-bucket, as well as jet-jet interaction, is
investigated based on the torque time-history and free surface visualization. For reliability

assessment, the results are compared to the experimental torque and efficiency measured in
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Hitachi-Mitsubishi Hydro Corporation — HMHydro test rig. Finally, a conclusion and

perspectives are given at the end, in chapter 5.
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In the present chapter, GPU-SPHEROS, as a GPU-accelerated 3-D FVPM solver, is
introduced by presenting the discretized form of the governing equations, solver structure, as
well as parallel algorithms. The solver has been developed in the CUDA parallel computing
platform. The performance analysis and solver validation will be presented in the next chapter.
The reader is referred to nomenclature for the definition of the letters and symbols used in the

equations, figures, and tables in this document.

Part of this chapter is a reproduction and modification of part of a published peer-reviewed

research article [95].

2.1 Governing equations

2.1.1 Counservative form

In fluid mechanics, any fluid flow field is characterized by the balance in mass, momentum,
and energy, and conservation laws can be solved to find conserved physical quantities. The
mass and momentum conservation equations for weakly compressible fluid flow are given as,

Dp
—=-pV-C 2.1
o =P (2.1)
and,
DC

The deviatoric stress s is computed based on the strain rate,

s=2u, (s —%tr(S)Ij (2.3)

where tr is the trace of a tensor and gy = g+ @ in which g4 is the turbulence eddy viscosity.
S is strain rate tensor which is computed based on the velocity gradients,

S= E(VC +ve') (2.4)
The pressure for weakly compressible flow is computed based on Tait’s equation of state [59],
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p= &ﬁﬁj - 1] (2.5)
Y o

where y is a constant coefficient set to 7.0 for water and the speed of sound a is assumed as
10 times greater than maximum fluid velocity to reduce the computational costs [60]. The
conservation equations can be written as the following PDE form,

ou
= 4V-FU)=0 (2.6)
ot

In general, Eq. (2.6) is known as the conservation law or balance equation if there is a source

term. U and F are the conserved physical quantity and numerical flux function, respectively,

defined as,
U-= [ppC] (2.7)
and,
F = PO (2.8)
pCR®C—-s+pl

2.1.2 The Finite Volume Particle Method

GPU-SPHEROS has been developed based on the Finite Volume Particle Method (FVPM)
which is a generalized form of classical mesh-based Finite Volume Method (FVM) [19]. In
FVM, the domain is discretized into elements as finite volumes, and the area vectors for
surfaces of each element are computed and used to weight the conservative flux exchanges
between the control volumes. In FVPM, the control volumes are defined based on particle
supports which have overlap, and the flux is exchanged through the overlapping areas. For
each pair of " and " neighbor particles, two interaction vectors, I', and ', are computed,
in which their difference A, =T, T is equivalent to area vectors in FVM. The discretized

momentum, mass and volume conservation equations are derived as [20],

d .
—(pveC)= Ej: [(pC®%-pC®C), - pI+s | A -pB, (2.9)
d .
E(,QVI) = Z |:(pX— pC)ij - Rij:| ) Aij (2‘10)
Ay oY% A +%-B (2.11)
dt - ij ij i i

with,
. . . Aij
%, =(%-T, -%T) A4 (2.12)
B =-Y A, (2.13)
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The indices “7” and “ij” refer to the center of * particle and interface of ¢ and * neighbor
particles, respectively. The index “b” then refers to the boundary term. The boundary
interaction vector B, is used to weight the flux exchange through the boundary. This vector
is only non-zero for free surface particles and becomes zero elsewhere. Since the velocity and
pressure are computed at the same computational node, the term R, is added to the right-
hand side of (2.9) to smooth the mass flux and damp the checkerboard pressure oscillations
61,

R. = (l( P. +Vp.)—@p“jAt (2.14)

ij 9 i j ij

The pressure gradient at the center of the particle Vp, is computed by the volume integral

formulation [20],

1 p.tDp.
Vp =— d LA 2.15
p, V;Z{ 5 J ; (2.15)

while the gradients at the interface of /" and §* particles, i.e., ﬁpij are computed with weighted

least squares approach given as,

5 ZGJ Z(x—xj)TGj B ZGjp
{ } —Z(X—Xj) G, Z(X—Xj)(x—xj)TGj Z(x—xj) G, p

- 2.16
o (2.16)
i J

where G is the Gaussian function defined as [20],

‘x - X,
G, =exp| —4 — (2.17)

J

The particle interaction vector is computed based on the integration of Shepard test function
y over the domain [30],

VW
r =] Y gy (2.18)
ji Q o

The Shepard test function y, is defined as,

Wi(x
y, = L (2.19)
o
with,
1 Q.
Wx)=1 " (2.20)
0 otherwise

as spherical-support top-hat kernel function and o

o = ZW/(X) (2.21)
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as kernel summation. With this kernel choice, the integral over the volume of the domain Q
is simplified to an integral over the support boundary éQ . According to Quinlan et al. [33],
the interaction vector computation is simplified as,

L= X S[ 1 —i] (2.22)

ee(Q]néQi) O-g +1 O-E

For any "

particle with spherical supporting border 6Q2 , the surface is partitioned into
sub-surfaces created by intersecting neighbor particles. These sub-surfaces are called
elementary surfaces e and are covered by o, neighbor particles. The process of computing the
elementary surfaces is called surface partitioning and can be challenging due to the complex
shape of elementary surfaces. For a set of elementary surfaces, all the corresponding area
vectors S, should be computed. An illustrative example of partitioned spherical support
intersected by six neighbor particles is shown in Figure 2.2. The reader is referred to [30] for
more details on the exact computation of FVPM interaction vectors with spherical-supported

particles.

2.1.3 Particle motion and boundary conditions

In FVPM, the particle motion is defined based on the Arbitrary Lagrangian-Eulerian (ALE)
approach in which the particle velocity x is adjusted to fluid velocity C modified by a
correction term x; to attain a reasonably uniform particles distribution. The particle velocity
% is computed by [30],

. C +x’ - (xE -n,)n. for free surface, i.e. ‘B‘ % ()
Xi — i i i i i i (2.23)
C +x otherwise
where n is the outward pointing unit vector at the free surface,
B
n =—- 2.24
i ‘Bi‘ (2.24)

and xis the velocity correction vector defined as,

3
s = m«hmz[{—’“ } 1J hlnt. (225)

i E‘x.—x‘ ‘x,—x,‘
: ] 1 J 1

In (2.25), A is an adjusting coefficient set to a value between zero to 0.25. C" is the
characteristic velocity of the domain, and the parameter ¢ is computed based on,

(= 3 (2.26)

which is typically adapted to a value ranging between 0.75 and 0.85.

Three different types of Boundary Conditions (BCs) have been implemented in
GPU-SPHEROS: ) no-slip wall, %) inlet boundary and, ) free surface boundary. For the

18



Chapter 2. GPU-SPHEROS

no-slip wall boundary, a layer of spherical fluid particles is artificially overlaid on the geometry
surface to build an impermeable geometrical boundary shape. These particles move with the
wall velocity Cuau. For the inlet BC, fluid particles are injected into the domain with a known
velocity and turbulence intensity L.+ The velocity of the inlet particles are adjusted to fluid
velocity C computed based on the discharge () and the turbulence intensity is set based on
the physic. Typically, L., = 1%, 5%, and 10% correspond to low, medium and high turbulence
intensity, respectively. Once a set of inlet particles entered into the computational domain,
the inlet is fed by new particles injected in the same way as the previous set. This procedure
is continued until the injection is stopped. For the free surface particles, the boundary
interaction vector B, becomes non-zero, and the pressure term p,B, is added to the fluxes
[20].

Figure 2.1. Neighbor particle distance and overlap. ¢ is h /6 which generally
ranges between 0.75 and 0.85.

Figure 2.2. The intersection of the spherical surface of the " particle, 6Q with
its neighboring particles. The elementary surfaces are shown in
different colors with corresponding o, values [30].
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2.1.4 Temporal scheme

In GPU-SPHEROS, the second-order explicit Runge-Kutta temporal scheme has been used
for time integration. The field variable is updated in two steps, the predictor and the corrector.
First, the intermediate fluxes are computed within the predictor step,

At

U(H?) _ul_v.F (U(‘))% (2.27)

and then, the corrector step is performed to compute the final fluxes based on the computed

intermediate flux

ut) -yl _v.F {U(HA;]} At (2.28)

Since the solver is explicit, the Courant-Friedrichs-Lewy condition (CFL < 1.0) must be
satisfied for numerical stability and the time step size is determined based on:

o
At < CFLx min| —4t— (2.29)
a, + ‘Ci‘

2.1.5 RANS-FVPM integration

2.1.5.1 Standard and realizable k-& model

Within the framework of the present research, standard and realizable k-¢ as well as k- SST,
have been implemented and integrated into ALE-based FVPM as broadly-used two-equation
models to capture the mean flow characteristics. The aforementioned RANS models have been
extensively used and validated for both internal and free surface flows [62], [63]. For standard
k-¢, the discretized transport equations for turbulence kinetic energy k and turbulence kinetic

energy dissipation rate ¢ are derived as,

%(mi/@) = ZH(# + %)Vk} ~(pk(C- x))j] A, +(B-D,)V, (2.30)

d t : g
E(ngi) = Z[((,u + :_)Vglj ~(pe(C- x))] A+ K(CMP]C -C,D,) (2.31)

F ij
J & {

where P and D, are the turbulence kinetic energy production and destruction, respectively,

computed as,

P =2uS,S,, (@, f=1,23) (2.32)
and,
D, = pe (2.33)

The eddy (or turbulence) viscosity 4 is computed as a function of p, k and ¢
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=0, (2:34)
&
In the standard model, C. is a constant equal to 0.09. For wall boundaries, the zero-flux
boundary condition has been applied for turbulence kinetic energy k, and a scalable wall
function approach is used to adjust turbulence variables near the wall. The production of %
near the wall is given by,
2

walkl Twu
prt = el (2.35)

11

K'OA yz Cjkgall

The turbulence dissipation equation is not solved for the wall-adjacent particles but instead
is computed by Eq. (2.36),
31
CE?
- — o wall (236)
wath K'Ayl

where x is von Karman constant ( which is x ~ 0.41) and Ay, is the normal distance of the
center of ¢ particle to the wall. It should be noted that the subscript “wall” refers to the

adjacent particle to the wall, not the wall particle itself. The wall shear stress 7, is computed

)
based on the scalable wall function approach,

11

pC C'k?
Tuvall = F;.;.# (237)
where,
ut = llog(Ey+) (2.38)
K

Eq. (2.38) is known as the logarithmic law, with £ = 9.793, and a given formula for y",

1 1

PAy C*k>
y, = max (————,11.06) (2.39)
U

The y" against u" is shown in Figure 2.3 for pipe flow using the experimental data of Wei and
Willmarth [90]. The logarithmic-law velocity profile is only accurate for y* > 30 within the
logarithmic region without separated flow, but not for the buffer layer, where 5 < y* < 30,
or viscous sublayer where y" < 5. The scalable wall function approach is used to produce
consistent results for arbitrary particle refinements avoiding errors originating from applying
the log-law to the laminar and buffer regions of the boundary layer by shifting the near-wall
particle to ¢ = 11.06. The value of y" = 11.06 in Eq. (2.39) is derived based on the intersection
of linear and logarithmic u* profiles [64]. Eq. (2.40) gives an initial estimation of y* as a
function of Reynolds number and near-wall particle size, derived based on the boundary layer
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10% ¢

sublayer

100 | L 1 1

Figure 2.3. Mean velocity profile in a fully developed turbulent pipe flow [62].
The logarithmic-law is accurate within the logarithmic region for
y* > 30, not the buffer layer, where 5 < y" < 30, and the viscous

sublayer, with y* < 5. The circles represent the experimental data
for pipe flow provided by Wei and Willmarth 1989 [90].

theory for flow over a flat-plate [65] which can be used for initial particle spacing for a target

y* value.

13
y = f(%,ReL) = {\/0.0135 -%}Re; (2.40)

For the free surface boundaries, the gradients of £ and & normal to the free surface are set to
zero, i.e., 8k/ on = 65/ on =0, and for the inlet boundary, the values of k£ and ¢ are identified
and adjusted based on the turbulence intensity and length scale.

The values for the model constants C |, =144, C, =192, o, =100, o, =1.30 have been
obtained by comprehensive data fitting based on a broad range of turbulent flows [66].

2.1.5.2 Turbulence limiter

The unrealistic turbulence energy overproduction around the stagnation zone can create
excessively large eddy viscosity values, which in turns significantly affect the flow predictions.
To tackle the problem, one strain-rate tensor in (2.32) is replaced by the vorticity tensor ¥ .
The turbulence production term then reads,

]:)klivmted — zlutsaﬂlyaﬂ (241)
in which the vorticity tensor is computed as,

22



Chapter 2. GPU-SPHEROS

¥ = %(vc -ve') (2.42)

This limiter is known as Kato-Launder modification [91]. In shear flows and wakes, the
modification gives the same results as the unmodified version. In the stagnation region, the
vorticity tends to its minimum values, and therefore, the turbulence production is bounded.
To prevent excessive unrealistic turbulence build-up, this strain limiter has been implemented
and applied to the k-& model.

2.1.5.3 Realizability

Realizability is the minimum requirement to prevent non-physical turbulence results. The
realizable model, proposed by Shih et al. [67], have shown improvement over the standard k-&
model for the cases with vortices, rotational flow, and strong streamline curvature. The
realizable k-& model differs from the standard model in two important ways: firstly, the eddy
viscosity equation has a non-constant Cy [67][68] and secondly, the dissipation equation is
modified based on the dynamic equation of the mean-square vorticity fluctuations. In the
realizable model, the transport equation for turbulence kinetic energy k£ remains the same as
in the standard model, but the dissipation equation is modified as,

%(pg) LV - (peC) =V - [(/4 n :—:)wJ T pe {0{“}5 —or . +€JEJ (2.43)
with,

§=28,8,, (2.44)
and,

01”[7 = max | 0.43, 5

(2.45)
S+5£
k

C”is adjusted to 1.9 and Cy is a function of strain rate tensor S,; as well as turbulence
variables k and e. The reader is referred to [67] for the full formulation of realizable Cj.

Altogether, k-& is a well-established model with a good performance for industry relevant
applications validated for a wide range of flows but it provides poor results for flow with extra
large strain rates and/or anisotropic normal stresses. For these cases, the Reynolds Stress
Model (RSM) can address the problem, but it has a slower convergence rate as well as higher
computational costs compared to two-equation models [66].

The normal stress positivity and Cauchy-Schwarz inequality are the main physical
requirements to satisfy the realizability. The reader is referred to Appendix B for more details
on realizability and Cauchy-Schwarz condition.
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2.1.5.4 k-o Shear Stress Transport

The Shear Stress Transport model, SST, combines the advantage of low-Reynolds k- and
high Reynolds k-& models by using blending functions for a smooth transition between the
underlying models. The model is well known for providing an accurate prediction of flow
separation under adverse pressure gradients [69]. The discretized transport equations for
turbulence kinetic energy k£ and eddy frequency @ are derived as

d . ,
E(mk) =3 [((,u + :—t)w;J ~(pk(C- x))]] A, +(B - ppko) V, (2.46)
J k3 ij

i(mco)zZ: (o + a WVao —(pa)(C—X)) AL+
dt v ; O 3 - ij 1

¢ i (2.47)

2
[(1 - Fl) 0:60 VikVo + a, %PA - ﬁgpwzl v
The coefficients are a linear blending of inner ¢; and outer ¢, constants derived by

¢, =Eg +(1-F)9, (2.48)

The blending function Fi tends to one inside the boundary layer and switches over to zero
away from the wall. The turbulence eddy viscosity for k-@ SST is given by [69],
pak

N s U 2.49
max (a,1 @, SF, ) ( )

U =
with a =0.31. The eddy viscosity limiter in (2.49) is to modify the shear stress transport
behavior and avoid overprediction of eddy viscosity. Since the underlying assumptions are not
correct for free shear flow, the limiter is restricted to near the wall by F5 which is a blending
function similar to Fi. For SST, to avoid unrealistic excessive turbulence build-up around the
stagnation zone, the turbulence production term P, in (2.46) and (2.47) is replaced by P"™*
which is limited by a maximum value [69],

P = min (B, 108/pko) (2.50)

with g'= 0.09. An automatic y"--insensitive wall function approach is used for near-wall
turbulence computations (see Appendix B). As the grid is refined, the method automatically
switches from wall function to low-Reynolds formulation by blending the wall value for omega
between the viscous sublayer and logarithmic region. The reader is referred to Appendix B
for blending functions formulation and automatic wall treatment as well as model constants.

2.1.5.5 Nearest wall distance

To avoid the costly computation of exact nearest wall distance field, the diffusion-only
equation with uniform source term V*¢ = -1 is numerically solved for a scalar field ¢ using
an iterative Poisson solver [70]. The Dirichlet (¢ =0) and Neumann (zero-flux) boundary
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conditions are applied to the wall and other boundaries such as free surface, respectively. The
discretized form of the V*¢ = -1 is derived as [70],

) (2.51)

X min (‘xi — X,

A A

ij ij

;;Hl — é/jn, + (z Vé’” . Aij + I/]];
- J

h

and the nearest wall distance for ¢ particle is computed based on the following expression [70],

d, =-|v¢|+\Ve [ +2¢, (2.52)

Since ¢ is non-negative, it is guaranteed that the computed wall distance will be always non-
negative. As an example, the computed wall distance field for a rectangular domain with
surrounding walls and free surface boundaries is shown in Figure 2.4. Also, the computed
distance for the particles located at y = 0.5 compared to the exact distance is shown in Figure
2.5. Although the estimated distance is approximate, with almost 30% of maximum error at
z =y = 0.5, the computations are not as expensive as the exact version.

2.2 The solver structure

2.2.1 'The overall algorithm

A CUDA C++ program includes both CPU (host) and GPU (device) code. When a CUDA
source code is compiled, the host and device parts are separated by the compiler. A typical
host compiler (such as g++) is invoked for compiling the host code, and the device code is
compiled by NVIDIA® CUDA Compiler, NVCC. Indeed, a simple CUDA program running
procedure is split into the four following overall steps,

— first initializing the data on the host memory,

— then copy the initialized data to the device memory,
— run the kernel on GPU, and finally,

— copy the output data back to the host memory.

To avoid any data hazard, a correct synchronization between CPU and GPU is required. This
however managed by the developer [71].

GPU-SPHEROS has been developed based on GPU well-suited parallel algorithms and data
structures. The overall algorithm, summarized in Algorithm 2.1, includes three main parts: a)
particle neighbor search, b) computing the particle interaction vectors, and ¢) computing fluxes
and forces as well as integration in time. The CUDA kernels are shown with “do in parallel”
keyword. All the parts run entirely on GPU to avoid costly host-device communication and
the data are only copied back onto the host memory for saving purposes (e.g., every 100 or
1000 time steps). The Thrust and CUSP parallel algorithm libraries have also been used for
programming productivity.
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Figure 2.4. Computed nearest wall distance for a rectangular domain with three
rigid walls and a free surface boundary. The particles are fixed, not
moving.
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Figure 2.5. The computed nearest wall distance with the Poisson solver for free
surface particles located at y = 0.5.

2.2.2 Simulation flowchart

To execute the code, first, the data are initialized on the host memory and then copied to the
device. An octree-based neighbor search is then performed to find all the neighbor particles j for
each 7" particle (part a). Once the neighbors are identified, the interaction vectors I, and I,
(part b) are computed for each pair of ", and 7 neighbor particles and their difference A, isused
to compute the flux exchange between the neighbor particles (part c). The variables are then
updated, and the same process is performed for the next time step. The simulation flowchart is
shown in Figure 2.6. For both CPU and GPU versions, computing interaction vectors features the
highest computational cost, with over 60% of the total running time. As it will be discussed later
in chapter 3, ensuring that this part is efficient is key for speeding up GPU-SPHEROS.
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Figure 2.6. The flowchart of numerical simulation with SPHEROS or
GPU-SPHEROS. For both codes, the pie chart represents the ratio
of running time for each part of the code (after optimization),
represented by their respective color, to the overall time.
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Figure 2.7. a) A warp has coalesced access to data elements with the minimum
required memory transactions within a single memory block, and b)
The data access pattern by a warp is not fully coalesced, and more
memory transactions are required for requested loads or stores.
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Algorithm 2.1. GPU-SPHEROS overall algorithm has three main parts, including
a) particle neighbor search, b) computing interaction vectors and,
c¢) computing forces and fluxes as well as integration in time.

01: for each time step ¢ do

02: for all particles i do in parallel

03: Find all the neighbor particles j (using an octree-based algorithm)
04: end

05: for all particles i do in parallel

06: for each neighbor j do

07: Compute interaction vectors with spherical-support kernel
08: end

09: end

10: for all particles ¢ do in parallel

11: for each neighbor j do

12: Compute momentum, mass and volume flux

13: Compute turbulence kinetic energy and dissipation flux
14: end

15: end

16: for all particles 7 do in parallel (using second-order Runge-Kutta scheme)
17: Update volume, mass, momentum

18: Compute density and velocity

19: Compute pressure from the Tait equation of state

20: Update particle position and velocity

21: Update turbulence variables

22: end

23: t < t+ dt

24: end

2.3 3-D FVPM implementation for GPU

2.3.1 General implementation consideration

The running time of a kernel is limited either by the GPU computational power or by the
memory bandwidth. A kernel is called memory-bound (or bandwidth-bound) if its performance
is limited by GPU bandwidth due to a large number of memory accesses per data element.
For such kernels, the primary performance optimization strategy consists in storing the data
in the fast but smaller GPU memory resources such as shared or constant memory to reduce
memory latency and maximize hardware bandwidth usage [43]. Memory access can be further
optimized by using a coalesced pattern. Shared memory can also be used to avoid uncoalesced
memory accesses by loading and storing data from global memory in a coalesced pattern. The
memory has a coalesced access pattern if load and store addresses from a warp are in the same
memory block in which the warp accesses the data elements with minimum number memory
transactions (e.g., four 32-byte transactions for a 128-byte memory block). A schematic of a
coalesced and scattered memory access by a warp is shown in Figure 2.7.

On the other hand, a kernel performance is limited by GPU computational throughput if there
is a large number of floating point operations per data element access. The kernel is then called
compute-bound, and the number of concurrent threads per SM is mainly limited by register
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count [43]. The primary optimization strategy comprises reducing the register pressure by
using shared memory and data caching. The register pressure is intensfied by increasing the
number of registers, which are required to hold all the per-thread private data. When register
pressure is too high, and there are not enough physical registers to hold all the variables,
registers are spilled into caches and then into the local memory, which is off-chip and has the
same latency as global memory. Reducing register pressure can prevent register spilling.

GPU-SPHEROS is developed and optimized for/on NVIDIA® Tesla™ P100 (see Table 1.1 for
P100 technical specifications). P100 takes advantage of High-Bandwidth Memory (HBM)
technology as well as improved unified memory which enables the programmer to access both
the CPU and GPU memory with a single pointer by automatic data migration between host
and device physical memories. Unlike the previous architectures, Kepler and Maxwell, in
Pascal, the GPU addressing capacity has been extended to 49-bit virtual addressing in Pascal
architecture, which is sufficiently large to also cover modern CPUs 48-bit virtual addressing
spaces as well as the full memory of the GPU itself. The program can then access the full
address spaces of both CPU and GPU, which is not limited by device memory size anymore.
Unified memory technology is used in GPU-SPHEROS to simplify host-device memory
management [44].

2.3.2  Octree-based neighbor search

A Space-Filling Curve or SFC is a continuous function, which maps points from a multi-
dimensional space into one-dimensional. SFCs have been used by researchers for particle
nearest neighbor search [74], [75]. Bédorf et al. [72] developed a GPU-accelerated octree-based
code for N-body simulations using the Morton curve method. In GPU-SPHEROS, the
neighbor search implementation is based on the work by [72], using Morton keys to give a 1-D
representation of the original 3-D coordinate space. After all the Morton keys have been
computed using bitwise interleaving of particles coordinates P = P(z,y,2) (see Appendix C),
the particle data are sorted in increasing Morton key order, using the Thrust radix sort
algorithm, and given an ID corresponding to their location along the Morton curve. This
reordering improves data access efficiency by achieving a z-ordered particle distribution in
memory.

Space is then partitioned into sub-spaces called branches using an octree, constructed
recursively (see Algorithm 2.2). For this purpose, several levels of bitwise masking are applied
to the particles Morton keys PM,. The first level mask is a 64-bit unsigned integer starting
with the three most significant bits on (i.e., one), and the rest off (i.e., zero) and the mask is
updated every level by setting the next three significant bits to one. For each level, the particles
with identical masked Morton key BM,; are assigned to the same branch. The number of
particles in each branch is computed using the parallel stream compaction algorithms provided
by the Thrust library. If the number of particles in one branch is less than the adjusted limit,
Neas, that branch is called a leaf and is not further split. The binary masking and particles
grouping process is repeated sequentially for every level until all the particles have been
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assigned to leaves or the maximal depth of the octree has been reached, whichever occurs first.
An example of a quad-tree generated with the Morton curve method for Ng, = 4 is shown
in Figure 2.8. The branches with N, < 4 are flagged as a leaf in which filled by light gray
and are not masked further. The other branches in which filled by dark gray and their particles
are masked in the next levels.

By construction, all the neighbors of a particle are located in its own leaf and in its leaf’s
neighbor leaves. This knowledge saves a lot of additional floating-point operations and memory
transactions, as the distance with particles belonging to other leaves does not need to be
computed. For each leaf /| containing the set of particles P, its neighbor leaves N(1) (including
itself) are identified and stored, as illustrated in Figure 2.9. The particles data are then passed
to a kernel that computes the physical distance between the particles and identifies the

sth

neighbors of all the particles in 2. If /* and i* particles are neighbors, the ID of j is saved into
the neighbor list of the # particle, NGB,. Since the positions of the particles are updated each
time-step, the neighbor search process must be performed every time-step. A new Morton
curve is computed in every search process, and the particles IDs are renewed. The search

algorithm is summarized as Algorithm 2.3.

______ ————=> Mask: 111 000 000 ...

/

First level

N ——r X SN S e ——— — — — + Mask: 111 111 000 ...

Second level

Figure 2.8. Quad-tree generated with the Morton curve method for 28 particles
with Ng, = 4 (left) and schematic representation of the
corresponding tree (right). For particle grouping into branches, their
Morton keys are masked at each level by the corresponding level
mask. The particles with the same masked keys will be grouped in
the same tree branch.

30



Chapter 2. GPU-SPHEROS

Algorithm 2.2. Recursive octree construction based on the Morton curve method

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
13:
14:
15:

Construct octree (branch, level):
for each particle i in branch do in parallel
Apply the current level bitwise mask to particle Morton key PM,;
Save masked keys as branch Morton key BM;
end
Group particles with identical masked keys in identical branch
Count the number of particles in each branch with stream compaction algorithms
Tag the branches with more than /N, particles as nodes and the rest as leaves
if all the branches are leaves or maximum tree depth is reached then
break
end
for each node n, do in parallel
Construct octree (n, next level)
end

Algorithm 2.3.  Octree-based particle neighbor search in GPU-SPHEROS

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:

for each particle i do in parallel
Generate particle Morton key PM; (see Appendix C)
end
Reorder data based on generated Morton keys PM, (with Thrust parallel sort algorithm)
Construct octree (all particles, level 1) [based on Algorithm 2.2]
for each leaf I do
Find neighbor leaves N(l)
Identify particles Pyy > Pr located inside neighbor branches in parallel
for each particle j in Py do in parallel
for each particle iin P, do
Check the physical distance between i and j
if i and j are neighbors then
Save j in NGB, the neighbor list of particle i
end
end
end
end
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Figure 2.9. To find the neighbors of all the particles in P set (in blue), only the
distances with particles in Pyq set need to be checked. Py set
comprises the leaf itself with blue particles and its neighboring leaves

with orange particles.

h

Figure 2.10. After identifying the spherical caps C; formed by intersecting 4"
particle with each of its j” neighbors individually, the steps for
computing interaction vectors are: a) computing vertices pjx defined
as the intersection of the particle of interest and two of its neighbors,
b) constructing arcs A; joining the vertices, ¢) computing the
elementary surfaces S. delimited by the arcs and, d) computing the

area of each elementary surface e [35].

2.3.3 Computing particle interaction vectors

In GPU-SPHEROS, the interaction vectors I', and T'; are computed based on the method
introduced by Jahanbakhsh et al. [35] in which each individual particle is defined by compact
spherical support. Each support is intersected by its neighbor supports, and the partitioned
surface has to be computed to find the elementary surfaces and area vectors required for the
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Algorithm 2.4.  Computing interaction vectors for 3-D FVPM with spherical-support
particles on GPU [35]

01: if the initial time step then

02: for each particle i do

03: allocate memory pool based on predefined upper bound values
04: end

05: end

06: divide the particles into B, batches
07: for each batch B do

08: for each particle i belonging to Br do in parallel

09: for each neighbor particle j do

10: find the spherical cap C;

11: end

12: end

13: for each particle i belonging to B do in parallel

14: for each cap C; do

15: for each cap Cy do

16: find the two intersecting vertices pjx of the surface circles
17: end

18: end

19: end

20: for each particle i belonging to batch Bi do in parallel
21: for each cap C; do

22: construct arc sets Ay defined by all vertices pi
23: end

24: end

25: for each particle 1 belonging to B do in parallel

26: for all each arc set A; do

27: partition the spherical cap Cjinto the elementary surfaces e
28: end

29: end

30: for each particle i belonging to Br do in parallel

31: for each elementary surface e do

32: compute the area vector S, and surface area S, of e
33: end

34: end

35: for each particle i belonging to Br do in parallel

36: for each neighbor particle j do

37 compute interaction vector IT'; as in Eq. (2.22)
38: end

39: end

40: end

interaction vectors computation. The overall procedure to compute the interaction vectors is
illustrated in Figure 2.10. Readers are referred to [35] for the exact FVPM with spherical-
support top-hat kernels, the formulation, and procedure. Several non-concurrent CUDA
kernels have been implemented to perform these computations. By launching each kernel, one
thread per particle is released, which is responsible for performing all the required
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computations for its particle. Since the size of vertices, arcs, elementary surfaces, etc. are
determined during the runtime, an estimated fixed-size upper limit memory is pre-allocated,
and the particles are then grouped into smaller batches, and the batches are released
sequentially to perform the parallel computations for each batch. The maximum batch size is
limited by the hardware available physical memory. More details are given in the next chapter.

Algorithm 2.5. Computing fluxes, forces, and updating variables with second-order
Runge-Kutta temporal scheme

f=>[(pC®%-pC®C) -p, +s,]-A -p, B,

m, = Z [(p)’(—pC)ij - RJ . Aij

i

(771,'19),« = ZH(;J + g")Vk) - (pk(C - x))//‘l A+ (1—'; -D, )f V.
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01: for all particles i do in parallel

02: for each neighbor particle j do

03: compute momentum and forces using (1)

04: compute mass flux including the smoothing mass flux term R;; using (2)
05: compute turbulence fluxes using (3) and (4)

06: compute volume flux using (5)

07: end

08: end

09: for all particles i do in parallel (using second-order Runge-Kutta scheme)

10: update mass m, , volume V;, and momentum m.C,

11: update turbulence kinetic energy %, and dissipation ¢, (or eddy frequency w, )
12: compute particle velocity C and density p

13: compute particle pressure p, from Tait’s equation of state

14: compute particle velocity X, and update particle position x.

15: end
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2.3.4 Computing forces and fluxes

Once the neighbor list is identified and A; determined, the mass, momentum and volume fluxes
are computed for all the particles by solving the discretized equations presented in section
2.1.2. The CUDA kernels release one GPU thread per particle to compute the fluxes and
update the variables. For instance, the thread, which is released for the fluxes of particle i is

responsible for computing all the flux exchanges between the i

particle and its neighbors j.
Unlike for the interaction vectors, there is no particle batching in this part of the code, since
the memory requirements are limited and can be handled altogether. The algorithm for

computing the fluxes and updating the variables is summarized in Algorithm 2.5.

2.4 Discussion

In this chapter, the discretized governing equations, as well as the implemented parallel
algorithms, were presented. 3-D FVPM has been ported into GPU from scratch by designing
the embarassignly parallel algorithms fitted to GPU many-core architecture. The method is
conservative, zero-order consistent, and first-order accurate. Thanks to FVPM ALE-based
formulation, the particle motion is handled with an arbitrary velocity in which the particles
can be either fixed in space or move with an arbitrary velocity. This results in more flexibility
in handling transient free surface problems with moving boundaries. A particle velocity
correction term is used to achieve a reasonably uniform particle distribution which can have
a significant impact on the errors. The particle interaction vectors I'; and I'; are computed
based on spherical particles intersection and used to weight the conservative flux exchange.
Unlike cubic-supported particles, the interaction between the spherical particles is free of
directionality yielding a smooth interaction, although the overall algorithm is more

sophisticated and expensive.

To model the turbulence effects, the transport equations for turbulence kinetic energy and
dissipation rate have been discretized with ALE-based FVPM. The wall function approach is
implemented and utilized for near-wall computations. Unlike k-& turbulence model, for k-@
SST, the nearest wall distance is required to switch over between low-Re k-@ and high-Re k-¢
via a blending function. This computation is performed at every time step via an iterative
Poisson solver, which results in an extra computational cost. However, for high y* values, i.e.,
y* > ~30, SST will switch to k-& formulation which is dominated. Standard or realizable k-&
can, therefore, be used in such a case for computational efficiency without the costly nearest
wall distance computation. For problems with fixed particles, i.e., x =0, the nearest wall
distance and interaction vectors need to be computed only once, and the method will become
significantly cheaper in terms of computational cost. However, a setup with moving particles
is mainly required to handle the physics with transient free surface and/or moving boundaries.

Being embarrassingly parallel, the algorithms enable massive parallelization on GPU many-
core architecture. Once the parallel algorithms are chosen/designed carefully, the data access
in memory should be thoroughly managed to the best use of GPU high memory bandwidth.
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To improve the data locality and memory access efficiency, the data is reordered in memory
every time step based on the Morton curve approach. An octree-based particle neighbor search
featuring GPU well-suited tree construction and traverse algorithms have been implemented
for GPU. Once the octree constructed, the neighbor list is generated based on the saptial
distance check between the particles in a branch and all its neighbor branches, including itself.
The distance check is the most costly task of the overall neighbor search procedure and is
performed by a user-developed kernel. The Thrust and CUSP parallel algorithm libraries have
been utilized for programming productivity. The overall interaction vectors computation
process is performed by synchronized consecutive kernels each one handling a subpart of the
overall algorithm. The Kernels are synchronized, and all the data structures in memory are
managed by CUDA unified memory. The flux is computed and weighted by interaction
vectors, and the particle variables are updated with a second-order Runge-Kutta scheme.
Separate individual kernels are launched to process each part of the computations such as
computing gradients, computing fluxes, and forces, and updating variables and one thread per
particle is released to perform its particle computations. The computations are entirely
performed on GPU avoiding expensive host-device interaction except for the saving purposes.

Once all parts of the overall algorithm implemented for GPU, the code is profiled to determine
the main performance bottlenecks. The neighbor search and computing interaction vectors,
which altogether constitute 95% of the overall running time, remain the priority for
optimization. The performance analysis is performed within a roofline performance model in
the next chapter. The code is optimized based on the determined performance limiters, i.e.,
whether the hardware bandwidth or computational power. Once the solver optimized, the
developer/user will be able to perform a series of standard test cases to validate the solver.
The test cases should cover both laminar and turbulent internal and free surface flows for both
fixed and moving particles.
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Performance Optimization and Solver
Validation

In the present chapter, the computational performance of the code is analyzed within a roofline
performance model. The performance limiters are determined, and the code is optimized by
applying proper optimization techniques. The validity of the solver is then evaluated for five
test cases including both internal and free surface flow configuration, i.e., 7) lid-driven cavity,
i) flow in a circular pipe, 77) open channel flow, 7v) impinging jet on a flat plate, and v) jet
deviation by rotating Pelton buckets. The validated solver is used in the next chapter for
numerical simulation of a multi-jet Pelton turbine flow as an industrial-size application.

Part of this chapter is a reproduction and modification of a published peer-reviewed research
article [95].

3.1 Performance assessment

3.1.1 Roofline-based performance analysis approach

In computer science, the roofline is an intuitive performance model which incorporates the
computational throughput and memory bandwidth into a single log-log chart to provide an
insight into the maximum achievable performance. The chart is described by Operational
Intensity OI, expressed in Flop per byte, and computing throughput in Flops per second, i.e.,
Flops. For a particular multi-core or many-core architecture, the corresponding roofline is
unique to that architecture and is derived based on the hardware maximum throughput and
theoretical memory bandwidth. The roofline analysis approach can then be used to determine
whether the application performance is limited by device memory bandwidth or peak
performance. For a kernel (or application), Ol is derived from dividing the number of floating-
point operations performed by that kernel w by memory traffic ¢ fetched by running the
kernel [76], [77]:

m:% (3.1)

For large OI values, the performance of the application is limited by the GPU peak throughput
(so-called peak performance) shown by 7, while for small OI, the bottleneck is data access,
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and therefore, the performance is limited by £ x OI in which £ is the GPU maximum
bandwidth.

107 computation limit 7= ]
@
Kernel B |
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1072 107! 10° 10! 102 103 10*

Ol [Flop B

Figure 3.1. A naive roofline model example. Kernels A and B are limited by GPU
memory bandwidth and theoretical performance, respectively.

® SPHEROS - optimized (Running on Intel® Xeon® E5-2690 v4)
® GPU-SPHEROS - optimized (Running on NVIDIA Tesla P100-SXM?2)
® GPU-SPHEROS - optimized (Running on NVIDIA Quadro K2000)
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Figure 3.2.  Performance of SPHEROS and GPU-SPHEROS on Intel® Xeon®
E5-2690 v4 vs. NVIDIA® Tesla™ P100 SXM2 16GB vs. NVIDIA®
Quadro K2000. Each marker color corresponds to its roofline.
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Table 3.1. SPHEROS and GPU-SPHEROS overall performance. The given
values correspond to the data shown in Figure 3.2.

Performance
Code Processor I [Flop BY] (GFlops
GPU-SPHEROS  (non-optimized) Tesla™ P100-SXM2 (5300 GFlops) 2.32 54.21
GPU-SPHEROS  (optimized) Tesla™ P100-SXM2 (5300 GFlops)  3.36 309.67
GPU-SPHEROS  (optimized) Quadro K2000 (37 GFlops) 3.36 16.10
SPHEROS (optimized) Xeon® E5-2690 v4 (582 GFlops) 0.23 6.79

A roofline plot can be used to determine the overall performance limiters for optimization
decisions. An example of a naive roofline model for Tesla™ P100 GPU is shown in Figure 3.1.
The horizontal line is the maximum achievable throughput while the inclined line is derived
based on the maximum bandwidth of the given GPU.

In the present research, the roofline analysis approach is used to evaluate the performance of
the kernels, in which the throughput is plotted against the Operational Intensity. The result
is then compared with the hardware-based theoretical bounds to determine the main

performance limiter.

GPU-SPHEROS has been optimized on/for an NVIDIA® Tesla™ P100 SXM2 16GB GPU
with GP100 hardware architecture. The overall performance of GPU code, GPU-SPHEROS,
compared to the CPU version, SPHEROS, is shown in Figure 3.2. To demonstrate the code
portability, the application was also run on NVIDIA® Quadro K2000 GPU with GK107
Kepler architecture even though Quadro K2000 is not designed for general-purpose computing.
The code, however, ran successfully for the smaller problems that were not limited by device
memory size. As indicated, on Tesla™ P100, the application is globally limited by the GPU
memory bandwidth based on the Tesla™ P100 theoretical roofline ceilings. The CPU version
has been run on Intel® Xeon® E5-2690 v4 Broadwell CPU without hyperthreading. All the
corresponding values are also provided in Table 3.1.

3.1.2 Performance profiling

GPU-SPHEROS performance has been profiled with NVIDIA® Profiler tool, nvprof, and the
CPU version has been profiled by Intel® Vtune™ profiler. The metrics given in Table 3.2 are
used to measure the memory efficiency and Flop throughput of each kernel. The kernel is
invoked many times by nvprof, and the performance measurements are averaged. The
optimization routine is proceeded with finding and optimizing the performance bottleneck.
Once the bottleneck optimized, the code is re-profiled, the new bottleneck is identified, and
the new optimization is applied. This procedure is an iterative routine and is continued until
satisfactory performance is achieved or there is not a remarkable potential for further

optimization, anymore.

The overall performance of the program, together with the performance of each part of the
algorithm, is shown in Figure 3.4a~d within Tesla P100 16GB naive roofline model. It appears
that the neighbor search kernel is compute-bound, whereas computing interaction vectors, as
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well as forces and fluxes, are bounded by GPU bandwidth. Since the interaction vectors
computations are performed by launching several non-concurrent kernels, the overall
performance is measured based on time averaging the kernel performances. Based on the
profiling results and identified bounds in the roofline model, specific optimization strategies
are applied. As shown in Figure 3.4a, the overall performance limiter is memory bandwidth,
and optimized code achieves almost 6% of the theoretical Double Precision (DP) peak
performance of the Tesla P100-SXM2-16 GB. However, almost 35% of the Tesla™ P100
theoretical bandwidth is efficiently used for the parts bounded by the memory bandwidth.
The achieved bandwidth is computed based on the device memory read and write transactions
over the measured kernel running time. The CUDA timer is used for accurate timing,.

3.2 Optimization

3.2.1 Octree-based neighbor search

The bottleneck of the neighbor search is the kernel, which computes the physical distance
between the particles. This kernel takes up to 85% of overall neighbor search time and is
considered as a compute-bound kernel with high OI based on Figure 3.4b. Optimizing this
kernel helped to accelerate the neighbor search on GPU, dramatically.

The most effective optimization technique for this kernel consists of storing the data of
particles set P, in shared memory. These data are used as many times as there are set of
particles in Pyg. Therefore it is essential to ensure fast access to them. With the use of shared
memory, the kernel has fast access to these data with almost one hundred times lower latency
than global memory, without having the number of concurrent threads limited by the number
of registers or unified cache resources. The data cached by shared memory can be accessed by
all the threads inside the same thread-block when needed. By default, GP100 Pascal caches
global loads in the unified cache acting as a coalescing buffer for memory accesses [44].

The “gather” algorithm of the Thrust library [79] has been used to provide a coalesced memory
access by the kernel to the set of particles Pyy. The Pyy particles data set are copied into a
destination range according to a coalesced map. This task is efficiently handled with
“thrust::gather” parallel algorithm. A temporary ID mapping the data to a contiguous memory
location is attributed to each particle (see Figure 3.3). The temporary copy and ID are then
passed into the kernel which will run faster than if the original data order was used. Even
though “gathering” improves the performance of the kernel by improving the memory accesses
performance, an extra cost is imposed by copying operation. However, the reported data in
Figure 3.4b illustrate the cumulative performance gain in which this cost, which is almost 31%
of the kernel performance gain after gathering, is included.
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Figure 3.3. Schematic of data gathering to a contiguous temporary memory location

before passing to the kernel.

Table 3.2. The used metrics for memory efficiency and Flop performance
measurements on NVIDIA® Tesla™ P100 with compute capability

6.0 [78].

Metric Description

flop_dp_efficiency Ratio of achieved to peak double-precision floating-point
operations

achieved occupancy The ratio of the average active warps per active cycle to the
maximum number of warps supported on a multiprocessor

branch_efficiency The ratio of non-divergent branches to total branches expressed
as a percentage

dram read transactions Device memory read transactions

dram write_transactions Device memory write transactions

gld efficiency The ratio of requested global memory load throughput to required
global memory load throughput expressed as a percentage.

gst_efficiency The ratio of requested global memory store throughput to required
global memory store throughput expressed as a percentage.

sm efficiency The percentage of time at least one warp is active on a specific
multiprocessor

warp_execution_efficiency The ratio of the average active threads per warp to the maximum
number of threads per warp supported on a multiprocessor

As an illustrative example, the optimization procedure for the neighbor search kernel on
NVIDIA® Tesla™ P100-SXM2 16GB has been presented in Table 3.3. Starting from v0, the
original kernel without any optimization, the optimization techniques have been applied in

three steps:
— v0 to vl: Reordering the data before passing into the kernel
— vl to v2: using shared memory and,
— v2 to v3: choosing an optimized thread-block size based on the experiments

Altogether, from v0 to v3, the optimizations provided a performance gain of over 22% of
NVIDIA® Tesla™ P100 16GB DP peak performance. The computational performance, as well
as other metrics measured by NVIDIA® profiler “nvprof”, are also shown in the table to help
a better understanding of the present performance gain. The profiling data imply a significant
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reduction in memory transactions as well as substitution of unified cache usage by shared
memory, which has shorter latency. Like Maxwell, GP100 features an entirely dedicated 64
kB of on-chip memory per SM, always available for shared memory meaning that applications
no longer need to select a preference of the L1 or shared split for optimal performance. This

was not the case for former architectures, Fermi, and Kepler [44].
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Figure 3.4.
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Naive roofline model of a) SPHEROS and GPU-SPHEROS (the whole
application) and each part of the algorithm, b) neighbor search, c)
interaction vectors, and d) fluxes and forces are shown in a theoretical
roofline model for NVLink-based NVIDIA® Tesla™ P100. This part is
only 5% of the overall running time and is not a performance bottleneck;

therefore, it has not been optimized for the moment.
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Table 3.3.  An illustrative example of the optimization procedure for the neighbor
search kernel on NVIDIA® Tesla™ P100-SXM2-16 GB GPU.

Metric version

v0 vl v2 v3
Flop DP Efficiency 8.5 % 9.7% 2710 % 30.8 %
Achieved Occupancy 356 % 352% 342 % 32.0 %
Device memory read transactions 179 731 44 467 48 735 48 743
Multiprocessor Activity 83.0% 834% 83.9% 90.5 %
Texture cache utilization High High Very Low Very Low
Branch Efficiency 100 % 100 % 100 % 100 %
Registers per thread 32 34 40 40

Altogether, a performance of more than 30% of Tesla™ P100 peak performance has been
achieved for this compute-bound kernel. The performance of the particle neighbor search,
before and after optimization, has been reported in Figure 3.4b in the roofline model. As shown
in this figure, the operational intensity of the algorithm remains the same before and after
optimization, which reveals that both kernels perform the same number of floating-point
operations with the same amount of used data. However, the memory usage has been
optimized, employing the aforementioned optimization techniques.

3.2.2 Computing interaction vectors

Several non-concurrent CUDA kernels have been implemented to perform different parts of
interaction vectors computations (see section 2.3.3). By launching each kernel, one thread per
particle is released, which is responsible for performing all the required computations for the
particle.

For CUDA applications, to mitigate performance penalty due to expensive allocation and de-
allocation operations, it is critical to reuse and/or sub-allocate device memory by the
application wherever possible. Since the number of vertices, arcs, and elementary surfaces for
interaction vectors computation depends on the local particle distribution, the size of the
corresponding vectors is not fixed and is determined at run-time for each time step. To avoid
inefficient dynamic memory operations, e.g., allocation, de-allocation, resizing, an upper-bound
of the required memory is initially estimated and based on this estimate, a large block of fixed-
size memory called memory pool, is pre-allocated for each particle. This upper-bound memory
setting is based on the geometrical criteria for spherical intersecting particles and experience
gained by the author in numerical simulations done by SPHEROS. Therefore, the bounds are
chosen according to the developer/user experience to ensure that the simulation will not crash
whilst minimizing the unused memory. For instance, in FVPM-based numerical simulations,
each particle has typically between 20 and 40 neighbors and for most particles; this number is
close to 27. Indeed, the number of neighbors for a particle goes higher than 40, very rarely.
Therefore, the upper-bound value for neighbors of each particle can be set to ngbm. = 50,
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Figure 3.5. A sufficiently large memory block, here called memory pool, is

pre-allocated for each vector before launching the kernels. Although a
considerable part of global memory is occupied, with an unused part
(shown in dark gray), the costly dynamic memory operations (allocation
and de-allocation) are efficiently avoided.

which is indeed, a safe enough value. The upper-bound values for vertices, arcs, elementary
surfaces, etc., are also adjusted similarly. The reader is referred to [35] for more details on
intersecting spherical particles.

The kernels then perform the computations for a batch of particles in parallel, with subsequent
batches released sequentially until all the interaction vectors have been computed. A schematic
of the batching process and memory pool is shown in Figure 3.5. The batch size can
significantly affect the performance: for small batches, the GPU is not filled, but the batch
size is limited by the GPU global memory size. The performance of the application as a
function of batch size is shown in Figure 3.6.

As shown within the roofline (see Figure 3.4c), computing the interaction vectors is
bandwidth-bound. In the original non-optimized implementation of this algorithm, all the
required computations are performed by a single kernel. Due to the full range of operations
involved, the first optimization step consists in dividing this kernel into several smaller ones
invoked sequentially. Much fewer memory and floating point operations are then performed
per kernel, and the GPU resources are used more efficiently with more parallelism. For this
bandwidth-bound part, providing an efficient memory access pattern can significantly improve
the performance. As shown in Figure 3.4c, the vertical distance between the non-optimized
kernel performance and the roofline limits indicates that the original implementation suffers
from an immense memory transaction latency. and the first treatment to reduce the latency
is to improve the access pattern of the data stored in the memory pool. The data inside the
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Figure 3.6. The memory occupied by a batch based on the corresponding batch size

(left). Efficient batching when computing the interaction vectors has a

dramatic effect on the overall performance of the solver (right).
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Figure 3.7.  Achieved speedup (left) and solver throughput (right) on a single
NVIDIA® Tesla™ P100-SXM2 16GB GPU vs. a dual-setup Broadwell
CPU node with two Intel® Xeon® E5-2690 v4 and 28 total physical cores.

memory pool are stored in 1-D; 2-D, and 3-D arrays format. The original memory pool
implementation features a natural selection of index order for multi-dimensional arrays. For
instance, the ID of vertices located on each cap is stored in a 3-D integer array called
«capVerIds [pId] [cId] [vId]» in which, «pId», «cId» and «vId» denote the particle,
cap and vertex indices, respectively and since each thread is released for a single particle, the
accessing pattern to «capVerIds» by the kernels will be strided. However, by inverting the
indices order, i.e., «capVerlds [vId] [cId] [pId]», the consecutive threads will access the
words in a coalesced pattern. The warp threads can then share their transactions, and the
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performance is significantly improved (see Table 3.3c) due to a significant reduction in memory
operations. This modification has been considered as a general strategy for all the arrays
appearing in the interaction vectors computations such as vertices, arcs, elementary surfaces,
area vectors, etc. In general, as any 2-D or 3-D array is translated into a 1-D array of data in
memory layout, the order of access should be programmed carefully to avoid any performance
drop due to a significant rise in memory transactions.

Further performance improvement has been achieved by simplifying the algorithm for
computing the elementary surfaces e. In this algorithm, a large number of set intersections
and differences are employed to construct the arc sets representing the elementary surfaces
[35]. In the original implementation, the intermediate variables appearing during the process
are stored in the memory pool to be re-used afterward. However, in the improved version, the
loops inside the algorithm are merged in such a way that intermediate variables are not stored
in the memory pool anymore which again results in a remarkable reduction in memory
transactions. Since in the optimized version, the number of memory transactions is lower than
in the original algorithm, the operational intensity is increased. This explains the horizontal
shift in the roofline model in Figure 3.4c.

Minor optimizations, including inlining small device functions to eliminate the overhead
associated with the function call and tuning the thread-block size also helped to improve the
performance. Further optimization, such as the techniques for memory-bound kernels
mentioned in section 2.3.1, can also be used to optimize individual kernels, but this has not
been done at this point.

3.2.3 Flux computation and time integration performance

As shown in Figure 3.4d, the performance of the kernels computing the forces and fluxes and
forces and integrating in time is close to the bandwidth limit, similar to optimized kernels for
computing interaction vectors. Therefore, no optimization has been carried out for this part.
Furthermore, this part represents only 5% of the overall running time and is therefore not a
performance bottleneck. The algorithm is given in Algorithm 2.5.

Table 3.4. Intel® Xeon® E5-2690 v4 vs. NVIDIA® Tesla™ P100-SXM2-16 GB vs.
NVIDIA® Quadro K2000; the specifications. The retail selling prices
were surveyed on May 20, 2018.

Characteristics Quadro K2000 Intel® Xeon® E5-2690 v4 Tesla™ P100 16GB
Architecture GK107 Kepler Broadwell GP100 Pascal
FP64 peak performance 37 GFlops 582.4 GFlops @2.6 GHz 5 300 GFlops

Max. memory bandwidth 64.0 GB s 76.8 GB s 732.0 GB s
Number of cores 386 14 3 584

Launch date Q12013 Q12016 Q32016

Price ratio to E5-2690 v4 price 0.1 1.0 3.1
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3.2.4 Overall speedup

To measure the speedup, the performance of SPHEROS on a dual CPU node with two Intel®
Xeon® E5-2690 v4 Broadwell CPUs @2.6 GHz, featuring 14 cores and 28 threads per CPU is
compared to the performance of GPU-SPHEROS running on NVIDIA® Tesla™ P100 SXM2
16GB GPU. The specifications on both used CPU and GPU are summarized in Table 3.4,
and the speedup and software throughput is shown in Figure 3.7. As can be seen, the speedup
is about six times, and almost independent of the problem size. For comparison, the Double
Precision (DP) peak performance and maximum memory bandwidth of the GPU are almost
5 times higher than those of the CPU node. While it is true that the CPU software has not
been as carefully optimized as the GPU one, this result suggests that GPU-SPHEROS takes
great advantage of the hardware potential. The CPU Hyper-Threading (HT) was deactivated

for all the experiments.

3.3 Solver validation

3.3.1 Selected test cases

After optimization, the reliability of the solver for internal and free surface flow simulations is
validated by performing five different test cases: ¢) lid-driven cavity, ) turbulent flow inside
a pipe, ) turbulent open channel flow, 7v) an impinging jet on a flat plate and, v) water jet
deviation by a rotating Pelton turbine which are presented in this section.

Lid-driven_cavity : Once GPU-SPHEROS implemented, the validity of the solver is assessed
for laminar internal flow by simulating a lid-driven cavity. The computed horizontal velocity

profile along the cube vertical center-line is validated against the Ghia et al. [80] and Wong
and Baker’s [81] data for both 2-D and 3-D cases. The position of the particles are fixed in the
space during the simulation, the computational domain is uniformly gridded, and the mass
and momentum fluxes are weighted by interaction vectors and exchanged between the
neighbor particles. The simulation is performed at Re = 400, in which the turbulence effects
are negligible. Since the position of the particles is fixed, the neighbor list and the interaction
vectors are computed only once at the beginning of the simulation and method will be
significantly faster. Despite the simple boundary condition and geometry, lid-driven cavity
flow simulation can be challenging due to vortical flow formation and discontinuity.

Clircular pipe and open channel flow : Circular pipe and open channel are chosen as verification

test cases for turbulence implementation and integration into GPU-SPHEROS. Since the walls
are the main source of turbulence build-up, the developed turbulent boundary layer along the
pipe or open channel with a fixed turbulence intensity [, at the inlet can be a good test case
for verification of the model implementations. The pipe length is 10 times greater than the
pipe diameter to allow the turbulent boundary layer to develop [65], and the pipe shape is
circular in which the Boussinesq hypothesis for isotropy remains valid. Once the
implementation of the models validated for the developed pipe internal flow, the free surface

48



3.3 Solver validation

effect can be further verified within an open channel flow numerical simulation. The tests are
performed at Re = 10’000, which is computed based on the pipe diameter, D,;.. For all the
test cases, the velocity profile and turbulence kinetic energy at the end of the pipe are verified
against the ANSYS CFX commercial solver results.

Impinging jet on a flat plate: Impinging jet on a flat plate is chosen as a free surface flow test

case featuring hydrodynamics close to the Pelton turbine flow. Since the runner torque in a
Pelton turbine is mostly generated by the pressure forces, evaluating and validating the
predicted pressure accuracy is a crucial factor performed by this test case. The water jet is
perpendicular to the flat plate, and the plate is considered as an impermeable no-slip wall
boundary. The pressure coefficient C, is computed for both uniform and non-uniform jet
velocity profile along the center-line of the plate and the effect of the non-uniformity of the
velocity profile on the pressure peak magnitude is also covered by this test. The computed
pressure, as well as jet free surface elevation, are validated against the ANSYS CFX results
and available experimental data. Turbulence limiters are also applied to prevent excessive
turbulence build-up around the stagnant region.

Single jet Pelton turbine hydrodynamic: Once the pressure and free surface shape and elevation

validated within the former test case, the solver is prepared for numerical simulation of Pelton
turbine flow. The main purpose of this test case is to evaluate the solver applicability and
accuracy for the rotating Pelton flow simulation. A single water jet is injected into the
computational domain, and the rotating buckets are considered as no-slip wall boundaries.
The generated torque time-history is derived based on the computed pressure and shear forces.
To investigate the grid independence, the simulation is performed with three different spatial
resolution. The time-averaged overall torque is validated against available experimental data.
Similar to the impinging jet test case, the simulation is performed with both uniform and non-
uniform inlet velocity and turbulence intensity provided by [82]. Once the computed torque
validated against the experimental data, the solver can then be used for realistic and larger
simulations such as multi-jet rotating Pelton runner flow in off-design conditions.

3.3.2 Lid-driven cavity

The lid-driven cavity is a standard test case for viscous fluid flow. The flow is surrounded by
walls in a cube. The bottom and side walls are stationary while the top wall is moving along
the horizontal axis with a reference velocity (see Figure 3.8). The viscous shear force applied
by the moving wall leads to a complex vortical flow formation [20]. The benchmark solution
for 2-D and 3-D cavity, flows are provided by Ghia et al. [80] and Wong & Becker [81],
respectively. Since free surface or boundary deformation is not involved, the simulation is
performed with fixed particles without any particle motion. Since the flow regime is laminar
with Re = 400, no turbulence model has been used. The numerical and physical parameters
for lid-driven cavity simulation are given in Table 3.5, and the horizontal velocity profile along
the vertical axis centreline is compared to benchmark data in Figure 3.9.
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Figure 3.8. Schematic outline of the 3-D lid-driven cavity. The flow is surrounded in

a cube by wall boundaries. The bottom and side walls are stationary,
while the top wall is moving with a constant reference velocity C..; along
the horizontal axis. A vortical flow is therefore formed due to a shear
force applied by the moving wall boundary.

Table 3.5. The numerical and physical parameters for lid-driven cavity

parameter value
Courant number CFL 0.80
Particle overlap ratio Y 0.85
Velocity correction coefficient 4 0.125
Wall velocity Cwy 1.0 m-s!
Fluid density prer 1.0 kgm3
Dynamic viscosity Yz, 0.0025
Reynolds number Re 400

Turbulent flow inside a pipe

Two test cases: 7) flow inside a circular pipe and ) open channel flow has been carried out by
GPU-SPHEROS to verify the implementations of k-¢& and k-@ SST. All the validations are
performed at Re = 10* (computed based on pipe diameter), and the results are compared to
the FVM-based ANSYS CFX and Fluent results. The schematic of both test cases is shown
in Figure 3.10. Since the implemented eddy viscosity models have been widely validated for
different test cases during the past decades [66], the aim of these test cases is only to verify
the implementation of models and integration into ALE-based FVPM by comparing the
GPU-SPHEROS results to ANSYS CFX as a reliable commercial solver. Therefore, no
experimental data have been involved in the turbulence validation process.
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Figure 3.9. The horizontal velocity U profile along the vertical axis Z centreline for

2-D and 3-D lid-driven cavity with fixed particles with the 40x40x40 grid
at Re = 400. The benchmark data are provided by Ghia et al. [80] and
Wong & Baker [81].

Table 3.6. The numerical and physical parameters for pipe and open channel

flow.
parameter value
Courant number CFL 0.75
Particle overlap ratio Y 0.85
Velocity correction coefficient 4 0.125
Inlet velocity Cwy 1.0 m-s!
Inlet turbulence intensity Lurme 5%
Reference density pres 1.0 kgem™
Dynamic viscosity Yz 10 Pa-s
Reynolds number Re  10¢
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Figure 3.10.  Circular pipe (top) and open channel flow (bottom) verification test
cases. Since there is no particle to cover the gas phase in
GPU-SPHEROS, only the liquid particles are injected into the domain,
and the impact of the gas phase is neglected.

In this test case, the turbulent flow in a circular pipe has been simulated with k- and k-@ SST
turbulence models. The pipe length is 10 times greater than pipe diameter, which letting the
flow to develop (L = 10D = 10 m). The inlet velocity Cie is 1.0 m-s? (see Figure 3.10 top)
and the pipe treats as a no-slip impermeable boundary. The numerical and physical parameters

for pipe and open channel flow simulation are given in Table 3.6.

The turbulence variables are sampled at the end of the pipe, wherein the turbulent boundary
layer is fully developed [92]. Using ALE-based FVPM with both fixed and moving particles,
the predicted horizontal velocity Uand turbulence kinetic energy £ along the vertical centerline
are in good agreement with Eulerian FVM-based ANSYS CFX and Fluent results (see Figure
3.11 to Figure 3.13). The spatial resolution is 7, = 30 in which n, is defined as,

n o=— (3.2)

Given that the solver has been verified for fixed particles case in the standard model, the

realizable model is only verified for moving particles case.

For the test case with fixed-particle, the distribution of the particles is uniform during the
simulation, and the volume integral gradient approach, which is used to compute the velocity
gradients at the center of the particles, provides second-order accurate results. These gradients
are then used to compute the turbulence production P;. However, on the other hand, in the
case in which the particles are moving, the computed gradients are not 2'%“order accurate, but
first-order. The production term is then affected by this accuracy difference compared to the
fixed-particle case. Moreover, unlike the fixed-particle case, when the particles move, the
volume is changed due to the variant particle distribution. This induces an error compared to
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the fixed-particle case. However, since the mesh elements remain stationary during the
simulation, the fixed-particle setup is closer to ANSYS CFX setup.

0.40 r
— ANSYS CFX
0.20 + Fixed particles (standard k-¢)
Moving particles (standard k-¢)
0.00 : : ‘ :
0 0.1 0.2 0.3 0.4 0.5
r/D[-]
0.012 .
— ANSYS CFX
0.010 f Fixed particles (standard k-¢)
Moving particles (standard k-¢)

0.008 1

0.006 1

k/Cr, ]

0.004 1

0.002

0.000 ‘ ' ' ‘
0 0.1 0.2 0.3 0.4 0.5

r/D[-]
Figure 3.11.  Velocity profile (top) and turbulence kinetic energy k (bottom) of

developed flow inside a circular pipe with standard k-¢ at = L; FVPM
with fixed and moving particles vs. FVM.
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= = +ANSYS Fluent
0.010 - ——FVPM (realizable k-epsilon) R
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=
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0.002

0.000

Figure 3.12.  Velocity profile (top) and turbulence kinetic energy k (bottom) of
developed flow inside a circular pipe with realizable k-¢ at = L; FVPM
with moving particles compared to FVM.
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Figure 3.13.  Velocity profile (top) and turbulence kinetic energy k (bottom) of
developed flow inside a circular pipe with SST at x = L; FVPM with
fixed and moving particles compared to FVM.
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Figure 3.14.

56
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Velocity profile (top) and turbulence kinetic energy k (bottom) of open
channel flow with standard and realizable k- models at x = L; FVPM
with moving particles vs. FVM with fixed-size grid. The data have been
extracted from the wall (i.e., 7/Diama =0.5) to the free surface
(7/Deanna = 0.25).
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— ANSYS CFX
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Figure 3.15.  Velocity profile (top) and turbulence kinetic energy k (bottom) of open
channel flow with SST model at z = L; FVPM with moving particles
vs. FVM with fixed-size grid. The data have been extracted from the
wall (i.e., 7/Derannet = 0.5) to the free surface (7/Dehanna = 0.25).

For pipe flow simulation, pressure waves are generated due to the weakly compressible
hypothesis used in the FVPM method. These waves are reflected from the outlet boundary
and can significantly affect the solution [20]. To reduce these pressure waves, a sink term is
added to the right-hand side of momentum equation,

%( pV.C,)= Z[( pC®x-pC®C) -pl+s, | A -pB —s(x)(U -U,_) (3.3)

J

s(x,) is the damping strength which is defined as a linear function of z for the present case,

S(f) — 10 'Tz' zmin (34)

max min

where = and z__ denotes the minimum and maximum of z of the damping zone applied
to the pipe. The zone in which the sink term applied is called the damping zone. For pipe
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flow, to apply the damping zone, the pipe length has been extended by 20% and the damping
zone applied to the end of the pipe where x > 1.1L.

3.3.3 Circular open channel flow

The next test case is an open channel flow, which includes free surface effects. A schematic of
the test case is shown in Figure 3.10 (bottom). The velocity C and turbulence kinetic energy
k have been compared to ANSYS CFX solver results for implemented turbulence models. The
results show reasonably good agreement, although the FVPM particles are moving (see Figure
3.14 and Figure 3.15). Since GPU-SPHEROS is a single-phase solver, the gas phase is not
covered by the solver. On the other hand, in CFX, both gas and liquid phases are covered
with the two-phase flow model, and the free surface has been modeled with VOF'. The spatial
resolution for the open channel simulations is similar to pipe with n, = 30.

3.3.4 Impinging jet on a flat plate

Impinging jet on a flat plate is chosen as a free surface flow case featuring hydrodynamics close
to the Pelton turbine flow. The velocity, pressure coefficient C,, and free surface location are
validated against ANSYS CFX, and experimental data measured by Kvicinsky et al. [5]. The
jet particles are injected as an inlet boundary with n, = 30, and the simulations have been
performed with both uniform and non-uniform velocity profiles. The numerical and physical
parameters impinging jet simulation are given in Table 3.7.

Table 3.7. The numerical and physical parameters for the impinging jet test

case.
parameter value
Courant number CFL 0.75
Particle overlap ratio Y] 0.75
Velocity correction coefficient A 0.125
Reference velocity for uniform jet cmiorn 4.0 m-s*

ref

Reference velocity for non-uniform jet €™ 19.81 m-s?

Inlet turbulence intensity I . 5%

Fluid density Pref 10% kg-m™
Dynamic viscosity H 107 Pa-s
Reynolds number Re 10
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Figure 3.16.

Figure 3.17.

The reconstructed free surface of the water jet impinging on a flat plate
at Re = 1.2 x 10° with uniform inlet velocity profile €, =4.0 m s™.
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