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While experiencing happiness,

we have difficulty in being conscious of it.

Only when happiness is past and we look back on it

we do realize — how happy we had been.

— Nikos Kazantzakis

To my amazing family and my more than awesome friends.
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Abstract
Modern applications accumulate data at an exponentially increasing rate and traditional

database systems struggle to keep up. Decision support systems used in industry, rely heavily

on data analysis, and require real-time responses irrespective of data size.

To offer real-time support, traditional databases require long preprocessing steps, such as data

loading and offline tuning. Loading transforms raw data into a format that reduces data access

cost. Through tuning, database systems build access paths (e.g., indexes) to improve query

performance by avoiding or reducing unnecessary data access. The decision on what access

paths to build depends on the expected workload, thus, the database system assumes knowl-

edge of future queries. However, decision support systems and data exploration applications

have shifting requirements. As a consequence, an offline tuner with no a priori knowledge of

the full workload is unable to decide on the optimal set of access paths. Furthermore, access

path size increases along with input data, thus, building precise access paths over the entire

dataset limits the scalability of databases systems.

Apart from long database pre-processing, offering efficient data access despite increasing data

volume becomes harder due to hardware architectural constraints such as memory size. To

achieve low query latency, modern database systems store data in main memory. However,

there is a physical limit on main memory size in a server. Therefore, applications must trade

memory space for query efficiency.

To provide high performance efficiency, irrespective of dataset growth and query workload,

a database system needs to (i) shift the decision of tuning from off-line to query-time, (ii)

enable the query engine to exploit application properties in choosing fast access paths, and

(iii) reduce the size of access paths to limit storage cost.

In this thesis, we present techniques for query processing that are adaptive to workload,

application requirements, and available storage resources. Specifically, to address dynamic

workloads, we turn access path creation into a continuous process which fully adapts to in-

coming queries. We assign all decisions on data access and access path materialization to the

database optimizer at query time, and enable access path materialization to take place as a by-

product of query execution, thereby, removing requirements for long offline tuning processing

steps. Furthermore, we take advantage of application characteristics (precision requirements,

resource availability) and we design a system which can adaptively trade precision and re-

sources for performance. By combining precise and approximate access paths, the database

system reduces query response time and minimizes resource utilization. Approximate access

paths (e.g., sketches) require less space in comparison to their precise counterparts, and offer
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lower access time.

By improving data processing performance while reducing storage requirements through

(i) adaptive access path materialization and (ii) using approximate and space-efficient ac-

cess paths when appropriate, our work minimizes data access cost and provides real-time

responses for data exploration applications irrespective of data growth.
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Résumé
Les applications modernes accumulent les données à un rythme augmentant de façon expo-

nentiel et les systèmes de base de données traditionnels n’arrive pas à le suivre. Les systèmes

d’aide à la décision utilisés dans l’industrie reposent largement sur l’analyse de données, et

nécessitent des réponses en temps réel, indépendamment de leur taille.

Pour offrir un support en temps réel, les bases de données traditionnelles nécessitent de

longues étapes de prétraitement, telles que le chargement de données et des réglages fin de

leurs paramètres. Le chargement transforme les données brutes en un format de données

qui réduit les coûts d’accès à celles-ci pour la base de données. Grâce aux réglages fin, les

bases de données créent un ensemble de chemins d’accès (par exemple, des index) qui

améliorent les performances des requêtes en réduisant l’accès aux données. La décision

sur les chemins d’accès à construire dépend de la charge de travail future, ce qui implique

des hypothèses sur les requêtes à venir. Cependant, les systèmes d’aide à la décision et les

applications d’exploration de données ont des exigences changeantes. En conséquence, un

optimisateur hors ligne sans aucune connaissance a priori de la charge de travail complète

est incapable de décider de l’ensemble optimal des chemins d’accès. En outre, la taille des

chemins d’accès augmente avec les données en entrée, la construction de chemins d’accès

précis sur l’ensemble du jeu de données limite la capacité à monter en charge des systèmes de

bases de données.

En dehors des longues opérations de prétraitement, offrir des accès efficaces aux données,

et ce malgré l’augmentation de leur volume, devient de plus en plus difficile en raison des

contraintes matérielles et architecturales, telles que la taille de la mémoire et la bande passante

des bus de transfert de données. Les systèmes de base de données modernes minimisent la

latence des requêtes en stockant les données en mémoire principale. Cependant, il existe une

limite physique sur la taille de la mémoire principale dans un serveur. Pour remédier à cela,

certains systèmes stockent des données dans la mémoire de plusieurs serveurs et partage

leurs ressources, ce qui entraine des transferts de données sur le réseau. En utilisant cette

architecture, la performance des applications de traitement de données distribuées est limitée

par la latence d’accès aux données résidant sur de la mémoire distante.

Pour fournir de hautes performances de manières efficaces, et ce indépendamment de la

croissance du jeu de données ou de la charge de travail des requêtes, un système de base de

données doit (i) faire passer la décision des réglages fin hors ligne au moment de la requête,

(ii) permettre au moteur de requête d’exploiter les propriétés de l’application pour choisir des
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chemins d’accès rapides et peu encombrants.

Dans cette thèse, nous présentons des techniques de traitement de requêtes qui sont : adap-

table à la charge de travail, aux exigences des applications ainsi qu’à celles des architectures

des systèmes distribués. Plus précisément, pour traiter les charges de travail dynamiques,

nous transformons la création des chemins d’accès en un processus continu qui s’adapte

parfaitement aux requêtes en entrée. Nous attribuons toutes les décisions concernant l’accès

aux données et la matérialisation des chemins d’accès à l’optimisateur de la base de données,

au moment de la requête, ainsi la matérialisation peut avoir lieu comme un sous-produit

de l’exécution de la requête; supprimant par conséquent le besoin pour un long traitement

hors ligne pour effectuer les réglages fins. De plus, nous tirons parti des caractéristiques de

l’application (contraintes de précision, disponibilité des ressources) et nous concevons un

système qui peut échanger la précision et des ressources pour la performance. En combinant

chemins d’accès précis et approximatifs, le système de base de données peut réduire le temps

de réponse des requêtes tout en minimisant l’utilisation des ressources. Les chemins d’ac-

cès approximatifs (par exemple, les esquisses) nécessitent moins d’espace comparés à leurs

homologues précis, et offrent un temps d’accès constant.

En améliorant les performances du traitement des données tout en réduisant les exigences

de stockage via (i) la matérialisation des chemins d’accès adaptative, et (ii) l’utilisation des

chemins d’accès approximatifs, lorsque cela est possible, notre travail minimise les coûts

d’accès aux données et fournit des réponses en temps réel pour les applications d’exploration

des données, et ce indépendamment de la croissance de celles-ci.
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1 Introduction

An increasing number of applications in various domains generate and collect massive

amounts of data at a rapid pace. Research fields and applications (e.g., network monitoring,

sensor data management, clinical studies, etc.) emerge and require broader data analysis

functionality to rapidly gain deeper insights from the available data. Despite the advancement

of computer hardware and data management technology during the past years, analyzing

and understanding all available data is infeasible in practice due to the data explosion of

the last decade. The increased complexity of workloads, with respect to predictability and

computation, combined with the ever-increasing datasets, pose challenges to traditional data

management solutions.

1.1 The need for data exploration

There is an increasing trend appearing in applications, ranging from information retrieval to

human-computer interaction and visualization communities, in moving beyond the tradi-

tional query-browse-refine model supported by database systems, and towards support for

human intelligence amplification and information understanding. To enhance user experi-

ence, such applications employ data exploration [64]. In data exploration scenarios, users

explore available data iteratively for actionable information, trying to assess the problem

space before making a decision [27, 28, 53, 64, 77]. Typically, each query is formulated based

on preceding queries and their results. The performance of a data exploration application

is determined by its ability to process data in a timely manner maximally utilizing available

computational resources [16].

• Interactivity. For data scientists low response time is known to increase productivity. A

recent study [83] shows that even small delays (more than 500ms) significantly decrease

user’s activity level, dataset coverage and insight discovery. Thus, low response times are

of high importance. Furthermore, extracting useful information from data the moment

it is available is important, as data could lose its value with time.
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• Resource utilization. Due to the increasing data processing work, many companies and

organizations move their data analytics workloads to the cloud, where they are charged

based on resource utilization. In order to reduce the cost of data processing, applications

must minimize resource utilization, take full advantage of available resources, and be

elastic to the available resources.

Traditional DBMS approaches are designed based on a predefined information demand,

meaning that the analytical queries they support are fixed in advance to what their predefined

setup allows. Essentially, a DBMS is designed to efficiently answer a specific set of queries.

However, in exploratory search, the information demand is unknown a priori, and the goal

of the search is also to enable the discovery of aspects unknown during design time. The

dynamic nature of exploratory workloads, with unpredictable query patterns, poses a new

challenge to database systems, since optimal physical design becomes a moving target rather

than a one time investment. With the query workload and data accessed being highly diverse,

complete physical design re-calibration may turn out to be an unprofitable investment for

future queries.

1.2 The effects of increasing data volume

Data collections are ever-increasing in size. To illustrate, the amounts of machine-generated

data are, per one estimate [66], increasing by a factor of 44 each year, and are estimated to reach

the value of 35 ZB by 2020. Given the data sizes involved, any transformation, copying, and

preparation steps over the data introduces substantial delays before the data can be utilized

and queried [3, 10, 65]. However, recent studies of data analysis workloads show that typically

only a small subset of the data is relevant and ultimately used by exploratory workloads [86].

Furthermore, due to the growth of data volume, databases store data in multiple formats and

on hardware with varying access latencies. Furthermore, any investments toward auxiliary

data structures improving data access become increasingly expensive both in execution time

and storage space. In conjunction with the costly construction, when going through never-

before-seen data, no assumptions can be made about the data or the queries. A user may

become interested in different value ranges and/or attributes. Workload shifts may nullify

investments towards auxiliary data structures because predicting in which areas of the dataset

to invest is non-trivial. Furthermore, conventional approaches require building full and

precise indexes whose size increases linearly with the size of data thus require increasingly

more space. Thus, the ever growing datasets pose two challenges on conventional DBMS

approaches:

• Filtering relevant data. To enable high performance analytics, conventional DBMS

physical design approaches build and maintain auxiliary structures to reduce data

access. However, the size of such auxiliary structures increases linearly with the size of

data thus creating scalability problems.
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• Storing and Accessing data. Modern DBMS store increasingly more data in memory to

have low-latency access. However, the use of high-density DRAM chips to sustain the

ever-growing needs for memory increases energy costs.

1.3 Thesis statement and Contributions

In this thesis we demonstrate that the conventional database physical design and data access

approaches are insufficient to cover the need of modern analytical workloads. The current

paradigm of fully loading the data, tuning the system with complete and precise auxiliary

structures which aims to provide the desired interactive nature of analysis, has become a

bottleneck. Database systems must fully adapt to the dataset, workload characteristics, user

requirements and modern hardware. Thus, a database system must relax requirements such

as pre-loading data and using full and precise auxiliary structures and take full advantage

of the underlying hardware by being aware of the system architecture. By allowing partial

and approximate data access, database systems can automatically trade storage space and

precision for performance and vice versa.

Thesis statement

Traditional query processing relies on static assumptions about workload, dataset, and storage

characteristics, thereby requiring applications to invest significant time and space pre-processing

data. Building data access paths adaptively based on data and workload characteristics, as well

as accuracy requirements, improves query processing performance and efficiency.

1.3.1 Towards Adaptive Data Access Methods

As data-centric applications become more complex, users face new challenges when exploring

data, which are magnified with the ever-increasing data volumes. Database systems must

embrace adaptivity and provide adaptive query processing approaches to enable efficient

execution of shifting workloads. Data access methods have to dynamically adapt to evolving

workloads and take advantage of relaxed accuracy requirements. Furthermore, query process-

ing systems must be knowledgeable of available resources and maximize resource utilization

thereby reducing waste. To this end we make the following contributions:

1. Adaptive indexing for in-situ query processing To achieve efficient data access despite

dynamic workloads, we utilize state-of-the-art in-situ query processing techniques

to minimize data-to-query time. Furthermore, we introduce a fine-grained logical

partitioning scheme and combine it with a lightweight indexing strategy to provide near-

optimal raw data access with minimal overhead in terms of execution time and memory

footprint. To reduce the index selection overhead we propose an adaptive technique for

on-the-fly partition and index selection using an online randomized algorithm.
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2. Adaptive data exploration using approximate access paths Data scientists tolerate im-

precise answers for better query performance [39]. We take advantage of the relaxed

precision requirements to enable scaling of access paths despite ever-increasing datasets.

Existing approaches [6, 70], either require full a priori knowledge of the workload to

generate the required approximate data structures or improve performance through

minimizing data access at query time. We design and demonstrate an adaptive approach

which generates synopses as by-product of query execution and re-uses them for subse-

quent queries. It dynamically decides upon synopsis materialization and maintenance

while being robust to workload and storage budget changes. To support interactive

query performance for ever increasing datasets and dynamic exploratory workloads

requires relaxing precision guarantees which enable the usage of approximate data

structures and reduces the size of stored and processed data.

These aforementioned contributions serve as a platform to show the following key insights:

1. Taking advantage of data characteristics in files can complement in-situ query process-

ing approaches by building data distribution-conscious access paths. Data properties

such as ordering or clustering enable the construction of access paths spanning parts of

a dataset reducing the cost of tuning and storage while minimizing data access costs

and further reducing the data-to-insight time.

2. Ever-increasing datasets make precise access paths very expensive to build and store.

Similarly, using data synopses as a drop-in replacement for indexes limits their benefits.

On the contrary, integrating synopses as a first-class citizen in query optimization and

by materializing synopses during query execution and re-using them across queries

improves scalability and reduces pre-processing.

3. Static tuning decisions can be suboptimal in the presence of shifting exploratory work-

loads. Adapting access paths online, according to the workload while adhering to

accuracy requirements is key to provide high query performance in the presence of

workload changes.

1.3.2 Thesis Roadmap

This thesis is organized as follows. Chapter 2 provides the necessary background on concepts

we utilize and extend in the context of this thesis. Chapter 3 shows how data access paths can

reduce the cost of data access and reduce the storage overhead by adapting to data distribution

and workload. Subsequently, Chapter 4 discusses how to speed-up query processing in

distributed systems by reducing result precision, with no preprocessing time, and how to

adapt to storage budget. Finally, Chapter 5 concludes the thesis.
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2 Background and Related Work

In this thesis we discuss the design of database management system components to support

exploratory query workloads. The large data volume and the lack of query predictability in

exploratory workloads has major impact on data storage and access, as well as on database

physical design. There is a plethora of background and related work regarding aspects which

are central to this thesis. Specifically, we first discuss how a database system stores and

accesses data and we motivate query processing over raw data files. Subsequently, we discuss

techniques related to database tuning and indexing. Finally, we discuss approximate query

processing techniques through sampling and sketching.

2.1 Data Access and Query Execution

Traditionally, database management systems (DBMS) designs assume data is stored and

accessed using a unique data format. However, the growing variety in data formats along with

the ever-growing data volume question the original paradigm creating alternative data access

approaches. Many research efforts re-design the traditional data management architecture to

address the challenges and opportunities associated with dynamic workloads and interactive

data access. In this section we briefly present the various alternatives.

2.1.1 Loading and Querying data

To enable querying a dataset, a database management systems requires initially loading the

dataset. Loading is a well-defined process describing the parsing and transformation of data

from its original data format into a proprietary format used by the DBMS. Loading is an

expensive process requiring time and storage space. Specifically, loading takes up a large

fraction of overall workload execution time in both the DBMS and Hadoop ecosystems [60].

Furthermore, when loading a dataset, a DBMS is creating a copy of the original data in the

DBMS-specific format, often requiring more space than the original dataset. Once the data is

loaded, the DBMS is able to execute queries and build auxiliary structures (e.g., indexes) to
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speed-up query execution. The internal operators of the DBMS are specifically implemented

to process efficiently only the DBMS-specific format, thereby are dependent on the loading

process.

2.1.2 Query processing over raw data files

The ever increasing variety and volume of data in many systems led to removing completely

loading and adapting a novel data access paradigm named in-situ. This approach, treats any

data format as a first-class citizen and internal database operators either use all data formats

as native or perform ad hoc transformations in a pipelined fashion.

In-situ systems. The first system introducing the in-situ paradigm into traditional databases

is NoDB, which treats raw data files as native storage of the DBMS, and introduces auxiliary

data structures (positional maps and caches) to reduce the expensive parsing and tokenization

costs of raw data access [10]. Extending NoDB, ViDa introduces code-generated access paths

and data pipeline to adapt the query engine to the underlying data formats, layouts, and to

the incoming queries [73–75]. Data Vaults [65, 71] and SDS/Q [22] perform analysis over

scientific array-based file formats. SCANRAW [34] uses parallelism to mask the increased CPU

processing costs associated with raw data accesses during in-situ data processing.

Scale-out raw data access. Hadoop-based systems such as Hive [110] can access raw data

stored in HDFS. While such frameworks internally translate queries to MapReduce jobs, other

systems follow a more traditional MPP architecture to offer SQL-on-Hadoop functionality [78,

87]. Hybrid approaches such as invisible loading [3] and Polybase [41] propose co-existence of

a DBMS and a Hadoop cluster, transferring data between the two when needed.

This Thesis: Enabling data filtering over in-situ systems. The work presented in this thesis

builds upon the in-situ paradigm and extends the design space. Specifically, in-situ DBMS

approaches either rely on accessing the data via full table scans or require a priori workload

knowledge and enough idle time to create the proper access paths. Our work, presented

in Chapter 3, augments in-situ approaches systems by enabling data skipping and indexed

accesses while constantly adapting its indexing and partitioning schemes to queries.

2.2 Physical Database Design

The performance of a database management system depends highly on its ability to minimize

data access. To achieve that, along the years database systems utilize a variety of different

constructs that reduce the amount of data a query has to access. We name such constructs

physical design structures. Multiple types of structures exist, such as indexes, partitions, and

materialized views. Despite reducing the amount of data access and speeding up queries,

these structures are expensive to build, store and maintain. In Section 2.2.1 we describe key
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structures and give details considering the cost of building and storing a physical design

structure.

The advent of dynamic workloads and the increasing volume of datasets increases the cost of

maintaining numerous physical design structures. To reduce this cost and to automatize the

process, DBMS vendors created automated tools enabling the construction and destruction of

such constructs as well as advisors suggesting which physical design structures should a DBMS

administrator construct. In Section 2.2.2 we give more details considering the challenges in

designing an automated physical design tuner.

2.2.1 Physical design structures

Every physical design structure improves the performance of a set of queries, and requires

pre-processing time and additional storage space. We describe three structures that are central

to this thesis along with key state-of-the-art implementations.

Indexes

A database index is a data structure that improves the speed of data retrieval. Indexes remove

the requirement for full scan searches and help quickly locate data. There is a vast collection

of index structures with different capabilities, performance, and initialization/maintenance

overheads [18, 19]. In the context of this thesis we sub-divide index structures into two

categories (i) value-position and (ii) value-existence indexes, that offer good indexing for

point and range queries. Value-position indexes map a value to its location in the file and

include the B+ tree and Hash indexes and their variations [17]. Common value-existence

indexes are Bloom filters [23], Bitmap indexes [20, 92, 106], and zone maps [88]. They are

lightweight and can provide the information whether a value is present in a given dataset.

Value-existence indexes are frequently used in scientific workloads [35, 108, 114]. For scale-out

systems, SQL Server PDW [49] and AsterixDB [11] propose indexes for data stored in HDFS and

for external data in general. Both approaches use similar techniques to single-node indexing

while addressing the problem of distributed datasets.

Materialized views

To speed-up query processing and reduce data access for predictable workloads, DBMS

pre-compute a set of results which are re-usable across many queries. These results are

called materialized views. Materialized view management involves three major problems: (i)

selecting and generating views, (ii) updates and (iii) utilization in a query.

Selecting and building views. Deciding on appropriate materialized views for a workload is a

non-trivial process. Materialized views require considerable space to be stored, thereby given

a storage budget, there is a limited number of materialized views that can be generated. The
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decision-making algorithm must trade storage for speed-up. The goal is to maximize speed-up

while adhering to the pre-defined storage budget. This process requires prior knowledge of

the workload (predicates, joins, query frequency etc.) as well as data distribution (to calculate

prospective view size).

Updating views. Materialized view maintenance requires considerable book-keeping. Update

heavy workloads require constant updates of views as updates on the original tables have to

be propagated to the views. Various techniques have been designed to address this issue [101].

View matching. Given a query and a set of materialized views, deciding whether any of the

views can speed-up the query is also non-trivial. Determining if a query can be computed

from a materialized view, the DBMS must ensure that (i) the materialized view must contain

all rows that are required by the query and (ii) to choose the best available view for this specific

query. Furthermore, utilizing view should speed-up queries thus, view matching has to be an

efficient process offering considerable speed-up.

Database Partitions

Given a relational table, it can be physically subdivided into smaller disjoint sets of tuples (par-

titions), allowing tables to be stored, managed and accessed at a finer level of granularity [82].

Deciding on partitions is non-trivial and depends highly on the data distribution and query

workload.

Assuming a predictable workload, offline partitioning approaches [8, 54, 94, 118] present

physical design tools that automatically select the proper partition configuration for a given

workload to improve performance.

On the other hand, when the workload is either unknown or unpredictable, online partition-

ing [68] monitors and periodically adapts the database partitions to fit the observed workload.

Furtado et al. [47] combine physical and virtual partitioning to fragment and dynamically

tune partition sizes for flexibility in intra-query parallelism. Shinobi [113] clusters hot data in

horizontal partitions which it then indexes, while Sun et al. [109] use a bottom-up clustering

framework to offer an approximate solution for the partition identification problem.

2.2.2 Automated Tuners

Database physical design is of paramount importance for database vendors. However, the

correct selection of structures which provide high performance for a system depends highly on

the database system administrator (DBA). In order to support the DBA decisions, database ven-

dors have developed automated tuners which either provide suggestions or make automatic

decisions on index construction.

Such tuners can be essentially divided into two categories depending on the decision making
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approach (i) offline tuners and (ii) online tuners. A third alternative to these two options

are physical design structures which automatically tune themselves when the workload is

evolving. We call this approach “adaptive tuning”.

Offline tuning. A typical offline physical designer tries to solve the following problem: Given

a workload W and a set of constraints C (e.g. storage budget), find a configuration P of

physical structures which satisfies the constraints C and minimizes the execution cost for

W . Most commercial DBMS vendors offer physical designers in their products (e.g., SQL

Server Tuning Advisor [32], DB2 Design Advisor [111], Oracle SQL Access Advisor [40, 42]). A

database administrator typically examines the output of the physical design process, verifies

the usefulness of the proposed configuration and decides what structures to create inside the

database. A physical tuner relies on the database query optimizer to decide on the usefulness

of a given structure. This process also known as “what-if” analysis, simulates the presence

of different structures and decides whether their utilization would be beneficial. Such an

approach guarantees the correctness of the decision given the utilization of the same optimizer

when executing the queries (different cost models may result to different decisions).

Online tuning. Offline physical designer assumes that the workload is static and the set of

queries within workload W is a good representation of the future. However, in modern ex-

ploratory workloads where queries are data-driven, static decisions may be sub-optimal. To

address such cases, online tuners re-evaluate physical design decisions. COLT [104] contin-

uously monitors the workload and periodically creates new indexes and/or drops unused

ones. COLT adds overhead on query execution because it obtains cost estimations from the

optimizer at runtime. A “lighter” approach requiring fewer calls to the optimizer has also

been proposed [26]. Similarly, [7] periodically re-evaluates the physical design decision on

a window at-a-time basis assuming that the past window is a good representation of the

upcoming queries.

Adaptive Indexing. In order to avoid the full cost of indexing before workload execution,

Adaptive Indexing incrementally refines indexes during query processing. In the context of

in-memory column-stores, Database Cracking approaches [51, 61–63, 100] create a duplicate

of the indexed column and incrementally sort the data it according to the incoming workload,

thus reducing memory access. HAIL proposes an adaptive indexing approach for MapReduce

systems [102]. ARF is an adaptive value-existence index similar to Bloom filters, yet useful for

range queries [12].

This thesis: Adaptive database tuning over raw data files. Chapter 3 of this thesis is moti-

vated by the high cost of physical design tuning and takes advantage of insights from online

tuning and adaptive indexing. Considering physical design structures, our approach Slalom

uses a combination of value-position and value-existence indexes and improves system scala-

bility by reducing the size of the indexes. Regarding physical re-organization, Slalom presents a

non-intrusive, flexible partitioning scheme that creates logical horizontal partitions by exploit-
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ing data skew. Additionally, Slalom continuously refines its partitions during query processing

without requiring a priori workload knowledge. Similarly to online tuning, our approach also

focuses on the problem of selecting an effective set of indexes but Slalom builds indexes on a

per-partition granularity. Slalom also populates indexes during query execution in a pipelined

fashion instead of triggering a standalone index building phase. Slalom aims to minimize

the cost of index construction decisions and the complexity of the costing algorithm. Finally,

similar to adaptive indexing, Slalom does not index data upfront and builds indexes during

query processing and continuously adapts to the workload characteristics. However, contrary

to adaptive indexing that duplicates the whole indexed attribute upfront, Slalom’s gradual

index building allows its indexes to have small memory footprint by indexing both the targeted

value ranges, and the targeted attributes.

2.3 Approximate Query Processing

There is a large collection of recent work on approximate query processing. In this section we

initially describe data summaries also known as synopses, and subsequently we discuss the

different ways in which approximation is integrated into query execution.

2.3.1 Types of synopses

We denote as synopsis a construct summarizing information of a full dataset and is substan-

tively smaller than the base dataset. Specifically, synopses include samples as well as data

structures such as bloom filters, sketches or histograms.

In this section we will briefly describe samples, bloom filters and sketches. All satisfy the

following requirements, which are imperative for high performance: (a) they are partitionable,

i.e., they can be constructed over massively parallel platforms (e.g., Spark) and (b) they are

pipelineable, such that they can be built with a single pass over the data. These synopses are

utilized in our Slalom and Taster systems which are introduced in Chapter 3 and Chapter 4.

For a more in depth analysis of other synopses, we refer the reader to Cormode et.al. [37].

Samples. A sample is a subset of the original dataset. In the bibliography there is a large

variety of different types of samples depending on the approach used to extract the subset. In

the context of this work we describe in depth two types of samplers – uniform and distinct.

We describe the samples based on its extraction process from the original dataset and the

“sampler” operator that performs that process. A sampler scans all input rows, and lets only

a subset of them to pass through. To enable scaling of query results from using a sample to

the ones of the full dataset, each sampler appends an additional attribute that represents the

weight associated with the row. For example, given a query calculating the SUM of a column,

for every tuple of the sample with value ti and weight wi , thus a system will return ti ×wi .

Uniform sampler. The uniform sampler ΓUp samples without replacement, letting a row pass

10



2.3. Approximate Query Processing

through with probability p at random. For every row, the weight is set to 1/p. This sampler

is both pipelineable and partitionable, and its memory footprint during construction is ap-

proximately equal to the memory footprint of the desired sample size. Alternative uniform

sampling implementations exist, which however require multiple passes over the data [37]

and are therefore not pipelinable.

Distinct sampler. Even though the uniform sampler has low execution overhead, it does not

have good statistical properties in more complex workloads, e.g., in queries containing group-

by it may miss whole groups, whereas in join queries, it may miss an arbitrary large number

of join keys. Prior works cope with such cases by generating stratified samples. Stratified

sampling guarantees the existence of all groups for specific attributes (stratification attributes)

and a minimum number of tuples per group. However, stratified sampling operators are

blocking operators and require two passes over the data. This second pass of data increases

execution overhead of such an operator and blocks execution. Alternatively, the distinct sam-

pler [37,69,70], guarantees that at least a certain number of rows pass per distinct combination

of values of a column set.

Distinct sampler works as follows: given a set of stratification attributes A , a number δ, and

probability p, the distinct sampler ΓDp,A ,δ passes at least δ rows for every distinct combination

of values of the columns in A . Subsequent rows with the same value are let through with

probability p, uniformly-at-random. The weight of each row is set correspondingly: If the row

passes because of the frequency check, its weight is set to 1, whereas if it passes due to the

probability check, its weight is set to 1/p. In terms of implementation, distinct sampling is

implemented efficiently by using a heavy-hitters sketch that requires space logarithmic to the

number of rows [37].

Distinct sampler is pipelinable by design, as it requires only a single pass over the data. To

make it partitionable, given the sampler operator distribution factor D (the number of operator

instances), we adjust the minimum number of rows required from each operator instance

from δ to δ+Dε with ε being a variable addressing variations in data distribution. As per [70],

ε is set to δ/D, which builds on the assumption that data is distributed uniformly across

instances.

Sketches. Sketch is a probabilistic data structure that stores a specific piece of information

over a dataset. For example, count-min sketches (CM-sketch) store frequencies of specific

events [38]. We briefly summarize these here, to the extent required for understanding the

work in Chapter 4. A count-min sketch consists of a 2-dimensional array (w ×d) of counters

(integers), accompanied with d pairwise independent hash functions that uniformly map each

item from the domain space (each potential key) to one counter per array row. Let counter

i at row j be denoted as A[i ][ j ], and hash function corresponding to row j be denoted as

h j . Adding an item x to a sketch is achieved by finding the corresponding counters from the

sketch, i.e., A[h j (x)][ j ] for j = {1, . . .d}, and increasing these by one (or by the frequency of

x). The sketch has a memory footprint of a few MB and can be constructed on-the-fly during
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Figure 2.1 – TPC-H Q3 plan transformation using Sketch-Join.

query answering. After construction, the sketch is used as an approximate key-value store for

estimating the frequency f̂ (x) of any item x, as follows: f̂ (x) = min
(

A[h j (x)][ j ]| j = {1, . . .d}
)
.

When d = O(1/δ) and the number of columns of the sketch is set to O(1/ε), the estimate is

within range εN of the real answer, with probability at least 1−δ (variable N represents the L1

norm of the frequencies). Construction of count-min sketches is fully partitionable. Therefore,

each node in the cluster builds sketches for its own data, and all sketches for one dataset are

added pair-wise to get a sketch representing the whole RDD.

Sketches have very small storage footprint have constant access and update time however

they can answer only specific queries. Such queries are, e.g., nested queries containing EXISTs

which can be approximated with Bloom filters [23], distinct counts and join size estimations

with Bloom filters [95], FM-sketches [46], and AMS-sketches [13].

Sketch-join. Besides simple aggregations, the sketch also supports aggregations over joins. The

Sketch-Join operator builds a sketch on the relation over which the aggregation takes place

and uses as key the join key and as a value the executed aggregation for the tuple. This sketch is

subsequently used in a similar fashion as a hash index in the hash-join algorithm – the Sketch-

Join operator probes the sketch and returns the appropriate aggregate. Two operations are

combined in Sketch-Join: partial aggregation (i.e., the computation of aggregation over subsets

of the data), and summarization of the aggregates. The computation of partial aggregates

reduces the memory footprint of the Join operator, which now has to store less columns (as

it returns only the aggregation result), and the sketch is much smaller than the hash index.

The reduced size of the sketch (a few MB as opposed to possibly several GB for a sample of a

large table, or a hash index) makes sketches ideal for materialization and re-use in subsequent

queries.

As an example, Figure 2.1 (left) presents the plan for Q3 of industrial benchmark TPC-H. The

plan includes an aggregation over a large set of attributes from relation lineitem and the

grouping is done over the l_orderkey attribute which is also the join key between relations

lineitem and orders. 1 For this query, a Sketch-Join (Figure 2.1 right) over sampling-based

estimates of lineitem or orders can be utilized instead of executing a hash join, since

sketches are more compact than hash tables.

1We denote the aggregation attribute set l_attributes.
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Bloom filter. A Bloom filter is a space-efficient probabilistic data structure, used to test

whether an element is a member of a set. The approximation in Bloom filters comes from the

possible existence of false positive matches. On the other hand, a Bloom filter has no false

negatives. False positives denote the case when a Bloom filter will respond that a value exists

in a set while it does not and False negatives denote the case when a Bloom filter will respond

that a value does not exists while it does. The original Bloom filter design [23], enables the

insertions of elements however elements cannot be removed. Later designs such as Counting

Filters [44], address this issue. The popularity of Bloom filters stems from their small size, their

small false positive error and their constant and efficient response time.

2.3.2 Approximation in Query Execution

The synopses described in the previous section can be utilized in numerous ways to speed-up

query execution. In this section we separate the approaches into three categories: (i) offline

approximation, (ii) online approximation, and (iii) online aggregation.

Offline approximation. Traditional offline approximate query processing has two stages the

(i) offline and (ii) online stage. During the offline stage, the user decides on a representative set

of queries which corresponds to the queries that will be issued later. Based on those queries

he creates a set of samples of the original dataset. Subsequently, during the online phase, a

submitted query is matched to the most appropriate pre-computed sample and executed

upon it.

Offline approximation requires some degree of knowledge over the upcoming queries. The

different approaches in the bibliography differ primarily on the nature of samples that they

maintain and the technique to choose the set of samples to generate. Congressional sam-

pling, STRAT and BlinkDB [4, 6, 30] provide algorithms to compute the best set of uniform

and stratified samples, subject to a storage budget. In the same line, other works maintain

additional data structures to better support skewed datasets and to reduce the size of sam-

ples [21, 29, 107]. AQUA [5] and VerdictDB [96] instead act as a middleware between users

and traditional database systems, by rewriting user queries to take advantage of precomputed

samples. VerdictDB is particularly interesting as it proposes a novel error estimation technique

called variational subsampling, which enables smaller samples. Similarly, Sample+Seek [43]

introduces measure-biased sampling which takes advantage of indexes to create more efficient

samples and provide error guarantees for GROUP BY queries with many groups. AQP++ [98]

blends AQP with aggregate precomputation, such as data cubes, to handle aggregate relational

queries. Such a unified approach balances preprocessing time and query runtime.

Online Approximation. To address the limitations that source from the uncertainty of the

future query workload, online approximation techniques remove the need for workload

knowledge and approximate queries at runtime. Quickr [70] follows an online sampling

approach, where samples are taken during query execution. In particular, samplers are
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injected into the query plan to reduce network and computation load. However, Quickr

performance gains are constrained by the I/O cost since the system still needs to read the

full input for every query. Similarly, Galakatos et al. [48] build and re-use samples for a data

exploration scenario.

Online aggregation. Similarly, to online approximation, online aggregation requires no pre-

processing and approximation is introduced at query runtime. Specifically, (OLA) [58, 67,

93, 115] instead of sampling over data, they estimate the answer by looking at progressively

increasing portions of the data, until a user determines that the answer quality is sufficient.

EARL [80] and ABS [117] use bootstrapping to produce multiple estimators from the same

sample. Finally, iOLAP [116] models online aggregation as incremental view maintenance

with uncertainty propagation.

This thesis: Adapting approximation to workload. The approach presented in Chapter 4 of

this thesis is motivated by the high storage cost and static decisions of offline approximation

and the relevantly low speed-up of online approximation.

Offline approximation approaches are designed based on static assumptions about future

queries. Thus, they require workload knowledge, and they undergo a time-consuming pre-

processing operation for sample preparation. Both are limiting properties of these methods,

since in modern data analytics setups (e.g., data exploration), the analyst typically starts

with little knowledge about data. Hence, she can hardly predict the future workload, or the

time that she will spend analyzing the new data, in order to decide whether an extensive

sampling preparation will be beneficial. Furthermore, these methods fail when the actual

queries diverge from the predicted workload that was used for constructing the synopses.

Our system Taster, presented in Chapter 4, efficiently addresses these constraints since it

constructs and adapts the synopses online, during query execution. Still, it can also capitalize

on user hints – when there is such a possibility – to construct some samples in an offline

phase, using more advanced sampling strategies. For example, in Chapter 4 we show how to

incorporate a sampling scheme from VerdictDB. Techniques presented in Sample+Seek [43]

and AQP++ [98] are also prime candidates for integration into Taster, to further speed-up query

execution by taking advantage of state-of-the-art sampling and precomputed aggregates.

Considering online approximation, existing approaches, assume that the user builds queries

incrementally, allowing the system to generate samples while the user is further expanding his

query (e.g., adding a filter). Furthermore, in existing approaches samples are built only over

base relations, not taking advantage of intermediary results. In our work, Taster extends the

online approximation techniques of Quickr in several non-trivial ways. First, it materializes/s-

tores some of these synopses for re-use in future queries. The decision as to which synopses

should be stored relies on a formal model, which enables adaptivity to the workload and to the

shifting user interests, and is amenable to efficient approximations. Second, it incorporates

additional types of synopses, beyond samples. Finally, it incorporates hints for offline synopsis

construction, thereby exhibiting the best properties of both online and offline AQP.
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3 Adaptive in-situ Partitioning and
Indexing

The constant flux of data and queries alike has been pushing the boundaries of data analysis

systems. The increasing size of raw data files has made data loading an expensive operation

that delays the data-to-insight time. To alleviate the loading cost, in-situ query processing

systems operate directly over raw data and offer instant access to data. At the same time,

analytical workloads have increasing number of queries. Typically, each query focuses on a

constantly shifting – yet small – range. As a result, minimizing the workload latency, requires

the benefits of indexing in in-situ query processing.

This chapter, presents an online partitioning and indexing scheme, along with a partitioning

and indexing tuner tailored for in-situ querying engines. The proposed system design improves

query execution time by taking into account user query patterns, to (i) partition raw data files

logically and (ii) build lightweight partition-specific indexes for each partition.

We build an in-situ query engine called Slalom to showcase the impact of our design. Slalom

employs adaptive partitioning and builds non-obtrusive indexes in different partitions on-the-

fly based on light-weight query access pattern monitoring. As a result of its light-weight nature,

Slalom achieves efficient query processing over raw data with minimal memory consumption.

Our experimentation with both micro-benchmarks and real-life workloads shows that Slalom

outperforms state-of-the-art in-situ engines, and achieves comparable query response times

with fully indexed DBMS, offering lower cumulative query execution times for query workloads

with increasing size and unpredictable access patterns.

3.1 Introduction

Data-intensive applications in various domains generate and collect massive amounts of data

at a rapid pace. New research fields and applications (e.g., network monitoring, sensor data

management, clinical studies, etc.) emerge and require broader data analysis functionality

to rapidly gain deeper insights from the available data. In practice, analyzing such datasets

become costlier as data sizes grow.
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Figure 3.1 – Comparing cumulative execution time of traditional DBMS, In-situ DBMS with
the ideal case.

Big Data, Small Queries. The trend of exponential data growth due to intense data genera-

tion and data collection is expected to persist. However, recent studies of the data analysis

workloads show that typically only a small subset of the data is relevant and ultimately used by

analytical and/or exploratory workloads [2, 33]. In addition, modern businesses and scientific

applications require interactive data access, which is characterized by no or little a priori

workload knowledge and constant workload shifting both in terms of projected attributes and

selected ranges of the dataset.

The Cost of Loading, Indexing, and Tuning. Traditional data management systems (DBMS)

require the costly steps of data loading, physical design, and index building in order to offer

interactive access over large datasets. Given the size of the data involved, any transformation,

copying, and preparation steps over the data introduces substantial delays before the data can

be utilized, queried, and provide useful insights [3, 10, 65]. The lack of a priori knowledge of

the workload makes the physical design decisions impossible because cost-based advisors

rely heavily on past or sample workload knowledge [8, 31, 45, 56, 118]. Exploratory workloads

often exhibit sudden workload shifts that depend on the observed data values and on results

of the ongoing analysis. Hence, investments on indexing and physical design using current

workload information can be nullified unexpectedly.

Querying Raw Data Files is not Enough. Recent efforts opt to directly query raw files [3, 10,

22, 34, 60, 75] to reduce the data-to-insight cost. These in-situ systems avoid the costly initial

data loading step, and allow the execution of declarative queries over external files without

duplicating or “locking” data in a proprietary database format. Further, they concentrate on

reducing costs associated with raw data accesses (e.g., parsing and converting data fields) [10,

34, 75]. Finally, although recent scientific data management approaches index raw data files

using file-embedded indexes, they do it in a workload-oblivious manner, or requiring full

a priori workload knowledge [22, 114]. Hence, they still have to pay the upfront cost of full

index building, missing the opportunity to make on-demand physical design decisions during

workload execution, which helps to fully benefit from avoiding data loading.
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Figure 3.1 visualizes the benefits of state-of-the-art in-situ query processing when compared

with a full DBMS, as well as, what the ideal in-situ query performance should be (dotted

line). After the unavoidable first table scan, ideally, in-situ queries need to access only data

relevant to the currently executed query. The y-axis shows the cumulative query latency, for

an increasing number of queries with fixed selectivity on the x-axis. By avoiding the costly

data loading phase the in-situ query execution system (dashed line) can start answering

queries very quickly. On the other hand, when a DBMS makes an additional investment on

full indexing (solid grey line), the data-to-query latency initially increases; however, later it

pays off as the number of queries issued over the same (raw) dataset increases. Eventually, the

cumulative query latency for an in-situ approach becomes larger than the latency of a DBMS

equipped with indexing. When operating over raw data, ideally, we want after the initial –

unavoidable – table scan, to collect enough metadata to allow future queries to access only

the useful portion of the dataset.

Adaptive Partitioning and Fine-Grained Indexing. We use the first table scan to generate

partitioning and lightweight indexing hints which are further refined by the data accesses of

(only a few) subconsequent queries. During this refinement process, the dataset is partially

indexed dynamically adapting to three key workload characteristics: (i) data distribution, (ii)

query type (e.g., point query, range query), and (iii) projected attributes. Workload shifts lead

to varying (a) selected value ranges, (b) query selectivity, (c) dataset areas are relevant for a

query, and (d) projected attributes.

This paper proposes an online partitioning and indexing tuner for in-situ query processing

which when plugged into a raw data query engine, offers fast queries over raw data files. The

tuner reduces data access cost by: (i) logically partitioning a raw dataset to virtually break it

into smaller manageable chunks without physical restructuring, and (ii) choosing appropriate

indexing strategies over each logical partition to provide efficient data access. The tuner

dynamically adapts the partitioning and indexing scheme as by-product of query execution.

It continuously collects information regarding the values and access frequency of queried

attributes at runtime. Based on this information, it uses a randomized online algorithm to

define the logical partitions. For each logical partition, the tuner estimates the cost-benefit of

building partition-local index structures considering both approximate membership indexing

(i.e., Bloom filters and zone maps) and full indexing (i.e., bitmaps and B+ trees). By allowing

fine-grained indexing decisions our proposal makes the decision of the index shape at the

level of each partition rather than the overall relation. This has two positive side-effects. First,

there is no costly investment for indexing that might prove unnecessary. Second, any indexing

effort is tailored to the needs of data accesses on the corresponding range of the dataset.

Efficient In-Situ Query Processing with Slalom. We integrate our online partitioning and

indexing tuner to an in-situ query processing prototype system, Slalom, which combines the

tuner with a state-of-the-art raw data query executor. Slalom is further augmented with index

structures and uses the tuner to decide how to partition and which index or indexes to build for
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each partition. In particular, Slalom logically splits raw data into partitions and selects which

fine-grained index to build, per-partition based on how “hot” (i.e., frequently accessed) each

partition is, and what types of queries target each partition. Moreover, Slalom populates binary

caches (of data converted from raw to binary) to further boost performance. Slalom adapts to

workload shifts by adjusting the current partitioning and indexing scheme using a randomized

cost-based decision algorithm. Overall, the logical partitions and the indexes that Slalom

builds over each partition provide performance enhancements without requiring expensive

full data indexing or data file re-organization, all while adapting to workload changes.

Contributions. The contributions presented in this chapter are the following:

• We present a logical partitioning scheme of raw data files that enables fine-grained indexing

decisions at the level of each partition. As a result, light-weight per-partition indexing

provides near-optimal data access.

• The light-weight partitioning allows our approach to maintain the benefits of in-situ ap-

proaches. In addition, the granular way of indexing (i) brings the benefit of indexing to

in-situ query processing, (ii) having low index building cost, and (iii) small memory foot-

print. These benefits are highlighted as the partitioning and indexing decisions are refined

on-the-fly using an online randomized algorithm.

• We enable in-place and append-like updates. We exploit specialized hardware (GPUs

and CRC checksum units) to reduce the raw data file monitoring cost recognize incoming

updates, and find the smallest possible changes needed to the partitioning and indexing

strategies employed. The discovery of the minimal changeset reduces the index correction

overhead and improves query execution performance in the presence of updates.

• We integrate our partitioning and indexing tuner into our prototype state-of-the-art in-situ

query engine Slalom. We use synthetic and real-life workloads to compare the query latency

of (i) Slalom, (ii) a traditional DBMS, (iii) a state-of-the-art in-situ query processing engine,

and (iv) adaptive indexing (cracking). Our experiments show that, even when excluding the

data loading cost, Slalom offers the fastest cumulative query latency. In particular, Slalom

outperforms (a) state-of-the-art disk-based approaches by one order of magnitude, (b)

state-of-the-art in-memory approaches by 3.7× (with 2.45× smaller memory footprint), and

(c) adaptive indexing by 19% (having 1.93× smaller memory footprint). Finally, we examine

the performance of Slalom in presence of both in-place and append-line updates.

To our knowledge, Slalom is the first system that proposes the use of a randomized online

algorithm to select which workload-tailored, index structures should be built per partition of

the data file. This approach offers constant, and minimal, decision time.

Outline. The remainder of this chapter is organized as follows: Section 3.2 presents the

architecture of Slalom and gives an overview of its design. Section 3.3 presents the online
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tuner and describes its partitioning and indexing cost models. Section 3.3.3 presents the

techniques enabling efficient data updates for in-situ query processing. We experimentally

demonstrate the benefits of Slalom in Section 3.4 and we conclude in Section 3.5.

3.2 The SLALOM System

Slalom uses adaptive partitioning and indexing to provide inexpensive index support for in-situ

query processing while adapting to workload changes. Slalom accelerates query processing by

skipping data and minimizes data access cost when this access is unavoidable. At the same

time, it operates directly on the original data files without need for physical restructuring (i.e.,

copying, sorting).

Slalom incorporates state-of-the-art in-situ querying techniques and enhances them with log-

ical partitioning with no physical data movement and fine-grained indexing, thereby reducing

the amounts of accessed data. To remain effective despite workload shifts, Slalom introduces

an online partitioning and indexing tuner, which calibrates and refines logical partitions and

secondary indexes based on data and query statistics. Slalom treats data files as relational

tables to facilitate the processing of read-only and append-like workloads. The rest of this

section focuses on the architecture and implementation of Slalom.
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Figure 3.2 – The architecture of Slalom.

3.2.1 Architecture Overview

Figure 3.2 presents the architecture of Slalom. Slalom combines an online partitioning and

indexing tuner with a query executor featuring in-situ querying techniques. The core com-

ponents of the tuner are the Partition Manager, which is responsible for creating logical

partitions over the data files, and the Index Manager, which is responsible for creating and

maintaining indexes over partitions. The tuner collects statistics regarding the data and query
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access patterns and stores them in the Statistics Store. Based on those statistics, the Structure

Refiner evaluates the potential benefits of alternative configurations of partitions and indexes.

Furthermore, Slalom uses in-situ querying techniques to access data. Specifically, Slalom

uses auxiliary structures (i.e., positional maps and caches) which minimize raw data access

cost. During query processing, the Query Executor utilizes the available data access paths and

orchestrates the execution of the other components. Finally, the Update Monitor examines

whether a file has been modified and adjusts the data structures of Slalom accordingly.

Slalom Scope. The techniques of Slalom are applicable to any tabular dataset. Specifically,

the scan operator of Slalom uses a different specialized parser for each underlying data format.

This work concentrates on queries over delimiter-separated textual CSV files, because CSV is

the most popular structured textual file format. Still, the yellow- and blue-coded components

of Figure 3.2 are applicable over binary files, which are the typical backend of databases and

are also frequently used in scientific applications (e.g., high-energy physics, DNA sequencing,

GIS). We discuss further Slalom’s extensibility in Section 3.2.4.

Reducing Data Access Cost. Slalom launches queries directly over the original raw data files,

without altering or duplicating the files by ingesting them in a DBMS. That way, Slalom avoids

the initialization cost induced by loading and offers instant data access. Similarly to state-of-

the-art in-situ query processing approaches [10, 34] Slalom mitigates the overheads of parsing

and tokenizing textual data with positional maps [10] and partial data caching.

Positional maps are populated on-the-fly and maintain structural information about an

underlying textual file, that is, the positions of each attribute for each row. This information

is used during query processing to “jump” to the exact position of an attribute or as close as

possible to an attribute, significantly reducing the cost of tokenizing and parsing when a tuple

is accessed. Furthermore, Slalom builds binary caches of fields that are already converted to

binary to reduce parsing and data type conversion costs of future accesses.

Statistics Store. Slalom collects statistics during query execution and utilizes them to (i)

detect workload shifts and (ii) enable the tuner to evaluate partitioning and index config-

urations. Table 3.1 summarizes the statistics about Data and Queries that Slalom gathers

per data file. Data statistics are updated after every partitioning action and include the per-

partition standard deviation (devi ) of values, mean (mi ), max (maxi ) and min (mi ni ) values.

Additionally, Slalom keeps as global statistics the physical page size (Si zepag e ) and file size

(Si ze f i le ). Regarding Query statistics, Slalom maintains the number of queries since the last

access (L Ai ), the percentage of queries accessing each partition (access frequency AFi ), and

the average query selectivity (seli ). The full scan cost over a partition (Ci f ul l scan ) and the index-

ing cost for a partition (Cibui ld ) is calculated by considering the operator’s data accesses. The

aforementioned statistics are used in the cost formulas of Sections 3.3.1 and 3.3.2.

Partition Manager. The Partition Manager recognizes patterns in the dataset and logically
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Data (partition i )

mi Mean value
mi ni Min value
maxi Max value
devi Standard deviation
DVi #distinct values

Data (global)
Si zepag e Physical page size
Si ze f i le File size

Queries (partition i )

Cibui ld Index building cost
Ci f ul l scan Full scan cost

L Ai #queries since last access
AFi Partition access frequency
seli Average selectivity (0.0-1.0)

Table 3.1 – Statistics collected by Slalom per data file during query processing and used to
(i) decide which logical partitions to create, and (ii) select the appropriate matching indexes.

divides the file into contiguous non-overlapping chunks to enable fine-grained access and

indexing. The Partition Manager specifies a logical partitioning scheme for each attribute in

a relation. Each partition is internally represented by its starting and ending byte within the

original file. The logical partitioning process starts the first time a query accesses an attribute.

The Partition Manager triggers the Structure Refiner to iteratively fine-tune the partitioning

scheme with every subsequent query. All partitions progressively reach a state in which there

is no benefit from further partitioning. The efficiency of a partitioning scheme depends highly

on the data distribution and the query workload. Therefore, the Partition Manager adjusts the

partitioning scheme based on value cardinality.

Index Manager. The Index Manager estimates the benefit of an index over a partition and

suggests the most promising combination of indexes for a given attribute/partition. For every

new index configuration, the Index Manager invokes the Structure Refiner to build the selected

indexes during the execution of the next query. Every index corresponds to a specific data

partition. Depending on the access pattern of an attribute and the query selectivity, a single

partition may have multiple indexes. Slalom chooses indexes from two categories based on

their capabilities: (i) value-existence indexes, which respond whether a value exists in a dataset

(e.g., Bloom filters), and (ii) value-position indexes, which return the positions of a value within

the file (e.g., B+ tree). The online nature of Slalom imposes a significant challenge not only on

which indexes to choose but also on when and how to build them with low cost. The Index

Manager monitors previous queries to decide which indexes to build and when to build them;

timing is based on an online randomized algorithm which considers (i) statistics on the cost

of full scan (Ci f ul l scan ), (ii) statistics on the cost of building an index (Cibui ld ), and (iii) partition

access frequency (AFi ).

Update Monitor. The main focus of Slalom is read-only and append workloads. Still, to

provide query result consistency, the Update Monitor checks the input files for both appends
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and in-place updates at real-time. Slalom enables append-like updates without disturbing

query execution by dynamically adapting its auxiliary data structures. Specifically, Slalom

creates a partition at the end of the file to accommodate the new data, and builds binary

caches, positional maps and indexes over them during the first post-update query. In-place

updates require special care in terms of positional map and index maintenance because

they can change the internal file structure. Slalom reacts to in-place updates during the first

post-update query by identifying the updated partitions, updating the positional map, and

recreating the other corresponding structures.

3.2.2 Implementation

We implement Slalom from scratch in C++. Slalom’s query engine uses tuple-at-a-time execu-

tion based on the Volcano iterator model [52]. The rest of the components are implemented as

modules of the query engine. Specifically, the Partitioning and Indexing managers as well as

the Structure Refiner connect with the Query Executor. Furthermore, the Statistics Store runs

as a daemon, gathering the data and query statistics and persisting them in a catalog.

Slalom reduces raw data access cost by using vectorized parsers, binary caches, and positional

maps. The CSV parser uses SIMD instructions; it consecutively scans a vector of 256 bytes from

the input file and applies a mask over it to identify delimiters. Slalom populates a positional

map for each CSV file accessed. To reduce memory footprint, the positional map stores only

delta distances for each tuple and field. Specifically, to denote the beginning of a tuple, the

positional map stores the offset from the preceding tuple. Furthermore, for each field within a

tuple, the positional map stores only the offset from the beginning of the tuple. The Partition

Manager maintains a mapping between partitions and their corresponding positional map

portions.

Slalom populates binary caches at a partition granularity. When a query accesses an attribute

for the first time, Slalom consults the positional map to identify the attribute’s position, and

then caches the newly converted values. To improve insertion efficiency, Slalom stores the

converted fields of each tuple as a group of columns. If Slalom opts to convert an additional

field during a subsequent query, it appends the converted value to the current column group.

Slalom also populates secondary indexes at a partition granularity; for each attribute, the

indexes store its position in the file and its position in the binary cache (when applicable).

Slalom uses a cache friendly in-memory B+ tree implementation. It uses nodes of 256 bytes

that are kept 60% full. To minimize the size of inner nodes and make them fit in a processor

cache line, the keys in the nodes are stored as deltas. Furthermore, to minimize tree depth,

the B+ tree stores all appearances of a single value in one record.

The Structure Refiner monitors the construction of all auxiliary structures and is responsible

for memory management. Slalom works within a memory area of pre-defined size. The

indexes, positional maps, and caches are placed in the memory area. However, maintaining
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Figure 3.3 – Slalom execution.

caches of the entire file and all possible indexes is infeasible. Thus, the Structure Refiner

dynamically decides, on a per-partition basis, which structure to drop so Slalom can operate

when resources are limited.

3.2.3 Query Execution

Figure 3.3 presents an overview of a query sequence execution over a CSV file. During each

query, Slalom analyzes its current state in combination with the workload statistics and up-

dates its auxiliary structures. In the initial state (a), Slalom has no data or query workload

information. The first query accesses the data file without any support from auxiliary struc-

tures; Slalom thus builds a positional map, accesses the data requested, and places them in

a cache. During each subsequent query, Slalom collects statistics regarding the data distri-

bution of the accessed attributes and the average query selectivity to decide whether logical

partitioning would benefit performance. If a partition has not reached its st able state (i.e.,

further splitting will not provide benefit), Slalom splits the partition into subsets as described

in Section 3.3.1. In state (b), Slalom has already executed some queries and has built a binary

cache and a positional map on the accessed attributes. Slalom has decided to logically parti-

tion the file into two chunks, of which the first (partition 1) is declared to be in a st able state.

Slalom checks stable partitions for the existence of indexes; if no index exists, Slalom uses the

randomized algorithm described in Section 3.3.2 to decide whether to build one. In state (c),

Slalom has executed more queries, and based on the query access pattern it decided index

partition 1. In this state, partition 2 of state (b) has been further split into multiple partitions

of which partition 2 was declared st able and an index was built on it.

3.2.4 Extensibility of Slalom

To address the increasing data format heterogeneity, Slalom queries over a variety of data

formats by adding the corresponding parsers and adjusting the online tuner partitioning

algorithm. The parser transforms all underlying data to a common representation, which is
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then passed to the query engine. This way, Slalom supports multiple data formats by requiring

a parser for each input data format (e.g., CSV, JSON, binary). As a common representation,

Slalom uses binary tuples stored in fixed length slots. Hence, irrespective to data format,

Slalom’s binary cache has the same format.

For each new data format, the online tuner applies the same principled techniques of logical

horizontal partitioning and indexing, however must be adjusted slightly depending on the

format Specifically, when records are stored sequentially (e.g., CSV, binary, XML and JSON),

Slalom follows the same approach of partitioning and indexing by creating sequential logical

partitions by keeping the first and last byte of each partition within the file. For data formats

that store records in a PAX-like format [9] (e.g., parquet, SAM-BAM), the partitioning approach

uses as quantum of partitioning the mini-page size rather than a tuple, hence, partitions

enclose complete mini-pages. Slalom supports executing queries over CSV, tabular binary and

XML files.

3.3 Continuous Partition and Index Tuning

Slalom provides performance enhancements without requiring expensive full data indexing

or data file re-organization, all while adapting to workload changes. Slalom uses an online par-

titioning and indexing tuner to minimize the accessed data by (i) logically partitioning the raw

dataset, and (ii) choosing appropriate indexing strategies over each partition. To enable online

adaptivity, all decisions that the tuner makes must have minimal computational overhead.

The tuner employs a Partition Manager which makes all decision considering the partitioning

strategy, and an Index Manager which makes all decisions considering indexing. This section

presents the design of the Partition and Index Managers as well as the mathematical models

they are based on.

3.3.1 Raw Data Partitioning

The optimal access path may vary across different parts of a dataset [24]. For example, a

filtering predicate may be highly selective in one part of a file, and thus benefit from index-

based query evaluation, whereas another file part may be better accessed via a sequential scan.

As such, any optimization applied on the entire file may be suboptimal for parts of the file. To

this end, the Partition Manager splits the original data into small manageable subsets, having

as minimum partition size a physical disk page. The Partition Manager uses horizontal logical

partitioning as opposed to physical partitioning because the latter would require manipulating

physical storage – a breaking point for many of the use cases that Slalom targets.

Why Logical Partitions. Slalom uses logical partitioning to virtually break a file into more

manageable chunks without physical restructuring. The goal of logical partitioning is twofold:

(i) to enable partition filtering, i.e., to group relevant data values together so that they can be

skipped for some queries and (ii) to allow for more fine-grained index tuning. The efficiency
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of logical partitioning in terms of partition filtering depends mainly on data distribution and

performs best with clustered or sorted data. Even in the worst case of uniformly distributed

data, although a few partitions will be skipped, the partitioning scheme will facilitate fine-

grained indexing. Instead of populating deep B+ trees that cover the entire dataset, the B+ trees

employed by Slalom are smaller and target only “hot” subsets of the dataset. Thus, Slalom can

operate under limited memory budget, has a minimal memory footprint, and provides rapid

responses.

The Partition Manager performs partitioning as a by-product of query execution and chooses

between two partitioning strategies depending on the cardinality of an attribute. For candidate

key attributes, where all tuples have distinct values, the Partition Manager uses query based

partitioning, whereas for other value distributions, it uses homogeneous partitioning. Ideally,

the Partition Manager aims to create partitions such that: (i) each partition contains uniformly

distributed values, and (ii) partitions are pairwise disjoint (e.g., partition 1 has values 12, 1,

8 and partition 2 has values 19, 13, 30). Uniformly distributed values in a partition enable

efficient index access for all values in a partition and creating disjoint partitions improves

partition skipping.

Homogenous partitioning

Homogeneous partitioning aims to create partitions with uniformly distributed values and

maximize average selectivity within each partition. Increasing query selectivity over partitions

implies that for some queries, some of the newly created partitions will contain a high per-

centage of the final results, whereas other partitions will contain fewer or zero results and

will be skippable. Computing the optimal set of contiguous uniformly distributed partitions

has exponential complexity, thus is prohibitive for online execution. Instead, to minimize

the overhead of partitioning, the Partition Manager iteratively splits a partition into multiple

equi-sized partitions. In every iteration, the tuner decides on (i) when to stop splitting and (ii)

into how many subsets to split a given partition.

The Partition Manager splits incrementally a partition until it reaches a st able state (i.e., a

state where the tuner estimates no more gains can be achieved from further splitting). After

each partition split, the tuner relies on two conditions to decide whether a partition has

reached a stable state. The tuner considers whether (i) the variance of values in the new

partition and the excess kurtosis [97] of the value distribution have become smaller than

the variance and kurtosis in the parent partition, and (ii) the number of distinct values has

decreased. Specifically, as variance and excess kurtosis decrease, outliers are removed from

the partition and the data distribution of the partition in question becomes more uniform. As

the number of distinct values per partition iteratively decreases, the probability of partition

disjointness increases. If any of these metrics increases or remains stable by partitioning,

then the partition is declared stable. We use the combination of variance and excess kurtosis

as a metric for uniformity, because their calculation has a constant complexity and can be

performed in an incremental fashion during query execution. An alternative would be to use
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a histogram or chi square estimators [97], but that would require building a histogram as well

as an additional pass over the data.

Making Partitioning Decisions. The number of sub-partitions to which an existing partition

is divided, depends on the average selectivity of the past queries accessing the partition and

the size of the partition in number of tuples. The goal of the tuner is to maximize selectivity

in new partitions. This approach increases the expected number of skipped partitions. We

assume that the rows of the partition that have been part of query results within the partition

are randomly distributed. We model the partitioning problem as randomly choosing tuples

from the partition with the goal to have at least 50% of the new partitions exhibit higher

selectivity than the original partition. The intuition is that by decreasing selectivity in a

subset of partitions will enhance partition skipping in the rest. The less selective partitions

become they contain more result tuples, making the remaining partitions prime candidates

for skipping.

We model this problem using the hyper-geometric distribution. Our goal is to choose m

partitions by picking randomly n tuples, and we want each partition to contain at least k result

tuples. The hyper-geometric distribution is a discrete probability distribution that describes

the probability of k random draws in n draws, without replacement. Thus, assuming, that

N represents all the tuples in the file, K represents the tuples appearing in the result, and

N −K all other tuples. The equation describing the CDF of hypergeometric distribution is the

following.

P (X ≥ k) ≈
n∑

i=k

(K
i

)(N−K
n−i

)(N
n

) (3.1)

The calculation of the hypergeometric distribution requires the calculation of a factorial and

has computational complexity O(log (log (n ·M(n · log n)))), where M(n) is the complexity

of multiplying two n-digit numbers [25]. Such a computational complexity is prohibitively

expensive for Slalom as this operation is executed for each query for the majority of partition

numerous times and for large partition sizes.

Slalom approximates the hypergeometric distribution using the binomial distribution. Prior

work shows that when p ≤ 0.1 and N ≥ 60 binomial is a good approximation of hypergeo-

metric [85], and since the sizes of partitions are large in comparison to selectivity Slalom can

exploit this observation.

P (X ≥ k) =
n∑

i=k

(
n

i

)
p i (1−p)n−i (3.2)

The binomial distribution requires the calculation of the binomial coefficient
(n

i

)
which,

similarly to the hypergeometric distribution, requires the calculation of factorial. To overcome

this problem, we further approximate the binomial coefficient calculation [36]. Specifically we

26



3.3. Continuous Partition and Index Tuning

use the following equation: (
n

k

)
= (n/k −0.5)k ·ek

p
2 ·π ·k

(3.3)

We combine Eq. 3.2 and Eq. 3.3, we use p = K /N and n = N /m, and we solve for m to get the

the equation that the Partition Manager uses to calculate the number of subpartitions created

for every split:

m = N · (sel + logb (1− sel ))

logb

p
2·π·sel ·N

2

where b = e

sel · (1− sel )
(3.4)

The tuner aims to choose this set of partitions with the minimal computational overhead

and number of iterations. The number of distinct values is calculated after each partition is

split, whereas the variance and the kurtosis are calculated incrementally, thus the partitioning

algorithm has negligible overhead.

Query based partitioning

Query based partitioning targets candidate keys, or attributes that are implicitly clustered

(e.g., increasing timestamps). For such attributes, homogeneous partitioning will lead to

increasingly small partitions as the number of distinct values and variance will be constantly

decreasing with smaller partitions. Thus, the tuner decides upon a static number of partitions

to split the file. Specifically, the number of partitions is decided based on the selectivity of the

first range query using the same mechanism as in homogeneous partitioning. If the partition

size is smaller than the physical disk page size, the tuner creates a partition per disk page.

By choosing the partitioning approach based on the data distribution, Slalom improves the

probability of data skipping and enables fine-grained indexing.

3.3.2 Adaptive Indexing in Slalom

The tuner of Slalom employs the Index Manager to couple logical partitions with appropriate

indexes and thus decrease the amount of accessed data. The Index Manager uses value-

existence and value-position indexes; it takes advantage of the capabilities of each category in

order to reduce execution overhead and memory footprint. To achieve these goals, the Index

Manager enables each partition to have multiple value-existence and value-position indexes.

Value-Existence Indexes. Value-existence indexes are the basis of partition-skipping for

Slalom; once a partition has been set as stable, the Index Manager builds a value-existence

index over it. Value-existence indexes allow Slalom to avoid accessing some partitions. The In-

dex Manager uses Bloom filters, Bitmaps, and zone maps (min-max values) as value-existence
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indexes. Specifically, the Index Manager uses bitmaps only when indexing boolean attributes,

because they require a larger memory budget than Bloom Filters for other data types. The

Index Manager also uses zone maps on all partitions because they have small memory over-

head and provide sufficient information for value-existence on partitions with small value

variation. For all other data types, the Index Manager favors Bloom filters because of their high

performance and small memory footprint. Specifically, the memory footprint of a Bloom filter

has a constant factor, yet it also depends on the number of distinct values it will store and the

required false positive probability. To overcome the inherent false positives that characterize

Bloom filters, the Index Manager adjusts the Bloom filter’s precision by calculating the number

of distinct values to be indexed and the optimal number of bytes required to model them [23].

Value-Position Indexes. The Index Manager builds a value-position index (B+ tree) over a

partition to offer fine-grained access to tuples. As value-position indexes are more expensive

to construct compared to value-existence indexes, both in terms of memory and time, it is

crucial for the index to pay off the building costs in future query performance. The usefulness

and performance of an index depend highly on the type and selectivity of queries and the

distribution of values in the dataset. Thus, for workloads of shifting locality, the core challenge

is deciding when to build an index.

When to Build a Value-Position Index. The Index Manager builds a value position index over

a partition if it estimates that there will be enough subsequent queries accessing that partition

to pay off the investment (in execution time). As the tuner is unaware of the future workload

trends, decisions for building indexes are based on the past query access patterns. To make

these decisions, the Index Manager uses an online randomized algorithm which considers

the cost of indexing the partition (Cibui ld ), the cost of full partition scan (Ci f ul l scan ), and the

access frequency on the partition (AFi ). These values depend on the data type and the size of

the partition, so they are updated accordingly in case of a partition split or an append to the

file. The tuner stores the average cost of an access to a file tuple as well as the average cost of

an insertion to every index for all data types, and uses these metrics to calculate the cost of

accessing and building an index over a partition. In addition, the tuner calculates the cost of

an index scan (Cii ndexscan ) based on the cost of a full partition scan and the average selectivity.

For each future access to the partition, the Index Manager uses these statistics to generate

online a probability estimate calculating whether the index will reduce execution time for the

rest of the workload. Given this probability, the Index Manager decides whether to build the

index.

The Index Manager calculates the index building probability using a randomized algorithm

based on the randomized solution of the snoopy caching problem [72]. In the snoopy caching

problem, two or more caches share the same memory space which is partitioned into blocks.

Each cache writes and reads from the same memory space. When a cache writes to a block,

caches that share the block spend 1 bus cycle to get updated. These caches can invalidate

the block to avoid the cost of updating. When a cache decides to invalidate a block which
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ends up required shortly after, there is a penalty of p cycles. The optimization problem lies in

finding when a cache should invalidate and when to update the block. The solution to the

index building problem in this work involves a similar decision. The indexing mechanism of

the tuner of Slalom decides whether to pay an additional cost per query (“updating a block”)

or invest in building an index, hoping that the investment will be covered by future requests

(“invalidating a block”). Specifically, in cases where the cost of using an index is negligible

compared to the cost of full data scan, deciding on index construction can be directly mapped

to the snoopy caching problem.

The performance measure of randomized algorithms is the competitive ratio (CR): the ratio

between the expected cost incurred when the online algorithm is used and that of an optimal

offline algorithm that we assume has full knowledge of the future. When index access cost

is negligible, the randomized algorithm of the tuner guarantees optimal CR ( e
e−1 ). The tuner

uses a randomized algorithm in order to avoid the high complexity of what-if analysis [104]

and to improve the competitive ratio offered by the deterministic solutions [26].

Cost Model. Assume query workload W. At a given query q of the workload, a partition is

in one of two states: it either has an index or it does not. A state is characterized by the

pair (Cbui ld ,Cuse ) where Cbui ld is the cost to enter the state (e.g., build the index) and Cuse

the cost to use the state (e.g., use the index). The initial state is the state with no index (i.e.,

full scan) (Cbui ld , f s ,Cuse, f s) where Cbui ld , f s = 0. In the second state (Cbui ld ,i d x ,Cuse,i d x ), the

system has an index . We assume that the relation between the costs for the two states is

Cbui ld ,i d x >Cbui ld , f s and Cuse,i d x <Cuse, f s and Cbui ld ,i d x >Cuse, f s .

Given a partition i , the index building cost over that partition (Cibui ld ), the full partition

scan cost (Ci f ul l scan ), the index partition scan cost (Cii ndexscan ) and a sequence of queries Q :

[q1, . . . , qT ] accessing the partition. Assume that qT is the last query that accesses the partition

(and is not known). At the arrival time of qk ,k < T , we want to decide whether the Index

Manager should build the index or perform full scan over the partition to answer the query.

To make the decision we need a probability estimate pi for building the index at moment i

based on the costs of building the index or not. In order to calculate pi we initially define the

overall expected execution cost of the randomized algorithm that depends on the probability

pi . The expected cost E comprises three parts:

i. the cost of using the index, which corresponds to the case where the index has already

been built.

ii. the cost of queries doing full partition scan, which corresponds to the case for which the

index has not be built.

iii. the cost of building the index, which corresponds to the case where the building of the

index will take place at time i . Index construction takes place as a by-product of query

execution and includes the cost of the current query.
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E =
T∑

i=1

( i−1∑
j=1

p j ·Cuse,i d x +
(
1−

i−1∑
j=1

p j

)
·
(
pi ·Cbui ld ,i d x +

(
1−pi

) ·Cuse, f s

))

Knowing the expected cost we minimize and we solve for pi . We exchange Cbui ld ,i d x with

Cuse, f s +δ as building the index will cost at least as much as a full scan.

E = T ·Cuse, f s −
(
Cuse, f s −Cuse,i d x

)
·
( T∑

i=1

i−1∑
j=1

p j

)
+δ ·

( T∑
i=1

pi −
T∑

i=1
pi ·

i−1∑
j=1

p j

)
(3.5)

We take the first partial derivative of this formula for pi .

∂E

∂pi
=−

(
Cuse, f s −Cuse,i d x

)
·
∂
(∑T

i=1

∑i−1
j=1 p j

)
∂pi

+δ ·
(∂∑T

i=1 pi

∂pi
−
∂
(∑T

i=1 pi · ∑i−1
j=1 p j

)
∂pi

)
(3.6)

We calculate that:

∂
(∑T

i=1

∑i−1
j=1 p j

)
∂pi

= (T − i ) (3.7)

and

∂
(∑T

i=1 pi · ∑i−1
j=1 p j

)
∂pi

=
T−1∑
j=1

p j −pi (3.8)

Thus, the final derivative becomes:

∂E

∂pi
=−

(
Cuse, f s −Cuse,i d x

)
·
(
T − i

)
+δ ·

(
1−

T−1∑
j=1

p j −pi

)
(3.9)

To minimize the Expected cost we solve the equation and we solve for pi .

∂E

∂pi
= 0 => pi =

Cuse, f s −Cuse,i d x

δ
· (T − i )−

(
1−

T−1∑
j=1

p j

)
(3.10)

The final probability equation is:

pi =
Cuse, f s −Cuse,i d x

Cbui ld ,i d x −Cuse, f s
· (T − i )−

(
1−

i−1∑
j=1

p j

)
(3.11)
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Based on our model, performing a full scan over the complete data file should be always

cheaper than an index access and the amortized extra cost of building the index (over T

queries).

Eviction Policy. The tuner works within a predefined memory budget to minimize memory

overhead. If the memory budget is fully consumed and the Index Manager attempts to build a

new index, then it defers index construction for the next query and searches indexes to drop to

make the necessary space available. The Index Manager keeps all value-existence indexes once

built, because their size is minimal and they are the basis of partition skipping. Furthermore,

the Index Manager prioritizes binary caches over indexes, because (i) using a cache improves

the performance of all queries accessing a partition, and (ii) accessing the raw data file is

typically more expensive than rebuilding an index for large partitions. Deciding which indexes

from which partitions to drop is based on index size (Si zei ndexi ), number of queries since last

access (L Ai ), and average selectivity (seli ) in a partition. To compute the set of indexes to

drop, the Index Manager uses a greedy algorithm which gathers the least accessed indexes

with cumulative size (
∑

i Si zei ndexi ) equal to the size of the new index. Specifically, to discover

the least accessed indexes, the Index Manager keeps a bitmap of accesses for each partition.

During a query predicate evaluation on a partition and depending on whether the current

query touches the partition, the Index Manager shifts the partition’s bitmap to the left and

appends a bit to it: 1 (yes) or 0 (no). When calculating the candidate indexes to drop, the Index

Manager uses SIMD instructions to evaluate the set of least accessed partitions. Specifically,

each bitmap is an 8-byte unsigned integer which stores the past 64 queries. In a 256-byte

wide CPU register, the Index Manager uses a bitmask operation to check the occupancy of

32 partitions simultaneously. When all indexes are used with the same frequency, the tuner

uses the average selectivity of queries on each partition as a tie-breaker condition. The less

selective queries are, the smaller the gap between index and full scan performance, therefore

the Index Manager victimizes partitions touched by non-selective queries.

3.3.3 Handling File Updates

Slalom supports both append-like and in-place updates directly over the raw data file and

ensures consistent results. In order to achieve efficient data access and correct results despite

updates, Slalom continuously monitors the queried files for any write operation and stores

summaries of the queried files representing their current state. If a file is updated, Slalom

compares its existing summary with the stored state identifies the changes, and updates any

dependent data structures.

In this section, we describe in detail how Slalom: (i) monitors its input files for updates at

real-time, (ii) calculates and stores a summary of the most recent consistent state for reference,

(iii) identifies the updated file subsets, and (iv) updates its internal data structures.
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Monitoring Files

In order to recognize whether an input file has been updated by another application (e.g., vim),

Slalom uses OS support (i.e., inotify [76]). Specifically, Slalom initializes a watchdog, over the

queried file, which is triggered when the file is written upon and adds a log entry into a queue.

This queue contains all updates that have not been addressed by Slalom yet. Slalom checks

the queue for new updates both at the beginning of every query as well as during execution.

During query execution, Slalom checks whether already scanned data received any updates.

If this is the case, the query is re-executed to ensure consistency and correctness of the final

query result, that is to ensure that the query is answered by a single file version.

Calculating and Storing State

In order to be able to discover the updated rows in the file and the type of update (append or

in-place), Slalom exploits its logical partitioning scheme. For each partition, Slalom stores a

checksum encoding the contents within that partition and the starting and ending positions

of the partition in the file. This information is generated during the first pass after the partition

creation. It is sufficient to identify the existence of an update within a partition as it summarize

the size as well as the content of each partition. As the checksum calculation is part of the

critical path of query execution it increases the query runtime. To alleviate this cost, Slalom

exploits specialized hardware that offers high throughput in checksum calculation. Thus,

depending on the available hardware, Slalom uses different checksums.

By default, Slalom uses sequential 64-byte MD5 checksum. Checksum calculations are

compute-heavy, hence, Slalom migrates when possible such calculations to a General Pur-

pose Graphics Processing Unit (GPGPU) using an MD5 CUDA implementation. Finally, given

smaller logical partitions, Slalom takes advantage of the 32-bit Cyclic Redundancy Checking

(CRC) on-board chip to calculate a checksum.

MD5 Algorithm. MD5 [103] is a cryptographic hash function, that is widely used data integrity

verification checksum [112]. Given input of arbitrary size, MD5 algorithm produces a 128-bit

output, which is usually represented in 32 hexadecimal digits. MD5 uses four non-linear

functions and it can deal with data of arbitrary length. MD5 serves as a good candidate for

detecting file updates, however, calculating it on a single CPU can be prohibitively expensive.

Thus, we design a parallelization scheme for MD5.

MD5 is an irreversible transformation of a set of data of any length into a hash value of

128-bit length. MD5 is a consecutive processing method as the original algorithm processes

the input data incrementally in 512-bit groups and combines them with the result coming

from the processing of prior groups. To parallelize the computation of MD5, we need to

enable the parallel computation of different portions of the checksum. Initially, we divide

the input data into small data blocks with the same size. Subsequently, we perform the

standard MD5 algorithm on each data block, in parallel, and we store the calculated checksums
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in sequence. The resulting checksums are combined until the result is 128-bit long. The

checksum computed by this approach is not identical to the standard MD5 checksum, however,

has equal encryption strength [59].

We implement the parallel MD5 with NVIDIA CUDA on GPU,which is inherently suitable for

multi-threading. CUDA provides a convenient programming interface that extends the C

language and allows programmers to write C functions as GPU kernels, that will be executed

by multiple CUDA threads.

CRC. Cyclic Redundancy Codes are used to mostly detect errors in network packets [99].

As this operation is latency-sensitive, modern processors have added the CPU instructions

_mm_crc32_u64 for calculating 32-bit CRC codes to its SSE4.2 instruction set. Originally, a CRC

code is calculated as follows: to obtain m-bit CRC code, the n-bit input data is first appended

with m zeros. Then it is XORed with a polynomial divisor of the size of (n +1) bit from left to

right. The last m bits are the final resulting code.

Typically a n-bit CRC applied to a data block of arbitrary length will detect a single error burst

that is not longer than n bits and will detect a fraction 1
(1−2−n ) of all longer error bursts. As

partitions used by Slalom can be of arbitrary size, Slalom calculates the 32-bit CRC value for

each 1024-byte block in the partition and then adds up all computed values to give the final

verification code. This code has the same detection ability, namely detecting changes no

longer than 4 bytes.

Recognizing Update Type and Updating Data Structures

To provide efficient data access, Slalom builds a set of data structures which are based on the

structure of the queried file. Updates may change that structure and make the data structures

obsolete. Specifically, indexes and positional maps are sensitive to the specific location of

attributes and number of tuples within the file. Similarly, caches and Bloom filters become

obsolete with any change in a partition. To overcome this issue, Slalom updates its data

structures depending on the update type. To identify the type of update, Slalom compares the

current state of each partition with the stored one. Thus, Slalom checks whether starting and

ending characters of the partition have changed or if the checksum has changed. If the state

of each partition matches with the existing one, then the update type is append. Otherwise, it

is an in-place update.

Append-like Updates. Slalom supports updates in an append-like scenario without disturbing

query execution by dynamically extending auxiliary data structures. In append-like scenarios,

Slalom creates a new partition at the end of the file to accommodate the new data. Depending

on the partitioning approach, Slalom either accumulates updates to create partitions of equal

size (i.e., query-based partitioning) or dynamically repartitions the fresh data. Once Slalom

has organized the new data in partitions, it treats them similarly to a first time input. Thus,
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during the first query after an update, Slalom builds binary caches and positional maps over

the new data. When the new partitions are declared st able, Slalom builds indexes on top of

them.

In-place Updates. In-place updates correspond to random changes in the file made by another

application, such as updating values of specific fields or adding additional rows in the middle

of the file. In-place updates are more challenging, especially when considering the case of

the positional map and indexes. A change in a position of an attribute in the data file might

require significant reorganization in all generated data structures.

Updating Positional Maps: To update the positional map for a modified partition, Slalom

scans each field character by character each field to narrow down the updated parts. Once the

updated section is identified, Slalom stores the difference in byte offsets between the old and

new fields into a delta list. All new changes are appended to the list and any possible changes

in previous offset differences are being integrated as well. The delta list adds computational

overhead when using the positional map because, for every access Slalom must check the

delta list whether the position has been altered by an update. As the delta list grows, the

complexity of position computation is growing as well. Thus, to reduce the query cost, the

delta list is incorporated into the original positional map every 10 updates. Specifically, to

incorporate the delta list into the positional map, Slalom scans over the delta list and adds the

offsets to the existing indexes in the positional map. This way, it does not have to completely

reconstruct the positional map while reducing the delta list.

Updating caches and indexes: In order to maintain a minimal memory footprint, Slalom does

not store a replica of the original file to be able retrieve old values for each updated field.

Hence, Slalom is unable to update indexes and caches. Rather, it invalidates and re-builds

them.

3.4 Experimental Evaluation

In this section, we present an analysis of Slalom. We analyze its partitioning and indexing

algorithm, and compare it against state-of-the-art systems over both synthetic and real life

workloads.

Methodology. We compare Slalom against DBMS-X, a commercial state-of-the-art in-memory

DBMS that stores records in a row oriented manner and the open-source DBMS PostgreSQL

(version 9.3). We use DBMS-X and PostgreSQL with two different configurations: (i) Fully-

loaded tables and (ii) Fully-loaded, indexed tables. We also compare Slalom with the in-situ

DBMS PostgresRaw [10]. PostgresRaw is an implementation of NoDB [10] over PostgreSQL;

PostgresRaw avoids data loading and executes queries by performing full scans over CSV files.

In addition, PostgresRaw builds positional maps on-the-fly to reduce parsing and tokenization

costs. Besides positional maps, PostgresRaw uses caching structures to hold previously ac-
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Figure 3.5 – A breakdown of the operations taking place for Slalom during the execution of a
subset of the 100 point query sequence.

cessed data in a binary format. Furthermore, to compare Slalom with other adaptive indexing

techniques we integrate into Slalom two variations of database cracking: (i) standard crack-

ing [61] and (ii) the MDD1R variant of stochastic cracking [55]. We chose MDD1R as it showed

the best overall performance in [105]. We integrated the cracking techniques by disabling the

Slalom tuner and setting cracking as the sole access path. Thus, Slalom and cracking use the

same execution engine and have the same data access overheads.

Slalom’s query executor pushes predicate evaluation down to the access path operators for

early tuple filtering and results are pipelined to the other operators of a query (e.g., joins).

Thus, in our analysis, we focus on scan intensive queries. We use select-project-aggregate

queries to minimize the number of tuples returned and avoid any overhead from the result

tuple output that might affect the measured times. Unless otherwise stated, the queries are of

the following template (OP : {<,>,=}):

SELECT agg(A), agg(B), ..., agg(N) FROM R

WHERE A OP X (AND A OP Y)
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Experimental Setup. The experiments are conducted in a Sandy Bridge server with a dual

socket Intel(R) Xeon(R) CPU E5-2660 (8 cores per socket @ 2.20 Ghz), equipped with 64KB L1

cache and 256KB L2 cache per core, 20MB L3 cache shared, and 128GB RAM running Red Hat

Enterprise Linux 6.5 (Santiago - 64 bit) with kernel version 2.6.32. The server is equipped with

a RAID-0 of 7 250GB 7500 RPM SATA disks.

3.4.1 Adapting to Workload Shifts

Slalom adapts efficiently to workload shifts despite changes in (i) data distribution, (ii) query

selectivity, and (iii) query locality - both vertical (i.e., different attributes) and horizontal (i.e.,

different records). We demonstrate the adaptivity experimentally by executing a dynamic

workload with varying selectivity and access patterns over a synthetic dataset.

Methodology. To emulate the worst possible scenario for Slalom, we use a relation of 640

million tuples (59GB), where each tuple comprises of 25 unsigned integer attributes with

uniformly distributed values ranging from 0 to 1000. Slalom is unable to find a value clustering

in the file because all values are uniformly distributed, thus Slalom applies homogeneous

partitioning. Slalom, cracking, and PostgresRaw operate over the CSV data representation,

whereas PostgreSQL and DBMS-X load the raw data prior to querying. In this experiment,

we limit the index memory budget for Slalom to 5GB and the cache budget to 10GB. All

other systems are free to use all available memory. Specifically, for this experiment, DBMS-X

required 98GB of RAM to load and fully build the index.

We execute a sequence of 1000 point and range select-project-aggregation queries following

the template from Section 3.4. The predicate value is randomly selected from the domain of

the attribute. Point query selectivity is 0.1% and range query selectivity varies from 0.5% to

5%. To emulate workload shifts and examine system adaptivity, in every 100 queries, queries

1-30 and 61-100 use a predicate on the first attribute of the relation and queries 31-60 use a

predicate on the second attribute.

The indexed variations of PostgreSQL and DBMS-X build a clustered index only on the first

attribute. It is possible to build indexes on more columns for PostgreSQL and DBMS-X,

however, it requires additional resources and increases data-to-query time. In addition,

choosing which attributes to index, requires a priori knowledge of the query workload, which

is unavailable in the dynamic scenarios that Slalom considers. Indicatively, building an

secondary index on a column for PostgreSQL for our experiment takes ∼25 minutes. Thus,

by the time PostgreSQL finishes indexing, Slalom will have finished executing the workload

(Figure 3.6).

Slalom Convergence. Figure 3.4 shows the response time of each query of the workload for

the different system configurations. For clarity, we present the results for the first 100 queries.

To emulate the state of DBMS systems immediately after loading, all systems run from a hot
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state where data is resting in the OS caches. Figure 3.4 plots only query execution time and

does not show data loading or index building for PostgreSQL and DBMS-X.

The runtime for the first query of Slalom is 20× slower than its average query time, because

during that query it builds a positional map and a binary cache. In subsequent queries (queries

2-7), Slalom iteratively partitions the dataset and builds B+ trees. After the initial set of queries

(queries 1-6), Slalom has comparable performance to that of PostgreSQL over fully indexed

data. During the third query, multiple partitions stabilize simultaneously, thus Slalom builds

many B+ tree and Bloom filter indexes, adding considerable overhead. When Slalom converges

to its final state, its performance is comparable to that of the indexed DBMS-X. When the

queried attribute changes (query 31), Slalom starts partitioning and building indexes on the

new attribute. After query 60, when the workload filters data based on the first attribute again,

where the partitioning is already stable, Slalom re-uses the pre-existing indexes.

PostgreSQL with no indexes demonstrates a stable execution time as it has to scan all data

pages of the loaded database regardless of the result size. Due to the queries being very

selective, when an index is available for PostgreSQL, the response times are ∼9× lower when

queries touch the indexed attribute. DBMS-X keeps all data in memory and uses memory-

friendly data structures, so it performs on average 3× better than PostgreSQL. The difference in

performance varies with query selectivity. In highly selective queries, DBMS-X is more efficient

in data access whereas for less selective queries the performance gap is smaller. Furthermore,

for very selective queries, indexed DBMS-X is more efficient than Slalom as its single B+ tree

traverses very few results nodes.

During query 1, PostgresRaw builds auxiliary structures (cache, positional map) and takes 3×
more time (180 sec) than its average query run time. PostgresRaw becomes faster than the

unindexed PostgreSQL variation as its scan operators use vector-based (SIMD) instructions

and exploit compact caching structures.

Similarly, during query 1, cracking builds a binary cache and populates the cracker column

it uses for incremental indexing. The runtime of its first query is 4× slower than the average

query time for PostgreSQL without indexes. When it touches a different attribute (query 31) it

also populates a cracker column for the second attribute. Despite the high initialization cost,

cracking converges efficiently and reaches its final response time after the fourth query. The

randomness in the workload benefits cracking as it splits the domain into increasingly smaller

pieces. After converging, cracking performance is comparable to the PostgreSQL with index.

Slalom requires more queries to converge than cracking. However, after it converges, Slalom is

∼2× faster than cracking. This difference stems from cracking execution overheads. cracking

sorts the resulting tuples based on their memory location and enforces sequential memory

access. This sorting operation adds an overhead, especially for less selective queries.

Execution Breakdown. Slalom aims to build efficient access paths with minimal overhead.

Figure 3.5 presents the breakdown of query execution for the same experiment as before. For
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Figure 3.6 – Sequence of 1000 queries. Slalom does not incur loading cost and dynamically
builds indexes.

clarity, we present only queries Q1-15 and Q31-45 as Q16-30 show the same pattern as Q11-15.

Queries Q1-15 have a predicate on the first attribute and queries Q31-45 have a predicate on

the second attribute.

During the first query, Slalom scans through the original file and creates the cache. During Q2

and Q3 Slalom is actively partitioning the file and collects data statistics (i.e., distinct value

counts) per partition; Slalom bases the further partitioning and indexing decisions on these

statistics. Statistics gathering cost is represented in Figure 3.5 as “Insert to Metadata”. During

queries Q2 and Q3, as the partitioning scheme stabilizes, Slalom builds Bloom filters and

B+ trees. Q3 is the last query executed using a full partition scan, and since it also incurs the

cost of index construction there is a local peak in execution time. During Q4 through Q8,

Slalom increasingly improves performance by building new indexes. After Q31, the queries

use the second attribute of the relation in the predicate, thus Slalom repeats the process of

partitioning and index construction. In total, even after workload shifts, Slalom converges

into using index-based access paths over converted binary data.

Full Workload: From Raw Data to Results. Figure 3.6 presents the full workload of 1000

queries, this time starting with cold OS caches and no loaded data to include the cost of

the first access to raw data files for all systems. We plot the aggregate execution time for all

approaches described earlier, including the loading and indexing costs for PostgreSQL and

DBMS-X.

PostgresRaw, Slalom, and cracking incur no loading and indexing cost, and start answering

queries before the other DBMS load data and before the indexed approaches finish index

building. Unindexed PostgreSQL incurs data loading cost as well as a total query aggregate

greater than PostgresRaw. Indexed PostgreSQL incurs both indexing and data loading cost,

and due to some queries touching a non-indexed attribute, its aggregate query time is greater

than the one of Slalom. Unindexed DBMS-X incurs loading cost; however, thanks to its main

memory-friendly data structures and execution engine, it is faster than the disk-based engine

of PostgreSQL.
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queries of synthetic workload.

After adaptively building the necessary indexes, Sla- lom has comparable performance with

a conventional DBMS which uses indexes. cracking converges quickly and adapts to the

workload efficiently. However, creating the cracker columns incurs a significant cost. Overall,

cracking and Slalom offer comparable raw-data-to-results response time for this workload

while, Slalom requires 0.5× memory. We compare in detail cracking and Slalom in Section

3.4.3.

Memory Consumption. Figure 3.7 plots the memory consumption of (i) the fully built indexes

used for DBMS-X and PostgreSQL, (ii) the cracker columns for cracking, and (iii) the indexes

of Slalom. Figure 3.7 excludes the size of the caches used by Slalom and cracking or the space

required by DBMS-X after loading. The traditional DBMS require significantly more space for

their indexes. Orthogonally to the index memory budget, DBMS-X required 98GB of memory

in total, whereas the cache of Slalom required 9.7GB. cracking builds its cracker columns

immediately when accessing a new attribute. The cracker column requires storing the original

column values as well as pointers to the data, thus it has a large memory footprint even for low

value cardinality. Regarding the indexes of Slalom, when the focus shifts to another filtering

attribute (Q31), Slalom increases its memory consumption, as during Q31-34 it creates logical
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Figure 3.9 – The effect of different indexes on point and range queries over uniform and
clustered datasets.

partitions and builds Bloom filters and B+ tree indexes on the newly accessed attribute. By

building and keeping only the necessary indexes for a query sequence, Slalom strikes a balance

between query performance and memory utilization.

Minimizing Data Access. The performance gains of Slalom are a combination of data skipping

based on partitioning, value-existence indexes, and value-position indexes, all of which

minimize the number of tuples Slalom has to access. Figure 3.8 presents the number of tuples

that Slalom accesses for each query in this experiment. We observe that as the partitioning and

indexing schemes of Slalom converge, the number of excess tuples accessed is reduced. Since

the attribute participating in the filtering predicate of queries Q31-60 has been cached, Slalom

accesses the raw data file only during the first query. Slalom serves the rest of the queries

utilizing only the binary cache and indexes. For the majority of queries, Slalom responds using

an index scan. However there are queries where it responds using a combination of partition

scan and index scan.

Figure 3.9 presents how the minimized data access translates to reduced response time and

the efficiency of data skipping and indexing for different data distribution and different

query types. Specifically, it presents the effect of zone maps, Bloom filters and B+ trees on

query performance for point queries and range queries with 5% selectivity over uniform and

clustered datasets. The clustered dataset contains mutually disjointed partitions (i.e., subsets

of the file contain values which do not appear in the rest of the file). The workload used is the

same used for Figure 3.4. Zone maps are used for both range and point queries and are most

effective when used over clustered data. Specifically, they offer a ∼9× better performance than

full cache scan. Bloom filters are useful only for point queries. As the datasets have values

in the domain [1,1000], point queries have low selectivity making Bloom filters ineffective.

Finally, B+ trees improve performance for both range and point queries. The effect of B+ tree

is seen mostly for uniform data where partition skipping is less effective. Slalom stores all

indexes in-memory, thus by skipping a partition, Slalom avoids full access of the partition and

reduces memory access or disk I/O if the partition is cached or not respectively.
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Figure 3.10 – Slalom performance using different memory budgets.

Summary. We compare Slalom against (i) a state-of-the-art in-situ querying approach, (ii) a

state-of-the-art adaptive indexing technique, (iii) a traditional DBMS, and (iv) a state-of-the-

art in-memory DBMS. Slalom gracefully adapts to workload shifts using an adaptive algorithm

with negligible execution overhead. Slalom offers performance comparable with a DBMS

which uses indexes, while also being more conservative in memory space utilization.

3.4.2 Working Under Memory Constraints

As described in Section ??, Slalom efficiently uses the available memory budget to keep the

most beneficial auxiliary structures. We show this experimentally by executing the same

workload under various memory utilization constraints. We run the 20 first queries – a mix of

point and range queries. We consider three memory budget configurations with 10GB, 12GB

and 14GB of available memory, respectively. The budget includes both indexes and caches.

Figure 3.10 presents the query execution times for the workload given the three different

memory budgets. The three memory configurations build a binary cache and create the same

logical partitioning. Slalom requires 13.5GB in total for this experiment; given an 14GB mem-

ory budget, it can build all necessary indexes, leading to the best performance for the workload.

For the 10GB and 12GB memory budgets, there is insufficient space to build all necessary

indexes, thus these configurations experience a performance drop. We observe that config-

urations with 10GB and 12GB memory budgets outperform the configuration with 14GB of

memory budget for individual queries (i.e., Q3 and Q5). The reason is that the memory-limited

configurations build fewer B+ trees during these queries than the configuration with 14GB of

available memory. However, future queries benefit from additional B+ trees, amortizing the

extra overhead over a sequence of queries.

Figure 3.11 presents the breakdown of memory allocation for the same query sequence when

Slalom is given a 12GB memory budget. We consider the space required for storing caches,

B+ trees and Bloom filters. The footprint of the statistics and metadata Slalom collects for the

cost model and zone maps is negligible, thus we exclude them from the breakdown. Slalom

initially builds the binary cache, and logically partitions the data until some partitions become
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Figure 3.11 – Slalom memory allocation (12GB memory budget).

0

2000

1 10 100

Ti
m

e 
(s

ec
)

Query Sequence

Slalom
Cracking
Stochastic Cracking

Figure 3.12 – Random/Uniform data

0

1000

2000

3000

4000

1 10 100

Ti
m

e 
(s

ec
)

Query Sequence

Slalom
Cracking
Stochastic Cracking

Figure 3.13 – Zoom In Alt./Uniform data

stable (Q1, Q2). At queries Q3, Q4, and Q5 Slalom starts building B+ trees, and it converges

to a stable state at query Q7 where all required indexes are built. Thus, from Q7-Q10 Slalom

stabilizes performance. Overall, this experiment shows that Slalom can operate under limited

memory budget gracefully managing the available resources to improve query execution

performance.

3.4.3 Adaptivity Efficiency

Slalom adapts to query workloads as efficiently as state-of-the-art adaptive indexing tech-

niques while working with less memory. Furthermore, it exploits any potential data clustering

to further improve its performance. We demonstrate this by executing a variety of workloads.

We use datasets of 480M tuples (55GB on disk); each tuple comprises 25 unsigned integer

attributes whose values belong to the domain [1,10000]. Queries in all workloads have equal

selectivity to alleviate the noise from data access; all queries have 0.1% selectivity, i.e., select

10 consecutive values.

SELECT agg(A), ..., agg(E) FROM R

WHERE R.A >= low AND low+10 <= R.A

Methodology. Motivated by related work [105], we compare Slalom against cracking and
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stochastic cracking in three cases.

Random workload over Uniform dataset. We execute a sequence of range queries which access

random ranges throughout the domain to emulate the best case scenario for cracking. As

subsequent queries filter on random values and the data is uniformly distributed in the file,

cracking converges and minimizes data access.

“Zoom In Alternate” over Uniform dataset. To emulate the effect of patterned accesses, we

execute a sequence of queries that access either part of the domain in alternate, i.e., first

query: [1,10], second query: [9991,10000], third query: [11,20], etc. This access pattern is one

of the scenarios where the original cracking algorithm underperforms [55]. Splits are only

query-driven, and every query splits data into a small piece and the rest of the file. Thus, the

improvements in performance with subsequent queries are minimal. Stochastic cracking

alleviates the effect of patterned accesses by splitting in more pieces apart from the ones based

on queries.

Random workload over Clustered dataset. This setup examines how adaptive indexing tech-

niques perform on datasets where certain data values are clustered together, for example,

data clustered on timestamp or sorted data. The clustered dataset we use in the experiment

contains mutually disjoint partitions, i.e., subsets of the file contain specific values which

appear solely in those locations and do not appear in the rest of the file.

Figure 3.12 demonstrates the cumulative execution time for cracking, stochastic cracking and

Slalom for the random workload over uniform data. All approaches start from a cold state,

thus during the first query they parse the raw data file and build a binary cache. Stochastic

cracking and cracking incur an additional cost of cracker column initialization during the

first query, but reduce execution time with every subsequent query. During the first three

queries, Slalom creates its partitions; during the following 6 queries, Slalom builds the required

indexes, and finally converges to a stable state at query 10. Due to its fine-grained indexing

and local memory accesses, Slalom provides ∼8× lower response time than cracking and

their cumulative execution time is equalized during query 113. Furthermore, Figure 3.15

demonstrates the memory consumption of the cracking approaches and Slalom for the same
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Table 3.2 – Cost of each phase of a smart-meter workload.

System Loading Index Build Queries Total
Slalom 0 sec 0 sec 4301 sec 4301 sec

Cracking 0 sec 0 sec 6370 sec 6370 sec
PostgresRaw 0 sec 0 sec 10077 sec 10077 sec

PostgresSQL (with index) 2559 sec 1449 sec 9058 sec 13066 sec
PostgreSQL (no index) 2559 sec 0 sec 15379 sec 17938 sec
DBMS-X (with index) 6540 sec 1207 sec 3881 sec 11628 sec
DBMS-X (no index) 6540 sec 0 sec 5243 sec 11783 sec

experiment. The cracking approaches have the same memory footprint; they both duplicate

the full indexed column along with pointers to the original data. On the other hand, the

cache-conscious B+ trees of Slalom stores only the distinct values along with the positions of

each value, thus reducing the memory footprint. In addition, Slalom allocates space for its

indexes gradually, offering efficient query execution even with limited resources.

Figure 3.13 shows the cumulative execution time for cracking, stochastic cracking, and Slalom

for the “Zoom In Alternate” workload over uniform data. cracking needs more queries to

converge to its final state as it is cracking only based on query-driven values. Stochastic

cracking converges faster because it cracks based on more values except the ones found in

queries. Slalom uses a combination of data and query driven optimizations. Slalom requires

an increased investment during the initial queries to create its partitioning scheme and index

the partitions, but ends up providing 7× lower response time, and equalizes cumulative

execution time with cracking at query 53 and stochastic cracking at query 128.

Figure 3.14 presents the cumulative execution time of cracking, stochastic cracking and Slalom

for the random workload over implicitly clustered data. In this situation, Slalom exploits the

clustering of the underlying data early on (from the second query) and skips the majority

of data. For the accessed partitions, Slalom builds indexes to further reduce access time.

Similarly to Figure 3.12, the cracking approaches crack only based on the queries and are

agnostic to the physical organization of the dataset.

Summary. We compare Slalom with cracking and stochastic cracking. Slalom converges

comparably to the best cracking variation when querying uniform data over both random and

“Zoom In Alternate” workloads. Furthermore, when Slalom operates over clustered data, it

exploits the physical data organization and provides minimal data-to-query time. Finally, as

Slalom builds indexes gradually and judiciously, it requires less memory than the cracking

approaches, and it can operate under a strict memory budget.
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Figure 3.16 – Sequence of SHD analytics workload. Slalom offers consistently comparable
performance to in-memory DBMS.

3.4.4 Slalom Over Real Data

In this experiment, we demonstrate how Slalom serves a real-life workload. We use a smart

home dataset (SHD) taken from an electricity monitoring company. The data- set contains

timestamped information about sensor measurements such as energy consumption and

temperature, as well as a sensor ID for geographical tracking. The timestamps are in increasing

order. The total size of the dataset is 55 GB in CSV format. We run a typical workload of an SHD

analytics application. Initially, we ask a sequence of range queries with variable selectivity,

filtering data based on the timestamp attribute (Q1-29). Subsequently, we ask a sequence

of range queries which filter data based on energy consumption measurements to identify

a possible failure in the system (Q30-59). We then ask iterations of queries that filter results

based on the timestamp attribute (Q60-79, Q92-94), the energy consumption (Q80-84, Q95-

100), and the sensor ID (Q85-91) respectively. Selectivity varies from 0.1% to 30%. Queries

focusing on energy consumption are the least selective.

Figure 3.16 shows the response time of the different approaches for the SHD workload. All

systems run from a hot state, with data resting in the OS caches. The indexed versions of

PostgreSQL and DBMS-X build a B+ tree on the timestamp attribute. The figure plots only

query execution time and does not show the time for loading or indexing for PostgreSQL and

DBMS-X. For other other systems, where building auxiliary structures takes place during query

execution, execution time contains the total cost.

PostgreSQL and DBMS-X without indexes perform full table scans for each query. Q30-60

are more expensive because they are not selective. For queries filtering on the timestamp,

indexed PostgreSQL exhibits 10× better performance than PostgreSQL full table scan. Similarly,

indexed DBMS-X exhibits 17× better performance compared to DBMS-X full table scan. As

the queries using the index become more selective, response time is reduced. For the queries

that do not filter data based on the indexed field, the optimizer of DBMS-X chooses to use the

index despite the predicate involving a different attribute. This choice leads to response time

slower than the DBMS-X full scan.

45



Chapter 3. Adaptive in-situ Partitioning and Indexing

PostgresRaw is slightly faster than PostgreSQL without indexes. The runtime of the first query

that builds the auxiliary structures (cache, positional map) is 8× slower (374 sec) than the

average query runtime. For the rest of the queries PostgresRaw behaves similar to PostgreSQL

and performs a full table scan for each query.

After the first query, Slalom identifies that the values of the timestamp attribute are unique.

Thus, it chooses to statically partition the data following the cost model for query-based

partitioning (Section 3.3.1) and creates 1080 partitions. Slalom creates the logical partitions

during the second query and calculates statistics for each partition. Thus, the performance of

Slalom is similar to that of PostgresRaw for the first two queries. During the third query, Slalom

takes advantage of the implicit clustering of the file to skip the majority of the partitions,

and decides whether to build an index for each of the partitions. After Q5, when Slalom has

stabilized partitions and already built a number of indexes over them, the performance is

better than that of the indexed PostgreSQL variation.

Queries Q2-Q30 represent a best-case scenario for DBMS-X: data resides in memory and its

single index can be used, therefore, DBMS-X is faster than Slalom. After Q29, when queries

filter on a different attribute, the performance of Slalom becomes equal to that of PostgresRaw

until Slalom builds indexes. Because the energy consumption attribute has multiple appear-

ances of the same value, Slalom decided to use homogeneous partitioning. Q30 to Q59 are not

selective, thus execution times increase for all systems.

Table 3.2 shows the costs for loading and indexing as well as the aggregate query costs for the

same query workload of 100 queries, for all the systems. Due to the queries being non-selective,

the indexed and non-indexed approaches of DBMS-X have similar performance, thus in total

Slalom exploits its adaptive approach to offer competitive performance to the fully indexed

competitors.

Summary. Slalom serves a real-world workload which involves fluctuations in the areas of

interest, and queries of great variety in selectivity. Slalom serves the workload efficiently due

to its low memory consumption and its adaptivity mechanisms, which gradually lower query

response times despite workload shifts.

3.4.5 Slalom Handling File Updates

In this section, we demonstrate Slalom’s update efficiency for append-like and in-place up-

dates.

Append-like Updates

Slalom monitors changes in the queried files and dynamically adapts its data structures. In this

experiment, we execute a sequence of 20 point queries following the template from Section

3.4 with selectivity 0.1%. Q1 to Q10 run on the original relation of 18 million tuples (22GB).
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Figure 3.17 – Slalom executing workload with append-like updates.
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Figure 3.18 – Slalom executing workload with in-place updates.

Between queries Q10 and Q11 we append to the CSV dataset 6GB of additional uniformly

distributed data. Slalom detects the change in the structure of the file and iteratively creates

new logical partitions for the new tuples and creates Bloom filters and B+ trees during Q11, Q12,

and Q13. Between Q16 and Q17, we append again 6GB of data to the end of the CSV dataset.

Slalom again dynamically partitions and builds indexes. Figure 3.17 shows the execution time

for each of the queries in the sequence. Q11 and Q17 execute immediately after the appends,

thus we see higher execution time because Slalom (i) accesses raw data, and (ii) builds auxiliary

structures – positional maps and binary caches – over them. After this update-triggered spike

in execution time, Slalom’s partitioning and indexing schemes converge and the execution

time becomes lower and stabilizes.

In-place Updates

We now show that Slalom handles in-place updates. We execute a sequence of 15 point

queries following the template from Section 3.4 with selectivity 0.01%, run on a 25 million

tuple relation (27GB). We query on a candidate key field to make Slalom use the query-based

partitioning strategy and observe solely the effect of updates on a partition. To evaluate

update efficiency, we develop a random update generator which updates fields and rows

within a file in random places. Before query Q5, the update generator updates 8 random rows,
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Figure 3.19 – Time break-down of query executiong with in-place updates.

and before query Q10, it updates 3 random rows. Figure 3.18 shows the execution time for

each of the queries in the sequence. During Q1, Slalom creates 345 partitions and builds the

positional map and indexes. During Q5 and Q10, the Update Monitor detects that the file has

been updated. Slalom compares the state of all partitions to identify the updated partitions,

performs the required corrections to the positional map, and re-builds the indexes. Figure

3.19 shows this process and presents the breakdown of query execution for Q1, Q5, and Q10.

During Q1, along with query execution, Slalom calculates the MD5 codes for all partitions. The

update before Q5 touched more partitions than the second update at Q10. Thus, Q5 has more

partition data structures to fix. As the query execution progresses, the increasing number of

partitions increases the number of checksum calculations.

Speed-up Checksum Calculation

This experiment examines the effect of using GPU and CRC accelerators for the calculation of

the partition checksums. We execute 3 point queries following the template from Section 3.4

with selectivity 0.01%, over a 25 million tuple relation (27GB). To examine the efficiency of GPU

and CRC checksum calculation we vary the number of partitions created by Slalom. The first

query breaks the file into 100 equally-sized partitions, the second query into 1000 partitions,

and the third into 10000 partitions. Before each query, we make a random update in the file to

activate the re-calculation of checksums. Figure 3.20 shows the checksum calculation cost

for the three queries using the three different appraches. When using the CPU (either the

dedicated CRC instructions or MD5 calculation) the cost of calculation remains constant. On

the other hand, when using the GPU, the checksum calculation is slower when the number

of partitions is increasing. The best approach for calculating checksums is using the CRC.

However, as CRC is able to compute checksums over input of 1024 byte blocks, it generates

a large number of checksums for each partition. Thus, making checksum comparison more

time-consuming.
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Figure 3.21 – Sequence of 40 queries over a binary file.

3.4.6 Additional Data Formats: Binary Data

This section shows that, besides CSV data, Slalom can also operate efficiently over binary

datasets. Slalom employs the same techniques as when running over CSV files, with two

exceptions. It tunes the cost model to reduce the access cost equations previously associated

with text-based data accesses, and does not have to build a positional map. Figure 3.21

presents the performance comparison of Slalom and PostgreSQL with and without indexes.

For this experiment we use a binary flat file with 100 million uniformly distributed tuples, each

having 30 columns (12GB); we run range queries with selectivity 1%. For Slalom the initial

data access is faster than that in the case of CSV data because (i) no parsing is involved and

(ii) the binary representation is more compact than the CSV one. During the first 9 queries,

System Loading Index Build Queries Total
Slalom 0 sec 0 sec 1352 sec 1352 sec

PostgresSQL (with index) 325 sec 165 sec 1264 sec 1754 sec
PostgreSQL (no index) 325 sec 0 sec 1677 sec 2002 sec

Table 3.3 – Cost of each phase of the 40 query sequence on binary file.
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Figure 3.22 – Cumulative execution time of 40 queries over a binary file.

Slalom fine-tunes its partitioning. During Q3, multiple partitions happened to stabilize, thus

triggering the construction of multiple indexes and leading to increased execution overhead.

Both PostgreSQL configurations have stable execution times as the selectivity remains stable.

Eventually, Slalom and indexed PostgreSQL converge and have similar performance. Figure

3.22 presents the cumulative execution time for loading, index building and query execution

for the three systems over binary files. PostgreSQL using indexes requires more pre-processing

time due to index building and it takes 13 queries to pay-off the cost of building the index.

Slalom requires 7 queries to start outperforming PostgreSQL and after 10 queries it offers

comparable performance to PostgreSQL with indexes. Table 3.3 presents separately the time

required for loading, index building, and query execution for the three systems. The additional

file adapters enable Slalom to efficiently and transparently operate on top of additional data

formats.

3.5 Conclusion

In-situ data analysis over large and, crucially, growing data sets faces performance challenges

as more queries are issued. State-of-the-art in-situ query execution reduces the data-to-insight

time. However, as the number of issued queries is increasing and, more frequently, queries

are changing access patterns (having variable selectivity, projectivity and are of interest in the

dataset), in-situ query execution cumulative latency increases.

To address this, we bring the benefits of indexing to in-situ query processing. We present

Slalom, a system that combines an in-situ query executor with an online partitioning and

indexing tuner. Slalom takes into account user query patterns to reduce query time over

raw data by partitioning raw data files logically and building for each partition lightweight

partition-specific indexes when needed. The tuner further adapts its decisions on-the-fly to

follow any workload changes and maintains a balance between the potential performance

gains, the effort needed to construct an index, and the overall memory consumption of the

indexes built.
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4 Self-Tuning, Elastic and Online Ap-
proximate Query Processing

Current Approximate Query Processing (AQP) engines are far from silver-bullet solutions,

as they adopt several static design decisions that target specific workloads and deployment

scenarios. Offline AQP engines target deployments with large storage budget, and offer

substantial performance improvement for predictable workloads, but fail when new query

types appear, i.e., due to shifting user interests. To the other extreme, online AQP engines

assume that query workloads are unpredictable, and therefore build all samples at query time,

without reusing samples (or parts of them) across queries. Neither approach is capable of

adapting query execution dynamically based on changes in the workload and underlying

storage resources. As a result, current AQP engines miss out on opportunities for optimizing

performance and cost. In this chapter, we present Taster, a self-tuning, elastic, online AQP

engine that synergistically combines the benefits of online and offline AQP. Taster takes

advantage of online AQP and performs online sampling by injecting samplers into the query

plan while strategically materializing and reusing samples across queries. Taster continuously

self tunes and adapts its materialized synopses based on changes in workload and underlying

storage resources. We implement Taster over SparkSQL and use several industry-standard

benchmarks to compare Taster with state-of-the-art online and offline AQP approaches. In

doing so, we show that Taster can adapt to variations in workload and storage, and always

converges to match, or outperform, the best performing AQP approach in all scenarios.

4.1 Introduction

In the past few years we have witnessed a renewed interest in approximate query processing

due to two reasons. First, driven by the promise of big data analytics, enterprises started

gathering data aggressively, collecting amounts that challenge state-of-the art exact analytics

systems that require expensive, up-to-date hardware. Second, modern-day analytics use

cases, like interactive data exploration, visual analytics, aggregate dashboards, and iterative

machine learning workloads, are increasingly tolerant to imprecision. Approximate query

processing (AQP) engines trade-off accuracy for better response time and lower resource usage

by executing analytical queries over a sample of the data, and providing approximate results
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within a few percents of the actual value.

State-of-the-art AQP engines are classified into two categories, depending on the assumptions

they make about the query workload. Offline AQP engines (e.g. STRAT [30] and BlinkDB [6])

target applications where the query workload is known a priori, e.g., aggregate dashboards

that compute summaries over a few fixed columns. Offline AQP engines analyse the expected

workload to identify the optimal set of synopses (summaries of the data, such as samples,

sketches, and histograms) that should be generated to provide fast responses to the queries

at hand, subject to a predefined storage budget and error tolerance specification. Since this

analysis is time-consuming, both due to the computational complexity of the analysis task, as

well as the I/O overhead in generating the synopses, AQP engines perform the analysis offline

each time the query workload or the storage budget changes.

While offline AQP engines substantially improve query execution time under predictable

query workloads, their need for a priori knowledge of the queries makes them unsuitable for

unpredictable workloads. Data exploration is one such example, where future queries are

determined based on the results obtained from past queries. These workloads benefit from

online AQP techniques, where approximation is introduced to query execution at runtime.

State-of-the-art online AQP engines achieve this by introducing samplers during query execu-

tion. By reducing the input tuples, samplers improve performance of the operators higher in

the query plan. In this way, online AQP techniques can boost unknown query workloads. How-

ever, query-time sampling is limited in the scope of a single query, as the generated samples

are not constructed with the purpose of reuse across queries – they are specific to the query,

and are not saved. Thus, online AQP engines offer substantially constrained performance

gains compared to their offline counterparts for predictable workloads.

In summary, all state-of-the-art AQP engines force end-users to pick an extreme point in

the generality–performance spectrum, as they make static, design-time decisions based on

a fixed set of assumptions about the query workload and the available resources. However,

workload in modern data analytics clusters is complex, far from homogeneous, and often

contains a mix of queries that vary widely with respect to the degree of approximability [6].

Similarly, the available hardware resources are also non-static and time-varying. For instance,

an administrator might elastically provision storage space for storing synopses based on the

expected system load. Hence, in the ideal case, an AQP engine should be self-tuning and

adaptive. It should automatically pick the right point in the design spectrum based on the

workload, and adapt its decision on-the-fly with each change in workload or storage capacity.

In this work, we present Taster, a self-tuning, elastic, online AQP engine that can adapt dynam-

ically to variations in workload and storage. Taster inherits ideas from (adaptive) database

systems, such as intermediate result materialization, query subsumption, materialized view

tuning and index tuning, and adapts these in the context of AQP, enabling a combination

and extension of the benefits of both offline and online approximation engines. Central to

the approximation approach of Taster is that it operates at the level of query planning, i.e.,
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Figure 4.1 – Cumulative time-to-insight for various approaches in an exploratory data analysis
usecase.

subplans are promoted as first-class citizens. This enables Taster to materialize and save

synopses on intermediary results, e.g., a frequently-executed join, and to use these synopses

as auxiliary access paths, for the purpose of query planning of future queries. Furthermore,

Taster builds on an extensive and extensible arsenal of approximation techniques, combining

different samplers and sketches in order to cover different families of queries.

Taster combines and extends the benefits of both offline and online approximation engines.

First, by injecting approximation operators in the query plan, Taster offers high generality

similar to online AQP engines as it can support both precise and approximate queries in a

single engine. Taster extends prior work by showing that the technique of injecting sampling

operators can also be generalized to sketch-based approximation solutions. Second, by

materializing and reusing samples, Taster provides performance on-par with offline AQP

engines under predictable workloads. Taster extends prior work by supporting sample and

sketch materialization at intermediate stages in the query plan instead of restricted base table

materialization. Third, by using online data structures to track subplan similarities across

queries, and a cost:utility greedy algorithm to determine the right set of synopses to maintain,

Taster can adapt on-the-fly to both changes in workload and available storage.

Thus, an administrator can fully exploit cloud storage elasticity by dynamically changing the

budget used for sample storage to match expected workload demand without having to take

the system offline for reconfiguration.

Example scenario. To illustrate the utility of Taster, let us consider an example use case.

Visual analytics is a core process in data science, facilitating extraction of useful insights out

of big data [57, 79]. A data scientist typically starts by running simple exploratory queries

over the data and visualizing the results, formulating and validating hypotheses. Queries

are not known a priori, since each query typically depends on the results of the previous

queries. For example, the results of one query may hint the user to zoom in, or to analyze

further a particular region of the data as the next query. In this case, offline AQP engines

53



Chapter 4. Self-Tuning, Elastic and Online Approximate Query Processing

cannot be used, since they require a priori knowledge of the query load in order to prepare the

synopses. Even if this information is somehow provided by an oracle, then offline AQP engines

will require a potentially huge preparation overhead for constructing all synopses before any

query can be approximated (cf., series Offline AQP (BlinkDB), Figure 4.1 – the details of the

experiment will be discussed at Section 4.5). On the other hand, online AQP engines such

as Quickr can be used, and they offer a substantial performance improvement compared to

not using approximation at all (cf., series Online AQP (Quickr), Figure 4.1). However, online

AQP engines do not support reusability of approximations across queries (e.g., if two queries

have an overlapping sub-plan). The ideal situation (cf., series Taster, Figure 4.1) is to start

building the synopses as byproducts of the queries, and save these synopses such that they

can be reused in future queries. A synopsis can be built on a base relation (a table), or even

on intermediary result, e.g., the results of a join, or even the results of a filter. Since saving

of a synopsis carries a cost, the decision as to which synopsis to keep is taken by the query

engine, considering the utility of each synopsis and the frequency of use at the recent queries.

Furthermore, the storage budget for synopses can be increased or reduced at will by the

administrator – or even automatically using simple threshold rules – in order to anticipate an

increase in data, query load (number of users), and available hardware.

Contributions. This chapter makes the following contributions:

• We present an online adaptive approximate query processing approach that enables

materialization of synopses during query execution, and their reuse across queries.

Our approach uses synopses for summarizing both base tables and intermediary re-

sults of query subplans. As a results, the online adaptive AQP approach removes the

requirements for preprocessing, improves query performance and reduces storage

requirements.

• We show how to integrate synopses as first-class citizens in query planning, which leads

to better plans and improved performance.

• We present an online algorithm determining the optimal set of synopses to maintain by

using a utility metric that captures the performance benefit of a synopsis.

• We present other possible optimizations assuming additional knowledge of user’s in-

tentions (e.g., some frequent queries, on which attributes, and on which files). We

sketch the space of possible optimizations in the presence of additional user hints, and

demonstrate how to integrate these hints by pre-constructing some samples.

• We integrate our techniques into SparkSQL and create our prototype system named

Taster. We compare Taster to vanilla SparkSQL, a representative offline AQP approach

called BlinkDB, and an online approximation approach called Quickr. Our experi-

ments with industry-standard benchmarks demonstrate that Taster offers substantially

improved performance compared to online AQP engines (2.9×), and comparable perfor-

mance to offline AQP engines without requiring the excessive sample pre-generation
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Figure 4.2 – The overview of Taster.

cost. Speed-up compared to the baseline is over 3× on average (20× when additional

hints are provided, reaching to 30× for some queries).

The rest of this chapter is organized as follows. Section 4.2 discusses the architecture of

Taster, along with an example of its execution workflow. Section 4.3 details on the query

planning process, whereas Section 4.4 discusses the self-tuning nature of the system. Section

4.5 presents a thorough experimental evaluation. We conclude in Section 4.6.

4.2 Architecture of Taster

Figure 4.2 presents Taster’s high-level architecture. Taster is implemented over SparkSQL and

extends Apache Catalyst query optimizer and SparkSQL query engine with online approxima-

tion techniques, combined with synopsis materialization and self-tuning. The techniques

presented are not limited to SparkSQL, and are applicable to any query processing system –

even centralized ones. In the following we present a high-level overview of the core concepts

of Taster.

Synopses and synopsis warehouse. Taster uses a set of automatically-constructed and tuned

synopses to summarize both the raw data (the base relations) and intermediary results of

subplans (e.g., join results). Currently, it exploits two types of synopses, samples and sketches,

each being appropriate for answering different query families. All synopses are constructed as

byproducts of query answering, and are saved in the synopsis warehouse, in HDFS. Along with

synopses, Taster stores statistics of the dataset (distribution of values, number of distinct val-

ues), which are calculated on-the-fly during the first access to any table. To control monetary

cost, the synopsis warehouse is subject to space quota, which is set at initialization and can

also be modified at runtime from the administrator. More details for the process of selecting

synopses for the synopsis warehouse will be presented in Section 4.4.

Synopsis buffer. The plan chosen for execution may require generation of a new synopsis

(i.e., if the synopsis is not already in the synopsis warehouse). Generation of a new synopsis

on-the-fly may still be beneficial for the query at hand, in order to reduce CPU usage of
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operators higher in the plan. In this case, the new synopsis will be temporarily stored in the

synopsis buffer – a fixed-size buffer implemented as a sequence of in-memory RDDs in Spark.

The buffer offers two main benefits: (a) it serves as a fast main-memory cache, which offers

significant boost for workloads exhibiting temporal locality, and, (b) it decouples the decision

of writing the synopsis in the HDFS-based synopsis warehouse – an I/O expensive operation

– with the process of query answering which needs to be executed with a very small latency.

When the buffer is full, the tuner decides which synopses should be permanently stored in the

synopsis warehouse (cf. Section 4.4).

Cost-based planner. Taster’s query engine decides automatically on the exploitation of sup-

ported synopses to speed-up user queries. This automation relies on a cost-based planner,

which is currently built into the Catalyst optimizer. Upon receiving the query, the planner

generates a set of approximate execution plans. These plans utilize synopses that may, or may

not yet exist, and they all satisfy the approximation requirements of the query. The next step is

to estimate the cost of each plan and the performance gain by the use of synopses, compared

to the best plan without synopses that will return exact answers. The plans and their costs are

then passed to the tuner, for further optimizations and the final execution. The cost-based

planner is discussed in Section 4.3.

Tuner. The primary purpose of the tuner is to choose the best plan out of the ones proposed

by the planner. However, when ranking the plans, the tuner focuses on maximizing long-term

throughput, i.e., over the future workload, as opposed to minimizing the cost for the query at

hand. This holistic optimization translates to decisions in two levels: (a) promoting the plans

that generate reusable synopses, pertinent to many different queries, and, (b) deciding which

of the generated synopses will be stored in the synopsis warehouse, and which will be deleted,

to satisfy the space quota. Tuning involves two major challenges: (a) holistic optimization can

be CPU-intensive, and (b) the future queries, over which the tuner needs to optimize, are of

course not yet known. We explain how these issues are addressed in Section 4.4.

Physical plan generator. The plan chosen by the tuner is subsequently passed to the physical

plan generator, for extraction of the physical plan and execution over Spark. The physical plan

generator is now implemented within the tuner to avoid additional synchronization overhead.

Fault tolerance, distribution, partitioning-related details, and the actual task execution are

handled transparently by Spark.

Metadata store. Effectiveness of both the planner and tuner depends on the existence of meta-

data that characterizes the past workload and the synopses that could speed-up this workload.

The metadata store is a main-memory, synopses-centric metadata repository that keeps rich

statistics about the properties, impact, and popularity of each synopsis. In particular, the

store keeps details for all synopses contained in all plans generated by the planner – even the

ones that are not chosen for execution. These details include: (a) the logical definition of the

synopsis (the logical subplan whose results are summarized by this synopsis), (b) stratification
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and accuracy requirements of the synopsis, (c) whether the synopsis is saved in the synopsis

warehouse or not, and, (d) the list of recent queries that could utilize this synopsis to improve

performance, their estimated cost when this synopsis exists, and their cost if an exact query

plan (without synopses) would be chosen instead. The purpose of this metadata is twofold:

(a) to assist the planner to estimate the cost of each candidate plan (cf. Section 4.3.1), and (b)

to enable the tuner to decide which synopses will maximize throughput, i.e., because they will

improve many different subplans (cf. Section 4.4).

Example. Figure 4.3 presents an overview of Taster running three queries over three relations

R , S, T . For simplicity, we assume that the synopsis buffer fits one synopsis, and the warehouse

fits three synopses. 1 Just before arrival of Q1, the synopsis warehouse already contains

synopses S1, S2, and S3. S1 is a sample of relation T . Synopses S2 and S3 refer to another table

W , not relevant to the three queries.

During Q1, the planner proposes two candidate plans (cf., Fig. 4.3a). The first one contains

synopsis S4, which summarizes R on S, and the second contains synopsis S5 of R. Notice that

neither of the two synopses exist. The two plans are costed, and the metadata store is updated

with the corresponding properties of S4 and S5. Then, the plans are sent to the tuner. The

tuner identifies the best plan (in this case, the one with S4), and sends it for execution. During

execution, S4 is generated and saved in the in-memory synopsis buffer. When Q2 arrives, the

planner identifies two candidate plans (cf., Fig. 4.3b), which rely on the nonexistent synopses

1This is only for illustration purposes. Since synopses have different sizes, quotas are determined in GB, and
not in number of synopses.
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S6 and S7 respectively (synopses S1 and S4 cannot be used because of different grouping

attributes). Again, the planner updates the metadata store with the corresponding properties

of the two candidate synopses, and the plans are sent to the tuner. Now, as the synopsis buffer

is full, the tuner first needs to free up space, so that either of the candidate synopses can be

generated. The synopsis warehouse is also full. By estimating the long-term benefit of each

synopsis, the tuner decides to keep S1, S3, and S4 in the warehouse, and to execute the plan

that requires S5. The plan is executed, and S7 is stored in the synopsis buffer. During Q3,

the planner proposes two plans (cf., Fig. 4.3c), the first replacing the scanning of relation T

with S1 which is already saved in the warehouse (the yellow box), and the second utilizing a

non-existent synopsis S8. The plans are sent to the tuner, where the first one is chosen and

sent for execution.

Supported Queries. Taster accepts and answers all SQL queries supported by Spark SQL.

Similar to prior work, e.g., [6, 70], it improves performance for queries containing aggregates

(e.g., COUNT, AVG, SUM). The query format for approximate queries follows the standard

syntax: “ERROR WITHIN x% AT CONFIDENCE y%”, which corresponds to aggregate results

with relative error of at most x% at a y% confidence level. Taster adapts the query plan

accordingly such that the accuracy guarantees are satisfied and all groups are included in the

results, e.g., when a group-by is requested.

4.3 Query Planning with Synopses

Taster automatically decides which synopses to create, store, and use for answering each

query. Synopses are used for summarizing both raw data (base relations) and query subplans

(e.g., the results of an aggregator over a join). Due to their small size compared to the original

data, synopses improve both computational complexity and I/O cost during query processing.

All synopses are created on-the-fly, as byproducts of query answering, thereby inducing no

additional I/O.

Synopses in Taster are promoted to first-class citizens: they are included as approximate

operators in the logical query plans, costed as all other logical operators, and transformed to

fully pipelined and distributable code during the physical plan generation. This enables the

planner to produce more efficient plans, and the tuner to promote reusability of synopses by

matching synopses across different queries. In the remainder of this section we will explain

how the Taster planner integrates synopses into planning. The discussion explains the plan

generation process, how synopses are configured to satisfy the query’s accuracy requirements,

and how they are matched to existing synopses from the synopses warehouse.

4.3.1 Query Planning

The planner generates auxiliary logical plans, replacing the aggregator operators with approx-

imate aggregators (whenever these are beneficial for performance), costing the plans, and,
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passing them to the tuner for further optimizations. In the following, we describe this process

in detail.

Upon receiving query qi , the planner generates candidate logical plans P(qi ) = {p1, p2, . . .},

which integrate synopses. The key observation to limit the search space is that prospective

synopses are used for approximating aggregators and joins. Focusing on aggregations, the

planner first identifies all query subplans rooted on (partial/eager) aggregators. For each,

it injects a generic synopsis operator just below the aggregator operator, and modifies the

aggregator to account for the synopsis (e.g., a SUM over a sample would require scaling to

account for the full dataset). The synopsis operator represents the potential to efficiently

approximate the underlying subplan by the use of a (possibly not yet existent) synopsis.

Subsequently, Taster tweaks the query plan to achieve two goals, (i) maximize the re-use

of existing synopses and (ii) satisfy the user’s accuracy requirements. All resulting plans

are annotated with cost estimates based on their expected I/O, and analyzed to extract all

synopses, along with the subplans they summarize. The collected data is used to update the

metadata store with the appearances of these synopses. Following, all plans are passed to the

tuner for further optimizations.

The above process entails several challenges. First, the process of generating candidate

plans is different compared to traditional planners. Unlike traditional query planning, the

planner now also needs to take into account the required approximation guarantees and

stratification requirements while constructing the plans. Furthermore, when pushing down

a synopsis in the plan, the synopsis, as well as its corresponding approximate aggregation

operator, may require modifications. Second, the approximate aggregators in the plan need

to be configured. This boils down to choosing between the supported types of sampling

and sketches, and configuring the selected synopses (e.g., for uniform sampling, setting the

sampling probability). Third, the candidate synopses contained in the plan need to be mapped

to existing synopses (if any), so that the planner can replace the subplan with the synopses,

and estimate the execution cost. In the following we describe how the planner handles these

three challenges.

Generating the candidate plans. The planner generates the first set of plans by injecting syn-

opsis operators below the aggregations. Particularly, given aggregation operator ΓG ,AGG(A )(c),

which computes aggregation function AGG over the data produced by operator c (the child

operator in the logical plan) by grouping over attributes G , the synopsis operator ΓSst ate is

injected and the aggregation operator is updated (now denoted as Γ′
G ,AGG(A )(Γ

S
G (c))) to use

the synopsis as input. Subsequently, Taster starts pushing the synopses down in the plan,

closer to the raw data, as an effort to enable executing the plan with existing synopses, or to

generate more re-usable synopses. For these, it relies on the push-down rules for synopses

introduced in [70], and adapted to enable sketch synopses. Briefly, whenever Taster pushes a

synopsis operator under a filter σp , it needs to account for two possibilities. If the distribution

of values of predicate p is uniform, the new operator is moved under the filter unaltered,

since a uniform sample over that attribute will not reduce the number of groups appearing
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in the final result [84]. However, if the distribution of the values of p is skewed (some groups

appear infrequently), Taster needs to stratify the underlying output on p. Thus, Taster adds

the attributes appearing in p which follow a skewed distribution into the stratification set.

Considering pushing synopses under the joins, given a join R on j p S with join predicates j p,

the planner pushes the synopsis below the join, to the side of the join on which the aggregation

takes place (say, the side of R), and modifies the stratification attributes of the synopsis to

include the attributes from j p that are contained in R (i.e., ΓS(A∪ j p)∩R (R)on j p S). Finally, if the

join predicate is not a grouping attribute, Taster introduces a partial aggregation after the join.

The above push-down process guarantees that (i) the generated physical query plan will gather

sufficient samples from each of the groups to satisfy user’s accuracy requirements, and (ii)

the overall sampling process overhead will not exceed the performance gains. We discuss

how result accuracy is estimated efficiently and reused across different queries in Section

4.3.2. In terms of implementation, the push-down strategies are implemented as rules in the

Catalyst optimizer, and are executed at every query. Since Catalyst default implementation

returns only a single plan at the end, we intervene the planning process in order to store all

intermediate plans.

Choosing and configuring the synopses. The synopsis operators contained in the logical

plans up to now were parameterized with stratification and accuracy requirements, but

omitted configuration details, e.g., which synopsis to use, and how to configure it for satisfying

user’s accuracy requirements.

Due to the immense ratio of performance gain to storage requirement of sketches, Taster

prioritizes the use of sketch-join when appropriate: Let R and T be two relations joined

over attributes j p and subsequently passed through aggregator Γg r p,ag g , with g r p being the

grouping attributes and ag g the attributes taking part in the aggregation. With at tr s(R) we

denote the attributes of R which are given as input to the join. Sketch-join can boost join

queries with aggregates, when the projected attributes from one side of the join are either join

attributes, or they are used in the aggregate function. Formally, the following requirements

must be satisfied:

• at tr s(T )− j p = ag g

• at tr s(T )∩ g r p =; OR at tr s(T )∩ g r p = at tr s(T )∩ j p

Then, the synopsis operator injected between the aggregation and the join can be pushed

under the join operator, and transformed into a sketch-join operator.

When sketch-join is not applicable, Taster falls back to sampling. In this case, the planner needs

to decide which sampling strategy will be used. A key input for this decision is the cardinality

estimates per relational expression, and the number of distinct values in each column (both
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these statistics are computed during the first access to the table). In particular, Taster checks

(i) if the set of stratified attributes C is empty, and, (ii) if some sampling probability p ≤ 0.1

can ensure that, each distinct value of the columns in C receives at least k rows w.h.p.. If both

these checks are true, the sampler is implemented using the uniform sampler. Otherwise, if

C 6= ;, Taster chooses a distinct sampler. Finally, Taster generates a plan without samplers if

stratification and accuracy requirements are so restrictive that they cannot be satisfied with a

reasonable sampling probability.

Matching subplans to materialized synopses. Costing of the logical plans requires efficiently

matching the synopses contained in the query’s logical plans to the synopses stored in the

synopsis warehouse and buffer. This matching is enabled through the metadata store.

Particularly, each synopsis (candidate or materialized) corresponds to a unique logical subplan

– the one of which the results it summarizes. Therefore, the subplans for the query at hand

are compared to the subplans of the synopses contained in the metadata store. We say that a

query subplan matches a synopsis when: (i) the accuracy guarantees of the synopsis satisfy the

query requirements, and (ii) the synopsis subplan subsumes the query subplan. For the latter,

Taster ensures that the query subplan is covered by the synopsis regarding join and filtering

predicates as well as the projected columns. Particularly, Taster compares the input relations,

the join and filtering predicates as well as the output attribute set. The synopsis subplan must

have identical join predicates, its filtering predicates must be weaker than, or equal to the

filtering predicates of the query, and its output attributes must be a superset of the corre-

sponding parameters of the query subplan [50]. Some mismatches are addressed by adding

filtering and projection operators directly above the query subplan, to remove extraneous

tuples and attributes. Considering accuracy, a synopsis is a candidate for a subplan if (i) the set

of stratification attributes of the stored synopsis is a superset of the stratification attributes of

the subplan, and (ii) the aggregation function and the aggregate columns are identical to those

of the synopsis and the accuracy requirement of the query generating the synopsis is equal or

weaker than of the current query. By ensuring the former, Taster guarantees group coverage

i.e., Taster results will contain all groups, whereas the latter ensures that the aggregates will

have constrained error [6]. For example Q1: “SELECT dept , AV G(sal ar y) FROM Empl oyees

GROUP BY dept” will generate a sample over Empl oyees stratified on dept . Subsequent

query Q2: “SELECT dept , AV G(sal ar y) FROM Empl oyees WHERE g ender = ’male’ GROUP

BY dept” will be able to use the previous sample, since, the created sample is more general

and Taster can put an additional filter in the query plan. However to use this sample, salaries

should be uniformly distributed, irrespective of gender.

Subplan matching is expensive. Therefore, Taster utilizes an index to speed-up this process.

Specifically, all candidate synopses contained in the metadata store are indexed using their

base relations as the key. In the case of joins, the join attribute(s) are also included in the key.

This index, although simple, effectively limits the search space and the lookup time to find

suitable synopses for each subplan.
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4.3.2 Accuracy guarantees

While generating and exploring the potential plans, the planner needs to ensure that the user’s

accuracy requirements are satisfied. For this, Taster relies on previous analytical results [38,70],

which we outline below.

When using sampling, Taster uses the Horvitz-Thompson (HT) estimator [84] to calculate

unbiased estimators of the true aggregate values. Confidence intervals are computed using

the CLT. Due to the distance of the samplers to the aggregation operators, we use the notion of

dominance between query expressions as defined in Quickr [69], which ensures that plans

resulting from transformation rules used by the optimizer have no worse variance of estimators

and no higher probability of missing groups than the plan with only one sampler before the

aggregation operator. In terms of implementation, a naive way to compute the HT estimator

squared error requires a self-join and can take quadratic time since it checks all pairs of tuples

in the sample [84]. However, for stratified and uniform sampling, Taster calculates the error

in a single pass by utilizing the observation of [70] that to compute the standard error for

each group we only need to take into account the tuples with the same stratification key

(resp. grouping key). Therefore, we estimate the expected error for each group by building a

distributed hash table, using as a key the values of the stratification (resp. grouping) attribute,

as as value the running estimated error for that group and the corresponding list of sampled

tuples. For every sampled tuple, Taster updates the error of that tuple’s group by using the HT

estimator error formula, leading to a single-pass, linear complexity algorithm.

CM-sketches offer error guarantees relative to the L1 norm of the summarized relation [38].

Particularly, let f (x) denote the real frequency of key x, and f̂ (x) the frequency estimated

from the sketch. Then, the sketch is configured such that f̂ (x)− f (x) < εN w.h.p., where N

represents the L1 norm of the frequencies for all keys.

4.4 Continuous synopsis tuning

Taster’s self-tuning nature and ability to adapt to shifting user interests stems from a lightweight

synopsis tuner. The tuner is invoked just after the planner, and has a goal to select the can-

didate plan that will maximize the throughput over a window of the next w queries (we will

discuss about the value of w later). That is, in contrast to the planner which generates plans

with a short term outlook (per-query performance), the tuner looks into overlaps between

queries and query subplans in order to increase the long-term performance. The tuner’s

decisions are driven by a cost:utility model, which leads to a formalization of the task as

an optimization challenge. Notice that the decisions made by the tuner affect solely query

performance, and not the required accuracy. Even though the tuner has the final decision

on which synopsis to build, the considered synopses are proposed by the planner, and thus

satisfy user’s accuracy requirements (cf., Section 4.3.1). Intuitively, if a synopsis is expected

to be used across many queries to approximate different query subplans, and this synopsis

offers significant boost, then the subplan that will generate this synopsis should be chosen.
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The cost:utility model. Tuning is an iterative process. At every invocation, the tuner is pre-

sented with a set of candidate plans for query q , denoted with P(q) = {p1, p2, . . .}, and needs to

choose one for execution in order to maximize throughput. Intuitively, the tuner will solve two

problems concurrently: (a) select the best plan and corresponding synopses for answering

the query, and (b) choose the best set of synopses to keep, which will speed-up Taster over a

horizon of the next w queries, denoted withQ+
i , i.e.,Q+

i = {qi , qi+1, . . . , qi+w−1}.

It is useful to define the synopsis gain metric, i.e., how much does each set of synopses S

contribute to the performance of each query. Formally, g ai n(q,S) = cost (q,;)−cost (q,S),

where cost (q,S) denotes the minimum cost of any plan in P(q) for answering q , given only

the synopses in S. In the case of S=;, this will be the cost of the most efficient plan that does

not utilize synopses and returns the exact answers. For a given Q+
i we maximize the query

throughput by minimizing the total cost of these queries, i.e., minimize
∑

q∈Q+
i

cost (q,S),

or equivalently, by maximizing their corresponding gain: maximize
∑

q∈Q+
i

g ai n(q,S). For

convenience, we slightly overload the notation by using g ai n(Q+
i ,S) to denote the gain over

all queries using synopses in S. Notice that the problem contains two variables. The first one,

which is latent, is the set of plans P(q) for each query q ∈Q+
i . The second is the set of synopses

S. Formally, the optimization problem is as follows:

maximize
S

g ai n(Q+
i ,S)

subject to
∑
s∈S

|s| ≤ maxSpace

where maxSpace denotes the space quota for synopses, and S denotes the set of synopses that

will maximize the objective function. Therefore, the tuner needs to select the set of plans (one

per query) and synopses that will maximize the total gain.

Even though the problem is well-defined, it involves two challenges. First, it turns out that

the problem can be reduced to a variant of the NP-hard knapsack constraint problem. This

happens because of correlations between synopses, i.e., each synopsis can be used for an-

swering more than one queries, and some queries are answered by more than one synopses.

Therefore, we cannot hope for a tractable exact solution. Luckily, we can approximate the

solution within a constant factor by noticing that the objective function is a monotone sub-

modular function, i.e., the gain provided by each single synopsis is only reduced as the set

of synopses in S increases. For this special case, there exist several efficient approximation

algorithms. We employ the efficient greedy algorithm of [81], which guarantees that the gain of

the constructed set will be within a factor (1−1/e)/2 of the maximum gain. In a nutshell, the

algorithm builds S gradually by starting from an empty set and adding synopses one-by-one

until the quota is filled. At each step, synopses are chosen based on their marginal gain, i.e.,

how much is the additional gain each synopsis brings when added in S. After S is created, the

tuner checks all synopses that are already stored in the synopsis buffer and warehouse, and

updates them accordingly: all synopses not contained in the newly-computed S are deleted.

The second challenge concerns the definition of the tuner’s horizon, Q+
i . In practice, we
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cannot expect to know the queries contained inQ+
i during the tuning. We therefore employ the

standard assumption that recent queries are a good representation of the following queries [26].

For this, we keep track of the last w queries, denoted asQ−
i = {qi−w+1, qi−w+2, . . . qi }, and use

their proposed plans to estimate g ai n(Q+
i ,S).

Storage elasticity. This cost:utility model is also used for adapting to the available storage

budget. Taster’s administrator can modify the space quota of the synopses warehouse online.

This action will automatically invoke the tuner to re-evaluate all synopses, and decide which

ones need to be discarded, or created at future queries.

Physical plan generation. The above algorithm will choose both set S, and the plan that

minimizes the cost for q . This plan is then used for generating the physical plan. If the plan

refers to creation of a new synopsis, then this step is injected in the physical plan as a new

operator. The new synopsis is then stored in the in-memory synopsis buffer. In this case, the

tuner has already freed up the required space in the buffer, during the tuning phase.

Computational overhead of the tuner. The cost estimates for each subplan (with and without

each synopsis) are already computed by the planner and stored in the metadata store, i.e., they

do not need to be recomputed from the tuner. The tuner also knows which of the synopses are

already stored in the synopsis warehouse or the synopsis buffer, in order to account for the

need to create synopses that do not yet exist. Therefore, computation of marginal gain per

synopsis is very efficient. In practice, our single-threaded/centralized implementation of the

tuner takes ∼ 2 seconds per query.

Adapting the tuner’s horizon length. To predict usefulness of each synopsis, Taster uses a

sliding window of the previous w queries as a good approximation of the next, unseen w

queries. The best value for w depends on the task at hand – data exploration, verification of

hypotheses, finding outliers, etc. – which determines the repetitiveness in the query workload.

Therefore, Taster dynamically adapts w .

Initially, w is set to a small value. The tuner also identifies (without building) the set of best

synopses using a slightly larger and a slightly smaller w value, i.e., w+ = d(1+α)×we and

w− = b(1−α)×wc, with α ∈ (0,1). At the next invocation, the tuner examines which of w−, w ,

or w+ would minimize execution time for the queries that arrived since the last invokation,

and sets w to that value for the next tuning round. Since all necessary statistics for estimating

execution time are already contained in the metadata store, this computation is very efficient.

Our experimental results signify the need to dynamically adapt w . In our tests, we start with

default values w = 10, and α = 0.25. The results show that, for the tested query workloads,

the optimal w varies between 12 and 17. Compared to a fixed w , adaptive configuration

shows performance improvement that exceeds 1.5×. A too large or too small value of w

annihilates the predictive nature of the tuner, leading to bad choice of synopses. Value of α is

also important on the adaptation speed, and part of our current work is to vary α.
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User hints. Our discussion up to now assumed that the user is not required to (and, in most

cases, cannot) offer hints/advice to the system. This is the typical case in many data science

and data exploration scenarios, where the query load is unpredictable – hence the importance

of the online tuner. However, several past works frequently required that the user provides

different types of hints for the optimizer. This information includes, e.g., the whole query

workload [6], or the synopses to be constructed, such that they can be build in a pre-processing

step [96]. The natural question that arises is: how can Taster utilize such additional knowledge

and hints?

A priori knowledge of the full query workload can be utilized from Taster, for accurate com-

putation of the gain of each synopsis – since the fullQ+
i will be known at every invocation of

the tuner, we do not need to revert to the past queries Q−
i in order to estimate g ai n(Q+

i ,S).

The user can also request some synopses to be pre-built offline, and pinned in the synopsis

warehouse. In this case, Taster will generate these synopses off-line, and the tuner will never

delete them. Still, tuner will keep optimizing the use of the remaining available space, filling it

with synopses according to the observed queries. As we show experimentally, pre-computed

synopses can lead to significant speed-up (up to 20× compared to baseline), since the synopsis

generation time will not be included in the query execution time.

4.5 Evaluation

We compare Taster against three state-of-the-art systems: Quickr [70], BlinkDB [6]2, and

vanilla SparkSQL which we refer to as Baseline. We compare the systems using industry

standard benchmarks and a micro-benchmark. Specifically, we use TPC-H with scale factor

300 (300GB before compression) along with the TPC-H queries3, and TPC-DS with scale

factor 200 (200GB before compression) along with a set of 20 TPC-DS queries. To examine

suitability of Taster under various workloads we also use a synthetic benchmark of an online

grocery store (instacart) [1], scaled 100× (∼ 120GB before compression). The query templates

used for the instacart benchmark are shown in Table 4.1. All datasets were stored in the

Parquet-compressed data format.

Experimental Setup. The experiments are conducted on a cluster of 11 nodes. Each node has

a Westmere processor with a dual socket Intel(R) Xeon(R) X5660 CPU (6 cores per socket @

2.80GHz), equipped with 64KB of L1 cache and 256KB L2 cache per core, 12MB of L3 cache

shared, 48GB of RAM, and a RAID-0 of seven 250GB 7500 RPM SATA disks. The cluster runs

Spark 2.1.0 and Hadoop HDFS 3.0.1. Spark launches 11 workers, each using 24 cores and 40GB

of memory. We distribute all data across the 11 nodes with replication factor 3. All queries

2BlinkDB requires all queries to be known a priori, in order to decide on the samples. Therefore, we assumed the
existence of an oracle that provides all queries to BlinkDB at initialization time. Clearly, this assumption strongly
favors BlinkDB in the comparison.

3We used 18 out of the 22 TPC-H templates (Q2 is not approximable, Q4, Q21 and Q22 include EXISTS statement
which require key of dimension relation thus no gain from approximation).
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Figure 4.4 – TPC-H workload

are configured to return relative aggregation error per group less than 10%, and no missing

groups. Finally, all queries are run from cold OS caches.
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Figure 4.5 – TPC-DS workload
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Figure 4.6 – instacart workload

Implementation. To have a fair comparison, we integrated all systems to SparkSQL 2.1.0,

and extended the Catalyst built-in optimizer accordingly. For Quickr, we implemented the

three sampler operators (Distinct, Uniform, Universe) and added all rules described in [70] to

Catalyst. For BlinkDB, we followed the algorithms described in [6] to choose the same set of

samples that the mixed integer linear program would select for the different workloads. We

then generated the samples and executed the queries over that set of samples. Taster was

implemented in Scala, over SparkSQL. We integrated Taster’s tuner and optimization rules, as

well as rudimentary costing capabilities into Spark Catalyst. Both query planner and tuner are

centralized and run locally on the driver node of the Spark cluster. We implemented Taster’s

sketch-join algorithm using the serializable implementation of count-min sketch native to

Spark 2.1.0. The uniform sampler is also native to Spark 2.1.0. The distinct sampler operator

was implemented as an additional operator over DataFrames, using the algorithm described
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in Section 2.3. The error estimator for samplers was estimated as described in Section 4.3.2.

For robustness and scalability, all data, metadata, and materialized intermediate summaries

of Taster were stored in HDFS, except of the in-memory buffer, which was implemented as

persisted RDDs.

Statistics, Plan and Data storage. In order to allow scale-out computation under heavy load

and be resilient to node failures, Taster serializes and stores all data, metadata, and materi-

alized intermediate summaries in HDFS. The in-memory buffer is comprised by persisted

RDDs.

4.5.1 Comparison to state-of-the-art AQP engines

We first evaluate the end-to-end performance of Taster compared to the state-of-the-art AQP

systems.

Methodology. To compare all systems in a variety of workloads, we execute query sequences

over all three datasets. To emulate workload shifts and examine system adaptivity, we in-

stantiate 200 queries from the benchmark templates and issue them in random order. For

each benchmark we randomly choose one of the available templates with equal probability

(uniformly) and generate a new query by randomly choosing the predicate value. For TPC-H,

both Taster and BlinkDB are tested with storage budgets 50% and 100% of the size of the com-

pressed dataset. For TPC-DS and instacart, the queries have fewer prospective stratification

attribute sets and require less space for samples. Therefore, we present results only for the

50% storage budget.

End-to-end execution time. Figures 4.4,4.5, and 4.6 present the required time for executing

all 200 queries for each of the workloads. The reported time includes initialization time (i.e.,

the creation of the samples for BlinkDB). As expected, BlinkDB with only 50% budget requires

less time for constructing the samples, but incurs a higher execution time since less queries are

approximable by the set of available samples. Specifically, for TPC-H (Figure 4.4), BlinkDB 50%

offers 2.25× speed-up compared to the Baseline, and requires 251 seconds for pre-computing

the sample, whereas BlinkDB 100% offers 3.36× performance increase but spends 380 seconds

on sampling. Quickr requires no preprocessing, but offers a smaller performance boost (1.2×).

This is attributed mainly to the relevantly shallow queries of TPC-H, as well as the small

network congestion of the cluster. Finally, Taster achieves low response time and ∼ 3× speed-

up without pre-computing the samples, by adapting to the query workload. We also see that

Taster with 50% and 100% storage budget have a similar performance (difference is less than

10%), precisely because the system adapts to the workload and does not require all synopses

to be present at all times.

The results with TPC-DS and instacart workloads (Figures 4.5,4.6) were qualitatively simi-

lar, confirming the applicability of Taster to different data and workload characteristics. In
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particular, Taster has slightly better performance from BlinkDB, yet without requiring any

initialization time. For TPC-DS, this performance improvement is attributed mainly to the

capability of Taster to summarize also intermediate results (specifically, the join between ta-

bles stor e_sal es and d ate_di m, which appears frequently in the workload), rather than only

base relations. For instacart, the increased performance of Taster comes from the extensive

use of sketches.

Individual performance gains for TPC-H queries. Fig. 4.7 presents a CDF of the speed-up

of Taster for TPC-H queries. Taster slows down less than 10% (∼ 0.8×) of the queries, mostly

due to the planning and tuning overhead, as well as the small overhead of online sampling.

However, more than 50% of the queries are being sped-up more than 6×. The maximum

speed-up (13×) is achieved using sketches.

Approximation error for TPC-H queries. We also verified that the approximations of Taster

are within the desired accuracy requirements, with high probability. Figure 4.8 presents a

CDF of the observed aggregation error, for the TPC-H queries. The user requirements for these

experiments are: (a) all groups should be detected, and (b) aggregate error should be less than

10%. By employing distinct sampling with stratification guarantees, Taster misses no groups.

Furthermore, more than 93% of the queries have error less than 10%, and all queries have

error less than 12%. These numbers are very close to the accuracy achieved from BlinkDB

with offline sampling.

Summary. Taster substantially outperforms Quickr and offers comparable performance to

BlinkDB, yet without requiring a priori knowledge of the workload, and without an offline

sample pre-computation. Hence, Taster enables instant access to data while adhering to user

accuracy requirements.
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Figure 4.9 – Taster adapting to query workload

4.5.2 Adapting to query workload

Methodology. In this experiment, we evaluate the robustness of Taster to workload shifts,

i.e., changes in query stratification attributes, the accessed tables, and query predicates. To

emulate a real world scenario, we execute a sequence of 80 TPC-H queries, generated from the

18 used query templates by varying the filtering predicates. We split the queries into 4 epochs

of 20 queries each, based solely on the query execution time, i.e., queries in each group have

similar execution time when executed using Baseline. The following templates are used per

epoch: (1): q6, q14, q17 (2): q5, q8, q11, q12 (3): q1, q3, q16, q19 (4): q7, q9, q13, q18. As the

grouping relies only on query execution time, the queries within each epoch may use different

synopses. For example, in epoch (2) template of q5 requires a synopsis with stratification on

or der ke y whereas template of q8 requires stratification on par tke y . The storage budget for

Taster is set to 35GB.

Figure 4.9 presents the execution time and storage requirements of Taster at each query.

Taster’s tuner continuously re-evaluates the synopses stored in the synopsis warehouse, and it

frequently drops and build some synopses while executing the queries. At the beginning of

each epoch, Taster quickly recognizes the new useful synopses, and makes space for them by

evicting the older ones. During the last epoch, the tuner decides to materialize the synopses

earlier, since the new synopses provide a higher prospective gain. During the transition from

the second to the third epoch, as the queries of the third epoch have similar performance with

the approximated queries of the second epoch, in the plot it seems as if all the queries are

approximated which is not valid.
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Summary. Taster adapts the available synopses to the evolving workload. This enables better

space utilization with performance comparable to state-of-the-art offline AQP systems.

4.5.3 Adapting the sliding window length to query workload

Methodology. We now evaluate the adaptivity of the tuner in terms of the sliding window

length w used for predicting the future queries. We execute a sequence of 200 TPC-H queries,

generated by using the 18 query templates. The queries are executed in random order. To

evaluate the impact of the adaptive sliding window, the same query workload is executed

using three static configurations (w = 5, w = 10, and w = 50), and the adaptive configuration

where w changes according to the queries. Storage budget is fixed to 35GB.

Figure 4.10 presents the cumulative execution time for all queries, for the considered config-

urations. Taster with adaptive sliding window length starts with window size 5 and increas-

es/decreases according to the correctness of prior predictions. During this experiment the

window size fluctuates between 12 and 17, but never converges. This exemplifies the need

for an adaptive sliding window length. Among the static window configurations, Taster with

window size 10 performs the best, but it is still noticeably slower than the adaptive version.

Window sizes 5 and 50 lead to fairly bad performance, i.e., the predictive power of the tuner

for future queries is annihilated.
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Figure 4.10 – Varying the horizon size
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Figure 4.11 – Varying the storage budget

4.5.4 Storage elasticity

Methodology. We now investigate how Taster adapts to changing storage budget. We run a

sequence of 250 TPC-H queries in random order, progressively changing the storage budget

configuration. The queries are executed as a sequence without pause – even at the times that

the storage budget is changed. The budget allocated for each set of queries is (relative to the

size of the compressed data size): first set 20%, second set 50%, third set 100%, firth set 50%

and finally fith set 100%.

Adapting to Storage. Figure 4.11 presents the average speed-up for these storage configura-
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tions compared to Baseline. With 20% of storage, Taster fits only one sample and a sketch,

thereby providing very limited approximation potentials. When given 50%, Taster has suf-

ficient space to keep almost all synopses, whereas a budget of 100% enables Taster to keep

all synopses. When storage allowance is reduced, Taster automatically invokes the tuner to

keep the synopses that will maximize the gain, thereby minimizing the performance impact.

Assuming that BlinkDB would be able to adapt to decreasing storage budget by dropping

samples, it would be unable to build them when more storage becomes available. It would

require blocking execution until constructing the required samples to speed-up queries.

Summary. Taster adapts to dynamic storage budget through dropping and re-computing

synopses as byproducts of query execution. This approach enables Taster to speed-up queries

even under stringent storage policies, as well as instantly speed-up queries when the user

increases storage resources.

4.5.5 Utilizing user hints

The final experiment focuses on examining how Taster utilizes user hints to improve perfor-

mance. The experiment simulates the following scenario: the user already has an idea on the

analysis that will be conducted on one part of the database (on a subset of the tables) and

she advices Taster on the samples that need to be taken, e.g., by listing representative queries,

or even by explicitly stating the required samples. In this case, Taster constructs and pins

the synopses in the synopsis warehouse offline, and manages the remaining quota online for

storing new synopses. We demonstrate this setup by generating two databases – two instances

of TPC-H (scale factor 300) – and using Taster to query both, with intervening queries. For

the first database, dboff, we instruct Taster at initialization for the synopses that need to be

created offline (in this case, samples on the l i nei tem table). For the second, dbonl, we let

Taster generate and handle the synopses online. Taster is also free to create additional samples

for dboff, if the precomputed samples do not cover all queries.
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Offline sampling in dboff follows

the state-of-the-art variational sub-

sampling approach of VerdictDB [96].

Notice that this approach requires

the following offline steps: (a)

creating a shuffled clone of the

l i nei tem table (the scrambled

copy), and (b) extracting the sam-

ples. We also alter the query exe-

cution process to apply variational

subsampling. Both databases are

queried with 100 queries of TPC-H,

i.e., a total of 200 queries, in mixed
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sketch-1
or der _i d , count(∗) FROM or der pr oduct s JOIN or der s WHERE
o_or der _dow = _d ay_ AND o_or der _hod > _hour _

sketch-2
pr oduct_i d , count(∗) FROM or der pr oduct s JOIN pr oduct s WHERE
p_pr oduct_name = _pr oductname_

sketch-3
pr oduct_i d , count(∗) FROM or der pr oduct s JOIN pr oduct s JOIN
depar tment s WHERE d_depar tment = _depar tment_

sketch-4
pr oduct_i d , count (∗) FROM or der pr oduct s JOIN pr oduct s JOIN ai sl es
WHERE a_ai sl e = _ai sl ename_

sample-1
pr oduct_i d , count (∗) FROM or der pr oduct s JOIN or der s WHERE
o_or der _dow = _d ay_ AND o_or der _hod > _hour _

sample-2
or der _i d , count(∗) FROM or der pr oduct s JOIN pr oduct s WHERE
p_pr oduct_name = _pr oductname_

sample-3
or der _i d , count(∗) FROM or der pr oduct s JOIN pr oduct s JOIN
depar tment s WHERE d_depar tment = _depar tment_

sample-4
or der _i d , count(∗) FROM or der pr oduct s JOIN pr oduct s JOIN ai sl es
WHERE a_ai sl e = _ai sl ename_

Table 4.1 – Instacart micro-benchmark queries. Variables starting and ending with _ are
randomly set for query variation.

order. For this experiment, Taster is

given a total of 50 GB for synopsis

quota (since the scrambled table is only used offline, we do not include it in the quota).

Figure 4.12 presents the time spent for answering all 200 queries (denoted as Taster + hints),

as well as the time spent in the offline phase. For comparison, the figure also includes the

elapsed time for getting exact results (Baseline), and the time for executing the same workload

in Taster without hints (Taster). Clearly, hints help Taster to increase query performance, by

taking the sampling phase offline. Furthermore, the use of variational subsampling enables

the use of smaller samples. In particular, the average speed-up over all queries was 12.6×
compared to the baseline, and 4.98× compared to Taster without hints. The speed-up over the

queries on dboff only (these are the queries using the pre-computed samples) was 20.43× and

9.24× compared to Taster without hints. The construction of the samples using variational

subsampling, however, takes a non-negligible amount of pre-processing (116 minutes), de-

laying the first insights from the dataset. Therefore, a hints-driven offline phase is beneficial

when the user knows that a database/table will be frequently queried in the near future; it

reduces both query execution time and the size of the generated samples.

4.6 Conclusion

Approximate query processing engines – both offline and online – gained significant interest

in the last years, as they offer low latency data analytics in return to an acceptable, slightly

relaxed precision of the results. However, the ever-growing data sizes combined with the need
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of today’s data scientists to get immediate insights out of big data, introduce a new set of

challenges to these systems. On the one hand, offline approximation approaches require long

pre-processing and knowledge of the expected workload, and have high storage requirements.

On the other hand, online approaches require reading all data for each query in order to collect

samples, hence offering much smaller performance gains. In this chapter, we demonstrate

Taster, a system that adaptively combines the two approaches. Synopses in Taster summarize

both base relations and intermediary results (frequent subplans). They are generated in an

online fashion, as byproducts of the queries, but they can also be saved and reused across

several queries similar to offline AQP engines. Importantly, the stored synopses transparently

adapt to the ever-shifting user workload, without user intervention, and without requiring

a priori knowledge of the query workload. Finally, Taster can also integrate hints, e.g., for

creating some samples offline, thereby further reducing query latency. A thorough evaluation

of Taster using three industry-standard benchmarks demonstrates that it adapts to variations

in workload and storage, and it outperforms both online and offline AQP approaches, without

requiring a priori knowledge of the query workload.
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5 The Big Picture

The desired interactive nature and effectiveness of data exploration tasks are hindered by a

number of obstacles. Having to go through effectively never-before-seen data, or to identify

new patterns in a dataset, implies that loading entire datasets in a DBMS and investing on

auxiliary structures a priori may very well be an investment that does not pay off. Ideally, a

data scientist would launch her queries over raw data, turning the data-to-query time to zero.

Then, to further optimize for her use case, once she places her focus in a specific area of the

dataset, a system should automatically construct indexing structures to speed up queries over

this area.

The research of this thesis stems from the need of modern applications to explore data quickly

and efficiently. We identify that the assumption of conventional approaches for a priori access

to data and predictable workloads is inapplicable in modern data exploration applications.

Furthermore, the ever-increasing datasets require more low-latency storage which becomes

more costly to maintain. To address these findings, we re-designed a database architecture

to enable data exploration, focusing on tuning data structures to minimize data access while

removing the need pre-processing and taking maximum advantage of available storage and

compute resources.

This thesis is part of a bigger agenda towards adaptive and self-tuning database systems

aiming to reduce the cumulative cost of data access for data exploration. The ultimate goal is

enabling the user to explore never-before-seen datasets, stored in a variety of data formats

and heterogenous data sources, at real-time requiring no preprocessing while being able to

take full advantage of available resources. This chapter summarizes the contributions of this

thesis and discusses a number of ongoing efforts to address open challenges to adaptive data

access methods.

75



Chapter 5. The Big Picture

5.1 Adaptive Data Access: What we did

Each chapter of this thesis moves toward the direction of reducing the cost of query execution

for exploration applications. To achieve that, we aim to reduce data access while assuming no

a priori knowledge of workload or dataset and requiring no pre-processing time. The lack of

knowledge about the workload and dataset limits optimization decisions and combined with

the lack of pre-processing constraints physical tuning.

To remove pre-processing and enable instant access to data, we utilize the in-situ query

processing paradigm to execute queries over raw data files. To improve optimization decisions

as well as to make tuning decisions we collect statistics as by-product of query execution as

the workload unfolds. Based on the collected information we tune access paths adaptively

using two approaches depending on the accuracy requirements of the user. Specifically, when

the user requires precise results we propose adapting to data distribution. This approach

takes advantage of implicit clustering within data to improve filtering. Recognizing possible

clustering in data, enables pre-filtering and reduces the size of indexes [14, 89, 90]. On the

other hand, when the user accepts approximate results, we propose to speed-up queries

through online approximation enhanced with intermediate result recycling. Specifically, we

propose making data summaries a first-class citizen in query optimization and enable the

materialization of summaries of intermediate query results which could be re-used by future

queries [91].

This thesis pushes towards modern data exploration by studying the impact of workload

and data-aware query execution. We discuss the importance of adaptivity in exploratory

workloads on both query performance and storage budget and present techniques extending

data management to embrace shifting workloads and unknown dataset and enable interactive

data exploration.

5.2 Adaptive Data Access: Next Steps

Sortedness-aware index design. Modern systems and applications need to face new chal-

lenges, as ever-increasing volumes are increasing daily. Database management systems build

indexes to reduce data accesses and speed-up look-ups. However, the constant influx of data

requires novel indexes which are optimized for updates. As discussed in Chapter 3, data tends

to have some explicit and implicit order, even without having to sort it. Such ordering schemes

could be exploited to increase the insertion speed, as this information can be used to locate

the insertion position faster. Different indexing solutions have tried to reduce the update

over- head when inserting elements. Basic log data structures can achieve an insertion in

O(1). However, such data structures are not competitive at all when one wants to read data,

with a worst-case complexity of O(N ). The LSM-tree is a data structure based on the log data

structure, with an O(1) amortized cost when inserting an element to it. It also includes some

tree components to allow a faster search, such as levels, and multiple runs per level. On the
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other hand, B+ tree have a small read overhead, with a O(log(N )) cost. Such data structures

are then very good for read intensive scenarios, however they lag in write-intensive scenarios.

B+ tree insertions are performed in O(log(N )), a big cost compared to LSM-trees insertion

costs.

We propose optimizations over B+ tree to take advantage of sorting properties of the underlying

data, and provide update performance on par with LSM-trees. Specifically, we propose

combining B+ tree bulkloading by batching insertions into the B+ tree and keeping pointers to

most recently updated tree leaf nodes. Finally, by delaying the propagation of branch splits by

introducing spill pages, we can further improve B+ tree insertions performance while keeping

look-up constant.

Extending utilization of approximate operators in Query Engines. The work discussed

in Chapter 4 offers the platform to expand approximate query processing in multiple ways.

First, expanding the arsenal of approximate operators enables Taster to further speed-up

queries while increases the number of options thus increasing the cost of decision. Prospec-

tive operators are the HyperLogLog operator which enables the calculation of distinct values

in a set as well as the integration of the Bloom filter to implement a Bloom-Join. Second, the

window based prediction strategy designed in Chapter 4 exhibits positive results however the

industrial workloads have limited variability in synopses options. In a real life workload such

an approach may present different results. Thus, we want to study the performance of our

algorithm on a real-world dataset and adjust the prediction algorithm either using a different

variant of window forecasting or building a Machine Learning model.

Adaptive RDMA and NUMA aware task and data placement. Due to the ever-increasing

datasets and the need for interactive analytics, modern database management systems require

increasingly more memory. However, physical limits constrain memory size utilized by a server

and reduce the scalability of data analysis systems [15].

The introduction of RDMA (Remote Direct Memory Access) enables a server to access memory

of a remote server while avoiding the overheads of the network stack. This creates opportuni-

ties to reduce the cost of data access for distributed database management systems. A number

of novel research techniques take advantage of the new hardware capabilities and propose

updates to existing database operators and distributed storage designs.

Furthermore, modern processor vendors in order to achieve scalability, connect multiple

sockets of multi-core processors. In this design, memory is decentralized, each socket having

his own memory, forming a non-uniform memory access (NUMA) architecture. Specifically,

accessing memory connected to a remote socket has higher latency and smaller bandwidth

than accessing memory local to the socket. In addition, in this design, the network adapter is

directly connected to one of the sockets. As a consequence the NUMA architecture has a direct

impact on network accesses leading to Non-Uniform I/O Access (NUIOA). NUIOA-remote

RDMA accesses must cross both the network interconnect, and the server interconnect.
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This entails two levels of networks: an intra-server network and an inter-server network leading

to multiple access paths with different bottlenecks. We propose to analyze the performance

of different task and data placement strategies for query execution and subsequently design

an adaptive algorithm monitoring the load on processing resources, network connections,

memory buses and QuickPath interconnects. Based on the collected load statistics, the

adaptive algorithm will decide where (i) to store data, and (ii) where to execute operations.

Initial results have shown that by reducing the number of buses a data connection has to cross,

is key to the performance of an operator. However, if either compute resources or memory

bus of a server is fully utilized, additional request will slow-down overall execution. Thus, by

partitioning and replicating data, the system may reduce the contention of specific resources

and further improve system throughput.

Adaptive query processing using data source oriented scheduling. Applications of exploratory

nature despite employing adaptive indexing or approximation techniques to reduce data ac-

cess still aggregate vast amounts of data which have to be stored and accessed efficiently. The

data is stored in a variety of formats ranging from raw data files to relational databases and on

a variety of storage devices. Each data source, has different performance characteristics and

access latency. For example, data stored on SSD/DRAM low-latency devices is accessed faster

than data stored on SATA HDD high-density capacity devices or tape devices.

Furthermore, meaningful data analysis rely on analyzing and combining information from

an increasing number of datasets which due to the growth in data volume are stored in

multiple data sources. However, due to the access latency mismatch between data sources,

the performance of analysis tasks which access different data sources will be always bounded

by the latency of the slowest data source.

We propose a novel approach for scale-out query execution over systems accessing data

sources with heterogeneous characteristics. We propose a scheduler which prioritizes the

execution of queries whose data is already available in low latency data sources and asyn-

chronously initiates data transfer calls for queries accessing data stored on high latency

sources. The approach aims at maximizing resource utilization and query throughput irre-

spective of storage hardware characteristics thus offering a cost-effective solution for data

analytics.
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