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Abstract

Non-invasive virtual histology of white matter tissues is the ultimate promise of diffusion-
weighted MRI (DW-MRI). This hope is fueled by the exquisite sensitivity of DW-MRI to
micrometer-scale displacements of diffusing water molecules, averaged over a whole voxel.
Combined with adequate mathematical modeling, DW-MRI therefore has the potential to
provide unprecedented, microscope-like insight into the microstructure of the brain, with
important consequences in neuroscience, neurology and psychiatry.

Many closed-form analytical models have been proposed to relate the DW-MRI signal to
morphological characteristics of the axons and glial cells of the white matter. These models
generally make assumptions about the tissue and the diffusion processes which often depart
from the biophysical reality, limiting their reliability and interpretability in practice. Monte
Carlo simulations of the random walk of water molecules are widely recognized to provide
near numerical groundtruth for DW-MRI signals. However, they have mostly been limited
to the validation of simpler models rather than used for the estimation of microstructural
properties.

This thesis proposes a general framework which leverages Monte Carlo simulations for the
estimation of physically interpretable microstructural parameters such as indices of axon
diameter and density, both in single and in crossing fascicles of axons, with no restriction on
the data acquisition protocol. Monte Carlo simulations of DW-MRI signals, or fingerprints,
are pre-computed for a large collection of microstructural configurations. At every voxel, the
microstructural parameters are estimated by finding a sparse optimal combination of these
fingerprints. The final complexity of the model is thus solely determined by the level of tissue
detail incorporated in the Monte Carlo simulations. The parameter estimation requires no
meta-parameter tuning.

The superposition approximation for DW-MRI signals in the presence of multiple fascicles of
axons, often taken for granted in state-of-the-art approaches, was thoroughly verified. This
enabled a dramatic reduction of the size of the dictionary and of the ensuing fingerprint
matching. Our approach was then validated extensively on synthetic data as well as on a
variety of in vivo and ex vivo datasets. It was shown to systematically provide more robust
and physically interpretable tissue parameters than a range of traditional closed-form models
claiming similar biophysical complexity.



Abstract

An accelerated method based on efficient convex estimation and a deep feed-forward neural
network was developed to make our framework suitable for larger population studies. This
fast two-stage procedure reduced the execution time by several orders of magnitude while
maintaining a similar level of estimation accuracy.

All software tools related to this work will be shared upon publication of this thesis. They
can easily be combined with, for instance, recently-released Monte Carlo simulators offering
exciting new levels of tissue realism. This is intended to make microstructure imaging based on
Monte Carlo simulations accessible to as broad an audience as possible, for future population
studies and the general advancement of the field.
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Résumé

La grande promesse de I'imagerie par résonance magnétique pondérée en diffusion (DW-MRI)
est de fournir un outil d’histologie virtuelle non-invasive des tissus de la matiére blanche. Cet
espoir est entretenu par la tres fine sensibilité du signal DW-MRI a des déplacements de I'ordre
du micrometre des molécules d’eau en diffusion, moyennés sur tout le voxel. Combinée a
des modeles mathématiques adéquats, la DW-MRI pourrait fournir des informations sur la
microstructure cérébrale d'un niveau digne du microscope, avec d'importantes conséquences
en neurosciences, en neurologie et en psychiatrie.

Parmi tous les modeles analytiques proposés pour lier le signal DW-MRI a des caractéris-
tiques morphologiques des axones et des cellules gliales de la matiére blanche, beaucoup
reposent sur des hypotheses simplificatrices sur les tissus et les processus de diffusion qui
sont contraires a la biophysique et limitent la fiabilité et 'interprétabilité de ces modeles
en pratique. Les simulations Monte Carlo de diffusion des molécules d’eau sont largement
reconnues comme le standard de référence pour les signaux DW-MRI. Cependant, elles ont
principalement été utilisées pour la validation de modeéles simples et non pour I'estimation
directe de propriétés microstructurelles.

Cette these propose un cadre général qui tire parti de simulations Monte Carlo pour l'esti-
mation de parametres microstructurels interprétables physiquement tels que des indices de
diametre et densité axonaux, dans des faisceaux d’axones simples et croisés, sans restriction
sur le protocole d’acquisition de données. Les signaux DW-MRI Monte Carlo, ou fingerprints,
sont pré-simulés pour une large collection de configurations microstructurelles. En chaque
voxel, les parametres de microstructure sont estimés en cherchant une combinaison optimale
parcimonieuse de ces fingerprints. La complexité finale du modeéle est donc déterminée par
le niveau de détails du tissu représenté dans les simulations. L'estimation de parametres ne
requiert 'ajustement d’aucun méta-parametre.

L'approximation de superposition des signaux DW-MRI en présence de faisceaux d’axones
multiples, souvent négligée dans la littérature, a été vérifiée en détail. Cela a permis de di-
minuer drastiquement la taille des dictionnaires et d’alléger la phase de reconnaissance de
fingerprint. Notre approche a ensuite été validée extensivement sur des données synthétiques
et sur des bases de données diverses, a la fois in vivo et ex vivo. Elle s’est montrée capable de
fournir des parametres des tissus plus interprétables et robustes que ceux de nombreux mo-
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Résumé

deles traditionnels basés sur formules analytiques et d'un niveau de complexité biophysique
présenté comme similaire.

Une méthode accélérée basée sur de I'optimisation convexe rapide et un réseau de neurones
profond a été développée pour faire face a des études de plus grande ampleur. Cette procédure
en deux temps a pu réduire le temps d’exécution de notre méthode de plusieurs ordres de
grandeur tout en maintenant la qualité des estimations. Tous les outils logiciels développés
dans ce travail seront partagés publiquement apres publication de cette thése. Ceux-ci s'inté-
greront par exemple facilement a de récents simulateurs permettant des simulations dans des
tissus saisissants de réalisme. Cela dans le but de rendre accessible a I'audience la plus large
possible I'imagerie de la microstructure basée sur des signaux Monte Carlo pour de futures
études de population et 'avancement général du domaine.
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1§ Theoretical background

This Chapter provides the very basic tools for understanding the physics of diffusion-weighted
magnetic resonance imaging, the models used for the diffusion of water in the white matter
and Monte Carlo simulations, which this thesis heavily relies on. Reading of this Chapter is
not strictly required for understanding the following Chapters as those were written to be as
self-contained as possible.

1.1 Physics of diffusion-weighted MRI

1.1.1 Diffusion processes

Diffusion is a transport mechanism widely used in physics to describe the seemingly random
movement of a substance in a given medium, for example water molecules in human body
tissues. There are two widely-used approaches to study diffusion: a macroscopic approach
and a microscopic approach.

In the macroscopic, also known as phenomenological or continuous approach, one considers
the general equation for mass conservation at any given position r and time ¢

oc
— @) =-V-J0, (1.1)
ot

where c is the concentration of the substance and J its net flux, and Fick’s phenomenological
law
J@r,t) =-D-Vc(r, 1), (1.2)

stating that a substance tends to diffuse from regions of high concentration to regions of low
concentration and where D is a symmetric, positive-definite diffusion tensor. Combining (1.1)
and (1.2) leads to the diffusion equation

%(r, )=V-D-Vc(r, 1) =DAc(r, 1), (1.3)
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L)
O
Lo 0

Figure 1.1: Thermal agitation induces diffusion. Diffusion resulting from seemingly random
thermal motion of molecules (Price, 2009).

where the last equality only holds in the case of isotropic diffusion, with D > 0 being a scalar.
This description of diffusion will be easily incorporated into the well-known Bloch equations
and will lead to useful analytic results in diffusion-weighted imaging.

In the microscopic, also known as molecular or discrete approach, diffusion is treated as the
motion of molecules colliding with each other under the effect of thermal agitation (Figure
1.1). The trajectory r(¢) of each individual molecule is modeled as a discrete-time random walk
on a discretized spatial grid, i.e. a succession of random "jumps" between adjacent positions
on the spatial grid, each jump being independent from the past trajectory of the molecule
(Markov property). The transition probabilities are generally taken to be spatially symmetric,
such that E; [r —rg] = 0. The central limit theorem ensures that after a sufficiently long time
t, the probability distribution of the displacement r — ry converges to a normal distribution
of mean 0 and standard deviation proportional to v/f, thus satisfying the requirements of
Brownian motion. This description is particularly well-suited for numerical investigations and
it will form the basis of the Monte Carlo simulations used in diffusion-weighted imaging.

The two above descriptions are closely related. It can be shown for instance that the continuous

diffusion equation can be retrieved in the limit of finer time and space discretization of a
2

random walk, i.e. when At, Ax — 0, if the ratio AA—xt is kept constant (Grebenkov, 2008).

1.1.2 Diffusion-weighted magnetic resonance imaging

Diffusion-weighted magnetic resonance imaging (DW-MRI) combines classical nuclear mag-
netic resonance (NMR) sequences of radio-frequency (RF) pulses such as the spin echo (SE) or
stimulated echo (STE) sequences with applications of time-varying magnetic-field gradients
g(1) leading to non-uniform magnetic fields and serving as a way to spatially encode the spin-
bearing particles (spins) of the sample (Price, 2009, §2.1). A diffusion sequence is characterized
by the gradient temporal profile g(), or interchangeably by the vector quantity

,)/ t
q(r) = Efo g(s)ds (1.4)
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known as the g-vector and having units of [m~!], where y is the gyromagnetic ratio of protons
and where the sign of each component of g(s) incorporates the effect of any refocusing 180°
RF pulses.

The simplest diffusion sequence is known as the pulsed-gradient spin-echo (PGSE) or single
diffusion encoding (SDE), the g and q temporal profiles of which are shown in Figure 1.2(a)
and in the middle row of Figure 1.3. It consists in a constant gradient of duration §, intensity
G and direction g turned on immediately after the initial RF excitation, followed by the same
gradient applied a time A known as the diffusion time after the onset of the first pulse, which
a refocusing 180° RF pulse made to have an opposite effective polarity —g. In double diffu-
sion encoding (DDE) illustrated in Figure 1.2(b), two SDEs are performed successively using
gradients g; and g» which traditionally have the same duration and intensity but different
directions. Triple diffusion encoding (TDE) follows the same construction (see Figure 1.2(c)).
We note a slight ambiguity arising when using the terms SDE, DDE and TDE as these do not
indicate whether the underlying RF sequence was a SE or a STE. Such information must then
be deduced contextually.

More general waveforms have been developed recently (Topgaard, 2017) which are referred to
as gq-vector trajectory encoding, isotropic encoding, spherical encoding or b-tensor encoding,
as represented in Figure 1.2(d). These waveforms let each gradient component vary as a
continuous function of time, unlike the previously described sequences in which a discrete
number of gradient directions are probed. We finally mention the oscillating-gradient spin-
echo (OGSE) sequence in which the direction of the gradient is fixed but its amplitude oscillates
as depicted in Figure 1.3. The advantage of high-frequency OGSE sequences is often thought to
be the ability to probe smaller length scales through shorter effective diffusion times (Drobnjak
etal., 2016).

1.1.2.1 Mathematical descriptions of the DW-MRI signal

There are two convenient ways to mathematically apprehend the DW-MRI signal. The first
description uses the random walk of each water molecule at the microscopic scale. The second
one is a partial differential equation describing the diffusion and magnetic encoding at a larger,
macroscopic scale.

Microscopic description Let us assume Nspin Spin-bearing protons are evolving in Brownian
motion in a given environment, such as a voxel of human white matter. At time ¢ = 0 shortly
after the initial 90° RF excitation, all Nypi, spins are assumed to be precessing together in
phase at the Larmor angular frequency. The dephasing ¢; of each spin at echo time TE under
the external application of an effective gradient profile g(¢) is

TE
G(TE) =y g(n) -r(r) dt (1.5)
0
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(a) Single Diffusion Encoding (SDE)

G(f)

q(t) _D—
N

(b) Double Diffusion Encoding (DDE)

e

(c) Triple Diffusion Encoding (TDE)

G(f)

WWAVAVAN
R

(d) g-vector Trajectory Encoding (QTE)

Figure 1.2: Time evolution of the x (red), y (green) and z (blue) components of the gradient g
and g-vector q for the SDE, DDE, TDE and spherical encoding sequences. The right-hand-
side column is a 3D representation of the time evolution of the g-vector. Figure taken from

Topgaard (2017).
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90° TE/? 180° TE/2 readout
- L=~ >
N 3
RF - 6 » <
h - 412 >
A
PGSE ¢
OGSE - -

N lobes \_/

12 ... N 12 ... N

Figure 1.3: Comparison of the PGSE or SDE diffusion weighting (middle row) versus the OGSE
sequence (bottom row), laid atop a traditional SE sequence (top row). Figure taken from
Drobnjak et al. (2016).

where g(#) is the effective gradient with sign reflecting the effect of the refocusing 180° RF
pulses, and where r(7) is the random trajectory of spin [, for [ = 1,..., Nspin, which is com-
pletely independent from the applied magnetic gradient profile and depends on the diffusivity
D of the medium. The uniform magnetic field By contributes equally to the phase of each
spin by a factor yBj - TE and can therefore be included in an initial reference phase ¢, that
does not affect the measured signal.

Once the phase ¢; of each spin is known and assuming uniform T2-decay across the voxel,
introducing the complex notation S = My + i M, for components of the net magnetization
in the transverse plane, the attenuation E of the transverse magnetization resulting from
the application of the magnetic-field gradient with profile g(¢) in the considered diffusion
environment is obtained as
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where My = Myo + i My is the net magnetization in the xy-plane immediately after the first

90° RF pulse resulting from the equal contributions ]\1,\4‘? of the Ngpin spins, and where Sy is
spin

the reference T2-weighted signal associated with that sample, when no external gradients are

applied.

Given the enormous number of water molecules Ngpi, in a typical voxel of biological tissue!,
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1Considering pure water as a first approximation for brain tissues, a 1-mm?3 voxel contains 10~3 g of water,



Chapter 1. Theoretical background

Eq. (1.6) could be rewritten as a continuous expectation over ¢
E=Eple?]. 1.7)

In the absence of diffusion barriers in the environment, the distribution of spin displacements
r(t) is Gaussian by definition of Brownian motion, causing the distribution for the phase ¢ to
be Gaussian too. This leads to the well-known decaying exponential for the signal attenuation
E forming the theoretical basis of the diffusion tensor model (Basser et al., 1994), which most
microstructural models are based on. In the general case where tissue structures hinder the
free diffusion of water, closed-form expressions for the probability distribution Pg(¢) are
usually very difficult to obtain. A very common approximation known as the Gaussian phase
distribution (GPD) is to simply assume a Gaussian distribution of spin displacements r(),
which is motivated by theoretical results in the long-time regime (Price, 2009, §2.3.3). The GPD
approximation yields analytical solutions in simple geometries such as spheres and cylinders,
which are very widely-used in the biophysical models of the microstructure described in
Section 1.2.2 below.

Macroscopic description Combining the phenomenological Bloch equations (see e.g., (Price,
2009, §2.3.2)) with the classical diffusion equation yields the macroscopic Bloch-Torrey sys-
tem of coupled linear partial differential equations for the evolution of the complex-valued
transverse magnetization My, = My + i M), at every location r of the spatial domain and at
every time ¢ > 0 (Price, 2009, §2.3.2)

Mxy .
5 © 1) =V-(D-VMyy(r, 1) —iy(8(t) 1) Myy(x, 1). (1.8)

diffusion gradient‘éncoding

The T2-relaxation term was omitted since it only affects the measured signal by a known expo-
nential factor. Similarly, the By field only contributes an oscillating component eY5o? = gi@o?
and was therefore left out.

If the spatial domain is bounded, e.g. a sphere to model a glial cell or a cylinder to model
an axon in the human brain, the conservation of mass is ensured through the general Robin
boundary condition

(D-VMyy(r, 1)) -0+ KMyy(r, 1) =0, (1.9)

diffusion permgability

where 11 is the outward unit normal and x denotes the permeability of the boundary, with units

of [ms~!]. The most widely used boundary condition is the Neumann condition correspond-

ing to perfectly reflecting cellular membranes, obtained setting x = 0. The attenuation E of the

X -3 , -3 23 X
equivalent to llgwmol based on water’s molar mass, % water molecules using the Avogadro constant

-3 23
and % =6.684 x 10!9 spin-bearing hydrogen nuclei.
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1.1. Physics of diffusion-weighted MRI

transverse magnetization associated to the gradient profile g(t) in the diffusion environment
Q at the echo time TE is obtained as

1
E= —f Mxy(r, TE) dr, (1.10)
So Ja

where Sy is the reference T2-weighted signal associated with that sample, i.e. when no
gradients are applied. The Bloch-Torrey equation is in general difficult to solve for arbitrary
domains, which makes the modeling of DW-MRI signals in arbitrary geometries a challenging
task.

Free diffusion The Bloch-Torrey equations (1.8) can be solved in the case of so-called free,
Gaussian diffusion where no diffusion barrier is present and the domain can be considered
to be the whole n-dimensional space R”. Considering a diffusion process governed by the
symmetric, positive-definite diffusion tensor D, the following attenuation of the measured
signal (Price, 2009, §2.3.2,§4.4.1) is obtained for an arbitrary gradient profile g(¢)

TE
E[R™ = exp(—(Zn)z f q(n Dq(n) dt)
0

, TE nt ot . (1.11)
=exp (—y f f f g(s1)" Dg(s2) dsldszdt)
o Jo Jo
which in the case of the simple gradient profile of the PGSE experiment becomes
ny — ,—bpgse8  Dg : ;
E@R") e s (anisotropic case), (1.12)

= e bpgseD (isotropic case),

where g is the unit gradient direction and bpgse = (Y6 G)2 (A—46/3). Solution (1.12) is equiva-
lent to assuming the GPD in R” in Eq. (1.7) and, as mentioned in the microscopic description
of the signal above, is used in a variety of mathematical models used to approximate DW-MRI

signals even in the case of restricted diffusion.

1.1.2.2 Statistical model for the acquisition noise

Diffusion-weighted MRI is marred by noise, motion artefacts and Eddy current distortions (Set-
sompop et al., 2013). In the PGSE sequence for instance, increasing the desired diffusion-
weighting to increase the microstructural information contained in the signal necessarily
comes at the cost of increased sequence duration (via A or §) or increased gradient intensity
G, which aggravates distortions (non-linearity, eddy currents due to rapid switching, etc.) and
indirectly leads to longer sequences to give heated gradient systems time to cool down. To
accelerate the final read-out at echo time, echo planar imaging (EPI) is often used, which is
known to suffer from distortions (Chen and Wyrwicz, 1999; Price, 2009). DW-MRI scanning
sessions are intrinsically long due to the requirement of applying multiple external magnetic
gradients successively, which makes DW-MRI data more prone to motion between images.
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All these artefacts are well understood and can be corrected to a certain extent in the post-
acquisition phase (Sotiropoulos et al., 2013). In this paragraph, a statistical model is given for
the random thermal noise which cannot be avoided or corrected.

Modern phased-array MRI systems possess various coils able to acquire multiple images in
parallel. The detected signal S; in each of the N coils can be accurately described by (Aja-
Fernandez and Tristan-Vega, 2012)

Si=A;+ny, l=1,...,N, (1.13)

where A; is the true signal value and n; is a complex-valued white Gaussian noise process

2
4

magnitude or Sum-of-Squares (SoS) signal M as M =/ Zﬁ IS 112, If there is no correlation
between the coils, M can be shown to follow a non-central Chi distribution of 2N degrees of
freedom with the following probability density function (Koay et al., 2009; Aja-Ferndndez and
Tristdn-Vega, 2012)

of variance o< assumed identical for all N coils. A popular choice is to reconstruct a final

v (min,o N)—m—Nex _m2+172 1 m m>0 (1.14)
p)( n g’ UénN_l p 20'2 N-1 0'% » .

where n = 4 /Z;\i 1 | A;? is known as the underlying intensity and ; is the j-th order modified
Bessel function. It can be shown that the SoS reconstruction asymptotically (i.e. for large SNR)
leads to an optimal SNR of 7/, inducing a SNR gain of v'N compared to the ratio A;/o gin
each coil (Larsson et al., 2003).

A particular case of Eq. (1.14) is when N = 1. The distribution is then said to be Rician (Gudb-
jartsson and Patz, 1995). In practice, inter-coil correlation is impossible to avoid and has the
effect of decreasing the effective numer of coils and increasing their effective variance (Aja-
Fernadndez and Tristan-Vega, 2012). The Rician distribution is therefore often invoked as an
effective noise model.

1.2 Modeling diffusion in the white matter

This section provides a very brief overview of the biology of the white matter and of the
mathematical models aiming to describe it, classified into biophysical and signal models with
a hint at numerical, computational models. Readers are referred to Jelescu and Budde (2017),
Novikov et al. (2018a) or Alexander et al. (2019) for more thorough reviews of the literature.

1.2.1 Microstructure of the white matter

The microstructure of the white matter chiefly consists of long cables known as axons covered
by a myelin sheath, usually bundled together into fascicles; and glial cells which among others
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Figure 1.4: Schematic view of the white matter at three different length scales. Figure taken
from Taquet (2013).
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Figure 1.5: Differences between white and gray matter of nervous tissues. Figure taken from
Fick (2017) adapted from original figures by Liewald et al. (2014) and Kay et al. (2013).

produce the myelin and nurture the axons (see Figure 1.4(b)). The spinal cord features single
fascicles of mostly parallel axons. In the cerebrum and brain stem however, fascicles of axons
exhibit various orientations and many areas contain complex arrangements of intersecting
fascicles, as depicted in Figure 1.4(a). The main difference between the gray matter and
the white matter is that the gray matter possesses neuron bodies or somas, as illustrated
in Figure 1.5. Microstructural characteristics of interest within a voxel include but are not
limited to: the number of fascicles and their respective orientations, the volume occupied
by cerebrospinal fluid (CSF), the distribution of axon diameters within each fascicle, the
intra-axonal volume fraction, the undulation of axons, the dispersion of their orientations, the
myelin content, the permeability of the membranes and the volume occupied by glial cells.

Diffusivity of the white matter Water is assumed to diffuse in the intra- and the extra-axonal
compartment and most of the mathematical modeling effort is devoted to describing diffusion
in those two compartments. An important quantity is their intrinsic diffusivity D, which
measures the speed of the diffusion process. However, the intrinsic diffusivity—at a given
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Chapter 1. Theoretical background

temperature—of these compartments is difficult to measure in practice. The intra-axonal
diffusivity was recently estimated to be D = 2.25um? ms™! in vivo (Dhital et al., 2019). Other
recent experiments have suggested that the intra-axonal diffusivity was larger than the extra-
axonal one (Kunz et al., 2018). Most modeling approaches assume equal diffusivities, which
can have non-trivial consequences on the estimation of the model parameters (Jelescu et al.,
2016).

NMR relaxation times in the white matter Quantities of similar interest for the accurate
modeling of the white matter are the NMR relaxation times T1 and T2. Those quantities can
greatly vary with the strength of the main By field, which can have an important impact on
preclinical experiments using high or ultra-high magnetic fields for small-animal studies, for
instance. Figure 1.6 graphically summarizes the values reported in the literature for the T1 and
T2 of the white matter and the CSF (which partially contaminates some voxels of white matter).
T1 or T2 measurements of sub-voxel compartments such as the intra- or extra-axonal space
are still extremely scarce. In the absence of a clear consensus, most models simply assume
that the two compartments have equal relaxation times. However, experimental data has
contradicted this hypothesis, suggesting a larger intra-axonal T2 (Peled et al., 1999; Wachowicz
and Snyder, 2002; Bonilla and Snyder, 2007; Dortch et al., 2010; Veraart et al., 2018).

1.2.2 Biophysical models

This section presents an overview of biophysical models which attempt to directly and specifi-
cally reflect the biology of the tissue. First, an important assumption known as the superpo-
sition principle is discussed as most biophysical models rely on it to build complex models
from elementary tissue compartments. These compartments are then described and two
representative diffusion compartment models are presented in more detail.

1.2.2.1 Superposition principle

If the diffusion environment Q can be expressed as the union of K mutually-disjoint compart-
ments Qy,...,Qk with no inter-compartment water exchange (e.g., due to perfectly-reflecting
boundaries), then the total signal attenuation E(g; Q) associated to the gradient profile g(¢) in
the diffusion environment Q can be expressed as

K
E@gQ) =) f[iEgQ), (1.15)
i=1

where f; = %, for i = 1,...,K, are the volume fractions of each compartment, possibly

weighted by T2-relaxation or proton density if those characteristics are not identical for all
compartments.

At the time scale of a DW-MRI acquisition, typically not more than 100 ms, the slow-exchange
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Figure 1.6: T1 and T2 relaxation time measurements in the white matter (WM) and cere-
brospinal fluid (CSF) in rodents and in humans. Literature survey of the By field-strength
dependency for T1 and T2. Rodent values compiled in the corpus callosum (cc) and cerebel-
lum (cb). Reference labels for rodent data: Cond87 (Condon et al., 1987), Ting92 (Ting and
Bendel, 1992), Crem98 (Crémillieux et al., 1998), dG06 (de Graaf et al., 2006), vdV07 (van de Ven
etal., 2007), Pohm11 (Pohmann et al., 2011). Reference labels for human data: St05 (Stanisz
etal., 2005), Vis10 (Visser et al., 2010), Roon07 (Rooney et al., 2007), Spij18 (Spijkerman et al.,
2018).
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Chapter 1. Theoretical background

limit can be assumed meaning that little water transfer between compartments occurs and
membranes can safely be considered impermeable. Consequently, the complex DW-MRI
signal in a voxel can accurately be described as a weighted sum of the signals arising from indi-
vidual compartments, supporting a paradigm known as diffusion compartment imaging (DCI)
which encompasses the majority of state-of-the-art biophysical models of the microstructure.

1.2.2.2 Diffusion Compartment Imaging (DCI)

In compartment models of the microstructure or diffusion compartment imaging (DCI) and
under the slow-exchange hypothesis, the total DW-MRI signal is described as a sum of the
contributions arising from different independent compartments. Most models are based on
two main compartments: the intra-axonal compartment capturing the diffusion of water
trapped inside axons and usually represented by a stick or a cylinder model; and the extra-
axonal compartment accounting for the water located outside of the axons in the tissue
interstitium (Novikov et al., 2018a). Note that most of these models were primarily derived for
the simple PGSE sequence.

Further refinements to the basic two-compartment model include modeling the fact that
axons in a voxel of biological tissue are not perfectly parallel by a distribution of orientations
on the sphere, either through a non-parametric decomposition into basis functions or by a
fixed, parameterized distribution such as Bingham or Watson as in the NODDI model (Zhang
et al., 2012) described below. The heterogeneity of axon diameters within a fascicle can be
represented by a parameterized distribution of diameters such as the gamma distribution mo-
tivated by histological observations (Aboitiz et al., 1992) as in the AxCaliber framework (Assaf
et al., 2008), although non-parametric approaches also exist (Benjamini et al., 2016). Ide-
ally, the intra-axonal and extra-axonal compartments should be interdependent since the
environment experienced by water molecules evolving in the extra-axonal space is directly
affected by the shape and position of the axons modeled by the intra-axonal compartment.
Heuristics to link intra- and extra-axonal compartments are generally referred to as tortuosity
models (Stanisz et al., 2005).

In many cases, a so-called ball compartment represents partial volumes of CSF in a voxel.
Similarly, the dot has been used as a way to model stationary water molecules like those
trapped between lipid layers of the myelin sheath surrounding most axons or trapped in
glial cells, although the relevance of this compartment has been challenged in recent in vivo
experiments on human volunteers (Dhital et al., 2017).

ActiveAx The ActiveAx model (Alexander et al., 2010), also referred to as minimal model of
white matter diffusivity MMWMD) considers the signal contributions from up to 4 compart-
ments

12



1.2. Modeling diffusion in the white matter

* intra-axonal (E;) : DW-MRI signal attenuation due to water molecules confined within
a cylinder of radius r calculated with the GPD approximation;

* extra-axonal I (E») : also known as the hindered compartment, models the contribution
of molecules that evolve near cylindrical axons through a diffusion tensor D having its
principal eigenvector parallel to the cylinders of the intra-axonal compartment;

e extra-axonal I (E3) : CSF compartment (ball), corresponding to freely-diffusing molecules
in an isotropic brain fluid, following E3 = e bD;

 extra-axonal III (Ey) : stationary molecules (dot): E; = 1.

The slow-exchange hypothesis is assumed and the total signal attenuation of the ActiveAx
model E 4x is calculated as

4
Eax=)_ fiEi, (1.16)
i=1

where the f; are the volume proportions of each compartment within the voxel under study.
This model thus only assumes one dominant fascicle of axons.

NODDI The Neurite Orientation Dispersion and Density Imaging (NODDI) model Zhang et al.
(2012) captures the so-called dispersion of axons’ orientations through a Watson distribution
of orientations on the unit sphere.

To mitigate the additional complexity brought by the estimation of the parameters of the
Watson distribution, simplifying assumptions are made such as assuming cylinders of zero
radius or “sticks”, considering a single population of axons in the voxel, making use of a simple
tortuosity model or fixing the intra- and extra-axonal parallel diffusivities to a same value for
all tissues.

This model has gained traction over the last few years, being used in a number of studies
of normal human brain development (Jelescu et al., 2015; Kodiweera et al., 2016; Sato et al.,
2017) as well as in disease (Adluru et al., 2014; Winston et al., 2014; Timmers et al., 2016;
Schneider et al., 2017). It has also drawn criticism regarding the interpretation of the estimated
parameters and how the model assumptions and simplifications may have an adversarial
effect on the microstructural estimation (Jelescu et al., 2016; Lampinen et al., 2017; Jelescu
and Budde, 2017).

1.2.3 Signal and phenomenological models

This section is concerned with models primarily designed to capture and reproduce the DW-
MRI signal for any microstructural configuration. Very few assumptions about the underlying
tissue microstructure are made as these models focus on a more general quantity known as
the average diffusion propagator. The Fourier theory relating this quantity to the DW-MRI
signal is first presented. Two sub-classes of methodologies are then described, which differ in
the way they estimate the average diffusion propagator. A concluding paragraph discusses the
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Chapter 1. Theoretical background

link with biophysical parameters of the tissue.

1.2.3.1 Fourier relationship between DW-MRI signal and average propagator

The PGSE experiment is considered and the duration § of each gradient g = Gg is assumed so
short that the diffusion of spins during their application is negligible, an assumption known
as the short gradient pulse (SGP) or narrow-pulse approximation. In particular, this requires,

2
in an n-dimensional space, that § << L where L is the characteristic length of the medium

2nD’
(e.g. the radius of an axon approximated by a cylinder) and D the diffusivity of the medium.
However, it is assumed that the phase accumulated during each gradient pulse takes a finite,
non-zero value, i.e. § — 0 with 0 < G < co. The g-vector introduced in Eq. 1.4 is therefore well

defined for any ¢ in ]0, A[
1
=— . 1.1
q(1) = 5_y0g (1.17)

Under these assumptions, Eq. (1.7) gives the signal attenuation E (g, A) associated with the
diffusion time A and g-vector q in a diffusion environment Q

E(qA)= fQ fQ p(x0) P (xo, ¥ 15 A) e o8 0711 drodr
(1.18)

:/Q[QP(l‘o)g’(l‘o,rf;A)eiZHq'(rO_rf) drodry,

where p(rg) is the equilibrium particle density and 2(ry,rs; A) is known as the diffusion
propagator, interpreted as the probability of a molecule in Q to travel from ry to rf between
time 0 and A. Performing the change of variable r = r ¢ —ry, representing a vector displacement,
and defining the average diffusion propagator P as

P(r;A) =f p(rg)P(rg,xo +1;A) dry, (1.19)
Q

the elegant Fourier relationship is obtained between the measured signal attenuation E and
the average propagator P (Price, 2009, §2.2.3)

E(q;A) :fQP(r;A)e_iz”q"' dr =FT{P(;A)}(q), (1.20)

from which quantities of interest can be computed such as the orientation distribution func-
tion (ODF) or the return-to-origin probability (RTOP).

All the techniques described in this section can be broadly branded as g-space imaging and
essentially consist in sampling the signal in g-space to obtain the average diffusion propagator
of a voxel via an inverse Fourier transform of the DW-MRI data E (q; A), as originally developed
by Callaghan (1991)

P(r;A) = f E(q;A)e™*7 dq. (1.21)
R3
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1.2. Modeling diffusion in the white matter

The spatial domain Q is usually large enough with respect to the diffusion of particles over a
length scale A so that Q can be identified with R3.

In practice, many acquisition protocols relax the constraint on 9, with the consequence that
r should be interpreted as the net displacement of a spin from its mean position within the
time interval [0, 4] to its mean position in the interval [A, A + 6], a quantity known as the §-
averaged relative spin displacement (Wedeen et al., 2005). Remarkably, Eq. 1.20 and 1.21 hold
irrespective of the actual underlying tissue microstructure. Making the reasonable assumption
that the tissue and therefore the average propagator is symmetric with respect to the origin
ensures that its Fourier transform, i.e. the DW-MRI signal, is real-valued under the application
of uniform magnetic field gradients (Grebenkov, 2008).

1.2.3.2 Direct q-space imaging

Diffusion spectrum imaging (DSI), developed by Wedeen et al. (2005) is one of the most
straightforward applications of the formalism described above. DW-MRI data is acquired on a
lattice of the so-called q-space with fixed 6 and A by letting the diffusion gradient g take values
on a cubic lattice on grounds of the q-g relationship (1.17). A discretized version of the average
diffusion propagator is obtained by inverse 3D Fourier transform of the acquired DW-MRI
data, with integration performed in g-space, without resorting to any prior modeling.

The main drawback of direct gq-space imaging is the high number of samples required for
accurate inverse Fourier computation. In addition, integration of the average propagator
along radial directions to obtain the ODF introduces inaccuracies if the data was acquired on
a cartesian grid.

1.2.3.3 Functional bases for q-space imaging

Most of the shortcomings of direct q-space imaging hinted at in the previous paragraph can
be addressed by decomposing the normalized DW-MRI signal E into a linear combination of
well-chosen basis functions ¢;

E(gA) =) ai()¢i(g), (1.22)

where the dependence of the coefficients a; on A is often omitted for clarity. The functions
are usually taken to form a complete orthogonal basis for a functional space such as that of
square-integrable functions L? in R® or on the unit sphere S? in order to ensure adequate
convergence of the series (1.22) to E. If the inverse Fourier transform ¢; of each basis function
¢; is available analytically (which is usually ensured by construction), it is straightforward to
obtain the average diffusion propagator as

P(r;A) =) ajp;), (1.23)

15



Chapter 1. Theoretical background

from which quantities such as the ODF or RTOP can be analytically derived, irrespective of
the sampling in g-space. In practice, heuristics or trial and error is needed to determine the
number of terms after which the summations in Eq. (1.22) and (1.23) should be truncated.

In Mean Apparent Propagator MR imaging (MAP-MRI) (Ozarslan et al., 2013), a three-dimensional
functional basis is assembled based on the one-dimensional basis introduced in Simple Har-
monic Oscillator based Reconstruction and Estimation (1D-SHORE) (Ozarslan et al., 2008). A
variety of scalar indices are mathematically expressed in terms of the estimated coefficients
a;, in addition to the RTOP index mentioned above, such as a return-to-the-axis probability
(RTAP), return-to-the-plane (RTPP), propagator anisotropy (PA), non-gaussianity (NG) and a
similarity metric to compare different apparent propagators, which were reported to provide
useful contrasts on fixed monkey brain (Ozarslan et al., 2013).

Many other functional bases are possible such as rotational and spherical harmonics in
constrained spherical deconvolution (CSD (Tournier et al., 2004)), spherical harmonics alone
(Descoteaux et al., 2007) or the Spherical Polar Fourier basis (Caruyer and Deriche, 2012).
Additional regularization of either the reconstructed signal or the inferred propagator has
also been shown to be beneficial, including smoothing of the laplacian (Fick et al., 2016)
or imposing more stringent continuity constraints (Caruyer and Deriche, 2012). Recent
extensions have included explicit dependence on the diffusion time A (Fick et al., 2015) or
have accounted for non-symmetric diffusion propagators P, which lead to complex-valued
signals E (Pizzolato et al., 2016).

1.2.3.4 Relating signal models to the tissue microstructure

A general weakness of signal models based on g-space imaging, whether they use functional
basis decomposition or not, is the lack of direct link between indices based on the diffusion
propagator and biophysical properties of the tissues. In order to estimate the intra-axonal
volume fraction for instance, several indices were proposed such as the apparent fiber density
(AFD) derived from the computed ODF (Raffelt et al., 2012) or an index based on RTAP from
MAP-MRI (Fick, 2017). Another index based on RTAP was also proposed (Fick, 2017) for the
estimation of the apparent axon diameter, a microstructural feature of utmost importance.
However only limited success in correlating with histological measurements has been re-
ported thus far (Fick, 2017, §4.4). Most of the g-space based methodologies in the literature
report contrasts derived from signal models with the hope that it will lead to biomarkers of
pathologies irrespective of what they exactly represent biologically. Table 1.1 summarizes the
advantages and drawbacks of the two classes of models discussed so far.

1.2.4 Numerical models

Numerical methods provide the flexibility and the modeling complexity that the analytical
models presented above lack at the cost of important computational requirements. Finite ele-
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Table 1.1: Trade-offs in selecting a model of microstructural diffusion. Summary of the pros
and cons of signals models versus biophysical models of the microstructure based on DW-MRI.

+

Signal models

* suited for any microstructural config-
uration

* signal interpolation, denoising

* stable and efficient

e contrasts may better generalize to
abnormal WM

* not directly related to biophysical
properties of the tissue

* no closed-form formula to analyze
effect of acquisition and tissue parame-
ters
¢ specific to PGSE with narrow pulses

Biophysical
models

* more biologically realistic and inter-
pretable

* flexible choice of compartment mod-
els

e usually provide analytical formulas
for analysis

¢ complex and unstable non-linear es-
timation

* model assumptions may break down
in pathological cases

e parameter interpretation should be
exerted with caution

ments (Van Nguyen et al., 2014) benefit from strong theoretical guarantees and can accurately
model complex tissue configurations and gradient waveforms. However, spatial meshing is
a notoriously arduous task, non-trivial mathematics are required to set up a simulation and
verify convergence, boundary conditions are difficult to implement, the complexity of the
problems scales poorly with the size of the simulated voxel and simulations need to be run
from the start for each new acquisition sequence. Monte Carlo simulations have emerged as
the reference numerical model for the simulation of diffusion in the white matter owing to
their relative ease of use, flexibility and physical soundness. However, they have largely been
ignored as a intrinsic building tool for models of the microstructure, which was one of the
motivations of this thesis. The next paragraph provides a brief description of the Monte Carlo
framework and their use in practice.

1.3 Monte Carlo simulations of the diffusion

Monte Carlo simulations have become a modality of choice for the validation of closed-form
analytical models such as described above as they are considered to provide a groundtruth
against which these models can be assessed. This is because, for a fixed diffusion environment
and given sufficient computation time, the output converges to the true solution of the Bloch-
Torrey equation for the DW-MRI signal. Two steps are required: constructing a 3D geometry,
and running the actual simulation of restricted Brownian motion and magnetic-field phase
encoding.
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Chapter 1. Theoretical background

1.3.1 Diffusion environment

Constructing realistic numerical phantoms of the tissue must strike the right balance between
realism and computational complexity.

The simplest and most lightweight approach is to consider idealized tissue geometries such
as cylinders for axons (Hall and Alexander, 2009; Rensonnet et al., 2018) or spheres for glia,
possibly with mathematically-expressed refinements to simulate undulation or dispersion
(Budde and Frank, 2010; Nilsson et al., 2010) and cellular processes such as spines and
leaflets (Palombo et al., 2017) for instance.

For more complex tissue configurations, a spatial discretization stage is usually required. Tra-
ditionally, triangular meshes have been used to discretize 3D continuous environments (Hall
and Alexander, 2009) and relatively complex tissue geometries have been replicated from
electron microscopopy data (Panagiotaki et al., 2010; Xu et al., 2014). For more efficient GPU
implementations, a few authors have considered simplified binary maps to label the intra- or
extra-axonal space (Waudby and Christodoulou, 2011).

In recent years, a number of methods have been proposed to faithfully represent complex
white matter configurations using just a limited number of parameters in a generative model
based on idealized initial shapes (Palombo et al., 2016, 2019; Ginsburger et al., 2018). An
example of a realistic white matter voxel is shown in Figure 1.7. In an approach based on the
natural process of axon growth, high values of axon density and orientation dispersion have
been obtained simultaneously (Callaghan et al., 2019). Voxel configurations with exquisite
biological realism have also been achieved by threading small spheres together using an
efficient GPU implementation (Ginsburger et al., 2019a).

Besides white matter, the modeling of gray matter tissues has also been progressing. As illus-
trated in Figure 1.8, generative models of complex soma and dendrite structures representing
various types of cortical neurons and glial cells are becoming available (Palombo et al., 2019).
Recent experiments have suggested that ellipsoids were satisfactory representations of glia
while neurons could be modeled by spheres, which would decrease the overall complexity of
generating synthetic environments (Gilani et al., 2019).
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Figure 1.7: Recent realistic white matter substrates for Monte Carlo simulations. In Gins-
burger et al. (2018), building from (1) simple straight cylinders representing intersecting
populations of axons, additional features such as (2) dispersion, (3) tortuosity, (4) myelin
sheaths, (5) Ranvier nodes and (6) beadings are gradually added.
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Figure 1.8: Recent realistic gray matter substrates for Monte Carlo simulations. Examples
of three types of brain neurons along with their dendrograms synthetized with the generative
parametric model presented in Palombo et al. (2019).

1.3.2 Spin dynamics

Monte Carlo simulations are directly based on the microscopic description of DW-MRI signals
presented in Section 1.1.2.1 and mainly consist in generating the trajectories of Ngpin spins or
random walkers, initially uniformly distributed across the geometry, by means of a discrete-
time random walk. Considering a partition of the time between the initial RF excitation pulse
and the echo time TE into Ngep intervals {0=to, 1, ..., INgep—1» ENgep = TE }, then from a random
initial position rgp = r(#) in the domain Q, each spin’s trajectory is updated as

r(ts+1) =1x (L) + Arg, (1.24)
where each step Ar; is of random orientation and of fixed length
Lytep = V2nD6t, (1.25)

with 7 the spatial dimension of the diffusion environment and 67 = t;— -1, for s =1,..., Ngep.
As the steps sum up, the central limit theorem ensures that the distribution of all # components
of the position r(#) at time ¢ will converge to a Gaussian distribution of mean zero and variance
2Dt as expected from Brownian motion in the absence of reflection. Spins that encounter
a barrier during one such step are elastically reflected if the membranes are considered
perfectly impermeable, as illustrated in Figure 1.9. Membrane permeability is more tedious to
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barrier normal X

Figure 1.9: Spins that encounter a barrier during a step update Ar are elastically reflected and
take an effective step Ar’. Several consecutive reflections may occur. Figure adapted from Hall
and Alexander (2009).

implement and requires the introduction of carefully-selected crossing probabilities (Regan
and Kuchel, 2000; Fieremans et al., 2010; Nilsson et al., 2010; Lee et al., 2013). Non-elastic
reflections can also be considered and might lead to similar results more efficiently (Xing et al.,
2013).

The accumulated phase ¢; of each spin / is computed independently from the generation of
the trajectory by computing the time integral (1.5) via an appropriate numerical method such

as a rectangle quadrature
IVstep

Gr=v-6t- ) gts) r(ty), (1.26)
s=1

where g(1) is the profile of the external magnetic-field gradient, making the method suitable
for any of the diffusion sequences presented in Section 1.1.2. The final signal attenuation E is
computed as the sample mean of e’? as in Eq. (1.7)

Nspin

Z el

spin =1

E@gQ) =

Computing only the real part or the modulus of the signal is usually sufficient since it has been
shown that DW-MRI signals are real and positive under relatively mild assumptions on the
tissue microstructure, usually met in our experiments (Wedeen et al., 2005).

The computation time is dominated by the number of spins Nspin, which must be large enough
to reduce statistical variance and by the number of time steps Nsep, which should be large
enough to avoid numerical bias. The choice of these two simulation parameters is not trivial
and is often guided by practical heuristics in the absence of known groundtruth (Hall and
Alexander, 2009; Rensonnet et al., 2015; Fieremans and Lee, 2018).
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y4 Validating the superposition approxi-
mation for crossing fascicles

This Chapter was based on a post-print version of Rensonnet et al. (2018). The introduction was
updated with a reference to Schilling et al. (2017) suggesting that complex interweaving is the
most likely pattern of fascicle crossings. Additional acquisition protocols were considered in
Appendix A.3, with results briefly discussed in Section 2.3.1, strengthening a point made in the
discussion (Section 2.4) about the validity of the superposition at higher b-values.

2.1 Introduction

A particularly challenging task in brain microstructure mapping based on diffusion-weighted
magnetic resonance imaging (DW-MRI) is to estimate microstructural properties in regions of
the white matter where multiple fascicles of axons intersect. In (Jeurissen et al., 2013), authors
have reported that between 63% and 90% of voxels in the white matter at a resolution of
2.4mm? contain more than one fascicle, suggesting that regions of multiple fascicles actually
make up the majority of the white matter voxels at common clinical resolutions. Recent
evidence suggests that the prevalence of crossing-fascicle voxels might actually increase with
smaller voxel sizes (Schilling et al., 2017). At the scale of a voxel, there can in theory be two
types of crossing configurations: either each fascicle occupies its own portion of the voxel with
axons that do not intermingle with the axons of the other fascicles; or axons from each fascicle
abandon their tight, bundle-like organization and instead adopt an interwoven pattern at the
intersection, evolving alongside axons from other fascicles (Axer et al., 2000; Schilling et al.,
2017).

Most models of the microstructure rely on the superposition approximation, i.e. they consider
that the signal arising from crossing fascicles is equal to the sum of the signals arising from
each fascicle independently. This assumption is used in multi-tensor models (Tuch et al., 2002;
Scherrer and Warfield, 2012) and their extensions to distributions of tensors (Scherrer et al.,
2016, 2017), in models assuming various restricted water compartments with different direc-
tions (Assaf et al., 2004; Zhang et al., 2011), in dictionary-based methods (Ramirez-Manzanares
etal., 2007; Auria et al., 2015a; Aranda et al., 2015) and also implicitely in spherical deconvolu-
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tion frameworks (Tournier et al., 2004, 2007; Jeurissen et al., 2014; Canales-Rodriguez et al.,
2015; Canales-Rodriguez et al., 2019). This hypothesis is expected to hold reasonably well
when fascicles maintain their bundle-like structure and cross along separate pathways in the
voxel, even though the interface between the two fascicles is ignored by the approximation.
Indeed in a clinical voxel of a few cubic millimeters the diffusion of a vast majority of water
molecules will not be affected by this micrometer-scale interface. In contrast the validity of
the superposition approximation can be theoretically challenged in voxels where fascicles
intersect in interwoven patterns since the diffusion of water molecules in the interstitium, or
extracellular space, is then simultaneously hindered by all fascicles. Whether the approxima-
tion is appropriate and allows microstructural parameters of interest to be reliably estimated
in such configurations with common acquisition sequences remains an open question that
has so far received little attention in the literature and which we investigate numerically in
this paper.

In this work, we assume that the groundtruth is a voxel in which fascicles intersect in inter-
woven planes, thus sharing the interstitium, and we evaluate the quality of the superposition
approximation for fixed, clinically realistic acquisition protocols. Relying on simple yet repre-
sentative two-compartment phantoms of the microstructure, we first examine the similarity
between the DW-MRI signals arising from the groundtruth configuration and the signals
arising from the superposition approximation at fixed, matching microstructural parameters.
We then conduct a series of experiments to investigate whether microstructural parameters of
interwoven fascicles can be accurately estimated from an approximate model consisting in
the superposition of independent fascicles. All the DW-MRI signals are obtained using Monte
Carlo simulations of the random walk of water molecules, which leverage the well-known
physics of diffusion processes.

2.2 Methods

This section presents the synthetic phantoms used in this study, a formal definition of the
superposition approximation and the Monte Carlo framework for the simulation of DW-MRI
signals. It then details how we studied the impact of the superposition approximation on the
DW-MRI signal at fixed microstructural configuration. Lastly, it describes the estimation ex-
periments that were conducted to examine the impact of using the approximation to estimate
microstructural parameters of interwoven fascicles.

2.2.1 Synthetic Phantoms of the Microstructure

Single fascicles. We modeled single fascicles of axons by an infinite array of hexagonally-
packed straight, parallel and infinitely-long cylinders. A single fascicle is thus characterized
by an orientation u, a unique cylinder radius r interpreted as an axonal radius index and by
a cylinder packing density f interpreted as an axonal density index (Alexander et al., 2010),
which we denote by the quantity Qging = (u, 1, f). The DW-MRI signal arising from such a
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Figure 2.1: Synthetic phantom of interwoven fascicles of axons. The total environment is
made up of a periodic arrangement where one layer of cylinders with radius r; and inter-
cylinder spacing e; from Population 1 is followed by one layer of cylinders with radius r» and
inter-cylinder spacing e, from Population 2, a distance e; from the first layer. The green and
orange shaded areas show how the water molecules of the interstitium are distributed among
the populations, allowing us to define the respective fractions of occupancy v; and v, and of
the population-specific cylinder packing densities f; and fa.

configuration for an acquisition sequence of general parameters p is denoted by Ssing (Qsing; P)
and forms the basis of the superposition approximation investigated in this work.

Interwoven fascicles. Interwoven fascicles were modeled by two populations of straight, par-
allel and infinitely-long cylinders of respective orientations u; and uy, crossing in interleaved
layers one cylinder thick with inter-layer spacing e; in a pattern repeating periodically, as
depicted in Figure 2.1. All cylinders within Population 1 (Population 2) have the same radius r;
(r2), interpreted as an axonal radius index, with inter-cylinder spacing e; (e2). In practice it is
often more intuitive to report the populations’ intrinsic packing densities f; and f>, interpreted
as axonal density indices, and the populations’ volume fractions of occupancy v, and v, rather
than the spacing parameters. However, the interstitium is shared by both fascicles and any
separation thereof as well as any definition of the quantities fi, f>, vi and v, is thus arbitrary.
In the remainder of this work, we defined them based on a parceling of the extracellular space
at a plane located a distance e;/2 from both populations of axons (see Figure 2.1).

In general an interwoven-fascicle environment is thus completely characterized by the set of
parameters Qinew = (ul, r, fi,uz, 12, fo, vl). Related useful quantities are readily obtained from
Qintw such as v, =1 —vy, the crossing angle « as the smallest angle between u; and u; in the
range [0,90°] and the global axonal density index fiot = v1 fi + V2 fo. The DW-MRI signal arising
from such a configuration for an acquisition sequence of general parameters p is denoted
by Sintw (Qintw; P) and was considered as the reference, groundtruth signal throughout this
study. The impact of adding more cylinders to each population’s layer in the interwoven
configuration was studied in Appendix A.1 (Figures A.1 and A.2). The single-cylinder layers
selected for our analyses were shown to least resemble the approximate superposed fascicles,
thereby corresponding to a “worst-case” situation.
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2.2.2 Definition of the Superposition Approximation

Given an acquisition sequence of parameters p, we defined the superposition signal Sappr (Qappr; P),
supposed to approximate the groundtruth Sipew (Qintw;p), as the linear combination

Sappr (Qappr;p) = Vlssing (lll, lef1;p) + vZSsing (u2, ra, fzip) , 2.1

where the weights v, and v, are interpreted as the fractions of the total volume occupied by
each fascicle, satisfying v; + v, = 1. Similarly to fascicles crossing in interleaved planes, the
global axonal density index is obtained as fio = V1 fi + V2 fo.

An approximate interwoven-fascicle environment is fully characterized by the set of parame-
ters Qappr = (ul, r, f1,u2, 72, f, vl) which all have a straightforward equivalent parameter in
Qinww S0 that both parameter sets can easily be compared.

2.2.3 Signal Simulations

We relied on Monte Carlo simulations of the random walk of water molecules to obtain DW-
MRI signals for the single and interwoven-fascicle configurations described above in order for
our study to be as model-independent as possible and because no exact generative formulas
exist for interwoven fascicles of axons.

Specifically, we followed the method described in (Rensonnet et al., 2015) where the ex-
act intracellular signal Sj, is obtained by the Multiple Correlation Function (MCF) formal-
ism (Grebenkov, 2008) and the extracellular signal Sey is computed from fixed-step Monte
Carlo simulations of the random diffusive motion of water molecules in the extracellular
space with perfectly elastic reflections at the membranes as described in (Hall and Alexander,
2009). Compared to Monte Carlo simulations performed in both the intra and extracellular
compartments, this provides significant gains in precision at fixed computation time and
equivalently, significant computational gains for a set precision (Rensonnet et al., 2015).

We used the same intrinsic diffusivity D in the intra and extracellular compartments and fixed
itsvalue to D = 2.0 x 10"9m? s™!, in agreement with values used in similar Monte Carlo settings
(Hall and Alexander, 2009; Nilsson et al., 2009; Panagiotaki et al., 2010). As noted in (Fieremans
et al., 2010), we stress that all the results obtained in this study can be obtained for another
value of D by appropriately rescaling the spatial lengths L and magnetic gradient intensities
G, since the diffusion signal is fully characterized by the two dimensionless parameters p =
DT/L? and q = yGLT (Grebenkov, 2008), where y is the gyromagnetic ratio of protons and T
the characteristic time scale. All the simulations for the extracellular signal of single fascicles
were performed using the Camino Diffusion MRI Toolkit (Hall and Alexander, 2009). The
simulations in the extracellular space of interwoven fascicles utilized a new in-house software
written in C/C++ and extending the capabilities of the Camino Toolkit to all the interwoven-
fascicle configurations considered in this study. Care was taken to ensure that the new code
reproduced the results of Camino on the simpler configurations handled by both softwares.
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Throughout this study we focused on multi-shell high angular resolution diffusion-weighted
imaging (HARDI) protocols (Tuch et al., 2002) based on the widely used pulsed-gradient spin-
echo (PGSE) acquisition sequence. Table 2.1 summarizes the two clinically-realistic protocols
that we used in our experiments: the 4-shell, 4-diffusion-times human protocol used with
the ActiveAx model (Alexander et al., 2010) and the extended 4-shell protocol proposed with
the NODDI estimation framework (Zhang et al., 2012), which we refer to as Protocols A and B,
respectively. For completeness, additional HARDI shells spanning a larger range of acquisition
parameters were considered in Appendix A.3.

It is worth noting that, given the way Ssing and Sinw were simulated in the absence of mem-
brane permeability, the intracellular signal of the superposition approximation is by definition
exactly identical to that of fascicles crossing in interwoven planes when the radius indices
and the fascicles’ orientations coincide. In our models, the discrepancies between the refer-
ence interwoven-fascicle signals and the approximate signals at matching microstructural
parameters therefore solely arise from the extracellular signal contribution. The intra- and
extracellular contributions are not independent however: as an example, changing the radius
index at fixed inter-cylinder spacing directly impacts the intracellular signal but also affects
the extracellular geometry and the global axonal density, thereby modifying the extracellular
signal and the relative weight of each compartment’s contribution. This impact is non-trivial
and depends on whether or not the superposition approximation is used.

Table 2.1: Multi-shell acquisition protocols. The g column contains the number of gra-
dient directions in each shell (S) characterized by a gradient intensity G, duration 6 and
diffusion time A separating the onsets of the two gradient lobes, combining into a b-value
b:=(yGé)* (A-5/3).

Acquisition

g GImTm™!] é6[ms] A[ms] b[smm 2]

protocol

S1:90 57 5 87 496
Protocol A S2:90 60 13 20 682
(ActiveAx (Alexander et al., 2010)) S3:90 46 15 77 2453

S4:90 58 12 80 2635

S1:30 31.9 711
Protocol B S2:30 37.8 175 378 1000
(NODDI (Zhang et al., 2012)) S3:60 53.4 ) ) 2000

S4: 60 63.8 2855

2.2.4 Impact of the Approximation on the DW-MRI Signal

This section aims at identifying the order of magnitude of the differences between the interwoven-
fascicle signal Sintw and the approximate signal S,ppr when the reference parameters Qinew
and the parameters used in the approximation Qapp; match. Without loss of generality, we
compared DW-MRI signals of configurations featuring fascicles with identical microstructural
properties, i.e. wefixedri=r =7, fi = fo = fand vi =v, =0.5.
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Chapter 2. Validating the superposition approximation for crossing fascicles

Specifically, we considered 24 microstructural configurations resulting from the combination
of 6 radius indices r = [0.5, 1,2, 3,4,5]um and 4 crossing angles a = [22.5°,45°,67.5°,90°] with
density index f = 0.5 and we computed the root-mean-square (RMS) signal metric

1/2

1 M
\/M Z (Sappr (r' fv a;pi) = Sintw (7, f; Oé;pi))z ,
i=1

over the M sequences of each HARDI shell £ from Protocols A and B (Table 2.1).

”Sappr (I‘,f,a;@) _Sintw(r,f, a;g?’) ”RMS =

2.2.5 Impact of the Approximation on Estimated Microstructural Parameters

The previous section seeks the order of magnitude characterizing the differences in DW-
MRI signal between reference interwoven fascicles and the superposition approximation
but it does not indicate how these signal discrepancies relate to underlying microstructural
differences. In this section, we investigated whether we can accurately predict microstructural
properties of interest in interwoven fascicles assuming only an approximate model made
of the superposition of independent single fascicles, despite the signal differences incurred.
Mathematically, for given reference microstructural properties Qi and a fixed acquisition
protocol &, this consisted in solving the following microstructural estimation problem

Qappr =argmind (Sintw (Qintws @) ; Sappr (Qappr;@)) ) 2.2)

Qappr

where d(-;-) is a metric quantifying the discrepancy between the DW-MRI signals. We then
examined the microstructural similarity between the reference and the estimated parameters

A

Qappr = Qintw as an indicator of the quality of the superposition approximation.

Experiments I and II described below consisted in solving Problem (2.2) within varying subsets
of the crossing-fascicle parameter space Q;oss, With and without acquisition noise. Exper-
iment IIT aimed at comparing the estimation errors due to the use of the superposition
approximation to the errors caused by the presence of noise alone.

In our signal simulation framework, the effects of all parameters but v; and v, on the ap-
proximated signal Sapp,; are captured by Monte Carlo simulations, which lack a closed-form
expression and prevent us from solving Problem (2.2) continuously. In Experiments I through
111, we therefore resorted to a discrete, exhaustive search as illustrated in Figure 2.2, using
a collection Ygjng of 600 pre-simulated single-fascicle signals combining 20 radius indices
r from 0.5pm to 10um by increments of 0.5pum and 30 density indices f from 0.32 to 0.90
by steps of 0.02 along the fixed direction u;. Rotated-fascicle signals Sging (u2) = Z4 [Ssing]
along any direction u, forming an angle a with u; could then be obtained by interpolating the
pre-computed signals on the inversely-rotated protocol Z_, [2?], which we did for 119 values
of @ ranging from 1.5° to 178.5° by increments of 1.5°.

The use of Monte Carlo signals and this estimation strategy are however not representative of
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most current microstructural estimation frameworks in which simplified closed-form formulas
are fit to DW-MRI measurements using non-linear optimization, which is subject to pitfalls
including the presence of multiple local minima (Jelescu et al., 2016) and sensitivity to the
choice of an objective function or the fitting strategy (Sepehrband et al., 2016; Harms et al.,
2017). In Experiment IV detailed below, we therefore studied the impact of the superposition
approximation on the microstructural estimates of the DIAMOND model (Scherrer et al., 2016)
which can handle multiple-fascicle configurations.

2.2.5.1 Experiment I: impact of the approximation on identical fascicles

We considered identical populations of axons both in the reference configurations Qi,ny and
in the configurations Qap,, over which the minimization in (2.2) was performed, which sim-
plified the analysis while still providing general trends about the impact of the superposition
approximation on the three main microstructural features characterizing crossing fascicles:
the radius index, the density index and the crossing angle. This constraint was relaxed in
Experiment II.

We selected the 24 reference interwoven-fascicle environments Qintw = (u1, Trefs fret, U2 =
Ro W1, Tret, frefr V1 = 0.5) described in Section 2.2.4 and corrupted each interwoven-fascicle

signal Sinny With Rician noise as Sipgy = \/ (Sintw (Qintw; P;) + € Li)z + eé’i, where ¢;; and £ ;
are independent, Gaussian variables of zero mean and variance o2, for every acquisition i in
the protocol, respectively modeling the acquisition noise in the in-phase (I) and quadrature
(Q) channels. Additionally, 4 interwoven-fascicle configurations with larger radius index val-
ues r = [6,7,8,9]um were also investigated at fixed density index f = 0.5 and crossing angle
a=67.5°

Problem (2.2) therefore becomes, for a fixed acquisition protocol 22,
(7, f, &) =

argmin d Sintw(rref; Jrefs (l’ref;g)) ;0.5 Ssing (uly r, f»c@) + 0.5 Ssing (%a [w],r, fn@) )
nf,a ~ >

Sappr (r,f,tx;@)

where the metric d is the negative log-likelihood of the Rician distribution. The problem was
solved by exhaustive search over the 600 x 191 = 114600 pre-computed signals (Figure 2.2),
where u; and the plane in which u; is rotated were assumed known. We defined the signal-
to-noise ratio (SNR) as 1/0 and recorded the mean absolute error (MAE) on the estimated
radius index |7 — refl, density index | f - ﬁ—efl and crossing angle |@ — aefl over Nieps = 100
noise repetitions at each SNR level. The noise-free estimates corresponding to SNR — oo
were computed using the RMS metric to account for the asymptotic behavior of the Rician
distribution (Gudbjartsson and Patz, 1995).
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Exp.1: =T
f=rfn
vi =v, =05
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Figure 2.2: Performing microstructural estimation with the superposition approximation
using a discrete combinatorial search over pre-computed single-fascicle signals. Solving
Problem (2.2) is done by exhaustive search over the parameters r, fi, 12, f2, @ with constraints
imposed at each experiment to reduce the scope of the exhaustive search. At fixed values of
the latter parameters, continuous estimation over v; and v is possible because they are the
only parameters with an explicit, continuous contribution to the approximate signal Syppr via
Ssing, as noted from Eq. (2.1). Note that u; is assumed known throughout as well as the plane
in which u, lies.
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2.2.5.2 Experiment II: impact of the approximation on dissimilar fascicles

In this experiment we relaxed the constraint that the crossing fascicles should be identical. To
keep Problem (2.2) tractable, we first assumed in Experiment IIa that the crossing angle a was
known, leaving 5 parameters to be estimated: ry, fi, 72, f2,v1. In order to more fairly compare
the results with Experiment I where the volume fractions were fixed, we then simplified the
estimation in Experiment IIb by assuming that v; and v, were known as well.

In both cases, we conducted 8 noiseless microstructural estimation experiments on 8 reference
interwoven-fascicle configurations Qi in which the crossing angle was fixed to a = 67.5°, the
first population of axons had fixed parameters r; = 1.0um and f; = 0.6 and the microstructural
properties of the second population were varied. In the first 4 configurations, we set f, =
f1 =0.6 and let r, take on values in [0.5,1.0,1.5,2.0] um; in the last 4 configurations we set
ro =ry = 1.0um and let f, vary in [0.4,0.5,0.6,0.7]. The parameters ej, e; and e; were selected
to ensure f;o; = (f1 + f2)/2 in all 8 reference configurations.

Experiment Ila. Problem (2.2) was solved by performing continuous optimization over the
volume fractions for each possible combination of the 600 pre-computed single-fascicle
configurations Zsing (k) := Ssing (1, ¢, fi) with their rotated counterparts Zq [Zsing (1)],

(I%, i) = argmin  min ” X1 Dsing (k) + (1 — x1) - Ry [@sing (l)] = Sintw (Qintw) ”; ) (2.3)
1<k,I<600 *1Z0 "« ~ ’
appr

where each of the 600 x 600 = 360000 sub-problems admits a unique solution obtained with
the MATLAB (MathWorks, MA, U.S.A.) routine 1sqlin. We took v; as the minimizer %; of
the optimal sub-problem (k, [) giving the lowest objective value and estimated ry, fi, 2, f>
as the microstructural properties ry, f3, 7, f; of the corresponding optimal single-fascicle
configurations @Sing(fc) and Z, [%ing(i)].

Experiment IIb. With v, fixed, Eq. (2.3) becomes

(k, 1) = argmin || viDsing (k) + (1 = v1)Ra [Dsing (D] —Sintw Qinew) |50 (2.4)
1<k,l1<600 ™~ ~~ ~
Sappr

which was simply solved by exhaustive search over the 600 x600 combinations of pre-computed
single-fascicle configurations (see Figure 2.2).

2.2.5.3 Experiment III: impact of the approximation with noise compared to the impact
of noise alone

Experiment I assessed the combined impact of the acquisition noise and of the “approximation
noise” on the quality of the microstructural estimates. In this experiment we isolated the
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impact of acquisition noise alone by performing a similar estimation but using the true model
of interwoven fascicles for the estimation instead of the approximate model.

We focused on one particular reference interwoven-fascicle configuration with identical pop-
ulations that led to a non-zero asymptotic error on at least one of the parameters r, f,a in
Experiment I and we solved

7, f,&) = arg;nind (Sintw (Treps frep ref; P); Sinew (1, 2 22)), (2.5)
nJ,a

where d is the negative log-likelihood of the Rician distribution and Sinqy is the reference
interwoven-fascicle signal corrupted by noise. We compared the microstructural estimates
obtained here to those obtained in Experiment I with the superposition approximation.

Similarly to the previous experiments, solving Problem (2.5) required a discrete, exhaustive
search in the space (7, f, @). Pre-simulating the candidate signals is more computationally
demanding than when using the superposition approximation because every new value of
crossing angle a requires a complete new signal simulation. For the density index f and
the crossing angle a, the same resolutions of 0.02 and 1.5° were kept, the ranges spanned
by the exhaustive search were centered around the reference values fi.r and aef and their
half-widths were selected to be slightly larger than the worst MAEs observed in Experiment
I over all SNR values. For the radius index r we considered candidate values in the range
[0.5um, 10um] every 0.25um for |7 — rpefl < 0.5um, every 0.50pum for 1.0pm < |7 — ryefl < 4.0pm
and every 1.0um elsewhere.

2.2.5.4 Experiment IV: impact of the approximation on a closed-form model of the mi-
crostructure

We studied the impact of the superposition approximation on the parameters of the DIAMOND
model (Scherrer et al., 2016) which represents the 3D-diffusivity of each voxel compartment
j (e.g., a fascicle of axons) with a peak-shaped statistical distribution of diffusion tensors
parameterized by a compartment heterogeneity index cHEI; and a mean tensor Dy, ;. The
contribution of compartment j to the total signal is weighted by an apparent volume fraction
vj. Compartment-specific diffusion characteristics such as the axial and radial diffusivities
cAD; and cRD; are extracted from Dy ;.

Specifically, the DIAMOND closed-form, continuous expression Spmp (Qpmp; &) relating the
DW-MRI signal Spyp to the microstructural parameters Qpyp for a given acquisition protocol
22 was fitted to signals Sintw (Qcros; &P) arising from reference interwoven configurations Qo
and to the signals Sappr (Qcros; &) arising from the superposition approximations of matching
microstructural parameters. We obtained the model estimates QpMp (Sappr) and Qpmp (Sintw)
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by solving, for each of the 24 crossing-fascicle configurations Qs previously described,

QDMD (Sappr) = argmind (Sappr (Qcros; 2) ; SDMD (QDMDh@)) )

Qpmp
QpMD (Sintw) = argmind (Sintw (Qeros; 22); Somp (Qomp; ),
Qpmp
where d is a corrected least-squares metric and where the non-linear minimization was
achieved with a customized BOBYQA algorithm (Scherrer et al., 2016). The impact of the
signal discrepancies caused by the approximation was assessed by comparing Qpyp (Sappr) to
Qpwmb (Sintw) in all 24 cases for Protocols A and B.

The experiment was then repeated for the simpler NODDI model (Zhang et al., 2012), essen-
tially designed to describe a single population of axons and which does not incorporate an
explicit dependence on the axonal radius. More details are provided in Appendix A.4.2.

2.3 Results

This section first reports the observed DW-MRI signal differences between the reference inter-
woven fascicles and the superposition approximation at matching microstructural parameters.
It then provides the results of the four microstructural estimation experiments assessing the
impact of those signal differences on the underlying microstructural parameters.

2.3.1 Impact of the Approximation on the DW-MRI Signal

We found that the RMS difference between the approximate and groundtruth signal varied in
[0.0017,0.024] over the 8 considered acquisition shells and 24 microstructural configurations,
i.e. an order of magnitude comparable to the standard deviation of Gaussian noise in an MRI
acquisition channel with SNR in [1/0.024,1/0.0017] = [42 — 603]. The detailed shell-per-shell
signal differences are available in Table A.1 in Appendix A.2. Figure 2.3 shows the DW-MRI
signals of the particular scenario that yielded the highest RMS difference as a function of
the direction of the applied magnetic gradient. The signal discrepancies seemed largest
for gradients perpendicular to u; and uy but this varied from shell to shell, as illustrated in
Figure A.3 in Appendix A.2. Little difference was found between the two protocols: the RMS
metric averaged over all 24 microstructural configurations was 6.4 x 1073 for Protocol A and
6.3 x 1073 for Protocol B. As discussed in Appendix A.3, signal discrepancies obtained with the
50 additional shells were very similar to those obtained with Protocols A and B.

Figure 2.4 shows those same DW-MRI signals as a function of the microstructural parameters
for a few selected acquisition sequences with magnetic gradient applied in the plane defined
by the orientations of the two fascicles. It suggests that DW-MRI signals (both the reference
and the approximation) exhibit heterogeneous degrees of sensitivity to the underlying mi-
crostructural parameters. In particular, the signals hardly varied at all in the range of smaller
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Figure 2.3: DW-MRI signals from the superposition approximation closely match signals
from interwoven fascicles. Normalized DW-MRI signal attenuation ((a)- (b)) and differences
((c)-(d)) for the microstructural configuration and the HARDI shell that led to the highest
RMS signal difference (RMS=2.4 x 10~2), plotted on the 3D sphere as a function of the gradient
direction §. Here the absolute (c) and the relative (d) differences were highest around the
direction normal to the plane defined by the fascicles’ orientations u; and u,, where DW-MRI
signals were highest too.

radius indices, which is a well-known limitation of the PGSE sequence (Clayden et al., 2015;
Sepehrband et al., 2016; Drobnjak et al., 2016).

2.3.2 Impact of the Approximation on Estimated Microstructural Parameters

2.3.2.1 Experiment I: impact of the approximation on identical fascicles

Figure 2.5 shows the results of 6 of the 24 experiments with small reference radius indices,
corresponding to the reference crossing angle a.f = 67.5°. The results for the other 3 angles
were qualitatively similar and are provided in Figures A.5, A.6 and A.7 in Appendix A.4.1.

The superposition approximation led to a fast convergence with increasing SNR in the esti-
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Figure 2.4: DW-MRI signals from the superposition approximation closely match signals
from interwoven fascicles but exhibit varying degrees of sensitivity to microstructural pa-
rameters. Normalized DW-MRI signal attenuation of the reference interwoven-fascicle (con-
tinuous lines) and the superposition approximation (dashed lines) for one particular sequence
extracted from each of the 8 HARDI shells reported in Table 2.1 with gradient direction g
selected in the plane defined by u; and uy, parallel (a-b) or perpendicular (c) to u;. Units of b
arein smm™2, Gin mTm™! and A and § in ms. We observed: (a) low signal sensitivity at low
radius values, (b) generally high sensitivity across the whole range of density values and (c)
generally high sensitivity across the whole range of crossing angle values.

mation of the crossing angle as the MAE over all 24 experiments consistently remained below
4.8° for all SNR = 5 with Protocol A and below 7.1° with Protocol B, showing no sensitivity
to the reference radius index. Given the resolution used in the discrete minimization, we
deduced from the apparently zero asymptotic errors that the errors due to the superposition
approximation in the absence of noise (SNR — co) were lower than 1.5°.

The convergence was fast as well for the density index as the worst-case MAE over all 24 refer-
ence configurations at SNR = 10 was 0.042 for Protocol A and 0.070 for Protocol B. Asymptotic
errors attributable to the superposition approximation could be upper-bounded by 0.08 for
reference configurations verifying ryf < 1 um and by 0.02 elsewhere.

The MAE on the estimated radius index was slower to level off to the asymptotic, noise-
free errors. They were slightly larger for Protocol B at smaller radius indices, where they
reached between 3.5um and 4.5um. The non-monotonicity of the red curves in Figure 2.5e-f
corresponding to a reference radius index r = 0.5um is due to both the absence of radius
values smaller than 0.5um in the exhaustive minimization procedure (since the approximated
signal hardly varies in that small-radius range) and to the asymptotic bias in the estimation,
which artificially improved the estimation error of that parameter at low SNR values.

The variability of the microstructural estimates over the noise repetitions can help reveal the
SNR regimes in which the errors due to the noise dominate the errors due to the use of the
superposition approximation: a large variability compared to the asymptotic, noise-free error
suggests that noise is the predominant source of error. The radius index estimates obtained
with the superposition approximation using Protocol A for instance exhibited an interquartile
range (IQR), defined as the difference between the 75th and the 25th percentile, that still
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represented 50% or more of the asymptotic error in 17 of the 18 configurations yielding a
non-zero asymptotic error at SNR=50, before dropping to 7 configurations at SNR=100 and 2
at SNR=200. This suggests a prevalence of noise-related errors for SNR levels up to about 50,
as illustrated in Figure 2.5g-h for one particular experiment.

The results of the 4 configurations with larger radius index values are provided in Figure A.8
in Appendix A.4.1. The estimation of the crossing angle exhibited trends similar to those
obtained with the smaller reference radii except for asymptotic, noise-free errors appearing
with Protocol B. The estimation of the density index and the radius index generally benefited
from larger reference radii.

2.3.2.2 Experiment II: impact of the approximation on dissimilar fascicles

The results of all 8 estimation experiments on dissimilar populations of axons are presented in
Table 2.2 with (Experiment IIa, in blue) and without (Experiment IIb, in green) the estimation
of the volume fractions, in the absence of noise.

Experiment ITa. The errors caused by the approximation without acquisition noise suggest
an inter-dependence between the estimation of the volume fraction v and density index f of
a fascicle: when v was overestimated, f was underestimated and conversely. This conflating
effect seemed exacerbated at small radius index values but slightly less pronounced when
the two fascicles occupied similar fractions of the voxel: with Protocol A for instance, the
approximation yielded a maximum error on the estimated density index between 0.18 and 0.22
with the smallest radius indices while the largest error over the last 4 cases lay between 0.12 and
0.16 given the 0.02 resolution used in the discrete optimization. In general, the superposition
approximation yielded microstructural errors larger than those observed without noise in
Experiment I where the volume fractions were equal and known.

Experiment IIb. Fixing the volume fractions v of the fascicles a priori considerably improved
the quality of the microstructural estimation using the superposition approximation, contain-
ing the error on the estimated density index within 0.04 given our 0.02 discrete resolution, in
agreement with the noise-free results of Experiment I.

2.3.2.3 Experiment III: impact of the approximation with noise compared to the impact
of noise alone

Figure 2.6 presents the results of the microstructural estimation of the reference interwoven-
fascicle configuration characterized by ryf = 0.5um, frer = 0.5, @rer = 45°. The exhaustive
search over the parameters of the groundtruth interwoven fascicles used 5202 pre-simulated
signals and provided an estimate of the errors due to noise alone (green) to be compared to
the results from Experiment I obtained using the superposition app<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>