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Abstract
Non-invasive virtual histology of white matter tissues is the ultimate promise of diffusion-

weighted MRI (DW-MRI). This hope is fueled by the exquisite sensitivity of DW-MRI to

micrometer-scale displacements of diffusing water molecules, averaged over a whole voxel.

Combined with adequate mathematical modeling, DW-MRI therefore has the potential to

provide unprecedented, microscope-like insight into the microstructure of the brain, with

important consequences in neuroscience, neurology and psychiatry.

Many closed-form analytical models have been proposed to relate the DW-MRI signal to

morphological characteristics of the axons and glial cells of the white matter. These models

generally make assumptions about the tissue and the diffusion processes which often depart

from the biophysical reality, limiting their reliability and interpretability in practice. Monte

Carlo simulations of the random walk of water molecules are widely recognized to provide

near numerical groundtruth for DW-MRI signals. However, they have mostly been limited

to the validation of simpler models rather than used for the estimation of microstructural

properties.

This thesis proposes a general framework which leverages Monte Carlo simulations for the

estimation of physically interpretable microstructural parameters such as indices of axon

diameter and density, both in single and in crossing fascicles of axons, with no restriction on

the data acquisition protocol. Monte Carlo simulations of DW-MRI signals, or fingerprints,

are pre-computed for a large collection of microstructural configurations. At every voxel, the

microstructural parameters are estimated by finding a sparse optimal combination of these

fingerprints. The final complexity of the model is thus solely determined by the level of tissue

detail incorporated in the Monte Carlo simulations. The parameter estimation requires no

meta-parameter tuning.

The superposition approximation for DW-MRI signals in the presence of multiple fascicles of

axons, often taken for granted in state-of-the-art approaches, was thoroughly verified. This

enabled a dramatic reduction of the size of the dictionary and of the ensuing fingerprint

matching. Our approach was then validated extensively on synthetic data as well as on a

variety of in vivo and ex vivo datasets. It was shown to systematically provide more robust

and physically interpretable tissue parameters than a range of traditional closed-form models

claiming similar biophysical complexity.
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Abstract

An accelerated method based on efficient convex estimation and a deep feed-forward neural

network was developed to make our framework suitable for larger population studies. This

fast two-stage procedure reduced the execution time by several orders of magnitude while

maintaining a similar level of estimation accuracy.

All software tools related to this work will be shared upon publication of this thesis. They

can easily be combined with, for instance, recently-released Monte Carlo simulators offering

exciting new levels of tissue realism. This is intended to make microstructure imaging based on

Monte Carlo simulations accessible to as broad an audience as possible, for future population

studies and the general advancement of the field.
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Résumé
La grande promesse de l’imagerie par résonance magnétique pondérée en diffusion (DW-MRI)

est de fournir un outil d’histologie virtuelle non-invasive des tissus de la matière blanche. Cet

espoir est entretenu par la très fine sensibilité du signal DW-MRI à des déplacements de l’ordre

du micromètre des molécules d’eau en diffusion, moyennés sur tout le voxel. Combinée à

des modèles mathématiques adéquats, la DW-MRI pourrait fournir des informations sur la

microstructure cérébrale d’un niveau digne du microscope, avec d’importantes conséquences

en neurosciences, en neurologie et en psychiatrie.

Parmi tous les modèles analytiques proposés pour lier le signal DW-MRI à des caractéris-

tiques morphologiques des axones et des cellules gliales de la matière blanche, beaucoup

reposent sur des hypothèses simplificatrices sur les tissus et les processus de diffusion qui

sont contraires à la biophysique et limitent la fiabilité et l’interprétabilité de ces modèles

en pratique. Les simulations Monte Carlo de diffusion des molécules d’eau sont largement

reconnues comme le standard de référence pour les signaux DW-MRI. Cependant, elles ont

principalement été utilisées pour la validation de modèles simples et non pour l’estimation

directe de propriétés microstructurelles.

Cette thèse propose un cadre général qui tire parti de simulations Monte Carlo pour l’esti-

mation de paramètres microstructurels interprétables physiquement tels que des indices de

diamètre et densité axonaux, dans des faisceaux d’axones simples et croisés, sans restriction

sur le protocole d’acquisition de données. Les signaux DW-MRI Monte Carlo, ou fingerprints,

sont pré-simulés pour une large collection de configurations microstructurelles. En chaque

voxel, les paramètres de microstructure sont estimés en cherchant une combinaison optimale

parcimonieuse de ces fingerprints. La complexité finale du modèle est donc déterminée par

le niveau de détails du tissu représenté dans les simulations. L’estimation de paramètres ne

requiert l’ajustement d’aucun méta-paramètre.

L’approximation de superposition des signaux DW-MRI en présence de faisceaux d’axones

multiples, souvent négligée dans la littérature, a été vérifiée en détail. Cela a permis de di-

minuer drastiquement la taille des dictionnaires et d’alléger la phase de reconnaissance de

fingerprint. Notre approche a ensuite été validée extensivement sur des données synthétiques

et sur des bases de données diverses, à la fois in vivo et ex vivo. Elle s’est montrée capable de

fournir des paramètres des tissus plus interprétables et robustes que ceux de nombreux mo-

iii



Résumé

dèles traditionnels basés sur formules analytiques et d’un niveau de complexité biophysique

présenté comme similaire.

Une méthode accélérée basée sur de l’optimisation convexe rapide et un réseau de neurones

profond a été développée pour faire face à des études de plus grande ampleur. Cette procédure

en deux temps a pu réduire le temps d’exécution de notre méthode de plusieurs ordres de

grandeur tout en maintenant la qualité des estimations. Tous les outils logiciels développés

dans ce travail seront partagés publiquement après publication de cette thèse. Ceux-ci s’inté-

greront par exemple facilement à de récents simulateurs permettant des simulations dans des

tissus saisissants de réalisme. Cela dans le but de rendre accessible à l’audience la plus large

possible l’imagerie de la microstructure basée sur des signaux Monte Carlo pour de futures

études de population et l’avancement général du domaine.
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1 Theoretical background

This Chapter provides the very basic tools for understanding the physics of diffusion-weighted

magnetic resonance imaging, the models used for the diffusion of water in the white matter

and Monte Carlo simulations, which this thesis heavily relies on. Reading of this Chapter is

not strictly required for understanding the following Chapters as those were written to be as

self-contained as possible.

1.1 Physics of diffusion-weighted MRI

1.1.1 Diffusion processes

Diffusion is a transport mechanism widely used in physics to describe the seemingly random

movement of a substance in a given medium, for example water molecules in human body

tissues. There are two widely-used approaches to study diffusion: a macroscopic approach

and a microscopic approach.

In the macroscopic, also known as phenomenological or continuous approach, one considers

the general equation for mass conservation at any given position r and time t

∂c

∂t
(r, t ) =−∇· J(r, t ), (1.1)

where c is the concentration of the substance and J its net flux, and Fick’s phenomenological

law

J(r, t ) =−D ·∇c(r, t ), (1.2)

stating that a substance tends to diffuse from regions of high concentration to regions of low

concentration and where D is a symmetric, positive-definite diffusion tensor. Combining (1.1)

and (1.2) leads to the diffusion equation

∂c

∂t
(r, t ) =∇· (D ·∇c (r, t )) = D∆c (r, t ) , (1.3)
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Chapter 1. Theoretical background

Figure 1.1: Thermal agitation induces diffusion. Diffusion resulting from seemingly random
thermal motion of molecules (Price, 2009).

where the last equality only holds in the case of isotropic diffusion, with D > 0 being a scalar.

This description of diffusion will be easily incorporated into the well-known Bloch equations

and will lead to useful analytic results in diffusion-weighted imaging.

In the microscopic, also known as molecular or discrete approach, diffusion is treated as the

motion of molecules colliding with each other under the effect of thermal agitation (Figure

1.1). The trajectory r(t ) of each individual molecule is modeled as a discrete-time random walk

on a discretized spatial grid, i.e. a succession of random "jumps" between adjacent positions

on the spatial grid, each jump being independent from the past trajectory of the molecule

(Markov property). The transition probabilities are generally taken to be spatially symmetric,

such that Er [r− r0] = 0. The central limit theorem ensures that after a sufficiently long time

t , the probability distribution of the displacement r−r0 converges to a normal distribution

of mean 0 and standard deviation proportional to
p

t , thus satisfying the requirements of

Brownian motion. This description is particularly well-suited for numerical investigations and

it will form the basis of the Monte Carlo simulations used in diffusion-weighted imaging.

The two above descriptions are closely related. It can be shown for instance that the continuous

diffusion equation can be retrieved in the limit of finer time and space discretization of a

random walk, i.e. when ∆t ,∆x → 0, if the ratio ∆x2

∆t is kept constant (Grebenkov, 2008).

1.1.2 Diffusion-weighted magnetic resonance imaging

Diffusion-weighted magnetic resonance imaging (DW-MRI) combines classical nuclear mag-

netic resonance (NMR) sequences of radio-frequency (RF) pulses such as the spin echo (SE) or

stimulated echo (STE) sequences with applications of time-varying magnetic-field gradients

g(t ) leading to non-uniform magnetic fields and serving as a way to spatially encode the spin-

bearing particles (spins) of the sample (Price, 2009, §2.1). A diffusion sequence is characterized

by the gradient temporal profile g(t ), or interchangeably by the vector quantity

q(t ) = γ

2π

∫ t

0
g(s)d s (1.4)
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1.1. Physics of diffusion-weighted MRI

known as the q-vector and having units of [m−1], where γ is the gyromagnetic ratio of protons

and where the sign of each component of g(s) incorporates the effect of any refocusing 180◦

RF pulses.

The simplest diffusion sequence is known as the pulsed-gradient spin-echo (PGSE) or single

diffusion encoding (SDE), the g and q temporal profiles of which are shown in Figure 1.2(a)

and in the middle row of Figure 1.3. It consists in a constant gradient of duration δ, intensity

G and direction ĝ turned on immediately after the initial RF excitation, followed by the same

gradient applied a time ∆ known as the diffusion time after the onset of the first pulse, which

a refocusing 180◦ RF pulse made to have an opposite effective polarity −ĝ. In double diffu-

sion encoding (DDE) illustrated in Figure 1.2(b), two SDEs are performed successively using

gradients g1 and g2 which traditionally have the same duration and intensity but different

directions. Triple diffusion encoding (TDE) follows the same construction (see Figure 1.2(c)).

We note a slight ambiguity arising when using the terms SDE, DDE and TDE as these do not

indicate whether the underlying RF sequence was a SE or a STE. Such information must then

be deduced contextually.

More general waveforms have been developed recently (Topgaard, 2017) which are referred to

as q-vector trajectory encoding, isotropic encoding, spherical encoding or b-tensor encoding,

as represented in Figure 1.2(d). These waveforms let each gradient component vary as a

continuous function of time, unlike the previously described sequences in which a discrete

number of gradient directions are probed. We finally mention the oscillating-gradient spin-

echo (OGSE) sequence in which the direction of the gradient is fixed but its amplitude oscillates

as depicted in Figure 1.3. The advantage of high-frequency OGSE sequences is often thought to

be the ability to probe smaller length scales through shorter effective diffusion times (Drobnjak

et al., 2016).

1.1.2.1 Mathematical descriptions of the DW-MRI signal

There are two convenient ways to mathematically apprehend the DW-MRI signal. The first

description uses the random walk of each water molecule at the microscopic scale. The second

one is a partial differential equation describing the diffusion and magnetic encoding at a larger,

macroscopic scale.

Microscopic description Let us assume Nspin spin-bearing protons are evolving in Brownian

motion in a given environment, such as a voxel of human white matter. At time t = 0 shortly

after the initial 90◦ RF excitation, all Nspin spins are assumed to be precessing together in

phase at the Larmor angular frequency. The dephasing φl of each spin at echo time T E under

the external application of an effective gradient profile g(t ) is

φl (T E) = γ
∫ T E

0
g(t ) · rl(t ) d t (1.5)
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Chapter 1. Theoretical background

Figure 1.2: Time evolution of the x (red), y (green) and z (blue) components of the gradient g
and q-vector q for the SDE, DDE, TDE and spherical encoding sequences. The right-hand-
side column is a 3D representation of the time evolution of the q-vector. Figure taken from
Topgaard (2017).
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1.1. Physics of diffusion-weighted MRI

Figure 1.3: Comparison of the PGSE or SDE diffusion weighting (middle row) versus the OGSE
sequence (bottom row), laid atop a traditional SE sequence (top row). Figure taken from
Drobnjak et al. (2016).

where g(t) is the effective gradient with sign reflecting the effect of the refocusing 180◦ RF

pulses, and where rl(t) is the random trajectory of spin l , for l = 1, . . . , Nspin, which is com-

pletely independent from the applied magnetic gradient profile and depends on the diffusivity

D of the medium. The uniform magnetic field B0 contributes equally to the phase of each

spin by a factor γB0 ·T E and can therefore be included in an initial reference phase φ0 that

does not affect the measured signal.

Once the phase φl of each spin is known and assuming uniform T2-decay across the voxel,

introducing the complex notation S = Mx + i My for components of the net magnetization

in the transverse plane, the attenuation E of the transverse magnetization resulting from

the application of the magnetic-field gradient with profile g(t) in the considered diffusion

environment is obtained as

E = S(T E)

S0
=

e−
T E
T 2

∑Nspin

l=1
M0

Nspin
e iφl

M0e−
T E
T 2

= 1

Nspin

Nspin∑
l=1

e iφl , (1.6)

where M0 = Mx0 + i My0 is the net magnetization in the x y-plane immediately after the first

90◦ RF pulse resulting from the equal contributions M0
Nspin

of the Nspin spins, and where S0 is

the reference T 2-weighted signal associated with that sample, when no external gradients are

applied.

Given the enormous number of water molecules Nspin in a typical voxel of biological tissue1,

1Considering pure water as a first approximation for brain tissues, a 1-mm3 voxel contains 10−3 g of water,
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Chapter 1. Theoretical background

Eq. (1.6) could be rewritten as a continuous expectation over φ

E = Eφ[e iφ]. (1.7)

In the absence of diffusion barriers in the environment, the distribution of spin displacements

r(t ) is Gaussian by definition of Brownian motion, causing the distribution for the phase φ to

be Gaussian too. This leads to the well-known decaying exponential for the signal attenuation

E forming the theoretical basis of the diffusion tensor model (Basser et al., 1994), which most

microstructural models are based on. In the general case where tissue structures hinder the

free diffusion of water, closed-form expressions for the probability distribution PΦ(φ) are

usually very difficult to obtain. A very common approximation known as the Gaussian phase

distribution (GPD) is to simply assume a Gaussian distribution of spin displacements r(t),

which is motivated by theoretical results in the long-time regime (Price, 2009, §2.3.3). The GPD

approximation yields analytical solutions in simple geometries such as spheres and cylinders,

which are very widely-used in the biophysical models of the microstructure described in

Section 1.2.2 below.

Macroscopic description Combining the phenomenological Bloch equations (see e.g., (Price,

2009, §2.3.2)) with the classical diffusion equation yields the macroscopic Bloch-Torrey sys-

tem of coupled linear partial differential equations for the evolution of the complex-valued

transverse magnetization Mx y = Mx + i My , at every location r of the spatial domain and at

every time t > 0 (Price, 2009, §2.3.2)

∂Mx y

∂t
(r, t ) =∇· (D ·∇Mx y (r, t )

)︸ ︷︷ ︸
diffusion

−iγ
(
g(t ) · r

)
Mx y (r, t )︸ ︷︷ ︸

gradient encoding

. (1.8)

The T 2-relaxation term was omitted since it only affects the measured signal by a known expo-

nential factor. Similarly, the B0 field only contributes an oscillating component e iγB0t = e iω0t

and was therefore left out.

If the spatial domain is bounded, e.g. a sphere to model a glial cell or a cylinder to model

an axon in the human brain, the conservation of mass is ensured through the general Robin

boundary condition (
D ·∇Mx y (r, t )

) · n̂︸ ︷︷ ︸
diffusion

+ κMx y (r, t )︸ ︷︷ ︸
permeability

= 0, (1.9)

where n̂ is the outward unit normal and κ denotes the permeability of the boundary, with units

of [m s−1]. The most widely used boundary condition is the Neumann condition correspond-

ing to perfectly reflecting cellular membranes, obtained setting κ= 0. The attenuation E of the

equivalent to 10−3

18.02 mol based on water’s molar mass, 10−3×6.022×1023

18.02 water molecules using the Avogadro constant

and 2×10−3×6.022×1023

18.02 = 6.684×1019 spin-bearing hydrogen nuclei.
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1.1. Physics of diffusion-weighted MRI

transverse magnetization associated to the gradient profile g(t ) in the diffusion environment

Ω at the echo time TE is obtained as

E = 1

S0

∫
Ω

Mx y (r,T E) dr, (1.10)

where S0 is the reference T 2-weighted signal associated with that sample, i.e. when no

gradients are applied. The Bloch-Torrey equation is in general difficult to solve for arbitrary

domains, which makes the modeling of DW-MRI signals in arbitrary geometries a challenging

task.

Free diffusion The Bloch-Torrey equations (1.8) can be solved in the case of so-called free,

Gaussian diffusion where no diffusion barrier is present and the domain can be considered

to be the whole n-dimensional space Rn . Considering a diffusion process governed by the

symmetric, positive-definite diffusion tensor D, the following attenuation of the measured

signal (Price, 2009, §2.3.2,§4.4.1) is obtained for an arbitrary gradient profile g(t )

E(Rn) = exp

(
−(2π)2

∫ T E

0
q(t )T Dq(t ) d t

)
= exp

(
−γ2

∫ T E

0

∫ t

0

∫ t

0
g(s1)T Dg(s2) d s1d s2d t

) (1.11)

which in the case of the simple gradient profile of the PGSE experiment becomes

E(Rn) = e−bpgseĝT Dĝ (anisotropic case),

= e−bpgseD (isotropic case),
(1.12)

where ĝ is the unit gradient direction and bpg se =
(
γδG

)2
(∆−δ/3). Solution (1.12) is equiva-

lent to assuming the GPD in Rn in Eq. (1.7) and, as mentioned in the microscopic description

of the signal above, is used in a variety of mathematical models used to approximate DW-MRI

signals even in the case of restricted diffusion.

1.1.2.2 Statistical model for the acquisition noise

Diffusion-weighted MRI is marred by noise, motion artefacts and Eddy current distortions (Set-

sompop et al., 2013). In the PGSE sequence for instance, increasing the desired diffusion-

weighting to increase the microstructural information contained in the signal necessarily

comes at the cost of increased sequence duration (via ∆ or δ) or increased gradient intensity

G , which aggravates distortions (non-linearity, eddy currents due to rapid switching, etc.) and

indirectly leads to longer sequences to give heated gradient systems time to cool down. To

accelerate the final read-out at echo time, echo planar imaging (EPI) is often used, which is

known to suffer from distortions (Chen and Wyrwicz, 1999; Price, 2009). DW-MRI scanning

sessions are intrinsically long due to the requirement of applying multiple external magnetic

gradients successively, which makes DW-MRI data more prone to motion between images.

7



Chapter 1. Theoretical background

All these artefacts are well understood and can be corrected to a certain extent in the post-

acquisition phase (Sotiropoulos et al., 2013). In this paragraph, a statistical model is given for

the random thermal noise which cannot be avoided or corrected.

Modern phased-array MRI systems possess various coils able to acquire multiple images in

parallel. The detected signal Sl in each of the N coils can be accurately described by (Aja-

Fernández and Tristán-Vega, 2012)

Sl = Al +nl , l = 1, . . . , N , (1.13)

where Al is the true signal value and nl is a complex-valued white Gaussian noise process

of variance σ2
g assumed identical for all N coils. A popular choice is to reconstruct a final

magnitude or Sum-of-Squares (SoS) signal M as M =
√∑N

l=1 |Sl |2. If there is no correlation

between the coils, M can be shown to follow a non-central Chi distribution of 2N degrees of

freedom with the following probability density function (Koay et al., 2009; Aja-Fernández and

Tristán-Vega, 2012)

pχ̄
(
m|η,σg , N

)= mN

σ2
gη

N−1
exp

(
−m2 +η2

2σ2
g

)
IN−1

(
mη

σ2
g

)
, m > 0 (1.14)

where η=
√∑N

l=1 |Al |2 is known as the underlying intensity and I j is the j -th order modified

Bessel function. It can be shown that the SoS reconstruction asymptotically (i.e. for large SNR)

leads to an optimal SNR of η/σg , inducing a SNR gain of
p

N compared to the ratio Al /σg in

each coil (Larsson et al., 2003).

A particular case of Eq. (1.14) is when N = 1. The distribution is then said to be Rician (Gudb-

jartsson and Patz, 1995). In practice, inter-coil correlation is impossible to avoid and has the

effect of decreasing the effective numer of coils and increasing their effective variance (Aja-

Fernández and Tristán-Vega, 2012). The Rician distribution is therefore often invoked as an

effective noise model.

1.2 Modeling diffusion in the white matter

This section provides a very brief overview of the biology of the white matter and of the

mathematical models aiming to describe it, classified into biophysical and signal models with

a hint at numerical, computational models. Readers are referred to Jelescu and Budde (2017),

Novikov et al. (2018a) or Alexander et al. (2019) for more thorough reviews of the literature.

1.2.1 Microstructure of the white matter

The microstructure of the white matter chiefly consists of long cables known as axons covered

by a myelin sheath, usually bundled together into fascicles; and glial cells which among others

8



1.2. Modeling diffusion in the white matter

Figure 1.4: Schematic view of the white matter at three different length scales. Figure taken
from Taquet (2013).

Figure 1.5: Differences between white and gray matter of nervous tissues. Figure taken from
Fick (2017) adapted from original figures by Liewald et al. (2014) and Kay et al. (2013).

produce the myelin and nurture the axons (see Figure 1.4(b)). The spinal cord features single

fascicles of mostly parallel axons. In the cerebrum and brain stem however, fascicles of axons

exhibit various orientations and many areas contain complex arrangements of intersecting

fascicles, as depicted in Figure 1.4(a). The main difference between the gray matter and

the white matter is that the gray matter possesses neuron bodies or somas, as illustrated

in Figure 1.5. Microstructural characteristics of interest within a voxel include but are not

limited to: the number of fascicles and their respective orientations, the volume occupied

by cerebrospinal fluid (CSF), the distribution of axon diameters within each fascicle, the

intra-axonal volume fraction, the undulation of axons, the dispersion of their orientations, the

myelin content, the permeability of the membranes and the volume occupied by glial cells.

Diffusivity of the white matter Water is assumed to diffuse in the intra- and the extra-axonal

compartment and most of the mathematical modeling effort is devoted to describing diffusion

in those two compartments. An important quantity is their intrinsic diffusivity D, which

measures the speed of the diffusion process. However, the intrinsic diffusivity–at a given
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temperature–of these compartments is difficult to measure in practice. The intra-axonal

diffusivity was recently estimated to be D = 2.25µm2 ms−1 in vivo (Dhital et al., 2019). Other

recent experiments have suggested that the intra-axonal diffusivity was larger than the extra-

axonal one (Kunz et al., 2018). Most modeling approaches assume equal diffusivities, which

can have non-trivial consequences on the estimation of the model parameters (Jelescu et al.,

2016).

NMR relaxation times in the white matter Quantities of similar interest for the accurate

modeling of the white matter are the NMR relaxation times T1 and T2. Those quantities can

greatly vary with the strength of the main B0 field, which can have an important impact on

preclinical experiments using high or ultra-high magnetic fields for small-animal studies, for

instance. Figure 1.6 graphically summarizes the values reported in the literature for the T1 and

T2 of the white matter and the CSF (which partially contaminates some voxels of white matter).

T1 or T2 measurements of sub-voxel compartments such as the intra- or extra-axonal space

are still extremely scarce. In the absence of a clear consensus, most models simply assume

that the two compartments have equal relaxation times. However, experimental data has

contradicted this hypothesis, suggesting a larger intra-axonal T2 (Peled et al., 1999; Wachowicz

and Snyder, 2002; Bonilla and Snyder, 2007; Dortch et al., 2010; Veraart et al., 2018).

1.2.2 Biophysical models

This section presents an overview of biophysical models which attempt to directly and specifi-

cally reflect the biology of the tissue. First, an important assumption known as the superpo-

sition principle is discussed as most biophysical models rely on it to build complex models

from elementary tissue compartments. These compartments are then described and two

representative diffusion compartment models are presented in more detail.

1.2.2.1 Superposition principle

If the diffusion environmentΩ can be expressed as the union of K mutually-disjoint compart-

mentsΩ1, . . . ,ΩK with no inter-compartment water exchange (e.g., due to perfectly-reflecting

boundaries), then the total signal attenuation E (g;Ω) associated to the gradient profile g(t ) in

the diffusion environmentΩ can be expressed as

E(g;Ω) =
K∑

i=1
fi E(g;Ωi ), (1.15)

where fi = |Ωi |
|Ω| , for i = 1, . . . ,K , are the volume fractions of each compartment, possibly

weighted by T2-relaxation or proton density if those characteristics are not identical for all

compartments.

At the time scale of a DW-MRI acquisition, typically not more than 100 ms, the slow-exchange

10



1.2. Modeling diffusion in the white matter

T1 T2

WM

CSF

Figure 1.6: T1 and T2 relaxation time measurements in the white matter (WM) and cere-
brospinal fluid (CSF) in rodents and in humans. Literature survey of the B0 field-strength
dependency for T1 and T2. Rodent values compiled in the corpus callosum (cc) and cerebel-
lum (cb). Reference labels for rodent data: Cond87 (Condon et al., 1987), Ting92 (Ting and
Bendel, 1992), Crem98 (Crémillieux et al., 1998), dG06 (de Graaf et al., 2006), vdV07 (van de Ven
et al., 2007), Pohm11 (Pohmann et al., 2011). Reference labels for human data: St05 (Stanisz
et al., 2005), Vis10 (Visser et al., 2010), Roon07 (Rooney et al., 2007), Spij18 (Spijkerman et al.,
2018).
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limit can be assumed meaning that little water transfer between compartments occurs and

membranes can safely be considered impermeable. Consequently, the complex DW-MRI

signal in a voxel can accurately be described as a weighted sum of the signals arising from indi-

vidual compartments, supporting a paradigm known as diffusion compartment imaging (DCI)

which encompasses the majority of state-of-the-art biophysical models of the microstructure.

1.2.2.2 Diffusion Compartment Imaging (DCI)

In compartment models of the microstructure or diffusion compartment imaging (DCI) and

under the slow-exchange hypothesis, the total DW-MRI signal is described as a sum of the

contributions arising from different independent compartments. Most models are based on

two main compartments: the intra-axonal compartment capturing the diffusion of water

trapped inside axons and usually represented by a stick or a cylinder model; and the extra-

axonal compartment accounting for the water located outside of the axons in the tissue

interstitium (Novikov et al., 2018a). Note that most of these models were primarily derived for

the simple PGSE sequence.

Further refinements to the basic two-compartment model include modeling the fact that

axons in a voxel of biological tissue are not perfectly parallel by a distribution of orientations

on the sphere, either through a non-parametric decomposition into basis functions or by a

fixed, parameterized distribution such as Bingham or Watson as in the NODDI model (Zhang

et al., 2012) described below. The heterogeneity of axon diameters within a fascicle can be

represented by a parameterized distribution of diameters such as the gamma distribution mo-

tivated by histological observations (Aboitiz et al., 1992) as in the AxCaliber framework (Assaf

et al., 2008), although non-parametric approaches also exist (Benjamini et al., 2016). Ide-

ally, the intra-axonal and extra-axonal compartments should be interdependent since the

environment experienced by water molecules evolving in the extra-axonal space is directly

affected by the shape and position of the axons modeled by the intra-axonal compartment.

Heuristics to link intra- and extra-axonal compartments are generally referred to as tortuosity

models (Stanisz et al., 2005).

In many cases, a so-called ball compartment represents partial volumes of CSF in a voxel.

Similarly, the dot has been used as a way to model stationary water molecules like those

trapped between lipid layers of the myelin sheath surrounding most axons or trapped in

glial cells, although the relevance of this compartment has been challenged in recent in vivo

experiments on human volunteers (Dhital et al., 2017).

ActiveAx The ActiveAx model (Alexander et al., 2010), also referred to as minimal model of

white matter diffusivity (MMWMD) considers the signal contributions from up to 4 compart-

ments
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• intra-axonal (E1) : DW-MRI signal attenuation due to water molecules confined within

a cylinder of radius r calculated with the GPD approximation;

• extra-axonal I (E2) : also known as the hindered compartment, models the contribution

of molecules that evolve near cylindrical axons through a diffusion tensor D having its

principal eigenvector parallel to the cylinders of the intra-axonal compartment;

• extra-axonal II (E3) : CSF compartment (ball), corresponding to freely-diffusing molecules

in an isotropic brain fluid, following E3 = e−bD ;

• extra-axonal III (E4) : stationary molecules (dot): E4 = 1.

The slow-exchange hypothesis is assumed and the total signal attenuation of the ActiveAx

model E AX is calculated as

E AX =
4∑

i=1
fi Ei , (1.16)

where the fi are the volume proportions of each compartment within the voxel under study.

This model thus only assumes one dominant fascicle of axons.

NODDI The Neurite Orientation Dispersion and Density Imaging (NODDI) model Zhang et al.

(2012) captures the so-called dispersion of axons’ orientations through a Watson distribution

of orientations on the unit sphere.

To mitigate the additional complexity brought by the estimation of the parameters of the

Watson distribution, simplifying assumptions are made such as assuming cylinders of zero

radius or “sticks”, considering a single population of axons in the voxel, making use of a simple

tortuosity model or fixing the intra- and extra-axonal parallel diffusivities to a same value for

all tissues.

This model has gained traction over the last few years, being used in a number of studies

of normal human brain development (Jelescu et al., 2015; Kodiweera et al., 2016; Sato et al.,

2017) as well as in disease (Adluru et al., 2014; Winston et al., 2014; Timmers et al., 2016;

Schneider et al., 2017). It has also drawn criticism regarding the interpretation of the estimated

parameters and how the model assumptions and simplifications may have an adversarial

effect on the microstructural estimation (Jelescu et al., 2016; Lampinen et al., 2017; Jelescu

and Budde, 2017).

1.2.3 Signal and phenomenological models

This section is concerned with models primarily designed to capture and reproduce the DW-

MRI signal for any microstructural configuration. Very few assumptions about the underlying

tissue microstructure are made as these models focus on a more general quantity known as

the average diffusion propagator. The Fourier theory relating this quantity to the DW-MRI

signal is first presented. Two sub-classes of methodologies are then described, which differ in

the way they estimate the average diffusion propagator. A concluding paragraph discusses the
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Chapter 1. Theoretical background

link with biophysical parameters of the tissue.

1.2.3.1 Fourier relationship between DW-MRI signal and average propagator

The PGSE experiment is considered and the duration δ of each gradient g =G ĝ is assumed so

short that the diffusion of spins during their application is negligible, an assumption known

as the short gradient pulse (SGP) or narrow-pulse approximation. In particular, this requires,

in an n-dimensional space, that δ<< L2

2nD , where L is the characteristic length of the medium

(e.g. the radius of an axon approximated by a cylinder) and D the diffusivity of the medium.

However, it is assumed that the phase accumulated during each gradient pulse takes a finite,

non-zero value, i.e. δ→ 0 with 0 < δG <∞. The q-vector introduced in Eq. 1.4 is therefore well

defined for any t in ]0,∆[

q(t ) = 1

2π
γδg. (1.17)

Under these assumptions, Eq. (1.7) gives the signal attenuation E
(
q,∆

)
associated with the

diffusion time ∆ and q-vector q in a diffusion environmentΩ

E
(
q;∆

)= ∫
Ω

∫
Ω
ρ(r0)P (r0,r f ;∆)e iγδg·(r0−r f ) dr0dr f

=
∫
Ω

∫
Ω
ρ(r0)P (r0,r f ;∆)e i 2πq·(r0−r f ) dr0dr f ,

(1.18)

where ρ(r0) is the equilibrium particle density and P (r0,r f ;∆) is known as the diffusion

propagator, interpreted as the probability of a molecule inΩ to travel from r0 to r f between

time 0 and∆. Performing the change of variable r = r f −r0, representing a vector displacement,

and defining the average diffusion propagator P as

P (r;∆) =
∫
Ω
ρ(r0)P (r0,r0 + r;∆) dr0, (1.19)

the elegant Fourier relationship is obtained between the measured signal attenuation E and

the average propagator P (Price, 2009, §2.2.3)

E
(
q;∆

)= ∫
Ω

P (r;∆)e−i 2πq·r dr = FT{P (·;∆)} (q), (1.20)

from which quantities of interest can be computed such as the orientation distribution func-

tion (ODF) or the return-to-origin probability (RTOP).

All the techniques described in this section can be broadly branded as q-space imaging and

essentially consist in sampling the signal in q-space to obtain the average diffusion propagator

of a voxel via an inverse Fourier transform of the DW-MRI data E
(
q;∆

)
, as originally developed

by Callaghan (1991)

P (r;∆) =
∫
R3

E
(
q;∆

)
e i 2πq·r dq. (1.21)

14



1.2. Modeling diffusion in the white matter

The spatial domainΩ is usually large enough with respect to the diffusion of particles over a

length scale ∆ so thatΩ can be identified with R3.

In practice, many acquisition protocols relax the constraint on δ, with the consequence that

r should be interpreted as the net displacement of a spin from its mean position within the

time interval [0,δ] to its mean position in the interval [∆,∆+δ], a quantity known as the δ-

averaged relative spin displacement (Wedeen et al., 2005). Remarkably, Eq. 1.20 and 1.21 hold

irrespective of the actual underlying tissue microstructure. Making the reasonable assumption

that the tissue and therefore the average propagator is symmetric with respect to the origin

ensures that its Fourier transform, i.e. the DW-MRI signal, is real-valued under the application

of uniform magnetic field gradients (Grebenkov, 2008).

1.2.3.2 Direct q-space imaging

Diffusion spectrum imaging (DSI), developed by Wedeen et al. (2005) is one of the most

straightforward applications of the formalism described above. DW-MRI data is acquired on a

lattice of the so-called q-space with fixed δ and∆ by letting the diffusion gradient g take values

on a cubic lattice on grounds of the q-g relationship (1.17). A discretized version of the average

diffusion propagator is obtained by inverse 3D Fourier transform of the acquired DW-MRI

data, with integration performed in q-space, without resorting to any prior modeling.

The main drawback of direct q-space imaging is the high number of samples required for

accurate inverse Fourier computation. In addition, integration of the average propagator

along radial directions to obtain the ODF introduces inaccuracies if the data was acquired on

a cartesian grid.

1.2.3.3 Functional bases for q-space imaging

Most of the shortcomings of direct q-space imaging hinted at in the previous paragraph can

be addressed by decomposing the normalized DW-MRI signal E into a linear combination of

well-chosen basis functions φi

E(q;∆) =∑
i

ai (∆)φi (q), (1.22)

where the dependence of the coefficients ai on ∆ is often omitted for clarity. The functions

are usually taken to form a complete orthogonal basis for a functional space such as that of

square-integrable functions L2 in R3 or on the unit sphere S2 in order to ensure adequate

convergence of the series (1.22) to E . If the inverse Fourier transform ϕi of each basis function

φi is available analytically (which is usually ensured by construction), it is straightforward to

obtain the average diffusion propagator as

P (r;∆) =∑
i

aiϕi (r), (1.23)
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from which quantities such as the ODF or RTOP can be analytically derived, irrespective of

the sampling in q-space. In practice, heuristics or trial and error is needed to determine the

number of terms after which the summations in Eq. (1.22) and (1.23) should be truncated.

In Mean Apparent Propagator MR imaging (MAP-MRI) (Özarslan et al., 2013), a three-dimensional

functional basis is assembled based on the one-dimensional basis introduced in Simple Har-

monic Oscillator based Reconstruction and Estimation (1D-SHORE) (Özarslan et al., 2008). A

variety of scalar indices are mathematically expressed in terms of the estimated coefficients

ai , in addition to the RTOP index mentioned above, such as a return-to-the-axis probability

(RTAP), return-to-the-plane (RTPP), propagator anisotropy (PA), non-gaussianity (NG) and a

similarity metric to compare different apparent propagators, which were reported to provide

useful contrasts on fixed monkey brain (Özarslan et al., 2013).

Many other functional bases are possible such as rotational and spherical harmonics in

constrained spherical deconvolution (CSD (Tournier et al., 2004)), spherical harmonics alone

(Descoteaux et al., 2007) or the Spherical Polar Fourier basis (Caruyer and Deriche, 2012).

Additional regularization of either the reconstructed signal or the inferred propagator has

also been shown to be beneficial, including smoothing of the laplacian (Fick et al., 2016)

or imposing more stringent continuity constraints (Caruyer and Deriche, 2012). Recent

extensions have included explicit dependence on the diffusion time ∆ (Fick et al., 2015) or

have accounted for non-symmetric diffusion propagators P , which lead to complex-valued

signals E (Pizzolato et al., 2016).

1.2.3.4 Relating signal models to the tissue microstructure

A general weakness of signal models based on q-space imaging, whether they use functional

basis decomposition or not, is the lack of direct link between indices based on the diffusion

propagator and biophysical properties of the tissues. In order to estimate the intra-axonal

volume fraction for instance, several indices were proposed such as the apparent fiber density

(AFD) derived from the computed ODF (Raffelt et al., 2012) or an index based on RTAP from

MAP-MRI (Fick, 2017). Another index based on RTAP was also proposed (Fick, 2017) for the

estimation of the apparent axon diameter, a microstructural feature of utmost importance.

However only limited success in correlating with histological measurements has been re-

ported thus far (Fick, 2017, §4.4). Most of the q-space based methodologies in the literature

report contrasts derived from signal models with the hope that it will lead to biomarkers of

pathologies irrespective of what they exactly represent biologically. Table 1.1 summarizes the

advantages and drawbacks of the two classes of models discussed so far.

1.2.4 Numerical models

Numerical methods provide the flexibility and the modeling complexity that the analytical

models presented above lack at the cost of important computational requirements. Finite ele-
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1.3. Monte Carlo simulations of the diffusion

Table 1.1: Trade-offs in selecting a model of microstructural diffusion. Summary of the pros
and cons of signals models versus biophysical models of the microstructure based on DW-MRI.

+ −

Signal models

• suited for any microstructural config-
uration
• signal interpolation, denoising
• stable and efficient
• contrasts may better generalize to

abnormal WM

• not directly related to biophysical
properties of the tissue
• no closed-form formula to analyze

effect of acquisition and tissue parame-
ters
• specific to PGSE with narrow pulses

Biophysical
models

• more biologically realistic and inter-
pretable
• flexible choice of compartment mod-
els
• usually provide analytical formulas
for analysis

• complex and unstable non-linear es-
timation
• model assumptions may break down
in pathological cases
• parameter interpretation should be
exerted with caution

ments (Van Nguyen et al., 2014) benefit from strong theoretical guarantees and can accurately

model complex tissue configurations and gradient waveforms. However, spatial meshing is

a notoriously arduous task, non-trivial mathematics are required to set up a simulation and

verify convergence, boundary conditions are difficult to implement, the complexity of the

problems scales poorly with the size of the simulated voxel and simulations need to be run

from the start for each new acquisition sequence. Monte Carlo simulations have emerged as

the reference numerical model for the simulation of diffusion in the white matter owing to

their relative ease of use, flexibility and physical soundness. However, they have largely been

ignored as a intrinsic building tool for models of the microstructure, which was one of the

motivations of this thesis. The next paragraph provides a brief description of the Monte Carlo

framework and their use in practice.

1.3 Monte Carlo simulations of the diffusion

Monte Carlo simulations have become a modality of choice for the validation of closed-form

analytical models such as described above as they are considered to provide a groundtruth

against which these models can be assessed. This is because, for a fixed diffusion environment

and given sufficient computation time, the output converges to the true solution of the Bloch-

Torrey equation for the DW-MRI signal. Two steps are required: constructing a 3D geometry,

and running the actual simulation of restricted Brownian motion and magnetic-field phase

encoding.
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Chapter 1. Theoretical background

1.3.1 Diffusion environment

Constructing realistic numerical phantoms of the tissue must strike the right balance between

realism and computational complexity.

The simplest and most lightweight approach is to consider idealized tissue geometries such

as cylinders for axons (Hall and Alexander, 2009; Rensonnet et al., 2018) or spheres for glia,

possibly with mathematically-expressed refinements to simulate undulation or dispersion

(Budde and Frank, 2010; Nilsson et al., 2010) and cellular processes such as spines and

leaflets (Palombo et al., 2017) for instance.

For more complex tissue configurations, a spatial discretization stage is usually required. Tra-

ditionally, triangular meshes have been used to discretize 3D continuous environments (Hall

and Alexander, 2009) and relatively complex tissue geometries have been replicated from

electron microscopopy data (Panagiotaki et al., 2010; Xu et al., 2014). For more efficient GPU

implementations, a few authors have considered simplified binary maps to label the intra- or

extra-axonal space (Waudby and Christodoulou, 2011).

In recent years, a number of methods have been proposed to faithfully represent complex

white matter configurations using just a limited number of parameters in a generative model

based on idealized initial shapes (Palombo et al., 2016, 2019; Ginsburger et al., 2018). An

example of a realistic white matter voxel is shown in Figure 1.7. In an approach based on the

natural process of axon growth, high values of axon density and orientation dispersion have

been obtained simultaneously (Callaghan et al., 2019). Voxel configurations with exquisite

biological realism have also been achieved by threading small spheres together using an

efficient GPU implementation (Ginsburger et al., 2019a).

Besides white matter, the modeling of gray matter tissues has also been progressing. As illus-

trated in Figure 1.8, generative models of complex soma and dendrite structures representing

various types of cortical neurons and glial cells are becoming available (Palombo et al., 2019).

Recent experiments have suggested that ellipsoids were satisfactory representations of glia

while neurons could be modeled by spheres, which would decrease the overall complexity of

generating synthetic environments (Gilani et al., 2019).
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1.3. Monte Carlo simulations of the diffusion

Figure 1.7: Recent realistic white matter substrates for Monte Carlo simulations. In Gins-
burger et al. (2018), building from (1) simple straight cylinders representing intersecting
populations of axons, additional features such as (2) dispersion, (3) tortuosity, (4) myelin
sheaths, (5) Ranvier nodes and (6) beadings are gradually added.
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Chapter 1. Theoretical background

Figure 1.8: Recent realistic gray matter substrates for Monte Carlo simulations. Examples
of three types of brain neurons along with their dendrograms synthetized with the generative
parametric model presented in Palombo et al. (2019).

.

1.3.2 Spin dynamics

Monte Carlo simulations are directly based on the microscopic description of DW-MRI signals

presented in Section 1.1.2.1 and mainly consist in generating the trajectories of Nspin spins or

random walkers, initially uniformly distributed across the geometry, by means of a discrete-

time random walk. Considering a partition of the time between the initial RF excitation pulse

and the echo time TE into Nstep intervals
{
0=t0, t1, . . . , tNstep−1, tNstep =T E

}
, then from a random

initial position r0 = r(t0) in the domainΩ, each spin’s trajectory is updated as

r(ts+1) = r(ts)+∆rs , (1.24)

where each step ∆rs is of random orientation and of fixed length

Lstep =
p

2nDδt , (1.25)

with n the spatial dimension of the diffusion environment and δt = ts−ts−1, for s = 1, . . . , Nstep.

As the steps sum up, the central limit theorem ensures that the distribution of all n components

of the position r(t ) at time t will converge to a Gaussian distribution of mean zero and variance

2Dt as expected from Brownian motion in the absence of reflection. Spins that encounter

a barrier during one such step are elastically reflected if the membranes are considered

perfectly impermeable, as illustrated in Figure 1.9. Membrane permeability is more tedious to
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1.3. Monte Carlo simulations of the diffusion

Figure 1.9: Spins that encounter a barrier during a step update ∆r are elastically reflected and
take an effective step ∆r′. Several consecutive reflections may occur. Figure adapted from Hall
and Alexander (2009).

implement and requires the introduction of carefully-selected crossing probabilities (Regan

and Kuchel, 2000; Fieremans et al., 2010; Nilsson et al., 2010; Lee et al., 2013). Non-elastic

reflections can also be considered and might lead to similar results more efficiently (Xing et al.,

2013).

The accumulated phase φl of each spin l is computed independently from the generation of

the trajectory by computing the time integral (1.5) via an appropriate numerical method such

as a rectangle quadrature

φl = γ ·δt ·
Nstep∑
s=1

g(ts) · rl (ts), (1.26)

where g(t ) is the profile of the external magnetic-field gradient, making the method suitable

for any of the diffusion sequences presented in Section 1.1.2. The final signal attenuation E is

computed as the sample mean of e iφ as in Eq. (1.7)

E(g;Ω) = 1

Nspin

Nspin∑
l=1

e iφl .

Computing only the real part or the modulus of the signal is usually sufficient since it has been

shown that DW-MRI signals are real and positive under relatively mild assumptions on the

tissue microstructure, usually met in our experiments (Wedeen et al., 2005).

The computation time is dominated by the number of spins Nspin, which must be large enough

to reduce statistical variance and by the number of time steps Nstep, which should be large

enough to avoid numerical bias. The choice of these two simulation parameters is not trivial

and is often guided by practical heuristics in the absence of known groundtruth (Hall and

Alexander, 2009; Rensonnet et al., 2015; Fieremans and Lee, 2018).
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2 Validating the superposition approxi-
mation for crossing fascicles

This Chapter was based on a post-print version of Rensonnet et al. (2018). The introduction was

updated with a reference to Schilling et al. (2017) suggesting that complex interweaving is the

most likely pattern of fascicle crossings. Additional acquisition protocols were considered in

Appendix A.3, with results briefly discussed in Section 2.3.1, strengthening a point made in the

discussion (Section 2.4) about the validity of the superposition at higher b-values.

2.1 Introduction

A particularly challenging task in brain microstructure mapping based on diffusion-weighted

magnetic resonance imaging (DW-MRI) is to estimate microstructural properties in regions of

the white matter where multiple fascicles of axons intersect. In (Jeurissen et al., 2013), authors

have reported that between 63% and 90% of voxels in the white matter at a resolution of

2.4mm3 contain more than one fascicle, suggesting that regions of multiple fascicles actually

make up the majority of the white matter voxels at common clinical resolutions. Recent

evidence suggests that the prevalence of crossing-fascicle voxels might actually increase with

smaller voxel sizes (Schilling et al., 2017). At the scale of a voxel, there can in theory be two

types of crossing configurations: either each fascicle occupies its own portion of the voxel with

axons that do not intermingle with the axons of the other fascicles; or axons from each fascicle

abandon their tight, bundle-like organization and instead adopt an interwoven pattern at the

intersection, evolving alongside axons from other fascicles (Axer et al., 2000; Schilling et al.,

2017).

Most models of the microstructure rely on the superposition approximation, i.e. they consider

that the signal arising from crossing fascicles is equal to the sum of the signals arising from

each fascicle independently. This assumption is used in multi-tensor models (Tuch et al., 2002;

Scherrer and Warfield, 2012) and their extensions to distributions of tensors (Scherrer et al.,

2016, 2017), in models assuming various restricted water compartments with different direc-

tions (Assaf et al., 2004; Zhang et al., 2011), in dictionary-based methods (Ramirez-Manzanares

et al., 2007; Auría et al., 2015a; Aranda et al., 2015) and also implicitely in spherical deconvolu-

23



Chapter 2. Validating the superposition approximation for crossing fascicles

tion frameworks (Tournier et al., 2004, 2007; Jeurissen et al., 2014; Canales-Rodríguez et al.,

2015; Canales-Rodríguez et al., 2019). This hypothesis is expected to hold reasonably well

when fascicles maintain their bundle-like structure and cross along separate pathways in the

voxel, even though the interface between the two fascicles is ignored by the approximation.

Indeed in a clinical voxel of a few cubic millimeters the diffusion of a vast majority of water

molecules will not be affected by this micrometer-scale interface. In contrast the validity of

the superposition approximation can be theoretically challenged in voxels where fascicles

intersect in interwoven patterns since the diffusion of water molecules in the interstitium, or

extracellular space, is then simultaneously hindered by all fascicles. Whether the approxima-

tion is appropriate and allows microstructural parameters of interest to be reliably estimated

in such configurations with common acquisition sequences remains an open question that

has so far received little attention in the literature and which we investigate numerically in

this paper.

In this work, we assume that the groundtruth is a voxel in which fascicles intersect in inter-

woven planes, thus sharing the interstitium, and we evaluate the quality of the superposition

approximation for fixed, clinically realistic acquisition protocols. Relying on simple yet repre-

sentative two-compartment phantoms of the microstructure, we first examine the similarity

between the DW-MRI signals arising from the groundtruth configuration and the signals

arising from the superposition approximation at fixed, matching microstructural parameters.

We then conduct a series of experiments to investigate whether microstructural parameters of

interwoven fascicles can be accurately estimated from an approximate model consisting in

the superposition of independent fascicles. All the DW-MRI signals are obtained using Monte

Carlo simulations of the random walk of water molecules, which leverage the well-known

physics of diffusion processes.

2.2 Methods

This section presents the synthetic phantoms used in this study, a formal definition of the

superposition approximation and the Monte Carlo framework for the simulation of DW-MRI

signals. It then details how we studied the impact of the superposition approximation on the

DW-MRI signal at fixed microstructural configuration. Lastly, it describes the estimation ex-

periments that were conducted to examine the impact of using the approximation to estimate

microstructural parameters of interwoven fascicles.

2.2.1 Synthetic Phantoms of the Microstructure

Single fascicles. We modeled single fascicles of axons by an infinite array of hexagonally-

packed straight, parallel and infinitely-long cylinders. A single fascicle is thus characterized

by an orientation u, a unique cylinder radius r interpreted as an axonal radius index and by

a cylinder packing density f interpreted as an axonal density index (Alexander et al., 2010),

which we denote by the quantity Ωsing = (
u,r, f

)
. The DW-MRI signal arising from such a
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Figure 2.1: Synthetic phantom of interwoven fascicles of axons. The total environment is
made up of a periodic arrangement where one layer of cylinders with radius r1 and inter-
cylinder spacing e1 from Population 1 is followed by one layer of cylinders with radius r2 and
inter-cylinder spacing e2 from Population 2, a distance el from the first layer. The green and
orange shaded areas show how the water molecules of the interstitium are distributed among
the populations, allowing us to define the respective fractions of occupancy ν1 and ν2 and of
the population-specific cylinder packing densities f1 and f2.

configuration for an acquisition sequence of general parameters p is denoted by Ssing
(
Ωsing;p

)
and forms the basis of the superposition approximation investigated in this work.

Interwoven fascicles. Interwoven fascicles were modeled by two populations of straight, par-

allel and infinitely-long cylinders of respective orientations u1 and u2, crossing in interleaved

layers one cylinder thick with inter-layer spacing el in a pattern repeating periodically, as

depicted in Figure 2.1. All cylinders within Population 1 (Population 2) have the same radius r1

(r2), interpreted as an axonal radius index, with inter-cylinder spacing e1 (e2). In practice it is

often more intuitive to report the populations’ intrinsic packing densities f1 and f2, interpreted

as axonal density indices, and the populations’ volume fractions of occupancy ν1 and ν2 rather

than the spacing parameters. However, the interstitium is shared by both fascicles and any

separation thereof as well as any definition of the quantities f1, f2, ν1 and ν2 is thus arbitrary.

In the remainder of this work, we defined them based on a parceling of the extracellular space

at a plane located a distance el /2 from both populations of axons (see Figure 2.1).

In general an interwoven-fascicle environment is thus completely characterized by the set of

parametersΩintw = (
u1,r1, f1,u2,r2, f2,ν1

)
. Related useful quantities are readily obtained from

Ωintw such as ν2 = 1−ν1, the crossing angle α as the smallest angle between u1 and u2 in the

range [0,90◦] and the global axonal density index ftot = ν1 f1+ν2 f2. The DW-MRI signal arising

from such a configuration for an acquisition sequence of general parameters p is denoted

by Sintw
(
Ωintw;p

)
and was considered as the reference, groundtruth signal throughout this

study. The impact of adding more cylinders to each population’s layer in the interwoven

configuration was studied in Appendix A.1 (Figures A.1 and A.2). The single-cylinder layers

selected for our analyses were shown to least resemble the approximate superposed fascicles,

thereby corresponding to a “worst-case” situation.
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2.2.2 Definition of the Superposition Approximation

Given an acquisition sequence of parameters p, we defined the superposition signal Sappr
(
Ωappr;p

)
,

supposed to approximate the groundtruth Sintw
(
Ωintw;p

)
, as the linear combination

Sappr
(
Ωappr;p

)= ν1Ssing
(
u1,r1, f1;p

)+ν2Ssing
(
u2,r2, f2;p

)
, (2.1)

where the weights ν1 and ν2 are interpreted as the fractions of the total volume occupied by

each fascicle, satisfying ν1 +ν2 = 1. Similarly to fascicles crossing in interleaved planes, the

global axonal density index is obtained as ftot = ν1 f1 +ν2 f2.

An approximate interwoven-fascicle environment is fully characterized by the set of parame-

tersΩappr =
(
u1,r1, f1,u2,r2, f2,ν1

)
which all have a straightforward equivalent parameter in

Ωintw so that both parameter sets can easily be compared.

2.2.3 Signal Simulations

We relied on Monte Carlo simulations of the random walk of water molecules to obtain DW-

MRI signals for the single and interwoven-fascicle configurations described above in order for

our study to be as model-independent as possible and because no exact generative formulas

exist for interwoven fascicles of axons.

Specifically, we followed the method described in (Rensonnet et al., 2015) where the ex-

act intracellular signal Sin is obtained by the Multiple Correlation Function (MCF) formal-

ism (Grebenkov, 2008) and the extracellular signal Sex is computed from fixed-step Monte

Carlo simulations of the random diffusive motion of water molecules in the extracellular

space with perfectly elastic reflections at the membranes as described in (Hall and Alexander,

2009). Compared to Monte Carlo simulations performed in both the intra and extracellular

compartments, this provides significant gains in precision at fixed computation time and

equivalently, significant computational gains for a set precision (Rensonnet et al., 2015).

We used the same intrinsic diffusivity D in the intra and extracellular compartments and fixed

its value to D = 2.0×10−9 m2 s−1, in agreement with values used in similar Monte Carlo settings

(Hall and Alexander, 2009; Nilsson et al., 2009; Panagiotaki et al., 2010). As noted in (Fieremans

et al., 2010), we stress that all the results obtained in this study can be obtained for another

value of D by appropriately rescaling the spatial lengths L and magnetic gradient intensities

G , since the diffusion signal is fully characterized by the two dimensionless parameters p =
DT /L2 and q = γGLT (Grebenkov, 2008), where γ is the gyromagnetic ratio of protons and T

the characteristic time scale. All the simulations for the extracellular signal of single fascicles

were performed using the Camino Diffusion MRI Toolkit (Hall and Alexander, 2009). The

simulations in the extracellular space of interwoven fascicles utilized a new in-house software

written in C/C++ and extending the capabilities of the Camino Toolkit to all the interwoven-

fascicle configurations considered in this study. Care was taken to ensure that the new code

reproduced the results of Camino on the simpler configurations handled by both softwares.
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Throughout this study we focused on multi-shell high angular resolution diffusion-weighted

imaging (HARDI) protocols (Tuch et al., 2002) based on the widely used pulsed-gradient spin-

echo (PGSE) acquisition sequence. Table 2.1 summarizes the two clinically-realistic protocols

that we used in our experiments: the 4-shell, 4-diffusion-times human protocol used with

the ActiveAx model (Alexander et al., 2010) and the extended 4-shell protocol proposed with

the NODDI estimation framework (Zhang et al., 2012), which we refer to as Protocols A and B,

respectively. For completeness, additional HARDI shells spanning a larger range of acquisition

parameters were considered in Appendix A.3.

It is worth noting that, given the way Ssing and Sintw were simulated in the absence of mem-

brane permeability, the intracellular signal of the superposition approximation is by definition

exactly identical to that of fascicles crossing in interwoven planes when the radius indices

and the fascicles’ orientations coincide. In our models, the discrepancies between the refer-

ence interwoven-fascicle signals and the approximate signals at matching microstructural

parameters therefore solely arise from the extracellular signal contribution. The intra- and

extracellular contributions are not independent however: as an example, changing the radius

index at fixed inter-cylinder spacing directly impacts the intracellular signal but also affects

the extracellular geometry and the global axonal density, thereby modifying the extracellular

signal and the relative weight of each compartment’s contribution. This impact is non-trivial

and depends on whether or not the superposition approximation is used.

Table 2.1: Multi-shell acquisition protocols. The ĝ column contains the number of gra-
dient directions in each shell (S) characterized by a gradient intensity G , duration δ and
diffusion time ∆ separating the onsets of the two gradient lobes, combining into a b-value
b := (

γGδ
)2

(∆−δ/3).

Acquisition
protocol

ĝ G [mT m−1] δ [ms] ∆ [ms] b [smm−2]

Protocol A
(ActiveAx (Alexander et al., 2010))

S1 : 90
S2 : 90
S3 : 90
S4 : 90

57
60
46
58

5
13
15
12

87
20
77
80

496
682

2453
2635

Protocol B
(NODDI (Zhang et al., 2012))

S1 : 30
S2 : 30
S3 : 60
S4 : 60

31.9
37.8
53.4
63.8

17.5 37.8

711
1000
2000
2855

2.2.4 Impact of the Approximation on the DW-MRI Signal

This section aims at identifying the order of magnitude of the differences between the interwoven-

fascicle signal Sintw and the approximate signal Sappr when the reference parameters Ωintw

and the parameters used in the approximation Ωappr match. Without loss of generality, we

compared DW-MRI signals of configurations featuring fascicles with identical microstructural

properties, i.e. we fixed r1 = r2 = r , f1 = f2 = f and ν1 = ν2 = 0.5.
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Chapter 2. Validating the superposition approximation for crossing fascicles

Specifically, we considered 24 microstructural configurations resulting from the combination

of 6 radius indices r = [0.5,1,2,3,4,5]µm and 4 crossing angles α= [22.5◦,45◦,67.5◦,90◦] with

density index f = 0.5 and we computed the root-mean-square (RMS) signal metric

∥∥Sappr
(
r, f ,α;P

)−Sintw
(
r, f ,α;P

)∥∥
RMS =

1p
M

(
M∑

i=1

(
Sappr

(
r, f ,α;pi

)−Sintw(r, f ,α;pi )
)2

)1/2

,

over the M sequences of each HARDI shell P from Protocols A and B (Table 2.1).

2.2.5 Impact of the Approximation on Estimated Microstructural Parameters

The previous section seeks the order of magnitude characterizing the differences in DW-

MRI signal between reference interwoven fascicles and the superposition approximation

but it does not indicate how these signal discrepancies relate to underlying microstructural

differences. In this section, we investigated whether we can accurately predict microstructural

properties of interest in interwoven fascicles assuming only an approximate model made

of the superposition of independent single fascicles, despite the signal differences incurred.

Mathematically, for given reference microstructural propertiesΩintw and a fixed acquisition

protocol P , this consisted in solving the following microstructural estimation problem

Ω̂appr = argmin
Ωappr

d
(
Sintw (Ωintw;P ) ;Sappr

(
Ωappr;P

))
, (2.2)

where d(·; ·) is a metric quantifying the discrepancy between the DW-MRI signals. We then

examined the microstructural similarity between the reference and the estimated parameters

Ω̂appr ≈Ωintw as an indicator of the quality of the superposition approximation.

Experiments I and II described below consisted in solving Problem (2.2) within varying subsets

of the crossing-fascicle parameter space Ωcross, with and without acquisition noise. Exper-

iment III aimed at comparing the estimation errors due to the use of the superposition

approximation to the errors caused by the presence of noise alone.

In our signal simulation framework, the effects of all parameters but ν1 and ν2 on the ap-

proximated signal Sappr are captured by Monte Carlo simulations, which lack a closed-form

expression and prevent us from solving Problem (2.2) continuously. In Experiments I through

III, we therefore resorted to a discrete, exhaustive search as illustrated in Figure 2.2, using

a collection Dsing of 600 pre-simulated single-fascicle signals combining 20 radius indices

r from 0.5µm to 10µm by increments of 0.5µm and 30 density indices f from 0.32 to 0.90

by steps of 0.02 along the fixed direction u1. Rotated-fascicle signals Ssing (u2) = Rα

[
Ssing

]
along any direction u2 forming an angle α with u1 could then be obtained by interpolating the

pre-computed signals on the inversely-rotated protocol R−α [P ], which we did for 119 values

of α ranging from 1.5◦ to 178.5◦ by increments of 1.5◦.

The use of Monte Carlo signals and this estimation strategy are however not representative of
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most current microstructural estimation frameworks in which simplified closed-form formulas

are fit to DW-MRI measurements using non-linear optimization, which is subject to pitfalls

including the presence of multiple local minima (Jelescu et al., 2016) and sensitivity to the

choice of an objective function or the fitting strategy (Sepehrband et al., 2016; Harms et al.,

2017). In Experiment IV detailed below, we therefore studied the impact of the superposition

approximation on the microstructural estimates of the DIAMOND model (Scherrer et al., 2016)

which can handle multiple-fascicle configurations.

2.2.5.1 Experiment I: impact of the approximation on identical fascicles

We considered identical populations of axons both in the reference configurationsΩintw and

in the configurationsΩappr over which the minimization in (2.2) was performed, which sim-

plified the analysis while still providing general trends about the impact of the superposition

approximation on the three main microstructural features characterizing crossing fascicles:

the radius index, the density index and the crossing angle. This constraint was relaxed in

Experiment II.

We selected the 24 reference interwoven-fascicle environments Ωintw = (
u1,rref, fref,u2 =

Rα [u1] ,rref, fref,ν1 = 0.5
)

described in Section 2.2.4 and corrupted each interwoven-fascicle

signal Sintw with Rician noise as S̃intw =
√(

Sintw
(
Ωintw;pi

)+εI ,i
)2 +ε2

Q,i , where εI ,i and εQ,i

are independent, Gaussian variables of zero mean and variance σ2, for every acquisition i in

the protocol, respectively modeling the acquisition noise in the in-phase (I) and quadrature

(Q) channels. Additionally, 4 interwoven-fascicle configurations with larger radius index val-

ues r = [6,7,8,9]µm were also investigated at fixed density index f = 0.5 and crossing angle

α= 67.5◦.

Problem (2.2) therefore becomes, for a fixed acquisition protocol P ,

(r̂ , f̂ , α̂) =

argmin
r, f ,α

d

S̃intw
(
rref, fref,αref;P

)
;0.5 ·Ssing

(
u1,r, f ;P

)+0.5 ·Ssing
(
Rα [u1] ,r, f ;P

)︸ ︷︷ ︸
Sappr(r, f ,α;P )

 ,

where the metric d is the negative log-likelihood of the Rician distribution. The problem was

solved by exhaustive search over the 600×191 = 114600 pre-computed signals (Figure 2.2),

where u1 and the plane in which u1 is rotated were assumed known. We defined the signal-

to-noise ratio (SNR) as 1/σ and recorded the mean absolute error (MAE) on the estimated

radius index |r̂ − rref|, density index
∣∣ f̂ − fref

∣∣ and crossing angle |α̂−αref| over Nreps = 100

noise repetitions at each SNR level. The noise-free estimates corresponding to SNR → ∞
were computed using the RMS metric to account for the asymptotic behavior of the Rician

distribution (Gudbjartsson and Patz, 1995).
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Figure 2.2: Performing microstructural estimation with the superposition approximation
using a discrete combinatorial search over pre-computed single-fascicle signals. Solving
Problem (2.2) is done by exhaustive search over the parameters r1, f1,r2, f2,α with constraints
imposed at each experiment to reduce the scope of the exhaustive search. At fixed values of
the latter parameters, continuous estimation over ν1 and ν2 is possible because they are the
only parameters with an explicit, continuous contribution to the approximate signal Sappr via
Ssing, as noted from Eq. (2.1). Note that u1 is assumed known throughout as well as the plane
in which u2 lies.
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2.2.5.2 Experiment II: impact of the approximation on dissimilar fascicles

In this experiment we relaxed the constraint that the crossing fascicles should be identical. To

keep Problem (2.2) tractable, we first assumed in Experiment IIa that the crossing angle α was

known, leaving 5 parameters to be estimated: r1, f1,r2, f2,ν1. In order to more fairly compare

the results with Experiment I where the volume fractions were fixed, we then simplified the

estimation in Experiment IIb by assuming that ν1 and ν2 were known as well.

In both cases, we conducted 8 noiseless microstructural estimation experiments on 8 reference

interwoven-fascicle configurationsΩintw in which the crossing angle was fixed toα= 67.5◦, the

first population of axons had fixed parameters r1 = 1.0µm and f1 = 0.6 and the microstructural

properties of the second population were varied. In the first 4 configurations, we set f2 =
f1 = 0.6 and let r2 take on values in [0.5,1.0,1.5,2.0]µm; in the last 4 configurations we set

r2 = r1 = 1.0µm and let f2 vary in [0.4,0.5,0.6,0.7]. The parameters e1,e2 and el were selected

to ensure ftot = ( f1 + f2)/2 in all 8 reference configurations.

Experiment IIa. Problem (2.2) was solved by performing continuous optimization over the

volume fractions for each possible combination of the 600 pre-computed single-fascicle

configurations Dsing (k) := Ssing
(
u1,rk , fk

)
with their rotated counterparts Rα

[
Dsing (l )

]
,

(k̂, l̂ ) = argmin
1≤k,l≤600

min
x1≥0

∥∥x1 ·Dsing (k)+ (1−x1) ·Rα

[
Dsing (l )

]︸ ︷︷ ︸
Sappr

−Sintw (Ωintw)
∥∥2

2 , (2.3)

where each of the 600×600 = 360000 sub-problems admits a unique solution obtained with

the MATLAB (MathWorks, MA, U.S.A.) routine lsqlin. We took ν1 as the minimizer x̂1 of

the optimal sub-problem (k̂, l̂ ) giving the lowest objective value and estimated r1, f1,r2, f2

as the microstructural properties rk̂ , fk̂ ,r l̂ , f l̂ of the corresponding optimal single-fascicle

configurations Dsing(k̂) and Rα

[
Dsing(l̂ )

]
.

Experiment IIb. With ν1 fixed, Eq. (2.3) becomes

(k̂, l̂ ) = argmin
1≤k,l≤600

∥∥ν1Dsing (k)+ (1−ν1)Rα

[
Dsing (l )

]︸ ︷︷ ︸
Sappr

−Sintw (Ωintw)
∥∥2

2, (2.4)

which was simply solved by exhaustive search over the 600×600 combinations of pre-computed

single-fascicle configurations (see Figure 2.2).

2.2.5.3 Experiment III: impact of the approximation with noise compared to the impact

of noise alone

Experiment I assessed the combined impact of the acquisition noise and of the “approximation

noise” on the quality of the microstructural estimates. In this experiment we isolated the
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Chapter 2. Validating the superposition approximation for crossing fascicles

impact of acquisition noise alone by performing a similar estimation but using the true model

of interwoven fascicles for the estimation instead of the approximate model.

We focused on one particular reference interwoven-fascicle configuration with identical pop-

ulations that led to a non-zero asymptotic error on at least one of the parameters r, f ,α in

Experiment I and we solved

(r̂ , f̂ , α̂) = argmin
r, f ,α

d
(
S̃intw

(
rref, fref,αref;P

)
;Sintw

(
r, f ,α;P

))
, (2.5)

where d is the negative log-likelihood of the Rician distribution and S̃intw is the reference

interwoven-fascicle signal corrupted by noise. We compared the microstructural estimates

obtained here to those obtained in Experiment I with the superposition approximation.

Similarly to the previous experiments, solving Problem (2.5) required a discrete, exhaustive

search in the space (r, f ,α). Pre-simulating the candidate signals is more computationally

demanding than when using the superposition approximation because every new value of

crossing angle α requires a complete new signal simulation. For the density index f and

the crossing angle α, the same resolutions of 0.02 and 1.5◦ were kept, the ranges spanned

by the exhaustive search were centered around the reference values fref and αref and their

half-widths were selected to be slightly larger than the worst MAEs observed in Experiment

I over all SNR values. For the radius index r we considered candidate values in the range

[0.5µm,10µm] every 0.25µm for |r −rref| ≤ 0.5µm, every 0.50µm for 1.0µm ≤ |r −rref| ≤ 4.0µm

and every 1.0µm elsewhere.

2.2.5.4 Experiment IV: impact of the approximation on a closed-form model of the mi-

crostructure

We studied the impact of the superposition approximation on the parameters of the DIAMOND

model (Scherrer et al., 2016) which represents the 3D-diffusivity of each voxel compartment

j (e.g., a fascicle of axons) with a peak-shaped statistical distribution of diffusion tensors

parameterized by a compartment heterogeneity index cHEI j and a mean tensor D0, j . The

contribution of compartment j to the total signal is weighted by an apparent volume fraction

ν j . Compartment-specific diffusion characteristics such as the axial and radial diffusivities

cAD j and cRD j are extracted from D0, j .

Specifically, the DIAMOND closed-form, continuous expression SDMD (ΩDMD;P ) relating the

DW-MRI signal SDMD to the microstructural parametersΩDMD for a given acquisition protocol

P was fitted to signals Sintw (Ωcros;P ) arising from reference interwoven configurationsΩcros

and to the signals Sappr (Ωcros;P ) arising from the superposition approximations of matching

microstructural parameters. We obtained the model estimates Ω̂DMD
(
Sappr

)
and Ω̂DMD (Sintw)
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by solving, for each of the 24 crossing-fascicle configurationsΩcros previously described,

Ω̂DMD
(
Sappr

)= argmin
ΩDMD

d
(
Sappr (Ωcros;P ) ;SDMD (ΩDMD;P )

)
,

Ω̂DMD (Sintw) = argmin
ΩDMD

d (Sintw (Ωcros;P ) ;SDMD (ΩDMD;P )) ,

where d is a corrected least-squares metric and where the non-linear minimization was

achieved with a customized BOBYQA algorithm (Scherrer et al., 2016). The impact of the

signal discrepancies caused by the approximation was assessed by comparing Ω̂DMD
(
Sappr

)
to

Ω̂DMD (Sintw) in all 24 cases for Protocols A and B.

The experiment was then repeated for the simpler NODDI model (Zhang et al., 2012), essen-

tially designed to describe a single population of axons and which does not incorporate an

explicit dependence on the axonal radius. More details are provided in Appendix A.4.2.

2.3 Results

This section first reports the observed DW-MRI signal differences between the reference inter-

woven fascicles and the superposition approximation at matching microstructural parameters.

It then provides the results of the four microstructural estimation experiments assessing the

impact of those signal differences on the underlying microstructural parameters.

2.3.1 Impact of the Approximation on the DW-MRI Signal

We found that the RMS difference between the approximate and groundtruth signal varied in

[0.0017,0.024] over the 8 considered acquisition shells and 24 microstructural configurations,

i.e. an order of magnitude comparable to the standard deviation of Gaussian noise in an MRI

acquisition channel with SNR in [1/0.024,1/0.0017] ≈ [42−603]. The detailed shell-per-shell

signal differences are available in Table A.1 in Appendix A.2. Figure 2.3 shows the DW-MRI

signals of the particular scenario that yielded the highest RMS difference as a function of

the direction of the applied magnetic gradient. The signal discrepancies seemed largest

for gradients perpendicular to u1 and u2 but this varied from shell to shell, as illustrated in

Figure A.3 in Appendix A.2. Little difference was found between the two protocols: the RMS

metric averaged over all 24 microstructural configurations was 6.4×10−3 for Protocol A and

6.3×10−3 for Protocol B. As discussed in Appendix A.3, signal discrepancies obtained with the

50 additional shells were very similar to those obtained with Protocols A and B.

Figure 2.4 shows those same DW-MRI signals as a function of the microstructural parameters

for a few selected acquisition sequences with magnetic gradient applied in the plane defined

by the orientations of the two fascicles. It suggests that DW-MRI signals (both the reference

and the approximation) exhibit heterogeneous degrees of sensitivity to the underlying mi-

crostructural parameters. In particular, the signals hardly varied at all in the range of smaller
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Chapter 2. Validating the superposition approximation for crossing fascicles

Figure 2.3: DW-MRI signals from the superposition approximation closely match signals
from interwoven fascicles. Normalized DW-MRI signal attenuation ((a)-(b)) and differences
((c)-(d)) for the microstructural configuration and the HARDI shell that led to the highest
RMS signal difference (RMS=2.4×10−2), plotted on the 3D sphere as a function of the gradient
direction ĝ. Here the absolute (c) and the relative (d) differences were highest around the
direction normal to the plane defined by the fascicles’ orientations u1 and u2, where DW-MRI
signals were highest too.

radius indices, which is a well-known limitation of the PGSE sequence (Clayden et al., 2015;

Sepehrband et al., 2016; Drobnjak et al., 2016).

2.3.2 Impact of the Approximation on Estimated Microstructural Parameters

2.3.2.1 Experiment I: impact of the approximation on identical fascicles

Figure 2.5 shows the results of 6 of the 24 experiments with small reference radius indices,

corresponding to the reference crossing angle αref = 67.5◦. The results for the other 3 angles

were qualitatively similar and are provided in Figures A.5, A.6 and A.7 in Appendix A.4.1.

The superposition approximation led to a fast convergence with increasing SNR in the esti-
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(a) (b) (c)

Figure 2.4: DW-MRI signals from the superposition approximation closely match signals
from interwoven fascicles but exhibit varying degrees of sensitivity to microstructural pa-
rameters. Normalized DW-MRI signal attenuation of the reference interwoven-fascicle (con-
tinuous lines) and the superposition approximation (dashed lines) for one particular sequence
extracted from each of the 8 HARDI shells reported in Table 2.1 with gradient direction ĝ
selected in the plane defined by u1 and u2, parallel (a-b) or perpendicular (c) to u1. Units of b
are in s mm−2, G in mT m−1 and ∆ and δ in ms. We observed: (a) low signal sensitivity at low
radius values, (b) generally high sensitivity across the whole range of density values and (c)
generally high sensitivity across the whole range of crossing angle values.

mation of the crossing angle as the MAE over all 24 experiments consistently remained below

4.8◦ for all SNR ≥ 5 with Protocol A and below 7.1◦ with Protocol B, showing no sensitivity

to the reference radius index. Given the resolution used in the discrete minimization, we

deduced from the apparently zero asymptotic errors that the errors due to the superposition

approximation in the absence of noise (SNR →∞) were lower than 1.5◦.

The convergence was fast as well for the density index as the worst-case MAE over all 24 refer-

ence configurations at SNR = 10 was 0.042 for Protocol A and 0.070 for Protocol B. Asymptotic

errors attributable to the superposition approximation could be upper-bounded by 0.08 for

reference configurations verifying rref ≤ 1µm and by 0.02 elsewhere.

The MAE on the estimated radius index was slower to level off to the asymptotic, noise-

free errors. They were slightly larger for Protocol B at smaller radius indices, where they

reached between 3.5µm and 4.5µm. The non-monotonicity of the red curves in Figure 2.5e-f

corresponding to a reference radius index r = 0.5µm is due to both the absence of radius

values smaller than 0.5µm in the exhaustive minimization procedure (since the approximated

signal hardly varies in that small-radius range) and to the asymptotic bias in the estimation,

which artificially improved the estimation error of that parameter at low SNR values.

The variability of the microstructural estimates over the noise repetitions can help reveal the

SNR regimes in which the errors due to the noise dominate the errors due to the use of the

superposition approximation: a large variability compared to the asymptotic, noise-free error

suggests that noise is the predominant source of error. The radius index estimates obtained

with the superposition approximation using Protocol A for instance exhibited an interquartile

range (IQR), defined as the difference between the 75th and the 25th percentile, that still

35



Chapter 2. Validating the superposition approximation for crossing fascicles

represented 50% or more of the asymptotic error in 17 of the 18 configurations yielding a

non-zero asymptotic error at SNR=50, before dropping to 7 configurations at SNR=100 and 2

at SNR=200. This suggests a prevalence of noise-related errors for SNR levels up to about 50,

as illustrated in Figure 2.5g-h for one particular experiment.

The results of the 4 configurations with larger radius index values are provided in Figure A.8

in Appendix A.4.1. The estimation of the crossing angle exhibited trends similar to those

obtained with the smaller reference radii except for asymptotic, noise-free errors appearing

with Protocol B. The estimation of the density index and the radius index generally benefited

from larger reference radii.

2.3.2.2 Experiment II: impact of the approximation on dissimilar fascicles

The results of all 8 estimation experiments on dissimilar populations of axons are presented in

Table 2.2 with (Experiment IIa, in blue) and without (Experiment IIb, in green) the estimation

of the volume fractions, in the absence of noise.

Experiment IIa. The errors caused by the approximation without acquisition noise suggest

an inter-dependence between the estimation of the volume fraction ν and density index f of

a fascicle: when ν was overestimated, f was underestimated and conversely. This conflating

effect seemed exacerbated at small radius index values but slightly less pronounced when

the two fascicles occupied similar fractions of the voxel: with Protocol A for instance, the

approximation yielded a maximum error on the estimated density index between 0.18 and 0.22

with the smallest radius indices while the largest error over the last 4 cases lay between 0.12 and

0.16 given the 0.02 resolution used in the discrete optimization. In general, the superposition

approximation yielded microstructural errors larger than those observed without noise in

Experiment I where the volume fractions were equal and known.

Experiment IIb. Fixing the volume fractions ν of the fascicles a priori considerably improved

the quality of the microstructural estimation using the superposition approximation, contain-

ing the error on the estimated density index within 0.04 given our 0.02 discrete resolution, in

agreement with the noise-free results of Experiment I.

2.3.2.3 Experiment III: impact of the approximation with noise compared to the impact

of noise alone

Figure 2.6 presents the results of the microstructural estimation of the reference interwoven-

fascicle configuration characterized by rref = 0.5µm, fref = 0.5,αref = 45◦. The exhaustive

search over the parameters of the groundtruth interwoven fascicles used 5202 pre-simulated

signals and provided an estimate of the errors due to noise alone (green) to be compared to

the results from Experiment I obtained using the superposition approximation (blue).
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Figure 2.5: The superposition approximation shows fast convergence with increasing SNR
and small asymptotic errors for the estimation of the crossing angle and the density index
but a slower convergence with larger asymptotic errors for the radius index. Mean absolute
error (continuous lines) and standard errors (shaded areas) obtained with Protocol A (left)
and B (right) on (a)-(b) the crossing angle α, (c)-(d) the density index f , (e)-(f) the radius
index r . The dashed lines are the asymptotic, noise-free errors slightly offset around their true
values for visualization purposes. Sub-figures (g) and (h) display box-plots of the radius index
estimates corresponding to the blue curve in sub-figures (e)-(f), where large interquartile
ranges relative to the asymptotic bias up to SNR=50 suggest that the acquisition noise is the
predominant source of error rather than the use of the superposition approximation.
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Table 2.2: Microstructural estimation from the superposition approximation on dissimi-
lar fascicles in the absence of noise. The values in black are the reference values of the
interwoven-fascicle configurations. The errors in Experiment IIa (in blue, obtained with the
discrete-continuous optimization scheme (2.3)) are slightly larger than the asymptotic, noise-
free errors observed in Experiment I. In Experiment IIb (green, with the volume fractions of
the fascicles ν1 and ν2 known a priori following Eq. (2.4)), the estimated parameters are more
in line with the asymptotic estimates of Experiment I, where the populations of axons had
identical properties.

Protocol A
r1

[
µm

]
f1 r2

[
µm

]
f2 ν1 ν2

Ref IIa IIb Ref IIa IIb Ref IIa IIb Ref IIa IIb Ref IIa IIb Ref IIa IIb

1.0 2.5 1.0 0.60 0.52 0.60 0.5 1.5 3.0 0.60 0.80 0.58 0.65 0.74 (0.65) 0.35 0.26 (0.35)
1.0 2.0 0.5 0.60 0.52 0.60 1.0 0.5 1.0 0.60 0.70 0.60 0.50 0.57 (0.50) 0.50 0.43 (0.50)
1.0 0.5 1.0 0.60 0.70 0.58 1.5 2.0 1.0 0.60 0.54 0.60 0.41 0.36 (0.41) 0.59 0.64 (0.59)
1.0 0.5 3.0 0.60 0.70 0.58 2.0 2.0 1.0 0.60 0.54 0.60 0.35 0.29 (0.35) 0.65 0.71 (0.65)

1.0 1.0 1.0 0.60 0.74 0.58 1.0 1.5 0.5 0.40 0.34 0.40 0.50 0.41 (0.50) 0.50 0.59 (0.50)
1.0 0.5 1.0 0.60 0.70 0.58 1.0 3.0 0.5 0.50 0.44 0.50 0.50 0.43 (0.50) 0.50 0.57 (0.50)
1.0 2.0 0.5 0.60 0.52 0.60 1.0 0.5 1.0 0.60 0.70 0.60 0.50 0.57 (0.50) 0.50 0.43 (0.50)
1.0 2.5 1.0 0.60 0.54 0.60 1.0 0.5 0.5 0.70 0.80 0.70 0.50 0.56 (0.50) 0.50 0.44 (0.50)

Protocol B
r1

[
µm

]
f1 r2

[
µm

]
f2 ν1 ν2

Ref IIa IIb Ref IIa IIb Ref IIa IIb Ref IIa IIb Ref IIa IIb Ref IIa IIb

1.0 1.5 1.0 0.60 0.54 0.60 0.5 0.5 2.5 0.60 0.76 0.60 0.65 0.73 (0.65) 0.35 0.27 (0.35)
1.0 3.0 2.5 0.60 0.58 0.62 1.0 2.5 2.0 0.60 0.66 0.60 0.50 0.53 (0.50) 0.50 0.47 (0.50)
1.0 1.5 2.5 0.60 0.52 0.62 1.5 3.0 2.0 0.60 0.70 0.60 0.41 0.48 (0.41) 0.59 0.52 (0.59)
1.0 3.0 0.5 0.60 0.70 0.60 2.0 0.5 2.0 0.60 0.56 0.60 0.35 0.31 (0.35) 0.65 0.69 (0.65)

1.0 1.0 1.5 0.60 0.64 0.60 1.0 3.5 3.5 0.40 0.40 0.42 0.50 0.47 (0.50) 0.50 0.53 (0.50)
1.0 1.0 1.5 0.60 0.64 0.60 1.0 0.5 1.0 0.50 0.48 0.50 0.50 0.47 (0.50) 0.50 0.53 (0.50)
1.0 3.0 2.5 0.60 0.58 0.62 1.0 2.5 2.0 0.60 0.66 0.60 0.50 0.53 (0.50) 0.50 0.47 (0.50)
1.0 4.0 2.5 0.60 0.58 0.62 1.0 0.5 0.5 0.70 0.80 0.70 0.50 0.56 (0.50) 0.50 0.44 (0.50)

The true model and the approximate model yielded curves that could hardly be distinguished

for the estimation of the crossing angle, as could be expected since no asymptotic error caused

by the superposition approximation was found in Experiment I. The MAE of the two models

on the density index differed by less than 0.022 for all SNR ≥ 5. The median estimates of the

approximation systematically exceeded those of the true model by 0.02 across all SNR levels,

consistent with the asymptotic errors detected in Experiment I. For the radius index, the two

estimations were very close for SNR values up to 20 with a difference in MAEs representing
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less than 25% of the asymptotic error. The bias due to the superposition approximation

manifested itself after SNR=20 and became clearly apparent at SNR=50, in agreement with the

observations made in Experiment I.

2.3.2.4 Experiment IV: impact of the approximation on a closed-form model of the mi-

crostructure

As shown in Figure 2.7, the DIAMOND parameters cHEI, cRD and cAD estimated from

the superposition approximation were very close to those obtained from the interwoven-

fascicle signals, with maximum differences of respectively 1.3×10−2, 6.4×10−6 mm2 s−1 and

6.9×10−5 mm2 s−1 across all 48 experiments. The estimated apparent volume fraction ν1

differed by less than 0.0575 in 47 of the 48 tested cases and the errors on the crossing angles

(not shown) were all below 2◦. All the curves in Figure 2.7 exhibited similar heights as expected

since both crossing-fascicle configurations had identical fascicles, irrespective of the crossing

angle. Their relative flatness indicated low sensitivity to the reference radius index.

The results for the parameters of NODDI are shown and discussed in Appendix A.4.2 (see

Figure A.9) and generally suggested little change associated with the use of the superposition

approximation.

2.4 Discussion and Conclusions

This paper examined the validity of approximating the signal arising from fascicles crossing in

interwoven planes by the superposition of signals arising from independent single fascicles

through the use of Monte Carlo simulations.

The mean normalized signal differences between interwoven fascicles and the superposition

approximation were reported in the range 10−3−10−2, suggesting that SNRs of the order of 100

would be necessary for those signal differences to become significant and to detect whether

fascicles intermingle when they cross, which is not achievable with current MRI technology

and clinically acceptable imaging times.

We considered two clinical protocols with b-values lower than 3000s mm−2 which obtained

very similar results: the average signal differences were within 1×10−4 of each other and

the performances were nearly identical in all microstructural estimation experiments with

r > 1µm. As investigated through Monte Carlo simulations in (Raffelt et al., 2012), for larger

b-values the signal differences are likely to be even less since the extracellular signal, the main

source of signal discrepancy in our simulation setting, essentially decays away. This was

confirmed in the additional experiments reported in Appendix A.3.

Our experiments have shown that the superposition approximation enables excellent esti-

mation of the crossing angle between two populations of axons even in noisy settings, which

supports the results obtained in the estimation of fascicle orientation relying on the super-
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Figure 2.6: The use of the superposition approximation has little impact at clinical SNR
levels where the errors caused by noise dominate. Mean absolute error (continuous lines)
and standard errors (shaded areas) obtained with Protocol A (left) and B (right) on (a)-(b) the
crossing angle α, (c)-(d) the density index f , (e)-(f) the radius index r . Sub-figures (g) and (h)
display detailed box-plots of the distribution of the radius index estimates over all the noise
repetitions at each SNR level suggesting that the errors due to noise alone dominate those due
to the use of the superposition approximation at lower SNR levels.
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Figure 2.7: The signal discrepancies of the superposition approximation have a limited im-
pact on DIAMOND parameters. Parameters obtained when fitting the DIAMOND model with
2 voxel compartments (one for each fascicle of axons) to the approximate signal (continuous
lines) and the reference interwoven-fascicle signal (dashed lines). (a)-(b) Mean compartment
heterogeneity index cHEI. (c)-(d) Mean compartment radial diffusivity cRD. (e)-(f) Mean
compartment axial diffusivity cAD. (g)-(h) Normalized apparent volume fraction of occupancy
of the first fascicle, where the horizontal dotted line represents the reference axonal density
index fref = 0.5 of the crossing-fascicle configurations.

41



Chapter 2. Validating the superposition approximation for crossing fascicles

position hypothesis, such as sums of tensors (Tuch et al., 2002; Scherrer and Warfield, 2012;

Scherrer et al., 2016) or tensors with zero radial diffusivity as in most spherical deconvolution

frameworks (Tournier et al., 2004, 2007; Jeurissen et al., 2014; Canales-Rodríguez et al., 2015).

The use of the superposition approximation generally yielded high accuracy and small system-

atic biases on the axonal density index, also preserved with noise. Confounding effects were

observed when simultaneously estimating the populations’ axonal density indices and volume

fractions (Experiment II), certainly because very similar signals can be reconstructed by as-

signing a higher weight ν to a single-fascicle signal with lower intrinsic axonal density index f

and conversely. This is reminiscent of the signal equivalence between multi-tensor models at

a single b-value when changing the diffusivities of each tensor while correspondingly scaling

the volume fractions (Scherrer and Warfield, 2012; Taquet et al., 2015). This mathematical

redundancy may be inherent to crossing fascicles in general, whether an approximation is

used or not.

Errors in the estimation of the radius index were recurrently observed throughout the ex-

periments, especially at small radius indices. This was mainly driven by the notoriously low

sensitivity of PGSE DW-MRI signals to small axonal radii (Clayden et al., 2015; Sepehrband

et al., 2016; Drobnjak et al., 2016; Nilsson et al., 2017) which we observed in Figure 2.4 with and

without the use of the approximation. The results of Experiments I and III suggested that the

acquisition noise was the predominant source of error and that the use of the superposition

approximation had little impact at low, and thus more realistic, SNR levels. At higher SNR

and in noiseless scenarios however, the approximation showed a limitation since the error

due to the use of the approximate model persisted while that due to noise alone vanished.

Considering a simpler microstructural model without an explicit dependence on the radius in

Experiment IV showed uniform estimates across radius indices.

Experiment IV suggested that more phenomenological diffusion models of the microstructure

were hardly affected by the use of the superposition approximation, further supporting the

quality of the approximation.

Limitations

The synthetic phantoms of the microstructure that we considered in this study did not take

axonal membrane permeability into account, which would make the intracellular signal

contribution another source of discrepancy between the reference and approximate signal. It

is however still unclear whether this strongly affects DW-MRI signals obtained with diffusion

times typically no longer than 100ms, such as considered in our analyses. In (Nilsson et al.,

2013), intracellular exchange times in the brain were reported between 25 and 620ms while in

vivo estimates in (Nedjati-Gilani et al., 2014) lay in 400−600ms in the genu and splenium of

the corpus callosum and in 300−500ms in the corticospinal tract, for instance.

Another limitation of this work is the simplicity of the two-compartment model adopted at
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the single-fascicle level. However, this study focused on evaluating the impact of using a

superposition model rather than selecting the right model at the single-fascicle level. For

reasonably simple interweaving patterns of axons in the groundtruth configurations, it should

be possible to design a model of single fascicle such that the intracellular compartment of

the superposition faithfully mirrors that of interwoven fascicles, as was done in this work.

In the absence of membrane permeability, similar conclusions would therefore likely hold

for models incorporating more realistic biological features such as myelin sheaths, radius

heterogeneity, in-plane and out-of-plane axonal undulation or the presence of glial cells or

other cellular compartments in the interstitium.

A myelin compartment in particular should be of limited impact due to rapid T2-decay (Alonso-

Ortiz et al., 2015) causing a roughly zero signal for the acquisition sequences considered in

this work using standard MRI equipment (B0 ≤ 3T). The reference as well as the approximate

signal curves would consequently undergo identical downward translations. Since this would

preserve the same signal differences and have little effect on the general sensitivity of signals

to microstructural parameters, the conclusions of this study would likely hold.

Likewise, modeling fascicles with a fixed axonal radius index seems physically less realistic than

considering a random packing with axonal radius heterogeneity, which would considerably

impact the configuration of the extracellular space. However it is known that this index

captures important properties of the underlying distribution of radii through its relation with

the moments of that distribution (Alexander et al., 2010; Burcaw et al., 2015), simplifying our

analyses while still providing meaningful results about the estimation of that microstructural

feature. Future studies may have to specifically assess the impact of this simplification.

Conclusion

Overall, we have observed a strong correspondence between DW-MRI signals arising from

configurations of interwoven fascicles and DW-MRI signals arising from a weighted sum of

independent fascicles for a wide range of realistic microstructural indices and commonly-

used acquisition protocols. Even though the approximation might negatively impact the

estimation of small radius indices if high imaging SNR becomes available, our experiments

have suggested that using a superposition model enables microstructural properties of interest

to be accurately estimated in the presence of clinically-realistic levels of noise corruption,

irrespective of the exact configuration of the axons.
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3 Microstructure fingerprinting

This Chapter is for the most part a post-print version of Rensonnet et al. (2019). Some of the

theoretical sections are redundant with the theory presented in Chapter 1; they were left to

ensure each Chapter is self-contained.

3.1 Introduction

Adequate modeling of the diffusion-weighted magnetic resonance imaging (DW-MRI) signal

holds the promise of characterizing white matter tissues at the micrometer level, including

information about the principal orientation of axons, their average radius or packing density.

Traditionally, a forward signal model is formulated relating the DW-MRI signal measured in a

voxel to the externally-applied magnetic field gradient profile and the microstructural proper-

ties of the tissue. The estimation stage or inverse problem generally consists in minimizing a

cost function incorporating the measured DW-MRI data and the closed-form forward formula.

Estimating microstructural features from closed-form mathematical expressions of the signal

poses three major limitations. First, the formulations are generally so complex that simpli-

fying assumptions need to be incorporated to obtain closed-form formulas. For example,

representing intra-axonal restriction for molecules trapped inside a simple model of straight

cylinders often requires assuming a Gaussian phase distribution (McCall et al., 1963; Van-

gelderen et al., 1994) or a short gradient pulse (Tanner and Stejskal, 1968; Callaghan, 1995)

to obtain analytical formulas. Describing the complex diffusion in the extra-axonal space

almost exclusively relies on the basic diffusion tensor (Basser et al., 1994), albeit with possible

refinements such as considering a peak-shaped distribution of tensors (Scherrer et al., 2016,

2017) or a dependence on diffusion time (Burcaw et al., 2015; Ning et al., 2017) or gradient

frequency (Xu et al., 2014) when more complex DW-MRI sequences are used. Coupling the

intra- and extra-axonal models in a physically consistent way is usually addressed by tortuos-

ity models (Whitaker, 1967; Szafer et al., 1995), the accuracy of which has been questioned

(Lampinen et al., 2017). Second, generalizing models from the diffusion sequence they were

originally designed for, often the pulse-gradient spin-echo (PGSE) (Stejskal and Tanner, 1965),
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to sequences such as double diffusion encoding (DDE) (Cory et al., 1990; Callaghan and Manz,

1994) or oscillating-gradient spin-echo (OGSE) (Gross and Kosfeld, 1969) generally requires

non-trivial modifications (Xu et al., 2014; Lam et al., 2015). Third, the cost function used

in the inverse problem is often highly non-linear in the parameters to estimate, leading to

the well-known pitfalls of non-linear optimization: convergence to local rather than global

minima, multiple equivalent minima (Jelescu et al., 2016; Novikov et al., 2018b), long fitting

times or sensitivity to the initialization strategy (Harms et al., 2017). These difficulties are

usually overcome by making further simplifications to reduce complexity and stabilize the

estimation, such as assuming axons with zero radius (Zhang et al., 2012) or neglecting fascicle

crossings altogether (Alexander et al., 2010; Zhang et al., 2012). A recent alternative to such

simplifications for stabilizing the estimation is to recast the inverse problem into a convex

optimization program on a pre-computed dictionary. This was proposed by Daducci et al.

(2015) and Sepehrband et al. (2016) for single fascicles and by Auría et al. (2015b) for multiple

fascicles. It should be noted that some models target the ensemble average propagator (EAP)

of water molecules rather than tissue properties directly (Özarslan et al., 2013; Ning et al.,

2017). Those frameworks make little to no assumption about the tissue and the signal is

linearly decomposed in a chosen functional basis. The estimation of the coefficients of the

expansion is done efficiently through convex optimization under positiveness (Özarslan et al.,

2013) or sparsity constraints (Merlet et al., 2013) for instance. These models provide indices

that must then be interpreted in terms of specific tissue features (Avram et al., 2016; Zucchelli

et al., 2016).

Monte Carlo simulations of the random walk of water molecules have the potential to provide

near ground-truth forward signals for any type of gradient profile and for any geometry of the

cellular environment (Hall and Alexander, 2009; Balls and Frank, 2009). Because they provide

numerical results rather than a closed-form formula for the signal, they are not well suited

for parameter estimation through traditional continuous optimization. As a consequence,

Monte Carlo simulations have been widely used in the validation of simpler closed-form

models (Grebenkov, 2007; Fieremans et al., 2008; Nilsson et al., 2009; Hall and Alexander,

2009; Panagiotaki et al., 2010; Fieremans et al., 2010; Nilsson et al., 2010; Drobnjak et al.,

2011; Raffelt et al., 2012; Dyrby et al., 2013; Pizzolato et al., 2015; Lam et al., 2015; Clayden

et al., 2015; McHugh et al., 2015; Burcaw et al., 2015; Scherrer et al., 2016; Ianuş et al., 2016;

Kakkar et al., 2017; Vellmer et al., 2017; Ning et al., 2017; Ginsburger et al., 2018; Mercredi and

Martin, 2018). They have also been used to investigate the sensitivity of the DW-MRI signal to

complex biophysical features (Hall and Alexander, 2009; Nilsson et al., 2012; Harkins and Does,

2016; Palombo et al., 2017; Rensonnet et al., 2018; Lin et al., 2018). However, their use for the

direct estimation of microstructural properties has been scarce and thus far limited to areas

containing single fascicles of axons. For instance, in Nilsson et al. (2010), nearest-neighbor

matching from a collection of Monte Carlo signals was compared with an analytical model

of diffusion considering permeable membranes. In Nedjati-Gilani et al. (2017), a similar

analytical model was assessed against a random forest regressor used to learn a mapping

between microstructural properties of single fascicles and orientationally-invariant features
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extracted from their Monte Carlo signals. In the context of MR spectroscopy, Monte Carlo

simulations were integrated in a computational model to assess the intracellular diffusion of

cell-specific metabolites in rodent and primate brain (Palombo et al., 2016).

The framework proposed in this Chapter aims at exploiting the accuracy and interpretability of

Monte Carlo simulations directly in the forward signal model and not solely as a validation tool.

Single-fascicle DW-MRI signals or fingerprints are first pre-computed for a large collection

of microstructural configurations using Monte Carlo simulations. The final multi-fascicle

estimation then consists in selecting the optimal sparse combination of these fingerprints,

which is done by solving many small convex sub-problems. The approach is applied to the

estimation of an apparent axonal radius index and an axonal density index in single- as well as

in crossing-fascicle configurations, using synthetic and in vivo data.

3.2 Theory

This section first presents our general multi-fascicle signal model incorporating signals from

Monte Carlo simulations, the theory of which is reviewed in a second subsection. A third

subsection presents mathematical properties that allow large collections of Monte Carlo

signals to be obtained at a minimal computational cost. Finally, the inverse problem of

estimating microstructural features is formulated as a structured sparse optimization problem

in the last subsection.

3.2.1 Signal model

The DW-MRI signal S at echo time TE under the application of an effective magnetic field

gradient profile g(t) (0 ≤ t ≤ TE) in a voxel of white matter is assumed to arise from the

independent contributions of K fascicles of axons with principal unit orientation u1, . . . ,uK

occupying fractions ν1, . . . ,νK of the physical volume of the voxel and of a partial volume νcsf

of cerebrospinal fluid (CSF)

S = M0 ·
[

K∑
k=1

νk Afasc
(
Ωk ,Tk ,uk ;g

)+νcsf Acsf
(
Dcsf,Tcsf;g

)]

=
K∑

k=1
wk Ak +wcsf Acsf,

(3.1)

where the scaling factor M0 captures the net initial transverse magnetization of the voxel

detected by the scanner and wk := M0νk is the NMR-apparent signal weight of the contribution

of the k-th fascicle. The normalized DW-MRI signal Ak := Afasc
(
Ωk ,Tk ,uk ;g

)
of the k-th

fascicle is modeled by a Monte Carlo simulation of the random self-diffusion of molecules in

an environment characterized by the set of microstructural parametersΩk , typically featuring

geometrical arrangements of cylinders representing axons. The set of parameters Tk captures

NMR relaxation such as T1, T2 and proton density, which is generally assumed to occur
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independently of diffusion and therefore only affects Ak via a multiplying factor. Water is

assumed to diffuse freely and isotropically in the CSF compartment; its normalized DW-MRI

contribution Acsf is therefore characterized by a scalar diffusivity Dcsf. Since ν1+·· ·+νK +νcsf =
1, the physical volume fractions νk have a one-to-one correspondence with the NMR-apparent

weights wk :

wk = M0νk ⇔ νk = wk∑K+1
k=1 wk

, k = 1, . . . ,K +1, (3.2)

where the index k = K +1 refers to the CSF compartment.

The flexibility of Monte Carlo simulations allows any type of gradient profile g(t ) to be used,

including PGSE, DDE, OGSE or more general b-tensor encoding (Topgaard, 2017) without the

need to mathematically derive a new signal model.

A vector
[

Afasc
(
Ω,T,u;gi

)]M
i=1 corresponding to the set of M gradient profiles

{
gi (t )

}M
i=1 making

up the acquisition protocol is defined as a fingerprint. It uniquely relates to the particular

microstructural parametersΩ for given relaxation parameters T and orientation u.

3.2.2 Monte Carlo simulations

Monte Carlo simulations consist in sampling the distribution of the phaseφ
(
g
)

accumulated at

echo time TE by spin-bearing nuclei or spins undergoing random diffusion in a spatial domain

Ω when a diffusion-sensitizing gradient profile g(t) (0 ≤ t ≤ TE) is applied. As described in

Hall and Alexander (2009), a large set of Nspin Brownian trajectories rl (t), 1 ≤ l ≤ Nspin, are

approximated in the environmentΩ by discrete trajectories r̂l consisting of spatial jumps with

random orientation and length

Lstep =
p

2nDδt (3.3)

where the time step δt = TE/Nstep is chosen in order to ensure a small bias, D is the local

diffusivity and n (1 ≤ n ≤ 3) is the intrinsic spatial dimension of the diffusion process of

interest. IfΩ consists of parallel straight cylinders for instance, diffusion is unrestricted along

the cylinders and Monte Carlo simulations can be limited to the plane perpendicular to the

cylinders, implying n = 2. Interactions with boundaries and obstacles in Ω such as cellular

membranes are tested for at each spatial jump.

With gα(t) and rlα denoting the components of g and rl (t) along the direction eα and γ the

gyromagnetic ratio of the spin-bearing nuclei, the phaseφl of spin l accumulated at echo time

is defined as

φl
(
g
)

:= γ
∫ TE

0
g(t ) · rl (t )d t

=
n∑
α=1

γ

∫ TE

0
gα(t )rlα(t )d t︸ ︷︷ ︸
:=φlα(gα)

.
(3.4)
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It is approximated from the discrete trajectory r̂l by a numerical quadrature such as a rectangle

rule

φl
(
g
)≈ φ̂l

(
g
)= γδt

Nstep−1∑
s=0

g(s ·δt ) · r̂l (s ·δt )

=
n∑
α=1

γδt
Nstep−1∑

s=0
gα(s ·δt )r̂lα(s ·δt )︸ ︷︷ ︸
:=φ̂lα(gα)

(3.5)

where φ̂lα is the numerical approximation of the directional phase φlα due to gα(t ). It should

be noted that φ (equivalently, φ̂) is linear with respect to g(t ):

φ
(
β1g1 +β2g2

)=β1φ
(
g1

)+β2φ
(
g2

)
(∀β1,β2 ∈R). (3.6)

The normalized diffusion attenuation A(g) in Ω associated with the gradient profile g(t) is

finally approximated as the empirical mean

A
(
g
)= 〈

e jφ(g)
〉
≈

∣∣∣∣∣ 1

Nspin

Nspin∑
l=1

e j φ̂l (g)
∣∣∣∣∣ , (3.7)

where j denotes the complex number.

3.2.3 Data augmentation

3.2.3.1 Augmenting sequences

This paragraph demonstrates how the generation of directional phases –rather than final

DW-MRI signals– can make Monte Carlo simulations reusable for new gradient directions and

make the simulation time almost independent of the number of sequences M , at the expense

of a moderate increase in storage space.

The M gradient profiles g(t ) of a DW-MRI protocol can be expressed as a linear combination

of Mχ ≤ M basis temporal profiles χm(t )

g(t ) =
Mχ∑

m=1

n∑
α=1

βmαχm(t )eα, (3.8)

where every βmα ∈ R. If the n ×Nspin ×Mχ directional phases φ̂l
(
χmeα

)
are computed and

stored, they can later be used to compute the accumulated phase φ̂l
(
g
)

of spin l arising from
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the application of any gradient profile g(t )

φ̂l
(
g
)= φ̂l

(
Mχ∑

m=1

n∑
α=1

βmαχmeα

)

=
Mχ∑

m=1

n∑
α=1

βmαφ̂l
(
χmeα

) (3.9)

based on the linearity of φ̂ expressed in Eq. (3.6). This quantity can then be used to compute

the normalized diffusion attenuation A
(
g
)

using Eq. (3.7).

Most current clinical protocols use a small number of temporal profiles, making this strategy

particularly useful. For instance, PGSE-based Multi-shell HARDI (Tuch et al., 2002) and

CUSP protocols (Scherrer and Warfield, 2012) with gradient duration δ and separation ∆ fixed

across all shells have an optimal Mχ = 1. Once computed, the n × Nspin × Mχ directional

phases are used to simulate every sequence of the protocol. Among others, this approach

can efficiently generate signals for patient-specific gradient maps corrected for motion. With

a fixed protocol, the stored phases also provide DW-MRI signals for any microstructural

orientation by considering an adequately-rotated new set of gradient directions with the same

temporal profiles χm(t ).

Compared with a strategy in which just the final DW-MRI signals are stored, the storage

space increases by a factor
nNspinMχ

M . On the other hand, the computational complexity of the

quadrature rule in Eq. (3.5) is reduced by a factor M/Mχ, e.g., a factor 100 for a protocol with

100 sequences using fixed ∆ and δ.

3.2.3.2 Augmenting configurations

This paragraph demonstrates that many more microstructural configurationsΩ can be ob-

tained from a finite set of stored DW-MRI directional phases or signals by leveraging the

scaling properties of Brownian diffusion.

Considering spin-bearing particles evolving in an environment with characteristic length scale

L and homogeneous diffusivity D under the application of a magnetic gradient profile g(t)

with characteristic gradient intensity G and time scale T , dimensional analysis shows that

the DW-MRI signal A(L,D;G ,T ) is entirely characterized by the dimensionless parameters

(Grebenkov, 2008)

p1 = DT

L2 ,

p2 = γGLT.
(3.10)

The following equivalence

A(L,D ;G ,T ) = A(
p
αL,αD ;

Gp
α

,T ) (3.11)
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therefore holds for any real number α > 0, meaning that the same simulated signal can be

interpreted as arising from configurations characterized by different spatial dimensions and

diffusivity under the application of an adequately scaled magnetic gradient. For instance, the

DW-MRI signal arising from an environment with 3µm-wide axons separated by 1µm gaps is

identical to the signal arising from 6µm-wide axons separated by 2µm gaps if the diffusivity is

4 times as large and the gradient magnitude is twice as small.

This property is useful in the context of generating large collections of DW-MRI signals. Instead

of running Monte Carlo simulations for all combinations (Li ,D j ) of a biological region of

interest [Lmin,Lmax]×[Dmin,Dmax] in the space of microstructural parametersΩ, it is sufficient

to run simulations for one fixed diffusivity Dsim in [Dmin,Dmax] and a sampling
{
Lsim,i

}
i

spanning a slightly larger region
[√

Dsim
Dmax

Lmin,
√

Dsim
Dmin

Lmax

]
. By setting α = Dsim

D in Eq. (3.11),

a collection of DW-MRI signals corresponding to a new arbitrary D ∈ [Dmin,Dmax] is then

directly obtained as

A

(√
D

Dsim
Lsim,i ,D ;G ,T

)
= A

(
Lsim,i ,Dsim;

√
D

Dsim
G ,T

)
, (3.12)

where the left-hand-side corresponds to a sampling
{√

D
Dsim

Lsim,i

}
i

covering the region of

interest Lmin ≤ L ≤ Lmax. B.1 shows that the choice of Dsim does not affect the number of

reference simulations N required to achieve sufficient resolution in L for all D ∈ [Dmin,Dmax].

If the reference simulations with Dsim stored the directional phases as explained in the pre-

vious paragraph, then the right-hand-side of Eq. (3.12) can be exactly evaluated at
√

D
Dsim

G .

Otherwise, signal interpolation with respect to G must be performed. In order to avoid extrap-

olation outside of the range [Gmin,Gmax] covered by the acquisition protocol, the reference

simulations can be run for G spanning the slightly larger interval
[√

Dmin
Dsim

Gmin,
√

Dmax
Dsim

Gmax

]
.

3.2.4 Inverse problem

Our framework consists in pre-computing a dictionary of Monte Carlo DW-MRI fingerprints,

each corresponding to a unique microstructural configuration. At runtime, for every voxel,

our method then aims at finding the optimal combination of single-fascicle configurations

Ω̂1, . . . ,Ω̂K and volume fractions ν̂1, . . . , ν̂K for a vector y ∈ RM of M noisy DW-MRIs. More

specifically, the process involves five steps: two during the pre-computing stage and three

during runtime.

Step 1 (pre-computing) performs a discrete sampling of N pointsΩ1, . . . ,ΩN of the spaceΩ

of microstructural parameters with bounds and granularity justified by tissue biology and

the expected resolution of the M diffusion-encoding gradient profiles g1(t), . . . ,gM (t) of the

protocol P = {
gi (t )

}M
i=1 at hand.
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Step 2 (pre-computing) generates a canonical single-fascicle dictionary F0 ∈RM×N containing

the DW-MRI fingerprints of the N selected microstructural configurations for a single fascicle

along a fixed direction u0

F0 = [
A0

1, . . . ,A0
N

]
, (3.13)

where A0
j = Afasc

(
Ω j ,T0,u0;P

)
, 1 ≤ j ≤ N . This the most time-consuming step involving up

to N Monte Carlo simulations which, however, need only be performed once and can be done

before any data is even acquired.

Step 3 (runtime) requires an external routine to estimate in each voxel the number K of

fascicles and their orientations u1, . . . ,uK .

Step 4 (runtime) requires an efficient routine for rotating single-fascicle signals in order

to obtain the single-fascicle dictionaries F1, . . . ,FK ∈ RM×N from F0 along the orientations

u1, . . . ,uK estimated in Step 3.

Step 5 (runtime) finally consists in solving the following sparse optimization problem

ŵ = argmin
w≥0

∥∥∥∥∥∥∥∥∥∥
y−

[
F1| . . . |FK |Acsf

]
·


w1

...

wK

wcs f


∥∥∥∥∥∥∥∥∥∥

2

2

subject to |wk |0 = 1, k = 1, . . . ,K ,

(3.14)

where the sparsity constraints on the sub-vectors wk guarantee that only one fascicle configura-

tionΩ jk per single-fascicle dictionary Fk contributes to the measured signal y. Problem (3.14)

is solved exactly by selecting the optimal solution out of N K independent non-negative least-

squares sub-problems of (K +1) variables

( ĵ1, . . . , ĵK ) = argmin
1≤ j1,..., jK ≤N

min
w≥0

∥∥∥∥∥∥∥∥∥∥
y−

[
A1

j1
| . . . |AK

jK
|Acsf

]
·


w1

...

wK

wcs f


∥∥∥∥∥∥∥∥∥∥

2

2

. (3.15)

Each sub-problem is convex and is solved exactly by an efficient active-set algorithm (Lawson

and Hanson, 1995, chap. 23, p. 161). The optimal microstructural parameters Ω̂k are taken

as those of the optimal fingerprint ĵk in each Fk and the volume fractions ν̂k are estimated

from the corresponding optimal weights ŵk using Eq. (3.2). Note that the weights wk are not

required to sum to one since the quantity
∑K+1

k=1 ŵk should reflect the scale M0 of the acquired

signals y.
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3.3 Materials and Methods

This section presents the synthetic and in vivo experiments performed to validate the general

estimation framework described in Section 3.2.4. The first part is concerned with voxels

containing only single fascicles of axons while the second part considers voxels with cross-

ing fascicles. All the synthetic experiments were designed to reproduce the experimental

conditions of the in vivo acquisitions as closely as possible.

3.3.1 Validation on single fascicles

3.3.1.1 Diffusion protocol

The DW-MRI protocol used for the synthetic and in vivo validation on single-fascicle con-

figurations, referred to as the rodent protocol, consisted of 6 PGSE shells of b-values 300,

700, 1500, 2800, 4500, 6000s mm−2 with high gradient intensities G ∈ [140,628]mT m−1 and

short gradient duration δ= 4.5ms and diffusion time ∆= 12ms, with TE = 23ms. Each shell

contained 36 non-collinear directions computed with the electrostatic repulsion method of

Caruyer et al. (2013) and 3 unweighted or b0 images for a total of 234 images.

3.3.1.2 Implementation details of the dictionary estimation

In Step 1 of the procedure described in Section 3.2.4, hexagonal packing of straight, imperme-

able cylinders was selected to represent single fascicles of axons, characterized by a cylinder

radius r , interpreted as an apparent axonal radius index, and a cylinder packing density f ,

interpreted as an axonal density index (Budde and Frank, 2010; Alexander et al., 2010). The

space of microstructural parameters Ω = (
r, f

)
was sampled at 34 values for r from 0.4µm

to 7µm by steps of 0.2µm and 23 values for f from 0.21 to 0.87 by increments of 0.03. This

resulted in a canonical single-fascicle dictionary F0 containing the diffusion fingerprints of

N = 782 microstructural configurations along a reference orientation. The groundtruth dif-

fusivities of the intra- and extra-axonal or “white matter” space were kept equal and fixed

to Dwm = 2.0×10−9 m2 s−1 based on the intra-axonal estimate by Dhital et al. (2019). The

diffusivity of CSF was set to Dcsf = 3.0×10−9 m2 s−1 (Xing et al., 1997). Since a PGSE protocol

was considered, NMR relaxation consisted of T2 decay of the form exp(−TE/T2), assumed

independent of the diffusion process. In order to match our in vivo rat data set acquired at

11.7T, the groundtruth relaxation times were considered to be T2wm = 30ms for the intra-

and extra-axonal space based on estimates at 11.7T in the rat corpus callosum and cerebellar

white matter (de Graaf et al., 2006). For CSF, T2csf = 120ms was selected in line with rat brain

estimates at 7.0T (Crémillieux et al., 1998) and at 11.7T (Pohmann et al., 2011).

The Monte Carlo simulations of Step 2 in our estimation procedure were performed using an

in-house software for the extra-axonal signal of the gradient components perpendicular to

the cylinders with a number of random walkers Nspins = 150000 and a time step δt between 1
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and 5µs based on the distance between cylinders (Rensonnet et al., 2015, 2016). Exact intra-

axonal signals were obtained using an efficient implementation1 of the Multiple Correlation

Function (MCF) approach (Grebenkov, 2008). As described in Section 3.2.3.1, one single set of

directional phases φx and φy per fingerprint needed to be stored in order to compute all 216

diffusion-weighted acquisitions of the rodent protocol.

In Step 3, the number of fascicles in each voxel was limited to K = 1 and the orientations were

obtained from a ball-and-sticks model estimated using a maximum a posteriori approach as

described in Scherrer et al. (2016), using the CRKIT software2 without spatial regularization

across voxels.

Since a multi-shell PGSE protocol was considered, the rotation of DW-MRI signals required in

Step 4 was done by simple linear spline interpolation separately on each shell.

3.3.1.3 Synthetic experiments

Two synthetic experiments were designed to validate the estimation method in a variety of

controlled groundtruth configurations and to investigate the effect of uncertainties on fixed or

pre-estimated parameters.

In both experiments, the results of our Monte Carlo based estimations were systematically

compared with the output of the minimal model of white matter diffusivity (MMWMD) intro-

duced in Alexander et al. (2010) (see Section 1.2.2.2). MMWMD was chosen for comparison as

it provides direct indices of the radius and axonal density to which our method can be com-

pared. More specifically, the quantity
fcylinder

fcylinder+ fzeppelin
was used as an axonal density index, where

fcylinder and fzeppelin are the fractions of signal modeled by the cylinder and the zeppelin-like

diffusion tensor, respectively. All MMWMD fitting was performed with the Camino Diffu-

sion MRI Toolkit (Cook et al., 2006) using Markov chain Monte Carlo (MCMC) fitting with 40

samples at intervals of 200 iterations after a burn-in of 2000 iterations as recommended in

Alexander et al. (2010).

The signal-to-noise ratio (SNR) was defined as SNR = 0.5M0/σ, where σ is the standard

deviation of the noise in an individual MRI detection coil. The factor 0.5 comes from the

mid-point value of the unweighted b0 signal for 0 and 25% of the volume occupied by CSF,

using the T2 values described above. The scaling parameter M0 depends on the sensitivity of

the MRI scanner in practice and was fixed to an arbitrary M0 = 1000 in the groundtruth signals

throughout all synthetic experiments.

3.3.1.3.1 Experiment 1.A. Single-fascicle groundtruth, effect of fixed diffusivity This ex-

periment focused on the estimation of microstructural properties in single fascicles and

1Our code was based on publicly available scripts from the original author’s web page https://pmc.
polytechnique.fr/pagesperso/dg/MCF/MCF_e.htm.

2http://crl.med.harvard.edu/software/.
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included no CSF contribution in the synthetic groundtruth and in the fitted models. Conse-

quently Eq. (3.15) was solved with wcsf = 0 in our Monte Carlo dictionary estimation while the

ball and dot compartments were ignored in the MMWMD fitting.

Equation (3.1) was used to generate reference groundtruth signals for 64 single-fascicle config-

urations obtained from the combinations of 8 groundtruth radius index values r from 0.6 to

4.8µm by steps of 0.6µm and 8 groundtruth density index values f from 0.42 to 0.84 by steps

of 0.06. Each signal was corrupted by 10 independent simulations of Rician noise with 10 SNR

levels varying from 5 to 150. Estimation was performed for all 4 combinations of groundtruth

diffusivity D∗ = {2.0,3.0}×10−9m2 s−1 and model diffusivity D = {2.0,3.0}×10−9m2 s−1 in or-

der to investigate the effect of fixing D to an under- or overestimated value (with signals

generated using data augmentation as explained in Section 3.2.3.2). This yielded a total of

64×10×10×4 = 25600 independent synthetic voxels.

3.3.1.3.2 Experiment 1.B. CSF partial volumes, effect of fixing T2 values In this experi-

ment, partial volumes of CSF were added both to the groundtruth voxels and to the fitted

models. The 64 single-fascicle configurations selected in Exp. 1.A were considered and

isotropic CSF contributions with physical volume fractions νcsf = {0.0,0.25,0.50} were suc-

cessively added following Eq. (3.1). The levels of Rician noise corruption and number of

repetitions were as in Exp. 1.A and the model diffusivities were set to the groundtruth values.

Three configurations of T2 values were examined as detailed in Table 3.1. The “T2X” scenario

was the ideal case; in the “T271” setting the groundtruth values were unchanged but the mod-

els assumed uniform T2 at a typical 3T value of 70ms; the “T272” case was more challenging as

the groundtruth signals were generated with different T2 values in the intra- and extra-axonal

space of the single fascicle. MMWMD fitting was performed using the full four-compartment

model including a dot compartment.

Table 3.1: T2 values of the intra-axonal, extra-axonal and CSF compartments assumed in the
groundtruth (GT) and the model in three different scenarios for Exp. 1.B.

T2X T271 T272

GT Model GT Model GT Model
T2in 30 30 30 70 30 70
T2ex 30 30 30 70 45 70
T2csf 120 120 120 70 120 70

3.3.1.4 In vivo experiment

3.3.1.4.1 Animal model of Wallerian degeneration Three female Long Evans rats (Janvier

Labs, Le Genest-Saint-Isle, France; weight 180−200g) underwent laminectomy of verterbrae

L2-L3 to expose the spinal cord. A left unilateral dorsal root axotomy was then performed,

inducing Wallerian degeneration in the ipsilateral side of the gracile fasciculus of the spinal

cord while leaving the contralateral side untouched. Two similar rats served as the control

55



Chapter 3. Microstructure fingerprinting

group and underwent laminectomy at identical vertebral levels without the dorsal root axo-

tomy, leaving the whole spinal cord unaffected. All rats were scanned 51 days after surgery (see

next paragraph) and sacrificed immediately after the imaging session. The spinal cords were

then extracted, frozen and sliced axially in 20-µm thick sections to perform SMI312 staining,

used to expose neurofilaments and indicate the presence of axons. The entire protocol was

approved by the local animal care and ethics committee at Université catholique de Louvain

(2016/UCL/MD/011).

3.3.1.4.2 In vivo DW-MRI DW-MRI was performed on all five rats on an 11.7T Bruker BioSpec

scanner (Bruker, Billerica, MA) using a 72-mm diameter transmitter volume coil and a 4-

channel, 3×3cm surface receiver coil covering the L4-T12 vertebral segments. Rats lay in the

dorsal decubitus position on a custom-made bed, anesthetized with an isoflurane-air mixture

(2.5% for induction and 1-1.5% for maintenance). Respiration and rectal temperature were

continuously monitored and body temperature was kept stable at 37◦C using a circulating

warm-water pad. Diffusion-weighted images were acquired with the PGSE parameters de-

scribed in Section 3.3.1.1 and TR = 3s, using 2-D echo planar imaging (EPI) with in-plane voxel

resolution 0.1×0.1mm2 (128×128 matrix) and slice thickness 1mm for 16 contiguous axial

slices, for a total acquisition time of about 2.5h per rat. Correction for animal motion and Eddy

current was achieved by affine registration of each scalar DW-MRI to the b0 images interleaved

in the protocol. To this end, images were resampled to a resolution of 0.05×0.05×0.06mm

enabling improved multi-scale pyramidal registration.

3.3.1.4.3 Model fitting and statistical analysis The gracile fasciculus was manually seg-

mented based on the hypo-intense signal of the anterior spinal vein on the b0 images and the

high fractional anisotropy (FA) values of the corticospinal tract obtained from diffusion tensor

fitting, while CSF voxels were manually removed at the periphery of the spinal cord.

Estimation was performed in the voxels of the gracile fasciculus of all five rats using our Monte

Carlo dictionary approach, yielding estimates of r , f and νcsf. MMWMD was estimated as

described in Exp. 1.B, providing an extra parameter νdot. For further comparison, the four

closed-form microstructural models DIAMOND (Scherrer et al., 2016), NODDI (Zhang et al.,

2012), WMTI (Fieremans et al., 2011) and MAPL (Fick et al., 2016) were also fitted to the data.

From DIAMOND, the compartment heterogeneity index cHEI, compartment radial diffusivity

cRD, compartment axial diffusivity cAD and isotropic volume fraction νiso were examined.

From NODDI, the intra-neurite volume fraction ficvf, orientation dispersion index ODI and

isotropic volume fraction νiso (see Section 1.2.2.2) were estimated using the NODDI MATLAB

(The MathWorks, Inc, Natick, MA) Toolbox3. From WMTI, the axonal water fraction (AWF),

intra-axonal radial diffusivity RDin, extra-axonal radial diffusivity RDex and extra-axonal ax-

ial diffusivity ADex were estimated using the reconst.dki_micro module from the DIPY

3http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
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software project4 (Garyfallidis et al., 2014). From MAPL, the Return-to-Origin Probability

RTOP, Return-to-Axis Probability RTAP, Return-to-Plane Probability RTPP and mean squared

displacement MSD (see Section 1.2.3.3) were estimated using the reconst.mapmri module

from DIPY.

After model fitting, the following linear mixed-effect regression was estimated for each of the

microstructural parameters described above using MATLAB’s fitlme routine

y =β0 +βWD ×S × I +βsurgery ×S +βipsilateral × I , (3.16)

where y is the microstructural property of interest, S and I are indicator variables respectively

indicating surgery (S = 1) versus controls (S = 0) and ipsilateral (I = 1) versus contralateral

(I = 0) sides. A subset of voxels in the gracile fasciculus corresponding to the original DW-MRI

resolution were selected for the analysis in order to avoid artificially increasing our sample size

and driving p-values to zero. In Eq. (3.16), the coefficient βWD captures the effect of Wallerian

degeneration. It should only be large for parameters physically impacted by the surgery and

not by intrinsic differences between the control and the injured group (βsurgery) or rat-specific

differences between the left and right sides of the spinal cord (βipsilateral). In this experiment,

the quality of a model does not lie in its ability to detect significant group differences but

rather in its ability to attribute the signal change to specific microstructural parameters in line

with histological observations.

3.3.2 Validation on crossing fascicles

3.3.2.1 Diffusion protocol

All synthetic and in vivo experiments on crossing-fascicle configurations were carried out

using the MGH-USC Adult Diffusion protocol of the Human Connectome Project (HCP)

described in Setsompop et al. (2013). The protocol comprised 4 PGSE HARDI shells containing

64 gradient directions at b = 1000s mm−2, 64 at b = 3000s mm−2, 128 at b = 5000s mm−2, 256

at b = 10000s mm−2 and 40 b0 images interleaved throughout the protocol, for a total of 552

acquisitions. Gradients intensities reached G = 219mT m−1 with δ/∆= 12.9/21.8ms, enabling

TE = 57ms.

3.3.2.2 Implementation details of the dictionary estimation

In Step 1 of the inverse problem (Section 3.2.4), the same single-fascicle model as in Sec-

tion 3.3.1.2 was selected, along with the same sampling of the microstructural parameter

spaceΩ= (
r, f

)
and identical diffusivities. Groundtruth T2 values were set to typical human

brain values at 3T with T2wm = 70ms based on Stanisz et al. (2005) and Smith et al. (2008), as-

4http://nipy.org/dipy/index.html
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sumed identical in all fascicles. In CSF, T2csf = 1000ms was interpolated from 0.14T estimates

in humans (Condon et al., 1987) as well as rat estimates at 4.7T (Ting and Bendel, 1992) and

7T (Crémillieux et al., 1998).

Steps 2, 3, and 4 were performed as in the single-fascicle experiments except that the ball-

and-sticks estimation in Step 3 was set to detect up to K = 2 fascicles. In step 5, N 2 = 611524

non-negative least squares sub-problems were solved in voxels containing two fascicles.

3.3.2.3 Synthetic experiments

Two synthetic experiments were designed to validate the estimation method in a variety of

controlled crossing-fascicle configurations and to investigate the effect of misestimating fixed

or estimated parameters.

As with the rodent protocol, the scanner-specific scaling parameter was fixed to M0 = 1000

and the SNR was computed as SNR = 0.5M0/σ based on unweighted b0 signals without CSF

contamination and with 25% of CSF in the voxel, using the above T2 values.

3.3.2.3.1 Experiment 2.A. Independent voxels, effect of orientation misestimation and

crossing angle This experiment focused on the estimation of microstructural properties

in crossing fascicles and included no CSF contribution in the synthetic groundtruth and in the

Monte Carlo dictionary estimation, i.e. Eq. (3.15) was solved with wcsf = 0.

Equation (3.1) was used to generate reference groundtruth signals for fascicles with identical

microstructural properties r = r1 = r2 and f = f1 = f2 with volume occupied by the first

fascicle ν1 = {0.3,0.4,0.5} and ν2 = 1−ν1, for all 32 combinations of 4 radius index values

r = {1,2,3,4}µm and 8 density index values f from 0.42 to 0.84 by steps of 0.06. Each signal

was corrupted by 10 independent simulations of Rician noise with 10 SNR levels varying from

5 to 150.

To examine the effect of an incorrect estimation of the fascicle’s orientations in Step 3 of

the inverse problem, the estimation was performed by independently selecting u1 and u2

randomly on a cone with principal axis along the groundtruth orientations, forcing angular

errors of 0◦,5◦ and 10◦ successively. Fascicles crossing at angles ∠u1,u2 =
{
30◦,60◦,90◦} were

considered in order to study the effect of the groundtruth crossing angle, thereby yielding a

total of 3×32×10×10×3×3 = 86400 independent voxel estimations.

3.3.2.3.2 Experiment 2.B. Synthetic 2D phantom, effect of dissimilar fascicles A synthetic

phantom was designed containing three axonal tracts (see Fig. 3.7(a)). Each tract had a con-

stant radius index r (respectively 1.2,1.6 and 2.0µm) and spatially-smooth variations of the

fascicle-specific density index f ranging from 0.45 to 0.81. The complete 2D-slice featured

17×17 = 289 voxels including 119 voxels containing one single fascicle of axons, 34 voxels con-
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taining a single fascicle with 25% of CSF and 86 voxels containing two fascicles intersecting at

angles comprised in [31.4◦,86.0◦] with mean 62.7◦. The crossing-fascicle configurations were

more complex than in Exp. 2.A because the two crossing fascicles had different microstructural

properties r1 6= r2, f1 6= f2 in general. Estimation was performed at SNR levels of 25, 50 and

100.

In the ball-and-sticks estimation of Step 3 of the Monte Carlo dictionary estimation, spatial

regularization across voxels was enabled and sticks with directions separated by fewer than

15◦ were merged. Denoting by β1 the largest weight attributed to a stick, all secondary sticks

were then removed if their weight β verified either β < β1/2.5 and β < 0.20 or just β < 0.10.

The Monte Carlo dictionary estimation of Step 5 set wcsf = 0 when two fascicles were detected

in Step 3.

3.3.2.4 In vivo experiment

3.3.2.4.1 In vivo DW-MRI One healthy subject was randomly selected from the MGH Adult

Diffusion data release5 (Setsompop et al., 2013).

3.3.2.4.2 Model fitting and statistical analysis Voxels containing white matter were identi-

fied based on the segmentation obtained with the FAST algorithm (Zhang et al., 2001) from

the FMRIB Software Library (FSL)6. Monte Carlo dictionary estimation was performed inde-

pendently in each voxel as described in the synthetic experiments.

Our experiment focused on extracting the distribution of apparent axonal radius index r and

density index f of axons passing through the anterior, mid-anterior, central, mid-posterior and

posterior sub-regions of the corpus callosum (CC) as identified by the subcortical segmenta-

tion tool of the FreeSurfer software (Fischl et al., 2002). As these axons cross other macroscopic

tracts such as the corticospinal tract (CST) or the longitudinal fasciculus (LF), each fascicle

or peak at the local voxel level had to be assigned to one or more of these macroscopic tracts.

In order to do so, probabilistic tractography was first performed with 5 seeds per voxel and

streamline segments constrained to follow the orientation of a detected peak in each voxel,

using routines from DIPY. The streamlines were clustered into tracts using the white matter

query language (Wassermann et al., 2016) and a local voxel fascicle was considered to belong

to a macroscopic tract if at least 5% of all streamlines going through the local peak had been

assigned to that tract.

5https://www.humanconnectome.org/study/hcp-young-adult/document/mgh-adult-diffusion-data-acquisition-details
6https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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3.4 Results

3.4.1 Validation on single fascicles

3.4.1.1 Experiment 1.A. Single-fascicle groundtruth, effect of fixed diffusivity

The mean absolute error (MAE) in the estimation of the radius and density index for our

approach and for MMWMD are depicted in Fig. 3.1. When the correct diffusivity D was

assumed (green curves), the MAE over all repetitions and over all configurations with our

approach converged to zero with increasing SNR. Underestimating (resp. overestimating) D

led to a systematic underestimation (resp. overestimation) of r and f as indicated by the blue

(resp. yellow) estimate bars at SNR level 25. On the other hand, systematic errors persisted for

MMWMD estimates at large SNR values even when the correct value for D was assumed in the

model.

3.4.1.2 Experiment 1.B. CSF partial volumes, effect of fixing T2 values

Figure 3.2 suggests that our approach was able to provide accurate microstructural estimates

in the presence of CSF. Errors on r and f exhibited a moderate upward trend as the fraction of

CSF increased, likely due to a reduced relative signal (and hence a reduction in apparent SNR)

arising from the fascicle of axons. The estimation errors for MMWMD were systematically

larger than in Exp. 1.A. The MAE on νcsf hovered around 0.05 across SNR levels even in the

T2X scenario and when there was no CSF in the groundtruth. As shown in Figure 3.3, the

MMWMD estimates exhibited a larger variability than those of our Monte Carlo dictionary

approach.

Notably, the estimates of r and f using the incorrect T2 values of the T271 scenario (cross

markers in Fig. 3.2) were identical to those obtained with the groundtruth T2 values (circle

markers in Fig. 3.2) for both models. The error in T2 was simply corrected by scaling the

fascicle and CSF signals by an adjusted weight w , which then led to a misestimated volume

fraction νcsf. This was no longer the case in the T272 scenario because the model and the

groundtruth signals no longer differed by just a scaling constant.

3.4.1.3 In vivo experiment

Histological slices of the rats which underwent surgery revealed lighter SMI312 staining on

the ipsilateral side, indicating axonal loss induced by Wallerian degeneration (Fig. 3.4(a)).

As depicted in Fig. 3.4(b-c), our Monte Carlo dictionary approach exhibited an important

decrease in axonal density index f (−0.15, p = 1.6×10−5) and statistically non-significant

changes in r and νcsf. In contrast, MMWMD detected no significant change in f and a large

increase in r (+1.9µm, p = 2.1×10−2) while yielding no statistically-significant changes in νcsf

and νdot. NODDI found a non-significant increase in ficvf, an increase in dispersion (+0.09, p <
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Figure 3.1: (Exp. 1.A) Consistent microstructural estimates in single fascicles with Monte
Carlo (MC) dictionary estimation. The left column displays the mean absolute error on the
radius index r (top) and density index f (bottom) as a function of signal-to-noise ratios (SNR).
The right column provides a snapshot of estimates at SNR=25, with markers indicating the
median over all noise repetitions and groundtruth configurations and bars ranging from the
25th to the 75th percentile of all estimates. Asymptotic errors remained for the minimal model
of white matter diffusivity (MMWMD) even though it used the true diffusivity D .

2.9×10−22) and no significant change in νiso. DIAMOND obtained a non-significant change in

cHEI, an increase in cRD (+0.12µm2 ms−1, p = 1.4×10−4), a decrease in cAD (−0.40µm2 ms−1,
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Figure 3.2: (Exp. 1.B) Consistent microstructural estimates from Monte Carlo dictionary in
the presence of CSF contamination. Mean absolute errors on the radius index r (top), density
index f (middle) and cerebrospinal fluid (CSF) volume fraction νcsf (bottom) as a function of
signal-to-noise ratio for various levels of CSF contamination. The MMWMD approach yielded
generally larger errors. Assuming incorrect T2 values in the model did not affect the estimation
of r and f in the the first two scenarios described in Table 3.1.

p = 4.2×10−4) and a slight increase in νiso (+0.07, p = 3.0×10−2). WMTI saw a slight decrease

in AWF (−0.04, p = 4.8×10−3), no statistically-significant change in RDin, an increase in RDex

(+0.19µm2 ms−1, p = 2.2×10−3) and a decrease in ADex (−0.57µm2 ms−1, p = 4.4×10−12).

MAPL identified a decrease in RTAP (−5.4×10−3µm−2, p = 1.6×10−2), an increase in RTPP

(+1.5×10−2µm−1, p = 1.2×10−8) and no statistically-significant changes in RTOP and MSD.
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Figure 3.3: (Exp. 1.B) Consistent microstructural estimates from Monte Carlo dictionary in
the presence of CSF contamination. Snapshot of the estimates of r , f and νcsf at SNR=25
(see Fig. 3.2), with markers indicating the median over all noise repetitions and groundtruth
configurations and bars ranging from the 25th to the 75th percentile of all estimates. The
estimates of the T272 scenario were left out for clarity. MMWMD had larger variability and
more biased estimates.

3.4.2 Validation on crossing fascicles

3.4.2.1 Experiment 2.A. Independent voxels, effect of orientation misestimation and cross-

ing angle

As suggested by Fig. 3.5, the crossing angle had a marginal impact on the estimation as all

the curves are very close to one another. Figure 3.6 indicates that the MAE over all noise

repetitions and groundtruth configurations converged to zero as the SNR increased when

the orientation of each fascicle was perfectly estimated in Step 3 of our estimation procedure

(blue curves). Misestimation of the orientation of fascicles introduced systematic errors in

the microstructural estimation (red and yellow curves). The estimates were generally slightly

better for the dominant groundtruth fascicle: at a crossing angle of 60◦ with ν1 = 0.3, the MAE
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Figure 3.4: Monte Carlo dictionary approach yields physically-interpretable parameters
consistent with histology (a) Histology of a slice in the spinal cord of a rat which underwent
surgery, stained with SMI312 immunohistochemistry. Darker colors indicate more neuro-
filaments present inside axons. (b) Representative map of axonal density index f obtained
with our Monte Carlo dictionary approach, laid atop a fractional anisotropy (FA) map. (c)
Effect of Wallerian degeneration (WD) on selected parameters from our approach and from
popular closed-form models of the microstructure. Vertical bars indicate the 95% confidence
interval on βWD. Non-significant (ns) corresponds to p > 0.05; * to p ≤ 0.05; ** to p ≤ 0.01; ***
to p ≤ 0.001; **** to p ≤ 0.0001.

on r1 exceeded the MAE on r2 in 25 out of 30 cases with a mean signed difference of 0.23µm;

the MAE on f1 exceeded the MAE on f2 in all 30 cases, with a mean difference of 0.060.
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Figure 3.5: (Exp. 2.A) The groundtruth crossing angle has limited impact on the estimation
of fascicles’ microstructural properties. Mean absolute error on each fasicle’s radius index
r1 and r2, density index f1 and f2 and on the physical volume fraction occupied by the first
fascicle ν1. The groundtruth volume fraction of the second fascicle decreases from left to right.
The fascicles’ orientations were perfectly estimated.
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Figure 3.6: (Exp. 2.A) Errors in the initial estimation of fascicles’ orientations yield
asymptotically-biased estimates. Mean absolute error on each fasicle’s radius index r1 and
r2, density index f1 and f2 and on the physical volume fraction occupied by the first fascicle
ν1. The groundtruth volume fraction of the second fascicle decreases from left to right and the
groundtruth crossing angle was fixed to 60◦.
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3.4.2.2 Experiment 2.B. Synthetic 2D phantom, effect of dissimilar fascicles

Figure 3.7 suggests that the errors on the estimated microstructural properties converged to

zero as the SNR increased. At SNR=25, the average absolute error made on the radius index r

expressed as a percentage of the groundtruth value was 33.0% in single fascicles, close to its

value of 37.4% in voxels of crossing fascicles (Fig. 3.7(b)). The difference was more pronounced

for the density index f with an average 4.94% error in single-fascicle voxels and 29.7% in

crossing fascicles. As shown in Fig. 3.7(c), the fastest convergence with SNR in r occurred

for Tract 3, which had the largest groundtruth radius index. Convergence for f was slightly

faster in Tracts 1 and 2, which were less exposed to fascicle crossings and CSF contamination.

The mean absolute angular error on the fascicles’ orientations by the ball-and-sticks routine

at SNR=25 was as low as 0.43◦ in single-fascicle voxels and 0.85◦ in crossing-fascicle voxels,

suggesting that the impact of Step 3 on the final errors was minimal.

3.4.2.3 In vivo experiment

The top row in Fig. 3.8 suggests that the estimates of both the apparent axonal radius index

r and density index f were spatially smooth. The distributions over all voxel-level fascicles

(histograms in Fig. 3.8) were smoother for r than f . As reported in Table 3.2, both parameters

exhibited a low-high-low trend, with lower mean values in axons passing through the anterior

and posterior parts of the CC compared to axons of the mid-anterior, central and mid-posterior

CC. The standard deviations for the two parameters were very similar across the five considered

sub-regions.

Table 3.2: Low-high-low trend in apparent radius and density index in CC streamlines.
Mean and standard deviation over all local fascicles or peaks assigned to streamlines passing
through five sub-regions of the corpus callosum (CC). Units of apparent radius index in µm.

apparent radius index density index
anterior CC 4.06±0.87 0.599±0.12
mid-anterior CC 4.27±0.73 0.636±0.12
central CC 4.19±0.90 0.627±0.12
mid-posterior CC 4.22±0.93 0.645±0.13
posterior CC 3.87±0.99 0.581±0.14
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Figure 3.7: (Exp. 2.B) Tract-specific microstructural estimated enabled by Monte Carlo dic-
tionary estimation. (a) Color-coded direction of all three axonal tracts with the gray-scale
background indicating the level of CSF contamination in each voxel. (b) Signed error made on
the estimated radius index r and density index f in regions of single (left) and crossing (right)
fascicles. (c) Signed errors for the local voxel fascicles of each tract independently. In (b)-(c),
the whiskers of the boxplots extend from the minimum to the maximum value of the data.
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(a) (c)

(b) (d)

r [µm] f

Figure 3.8: Spatially-smooth estimates of apparent radius and density indices obtained
with Monte Carlo dictionary estimation. (a) Left and inferior view of all the axons passing
through the corpus callosum (CC), color-coded by the apparent axonal radius index r . (b) His-
tograms of estimated apparent radius index in the five axonal tracts studied in the experiment,
respectively the anterior, mid-anterior, central, mid-posterior and posterior CC tracts. The
mid-sagittal maps of color-coded axons are laid atop a referential T1 image warped into the
DW-MRI space. (c)-(d) Same as (a) and (b) for the axonal density index f .
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3.5 Discussion

3.5.1 Advantages of Monte Carlo modeling

The main strength of Monte Carlo simulations is their ability to provide exact signals for any

fixed tissue geometry. This advantage was made apparent throughout the comparison with

MMWMD, which captures the same level of tissue complexity as the particular single-fascicle

model selected in this study but differs in the way the signal is formulated. MMWMD for

instance failed to consistently estimate r and f in Exp. 1.A, which can only be attributed

to the formulation of the extra-axonal signal. In Exp. 1.B, a non-zero CSF weight for the

full 4-compartment MMWMD persisted although no isotropic compartment was included

in the groundtruth, suggesting that some of the extra-axonal signal may be captured by the

isotropic compartment. MMWMD relies on a zeppelin-like diffusion tensor with perpendicular

diffusivity proportional to the parallel diffusivity and the extra-axonal volume fraction through

a tortuosity model. Monte Carlo simulations on the other hand naturally incorporate physical

compatibility between the intra- and extra-axonal compartment.

Our in vivo rat model of spinal cord injury demonstrated that the parameters provided by

Monte Carlo simulations are generally more specific and interpretable than those of closed-

form continuous models (Figure 3.4). Wallerian degeneration is a process with dramatic

consequences on the fascicles of the spinal cord which after several weeks is mainly character-

ized by severe axonal loss (Waller, 1850; George and Griffin, 1994). This was correctly captured

by our Monte Carlo dictionary approach but not by MMWMD, which detected an increase

in radius index. NODDI attributed all the signal differences to an increase in dispersion and

not to a decrease in neurite density. This unexpected result is likely caused by the use of fixed

parameters in NODDI which impairs our ability to interpret the remaining free parameters

(Scherrer et al., 2016; Jelescu et al., 2016; Hutchinson et al., 2017). The increase in fascicle-

specific RD and decrease in fascicle-specific AD detected by DIAMOND were in agreement

with a large body of studies correlating diffusion tensor imaging with Wallerian degenera-

tion (Song et al., 2003; Kim et al., 2007; Sun et al., 2008; Zhang et al., 2009; Liu et al., 2013).

However no parameter in DIAMOND directly relates to axonal density. The WMTI model

predicted a decrease in axonal density similar (although of smaller magnitude) to our Monte

Carlo dictionary method as well as changes in extra-axonal RD and AD similar to DIAMOND.

Taking the intra-axonal RD as a proxy for axonal radius then the non-significant change agrees

with our own findings for r . The good agreement between our approach and WMTI will

be investigated in the future. In MAPL, a decrease in RTAP has been shown to represent an

increase in mean apparent axonal radius (Fick et al., 2016), similar to what MMWMD detected.

Alternatively, considering that Wallerian degeneration causes the number of diffusion barriers

to decrease in the extra-axonal space, RTAP could be interpreted as inversely proportional to

the extra-axonal RD, which would be in agreement with DIAMOND and WMTI. Similarly, if

diffusion is assumed unhindered along the axons, the increase in RTPP can be interpreted as a

decrease in AD.

This highlights that signal models such as DIAMOND and MAPL do capture group differences;
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however these must be carefully interpreted a posteriori. Our approach outperforms geomet-

ric models such as MMWMD and NODDI by ascribing the signal difference to the correct

variation in microstructural features.

3.5.2 Whole-brain estimation

The whole-brain HCP experiment was intended to showcase the ability of our method to

extract microstructural properties in vivo in each voxel locally in areas of crossing fascicles,

which is still an open issue in the field. The MIX optimization technique (Farooq et al.,

2016) provides a faster and more stable algorithm to fit multi-fascicle extensions of analytical

compartment-based models but these models still intrinsically rely on approximate analytical

formulas. The multi-fascicle extension of Amico (Daducci et al., 2015) to Amico-X (Auría et al.,

2015b) uses a simple diffusion tensor for the extra-cellular signal and does not impose the

geometrical compatibility between the intra- and extra-axonal signal that is naturally enforced

in Monte Carlo simulations. DIAMOND was also formulated as a multi-fascicle model from

the onset but its fascicle-specific parameters are tensor-related quantities and are therefore

surrogate measurements of tissue properties.

The low-high-low trend in apparent axonal radius r observed in the human CC (Aboitiz et al.,

1992) was found to extend to all callosal axons in our experiment. Remarkably, this pattern

was obtained by independent estimations of our model at each voxel and was therefore not a

consequence of spatial regularization. In Girard et al. (2017), a similar trend for r was observed

on most of the 34 HCP subjects, albeit on DW-MRI data upsampled for tractography analysis.

In the same work, the streamline-specific estimates of apparent fiber density computed over

all 34 subjects were found to be lowest in the anterior CC, intermediate in the mid-anterior and

posterior CC and largest in the central and mid-posterior CC. This roughly coincides with the

estimates of f obtained in our particular subject. It should be noted that the values of radius

index reported in the experiment (≈ 4µm) are considerably larger than actual measurements

of axonal radius in the human brain (≈ 0.5−1µm), as discussed in the next paragraph.

3.5.3 Limitations

In our framework, the tissue geometry selected for the Monte Carlo simulations at the single-

fascicle level determines the complexity of the final model. To compare our approach with

models of similar tissue complexity such as MMWMD, the simple hexagonal packing geometry

was selected in this work. In particular, the use of the single scalar parameter r to character-

ize the whole intra-axonal signal is known to considerably overestimate actual axonal radii

(Alexander et al., 2010; Dyrby et al., 2013) and as such should only be considered as an index

of apparent axonal radius.
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In order to fully exploit the potential of Monte Carlo simulations, future tissue geometries

will need to be more realistic and include randomly-located axons with a distribution of radii

(Hall et al., 2017), a myelin sheath around axons (Harkins and Does, 2016), axonal undulation

(Nilsson et al., 2012), cells with complex morphology such as glia and neurons (Palombo et al.,

2016, 2017) or tissue geometries directly obtained from histological slices (Xu et al., 2014).

Incorporating axonal orientation dispersion in synthetic substrates for Monte Carlo simula-

tions requires the careful configuration and location of all axons in order to avoid unrealistic

intersections. Axonal oscillations with large periodicity may help achieve apparent orientation

dispersion (Nilsson et al., 2012).

It is worth recalling that the only simplifying hypothesis made in our framework is that no

water exchange occurs between fascicles during the acquisition, which allowed us to write the

fundamental equation (3.1) as a simple superposition (Rensonnet et al., 2018). This however

does not prevent the incorporation of membrane permeability and water exchange within a

fascicle.

In theory, the sparsity constraints used in Eq. (3.14) do not allow mixtures of fingerprints to

reconstruct the signal arising from a single fascicle of axons. This could be a limitation for

fascicles consisting of several well-delimited sub-regions exhibiting distinct microstructural

properties (e.g., one half with a high and one half with a low axonal density). As discussed in

B.2, with the DW-MRI protocols used in this study, the signals of non-uniform voxels were very

similar to the fingerprints of uniform voxels with a density index f precisely corresponding to

the average packing density of the non-uniform configuration. If non-uniform configurations

were not distinguishable from uniform, “average” configurations, a possible workaround

would be to add fingerprints arising from non-uniform configurations to the single-fascicle

dictionary (Steps 1 and 2 in Section 3.2.4).

The traditional PGSE sequence used in our experiments has been shown to have limited

sensitivity to microstructural features such as the axonal radius (Dyrby et al., 2013). Im-

proved sensitivity may be obtained using other diffusion-encoding sequences such as OGSE

(Drobnjak et al., 2016; Mercredi and Martin, 2018), STEAM-DTI with varying diffusion times

(Fieremans et al., 2016) or b-tensor encoding (Topgaard, 2017). One major advantage of the

presented framework is precisely its ability to promptly integrate such extensions, which will

be considered in future work.

3.5.4 Fixed parameters and external routines

A number of parameters such as the intrinsic diffusivity and the T2 values of the intra-axonal,

extra-axonal and CSF compartments were fixed a priori based on literature values rather than

estimated from the data in order to simplify the estimation. Our synthetic experiments have
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shown however that the model is quite resilient to slightly misestimated parameter values,

in particular for T2 relaxation which in some situations can be exactly compensated by the

free weights w in Eq. (3.14). As seen in Exp. 1.B, care must be taken in case multiple T2 values

should be present within a single fascicle, as has recently been suggested (Veraart et al., 2018).

It was shown in Experiment 2.A (Figure 3.6) that errors in the orientation of fascicles (esti-

mated with an external routine) could bias the microstructural estimates. To overcome this

issue, orientation-estimation methods based on rotationally-invariant dictionary learning

(Reisert et al., 2014; Christiaens et al., 2017) could use the estimated fingerprints as their fiber

orientation response and retroactively refine the estimated orientations, eventually leading to

more accurate microstructural estimates.

3.5.5 Efficiency

The pre-computing stage described as Step 2 of our estimation procedure in Section 3.2.4 may

come with a high computational cost. The two canonical single-fascicle dictionaries used in

this study required about 35 days worth of computation time on a standard laptop i5 core. In

practice this was reduced to about 1-2 days using computing clusters at Université catholique

de Louvain depending on cluster load and availability. Algorithmic improvements such as

proposed by Hall et al. (2017), optimized implementation and mathematical properties such

as presented in Section 3.2.3 should further help assuage the burden of massive Monte Carlo

simulations in the future.

Runtime efficiency is not an issue in single-fascicle voxels, where Eq. (3.15) takes less than a

second to solve for dictionary sizes N such as used in our experiments. For voxels containing

K > 1 fascicles, exactly solving N K convex problems leads to longer computation times and

is likely to become a more important issue with larger dictionaries (resulting from a finer

resolution in microstructural parameters for instance). Different techniques can be used to

reduce the size of the problem, such as a multi-scale optimization approach starting with

a coarse-grained dictionary or initial dictionary pruning using sparsity-enforcing methods

(Canales-Rodríguez et al., 2015; Canales-Rodríguez et al., 2019).

3.6 Conclusion

A framework was proposed for the estimation of microstructural features incorporating Monte

Carlo simulations known for their accurate modeling of the DW-MRI signal. The inverse esti-

mation problem was formulated as a sparse optimization problem on a large pre-computed

dictionary and decomposed into many independent convex and easy-to-solve sub-problems.

Owing to their unique correspondence with a microstructural configuration, the selected

diffusion fingerprints provided the microstructural parameters for each fascicle of axons in
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each voxel.

In single-fascicle voxels, our approach demonstrated more accurate, consistent and inter-

pretable results than popular closed-form microstructural models of the literature in many

simulation settings as well as in the analysis of an in vivo dataset of rat spinal cord. When ex-

tended to crossing fascicles, our framework achieved consistent estimates of apparent axonal

radius and density indices in synthetic experiments and on whole-brain HCP data. Future

work will focus on using a more realistic model at the single-fascicle level and generalizing the

microstructural trends found in one HCP subject to larger cohorts.

This work paves the way for microstructure fingerprinting in which Monte Carlo simulations

are used as the building blocks of a model of the diffusion signal which directly relate to

the underlying microstructure. Our framework offers new opportunities for whole-brain

quantitative and interpretable microstructure imaging. Such a capability may prove critical

for studies exploring the pathogenesis of neurological and psychiatric disorders as well as in

the assessment of responses to treatments.
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4 Microstructure fingerprinting with
heterogeneous axon diameters

4.1 Introduction

The dictionary matching approach introduced in Chapter 3 was designed to easily accommo-

date model changes and refinements at the single-fascicle level. The tissue geometry in the

Monte Carlo simulations just needs to be updated and the rest of the estimation can proceed

seamlessly. In this Chapter, the simple hexagonal-packing model used in the experiments of

Chapter 3 was replaced by a more complex single-fascicle tissue configuration, featuring a

random packing of straight cylinders with diameter heterogeneity.

This model may help unveil characteristics of the axon diameter distribution (ADD) including

its mean (µd ) and standard deviation (σd ), as well as estimates of the axon density in each

voxel. Such information is key to the understanding of the pathogenesis of diseases like mul-

tiple sclerosis (Shintaku et al., 1988; Lovas et al., 2000; Evangelou et al., 2001; DeLuca et al.,

2004), amyotrophic lateral sclerosis (Sasaki and Maruyama, 1992; Al-Chalabi and Miller, 2003),

Parkinson’s disease (Al-Chalabi and Miller, 2003; Burke and O’malley, 2013), Alzheimer’s dis-

ease (Joyashiki et al., 2011) or degeneration following traumatic injury (Nashmi and Fehlings,

2001; Song et al., 2003; Payne et al., 2011; Maxwell et al., 2015). Non-invasive monitoring

of those microstructural properties with diffusion-weighted magnetic resonance imaging

(DW-MRI) therefore has great value in the assessment of response to treatments (Horsfield and

Jones, 2002; Joyashiki et al., 2011; Burke and O’malley, 2013). Accurate mapping of the ADD is

also crucial for the finer study of conduction delays in the mammalian brain (Innocenti et al.,

2018; Drakesmith and Jones, 2018; Berman et al., 2019; Deslauriers-Gauthier and Deriche,

2019).

Our extended model, referred to as heterogeneous fingerprinting in the rest of this Chapter,

was systematically compared to the simpler fingerprinting approach considering hexagonal

packing of Chapter 3, referred to as homogeneous fingerprinting. The dictionary-based Ac-

celerated Microstructure Imaging via Convex Optimization (AMICO) framework (Daducci

et al., 2015) was also included for comparison as it can be used to estimate the apparent ADD

and axon density. Unlike our approach, AMICO relies on closed-form analytical expressions
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for the signal and separates the contributions of water inside and outside the axons. The

three approaches were tested in single-fascicle configurations on a public ex vivo dataset

of cat spinal cord acquired with an experimental protocol specifically designed to increase

the sensitivity of the DW-MRI signal to the ADD (Duval et al., 2016). Segmented histological

maps provided a groundtruth to compare the microstructural parameter estimates against.

The whole dataset including the ex vivo MRI as well as the segmented and unsegmented

histological images were downloaded from the White Matter Microscopy Database1.

4.2 Methods

4.2.1 Ex vivo cat spinal cord dataset

The data was originally acquired and presented by Duval et al. (2016). It is described here for

ease of reading. A cervical segment of cat spinal cord was collected post-mortem, perfused

and post-fixed with paraformaldehyde 4%, and two contiguous pieces 1cm in length were

extracted.

MRI preparation The first piece of tissue was washed in PBS for 5 days at 4◦C before MRI scan-

ning on an Agilent 7T animal scanner able to deliver gradient intensities of up to 600mT m−1

independently in each direction. In all MRI experiments, the tissue was enclosed in a glass

tube filled with buffered water and a custom-made solenoid coil was used for transmission

and reception (S11 ≈ 40dB). One axial slice of spinal cord was acquired with matrix size fixed

to 64x64. In-plane resolution was 0.16mm×0.16mm and the slice thickness was 0.20mm.

Diffusion-weighted MRI A single shot EPI sequence was used with BW = 250kH, TR = 2s.

Two diffusion protocols were considered, corresponding to a 2D and a 3D sampling of the

q-space.

In the 2D protocol summarized in Table 4.1, diffusion was probed at multiple time scales

by including 9 pairs of gradient duration δ and separation ∆, inducing time-dependence

in the DW-MRI signal (Burcaw et al., 2015). For each pair, 4 b0 images were acquired and

gradients were applied along two orthogonal directions in the x y plane perpendicular to the

axis of the spinal cord sample. Gradient intensities G were varied along the two directions in

respectively 100 and 95 increments. The maximum intensity reached 849mT m−1, which is

expected to enhance the sensitivity of the DW-MRI signal to the axon diameter (Dyrby et al.,

2013; Sepehrband et al., 2016). The total number of images was 1791.

In the 3D protocol, a traditional 4-shell HARDI protocol was employed with∆/δ= 30/3ms, G =
47.1,100.8,300,600mT m−1, b = 41,190,1680,6725s mm−2. The protocol was mainly used

for a Diffusion Tensor Imaging (DTI, Basser et al. (1994)) fit in order to correct for slight

1hosted on OSF: https://osf.io/abqtz/

76

https://osf.io/abqtz/


4.2. Methods

Table 4.1: 2-D sampling of the q-space for enhanced sensitivity to axon diameter distribu-
tion. For each of the nine combinations of (∆,δ), 100 magnetic gradients were applied along

the line of direction
[
1/
p

2,1/
p

2,0
]T

and 95 along the orthogonal direction
[−1/

p
2,1/

p
2,0

]T

with intensity G gradually incremented. The whole protocol comprises 1755 diffusion-
weighted images and 36 b0 acquisitions (1791 images in total).

∆[ms] δ[ms] TE [ms] G[mT m−1] b[s mm−2] #b0
1 7 3 36 9-849 0-2783 4
2 12 8 46 9-849 0-30780 4
3 15 8 46 9-849 0-40674 4
4 20 8 46 9-849 0-57163 4
5 25 8 47 9-849 0-73653 4
6 30 8 52 9-849 0-90142 4
7 35 8 57 9-849 0-106631 4
8 40 3 57 9-849 0-18087 4
9 40 8 62 9-849 0-123121 4

misalignment of the imaged spine.

Gibbs unringing was performed (Kellner et al., 2016) on both DW-MRI datasets, after which 15

DW images were discarded from each dataset based on visual inspection.

Macromolecular Tissue Volume imaging Macromolecular Tissue Volume (MTV), a proxy for

myelin content, was measured using the procedure described in Mezer et al. (2013). In order

to derive Myelin Volume from MTV, a scaling factor of 1.65 evaluated from data acquired on

monkey corpus callosum was used (Stikov et al., 2015).

Histology and segmentation The second piece of spinal cord was stained with osmium 4%,

dehydrated, embedded in paraffin, cut in 4µm slices and imaged using an optical 20x whole

slice microscope (Hamamatsu NanoZoomer 2.0-HT) with resolution 230nm/px. Axon segmen-

tation was performed automatically with the publicly available software AxonSeg (Zaimi et al.,

2016)2. After segmentation, the resolution of the images was decreased and the axon proper-

ties averaged over squares 150µm×150µm and registered to the MRI space. This produced

histological maps of number-weighted (NW) axon diameter mean (µd ) and standard deviation

(σd ), intracellular volume fraction (icvf), g-ratio, myelin volume fraction (mvf) and axon count

(Nax). Additionally, a volume-weighted (VW) axon diameter mean map was computed from

the NW map and a smoothed version of the icvf map ( ˜icvf) was created.

2https://github.com/neuropoly/axonseg
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4.2.2 Data analysis

Heterogeneous fingerprinting Monte Carlo simulations were performed in geometries con-

sisting of Ncyl = 1000 randomly-packed straight cylinders (Figure 4.1, left) with diameters

drawn from 109 different gamma distributions of pdf Γ
(
µd ,σd

)
with (number-weighted)

mean µd ∈ [0.4 : 0.4 : 8]µm and standard deviation σd such that σd /µd ∈ [0.2 : 0.1 : 0.8], and

intracellular volume fraction icvf ∈ [0.02 : 0.02 : 0.80]. After cylinder packing, geometries con-

taining one or more cylinders with a diameter over 20µm were discarded. This left N = 4120

single-fascicle configurations for the dictionary, with each fingerprint related to the microstruc-

tural parametersΩ= (µd ,σd , icvf) along a given orientation, from which the volume-weighted

diameter mean µd could also be computed. The cylinder packing and Monte Carlo simula-

tions of the random walk of molecules were performed by our in-house C/C++ code using

spatial gridding optimization for efficient intersection checking, similarly to Nedjati-Gilani

et al. (2017) and Hall et al. (2017). Both the 2D and the 3D diffusion protocols were considered.

In the case of a single fascicle of axons, the inverse problem of Section 3.2.4 becomes

w∗ = argmin

wfasc ≥ 0

wC SF ≥ 0

∥∥∥∥∥y−
[

Afasc(Ω1,ufasc), . . . ,Afasc(ΩN ,ufasc)|AC SF

]
·
[

wfasc

wC SF

]∥∥∥∥∥
2

2

subject to |wfasc|0 = 1,

(4.1)

where ufasc is the estimated fascicle orientation. Equation (4.1) was solved exactly in each

voxel through dictionary look-up with non-negativity constraints.

Homogeneous fingerprinting A slightly larger sampling of N = 986 combinations Ωi =(
µd ,i , icvfi

)
was performed compared to the hexagonal-packing dictionaries used in Chapter 3,

with icvf ranging from 0.03 to 0.87 in steps of 0.03. Estimation was similar to Eq. (4.1).

78



4.2. Methods

Figure 4.1: Realistic Monte Carlo simulations for microstructure estimation. Example of a
random packing of straight cylinders with heterogeneous diameters (left) and of a regular
hexagonal packing of identical cylinders (right). The Monte Carlo simulations of the self-
diffusion of water molecules performed in those geometries produced the diffusion signatures
or fingerprints used in the estimation.

AMICO In AMICO (Daducci et al., 2015), the intra-axonal contribution is assumed to arise

from a combination of straight parallel cylinders with diameters sampled at Nin values

d1, . . . ,dNin , with dNin = 20µm to match the heterogeneous fingerprinting approach. The

extra-axonal signal is separately modeled by a zeppelin-like diffusion tensor with perpendic-

ular diffusivity D⊥ sampled at Nex values D⊥1, . . . ,D⊥Nex , where the maximum value D⊥Nex

depends on the intrinsic parallel diffusivity D via a tortuosity model. AMICO solves, in each

voxel,

ŵ = argmin
w≥0

∥∥∥∥∥y−
[

Acyl(d1), . . . ,Acyl(dNin )|Azep(D⊥1), . . . ,Azep(D⊥Nex )
]
·
[

win

wex

]∥∥∥∥∥
2

2

+λ‖w‖2
2 ,

where Acyl and Azep are the signal contributions of individual cylinders and zeppelins respec-

tively and where λ is a regularization parameter (compare to Eq. (4.1)). From ŵ = [ŵin,ŵex]T ,

one obtains the icvf = |ŵin|1 / |ŵ|1 of the voxel, the volume-weighted mean axon diameter

µd =∑Nin
j=1 ŵin, j d j and a standard deviation σd after converting to the number-weighted ADD

ŵin, j ←
ŵin, j /d 2

j∑Nin
k=1 ŵin,k /d 2

k

.

Model comparison A region of interest (ROI) in the white matter was defined as those voxels

in which the histology-derived axon count was non-zero and the myelin volume fraction was

over 0.20. All three estimated models ignored any CSF contribution (wcsf = 0) and used an

intrinsic diffusivity D computed from an initial DTI fit in each voxel using the 3D protocol and

averaged over all voxels of the ROI. The fascicle orientations were estimated from the DTI fit

too but were kept individually in each voxel. Voxel-wise correlations and mean absolute errors
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(MAE) were computed between histology-derived µd ,σd , icvf and the corresponding model

indices.

4.3 Results

Our heterogeneous microstructure fingerprinting was the only model to produce statistically-

significant correlations for the three axonal indices, as shown in Figures 4.2 and 4.3.

The axon diameter indices µd of the fingerprinting approaches exhibited slightly lower MAEs

and higher correlations than AMICO. The estimates of the heterogeneous fingerprinting ap-

proach were more evenly distributed around the histological values while the homogeneous

fingerprinting and AMICO underestimated larger diameters. In voxels where the VW distribu-

tion mean computed from segmented histology was greater than 5µm, our heterogeneous

fingerprinting approach yielded a MAE of 0.726µm, significantly lower than the homogeneous

fingerprinting and AMICO approaches, which respectively obtained 1.075µm (p = 5.52×10−6)

and 1.45µm (p < 1×10−16), where the p-values were obtained from a two-sample, single-

tailed t-test.

Our approach yielded estimates of σd with higher correlation and lower MAE than AMICO,

in which all the σd estimates neared zero, suggesting a degenerate optimum with one single

dominant cylinder j with diameter d j for the intracellular signal: |ŵin|1 ≈ ŵin, j . AMICO

obtained a stronger correlation for the icvf index but a larger MAE due to systematically

underestimating the histological values.

For the heterogeneous fingerprinting approach, the MAEs indicated that the error on the

estimated mean diameter was of the order of half a micron, the error on the standard deviation

of the order of a third of a micron and the error on the icvf was about 0.045.

Table 4.2 and Figure 4.4 further investigate the specificity of heterogeneous fingerprinting by

displaying the correlations, within our white matter ROI, between histological measurements

and the indices obtained by the heterogeneous fingerprinting approach. The highest correla-

tion between a histological variable and our NW µd occurred with its NW µd counterpart; for

our NW σd it occurred with the VW µd , closely followed by its NW σd counterpart; for our VW

µd it occurred with its VW µd counterpart; and for our icvf it occurred with the smoothed icvf

from histology (see boldfaced values in Table 4.2).
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Figure 4.2: Quantitative estimation of microstructural ADD and density enabled by het-
erogeneous fingerprinting. Maps of histological measurements (1st column), Monte Carlo
fingerprinting with heterogeneous diameters (2nd column), Monte Carlo fingerprinting with
hexagonally-packed identical cylinders (3rd column) and AMICO (4th column) on the 2D slice
of fixed cat spinal cord. The reported Pearson correlation coefficient (r ), associated p-value
(not corrected for multiple comparisons) and mean absolute error (MAE) are between the
model indices and the reference histology values for the volume-weighted (VW) axon diameter
mean µd (1st row, in µm), the axon diameter standard deviation σd (2nd row, in µm) and the
intra-axonal volume fraction icvf (3rd row).
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Figure 4.3: Quantitative estimation of microstructural ADD and density enabled by het-
erogeneous fingerprinting. Agreement between the reference histological measurements
(x-axes) and the estimated model parameters (y-axes) for the volume-weighted (VW) diameter
mean µd (1 st row, in µm), standard deviation σd (2nd row, in µm) and intra-axonal volume
fraction icvf (3rd row). The voxel-wise Pearson correlation coefficient (r ), associated p-value
(not corrected for multiple comparisons) and mean absolute error (MAE) are reported for
each comparison.
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Figure 4.4: Heterogeneous fingerprinting estimates show high correlations with biologi-
cally relevant parameters. Pearson correlation coefficients within histological measurements
(top left), within the indices of our heterogeneous fingerprinting approach (bottom right) and
between histology and the proposed approach (top right or bottom left). See Table 4.2 for
exact values. NW and VW indicate number- and volume-weighted respectively.
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Table 4.2: Heterogeneous fingerprinting estimates show high correlations with biologically
relevant parameters. Pearson correlation coefficients within and between histological mea-
surements and the estimates of the proposed approach. Boldfaced values highlight the highest
correlations, for each of the four fingerprinting indices, with histological variables. NW and
VW indicate number- and volume-weighted respectively.

Histology
Heterogeneous
fingerprinting

NW µd NW σd VW µd icvf ˜icvf mvf g Nax NW µd NW σd VW µd icvf
NW µd 1.000 0.648 0.830 0.540 0.232 0.406 0.342 -0.501 0.183 0.289 0.401 0.046
NW σd 1.000 0.951 0.163 -0.046 0.081 0.209 -0.582 0.071 0.327 0.397 -0.047
VW µd 1.000 0.292 0.046 0.187 0.275 -0.610 0.097 0.339 0.422 -0.017

icvf 1.000 0.673 0.953 0.368 0.296 0.135 0.053 0.096 0.256
˜icvf 1.000 0.672 0.407 0.493 0.064 0.026 0.040 0.506

mvf 1.000 0.471 0.454 0.120 -0.045 -0.029 0.304
g 1.000 0.365 0.015 0.018 -0.007 0.380

Nax 1.000 -0.071 -0.315 -0.411 0.270
NW µd 1.000 -0.514 -0.005 -0.165
NW σd 1.000 0.833 0.427
VW µd 1.000 0.377

icvf 1.000

4.4 Discussion

Estimation of the ADD AMICO has adopted a non-parametric approach to estimate a dis-

cretized version of the whole ADD while heterogeneous fingerprinting a priori imposed a

smooth Gamma distribution on the diameters of the cylinders used in the Monte Carlo sim-

ulations. The results obtained in our experiment suggested the potential of using such a

prior parameterization of the ADD for regularizing the model fitting. Despite its theoretical

promise to reconstruct any distribution non-parametrically, AMICO consistently obtained

degenerate distributions with one single cylinder contribution having a non-zero weight. This

led to zero standard deviations in almost all voxels, which was inconsistent with histological

measurements. Homogeneous fingerprinting was by definition unable to capture diame-

ter heterogeneity but its estimates of the mean of the ADD were very close to those of the

heterogeneous approach, which highlights the value of its unique diameter index.

Estimation of the intracellular volume fraction One of the main differences between AM-

ICO and the fingerprinting approaches is the separation of the intra- and extra-axonal signal

contributions. AMICO consistently underestimated the icvf index and suffered from artifac-

tual transfer of weight between win and win. Preventing this requires careful tuning of the

regularization parameter λ prior to estimation whereas in fingerprinting approaches, the rela-

tive weights of the intra- and extra-axonal contributions are constrained in the Monte Carlo

simulations directly. AMICO may also have suffered from the use of diffusion tensors for the
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extra-axonal signal. Tensors fundamentally ignore diffusion hindrances and time-dependence

effects(Burcaw et al., 2015), which become especially visible when multiple diffusion times

are used such as in our experiments. Diffusion hindrance and time-dependence are naturally

handled by MC simulations. This could be improved in the AMICO framework in the future by

incorporating more advanced analytical model of extra-axonal diffusion based on generalized

higher order tensors(Romascano et al., 2019).

Limitations The automatic segmentation of the histological images was subject to algorithm-

specific bias and was ultimately limited by the precision of the optic microscope and the

thickness of the tissue slice. The marked difference between the icvf and the smoothed icvf

correlations indicated that the results were sensitive to that aspect of the data processing.

The reference histological values were all within fairly narrow ranges, which is typical of healthy

tissue but prevented us from testing our models on wide range of possible parameter values.

For instance, as apparent in Figure 4.3, all histologically-computed icvf values were below

0.40. In a small range, correlations can be severely impacted even at moderate absolute errors,

which suggests that the reported correlation coefficients may have been underestimated.

Our heterogeneous fingerprinting approach ignored important microstructural features such

as axonal undulation and myelin sheaths. If accounted for, these features may help further

improve the estimation of the remaining tissue parameters.

4.5 Conclusion

On ex vivo cat spinal cord data imaged at 7T with ultra-high gradient intensities, indices of

mean and standard deviation of the ADD and of axon density obtained by our new hetero-

geneous fingerprinting approach positively correlated with histological measurements. Our

method outperformed a simpler fingerprinting approach assuming a homogeneous packing

of identical cylinders. It also compared favorably with the AMICO framework, which relies on

approximate analytical expressions for the signal.

Future work will focus on incorporating a myelin sheath in our single-fascicle tissue model.

Prior information on myelin volume fraction obtained from MTV imaging, for instance, could

be used to improve the estimation of the ADD and intra-axonal fraction. Hexagonal-packing

with released intrinsic diffusivity or random packings of identical cylinders would also be

interesting to compare to heterogeneous fingerprinting, as those approaches would have an

indentical number of parameters. Finally, performing the same experiments with oscillating-

gradient waveforms able to probe smaller length scales than PGSE acquisitions will likely lead

to interesting observations (Drobnjak et al., 2016; Mercredi and Martin, 2018).
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5 Accelerated microstructure finger-
printing using neural networks

5.1 Introduction

The dictionary matching approach presented in Chapters 3 and 4 offered the benefit of

increased robustness in the inverse problem compared to traditional continuous optimization

while leveraging the superior modeling ability of Monte Carlo simulations. As hinted at in

Section 3.5.5 however, an important drawback of the exhaustive fingerprint search presented

in Step 5 of the inverse problem (see Eq. (3.15) in Section 3.2.4) is its poor scaling with the size

of the dictionary, especially in brain voxels containing crossing fascicles. If N represents the

number of fingerprints in a single-fascicle dictionary and K the number of fascicles in a voxel,

the complexity of the runtime estimation was shown to be O (N K ). Since N grows exponentially

in the number of parameters P describing a single fascicle of axons, the computational

requirements can quickly become intractable for crossing fascicles when more complex

models are used such as the one selected in Chapter 4. This will eventually become a bottleneck

for future large-scale population studies.

Deep neural networks emerge as natural candidates to overcome this issue. They are able to

learn complex mathematical mappings given enough training data, generalize well to unseen

data and have a very efficient forward evaluation pass once training has been performed. Their

major disadvantage is their black-box like behavior as their inner workings are sometimes

difficult to interpret in terms of the data (Schmidhuber, 2015).

In the field of Magnetic Resonance Fingerprinting, the dictionaries initially used to estimate

two tissue parameters (T1, T2) have been replaced by new dictionaries several orders of magni-

tude larger in order to include more complex tissue representations. Speed-up factors between

300 and 5000 have been reported by Cohen et al. (2018) using an extremely simple two-layer

perceptron with 300 hidden units per layer, trained on a pre-computed dictionary of 69000

fingerprints. A similar network architecture with the addition of 1-D batch normalization

layers was used by Zhang et al. (2019) and trained on synthetic data artificially corrupted by

noise. In their preliminary results, a speed-up factor of 7500 was reported for the estimation of

4 tissue parameters compared to exhaustive matching using a dictionary of 6149000 entries.
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Data-driven approaches have also been investigated with networks trained with conventional

MRI maps such as T1, T2 or ADC used as training labels. The task is then to learn the mapping

from the fast, potentially under-sampled temporal sequences used in MR fingerprinting and

those conventional labels, taken as groundtruth tissue properties (Pirkl1 et al., 2019).

In microstructure imaging based on diffusion-weighted MRI (DW-MRI), data-driven deep

learning has been used to learn the parameters of the NODDI model from under-sampled

data and thereby reduce the required scan time while accelerating the estimation (Golkov

et al., 2016; Ye, 2017; Gibbons et al., 2019). More traditional machine learning techniques

such as random forest regressors have also been used to learn a mapping from a dictionary

of Monte Carlo signals to the tissue parameters (Nedjati-Gilani et al., 2017; Hill et al., 2019;

Ginsburger et al., 2019b). In those approaches, Diffusion Tensor Imaging (DTI) and spherical

harmonics features were first extracted from the DW-MRI signal to avoid having to generate

a new dictionary and retrain the regressor for every new acquisition protocol. This came at

the cost of partially losing the advantage of modeling the signal with Monte Carlo simulations

however. In addition, spherical harmonics usually require HARDI-like acquisition protocols,

which can prove restrictive.

In this chapter, a 2-stage estimation procedure is introduced, designed to increase efficiency

and preserve accuracy while maintaining sufficient interpretability. The first stage is a simple

and efficient non-negative (linear) least squares (NNLS) estimation on the multiple-fascicle

dictionary used in the usual estimation procedure described in Section 3.2.4. Its output vector

of K N non-negative entries can be interpreted as a feature vector in the space of fingerprints,

indicative of the relative weight of each Monte Carlo fingerprint in the DW-MRI signal. In

the second stage, the NNLS output (the feature vector) is fed to a neural network with an

architecture reflective of the multi-fascicle nature of the signal and trained on a synthetic

dataset of 500000 DW-MRI fingerprints. The final microstructural parameters of each fascicle

are then estimated almost instantaneously with a single forward pass of the network.

The framework was tested on a variety of unseen data after training, both synthetic and in

vivo. Its performance both in parameter accuracy and in execution time was systematically

compared to the reference dictionary matching procedure presented in Chapter 3.

5.2 Methods

5.2.1 Datasets

The three following test datasets were used throughout our experiments.

Synthetic HCP dataset This is the dataset of 86400 synthetic crossing-fascicle voxels de-

scribed in Experiment 2.A. of Section 3.3.2.3 for validation of the reference dictionary match-

ing method in areas of crossing fascicles. The two fascicles in each voxel were hexagonally-

88



5.2. Methods

packed straight cylinders described by an identical radius index r1 = r2 = r and density index

f1 = f2 = f , with volume fractions ν1 and ν2 summing to 1, crossing at an angle 30, 60 or 90◦.

The DW-MRI signals were simulated using the multi-shell HARDI, high-gradient MGH-HCP

protocol (Setsompop et al., 2013) described in Section 3.3.2.1, which contains M = 512 DW-

MRI measurements. The signals were corrupted with artificial Rician noise with SNR levels

varying between 5 and 150. The single-fascicle dictionaries provided to the NNLS estimation in

each voxel had size N = 782 and were intentionally deviated from the groundtruth orientations

to assess the effect of angular errors of 0, 5 and 10 degrees.

Synthetic Rodent dataset This dataset was simulated exactly like the Synthetic HCP dataset,

except that the DW-MRI signals were simulated using the multi-shell HARDI, high-gradient

Rodent protocol described in Section 3.3.1.1, which was originally designed for spinal cord

imaging. Note that T2 relaxometry values for a B0 field strength of 11.7T were used, as detailed

in Sections 1.2.1 and 3.3.2.2.

In vivo HCP dataset The same healthy subject as in Section 3.3.2.4 was selected from the

MGH Adult Diffusion data release1 (Setsompop et al., 2013).

5.2.2 First stage: blind NNLS estimation

Given a vector y ∈ RM of DW-MRI measurements and assuming K fascicles with orienta-

tions u1, . . . ,uK have been detected in Step 3 of our estimation procedure (Section 3.2.4), the

following NNLS problem was solved:

ŵ = argmin
w≥0

∥∥y−D ·w
∥∥2

2 ,

where the optimization completely ignored the structure of the dictionary D =
[

F1| . . . |FK
]

(with optionally a column for isotropic CSF contribution) in which each Fk is the pre-computed

single-fascicle dictionary rotated along the estimated orientation uk , with 1 ≤ k ≤ K .

The minimization was performed via the well-known active-set algorithm (Lawson and Han-

son, 1995), using an efficient in-house version which notably avoids computing the costly

matrix-matrix product DT D. In this algorithm, the K N variables of the problem are either

forced to zero (the active set, because they make the inequality constraints active) or let free

(the free set). At each iteration, the (zero) variable from the active set having the most negative

partial derivative is moved to the free set and an unconstrained least squares problem is solved

considering just the current subset of free variables. If the new solution is not acceptable (i.e.,

some free variables turned negative), an intermediate iterate is found between the previous

solution (which was acceptable) and the current, non-acceptable one. The algorithm stops

1https://www.humanconnectome.org/study/hcp-young-adult/document/mgh-adult-diffusion-data-acquisition-details
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when all the zero variables in the active set have positive or zero partial derivatives.

Since the number of variables is finite and the objective decreases at each iteration, the

algorithm always converges. Because the problem is convex, the optimum is always global. If

the solution ŵ is sparse (i.e., the optimal free set has size p << K N ), the algorithm is made

particularly efficient by selecting ŵ = 0 as initial iterate, which is always an acceptable solution

and corresponds to an empty free set. There is no theoretical guarantees on the number

of iterations until convergence to the optimal free set; in fact the worst-case complexity∑K N
i=1

(K N
i

)
behaves exponentially in N . However, the optimal free set is usually found quickly

in practice (Slawski and Hein, 2011), which is reminiscent of the Simplex algorithm for linear

optimization programs (Dantzig et al., 1955). Furthermore, the free set typically contains p

variables or fewer, making the unconstrained least squares problems very fast to solve at each

iteration.

5.2.2.1 Experiment 1.A. Sparsity of the NNLS output on synthetic data

NNLS estimation was performed on the 86400 synthetic crossing-fascicle configurations of the

Synthetic HCP dataset described above. The number of non-zero weights of the NNLS output

ŵ was averaged over all noise repetitions and groundtruth parameter values and reported for

each fascicle separately, as a function of increasing SNR.

5.2.2.2 Experiment 1.B. Sparsity of the NNLS output on in vivo data

NNLS estimation was performed in those 217373 white matter voxels of the selected HCP sub-

ject in which the ball-and-stick estimation (Step 3 of the estimation procedure in Section 3.2.4)

detected two crossing fascicles. Histograms of the number of non-zero weights was reported

for each fascicle separately.

5.2.2.3 Experiment 1.C. Complexity of first-stage NNLS vs dictionary size

This experiment aimed at investigating the runtime complexity of the NNLS estimation as

a function of the size N of the single-fascicle dictionary. Because of its large size N = 5378,

the dictionary F0 = [
A0

1, . . . ,A0
N

]
incorporating a random packing of cylinders with diameter

heterogeneity and based on the 3D, 4-shell HARDI protocol from Chapter 4 was considered.

That protocol contains M = 781 DW-MRI measurements. NNLS estimation was performed for

N ranging from 782 (the size used in Chapter 3 and in the remainder of this Chapter) to 5378

by randomly selecting subsets of the dictionary columns. For larger values of N , a dummy

dictionary with entries uniformly distributed in [0,1] was generated, independently for each

repetition. Experiments up to N = 55000 were performed.

For each dictionary size N , the following procedure was repeated 50 times. The dictionary was

rotated along two directions u1 and u2 randomly selected on the 3D sphere with a crossing
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angle fixed to 30◦, one single fingerprint was randomly selected (1 ≤ j1, j2 ≤ N ) from each

of the two rotated single-fascicle dictionaries F1 and F2. Superposition was performed as

y = ν1A1
j1
+ν2A2

j2
where the volume fraction ν1 was uniformly distributed in [0.2,0.8] and

ν2 = 1−ν1. The final synthetic DW-MRI signal y was obtained after corruption by Rician noise

with signal-to-noise ratio (SNR) uniformly distributed in [5,50]. The execution time of the

NNLS estimation was recorded and averaged over the 50 repetitions.

5.2.3 Second stage: neural network regression

In the second stage of the accelerated estimation, the output ŵ of the first-stage NNLS estima-

tion was passed through the neural network depicted in Figure 5.1. Its architecture exploited

the multi-fascicle nature of the problem: each sub-vector ŵFk of ŵ was first processed by

a “split” independent multi-layer perceptron (MLP) containing N input units followed by(
Lsplit −1

)
fully-connected layers of Hsplit hidden units each (blue in the Figure). Splitting the

input had the advantage of dramatically reducing the number of model parameters while

accelerating the learning of fascicle-specific features by preventing coadaptation of the model

weights (Hinton et al., 2012). The outputs of the split networks were merged and rescaled

in a 1-dimensional batch normalization layer (Ioffe and Szegedy, 2015). A final MLP with

Lfinal layers containing Hfinal hidden units each (green in Figure 5.1) performed the final

regression task and computed the microstructural features of each fascicle. The output of

all fully-connected layers of all sub-networks was systematically passed through a rectified

linear unit (ReLU) layer (not shown in Figure 5.1). Before splitting, ŵ was made to have zero

mean and unit variance, which is known to improve the back-propagation procedure used

to train deep neural networks (Glorot and Bengio, 2010). The network possessed 208006 free

parameters, which had to be learned during training.

5.2.3.1 Network training

Training set A total of 500000 synthetic voxel acquisitions were simulated from the hexagonal-

packing Monte Carlo dictionary F0 = [
A0

1, . . . ,A0
N

]
containing N = 782 fingerprints used in

Chapter 3, generated with the HCP protocol. For each voxel, two dictionary fingerprints

A0
j1

and A0
j2

were selected randomly ( j1, j2 ∈ {1 . . . N }) and rotated along unit directions u1

and u2 uniformly distributed on the 3D sphere with a minimum crossing angle of 15◦. The

rotated signals were weighted by volume fractions ν1 uniformly distributed in [0.15,0.85] and

ν2 = 1−ν1 and corrupted by Rician noise with SNR uniformly distributed in [4,100]. Those

voxels were therefore similar in their construction to the Synthetic HCP dataset described

above; however they were simulated completely independently from it with broad parameter

ranges informed by the physics of the problem rather than by the properties of that specific

dataset. The first-stage NNLS estimation was performed on each of the simulated DW-MRI

acquisitions, with a dictionary D containing F0 rotated along the groundtruth orientations u1

and u2 (i.e., the orientations were not estimated from the data). The NNLS outputs ŵ ∈ R2N

served as training data samples.
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Figure 5.1: Deep split-layer perceptron to learn microstructural properties from an NNLS
feature vector. The feature vector ŵ from the first-stage NNLS estimation is split into the K
sub-vectors corresponding to each voxel fascicle, which are fed to independent multi-layer
perceptrons. The outputs are recombined and rescaled in a 1-D batch normalization (BN)
layer. A global multi-layer perceptron performs the final regression, outputting the volume
fraction ν, radius index r and density index f of each fascicle. Solid fills indicate input or
output units.

The training targets associated with each sample were the groundtruth microstructural prop-

erties of each fascicle
[
ν1,r1, f1,ν2,r2, f2

]T rescaled so that each entry had a range centered

around zero.

Training strategy Network training was performed with the open-source PyTorch library2 in

Python 3. Stochastic gradient descent using minibatch size 200 was performed for 5 epochs

with gradient steps of lengths commanded by the AdaGrad optimizer(McMahan and Streeter,

2010; Duchi et al., 2011) with initial learning rate 0.01. The loss function was the mean

squared error (MSE) on the 3K = 6 output targets. Based on performance of the network on

an independent validation set of 3000 samples, the architecture of the network was fixed to

Lsplit,Lfinal = 2 and Hsplit, Hfinal = 100. All training was performed on a standard Intel (Santa

Clara, CA) Core i7 processor.

2https://pytorch.org/
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5.3. Results

5.2.3.2 Experiment 2.A. Estimation of microstructural properties on synthetic data

Generalization of the neural network to unseen synthetic data was tested on the Synthetic

HCP dataset described above. The input to the network was the output of the first-stage NNLS

estimation performed in Experiment 1.A. The errors between the 2-stage estimates and the

groundtruth parameter values were computed and compared to the errors of the reference

exhaustive dictionary matching.

5.2.3.3 Experiment 2.B. Estimation of microstructural properties on in vivo data

Generalization of the neural network to in vivo data, after training on synthetic data, was

tested on the in vivo HCP dataset described above. The input to the network was the output

of the first-stage NNLS estimation performed in Experiment 1.B. The estimates of apparent

radius and density index were collected along all axons traversing the corpus callosum (CC), as

described in Section 3.3.2.4. The network estimates were compared to the estimates produced

by the reference exhaustive dictionary matching.

5.2.3.4 Experiment 2.C. Generalization to unseen experimental conditions

This experiment aimed at demonstrating the ability of the neural network to perform protocol

transfer, i.e. to generalize to data acquired with a different protocol than in training. It also

assesses the relevance of the NNLS weights as feature vectors, verifying that the NNLS weights

are related to the microstructural configurations in the dictionary rather than to the specific

DW-MRI protocol used to generate the dictionary.

The Synthetic Rodent test set described above was used for that purpose. It was fed to the

first-stage NNLS estimation, which produced an output feature vector given to the neural

network pre-trained independently on the HCP-like training set data. The errors between the

2-stage estimates and the groundtruth parameter values were computed and compared to the

errors of the reference exhaustive dictionary matching.

5.3 Results

5.3.1 First stage: blind NNLS estimation

5.3.1.1 Experiment 1.A. Sparsity of the NNLS output on synthetic data

Figure 5.2 shows the mean number of non-zero weights detected by the first-stage NNLS

estimation for fixed ν1 = 0.3,ν2 = 0.7, crossing angle α = 30◦ and no angular mismatch be-

tween the orientations of the groundtruth fascicles and the rotated dictionaries supplied to

the optimizer. Varying the reference crossing angle had virtually no effect. Increasing the

systematic angular error shifted the curves downward (not shown), similarly to the decrease
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observed with increasing SNR. Over all 86400 independent experiments, the N entries in ŵ

corresponding to a given fascicle were never identically zero, i.e., no fascicle was ever missed.

The NNLS solutions were very sparse with a mean number of non-zero weights in ŵ consis-

tently below 5 (whereas this number could have theoretically been any value up to N = 782).

The number of positive weights was always greater for the fascicle with larger groundtruth

volume fraction.
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Figure 5.2: A small number of fingerprints are sufficient to optimally reconstruct noisy
synthetic DW-MRI signals. Number of non-zero weights found by NNLS estimation vs signal-
to-noise ratio (SNR). Each data point is an average over all 32 combinations of groundtruth
values for r and f and 10 noise repetitions.

5.3.1.2 Experiment 1.B. Sparsity of the NNLS output on in vivo data

Similarly to the synthetic results of Experiment 1.A, the results on the in vivo HCP data shown

in Figure 5.3 suggest that the DW-MRI signal is naturally sparse in the space of fingerprints.

A fascicle initially detected by the ball-and-stick estimation was only missed in one of the

217373 crossing-fascicle voxels. The number of non-zero NNLS weights never exceeded 8.
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5.3. Results

Figure 5.3: A small number of fingerprints are sufficient to optimally reconstruct in vivo
DW-MRI signals. Number of non-zero weights found in each single-fascicle sub-dictionary by
the NNLS estimation. Data for voxels from the HCP-MGH subject selected in Section 3.3.2.4
in which fascicle crossings were detected by the ball-and-stick estimation (in Step 3 of the
estimation procedure, see Section 3.2.4). Fascicle 1 is the fascicle which was assigned the
largest weight during the ball-and-stick estimation.

5.3.1.3 Experiment 1.C. Complexity of first-stage NNLS vs dictionary size

As suggested in Figure 5.4, the computational complexity of the NNLS estimation appeared to

be linear in the number of entries N in a single-fascicle dictionary. At N = 782 (the size used

in all other experiments), the average runtime was 11.1ms and 7.4ms per voxel respectively,

depending on whether random dummy dictionaries were used or not. Note that this execution

time was also affected linearly by the number of measurements M in the protocol (M = 781 in

this particular experiment).
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Figure 5.4: NNLS complexity scales linearly with dictionary size N in crossing-fascicle set-
tings. Mean NNLS complexity appears consistently O (N ) through single-fascicle dictionary
sizes up to N ≈ 50000. The black dashed vertical line indicates the size of the hexagonal-
packing single-fascicle dictionary used in Chapter 3 on the rat spinal cord and the HCP
datasets.

5.3.2 Second stage: neural network regression

5.3.2.1 Experiment 2.A. Estimation of microstructural properties on synthetic data

Figure 5.5 shows the mean absolute error (MAE) in estimated microstructural features and

Figure 5.6 the distribution of the estimates at SNR=25, for a fixed crossing angle α = 30◦.

The results for the other crossing angles were similar. Exhaustive dictionary matching only

outperformed the fast 2-stage procedure for the estimation of the apparent radius index r .

This was due to an overestimation of the small radius index values by the 2-stage method

in fascicles with low groundtruth volume fraction (see top left of Figure 5.6). The difference

between the two methods diminished in fascicles with larger groundtruth volume fraction.

Remarkably, the 2-stage estimation outperformed the reference dictionary matching in the

estimation of the apparent density index f and volume fraction ν1 in most scenarios with

SNR ≤ 100. In that noise regime, the MAE on f was lower for the 2-stage procedure in 475/486

cases; in 239/243 cases for the MAE on ν1. Training took about 18 minutes on a standard Intel

Core i7 processor.
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Figure 5.5: Our fast two-stage estimation provides accurate microstructural estimates on
unseen synthetic data. Mean absolute error on each fasicle’s radius index r1 and r2, den-
sity index f1 and f2 and on the physical volume fraction occupied by the first fascicle ν1.
The groundtruth volume fraction of the second fascicle decreases from left to right and the
groundtruth crossing angle was fixed to 30◦. Exhaustive dictionary matching (DM) is compared
to our accelerated 2-stage procedure.
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Figure 5.6: Our fast two-stage estimation provides accurate microstructural estimates on
unseen synthetic data. Snapshot at SNR=25 of the mean (markers) and interquartile range
(vertical lines) for the neural network estimates of each fasicle’s radius index r1 and r2 and
density index f1 and f2. In the box-plots for the estimates of ν1, the physical volume fraction
occupied by the first fascicle, the whiskers indicate the minimum and maximum values in the
data. The groundtruth volume fraction of the second fascicle decreases from left to right and
the groundtruth crossing angle was fixed to 30◦.
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5.3.2.2 Experiment 2.B. Estimation of microstructural properties on in vivo data

As reported in Table 5.1, the discrepancies between the estimates of the exhaustive dictionary

matching and those of the fast 2-stage procedure were larger on the in vivo dataset than

they were on the synthetic data of Experiment 2.A. Although a systematic overestimation was

observed, the method was able to detect the same trends in apparent axon radius and density

indices, which has been discussed in Section 3.5.2.

Table 5.1: Our fast 2-stage estimation detects the low-high-low trend in apparent radius
and density index in CC streamlines. Mean and standard deviation over all local fascicles or
peaks assigned to streamlines passing through five sub-regions of the corpus callosum (CC),
for the apparent axonal radius index r (in µm) and density index f . The exhaustive dictionary
matching (DM) estimates are compared to those of the fast 2-stage procedure.

r (DM) r (2-stage) f (DM) f (2-stage)
anterior CC 4.06±0.87 5.48±0.83 0.599±0.12 0.695±0.10
mid-anterior CC 4.27±0.73 5.56±0.75 0.636±0.12 0.731±0.09
central CC 4.19±0.90 5.48±0.76 0.627±0.12 0.712±0.10
mid-posterior CC 4.22±0.93 5.35±0.83 0.645±0.13 0.719±0.10
posterior CC 3.87±0.99 5.21±0.94 0.581±0.14 0.649±0.11

5.3.2.3 Experiment 2.C. Generalization to unseen experimental conditions

The second-stage neural network exhibited good protocol transfer qualities. Similarly to

Experiment 2.A on the HCP protocol, an overestimation of small apparent radius index values

was observed, especially for fascicles with lower groundtruth volume fraction (see top left

of Figure 5.7). With SNR ≤ 100 however, the 2-stage procedure outperformed the reference

dictionary matching, exhibiting smaller MAEs for f in 461/486 cases and for ν1 in 227/243

cases, without having ever seen any data related to the Rodent protocol.
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Figure 5.7: Our neural network generalizes to DW-MRI data from a different protocol. Re-
sults of our pre-trained neural network on synthetic data simulating a different scanner with a
different protocol. Snapshot at SNR=25 of the mean (markers) and interquartile range (vertical
lines) for the neural network estimates of each fasicle’s radius index r1 and r2 and density
index f1 and f2. In the box-plots for the estimates of ν1, the physical volume fraction occupied
by the first fascicle, the whiskers indicate the minimum and maximum values in the data.
The groundtruth volume fraction of the second fascicle decreases from left to right and the
groundtruth crossing angle was fixed to 30◦.

5.4 Discussion

5.4.1 Efficiency

Since the time taken for a forward pass of the second-stage neural network is extremely short,

the computational complexity of the proposed 2-stage method is dominated by the first-stage

NNLS. Our implementation was shown to be very efficient owing to the natural sparsity of the
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data in the space of fingerprint weights (Experiments 1.A and A.B). Looking at the dictionary

matching step alone, our method provided a speed-up factor of about 145 (Table 5.2) at fixed

single-dictionary size N = 782, for K = 2 crossing fascicles. As suggested in Experiment 1.C,

the linear complexity scaling of NNLS is likely to provide considerably larger speed-up factors

as N further grows.

In our experiments, the rotation routine required in Step 4 of the estimation actually became

the bottleneck. Taking rotations into account decreased our speed-up factor to about 26, as

indicated in Table 5.2. However, the complexity of rotating a dictionary is simply proportional

to the number of fingerprints in the dictionary; the speed-up factors will therefore keep

increasing as N increases. An end-to-end deep learning solution where a mapping is learned

from the DW-MRI signal directly to the microstructural parameters could be considered to

entirely bypass the rotation stage.

Table 5.2: Our 2-stage estimation enables speed-ups even at moderate dictionary sizes. Av-
erage execution time in a voxel of the in vivo HCP dataset containing two crossing fascicles for
the exhaustive dictionary matching (DM) and the proposed 2-stage acceleration. The rotation
routine is identical in the two methods. The estimation time of the 2-stage is the sum of the
NNLS estimation and the neural network (NN) forward pass. Quantities expressed in seconds
and measured on a standard laptop equipped with an Intel Core i7 processor.

exh. DM 2-stage Speed-up
Rotations 0.02638 0.02638 1
Estimation 0.79158 0.00534 (NNLS) + 9.79e −5 (NN) 145.65
Rot. + Est. 0.81795 0.03181 25.71

5.4.2 Accuracy

The neural network trained on a synthetic dataset of HCP-like acquisitions proved to generalize

well to unseen synthetic data (Experiment 2.A), including on data simulated using completely

different protocol and experimental parameters (Experiment 2.C). Remarkably, the network

even outperformed the reference dictionary matching in a majority of realistic settings. This

suggests that the feature vectors stemming from the NNLS estimation contained enough

information about their underlying microstructure. If our model were perfect, only one

diffusion fingerprint per fascicle would be needed to reconstruct the signal. The sparsity

observed in Experiments 1.A and 1.B was therefore a strong indication of the relevance of the

selected single-fascicle model. More marked discrepancies were observed between the full

dictionary matching and the fast 2-stage estimator in the HCP data, even though the general

trends were conserved. Evaluations on larger datasets will be required to fully validate the

accelerated method for large-scale population studies.
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5.4.3 Limitations

Training on synthetic data Using synthetic data for training the second-stage neural network

implies that the simulation of a dictionary of Monte Carlo signals cannot be avoided during

the pre-computing stage. However, given the good generalization performance of the network,

the granularity of the underlying single-fascicle parameters can likely be coarser and the size

of the reference dictionary reduced.

Size of the neural network As N increases, the size of the network will be largely dominated

by the first fully-connected layer of each split MLP. To circumvent this issue, a reduced number

of input units could be considered, such as for instance the non-zero weights of the vector ŵ

produced by the NNLS along with their associated microstructural parameters. The maximum

number of input units could be determined from a sparsity analysis on a subset of pre-acquired

data, as in Experiment 1.B. Recurrent neural networks adapted to variable input size such

as Long-Short Term Memory (LSTM) units (Hochreiter and Schmidhuber, 1997) will also be

considered.

Estimated orientations Given the design of the Synthetic HCP dataset and the way training

was performed, the network was only confronted to angular errors of 0, 5 and 10 degrees

during training. This may account for some of the differences observed on the in vivo HCP

dataset compared with the reference dictionary matching.

5.5 Conclusion

As summarized in Figure 5.8, our accelerated fingerprint method exhibits O (K N ) runtime

complexity compared to the O
(
N K

)
of the reference method while preserving similar accu-

racy in the estimated microstructural parameters. A reasonable level of interpretability was

maintained by relying on meaningful feature vectors in the space of dictionary fingerprints.

Future work will consider new architectures for the neural network of the second stage and will

investigate the benefits and drawbacks of a full, end-to-end deep learning solution bypassing

the feature extraction stage. Training a separate network for each output microstructural

parameter will be considered as well.

This work will ultimately enable us to perform large-scale population studies and advance our

knowledge of neurological and psychiatric disorders.
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complexity enabled by our accelerated fingerprinting

method.
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Conclusion

A general framework was proposed for the estimation of microstructural properties of white

matter tissues based on Monte Carlo simulations, generally recognized as a reference standard

in diffusion-weighted magnetic resonance imaging (DW-MRI).

The limitations of Monte Carlo simulations, i.e., their numerical nature and their computa-

tional cost, were circumvented by selecting a robust dictionary matching approach.

Compared to traditional approaches based on closed-form formulas for the DW-MRI sig-

nal, our approach was shown to provide more reliable and physically interpretable tissue

parameters in a wide range of synthetic, in vivo and ex vivo experiments.

Steps have been taken to keep our framework tractable with increased model complexity and

therefore dictionary sizes by verifying the superposition approximation for crossing fascicles

and by proposing an accelerated method based on deep neural networks.

Limitations Important microstructural properties such as membrane permeability and ax-

onal undulation (or dispersion) have been ignored in our experiments. However, the advan-

tage of our framework is that these features can be readily incorporated. Recently-developed

Monte Carlo simulators now seem to offer the possibility of realistically simulating such fea-

tures (Palombo et al., 2019; Ginsburger et al., 2019a; Callaghan et al., 2019), paving the way for

exciting new developments.

Similarly, glial cells have not been incorporated into our models yet. They could either be

incorporated into the Monte Carlo simulations and part of the pre-simulated fingerprints or

they could be modeled separately by a simpler compartment such as a closed sphere. Columns

containing the diffusion signature of such spheres could be appended to the pre-simulated

dictionary.

Due to a lack of available additional data, this work only considered the simple PGSE sequence

with its known limitations on the sensitivity to certain microstructural features. It is likely that

more advanced diffusion sequences such as those presented in Chapter 1 will be needed in

the future for the finer study of the brain and spinal cord white matter. Combining DW-MRI

with other MRI modalities such as multi-echo T2 and myelin water imaging in general will
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also be considered as future developments.

A systematic and reliable method for the selection of the meta-parameters for Monte Carlo

simulations (e.g., number of spins or number of time steps) remains an open issue in the field.

It will need to be addressed to convince more users to incorporate Monte Carlo in their models

and benefit from their great physical accuracy.

Perspectives The method presented in this thesis was designed from the start to be used

for large-scale population studies in normal development and pathology. Clinical neurology

and psychiatry would largely benefit from novel microstructural markers to relate symptoms

to brain neuroanatomy. Microstructure imaging constantly requires validation to assess

the specificity of its markers. Reliable validation techniques such as advanced histology and

physical phantoms will continue to be explored methodically as soon as they become available.

Large datasets of high-quality data such as in the HCP study will keep growing and will become

an invaluable source of investigations and developments. Hardware improvement in MRI

scanners and new diffusion-weighted sequences are also promising and will help DW-MRI

become the modality of choice for non-invasive brain histology.

106



A Validating the superposition approxi-
mation for crossing fascicles

A.1 Impact of the number of cylinder layers in the groundtruth con-

figuration

We considered a slightly refined interweaving pattern for the groundtruth crossing-fascicle

configuration where an n1-cylinder thick layer of Population 1 is followed by an n2-cylinder

thick layer of Population 2 instead of the one-cylinder-thick layers described in Section 2.2.1,

as depicted in Figure 2.1. Below we show that the 1-cylinder-layer configuration that we

considered in our study actually provides a “worst-case” groundtruth scenario for the super-

position approximation and that increasing the thickness of each layer in the groundtruth

configuration is apt to improve the behavior of the superposition approximation.

For simplicity, we considered DW-MRI signals of configurations featuring fascicles with iden-

tical microstructural properties, i.e. we fixed r1 = r2 = r , f1 = f2 = f , n1 = n2 = n and

ν1 = ν2 = 0.5. We compared the signal Sappr arising from the superposition of two identi-

cal fascicles of fixed radius index r = 1.0µm and density index f = 0.5 crossing at an angle

α = 67.5◦ to a series of signals Sintw (n) arising from reference interwoven-fascicle environ-

ments with varying number n of cylinders per layer but with matching parameters r1 = r2 = r ,

f1 = f2 = f , ν1 = ν2 = 0.5 and same crossing angle α. We selected the worst-case scenario for

the superposition approximation by finding the value of n maximizing the root-mean-square

(RMS) signal metric

∥∥Sappr (P )−Sintw(n;P )
∥∥

RMS =
1p
M

(
M∑

i=1

(
Sappr

(
pi

)−Sintw(n;pi )
)2

)1/2

,

over all M measurements of each tested protocol P , namely protocols A and B.

Figure A.2 shows that the difference in normalized DW-MRI signal attenuation is of the order

of 10−3 and is largest when the number of cylinders per population layer n is smallest. This

confirms the intuition that as the number of cylinders n in a population’s layer grows, one can

expect the interwoven-fascicle configuration to be more similar to the superposition approxi-
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Figure A.1: Refined synthetic phantom of interwoven fascicles of axons. The total environ-
ment is made up of a succession of n1 cylinders of radius r1 and inter-cylinder spacing e1

from Population 1 followed by n2 cylinders of radius r2 and inter-cylinder spacing e2 from
Population 2 (compare with the single-cylinder population layers of Figure 2.1). The packing
within each layer is hexagonal and el is the spacing between layers. The green and orange
shaded areas show how the water molecules of the interstitium are distributed among the
populations, allowing us to unequivocally define the fractions of occupancy ν1 and ν2 as well
as the population-specific cylinder packing densities f1 and f2.

mation since the extracellular trajectories of most water molecules will be fully contained in a

single fascicle. We therefore set the layer thickness to n = 1 all the experiments presented in

Chapter 2.

A.2 Impact of the Approximation on the DW-MRI Signal

This section provides additional data related to the computed signal differences between the

interwoven-fascicle signal and the approximate signal when the reference parameters and

the parameters used in the approximation match (see Section 2.3.1). Table A.1 provides the

root-mean-square (RMS) differences obtained for each microstructural configuration and

each HARDI acquisition shell described in Table 2.1 in Section 2.2.3. Figure A.3 illustrates the

DW-MRI signals as a function of the gradient’s orientation for one particular scenario where

the relative signal discrepancies seemed largest for gradients parallel to the bisector of the two

fascicles’ orientations.
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Figure A.2: Reference interwoven fascicles with one-cylinder thick layers least resemble su-
perposed fascicles. The superposition of independent fascicles is schematically represented
by the three images on the left-hand side of each inset even though, strictly speaking, the inter-
face between the two fascicles appearing on these images is not modeled in the superposition
approximation. Fixed parameters are r = 1.0µm, f = 0.5 and α= 67.5◦.
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Table A.1: Shell-per-shell RMS differences between interwoven-fascicle and approximate
DW-MRI signals. The RMS differences are computed over all the gradient directions contained
in each of the HARDI shells comprised in Protocols A and B (see Table 2.1 in Section 2.2.3)
for 24 crossing-fascicle configurations characterized by a radius index r , density index f
and crossing angle α, as specified in the left-hand-side columns. Units of b are in s mm−2.
The boldfaced values correspond to the detailed illustrations in Figures 2.3 and A.3. The
data suggest that the superposition approximation led to small DW-MRI signal differences
compared to current clinical noise levels.

r
[µm]

f α

[deg]
A-s1

(b=496)
A-s2

(b=682)
A-s3

(b=2453)
A-s4

(b=2635)
B-s1

(b=711)
B-s2

(b=1000)
B-s3

(b=2000)
B-s4

(b=2855)

0.5 0.5 22.5 2.4e-02 2.2e-02 9.6e-03 8.6e-03 2.2e-02 2.1e-02 1.1e-02 5.6e-03
0.5 0.5 45 2.2e-02 2.1e-02 9.0e-03 8.0e-03 2.2e-02 2.1e-02 1.1e-02 5.7e-03
0.5 0.5 67.5 2.1e-02 2.0e-02 7.4e-03 6.6e-03 2.0e-02 1.9e-02 1.0e-02 5.1e-03
0.5 0.5 90 2.1e-02 2.0e-02 7.8e-03 6.8e-03 2.0e-02 1.9e-02 1.0e-02 5.1e-03
1 0.5 22.5 1.1e-02 9.1e-03 3.3e-03 2.7e-03 9.0e-03 8.3e-03 3.7e-03 2.1e-03
1 0.5 45 1.1e-02 7.7e-03 2.9e-03 2.6e-03 8.7e-03 8.2e-03 4.3e-03 2.4e-03
1 0.5 67.5 1.1e-02 8.2e-03 3.3e-03 3.0e-03 8.8e-03 8.0e-03 3.6e-03 2.1e-03
1 0.5 90 1.1e-02 8.9e-03 3.5e-03 3.1e-03 7.7e-03 7.2e-03 3.8e-03 2.1e-03
2 0.5 22.5 3.2e-03 3.5e-03 1.9e-03 1.9e-03 4.1e-03 3.7e-03 1.9e-03 1.7e-03
2 0.5 45 3.8e-03 4.6e-03 2.5e-03 2.4e-03 4.0e-03 4.0e-03 2.7e-03 2.1e-03
2 0.5 67.5 2.8e-03 4.4e-03 2.1e-03 2.0e-03 4.2e-03 4.4e-03 3.1e-03 2.2e-03
2 0.5 90 3.7e-03 4.2e-03 2.7e-03 2.6e-03 4.0e-03 4.2e-03 3.4e-03 2.5e-03
3 0.5 22.5 4.1e-03 4.5e-03 2.7e-03 2.4e-03 4.4e-03 4.5e-03 3.1e-03 2.1e-03
3 0.5 45 3.7e-03 5.5e-03 2.4e-03 2.1e-03 4.5e-03 4.8e-03 3.8e-03 3.0e-03
3 0.5 67.5 3.5e-03 3.9e-03 2.7e-03 2.3e-03 4.4e-03 4.6e-03 3.1e-03 2.2e-03
3 0.5 90 3.4e-03 4.4e-03 3.5e-03 3.2e-03 3.7e-03 4.0e-03 3.5e-03 2.8e-03
4 0.5 22.5 3.8e-03 5.3e-03 2.8e-03 2.4e-03 4.5e-03 5.0e-03 5.0e-03 4.5e-03
4 0.5 45 4.0e-03 4.8e-03 3.3e-03 3.1e-03 4.7e-03 5.0e-03 4.1e-03 3.6e-03
4 0.5 67.5 4.4e-03 4.8e-03 2.6e-03 2.4e-03 4.7e-03 5.0e-03 4.5e-03 3.9e-03
4 0.5 90 3.8e-03 5.2e-03 2.0e-03 1.7e-03 3.9e-03 4.4e-03 4.5e-03 4.0e-03
5 0.5 22.5 3.5e-03 6.1e-03 3.8e-03 3.5e-03 4.5e-03 5.5e-03 7.7e-03 8.6e-03
5 0.5 45 3.3e-03 6.5e-03 3.8e-03 3.5e-03 5.4e-03 6.5e-03 7.3e-03 7.5e-03
5 0.5 67.5 4.0e-03 5.8e-03 3.4e-03 3.0e-03 5.1e-03 6.0e-03 6.9e-03 7.3e-03
5 0.5 90 3.9e-03 6.4e-03 4.1e-03 3.7e-03 5.7e-03 6.7e-03 7.7e-03 8.0e-03
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A.3. Impact of PGSE parameters on the validity of the superposition approximation

Figure A.3: DW-MRI signals from the superposition approximation closely match signals
from interwoven fascicles. Normalized DW-MRI signal attenuation ((a)-(b)) and differences
((c)-(d)) for the HARDI shell of Protocol A with highest b-value plotted as a function of the
gradient direction ĝ, which yielded an RMS difference of 2.59×10−3. Here the absolute signal
differences (c) are highest around the direction normal to the plane defined by the fascicles’
orientations u1 and u2, where the DW-MRI signals are largest. However the relative differences
(d) are largest around the bisector of u1 and u2, where the signals are smallest.

A.3 Impact of PGSE parameters on the validity of the superposition

approximation

This section investigates the impact of PGSE acquisition parameters on the validity of the

approximation, by computing signal discrepancies between the reference interwoven-fascicle

signal and the approximate signal for a wider range of parameters than considered in Protocols

A and B (Table 2.1).

A.3.1 Methods

HARDI shells with a number of gradient directions uniformly distributed on the 3D sphere

fixed to 90 were considered. The gradient intensity G , gradient separation∆ and gradient dura-

tionδwere selected by trying out every combination of candidate values G = [40,60,70,80,120,140]mT m−1,
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∆= [15,20,38,66,80,100]ms and δ= [2,15,30]ms, subject to the following constraints:

• limited echo time (TE) to limit T2 decay by ensuring ∆+δ≤ 180ms;

• realistic diffusion weighting by ensuring 200 ≤ b ≤ 20000, with the b-value defined by

Eq. (1.12), with units of [s mm−2].

The root-mean-square (RMS) signal difference metric defined in Eq. (2.2.4) was computed

for the same 24 microstructural configurations as in Section 2.2.4 for all the HARDI shells

satisfying the above constraints.

A.3.2 Results

A total of 50 HARDI shells met the imposed constraints with b-values in the range [209,19253]s mm−2.

Figure A.4 suggests that RMS differences did not vary significantly between the 8 shells used

in our validation of the superposition approximation (left of the dashed vertical line) and the

50 additional shells (right of the dashed vertical line) spanning a broader range of acquisition

parameters. The mean RMS over all microstructural configurations and shells was 6.1×10−3

for the 8 shells of Protocols A and B and 4.9×10−3 for the other 50 shells. A correlation of

−0.67 was found between the RMS averaged over the 24 microstructural configurations and

the b-value, across all 58 shells, mainly due to the fact that signal values were lower at stronger

b-values.
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shell index
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Figure A.4: DW-MRI signals from the superposition approximation closely match signals
from interwoven fascicles across PGSE parameters. Root-mean-square difference between
the reference and approximate signal for each HARDI shell. Each colored line represents one of
the 24 microstructural configurations considered in our experiment. The black vertical dashed
line separates the 8 shells of Protocols A and B (left, following the order in Table 2.1) from
the 50 new shells considered in this section (right, no particular order). The thick black line
indicates the b-value of each shell, scaled by an arbitrary constant for visualization purposes.
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A.4 Results of the microstructural estimation experiments

This section complements the results presented in Section 2.3.2.

A.4.1 Experiment I: impact of the approximation on identical fascicles

Figures A.5, A.6 and A.7 present the results of Experiment I corresponding to reference crossing

anglesα= 22.5◦,45◦ and 90◦ respectively, which were qualitatively similar to the caseα= 67.5◦

discussed in Section 2.3.2.1.

Figure A.8 displays the results of estimation experiments similar to those realized in Exper-

iment I but considering the larger reference radius indices r = [6,7,8,9]µm, at fixed density

index f = 0.5 and crossing angle α = 67.5◦. The estimation of the crossing angle exhibited

trends similar to those obtained with smaller reference radii except that asymptotic, noise-free

errors started to appear for r = [7,8,9]µm with Protocol B. The DW-MRI signal arising from

large pores is indeed more isotropic and less directional, which might have negatively affected

the estimation of the crossing angle, especially for Protocol B which contains half the number

of gradient directions present in Protocol A. The estimation of the density index and the radius

index generally benefited from larger reference radii, with MAE respectively upper bounded

by 0.06 and 1.25µm for SNR levels 20 and over.
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Figure A.5: The superposition approximation shows fast convergence with increasing SNR
and small asymptotic errors for the estimation of the crossing angle and the density index
but a slower convergence with larger asymptotic errors for the radius index. Mean absolute
error (continuous lines) and standard errors (shaded areas) obtained with Protocol A (left)
and B (right) on (a)-(b) the crossing angle α, (c)-(d) the density index f , (e)-(f) the radius
index r . The dashed lines are the asymptotic, noise-free errors slightly offset around their true
values for visualization purposes. Sub-figures (g) and (h) display box-plots of the radius index
estimates corresponding to the blue curve in sub-figures (e)-(f), where large interquartile
ranges relative to the asymptotic bias up to SNR=50 suggest that the acquisition noise is the
predominant source of error rather than the use of the superposition approximation.
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Figure A.6: The superposition approximation shows fast convergence with increasing SNR
and small asymptotic errors for the estimation of the crossing angle and the density index
but a slower convergence with larger asymptotic errors for the radius index. Mean absolute
error (continuous lines) and standard errors (shaded areas) obtained with Protocol A (left)
and B (right) on (a)-(b) the crossing angle α, (c)-(d) the density index f , (e)-(f) the radius
index r . The dashed lines are the asymptotic, noise-free errors slightly offset around their true
values for visualization purposes. Sub-figures (g) and (h) display box-plots of the radius index
estimates corresponding to the blue curve in sub-figures (e)-(f), where large interquartile
ranges relative to the asymptotic bias up to SNR=50 suggest that the acquisition noise is the
predominant source of error rather than the use of the superposition approximation.
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Figure A.7: The superposition approximation shows fast convergence with increasing SNR
and small asymptotic errors for the estimation of the crossing angle and the density index
but a slower convergence with larger asymptotic errors for the radius index. Mean absolute
error (continuous lines) and standard errors (shaded areas) obtained with Protocol A (left)
and B (right) on (a)-(b) the crossing angle α, (c)-(d) the density index f , (e)-(f) the radius
index r . The dashed lines are the asymptotic, noise-free errors slightly offset around their true
values for visualization purposes. Sub-figures (g) and (h) display box-plots of the radius index
estimates corresponding to the blue curve in sub-figures (e)-(f), where large interquartile
ranges relative to the asymptotic bias up to SNR=50 suggest that the acquisition noise is the
predominant source of error rather than the use of the superposition approximation.
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Figure A.8: The superposition approximation shows fast convergence with increasing SNR
and small asymptotic errors for the estimation of the crossing angle, the density index and
the radius index at larger reference radius indices. Mean absolute error (continuous lines)
and standard errors (shaded areas) obtained with Protocol A (left) and B (right) on (a)-(b) the
crossing angleα, (c)-(d) the density index f , (e)-(f) the radius index r . The dashed lines are the
asymptotic, noise-free errors slightly offset around their true values for visualization purposes.
Sub-figures (g) and (h) display box-plots of the radius index estimates corresponding to the
blue curve in sub-figures (e)-(f), where large interquartile ranges relative to the asymptotic
bias up to SNR=50 suggest that the acquisition noise is the predominant source of error rather
than the use of the superposition approximation.
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A.4.2 Experiment IV: impact of the approximation on a closed-form model of the
microstructure

We studied the impact of the superposition approximation on the estimates of the NODDI

model (Zhang et al., 2012), which is a simpler microstructural model essentially devised to

describe a single population of axons and which does not explicitely incorporate a dependence

on the axonal radius. In NODDI, a non-tissue compartment occupies a fraction νiso of the

volume of the voxel alongside a tissue compartment comprising an extracelluar space as well

as neurites modeled as sticks and occupying a fraction νin of the tissue compartment (Zhang

et al., 2012). The orientations of the neurites follow a Watson distribution characterized by

an orientation dispersion index odi and a principal direction u. A diffusion tensor is used to

model the signal originating from the tissue space outside the neurites.

Specifically, the NODDI closed-form, continuous expression SNDI (ΩNDI;P ) relating the DW-

MRI signal SNDI to the microstructural parametersΩNDI for a given acquisition protocol P

was fitted to signals Sintw (Ωcros;P ) arising from reference interwoven configurations Ωcros

and to the signals Sappr (Ωcros;P ) arising from the superposition approximations of matching

microstructural parameters. We obtained the model estimates Ω̂NDI
(
Sappr

)
and Ω̂NDI (Sintw)

by solving, for each of the 24 crossing-fascicle configurationsΩcros described in the Methods

section, considering Protocols A and B,

Ω̂NDI
(
Sappr

)= argmin
ΩNDI

d
(
Sappr (Ωcros;P ) ;SNDI (ΩNDI;P )

)
,

Ω̂NDI (Sintw) = argmin
ΩNDI

d (Sintw (Ωcros;P ) ;SNDI (ΩNDI;P )) ,

where d is the negative log-likelihood of the Rician distribution and where the non-linear

minimization was achieved using the 2-stage fitting routine provided in the NODDI toolbox

(http://mig.cs.ucl.ac.uk) for MATLAB R2015a (MathWorks, Natick, MA, U.S.A.). The impact of

the signal discrepancies caused by the approximation was assessed by comparing Ω̂NDI
(
Sappr

)
to Ω̂NDI (Sintw).

The results of the fittings are shown in Supporting Figure A.9 and in general suggested little de-

pendence on whether the model was estimated from the reference of the approximate signals.

The maximum difference across the two protocols and all 24 microstructural configurations

was 0.062 for νiso, 0.026 for odi and 0.023 for νin. As could be expected, the main fascicle

direction u (not shown in Supporting Figure A.9) was close to the bisector of the two fascicles’

orientations for α= [22.5◦,45◦,67.5◦] and was aligned with either one of the two orientations

when the reference crossing angle was 90◦.

The only notable differences could be observed at r = 0.5µm where νiso and νin estimated from

the reference interwoven-fascicle signals were slightly lower than the estimates obtained from

119

http://mig.cs.ucl.ac.uk


Appendix A. Validating the superposition approximation for crossing fascicles

the superposition approximation, which could be attributed to larger signal discrepancies

at small radii. However increasing νiso tends to decrease the total signal whereas increasing

νin generally increases the signal. The simultaneous over- or underestimation of these two

parameters could therefore also be related to an inherent mathematical equivalence in the

model leading to two plausible solutions between which the non-linear fitting routine was

unable to discriminate.
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Figure A.9: The signal discrepancies of the superposition approximation have a limited im-
pact on NODDI parameters. Parameters obtained when fitting the model to the approximate
(continuous lines) and the reference interwoven-fascicle signal (dashed lines). (a)-(b) Isotropic
or non-tissue volume fraction νiso. (c)-(d) Orientation dispersion index (odi). (e)-(f) Intra-
cellular or intra-neurite volume fraction νin, with the horizontal line representing the axonal
density index fref = 0.5 of the crossing-fascicle configurations.
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B Microstructure Fingerprinting

B.1 Choice of the reference diffusivity for data augmentation

This appendix discusses the relationship between the number N of reference Monte Carlo sim-

ulations required to simulate configurations with different diffusivities and the fixed diffusivity

Dsim ∈ [Dmin,Dmax] used during those simulations, as described in Section 3.2.3.2. Specifically,

we show that N is independent of Dsim and only depends on the desired resolution δL in the

length scale parameter L, assuming a uniform sampling of L.

Let δsim
L be the step size separating consecutive values of L for which reference simulations

using a diffusivity Dsim were performed. Given D 6= Dsim, using Eq. (3.12) yields a sampling{√
D

Dsim
Lsim,i

}N

i=1
of the parameter L. The corresponding step size therefore becomes δL(D) =√

D
Dsim

δsim
L , which admits the upper bound δL(D) ≤

√
Dmax
Dsim

δsim
L for all D ∈ [Dmin,Dmax].

Let δ̄L denote the largest acceptable step size in L for all values of D in [Dmin,Dmax] (or equiv-

alently, the coarsest acceptable granularity of a dictionary). To ensure that δL(D) ≤ δ̄L ∀D , it

is necessary to guarantee that√
Dmax

Dsim
δsim

L ≤ δ̄L ⇔ δsim
L ≤

√
Dsim

Dmax
δ̄L . (B.1)

Recalling that the sampling of L should cover the interval
[√

Dsim
Dmax

Lmin,
√

Dsim
Dmin

Lmax

]
during

the reference simulations using Dsim, the lower bound on the total number of simulations N
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becomes

N −1 =
√

Dsim
Dmin

Lmax −
√

Dsim
Dmax

Lmin

δsim
L

≥
√

Dsim
Dmin

Lmax −
√

Dsim
Dmax

Lmin√
Dsim
Dmax

δ̄L

= Lmax/
p

Dmin −Lmin/
p

Dmax

δ̄L/
p

Dmax
,

(B.2)

where inequality (B.1) was used. Equation (B.2) shows that the minimum number of simula-

tions does not depend on Dsim and is entirely determined by the biophysical constraints of

the problem.

B.2 Effect of non-uniform voxels on the fitting

The sparsity constraints in Eq. (3.14) assume that a single fingerprint can explain the signal of

a fascicle of axons. With the hexagonal-packing model selected at the single-fascicle level for

our experiments, all the fingerprints of our dictionary arise from voxels containing uniform

arrangements of axons. In practice however, a voxel may contain sub-regions exhibiting

different microstructural properties. The experiment described below examined how the

fitted parameters behaved when the groundtruth voxels consisted of axons with spatially

heterogeneous packing.

Experiment In this experiment, groundtruth voxels were split into two parts with different

axonal packing density f . The DW-MRI signal Smixed for such a non-uniform configuration

was obtained as

Smixed
(
δ flow,δ fhigh

)= νlowSunif
(
r∗, f ∗−δ flow

)+νhighSunif
(
r∗, f ∗+δ fhigh

)
,

where Sunif is the fingerprint of a uniform configuration and whereνlow = δ fhigh/
(
δ flow +δ fhigh

)
and νhigh = δ flow/

(
δ flow +δ fhigh

)
ensure that the average packing density of the non-uniform

voxel is f ∗.

First, non-uniform groundtruth voxels with symmetric halves were considered by setting

δ flow = δ fhigh := δ f (leading to νlow = νhigh = 0.5) and letting δ f vary from 0.03 to 0.18 in

6 equal increments. Second, asymmetric halves were studied by setting δ fhigh = 0.06 and

letting δ flow vary from 0.03 to 0.18 in 6 equal increments. In both cases, the fitting proce-

dure of Section 3.2.4 was performed setting wcsf = 0 for 3 values of reference radius index

r∗ = {0.8,1.6,3.0}µm and 5 values of average density index f ∗ equally spaced between 0.36

and 0.72, provided that f ∗−δ flow > 0.20 and f ∗+δ fhigh < 0.90.
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Symmetric voxel halves Aymmetric voxel halves

Rodent
protocol

HCP
protocol

Figure B.1: Fingerprints assuming uniform microstructural configurations capture the av-
erage axonal packing density of non-uniform configurations. Fitted axonal density index f̂
for groundtruth voxels containing two sub-regions of different axonal packing density, in a
symmetric or asymmetric configuration, using the rodent protocol (Section 3.3.1.1) or the
HCP protocol (Section 3.3.2.1). The missing data points correspond to scenarios in which one
of the local density indices fell outside the range ]0.20,0.90[.

Results The results are displayed in Figure B.1. In all 168 cases with the rodent protocol, the fit-

ted axonal density index f̂ precisely matched the average density index f ∗ of the non-uniform

voxels. This implied that
∣∣ f̂ − f ∗∣∣≤ 0.03 given the granularity in f of the single-fascicle dictio-

nary used for the estimation (see Section 3.3.1.2). With the HCP protocol, the bound reached∣∣ f̂ − f ∗∣∣ ≤ 0.06 in only 4 out of 168 cases, systematically for the largest density spread δ f .

Root-mean-square differences between the normalized groundtruth DW-MRI signals and

their best fits were of the order of 1×10−4.

Even though our Monte Carlo fingerprints arise solely from voxels with a uniform packing

density, our estimation procedure systematically explained the signal by selecting a packing

density corresponding to precisely the average density of the non-uniform voxel.
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