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ABSTRACT

Out-of-planefailureof masonrywallsisoftenresponsibleforthepartial collapseofunreinforced
masonry structures. Modeling the out-of-plane responseof these walls is therefore key in the
assessmentof existing buildings. The paper presentsa new tri-linear model describing the force-
displacementresponseof vertically-spanning unreinforced masonrywalls subjectedto out-of-plane
loading. Different factors that affect the responseof the walls are captured by the model: the
support conditions, the level of applied axial load, the slendernessratio and the deformability
of the wall. The model is validated against experimental results from shake table tests. The
force and displacement parameters of the model are described by analytical expressions that are
derived from a mechanical model previously developedfor unreinforced masonry. They offer an
alternative to existing tri-linear modelswhere corner displacementsaremainly definedby empirical

relationships.
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INTRODUCTION

Vertically-spanning, or one-way bending, unreinforced masonry (URM) walls are among the
most vulnerable walls against out-of-plane failure mechanisms, as observed in post-earthquake
surveyscarried out on commercial and residential buildings (Giaretton et al. 2016a). This type of
failure mechanismis usually observedin long walls, or in walls without side supports. Moreover,
cantilever, or overturning, types of failure, which are also part of this classof out-of-plane failure
mechanisms,mainly dueto alack of top horizontal restraint, are by far the mostcommonly observed
failure mechanismsin URM buildings (D’Ayala and Speranza2003).

The seismic behavior of vertically-spanning URM walls undergoing large out-of-plane deflec-
tions and rocking can be described by simplified force-displacement models such as the bi-linear
model andthe tri-linear model (Doherty 2000; Doherty et al. 2002; Griffith et al. 2003; Sorrentino
etal. 2016), seeFig. 1. Bi-linear modelsare derived from non-linear rigid-body kinematic analysis
of the wall, i.e., by modeling the wall as one or severalrigid macroblocks, which are separated
by fully cracked cross-sections and undergo large relative displacements and rotations. The non-
linear kinematic analysis yields the two parametersof the model, which are the force Fy and the
displacementy.  Tri-inear models are derived when the deformability of the masonry is taken
into account. These models are composedof a first linear increasing branch, a horizontal plateau
and a third branch that follows the descending branch obtained by non-linear kinematic analysis.
The tri-linear model is defined by the force parameter F4, that is the force at the plateau level, the
displacement parameters, o andthe ultimate displacementy. The parametersof the tri-linear
model are usually related to those of the bi-linear model through the ratios F1[1Fgand 1[p,2[ o,
ullo.

Due to their relative simplicity and the small computational cost, these simplified force-
displacement models havegained increasing attention and are nowadaysrecommendedby building

codesfor the out-of-plane assessmentofURM walls when subjectedto seismic loading (Sorrentino
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et al. 2016). Assessmentof the out-of-plane capacity of URM walls according to today’s codesis
basedon the use of biHinear models (NTC 2008; NZSEE 2014). Estimates of > pare required

for predicting the displacementdemandon the walls, which is obtained from an equivalent linear
elastic single-degree-of-freedom system with a stiffness equal to the secant stiffness Ky, Fig. 1
(Doherty et al. 2002; Griffith et al. 2003; Sorrentino et al. 2016; Derakhshanet al. 2017). If non-
linear time-history analysesare carried out, the tri-linear model showsitself particularly adapted
(Sorrentino etal. 2016): unlike the bi-linear model, in addition to the displacementcapacity of the
wall nax, it is able to capture the initial ~ stiffness Kj,, through K4, and the force capacity Fmax,
through F1 (Fig. 1).

Tests showed that four factors affect the responseof out-of-plane vertically-spanning URM
walls (Lam et al. 1995; Doherty 2000; Griffith et al. 2004; Dazio 2009; Derakhshanet al. 2014;
Ferreira et al. 2015; Graziotti et al. 2016; Giaretton et al. 2016b): a) the support conditions of the
wall (kinematic boundary conditions), b) the level and the eccentricity of the applied axial load
(static boundary conditions), c) the height-to-thickness ratio of the wall (wall slendermness)andd)
the deformability of the wall, which is given by the elastic deformation of the masonry together
with its limited tensile and compressive strength. Thesefindings were corroborated by a number
of numerical andanalytical studies carried outon URM walls (Lu etal. 2004; Brencich etal. 2008;
Morandi et al. 2008; Cavaleri et al. 2009; Tondelli et al. 2016; Godio and Beyer2017).

Non-linear rigid-body analysis yields insights into the influence of the static and kinematic
boundary conditions and wall slendernesson the wall force capacity Fmax. It also allows investi-
gating the influence of thesefactors on the wall displacement capacity max (Griffith et al. 2003).
However, it disregardsthe effect of the elastic deformation of the wall, which, together with the
local rounding of the brick corners dueto local crushing andthe reduction of the mortar layer over
the wall thickness (mortar pointing), reducesthe peakforce F1 of the URM wall (Priestley 1985;
Doherty 2000; Griffith et al. 2003; Derakhshanet al. 2013a; Derakhshanet al. 2014).

Tri-linear modelswereformulated with the aim of bounding the force capacity of the walls. The

useof tri-linear modelsfor modeling the responseof vertically-spaning URM walls wasintroduced
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in the early 2000s (Doherty 2000) and their potential has beenwell demonstratedby the growing
number of works devoted to the topic (Table 1). Nonetheless, the tri-linear models proposedin
the previous works were basedon the useof the non-linear rigid-body analysisin conjunction with
experimentally determined empirical parametersor ratios.

Theobjectiveof thispaperistoofferfullyanalytical andmechanically-basedformulationsforthe
force and displacement parametersof the tri-linear model, to be usedfor modeling the out-of-plane
responseofawiderangeof wall configurationswithouttheuseof empirical parameters. Thenewtri-
linear model proposedin this paperis an engineering approximation of a recent mechanical model
(Godio andBeyer2017), which yielded the analytical expressionof the experimental pushovercurve
for vertically-spanning URM walls subjectedto out-of-plane static loading. As the model on which
it is based, the herein presented tri-linear model regards masonry as a deformable homogeneous
material with zerotensile strengthandlinear elastic constitutive law in compression. Its formulation
includes the effect of geometric non-linearities. Following these assumptions, vertical strips of
URM walls are modeled asdeformable second-order Euler-Bemoulli beamelementswhere, asthe
wall deflects, cross-sectionsremain planein the compressedregionsof the wall anddiffuse cracking
occurs and spreadswithin the regions of maximum bending moment (Fig. 2). When describing the
pushovercurve of URM walls, idealizations of this kind yield important differences with respect
to the rigid-body idealizations that are usually carried out. In particular, the following featuresof
the experimental force-displacement curve are captured: (i) the initial slope of the curve, related
to the initial elastic stiffness of the wall; (ii) the progressivereduction of the slope up to the peak
force, due to the decreaseof the effective thickness of the wall after cracking and the geometric
non-linearity; (i) the peakforce which, becauseof the combined effect of wall deformability and
geometric non-linearity, is alwayssmaller thanthe ’rigid threshold’ Fy (Godio and Beyer2017).

The analytical formulations presentedin this paper describe the effect of the four factors
experimentally observedto affect the responseof out-of-plane loaded walls. The tri-linear model
is formulated for three different boundary conditions (Fig. 2). The boundary conditions that are

applied by the model are those offered by the beam theory (Chapman and Slatford 1957; Godio
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and Beyer 2017), used here to reproduce typical support conditions observedin existing buildings
(Doherty et al. 2002; Dazio 2009): URM walls spanning vertically betweentwo supports are
modeled as clamped-clamped or pinned-clamped beams, depending whether the connection with
the rest of the building is provided at the top of the wall by a slab (Fig. 2(a)) or by a timber beam
(Fig. 2(b)); walls laid on onesingle support are modeled ascantilever beams(Fig. 2(c)). Forall the
consideredboundary conditions, the effect of the self-weight and of the level of applied axial load
(overburden) is taken into account by the formulation. For walls spanning betweentwo supports,
when the axial load is small comparedto the wall self-weight, the middle crack tendsto form in the
upper half of the wall; if the self-weight is negligible comparedto the applied axial load the crack
forms at mid-height (Sorrentino et al. 2008). The new model includes a formula for predicting
the position of the middle crack and its effect on the force and displacement capacity of the wall
is captured by the analytical expressionsof the force and displacement parametersof the tri-linear
model. The model capturesthe effect of the applied axial load alsoat higher levels, that is, whenit is
closeto Euler’s critical load of the wall. It is known that increasing the slendernessanddecreasing
the masonry elastic modulus diminishes Euler’s critical load and, as a result, walls becomemore
vulnerable to lateral loading. As such, the analytical formulations of the new tri-linear model
include the effect of the elastic deformability of the walls not only on their initial stiffness Kj,, but
also on their force capacity Fnax and displacement capacity max.  This aspect was excluded in
early tri-linear models.

The paperis organized asfollows. The analytical formulations for the force and displacement
parametersof the tri-linear model are first detailed. The tri-linear model is next validated against
displacement time-histories obtained from laboratory shake table tests and its performance is
comparedto that of existing tri-linear models. The force and displacement parametersof the tri-
linear model are next studied and comparedwith the empirical values previously suggestedin the

literature.

MODEL FORMULATION

The wall under consideration has a height H,y, a length L,, and a thickness f,. It is subjected
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to a vertical load O (overburden) and to its self-weight W (Fig. 2). The elastic modulus of the
masonry is E,, and its massdensity 1. The moment of inertia of a generic uncracked cross-section
of thewall is I, = 1D12ngf,‘. The schemefollowed for the derivation of the tri-linear model can

be summarized asfollows (Fig. 3):

« first, the parametersof the bi-linear model Fy and are derived from the non-linear kinematic
analysis of the walls undergoing rigid-body mechanisms;

* next, the plateau force F4 is equated to the force capacity Fmax Of the pushover curve and
expressedthrough the ratio F4(1Fy;

+ similarly, the stiffness K1 of theinitial branchof the tri-linear model is defined asa percentage
of the initial stiffness of the pushovercurve Kjy;

+ thedescendingbranchof the bi-linear curveis shifted in order to considerthe effective thickness
of the wall and the ultimate displacement y is expressedas a percentageof o;

« finally, the displacement parametersof the tri-linear model 1 and > are derived from the

expressions of F1, K1 and y and expressedthrough the ratios 1 Jpand 2.

The stepslisted aboveare detailed below in this section. In the resulting expressions,refers to
the displacementof the control point of the wall, which correspondsto the wall mid-height for the
clamped-clamped andthe pinned-clamped wall andto the wall top for the cantilever or parapetwall
(Fig. 2). The expressionsare parametrized through the factors [,

and [],which take the following
values: 0;0:5;0:5 for the clamped-clamped wall; 0:5;0:5;0:7 for the pinned-clamped wall; 1;1;2

for the cantilever wall.
Bi-linear model parameters o and

The parametersof the bi-linear model are derived for a wall under a uniformly distributed
load. The demonstration is given in Section S1 of Supplemental Data. Assuming the rigid-body
mechanismsof Fig. 2, the parameters Fy and ¢ result in the expressions:

1 W+ " D°D°Otl_
g ™ [P Hy’

Fo= (1)
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T 27 rtww o M )

wheredescribesthepositionof themiddlecrackalongtheheightof thewall. Forclamped-clamped
and pinned-clamped walls, the middle crack doesnot necessarily form at the wall mid-height but

at™ [1°H, from the basesupport, with [Igiven by:

- PTFws oo 1 o ,
- W+ 10 ' ®)

When the wall self-weight is little as comparedto the overburden, that is W 10! 0, the middle
crack tends to form at 0:5H,, from the base of the clamped-clamped wall and at 0:586H,, from
the baseof the pinned-clamped walls. In these cases,the parametersof the bi-linear model are
respectively Fo = 80t 1Hw;0 = ty and Fy = D3+ 2p§DOtWDHW;o = D1+ pQDtWD4. For
cantilever walls, the crack always forms at the baseof the wall. In this case,the expressionsfor F

and ¢ are retrieved by treating [Jas an auxiliary factor setequal to 1012

Force parameter

The force capacity Frmax Of a vertically-spanning wall subjectedto anuniformly distributed load
canbeapproximatedby Eq. (4) (Godio andBeyer2017). Starting from this expression,the tri-linear
model is built by equating the plateau force F4 to Fmax as proposed by Giriffith et al. (2003), thus
obtaining:

0 0
ﬂ= 1 Lid Q4: 4)
Fo Pe

In this equation Fq is given by Eq. (1), P is denoted as the effective axial load and is defined as

(Godio and Beyer 2017):

P= (5)
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and Pg is the Euler’s critical load of the walll:

_ PEmhy

(6)

E

The expression F1[1Fgcontained in Eq. (4) was originally derived for walls in which the middle
crack forms at mid-height (Godio and Beyer2017). Finite elementsimulations reported in Section
S2 of Supplemental Data show that the sameexpressionyields avery good approximation for walls
in which the middle crack does not form at mid-height but in their upper half as a result of the

influence of the wall self-weight on the wall response.
Stiffness K;

Denoted with K, is the initial stiffness of the wall, which was derived by Godio and Beyer
(2017) for a geometrically non-linear Euler-Bernoulli beamwith uncrackedcross-sections. Here it

is written asthe product betweenthe stiffness K, of a geometrically linear beamand the function

kx embodyingthe P effect:
Kin = Kiin «: (7)

The stiffness Kj, is classically expressedas:

CEmby @)
HS -

Kiin

with [1= 384;192;8 respectively for the clamped-clamped, pinned-clamped and cantilever walls,
whereasthe function  k can be reasonably approximated by the short form (Section S3 of Supple-

mental Data):
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where P and Pk are expressedfor eachboundary condition by Eq. (6) and (5). k decreaseslinearly
with increasing P 1Pgand so doesthe stiffness of the wall Kj,, which tendsto Kj, for P! 0and
toOfor P! Pg. Oncetheinitial elastic stiffness of the pushovercurve is defined, the stiffness K4

of the first branch of the tri-linear model is setequal to:

K1 = 0:7Kin: (10)

The factor 0:7 defines the ratio of the effective stiffness up to 1 to the initial  stiffness at zero

displacement.

Ultimate displacementy

The ultimate displacementof the pushovercurve of URM walls is often observedto be smaller
than ¢ obtained by the rigid-body analysis (Griffith et al. 2003; Lagomarsino 2015). Reduction of
the ultimate displacementin URM walls can be due to different material and geometrical factors,
namely: the rounding of the unit cormners due to local deformation (Lagomarsino 2015), the unit
or mortar crushing (Derakhshan et al. 2013b), a reducedeffective depth of the mortar layer due to
mortar pointing or dueto the dropping out of mortar during the rocking of the wall (Doherty 2000;
Derakhshanet al. 2013b). In order to take into accountthis reduction, an effective thickness of the
wall tyeff is introduced. Expressedasiyerr = [y and substituted into Eq. (1) and (2), it leadsto a

shift of the descendingbranchof the bi-linear model (Fig. 3), which results in:

(11)

o |C
1
]

Moreover, replacing t, with fyeff in the formulation of the tri-linear model affects through Ay the

formula for Pg (Eq. (6)) and Kjin (EQ. (8)).

Displacement parameters | and
The displacement parameter 1 can be obtained from the expression of the plateau force F;

(Eq. (4)) andthe stiffness Ky (Eq. (10)) as is defined as: 1 = F10K4. Normalized with respect
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to o, it writes:

n D D #
-4 P YR (12)
0 Pe 0o 0:7Kin’
The displacement parameter » canbe derived as; = 0 FOF%. Introducing Eq. (4), the
ratio of > lpbecomes:
o Hoa
2 P -
2 =0 1+ — 13
0 Pe (3

MODEL INTEGRATION

The tri-linear model is integrated numerically as single-degree-of-freedom systemwith non-
linear elastic behaviorfollowing thetri-linear F' relationship. For this purpose,two assumptions
are required, see Fig. 2. The first assumption consists in assuming that the bottom and top
supports of the URM wall experiencethe sameout-of-plane ground acceleration ag't. The second
assumptionconsistsin assuminga piece-wise linear inertia force distribution along the wall height.
The fist assumption representsa simplification in the case of real buildings, asthe upper storeys
of the building may experience motions which are filtered by the building structure, i.e. the
walls and the diaphragms, and can therefore be different from storey to storey. Even though
examplesof tri-linear models considering the diaphragm deformation canbe found in the literature
(Derakhshanet al. 2015; Landi et al. 2015), a systematic study quantifying the vulnerability of
out-of-plane walls subjectedto the relative support motion is still missing. The secondassumption
has been corroborated by experimental observations from laboratory shake table tests (Doherty
2000; Graziotti etal. 2016) andis justified for walls undergoing significant rocking (Doherty et al.
2002; Griffith et al. 2003). Its application to the herein developedtri-linear model is validated in
this paper.

Equation of motion
Basedon the aboveassumptions,D’Alembert’s principle canbe written for the wall configura-

tions depictedin Fig. 2. The useof this principle leadsto the equation of motion for the equivalent
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single-degree-of-freedom system, which writes:

- Cpg. 3FU® 3
¥+ MHM s = 590 (14)

In the above equation, ' ®and W are respectively the displacement, the velocity and the
acceleration measuredat the control point of the wall, M is the total wall massand C is the
equivalent viscous damping factor. The derivation of Eq. (14), which for sakeof concisenessis not
reported in the paper, follows Griffith et al. (2003), where the equationwas originally derived for
walls where the middle crack is located at mid-height. The sameequation is obtained here for an
arbitrary crack location and using ascontrol point the wall mid-height.

The responseF"'{® given in the equation is the time-integrated force-displacement relation-
ship of the wall, when this latter is subjectedto uniform inertia forces. In Griffith etal. (2003), the
expressionfor F'° wasgiven by anon-linear elastic force-displacementcurve of a bi-linear model.
In the presentcase, F'° is given by the developedtri-linear model. The useof anon-linear elastic
force-displacement curve representa simple yet reliable modeling assumption which, asshownin
this and previous works (Doherty etal. 2002; Sorrentino etal. 2016), allows mimicking the rocking
behavior of vertically-spanning, or one-way bending, URM walls. Contrarily from what observed
on two-way bendingwalls, the experimental behavior of one-way bending walls undergoing rocking
is characterized by the absenceof hysteresis cycles due to damage. The responseof thesewalls is
in fact mainly governedby geometric non-linearities, the main sourceof damping being the impact
betweenthe macroblocks (Lam et al. 1995; Doherty 2000; Griffith et al. 2004; Meisl et al. 2007;
Dazio 2009; Derakhshanet al. 2014; Ferreira et al. 2015; Graziotti et al. 2016; Giaretton et al.
2016b; Degli Abbati and Lagomarsino 2017).

Damping factor
A viscous damping factor basedon a constant damping coefficient ¢ is usedfor the integration

of the tri-linear model. Relatedto the initial stiffness of the model, this factor reads(Giriffith et al.

2003): C = P 6MK;c. For the simulations conductedin this paper, a constantdamping coefficient
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of 5% is used. This value constitutes alower bound of the values observedduring free-rocking tests
(Griffith etal. 2004; Doherty 2000; Graziotti etal. 2016; Giaretton et al. 2016b). It hasbeenshown
that taking this value is a suitable choice when combining the tri-linear single-degree-of-freedom
systemwith a viscousdampingmodel (Griffith etal. 2003; Melis 2002), resulting in only negligible
differences with respectto other more sophisticated numerical proceduressuchasthe ’event-based’

one proposed by Doherty (2000).

Model implementation
The tri-inear model is integrated numerically by means of the classical Newmark time-
integration scheme. Simulations are run until failure of the wall occurs. The following failure

condition is adopted:

i Ou (15)

MODEL VALIDATION

Two series of laboratory shake table tests carried out on walls undergoing rocking under
out-of-plane excitations are usedfor validating the tri-linear model. Both testseriesinvolve single-
leaf brick masonry walls spanning vertically betweentwo supports, with top support conditions
reproducing connections between the walls and reinforced concrete slabs in existing buildings
(Fig. 2(a)). Section S4 of Supplemental Data gives the link to a repository containing the Matlab

codeusedin this section for the validation of the tri-linear model.

Simulation of Adelaide tests

The walls testedat the University of Adelaide (Griffith et al. 2004; Doherty 2000) had a height
Hy = 1500 mm, alength L,, = 950 mm and a nominal thickness of £, = 110 and 50 mm. They
were madeof bricks with massdensities of 1800 and 2300 kgl im?3,respectively. At their base,the
walls were placed onto a straight steel plate after application of a mortar layer. At the top, the last
row of bricks waslaterally supported by two stiff rubber spacersfixed on both sidesinto L-shaped

steel profiles. This preventedthe lateral displacementbut not the rotation of the bricks (Doherty
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2000), resulting in a boundary condition similar to that at wall base,where the bricks were able to
rotate after cracking of the mortar layer (Doherty 2000). In order to seize this condition, the walls
are modeled asclamped at their ends: the moment originating at the wall endsleads to the partial
cracking of the cross section and, asaresult, the reaction force moves, asin the tested configuration,
towards the compressedregion of the cross-section (Godio and Beyer 2017).

Griffith et al. (2004) testedthree walls under out-of-plane loading on the shaketable. The two
110 mm-thick specimens12 and 13 without overburdenare selectedfor validating the model. The
50 mm-thick specimen 14 wasalso testedon the shaketable but the results for this specimenare not
reported (Griffith et al. 2004; Doherty 2000). For the tests, Griffith et al. (2004) usedthe Nahanni,
El Centro and Pacoima ground motions scaled at different intensities. When simulating the tests,
the actual table accelerations are used as input for the tri-inear model, except for the Pacoima
ground motion scaled at 66%, for which the input motion for the tri-linear model is here derived
by scaling the table acceleration of the Pacoimamotion available at 80%. This approachis taken
as an unrealistic low responseof the tri-linear model is observed when using the recorded table
acceleration for that motion, possibly due to a wrong measurementof the table acceleration.

Quasi-static pushover tests were carried out on the specimens before and after the shake table
tests, to study respectively the uncracked and cracked behavior of the walls. The analytical model
presented by Godio and Beyer (2017) was usedto simulate the pushover tests carried out on the
cracked walls and showedthat an important reduction of the elastic moduli occurred due to the
degradation of the joints. The resulting values of E, were derived from the initial stiffness of the
static force-displacement curve of the walls and were 43 and 5 MPa, respectively for specimen 12
and 13 (Godio and Beyer 2017). These values are used here for the simulation of the shaketable
tests by the tri-linear model. Table 2 gives the list of the force and displacement parametersused
in the tri-linear model for simulating the Adelaide tests. No mortar drop-out was observedduring
the tests for the specimensthat are here modeled. Moreover, the walls were cracked at mid-height
from the previous pushover tests, where a concentrated force was applied at mid-height. In the

simulations, the middle crack position is consequently fixed at mid-height and the displacement
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parameter y, representative of the effective wall thickness, is set equal to the nominal wall

thickness: y = ¢ = tw (EQ. (2)).

Force-displacement curves

Fig. 4 showsthe comparison of the tri-linear model with the experimental results in terms
of normalized dynamic force-displacement curves. The experimental curves are built following
Doherty (2000), seealso Graziotti et al. (2016): is the relative displacement measuredat the
wall mid-height, where the middle crack is located, and F is the force derived by multiplying the
absolute acceleration of the center of massof the two portions of wall that are delimited by the
middle crack, by their mass. To this purpose, a triangular distribution of the relative acceleration
along the wall height is assumedasin Fig. 2. To be consistent with the experimental results,
the numerical curves show the total inertia force, which, according to Eq. (14), is the sum of the
restoring force, 3[12F'°, and the force generatedby damping, C Grhe figure showsthe accuracy
of the tri-inear model and the selected damping model in reproducing the force and displacement
capacity of the walls testedon the shaketable. Moreover, theinitial stiffness of the walls, which was
back calculated starting from pushovertests (Godio and Beyer 2017), yields a good estimation of
the stiffness observedin the dynamic force-displacement curves. The comparison is complemented
with the results obtained from the tri-linear model built basedon the empirical values proposed
by Doherty et al. (2002), which were chosenon the basis of the different states of degradation
observed on the samewalls used for the benchmark (Griffith et al. 2003): the 1[Jpand 2[g
ratios increased as the mortar quality degraded from new to moderately degraded and severely
degradedjoints, resulting in respectively 0:06;0:13; 0:20 and 0:28; 0:40; 0:50. Following Melis
(2002) and Griffith et al. (2003), new and moderately degraded joints are assumedrespectively
for specimen 12 and specimen 13, resulting respectively in 1[p= 0:06, 2llp= 0:28 and
10p= 0:13, 2l o= 0:40. The curves given by the empirical model (Doherty et al. 2002)
are very close to those given by the herein proposed tri-linear model, showing therefore good

performance of this latter.
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Displacement time histories

Fig. 5 compares the present tri-linear model and the tri-inear model proposed by Doherty
et al. (2002) with the experimental results in terms of normalized displacementtime histories. In
general, the present tri-linear model shows itself able to seize the peak displacements (Table 3)
and the frequency content of the experimental response. Moreover, failure occurs in the test of
Fig. 5(b), where the specimenhits the support frame which wasput in place to prevent the collapse
of the wall onto the shaketable (Doherty 2000). For specimen13 (Fig. 5(b),(d),(f)) the model built
with the empirical values proposed by Doherty et al. (2002) gives a responsewhich is the same
than that of the model proposed here. For specimen 12 (Fig. 5(a),(c),(e)) the new model gives a
better estimate of the wall responsethan the empirical one, which tends to overestimatesthe actual

wall response.

Error estimators

The response of rocking structures such as masonry walls, columns and isolated blocks is
very sensitive to small changesin the geometry, the material parametersand the input excitation
(Psycharis et al. 2000; Papantonopoulos et al. 2002). For this reason, a full agreement between
numerical and experimental results can hardly be attained. Moreover, the model does not take
into account the wall cracking at other levels than that calculated by rigid body analysis. In
order to evaluatein a quantitative mannerthe capability of the tri-linear model in reproducing the
displacement time histories of the experimental response,two error estimators are used.

The first error estimator is denoted with "rps and is basedon the Root Mean Square (RMS)
value of the mid-height displacement computed throughout the experimental (exp) and numerical

(trl) time histories. It writes (Al Shawaetal. 2012):

"emg = 22, (16)
Jexp)
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with the RMS value c_omputed over the time history '° as:

¥ "

N,
j=

R (17)
]

The seconderror estimator is basedon the Weighted Mean Error (WME) andis defined as (Al

Shawaet al. 2012):

T. .
Y _ min 0 Jexplt* 't + t°df
WME —

(18)
2>  0:50s0:508% oT Joxp' it

This error estimator is computed by keeping fixed the experimental response and shifting the
responseobtained from the tri-linear model over the total duration of the time history T by a
lag t ranging between  0:50 s and +0:50 s and taking the minimum WME value over this
interval. This error measurecanbe computedtaking into accounteither the whole time histories or,
according to Al Shawaet al. (2012), only the parts of the time histories that contain displacements
with amplitudes larger than 20% of the maximum absolute displacement of the experimental and
numerical results (whichever is larger). All other parts of the time histories are setto zero andthe
error computed as defined in Eq. (18). The first method yields the error denotedwith "wue; the
secondyields the error "wmeo).  The objective of theseerror measuresis to estimate the accuracy
of the tri-linear model in predicting all and large amplitude displacementsnot at a fixed time but
within agiven time window. This error provesparticularly useful in the caseof rocking structures,
where, asalready stated above, reaching a perfect agreementis practically impossible.

The errors "rRus and "wiviepoy defined by Eq. (16), Eq. (18) havebeenusedby Al Shawaet al.
(2012)forestimatingthesensitivityof atri-linearmodel withrespecttothedisplacementparameters
1 and 2, basedon the comparison with experimental  results. The error committed by the new
tri-linear model in simulating the shaketable testspresentedin Fig. 5 is given in Table 3. The mean
values are close to the minimum errors of "rys = 0:300 and"wme@o)y = 0:700, which Al Shawa

et al. (2012) obtained when optimizing the displacement parameters{ and 2 of  his tri-linear
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model. For comparison, the empirical model proposed by Doherty et al. (2002) gives errors that
are on average "% jﬂjmg§pj = 1:207,"rms = 0:479,"wme = 1:205and"wwmEero) = 1:641,thatis
approximately twice the error committed by the new tri-linear model presentedhere. Table 3 also
contains the ratio between the absolute peak displacement measured on the tested and simulated
walls: the tri-linear model yields a close andslightly over-conservativeestimation of the wall peak

displacements.

Simulation of Pavia tests

Graziotti etal. (2016) testedan unreinforced single-leaf brick masonrywall of H,, = 2754 mm,
length L, = 1438 mm and thickness £, = 102 mm. The wall was tested during an experimental
campaign dedicated to the study of cavity walls. It was made of bricks with massdensity (1=
1835 kg Im3and was subjected to two levels of vertical compression stressduring the tests, namely
0:3 and 0:1 NLJmm?. At its base, the wall was laid on a mortar layer placed on the foundation.
At the top, the last row of bricks wasfixed into L-shaped steel profiles filled with mortar, which
preventedboth the lateral displacement and the rotation of the bricks. Similarly to the walls tested
by Doherty (2000), this wall canbe modeledasdouble clamped, with the exception that an effective
height of 2673 mm, neglecting the last row of bricks, is considered.

The specimen SIN-01-00 is used as benchmark for the tri-inear model, since it is the only
one exhibiting rocking (Graziotti et al. 2016). More particularly, only the tests for which the
wall undergoesmid-height displacements that are greater or equal than 0:1£,, are considered. An
estimate of the masonry elastic modulus can be derived from the measureof the elastic frequency
of the wall, madeat the beginning of the test sequencebyapplication of arandomsignal. A flexural
frequency of 14:27 Hz was found for the specimen SIN-01-00 (Graziotti et al. 2016). Assuming
that the wall behavesat that stage as a double clamped beam made of uncracked homogeneous
material, this frequency correspondsto an elastic modulus of En, = 1735 MPa, that is 0:53 times
the one determined by material testing (Graziotti et al. 2016). For the simulation of tests (a)-(d)
the modulus measured at the beginning of the test sequenceis used. However, as the wall may

lose its initial stiffness during the tests, due to the repeated shakesthat damagethe joints and the
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units, a more precise estimate of the wall stiffness is derived for tests(e) and (f). In particular the
elastic modulus is derived from the experimental F curves shownin Fig. 6. Thesecurveswere
built asthose of Fig. 4, i.e. taking as the relative displacement measuredat wall mid-height,
and F asthe force derived by the absolute acceleration of the center of massof the two portions
of wall delimited by the middle crack (Graziotti et al. 2016). The resulting force and displacement
parametersof the tri-linear model usedfor simulating the Paviatestsare given in Table 4.

The comparison with the experimental curves is shown in Fig. 6 and Fig. 7. In general, the
frequency content and the peak displacements (Table 5) of the experimental response are well
representedby the trilinear model (Fig. 7). The model predicts also satisfactorily the dynamic
force-displacement hysteretic curves (Fig. 6). Moreover, the middle crack position predicted by
the tri-linear model (Eq. (3)) is located at 0:560H,, from the foundation, which is very close to the
position observedin the testsof 0:575H,,.

The comparison with the experimental curves is complemented by the computation of the
error estimators for each test (Table 5). The mean values are, also for this test series, close to
the optimum values of 0:300 and 0:700 obtained by Al Shawaet al. (2012). To put the obtained
error measuresfurther in context, these error measuresare also computed for the tri-inear model
using the parameters suggestedby Doherty et al. (2002); the new joints are assumedfor tests (a)
to (d) and moderately degraded joints are assumedfor tests (e) and (f). The errors obtained are
™ JUiMep i = 4110, "rus = 4:186and"wve = 2:122. The estimator"wiig(2o) is largerthan10

becausethemodel predicts failure for four walls while only onewall failed during the tests.

SENSITIVITY OF MODEL PARAMETERS TO FACTORS AFFECTING THE
OUT-OF-PLANE RESPONSE OF URM WALLS

An insight on the four factors affecting the responseof out-of-plane vertically-spanning URM
walls is carried outin this sectionthrough a sensitivity study on the tri-linear model parameters.As
describedin the introduction to the paper, thesefactors are: (a) the support conditions of the wall,
(b) the level of applied axial load, (c) the height-to-thickness or slendernessratio of the wall and

(d) the deformability of the wall. The latter factor is takeninto accountexplicitly by the tri-linear
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model by taking as input the masonry elastic modulus but not its compressive strength, as it is
assumedthat the walls do not crush. The possibility of modeling the rounding of the unit corners
due to local crushing and a reduced effective depth of the mortar layer is given by introducing an
effective wall thickness asa proxy for the nominal wall thickness (Eq. (11)).

The parametersof the tri-linear model mainly dependon the P 1Pgratio. This ratio can be
expressedin suchaway that the four above-mentioned factors can be distinguished and their effect

on the wall responsestudied separately (Godio and Beyer 2017):

0_ o 12 ¢ 0_ 0
— cm 2 .

= oo lm2 19

Pe 19

CRPEn P
In the aboveexpression PL1Pyis the axial load ratio, factor (b), with Py = fonlwhy the maximum
compressiveload that the wall can sustainat incipient material failure, introduced only in order to
normalize the axial load applied to the wall, and f,, the masonry compressive strength, which is
herejust assumedsincenot explicitly consideredby the model; [1= [1H,[fyis the wall slenderness
ratio, factor (c), in which the effect of the boundary conditions, factor (a), is expressedbymeansof [,
and E, is the masonry elastic modulus, which allows studying the effect of masonry deformability,

factor (d).

Effect of boundary conditions, axial load and wall slendemessratio

Fig. 8(a) showsthe variation of the force and displacement parametersof the tri-inear model
versusthe slendermnessratio of the wall [Jand for increasing axial loads. The figure refers to awall
strip of unitary length, height H,, = 2:8 m and massdensity -1 = 1800 kg-im3. A compressive
strength of f;, = 10MPaand (1= 1 arealso assumedand E, is setto 2000 MPa, which corresponds
to Enl1fen = 200. To vary the slendemessratio, the wall height is kept constant while the wall
thickness is varied between 0:35 and 0:07m. Note that, changing £, makeschanging Py as well.
Overall, increasing the wall slendemessratio decreasesthe force ratio 1/ 1Fyand increases the
displacement ratios 1[p,2[ lowith an almost linear trend. The slope of the curves remains

almost linear and increaseswith the value of PPy, which meansthat the effect of the slendemess
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ratio on the model parametersis amplified by increasing axial loads. Nonetheless, already for
a low axial load ratio of PC1Py = 0:01, as the one that can be found at the highest levels of a
building, the plateau force rangesfrom 0:80 to 0:95Fg, with F4[1Fo[1 0:85 for (1= 12. For the
sameslendernessbut for a larger yet still relatively low ratio of P1Py= 0:05, the plateau force
reducesto approximately 0:7Fy and for P-1Py= 0:10 to 0:6F. With regard to the effect of the
boundary conditions, the FiIFpand o[ lpcurves are the samefor the clamped-clamped and the
pinned-clamped case,since the slendernessratio [is fixed at eachpoint of the curve (Eq. (4) and
(13)); on the contrary the 4l pcurves result  in higher ratios in the pinned-clamped case than
in the clamped-clamped one, since in Eq. (12) the initial stiffness Ky and the FyJgratio are not

equivalent in the two cases.

Effect of wall deformability

Fig. 8(b) showsthe variation of the force and displacement parametersof the tri-linear model
when varying the elastic modulus of masonry Ey, for a given compressive strength of 10 MPa,
and the axial load ratio PLIP,. In this case,the slendemessratio is fixed to 10, which corresponds
to fy = 0:14 and 0:196 m for the clamped-clamped and the pinned-clamped case. In general, an
increase of the elastic modulus leads to greater values of F1_JFywhereas 1[Jgand 2 preduce.
From the curvesit is expectedthat for high moduli andvery low axial load ratios, "1;2° ! Oand

Fi!  Fo,i.e., the trilinear model tendsto the bi-linear one.

Classesof joint degradation

Fig. 8 also comparesthe parametersof the tri-linear model proposed by Doherty et al. (2002),
who empirically distinguished new from moderately degradedand severely degradedjoints, with
the parameters of the herein proposed tri-inear model. With respect to the empirical values,
those developedin this paper dependon the slendemessratio, the level of applied axial load, the
deformability of the masonry and the support conditions of the wall. For a given PLIP,it canbe
observed that, moving from new to degraded joints, the parameters given by the present model
intercept the empirical values for increasing values of slendernessand decreasing values of elastic

modulus. From the comparison, classesof joint degradation to be used in the practice can be
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distinguished.

CONCLUSIONS

Simplified tri-linear force-displacementmodelsareanalternative to the useof refined numerical
simulations in the seismic assessmentof vertically-spanning URM walls. Moreover, their larger
but still very limited number of parametersmakesthem very flexible comparedto bi-linear models
derived from rigid-body analysis, which cannot capture the initial stiffness and the actual force
capacity of the walls (Doherty et al. 2002; Griffith et al. 2003; Sorrentino et al. 2016). The
deformability of the walls is amajor factor in determining this latter, togetherwith the slenderness
ratio and the boundary and overburdenconditions of the wall (Doherty et al. 2002; Griffith et al.
2003; Dazio2009; GodioandBeyer2017). Varioustri-linearmodelshavebeenpreviouslyproposed
in the literature, but the effect of the wall deformability in conjuction with non-linear geometric
effects on the displacements 1 and, andtherefore also on theinitial stiffness K1 andthe maximum
force F1 was determined by meansof calibration constantsdetermined from experimental results.
Theseconstantsrelate the parametersof the tri-linear model to the joint conditions observedin the
walls (Doherty et al. 2002) or are usedas correction factors for bounding the force capacity of the
walls obtained through bi-linear models (Derakhshanet al. 2013b).

In this paper, new analytical formulations for the force and displacement parameters of the
tri-linear model are presented. The formulations are derived from arecently developed mechanical
model for the out-of-plane responseof URM masonry walls, in which the analytical expressionof
the static pushovercurve wasgiven (Godio and Beyer 2017). For engineering purposes,a tri-linear
model is derived from the expressionof the pushovercurve, being particularly suited to non-linear
time-history analyses.

The tri-linear model proposedin this papershowsitself capableof providing good predictions
of the displacement time histories and the force-displacement hysteretic curves of tested URM
walls. It hasthe advantageof a rational developmentand an analytical formulation, which allows
covering a wide range of wall configurations. When comparedto existing tri-linear models, this

new model needsone additional input parameteronly, i.e. the elastic modulus of the masonry E,.
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Its usein the context of the seismic assessmentandpreliminary design of masonry buildings canbe
envisagedboth in the modeling of the out-of-plane responseof the URM walls through non-linear
time-history analysesand in the prediction of the displacement demandon thesewalls, by means
of an equivalent single-degree-of-freedom system with a secant stiffness passing through one of

the points of the tri-linear curve (Godio and Beyer2018).

NOTATION

The following symbolsare usedin this paper:

ag = ground motion (m(is?);
C = equivalent viscous damping factor WD
¢ = damping coefficient ( );
E, = elastic modulus of masonry (MPa);
Fmax = force capacity of the wall (N);
Fo = force parameterof the bi-linear model (N);
F1 = plateauforce of the tri-linear model (N);
fem = compressive strength of masonry (MPa);
H, = heightof the wall (m);
ly = momentof inertia of the uncrackedsection of the wall (m*);
Kin = initial stiffnessof thewall (NIm);
Kin = stiffnessof alinear elastic Euler-Bernoulli beam(Nm);
Ky = initial stiffnessof the tri-linear model (N[1m);
Ky = stiffness of the equivalent single-degree-of-freedom system (N[ 1m)
Ly = lengthof thewall (m);

M = massof the wall (kg);
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overburden (N);
effective axial load of the wall (N);

Euler’s critical load of the wall (N);

maximum compressiveload of the wall (N);

thicknessof the wall (m);
effective thicknessof the wall (m);

self-weight of the wall (N);

factors accounting for different boundary conditions ( );
displacementofthe control point of thewall (m);

velocity of thecontrol point of thewall (m(s);

accelerationof the control point of thewall (m(s?);

root meansquarevalueof the displacementhistory ( );

displacementcapacity of the wall (m);

ultimate displacementof the tri-linear model (m);

displacement parameterof the bi-linear model (m);

first displacementparameterof the tri-linear model (m);

seconddisplacement parameterof the tri-linear model (m);

error estimators( )

slendernessratioofthewall ( );

normalized position of the middle crack from the top wall support (

massdensity of the masonry (m);
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Table 1. Summary of existing tri-linear models describing the out-of-plane responseof vertically-
spanning URM walls. Support conditions of the wall (Fig. 2): CC = clamped-clamped; PC =
pinned-clamped; Cant. = cantilever.

Tri-linear model Support conditions Joints condition 1o 200 uo AR

Doherty et al. (2002) CC, PC, Cant. New 0.06 0.28 1 0.72
Moderately degraded 0.13 040 1 0.60
Severely degraded 020 050 1 0.50

Derakhshanet al. (2013b) PC 004 1 01* 0.83*
FCR

Al Shawaet al. (2012) Cant., one-side rock- 002 020- 094 0.74-
ing 0.35 0.59

Derakhshanet al. (2015)  PC, flexible top and 0.04 033 1 0.67
bottom supports

Landi et al. (2015) pPC*** 0.05 0.26 1 0.74

Tomassetti et al. (2018) CC, single-eaf and 0.03- 0.06- 0.92- 0.73
cavity walls 004 025 098 0.90

*expressedasafunction of the mortar pointing and the compressive strength of the masonry
**with Fg calculated by rigid-body analysisof the wall including the limited compressivestrengthof the masonry
***values given according to the formulations proposedby Sorrentino (2003)
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Table 2. Parametersof the tri-linear model usedfor simulating the Adelaide tests. Imposedmiddie
crack position at 0:5H,,.

Tested wall* 1o ol g FOR
Specimen12 (a),(c),(e) 0.017 0.198 0.802
Specimen13 (b),(d),(f) 0.110 0468 0.532

*reference to results containedin Fig. 4, Fig. 5
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Table 3. Ratio between the absolute peak displacements and error committed by the tri-linear
model in predicting the displacementtime histories of the Adelaide tests.

Testedwall* M 0M&el "rRms  "wMmE  "wME(20)
Specimen 12 (a) 1.342 0544 1.105 1.365
Specimen 12 (c) 1.052 0159 0.772 0514
Specimen 12 (e) 1.141 0.180 0.855 0.632
)
)

Specimen 13 (b 0.991 0.108 0.702 0.630
Specimen 13 (d 0.898 0244 0.742 0.710
Specimen13 (f) 1.046 0072 0628 0524

Mean value 1.078 0218 0.801 0.729

*reference to results containedin Fig. 4, Fig. 5
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Table 4. Parametersof the tri-linear model usedfor simulating the Paviatests. Predicted middle
crack position from the basesupport at 0:560H,y,.

Tested wall* 1L 2llp FlOR
SIN-01-00 (a) 0013 0172 0828
SIN-01-00 (b) 0.013 0.172 0.828
SIN-01-00 (c) 0.013 0.172 0.828
SIN-01-00 (d) 0.013 0.172 0.828
SIN-01-00 (e) 0.031 0.249 0.751
SIN-01-00 (f) 0.041 0.281 0.719

*reference to results containedin Fig. 6, Fig. 7
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Table 5. Ratio between the absolute peak displacements and error committed by the tri-linear
model in predicting the displacementtime histories of the Paviatests.

Testedwall* ™ 0", ]  "rRms  "wME  "wME(20)
SIN-01-00 (a) 0.830 0.154 0.784  0.394
SIN-01-00 (b) 1.559 0225 1.044 1126
SIN-01-00 (c) 1.558 0.607 0.99%  1.456
SIN-01-00 (d) 1.324 0382 0998  1.365
SIN-01-00 (e) 1.217 0304 1.035 0.892
SIN-01-00 (f) 1.069 0.076 0226 0.102

Mean value 1.260 0291 0847 0.889

*reference to results containedin Fig. 6, Fig. 7
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