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ABSTRACT

Inspired by applications in sports where the skill of players or teams

competing against each other varies over time, we propose a prob-

abilistic model of pairwise-comparison outcomes that can capture

a wide range of time dynamics. We achieve this by replacing the

static parameters of a class of popular pairwise-comparison models

by continuous-time Gaussian processes; the covariance function of

these processes enables expressive dynamics. We develop an effi-

cient inference algorithm that computes an approximate Bayesian

posterior distribution. Despite the flexbility of our model, our infer-

ence algorithm requires only a few linear-time iterations over the

data and can take advantage of modern multiprocessor computer

architectures. We apply our model to several historical databases

of sports outcomes and find that our approach a) outperforms com-

peting approaches in terms of predictive performance, b) scales to

millions of observations, and c) generates compelling visualizations

that help in understanding and interpreting the data.
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1 INTRODUCTION

In many competitive sports and games (such as tennis, basketball,

chess and electronic sports), the most useful definition of a com-

petitor’s skill is the propensity of that competitor to win against an

opponent. It is often difficult to measure this skill explicitly: take

basketball for example, a team’s skill depends on the abilities of

its players in terms of shooting accuracy, physical fitness, mental

preparation, but also on the team’s cohesion and coordination, on

its strategy, on the enthusiasm of its fans, and a number of other

intangible factors. However, it is easy to observe this skill implicitly

through the outcomes of matches.
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In this setting, probabilistic models of pairwise-comparison out-

comes provide an elegant and practical approach to quantifying

skill and to predicting future match outcomes given past data. These

models, pioneered by Zermelo [37] in the context of chess (and by

Thurstone [35] in the context of psychophysics), have been studied

for almost a century. They posit that each competitor i (i.e., a team

or player) is characterized by a latent score si ∈ R and that the

outcome probabilities of a match between i and j are a function

of the difference si − sj between their scores. By estimating the

scores {si } from data, we obtain an interpretable proxy for skill

that is predictive of future match outcomes. If a competitor’s skill is

expected to remain stable over time, these models are very effective.

But what if it varies over time?

A number of methods have been proposed to adapt comparison

models to the case where scores change over time. Perhaps the

best known such method is the Elo rating system [9], used by the

World Chess Federation for their official rankings. In this case,

the time dynamics are captured essentially as a by-product of the

learning rule (c.f. Section 5). Other approaches attempt to model

these dynamics explicitly [e.g., 6, 7, 10, 13]. These methods greatly

improve upon the static case when considering historical data,

but they all assume the simplest model of time dynamics (that

is, Brownian motion). Hence, they fail to capture more nuanced

patterns such as variations at different timescales, linear trends,

regression to the mean, discontinuities, and more.

In this work, we propose a new model of pairwise-comparison

outcomeswith expressive time-dynamics: it generalizes and extends

previous approaches. We achieve this by treating the score of an

opponent i as a time-varying Gaussian process si (t) that can be

endowedwith flexible priors [26].We also present an algorithm that,

in spite of this increased flexibility, performs approximate Bayesian

inference over the score processes in linear time in the number

of observations so that our approach scales seamlessly to datasets

with millions of observations. This inference algorithm addresses

several shortcomings of previous methods: it can be parallelized

effortlessly and accommodates different variational objectives. The

highlights of our method are as follows.

Flexible Dynamics As scores are modeled by continuous-time

Gaussian processes, complex (yet interpretable) dynamics

can be expressed by composing covariance functions.

Generality The score of an opponent for a given match is ex-

pressed as a (sparse) linear combination of features. This

enables, e.g., the representation of a home advantage or any

other contextual effect. Furthermore, the model encompasses

a variety of observation likelihoods beyond win / lose, based,

e.g., on the number of points a competitor scores.

Bayesian Inference Our inference algorithm returns a posterior

distribution over score processes. This leads to better pre-

dictive performance and enables a principled way to learn
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the dynamics (and any other model hyperparameters) by

optimizing the log-marginal likelihood of the data.

Ease of Intepretation By plotting the score processes {si (t)} over
time, it is easy to visualize the probability of any compar-

ison outcome under the model. As the time dynamics are

described through the composition of simple covariance

functions, their interpretation is straightforward as well.

Concretely, our contributions are threefold. First, we develop a

probabilistic model of pairwise-comparison outcomes with flexible

time-dynamics (Section 2). The model covers a wide range of use

cases, as it enables a) opponents to be represented by a sparse linear

combination of features, and b) observations to follow various like-

lihood functions. In fact, it unifies and extends a large body of prior

work. Second, we derive an efficient algorithm for approximate

Bayesian inference (Section 3). This algorithm adapts to two dif-

ferent variational objectives; in conjunction with the łreverse-KLž

objective, it provably converges to the optimal posterior approxi-

mation. It can be parallelized easily, and the most computationally

intensive step can be offloaded to optimized off-the-shelf numerical

software. Third, we apply our method on several sports datasets and

show that it achieves state-of-the-art predictive performance (Sec-

tion 4). Our results highlight that different sports are best modeled

with different time-dynamics. We also demonstrate how domain-

specific and contextual information can improve performance even

further; in particular, we show that our model outperforms com-

peting ones even when there are strong intransitivities in the data.

In addition to prediction tasks, our model can also be used to

generate compelling visualizations of the temporal evolution of

skills. All in all, we believe that our method will be useful to data-

mining practitioners interested in understanding comparison time-

series and in building predictive systems for games and sports.

A Note on Extensions. In this paper, we focus on pairwise compar-

isons for conciseness. However, the model and inference algorithm

could be extended to multiway comparisons or partial rankings

over small sets of opponents without any major conceptual change,

similarly to Herbrich et al. [16]. Furthermore, and even though we

develop our model in the context of sports, it is relevant to all appli-

cations of ranking from comparisons, e.g., to those where compari-

son outcomes reflect human preferences or opinions [21, 29, 35].

2 MODEL

In this section, we formally introduce our probabilistic model. For

clarity, we take a clean-slate approach and develop the model from

scratch. We discuss in more detail how it relates to prior work in

Section 5.

The basic building blocks of our model are features1. LetM be

the number of features; each featurem ∈ [M] is characterized by a

latent, continuous-time Gaussian process

sm (t) ∼ GP[0,km (t , t ′)]. (1)

We call sm (t) the score process ofm, or simply its score. The covari-

ance function of the process, km (t , t ′) � E [sm (t)sm (t ′)], is used to

encode time dynamics. A brief introduction to Gaussian processes

1In the simplest case, there is a one-to-one mapping between competitors (e.g., teams)
and features, but decoupling them offers increased modeling power.

sm

yn

xn

M

N

(a) Static model

sm1 sm2 smN

t1 t2 tN

y1 y2 yN

x1 x2 xN

. . .

. . .

. . .

M

(b) Our dynamic model

Figure 1: Graphical representation of a static model (left)

and of the dynamic model presented in this paper (right).

The observed variables are shaded. For conciseness, we let

xn � xn,i − xn, j . Right: the latent score variables are mutu-

ally dependent across time, as indicated by the thick line.

as well as a discussion of useful covariance functions is given in Sec-

tion 2.1. TheM scores s1(t), . . . , sM (t) are assumed to be (a priori)

jointly independent, and we collect them into the score vector

s(t) =
[

s1(t) · · · sM (t)
]⊤
.

For a given match, each opponent i is described by a sparse linear

combination of the features, with coefficients xi ∈ RM . That is, the

score of an opponent i at time t∗ is given by

si = x⊤i s(t
∗). (2)

In the case of a one-to-one mapping between competitors and

features, xi is simply the one-hot encoding of opponent i . More

complex setups are possible: For example, in the case of team sports

and if the player lineup is available for each match, it could also be

used to encode the players taking part in the match [20]. Note that

xi can also depend contextually on the match. For instance, it can

be used to encode the fact that a team plays at home [1].

Each observation consists of a tuple (xi ,x j , t∗,y), where xi ,x j
are the opponents’ feature vectors, t∗ ∈ R is the time, and y ∈ Y is

the match outcome. We posit that this outcome is a random variable

that depends on the opponents through their latent score difference:

y | xi ,x j , t∗ ∼ p(y | si − sj ),
where p is a known probability density (or mass) function and

si , sj are given by (2). The idea of modeling outcome probabilities

through score differences dates back to Thurstone [35] and Zermelo

[37]. The likelihood p is chosen such that positive values of si − sj
lead to successful outcomes for opponent i and vice-versa.

A graphical representation of the model is provided in Figure 1.

For perspective, we also include the representation of a static model,

such as that of Thurstone [35]. Our model can be interpreted as

łconditionally parametricž: conditioned on a particular time, it falls

back to a (static) pairwise-comparison model parametrized by real-

valued scores.

ObservationModels. Choosing an appropriate likelihood function

p(y | si − sj ) is an important modeling decision and depends on the

information contained in the outcomey. Themost widely applicable

likelihoods require only ordinal observations, i.e., whether a match

resulted in a win or a loss (or a tie, if applicable). In some cases, we

might additionally observe points (e.g., in association football, the

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1237



Table 1: Examples of observation likelihoods. The score dif-

ference is denoted by d � si −sj and the Gaussian cumulative

density function is denoted by Φ.

Name Y p(y | d) References

Probit {±1} Φ(yd) [16, 35]

Logit {±1} [1 + exp(−yd)]−1 [4, 37]

Ordinal probit {±1, 0} Φ(yd − α), . . . [11]

Poisson-exp N≥0 exp(yd − ed )/y! [19]

Gaussian R ∝ exp[(y − d)2/(2σ 2)] [14]

number of goals scored by each team). To make use of this extra

information, we can model a) the number of points of opponent i

with a Poisson distribution whose rate is a function of si − sj , or
b) the points difference with a Gaussian distribution centered at

si − sj . A non-exhaustive list of likelihoods is given in Table 1.

2.1 Covariance Functions

A Gaussian process s(t) ∼ GP[0,k(t , t ′)] can be thought of as

an infinite collection of random variables indexed by time, such

that the joint distribution of any finite vector of N samples s =

[s(t1) · · · s(tN )] is given by s ∼ N(0,K), where K = [k(ti , tj )]. That
is, s is jointly Gaussian with mean 0 and covariance matrix K . We

refer the reader to Rasmussen and Williams [26] for an excellent

introduction to Gaussian processes.

Hence, by specifying the covariance function appropriately, we

can express prior expectations about the time dynamics of a fea-

ture’s score, such as smooth or non-smooth variations at different

timescales, regression to the mean, discontinuities, linear trends

and more. Here, we describe a few functions that we find useful

in the context of modeling temporal variations. Figure 2 illustrates

these functions through random realizations of the corresponding

Gaussian processes.

Constant This covariance captures processes that remain constant

over time. It is useful in composite covariances to model a

constant offset (i.e., a mean score value).

Piecewise Constant Given a partition of R into disjoint intervals,

this covariance is constant inside a partition and zero be-

tween partitions. It can, for instance, capture discontinuities

across seasons in professional sports leagues.

Wiener This covariance reflects Brownian motion dynamics (c.f.

Section 5). It is non-stationary: the corresponding process

drifts away from 0 as t grows.

Matérn This family of stationary covariance functions can repre-

sent smooth and non-smooth variations at various timescales.

It is parametrized by a variance, a characteristic timescale

and a smoothness parameter ν . When ν = 1/2, it corresponds
to a mean-reverting version of Brownian motion.

Linear This covariance captures linear dynamics.

Finally, note that composite functions can be created by adding or

multiplying covariance functions together. For example, let ka and

kb be constant and Matérn covariance functions, respectively. Then,

the composite covariance k(t , t ′) � ka (t , t ′) + kb (t , t ′) captures
dynamics that fluctuate around a (non-zero) mean value. Duvenaud

[8, Sec. 2.3] provides a good introduction to building expressive

covariance functions by composing simple ones.

3 INFERENCE ALGORITHM

In this section, we derive an efficient inference algorithm for our

model. For brevity, we focus on explaining the main ideas behind

the algorithm. A reference software implementation, available on-

line at https://github.com/lucasmaystre/kickscore, complements

the description provided here.

We begin by introducing some notation. Let D = {(xn , tn ,yn ) :
n ∈ [N ]} be a dataset of N independent observations, where for

conciseness we fold the two opponents xn,i and xn, j into xn �

xn,i − xn, j , for each observation2. Let Dm ⊆ [N ] be the subset

of observations involving feature m, i.e., those observations for

which xnm , 0, and let Nm = |Dm |. Finally, denote by sm ∈ RNm

the samples of the latent score process at times corresponding

to the observations in Dm . The joint prior distribution of these

samples is p(sm ) = N(0,Km ), where Km is formed by evaluating

the covariance function km (t , t ′) at the relevant times.

We take a Bayesian approach and seek to compute the posterior

distribution

p(s1, . . . , sM | D) ∝
M
∏

m=1

p(sm )
N
∏

n=1

p[yn | x⊤n s(tn )]. (3)

As the scores are coupled through the observations, the posterior no

longer factorizes over {sm }. Furthermore, computing the posterior

is intractable if the likelihood is non-Gaussian.

To overcome these challenges, we consider a mean-field varia-

tional approximation [36]. In particular, we assume that the poste-

rior can be well-approximated by a multivariate Gaussian distribu-

tion that factorizes over the features:

p(s1, . . . , sM | D) ≈ q(s1, . . . , sM ) �
M
∏

m=1

N(sm | µm , Σm ). (4)

Computing this approximate posterior amounts to finding the vari-

ational parameters {µm , Σm } that best approximate the true poste-

rior. More formally, the inference problem reduces to the optimiza-

tion problem

min
{µm,Σm }

div [p(s1, . . . , sM | D) ∥ q(s1, . . . , sM )] , (5)

for some divergence measure div(p∥q) ≥ 0. We will consider two

different such measures in Section 3.1.

A different viewpoint on the approximate posterior is as follows.

For both of the variational objectives that we consider, it is possible

to rewrite the optimal distribution q(sm ) as

q(sm ) ∝ p(sm )
∏

n∈Dm
N[smn | µ̃mn , σ̃

2
mn ].

Letting Xn ⊆ [M] be the subset of features such that xnm , 0,

we can now reinterpret the variational approximation as trans-

forming every observation (xn , tn ,yn ) into several independent

pseudo-observations with Gaussian likelihood, one for each feature

m ∈ Xn . Instead of optimizing directly {µm , Σm } in (5), we can

alternatively choose to optimize the parameters {µ̃mn , σ̃
2
mn }. For

2This enables us to write the score difference more compactly. Given an observation at
time t ∗ and letting x � xi − x j , we have si − sj = x ⊤i s (t ∗) − x ⊤j s (t ∗) = x ⊤s (t ∗).
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Figure 2: Random realizations of a zero-mean Gaussian process with six different covariance functions.

Algorithm 1 Model inference.

Require: D = {(xn , tn ,yn ) : n ∈ [N ]}
1: µ̃m , σ̃

2
m ← 0,∞ ∀m

2: q(sm ) ← p(sm ) ∀m

3: repeat

4: for n = 1, . . . ,N do

5: δ ← Derivatives(xn ,yn )
6: form ∈ Xn do

7: µ̃mn , σ̃
2
mn ← UpdateParams(xnm ,δ)

8: form = 1, . . . ,M do

9: q(sm ) ← UpdatePosterior(µ̃m , σ̃2
m )

10: until convergence

any featurem, given the pseudo-observations’ parameters µ̃m and

σ̃2
m , computing q(sm ) becomes tractable (c.f. Section 3.2).

An outline of our iterative inference procedure is given in Algo-

rithm 1. Every iteration consists of two steps:

(1) updating the pseudo-observations’ parameters given the true

observations and the current approximate posterior (lines

4ś7), and

(2) recomputing the approximate posterior given the current

pseudo-observation (lines 8 and 9).

Convergence is declared when the difference between two suc-

cessive iterates of {µ̃mn } and {σ̃ 2
mn } falls below a threshold. Note

that, as a by-product of the computations performed by the algo-

rithm, we can also estimate the log-marginal likelihood of the data,

logp(D).

Running Time. In Appendix A, we show that Derivatives and

UpdateParams run in constant time. In Section 3.2, we show that

UpdatePosterior runs in time O(Nm ). Therefore, if we assume

that the vectors {xn } are sparse, the total running time per iteration

of Algorithm 1 isO(N ). Furthermore, each of the two outer for loops

(lines 4 and 8) can be parallelized easily, leading in most cases to a

linear acceleration with the number of available processors.

3.1 Updating the Pseudo-Observations

The exact computations performed during the first step of the in-

ference algorithmÐupdating the pseudo-observationsÐdepend on

the specific variational method used. We consider two: expectation

propagation [22], and reverse-KL variational inference [3]. The abil-

ity of Algorithm 1 to seamlessly adapt to either of the two methods

is valuable, as it enables practitioners to use the most advanta-

geous method for a given likelihood function. Detailed formulae

for Derivatives and UpdateParams can be found in Appendix A.

3.1.1 Expectation Propagation. We begin by defining two distri-

butions. The cavity distribution q−n is the approximate posterior

without the pseudo-observations associated with the nth datum,

that is,

q−n (s1, . . . , sM ) ∝
q(s1, . . . , sM )

∏

m∈Xn N[smn | µ̃mn , σ̃
2
mn ]
.

The hybrid distribution q̂n is given by the cavity distribution multi-

plied by the nth likelihood factor, i.e.,

q̂n (s1, . . . , sM ) ∝ q−n (s1, . . . , sM )p[yn | x⊤n s(tn )].
Informally, the hybrid distribution q̂n is łcloserž to the true distri-

bution than q.

Expectation propagation (EP) works as follows. At each iteration

and for each n, we update the parameters {µ̃mn , σ̃mn : m ∈ Xn }
such that KL(q̂n ∥q) is minimized. To this end, the function Deriva-

tives (on line 5 of Algorithm 1) computes the first and second

derivatives of the log-partition function

logEq−n
{

p[yn | x⊤n s(tn )]
}

(6)

with respect to µ−n � Eq−n [x⊤n s(tn )]. These computations can be

done in closed form for the widely-used probit likelihood, and they

involve one-dimensional numerical integration for most other like-

lihoods. EP has been reported to result in more accurate posterior

approximations on certain classification tasks [23].

3.1.2 Reverse KL Divergence. This method (often referred to simply

as variational inference in the literature) seeks to minimize KL(q∥p),
i.e., the KL divergence from the approximate posterior q to the true

posterior p.

To optimize this objective, we adopt the approach of Khan and

Lin [18]. In this case, the function Derivatives computes the first

and second derivatives of the expected log-likelihood

Eq

{

logp[yn | x⊤n s(tn )]
}

(7)

with respect to µ � Eq [x⊤n s(tn )]. These computations involve nu-

merically solving two one-dimensional integrals.

In comparison to EP, this method has two advantages. The first

is theoretical: If the likelihood p(y | d) is log-concave in d , then

the variational objective has a unique global minimum, and we can

guarantee that Algorithm 1 converges to this minimum [18]. The

second is numerical: Excepted for the probit likelihood, comput-

ing (7) is numerically more stable than computing (6).
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Figure 3: State-space reformulation of our model. With re-

spect to the representation in Figure 1b, the number of la-

tent variables has increased, but they now form a Markov

chain.

3.2 Updating the Approximate Posterior

The second step of Algorithm 1 (lines 8 and 9) solves the following

problem, for every featurem. Given Gaussian pseudo-observations

{µ̃mn , σ̃mn : n ∈ Dm } and a Gaussian prior p(sm ) = N(0,Km ),
compute the posterior

q(sm ) ∝ p(sm )
∏

n∈Dm
N[smn | µ̃mn , σ̃

2
mn ].

This computation can be done independently and in parallel for

each featurem ∈ [M].
A naive approach is to use the self-conjugacy properties of the

Gaussian distribution directly. Collecting the parameters of the

pseudo-observations into a vector µ̃m and a diagonal matrix Σ̃m ,

the parameters of the posterior q(sm ) are given by

Σm = (K−1m + Σ̃
−1
m )−1, µm = Σm Σ̃

−1
m µ̃m . (8)

Unfortunately, this computation runs in time O(N 3
m ), a cost that

becomes prohibitive if some features appear in many observations.

Instead, we use an alternative approach that exploits a link be-

tween temporal Gaussian processes and state-space models [15, 27].

Without loss of generality, we now assume that the N observations

are ordered chronologically, and, for conciseness, we drop the fea-

ture’s index and consider a single process s(t). The key idea is to

augment s(t) into a K-dimensional vector-valued Gauss-Markov

process s̄(t), such that

s̄(tn+1) = Ans̄(tn ) + εn , εn ∼ N(0,Qn )

where K ∈ N>0 and An ,Qn ∈ RK×K depend on the time interval

|tn+1 − tn | and on the covariance function k(t , t ′) of the original
process s(t). The original (scalar-valued) and the augmented (vector-

valued) processes are related through the equation

s(t) = h⊤s̄(t),

where h ∈ RK is called the measurement vector.

Figure 3 illustrates our model from a state-space viewpoint. It is

important to note that the mutual time dependencies of Figure 1b

have been replaced by Markovian dependencies. In this state-space

formulation, posterior inference can be done in time O(K3N ) by
using the RauchśTungśStriebel smoother [34].

From Covariance Functions to State-Space Models. A method for

converting a process s(t) ∼ GP[0,k(t , t ′)] into an equivalent Gauss-

Markov process s̄(t) by explicit construction of h, {An } and {Qn }
is given in Solin [31]. All the covariance functions described in

Section 2.1 lead to exact state-space reformulations of order K ≤ 3.

The composition of covariance functions through addition or multi-

plication can also be treated exactly and automatically. Some other

covariance functions, such as the squared-exponential function or

periodic functions [26], cannot be transformed exactly but can be

approximated effectively and to arbitrary accuracy [15, 32].

Finally, we stress that the state-space viewpoint is useful because

it leads to a faster inference procedure; but defining the time dy-

namics of the score processes in terms of covariance functions is

much more intuitive.

3.3 Predicting at a New Time

Given the approximate posterior q(s1, . . . , sM ), the probability of

observing outcome y at a new time t∗ given the feature vector x is

given by

p(y | x , t∗) =
∫

R

p(y | z)p(z)dz,

where z = x⊤s(t∗) and the distribution of sm (t∗) is derived from

the posterior q(sm ). By using the state-space formulation of the

model, the prediction can be done in constant time [28].

4 EXPERIMENTAL EVALUATION

In this section, we evaluate our model and inference algorithm on

real data. Our experiments cover three aspects. First, in Section 4.1,

we compare the predictive performance of our model against com-

peting approaches, focusing on the impact of flexible time-dynamics.

Second, in Section 4.2, we show that by carefully choosing features

and observation likelihoods, predictive performance can be im-

proved significantly. Finally, in Section 4.3, we study various facets

of our inference algorithm. We measure the impact of the mean-

field assumption and of the choice of variational objective, and we

demonstrate the scalability of the algorithm.

Datasets. We consider six datasets of pairwise-comparison out-

comes of various sports and games. Four of them contain time-

stamped outcomes; they relate to tennis, basketball, association

football and chess. Due to the large size of the chess dataset3, we

also consider a subset of the data spanning 30 years. The two re-

maining datasets containmatch outcomes of the StarCraft computer

game and do not have timestamps. Table 2 provides summary sta-

tistics for all the datasets. Except for chess, all data are publicly

available online4.

Performance Metrics. Let (x , t∗,y) be an observation.Wemeasure

performance by using the logarithmic loss: − logp(y | x , t∗) and the
accuracy: 1{y = argmaxy′ p(y′ | x , t∗)}. We report their average

values on the test set.

3This dataset consists of all the match outcomes contained in ChessBase Big Database
2018, available at https://shop.chessbase.com/en/products/big_database_2018.
4Tennis: https://github.com/JeffSackmann/tennis_atp, basketball: https://projects.
fivethirtyeight.com/nba-model/nba_elo.csv, football: https://int.soccerway.com/, Star-
Craft: https://github.com/csinpi/blade_chest.
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Figure 4: Temporal evolution of the score processes (µ ±σ ) corresponding to selected basketball teams (top) and tennis players

(bottom). The basketball teams are the Los Angeles Lakers (LAL), the Chicago Bulls (CHI) and the Boston Celtics (BOS).

Table 2: Summary statistics of the sports datasets.

Name Ties M N Time span

ATP tennis No 20 046 618 934 1991ś2017

NBA basketball No 102 67 642 1946ś2018

World football Yes 235 19 158 1908ś2018

ChessBase small Yes 19 788 306 764 1950ś1980

ChessBase full Yes 343 668 7 169 202 1475ś2017

StarCraft WoL No 4381 61 657 Ð

StarCraft HotS No 2287 28 582 Ð

Methodology. Unless specified otherwise, we partition every

dataset into a training set containing the first 70% of the observa-

tions and a test set containing the remaining 30%, in chronological

order. The various hyperparameters (such as covariance functions

and their parameters, learning rates, etc.) are selected based on

the training data only, by maximizing the log-marginal likelihood

of Bayesian models and by minimizing the average leave-one-out

log loss otherwise. The final hyperparameter configuration of all

models can be found in Appendix B. In order to predict the outcome

of an observation at time t∗, we use all the data (in both training

and test sets) up to the day preceding t∗. This closely mimics the

setting where a predictor must guess the outcome of an event in the

near future based on all past data. Unless specified otherwise, we

use Algorithm 1 with the EP variational objective, and we declare

convergence when the improvement in log-marginal likelihood

falls below 10−3. Typically, the algorithm converges in less than a

hundred iterations.

4.1 Flexible Time-Dynamics

In this experiment, we compare the predictive performance of our

model against competing approaches on four timestamped datasets.

In order to better isolate and understand the impact of accurately

modeling time dynamics on predictive performance, we keep the re-

maining modeling choices simple: we treat all outcomes as ordinal-

valued (i.e., win, loss and possibly tie) with a probit likelihood and

use a one-to-one mapping between competitors and features. In

Table 3, we report results for the following models:

• Random. This baseline assigns equal probability to every

outcome.

• Constant. The model of Section 2 with a constant covariance

function. This model assumes that the scores do not vary

over time.

• Elo. The system used by the World Chess Federation [9].

Time dynamics are a by-product of the update rule (c.f. Sec-

tion 5).

• TrueSkill. The Bayesian model of Herbrich et al. [16]. Time

dynamics are assumed to follow Brownian motion (akin to

our Wiener kernel) and inference is done in a single pass

over the data.

• Ours. The model of Section 2. We try multiple covariance

functions and report the one thatmaximizes the log-marginal

likelihood.

Our model matches or outperforms other approaches in almost

all cases, both in terms of log loss and in terms of accuracy. In-

terestingly, different datasets are best modeled by using different

covariance functions, perhaps capturing underlying skill dynamics

specific to each sport.
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Table 3: Predictive performance of our model and of competing approaches on four datasets, in terms of average log loss and

average accuracy. The best result is indicated in bold.

Random Constant Elo TrueSkill Ours

Dataset Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Covariance

ATP tennis 0.693 0.500 0.581 0.689 0.563 0.705 0.563 0.705 0.552 0.714 Affine + Wiener

NBA basketball 0.693 0.500 0.692 0.536 0.634 0.644 0.634 0.644 0.630 0.645 Constant + Matérn 1/2

World football 1.099 0.333 0.929 0.558 0.950 0.551 0.937 0.554 0.926 0.558 Constant + Matérn 1/2

ChessBase small 1.099 0.333 1.030 0.478 1.035 0.447 1.030 0.467 1.026 0.474 Constant + Wiener

Visualizing and Interpreting Scores. Figure 4 displays the tempo-

ral evolution of the score of selected basketball teams and tennis

players. In the basketball case, we can recognize the dominance of

the Boston Celtics in the early 1960’s and the Chicago Bulls’ strong

1995-96 season. In the tennis case, we can see the progression of a

new generation of tennis champions at the turn of the 21st century.

Plotting scores over time provides an effective way to compactly

represent the history of a given sport. Analyzing the optimal hy-

perparameters (c.f. Table 8 in Appendix B) is also insightful: the

characteristic timescale of the dynamic covariance component is

1.75 and 7.47 years for basketball and tennis, respectively. The score

of basketball teams appears to be much more volatile.

4.2 Generality of the Model

In this section, we demonstrate how we can take advantage of addi-

tional modeling options to further improve predictive performance.

In particular, we show that choosing an appropriate likelihood and

parametrizing opponents with match-dependent combinations of

features can bring substantial gains.

4.2.1 Observation Models. Basketball and football match outcomes

actually consist of points (respectively, goals) scored by each team

during the match. We can make use of this additional information

to improve predictions [19]. For each of the basketball and football

datasets, we compare the best model obtained in Section 4.1 to

alternative models. These alternative models keep the same time

dynamics but use either

(1) a logit likelihood on the ordinal outcome,

(2) a Gaussian likelihood on the points difference, or

(3) a Poisson-exp likelihood on the points scored by each team.

The results are presented in Table 4. The logit likelihood performs

similarly to the probit one [33], but likelihoods that take points into

account can indeed lead to better predictions.

Table 4: Average predictive log loss of models with different

observation likelihoods. The best result is indicated in bold.

Dataset Probit Logit Gaussian Poisson

NBA basketball 0.630 0.630 0.627 0.630

World football 0.926 0.926 0.927 0.922

4.2.2 Match-Dependent Parametrization. For a given match, we

can represent opponents by using (non-trivial) linear combinations

of features. This enables, e.g., to represent context-specific infor-

mation that might influence the outcome probabilities. In the case

of football, for example, it is well-known that a team playing at

home has an advantage. Similarly, in the case of chess, playing

White results in a slight advantage. Table 5 displays the predictive

performance achieved by our model when the score of the home

team (respectively, that of the opponent playing White) is modeled

by a linear combination of two features: the identity of the team or

player and an advantage feature. Including this additional feature

improves performance significantly, and we conclude that repre-

senting opponents in terms of match-dependent combinations of

features can be very useful in practice.

Table 5: Predictive performance of models with a home or

first-mover advantage in comparison to models without.

Basic Advantage

Dataset Loss Acc. Loss Acc.

World football 0.926 0.558 0.900 0.579

ChessBase small 1.026 0.480 1.019 0.485

4.2.3 Capturing Intransitivity. Score-based models such as ours are

sometimes believed to be unable to capture meaningful intransitiv-

ities, such as those that arise in the łrock-paper-scissorsž game [5].

This is incorrect: if an opponent’s score can be modeled by using

match-dependent features, we can simply add an interaction feature

for every pair of opponents. In the next experiment, we model the

score difference between two opponents i, j as d � si − sj + si j . In-
formally, the model learns to explain the transitive effects through

the usual player scores si and sj and the remaining intransitive

effects are captured by the interaction score si j . We compare this

model to the Blade-Chest model of Chen and Joachims [5] on the

two StarCraft datasets, known to contain strong intransitivities.

The Blade-Chest model is specifically designed to handle intransi-

tivities in comparison data. We also include two baselines, a simple

BradleyśTerry model without the interaction features (logit) and a

non-parametric estimator (naive) that estimates probabilities based

on match outcomes between each pairÐwithout attempting to cap-

ture transitive effects. As shown in Figure 5, our model outperforms

all other approaches, including the Blade-Chest model. More details

on this experiment can be found in Appendix B.2.
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Figure 5: Average log loss of four models (BradleyśTerry,

naive, blade-chest and ours) on the StarCraft datasets.

4.3 Inference Algorithm

We turn our attention to the inference algorithm and study the

impact of several implementation choices. We start by quantifying

the impact of the mean-field assumption (4) and of the choice of

variational objective on predictive performance. Then, we demon-

strate the scalability of the algorithm on the ChessBase dataset and

measure the acceleration obtained by parallelizing the algorithm.

4.3.1 Mean-Field Approximation. In order to gain understanding

on the impact of the factorization assumption in (4), we devise the

following experiment. We consider a small subset of the basketball

data containing all matches between 2000 and 2005 (N = 6382,

M = 32). We evaluate the predictive performance on each week

of the last season by using all the matches prior to the test week

as training data. Our model uses a one-to-one mapping between

teams and features, a constant + Matérn 1/2 covariance function,

and a Gaussian likelihood on the points difference.

We compare the predictive performance resulting from two infer-

ence variants, a) mean-field approximate inference, i.e., Algorithm 1,

and b) exact posterior inference5. Both approaches lead to an aver-

age log loss of 0.634 and an average accuracy of 0.664. Strikingly,

both values are equal up to four decimal places, suggesting that the

mean-field assumption is benign in practice [2].

4.3.2 Variational Objective. Next, we study the influence of the

variational method. We re-run the experiments of Section 4.1, this

time by using the reverse-KL objective instead of EP. The predictive

performance in terms of average log loss and average accuracy

is equal to the EP case (Table 3, last three columns) up to three

decimal places, for all four datasets. Hence, the variational objective

seems to have little practical impact on predictive performance. As

such, we recommend using the reverse-KL objective for likelihoods

whose log-partition function (6) cannot be computed in closed form,

as the numerical integration of the expected log-likelihood (7) is

generally more stable.

4.3.3 Scalability. Finally, we demonstrate the scalability of our

inference algorithm by training a model on the full ChessBase

dataset, containing over 7 million observations. We implement a

multithreaded version of Algorithm 1 in the Go programming lan-

guage6 and run the inference computation on a machine containing

two 12-core Intel Xeon E5-2680 v3 (Haswell generation) processors

5This is possible for this particular choice of likelihood thanks to the self-conjugacy of

the Gaussian distribution, but at a computational costO (N 3).
6The code is available at https://github.com/lucasmaystre/gokick.
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Figure 6: Running time per iteration of a multithreaded im-

plementation of Algorithm 1 on the ChessBase full dataset,

containing over 7 million observations.

clocked at 2.5 GHz. Figure 6 displays the running time per iteration

as function of the number of worker threads. By using 16 threads,

we need only slightly over 5 seconds per iteration.

5 RELATED WORK

Probabilistic models for pairwise comparisons have been studied

for almost a century. Thurstone [35] proposed his seminal law of

comparative judgment in the context of psychology. Almost con-

currently, Zermelo [37] developed a method to rank chess players

from match outcomes. Both rely on the same idea: objects are char-

acterized by a latent score (e.g., the intrinsic quality of a perceptual

variable, or a chess player’s skill) and the outcomes of comparisons

between objects depend on the difference between the correspond-

ing latent scores. Zermelo’s model was later rediscovered by Bradley

and Terry [4] and is currently usually referred to as the Bradleyś

Terry model. Stern [33] provides a unifying framework and shows

that, in practice, Thurstone’s and Zermelo’s models result in similar

fits to the data. In the context of sports, some authors suggest go-

ing beyond ordinal outcomes and investigate pairwise-comparison

models with Gaussian [14], Poisson [14, 19], or Skellam [17] likeli-

hoods.

In many applications of practical interest, comparison outcomes

tend to vary over time. In chess, for example, this is due to the skill

of players changing over time. The World Chess Federation, which

uses a variant of the BradleyśTerry model to rank players, updates

player scores after eachmatch by using a stochastic gradient update:

si ← si + λ
∂

∂si
logp(y | si − sj ),

where λ ∈ R is a learning rate. It is interesting that this simple online

update scheme (known as the Elo rating system [9]) enables a basic

form of łtrackingž: the sequence of scores gives an indication of a

player’s evolution over time. Whereas, in this case, score dynamics

occur as a by-product of the learning rule, several attempts have

been made to model time dynamics explicitly. Usually, these models

assume a variant of Brownian motion:

s(tn+1) = s(tn ) + εn , εn ∼ N(0,σ 2 |tn+1 − tn |). (9)

Glickman [12] and Fahrmeir and Tutz [10] are, to the best of our

knowledge, the first to consider such amodel. Glickman [13] derives

a computationally-efficient Bayesian inference method by using

closed-form approximations of intractable integrals. Herbrich et al.
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[16] and Dangauthier et al. [7] propose a similar method based

on Gaussian filtering and expectation propagation, respectively.

Coulom [6] proposes a method based on the Laplace approximation.

Our model strictly subsumes these approaches; Brownian motion

is simply a special case of our model obtained by using the Wiener

kernel. One of the key contributions of our work is to show that

it is not necessary to restrict the dynamics to Brownian motion in

order to get linear-time inference.

Finally, we briefly review literature on the link between Gaussian

processes (GPs) with scalar inputs and state-space models (SSMs),

as this forms a crucial component of our fast inference procedure.

Excellent introductions to this link can be found in the theses of

Saatçi [28] and Solin [31]. The connection is known since the semi-

nal paper of O’Hagan [25], which introduced Gaussian processes

as a method to tackle general regression problems. It was recently

revisited by Hartikainen and Särkkä [15], who provide formulae

for going back-and-forth between GP covariance and state-space

forms. Extensions of this link to non-Gaussian likelihood models

are discussed in Saatçi [28] and Nickisch et al. [24]. To the best of

our knowledge, we are the first to describe how the link between

GPs and SSMs can be used in the context of observation models

that combine multiple processes, by using a mean-field variational

approximation.

6 CONCLUSIONS

We have presented a probabilistic model of pairwise comparison

outcomes that can capture a wide range of temporal dynamics. This

model reaches state-of-the-art predictive performance on several

sports datasets, and it enables generating visualizations that help in

understanding comparison time-series. To fit our model, we have

derived a computationally efficient approximate Bayesian inference

algorithm. To the best of our knowledge, our algorithm is the first

linear-time Bayesian inference algorithm for dynamic pairwise

comparison models that minimizes the reverse-KL divergence.

One of the strengths of our approach is that it enables to discover

the structure of the time dynamics by comparing the log-marginal

likelihood of the data under various choices of covariance functions.

In the future, we would like to fully automatize this discovery pro-

cess, in the spirit of the automatic statistician [8]. Ideally, given only

the comparison data, we should be able to systematically discover

the time dynamics that best explain the data, and generate an inter-

pretable description of the corresponding covariance functions.
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A INFERENCE ALGORITHM

For conciseness, we drop the index n and consider a single ob-

servation (x , t∗,y) ∈ D. Let s � s(t∗) be the vector containing

the score of all features at the time of the observation. Instead of

optimizing the łstandardž parameters µ̃m , σ̃
2
m , we will optimize

the corresponding natural parameters α̃m , β̃m . They are related

through the following equations.

α̃m = µ̃m/σ̃ 2
m , β̃m = 1/σ̃ 2

m

Expectation Propagation. Let q−(s) = N(µ, Σ) be the cavity dis-

tribution. The log-partition function can be rewritten as a one-

dimensional integral:

logZ � logEq−
[

p(y | x⊤s)
]

= log

∫

s
p(y | x⊤s)N(s | µ, Σ)ds

= log

∫

u
p(y | u)N(u | µ,σ 2)du,

where µ = x⊤µ and σ 2
= x⊤Σx . The function Derivatives com-

putes the first and second derivatives with respect to this mean,

i.e.,

δ1 =
∂

∂µ
logZ , δ2 =

∂2

∂µ2
logZ .

Given these quantities, the function UpdateParams updates the

pseudo-observations’ parameters for eachm ∈ X:

α̃m ← (1 − λ)α̃m + λ
[

xmδ1 − µmx2mδ2

1 + Σmmx2mδ2

]

,

β̃m ← (1 − λ)β̃m + λ
[ −x2mδ2

1 + Σmmx2mδ2

]

,

where λ ∈ (0, 1] is a learning rate. A formal derivation of these up-

date equations can be found inMinka [22], Rasmussen andWilliams

[26], Seeger et al. [30].

Reverse KL Divergence. Let q(s) = N(µ, Σ) be the current pos-
terior. Similarly to the log-partition function, the expected log-

likelihood can be rewritten as a one-dimensional integral:

L � Eq

[

logp(y | x⊤s)
]

=

∫

s
logp(y | x⊤s)N(s | µ, Σ)ds

=

∫

u
logp(y | u)N(u | µ,σ 2)du,

where µ = x⊤µ and σ 2
= x⊤Σx . The function Derivatives com-

putes the first and second derivatives with respect to this mean,

i.e.,

δ1 =
∂

∂µ
L, δ2 =

∂2

∂µ2
L.

Given these quantities, the function UpdateParams updates the

pseudo-observations’ parameters for eachm ∈ X:
α̃m ← (1 − λ)α̃m + λ

[

xmδ1 − µmx2mδ2
]

,

β̃m ← (1 − λ)β̃m + λ
[

−x2mδ2
]

,

where λ ∈ (0, 1] is the learning rate. A formal derivation of these

update equations can be found in Khan and Lin [18].

B EXPERIMENTAL EVALUATION

The code used to produce the experiments presented in this paper

is publicly available online. It consists of two software libraries.

• A library written in the Python programming language,

available at https://github.com/lucasmaystre/kickscore. This

libary provides a reference implementation of Algorithm 1

with a user-friendly API.

• A library written in the Go programming language, avail-

able at https://github.com/lucasmaystre/gokick. This library

provides a multithreaded implementation of Algorithm 1,

focused on computational performance.

Additionally, the scripts and computational notebooks used to pro-

duce the experiments and figures presented in this paper are avail-

able at https://github.com/lucasmaystre/kickscore-kdd19.

B.1 Hyperparameters

Generally speaking, we choose hyperparameters based on a search

over 1000 configurations sampled randomly in a range of sensible

values (we always make sure that the best hyperparameters are

not too close to the ranges’ boundaries). In the case of our mod-

els, we choose the configuration that maximizes the log-marginal

likelihood of the training data. In the case of TrueSkill and Elo, we

choose the configuration that minimizes the leave-one-out log loss

on the training data.

A list of all the hyperparameters is provided in Table 6. A formal

definition of the covariance functions we use is given in Table 7.

Finally, Table 8 lists the hyperparameter values used in most of the

experiments described in Section 4.

Table 6: Hyperparameters and their description.

Symbol Description

λ Learning rate

α Draw margin

σ 2
n Observation noise (Gaussian likelihood)

σ 2
cst Variance (constant covariance)

σ 2
lin

Variance (linear covariance)

σ 2
W

Variance (Wiener covariance)

ν Smoothness (Matérn covariance)

σ 2
dyn

Variance (Matérn covariance)

ℓ Timescale, in years (Matérn covariance)

Table 7: Covariance functions.

Name k(t , t ′)

Constant σ 2
cst

Linear σ 2
lin
tt ′

Wiener σ 2
W
min{t , t ′}

Matérn, ν = 1/2 σ 2
dyn

exp(−|t − t ′ |/ℓ)
Matérn, ν = 3/2 σ 2

dyn
(1 +
√
3|t − t ′ |/ℓ) exp(−

√
3|t − t ′ |/ℓ)
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Table 8: Hyperparameter values used for the models of Section 4.

Dataset Model Likelihood λ α σ 2
n σ 2

cst σ 2
lin

σ 2
W

ν σ 2
dyn

ℓ

ATP tennis Constant Probit 1.000 Ð Ð 0.817 Ð Ð Ð Ð Ð

Elo Logit 0.262 Ð Ð Ð Ð Ð Ð Ð Ð

TrueSkill Probit Ð Ð Ð 0.137 Ð 0.007 Ð Ð Ð

Ours Probit 1.000 Ð Ð 0.366 0.001 0.147 Ð Ð Ð

Figure 4 Probit 1.000 Ð Ð 0.034 Ð Ð 3/2 0.912 7.469

NBA Basketball Constant Probit 1.000 Ð Ð 0.060 Ð Ð Ð Ð Ð

Elo Logit 0.095 Ð Ð Ð Ð Ð Ð Ð Ð

TrueSkill Probit Ð Ð Ð 0.128 Ð 0.001 Ð Ð Ð

Ours Probit 1.000 Ð Ð 0.003 Ð Ð 1/2 0.152 3.324

Figure 4 Probit 1.000 Ð Ð 0.003 Ð Ð 3/2 0.138 1.753

Table 4 Logit 1.000 Ð Ð 0.001 Ð Ð 1/2 0.417 3.429

Table 4 Gaussian 1.000 Ð 143.451 0.059 Ð Ð 1/2 17.667 3.310

Table 4 Poisson-exp 0.800 Ð Ð 5.470 Ð Ð 1/2 0.003 2.378

World Football Constant Probit 1.000 0.372 Ð 0.933 Ð Ð Ð Ð Ð

Elo Logit 0.196 0.578 Ð Ð Ð Ð Ð Ð Ð

TrueSkill Probit Ð 0.381 Ð 1.420 Ð 0.001 Ð Ð Ð

Ours Probit 1.000 0.386 Ð 0.750 Ð Ð 1/2 0.248 69.985

Table 4 Logit 1.000 0.646 Ð 2.001 Ð Ð 1/2 0.761 71.693

Table 4 Gaussian 1.000 Ð 3.003 4.062 Ð Ð 1/2 2.922 175.025

Table 4 Poisson-exp 0.800 Ð Ð 0.300 Ð Ð 1/2 0.210 83.610

Table 5 Probit 1.000 0.407 Ð 0.895 Ð Ð 1/2 0.220 44.472

ChessBase small Constant Probit 1.000 0.554 Ð 0.364 Ð Ð Ð Ð Ð

Elo Logit 0.157 0.856 Ð Ð Ð Ð Ð Ð Ð

TrueSkill Probit Ð 0.555 Ð 0.240 Ð 0.001 Ð Ð Ð

Ours Probit 1.000 0.558 Ð 0.307 Ð 0.010 Ð Ð Ð

Table 5 Probit 1.000 0.568 Ð 0.188 Ð Ð 1/2 0.188 35.132

Table 9: Hyperparameter values for the experiment of Sec-

tion 4.2.3.

BradleyśTerry Ours

Dataset α σ 2
cst σ 2

×
StarCraft WoL 0.077 4.821 3.734

StarCraft HotS 0.129 4.996 4.342

B.2 Capturing Intransitivity

We closely follow the experimental procedure of Chen and Joachims

[5] for the experiment of Section 4.2.3. In particular, we randomly

partition each dataset into three splits: a training set (50% of the

data), a validation set (20%), and a test set (30%). We train the model

on the training set, choose hyperparameters based on the log loss

measured on the validation set, and finally report the average log

loss on the test set.

For the Blade-Chest model, we were not able to reproduce the

exact results presented in Chen and Joachims [5] using the open-

source implementation available at https://github.com/csinpi/blade_

chest. Instead, we just report the best values in Figures 3 and 4 of

the paper (blade-chest inner model, with d = 50).

For the BradleyśTerry model, we use the Python library choix

and its function opt_pairwise. The only hyperparameter to set is

the regularization strength α .

For our model, since there are no timestamps in the StarCraft

datasets, we simply use constant covariance functions. The two

hyperparameters are σ 2
cst and σ

2
×, the variance of the player features

and of the interaction features, respectively. The hyperparameter

values that we used are given in Table 9.
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