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Abstract

This paper is concerned with low multilinear rank approximations to antisym-
metric tensors, that is, multivariate arrays for which the entries change sign when
permuting pairs of indices. We show which ranks can be attained by an antisymmet-
ric tensor and discuss the adaption of existing approximation algorithms to preserve
antisymmetry, most notably a Jacobi algorithm. Particular attention is paid to the
important special case when choosing the rank equal to the order of the tensor. It is
shown that this case can be addressed with an unstructured rank-1 approximation.
This allows for the straightforward application of the higher-order power method,
for which we discuss effective initialization strategies.

1 Introduction

A tensor A ∈ Rn×···×n of order d ≥ 2 is called antisymmetric if its entries A(i1, i2, . . . , id)
change sign when permuting pairs of indices. For example, a tensor of order three with
entries is antisymmetric if

A(i1, i2, i3) = −A(i2, i1, i3) = −A(i3, i2, i1) = −A(i1, i3, i2), i1, i2, i3 = 1, . . . , n.

For order two, the notion of antisymmetric tensors coincides of course with the notion
of skew-symmetric matrices.

Antisymmetric tensors play a major role in quantum chemistry, where the Pauli
exclusion principle implies that wave functions of fermions are antisymmetric under
permutations of variables. This antisymmetry needs to be taken into account when
solving the multiparticle Schrödinger equation determining such a wave function; see [11]
for a recent overview.

This paper is concerned with finding an approximation B to a given antisymmet-
ric tensor A such that B has a data-sparse representation and is again antisymmetric.
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More specifically, we will consider an approximation of multilinear rank r in structure-
preserving Tucker decomposition

B = S ×1 U ×2 U · · · ×d U, (1.1)

where S ∈ Rr×···×r for some r ≤ n is again antisymmetric and U ∈ Rn×r has orthonormal
columns. This choice is analogous to existing approaches for symmetric tensors, see,
e.g., [3, 4, 8]. In this paper, we demonstrate that some existing algorithms for the
symmetric case extend to the antisymmetric case. In particular, we study the extension
of the Jacobi algorithm by Ishteva, Absil, and Van Dooren [7].

Despite a number of similarities, there are pronounced differences between symmetric
and antisymmetric tensors. For example, every (multilinear) rank r can be attained
by a symmetric matrix or tensor. In contrast, it is well known that skew-symmetric
matrices have even rank. Although this statement does not extend to d > 2, we will
see that there are still restrictions on the ranks that can be attained by anti-symmetric
tensors. In particular, the smallest possible nonzero rank is r = d. In this case, the
decomposition (1.1) simplifies to

anti
(
αu1 ⊗ u2 ⊗ · · · ⊗ ud

)
, α ∈ R, (1.2)

with the antisymmetrizer A = anti(X ) defined by

A(i1, . . . , id) :=
1

d!

∑
π∈Sd

sign(π)X
(
π(i1), π(i2), . . . , π(id)

)
, (1.3)

where Sd denotes the symmetric group on {1, . . . , d}. This corresponds to the notion of
Slater determinants that feature prominently in the Hartree-Fock method from quantum
mechanics. The expression (1.2) suggests the more general decomposition anti(X ) for
(non-symmetric) tensor X of low tensor rank. This corresponds to a short sum of
Slater determinants used, e.g., in the Multi-Configuration Self-Consistent Field method.
Such a low-rank model for antisymmetric tensors has been studied in the literature. In
particular, Beylkin, Mohlenkamp, and Pérez [2, 1] have developed an alternating least-
squares algorithm for approximating a given antisymmetric tensor A by anti(X ). The
algorithm employs Löwdin’s rule to avoid having to deal with the exponentially many
terms in the sum (1.3). One contribution of this paper is a much simpler approach
for (1.2), that is, when X has rank 1: The best choice of X is given by a scalar multiple
of the best (non-symmetric) rank-1 approximation of A.

The rest of this paper is organized as follows. In Section 2, we study the multilinear
rank of an antisymmetric tensor and recall the higher-order singular value decomposition.
Section 3 is concerned with algorithms that aim at the antisymmetric low multilinear
rank approximations, the higher-order iterations method and a variant of the Jacobi
method. Section 4 is dedicated to the special case of rank-d approximation.

2 Multilinear rank of antisymmetric tensors

Let us first recall some basic concepts related to the multilinear rank of a tensor; see [9] for
details. For any 1 ≤ µ ≤ d, the µth matricization of a general tensor X ∈ Rn1×n2×···×nd
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is the nµ ×
∏
ν 6=µ nν matrix X(µ) defined by

X(µ)(iµ, j) = X (i1, . . . , id), j = j(i1, . . . , id) := 1 +
d∑
ν=1
ν 6=µ

(iν − 1)
ν−1∏
η=1
η 6=µ

nη. (2.1)

The multilinear rank of X is the tuple (r1, r2, . . . , rd) defined by rµ = rank(X(µ)). Note
that X(µ) is a matrix and hence rµ ≤ min{nµ,

∏
ν 6=µ nν}.

For an antisymmetric tensor, all matricizations are essentially the same.

Lemma 2.1 Let A ∈ Rn×n×···×n be an antisymmetric tensor of order d. Then A(µ) =

(−1)|µ−ν|A(ν) holds for any 1 ≤ µ, ν ≤ d.

Proof. Without loss of generality, let µ ≤ ν. According to (2.1), X(µ)(iµ, j) =
X (i1, . . . , id) implies X(ν)(iµ, j) = X (i1, . . . , iµ−1, iµ+1, . . . , iν , iµ, iν+1, . . . , id). The re-
sult follows from the observation that the permutation (1, . . . , µ− 1, µ+ 1, . . . , ν, µ, ν +
1, . . . , d) has sign (−1)|µ−ν|.

Lemma 2.1 implies that the multilinear rank of A always takes the form (r, . . . , r)
for some 1 ≤ r ≤ n. In the following, we will simply refer to r as the multilinear rank of
an antisymmetric tensor.

2.1 Restrictions on the multilinear rank

It is well known that skew-symmetric matrices have even rank. It turns out that this
property does not extend to antisymmetric tensors; it is simple to construct tensors of
higher order with odd multilinear ranks. However, the following theorem shows that
antisymmetry still imposes some (weaker) restrictions on the ranks of antisymmetric
tensors that are of small size n relative to d.

Theorem 2.2 Let A ∈ Rn×n×···×n be an antisymmetric tensor of order d ≥ 3. Then
the multilinear rank r of A satisfies

(i) r = 0 for n < d;

(ii) r ≤ d for n = d or n = d+ 1;

(iii) r ≤ n for n ≥ d+ 2.

There exist tensors A for which equality is attained in (i)–(iii).

Proof. We will make use of the fact that the entries of A satisfy

A(i1, i2, . . . , id) = 0, if ip = iq, for some p 6= q, 1 ≤ p, q ≤ d. (2.2)

(i) According to (2.2), all d indices i1, . . . , id ∈ [1, n] need to be mutually different for
an entry A(i1, i2, . . . , id) to be nonzero. When n < d, this is clearly not possible
and hence A = 0.
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(ii) For n = d, the condition r ≤ d follows from the size of the matricizations. To show
that equality is attained, consider the tensor A = d! anti(X ) where all entries of
X ∈ Rd×···×d are zero except for X (1, 2, . . . , d) = 1. For arbitrary 1 ≤ i ≤ d choose
the permutation p = (i, 1, . . . , i − 1, i + 1, . . . , d). By definition, A(p) = sign(p) =
(−1)i−1. By letting j = j

(
p(2), . . . , p(d)

)
, it follows that the jth column of A(1)

equals (−1)i−1ei with the ith unit vector ei ∈ Rn. In particular, A(1) has d linearly
independent columns and is thus of rank d.

Now, let n = d + 1 and assume, without loss of generality, that A 6= 0. We
denote the rows of the matricization A(1) by A1,(1), . . . ,Ad+1,(1) ∈ Rnd−1

. This
matricization has rank at most d if we can show that these rows are linearly
dependent. Let

αk := A(1, . . . , k − 1, k + 1, . . . , d+ 1), k = 1, . . . , d+ 1.

Since A 6= 0, at least one αk is different from zero. Let us now consider the column
of A(1) corresponding to a fiber A(:, i2, . . . , id) for some i2, . . . , id ∈ [1, d+ 1]. We
may assume that i2, . . . , id are mutually distinct because otherwise this fiber is
zero. For the moment, we also assume that these indices are ordered, that is,
1 ≤ i2 < i3 < · · · < id ≤ d+ 1. By the pigeon hole principle, there are two integers
1 ≤ k < ` ≤ d+ 1 such that k, l 6∈ {i2, . . . , id}. The situation is now as follows:

i2 · · · ik ik+1 · · · il−1 il · · · id

= · · · = = · · · = = · · · =

1 · · · k − 1 k k + 1 · · · l − 1 l l + 1 · · · d+ 1

In particular, this implies

A(k, i2, . . . , id) = (−1)k−1A(i2, . . . , ik−1, k, ik+1, . . . , id) = (−1)k−1α`,

A(`, i2, . . . , id) = (−1)`−2A(i2, . . . , i`−1, `, i`+1, . . . , id) = (−1)`−2αk.

Using that A(i1, i2, . . . , id) is only nonzero for mutually distinct indices, we arrive
at the linear combination

d+1∑
i1=1

(−1)i1αi1A(i1, i2, . . . , id) = (−1)kαkA(k, i2, . . . , id) + (−1)`α`A(`, i2, . . . , id)

= (−1)2k−1αkα` + (−1)2`−2αkα` = −αkα` + αkα` = 0.

Since this relation is not affected by a permutation of i2, . . . , id, it also holds if
these indices are not ordered. In summary, we have shown that

d+1∑
i1=1

(−1)i1αi1Ai1,(1) = 0

and thus the rank of A(1) is at most d.

For n = d+ 1 equality is attained by the tensor used in the construction for n = d
bordered with zeros.
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(iii) Let n ≥ d + 2. By the size of the matricization, r ≤ n. To show that r = n can
be attained, let us first define the integer vector h = (1, 2, . . . , n, 1, . . . , d− 1). We
choose the tensor X ∈ Rn×n×···×n to be zero except for

X (hk, hk+1, hk+2, . . . , hk+d−1) = −d!, k = 1, 2, . . . , n.

The corresponding sets σk = {hk, hk+1, hk+2, . . . , hk+d−1} ⊂ N all have cardinality
d for k = 1, 2, . . . , n. The set {1, 3, 4, . . . , d} = σ1 \ {2} is only contained in σ1. In
particular, n > d ≥ 3 implies that it is not contained in σn = {n, 1, . . . , d − 1}.
This shows A(:, 1, 3, 4, . . . , d) = e2. Analogously, A(:, 2, 4, 5, . . . , d + 1) = e3 and
A(:, 3, 5, 6, . . . , d + 2) = e4. This construction can be continued until we arrive at
the set {n− 1, 1, . . . , d− 2} = σn−1 \ {n}, which is not contained in σ1 because of
n − 1 > d, or in any other σk except σn−1. Hence, A(:, n − 1, 1, . . . , d − 2) = en.
Finally, we have A(:, n, 2, . . . , d − 2) = e1. In summary, we have found n linearly
independent columns of A(1) and, therefore, the multilinear rank of A is n.

2.2 HOSVD

Given a general tensor X ∈ Rn1×···×nd , the higher-order singular value decomposition
(HOSVD) introduced in [3] proceeds by computing the SVDs of the matricizations X(µ),
1 ≤ µ ≤ d, and letting Vµ ∈ Rnµ×nµ contain the left singular vectors. Setting T =
X ×1 V

T
1 ×2 V

T
2 ×3 · · · ×d V T

d yields the Tucker decomposition

X = T ×1 V1 ×2 V2 · · · ×d Vd.

The truncated HOSVD for a given multilinear rank (r1, . . . , rd) with rµ ≤ nµ is obtained
by setting

S ×1 U1 ×2 U2 · · · ×d Ud, (2.3)

with Uµ = Vµ(:, 1 : rµ) and S = T (1 : r1, 1 : r2, . . . , 1 : rµ). This gives a quasi-best
approximation of X , in the sense that the approximation error in the Frobenius norm,
‖X − S ×1 U1 · · · ×d Ud‖, is within a factor

√
d of the error of the best rank-(r1, . . . , rd)

approximation. In particular, if X happens to have multilinear rank (r1, . . . , rd) then
the decomposition (2.3) is exact.

We now apply the truncated HOSVD to obtain an approximation of multilinear rank
r to an antisymmetric tensor A. By Lemma 2.1, all matrices Uµ in (2.3) can be chosen
equal to a fixed matrix U . In turn S = A ×1 U

T · · · ×d UT is again antisymmetric.
In summary, the truncated HOSVD described in Algorithm 1 automatically preserves
structure and produces a quasi-best antisymmetric approximation.

Algorithm 1 Truncated HOSVD of antisymmetric tensor

Compute matrix U ∈ Rn×r containing the leading r left singular vectors of A(1).
Set S = A×1 U

T · · · ×d U
T .

Return approximation S ×1 U · · · ×d U .
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Corollary 2.3 Let A be an antisymmetric tensor of order d. Then the multilinear rank
r of A satisfies r = 0 or r = d or d+ 2 ≤ r ≤ n. Any of these ranks can be attained.

Proof. By the discussion above, an antisymmetric tensor of multilinear rank r can
be written as A = S ×1U · · ·×dU , where the r×· · ·× r tensor S is again antisymmetric
and has multilinear rank r. The statement of the corollary now follows from applying
Theorem 2.2 to S.

Let us inspect the case r = d more closely. Any antisymmetric d× · · · × d tensor of
order d takes the form

S = anti(αe1 ⊗ e2 ⊗ · · · ⊗ ed), (2.4)

for some α ∈ R; see also the construction in the proof of Theorem 2.2 (i). By letting
U = [u1, u2, . . . , ud], the truncated HOSVD implies that any antisymmetric tensor of
order d and multilinear rank d takes the form

A = anti(αe1 ⊗ e2 ⊗ · · · ⊗ ed)×1 U ×2 U · · · ×d U = anti(αu1 ⊗ u2 ⊗ · · · ⊗ ud),

verifying the claim (1.2) from the introduction.

3 Low multilinear rank approximation

In this section, we discuss two iterative methods that aim to compute a best antisym-
metric multilinear rank-r approximation

min
{
‖A − S ×1 U · · · ×d U‖ : S ∈ Rr×···×r antisymmetric, U ∈ Rn×r

}
,

starting, for example, from the truncated HOSVD of A. Both methods are based on the
fact that this minimization problem is equivalent to solving

max
{
‖A ×1 U

T · · · ×d UT ‖ : U ∈ Rn×r with UTU = Ir
}

(3.1)

and setting S = A×1 U
T · · · ×d UT ; see, for example, [4].

Remark 3.1 For symmetric tensors, there is numerical evidence (see, e.g., [7]) that the
best (unstructured) approximation of multilinear rank r can usually be chosen symmetric.
For d = 2 and general r, this follows from the spectral decomposition. For general d and
r = 1, this property has recently been shown by Friedland [5]. For general d and r, this
question remains open.

For antisymmetric tensors, we will observe the analogous phenomenon below; it ap-
pears that the best (unstructured) approximation of multilinear rank r can usually be
chosen antisymmetric. For d = 2 and even r, this property follows from the real Schur
decomposition. For r = d and general d, we will see in Section 4 that it is actually
the unstructured rank-1 approximation that gives an antisymmetric multilinear rank-d
approximation.

To simplify the presentation, we will consider the case d = 3 for the rest of this
section; all developments extend in a relatively straightforward manner to general d > 3.
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3.1 HOOI

The higher-order orthogonal iteration (HOOI) introduced in [10] is a popular approach
to the best low multilinear rank approximation of a general tensor. It consists of ap-
plying alternating least squares (ALS) to the unstructured variant of the maximization
problem (3.1):

max
{
‖A ×1 U

T
1 ×2 U

T
2 ×3 U

T
3 ‖ : Uµ ∈ Rn×r with UTµ Uµ = Ir, µ = 1, 2, 3

}
.

One step of the method optimizes a single factor Uµ while keeping the other two factors
fixed. The resulting optimization problem admits a straightforward solution by the SVD;
see Algorithm 2.

Algorithm 2 HOOI for multilinear rank-(r, r, r) approximation

Apply Algorithm 1 to choose initial factors U1 = U2 = U3 = U .
repeat
X = A×2 U

T
2 ×3 U

T
3

Compute matrix U1 ∈ Rn×r containing the leading r left singular vectors of X(1).
Y = A×1 U

T
1 ×3 U

T
3

Compute matrix U2 ∈ Rn×r containing the leading r left singular vectors of Y(2).
Z = A×1 U

T
1 ×2 U

T
2

Compute matrix U3 ∈ Rn×r containing the leading r left singular vectors of Z(3).
until convergence
S = Z ×3 U

T
3

Return approximation S ×1 U1 ×2 U2 ×3 U3.

Note that the iterates of Algorithm 2 are not antisymmetric. However, similarly as
in the symmetric case, we have observed that Algorithm 2 often converges towards an
antisymmetric approximation; see Section 3.3 below. To antisymmetrize the output of
Algorithm 2, one could set all factors equal to the factor Uµ that maximizes (3.1).

A simple antisymmetric variant of Algorithm 2 consists of setting all factors to the
factor that has been obtained from the SVD in one step. In the symmetric case, this
variant has been observed to suffer from convergence problems [7] and we observed
similar difficulties in the antisymmetric case.

3.2 Jacobi algorithm

In contrast to HOOI, the Jacobi algorithm proposed for symmetric tensors in [7] preserves
structure, that is, all iterates stay symmetric. In this section, we develop an extension
of this algorithm to antisymmetric tensors.

It will be convenient to rewrite the maximization problem (3.1) as

max
{
f(Q) : Q ∈ Rn×n with QTQ = In

}
,

where

f(Q) = ‖A ×1 MQT ×2 MQT ×3 MQT ‖2, M =

(
Ir 0
0 0

)
. (3.2)
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We will denote a Givens rotation acting on rows/columns i and j by

R(i, j, φ) =



i j

I
cosφ − sinφ

I
sinφ cosφ

I


i

j
.

In the following, (i, j) will be called a pivot pair.
The main idea of the Jacobi algorithm is to repeatedly apply Givens rotations that

increase the norm of the (1 : r, 1 : r, 1 : r) subtensor. For this purpose, it will be sufficient
to consider rotations corresponding to the pivot pairs

(1, r + 1), (1, r + 2), . . . (1, n)
(2, r + 1), (2, r + 2), . . . (2, n)

...
...

...
(r, r + 1), (r, r + 2), . . . (r, n).

(3.3)

In every iteration of the Jacobi algorithm, we choose a pivot pair that produces a
direction of sufficiently strong descent. Letting

dij =
∂

∂φ
R(i, j, φ)

∣∣∣
φ=0

=



i j

I
0 −1

I
1 0

I


i

j
,

we can always find pivot pairs (i, j) among (3.3) such that

|〈gradf(I), dij〉| ≥ ε‖gradf(I)‖ (3.4)

holds, provided that 0 < ε < 2/n; see [7, Lemma 5.2].
Once a pivot pair (i, j) satisfying (3.4) is determined, we choose the rotation angle

φ that maximizes f , i.e., we solve

max
{
f
(
R(i, j, φ)

)
: φ ∈ [0, π]

}
, (3.5)

Because of 1 ≤ i ≤ r < j ≤ n, the tensor B = A×1R(i, j, φ)T ×2R(i, j, φ)T ×3R(i, j, φ)T

differs from A within the subtensor (1 : r, 1 : r, 1 : r) only in the three slices (i, 1 :
r, 1 : r), (1 : r, i, 1 : r), and (1 : r, 1 : r, i). Because of antisymmetry, these slices have
identical norms and we can ignore their intersections. Hence, (3.5) becomes equivalent
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to maximizing

‖B(i, 1 : r, 1 : r)‖2 =
r∑

p,q=1

B(i, p, q)2 =
r∑

p,q=1
p,q 6=i

B(i, p, q)2

=

r∑
p,q=1
p,q 6=i

(
cosφA(i, p, q) + sinφA(j, p, q)

)2
=: ψ(φ). (3.6)

Let

α1 =

r∑
p,q=1
p,q 6=i

A(i, p, q)2, α2 =

r∑
p,q=1
p,q 6=i

A(i, p, q)A(j, p, q), α3 =

r∑
p,q=1
p,q 6=i

A(j, p, q)2.

Then the derivative of (3.6) takes the form

ψ′(φ) = −2α1 cosφ sinφ+ 2α2(cos2 φ− sin2 φ) + 2α3 cosφ sinφ.

In order to find the zeros of this function, we divide it by cos2 φ and solve the resulting
quadratic equation in t = sinφ/ cosφ:

α2t
2 + (α1 − α3)t− α2 = 0.

Among the two solutions to this equation, we choose the one that maximizes (3.6).
Algorithm 3 summarizes the described procedure.

Algorithm 3 Jacobi algorithm for antisymmetric multilinear rank-r approximation

Apply Algorithm 1 to choose initial factor U ∈ Rn×r.
Choose U⊥ such that Q = [U,U⊥] is orthogonal.
Set A1 = A×1 Q

T ×2 Q
T ×3 Q

T .
repeat

Choose (i, j) according to (3.3) and (3.4).
Determine φ that maximizes (3.6).
Qk+1 = QkR(i, j, φ)
Ak+1 = Ak ×1 R(i, j, φ)T ×2 R(i, j, φ)T ×3 R(i, j, φ)T

until convergence
U = Qk(:, 1 : r)
Return approximation A×1 UU

T ×2 UU
T ×3 UU

T .

For choosing the pivot pair (i, j) in Algorithm 3, we traverse the list (3.3) cyclically.
For each pair, the condition (3.4) is checked. If (i, j) does not fulfill this condition, it is
skipped and the algorithm continues checking the next pair.

Although observed in practice, it cannot be guaranteed that Algorithm 3 produces
the minimum of the function in (3.2). The proof of a weaker convergence result for
symmetric tensors [7, Theorem 5.4] directly extends to antisymmetric tensors, resulting
in the following statement.
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Theorem 3.2 Let (Qk) be the sequence of orthogonal matrices generated by Algorithm 3
applied to an antisymmetric tensor A ∈ Rn×n×n. Then every accumulation point of (Qk)
is a stationary point of the function f from (3.2).

3.3 Numerical Experiments

The algorithms described in this sections have been implemented and tested in Matlab
version 7.11.

In our first set of experiments, we study the approximation error obtained by trun-
cated HOSVD, HOOI, and the Jacobi algorithm. The latter two algorithms are iterative;
they are considered converged when the norm of the gradient of the objective function
is 10−10 or below. We have chosen ε = 1/(10n) in the condition (3.4) of the Jacobi
algorithm. We tested the algorithms with random tensors generated by applying anti-
symmetrizer from (1.3) to tensors with uniformly distributed random entries from the
interval [0, 1]. Figure 1 shows that HOOI and the Jacobi algorithm always improve
upon the approximation obtained from the HOSVD. In many cases, HOOI and the Ja-
cobi algorithm result in the same (antisymmetric) approximation. In cases when the
error of the Jacobi algorithm is smaller than the one of HOOI, it is observed that the
tensor produced by HOOI is not antisymmetric. On the other hand, when the error
of HOOI is smaller, the tensor produced by HOOI is antisymmetric. This leads us to
conjecture that the best (unstructured) approximation of multilinear rank (r, r, r) to a
generic antisymmetric tensor can always been chosen antisymmetric for r ≥ 3.

0 20 40 60 80 100
2

2.5

3

3.5

HOSVD

HOOI

Jacobi

(a) Multilinear rank 3

0 20 40 60 80 100
1.6

1.8

2

2.2

2.4

2.6

2.8

3

HOSVD

HOOI

Jacobi

(b) Multilinear rank 6

Figure 1: Approximation error of low multilinear rank approximation to 100 random
antisymmetric 10× 10× 10 tensors.

Figure 2 yields insights into the convergence behavior of HOOI and Jacobi algorithm
for a representative run with a random antisymmetric tensor. To emphasize the benefits
from initializing with the truncated HOSVD we compare with using no initialization,

that is, instead of using Algorithm 1 we set U =
[
Ir
0

]
and Q = In in Algorithms 2 and 3,
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respectively. Apart from the approximation error we also show the norm of the gradient
of the objective function.

0 5 10 15 20
2.2

2.25

2.3

2.35

2.4

2.45

2.5
HOOI with identity initialization

HOOI with HOSVD initialization

Jacobi with identity initialization

Jacobi with HOSVD initialization

(a) Approximation error

0 10 20 30 40 50
10

−10

10
−5

10
0

10
5

HOOI with identity initialization

HOOI with HOSVD initialization

Jacobi with identity initialization

Jacobi with HOSVD initialization

(b) Norm of gradient of objective function

Figure 2: Convergence behavior of HOOI and Jacobi algorithm for multilinear rank-6
approximation of random antisymmetric 10× 10× 10 tensor.

We have also considered antisymmetric tensors for which the matrizations exhibit
rapid singular value decays. To construct such a tensor, consider the function

f(x, y, z) = exp(−
√
x2 + 2y2 + 3z2)

on [0, 1]3. Then we let X contain its discretization:

X (i1, i2, i3) = f
(
ξi1 , ξi2 , ξi3

)
, iµ = 1, . . . , n,

where ξi = (i − 1)/(n − 1), and set A = anti(X ). Figure 3 shows the obtained results
for n = 20. It reveals that the HOSVD gives an excellent initial approximation. This is
also an example where the Jacobi algorithm with no initialization fails to converge to a
global optimum.

4 Multilinear rank-d approximation

Antisymmetric tensors of order d and multilinear rank d have the very particular struc-
ture (1.2). As we will discuss in this section, this simplifies the approximation with such
tensors significantly.

The following basic lemma plays a key role; it extends the well known fact that
uTAu = 0 always holds for a skew-symmetric matrix A.

Lemma 4.1 Let A ∈ Rn×···×n be an antisymmetric tensor of order d ≥ 2 and u ∈ Rn.
Then A×µ u×ν u = 0 for any 1 ≤ µ < ν ≤ d.

11
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Figure 3: Convergence behavior of HOOI and Jacobi algorithm for multilinear rank-7
approximation of function-related tensor.

Proof. Without loss of generality, we may assume that µ = d − 1 and ν = d. Then
any entry of B = A×µ u×ν u satisfies

B(i1, . . . , id−2) =

n∑
j,k=1

A(i1, . . . , id−2, j, k)ujuk

= −
n∑

j,k=1

A(i1, . . . , id−2, k, j)ujuk = −B(i1, . . . , id−2),

which implies B = 0.
The following theorem establishes an equivalence between the best antisymmetric

multilinear rank-d approximation and the best unstructured rank-1 approximation of an
antisymmetric tensor.

Theorem 4.2 Let A ∈ Rn×···×n be an antisymmetric tensor of order d. Then

max
{
‖A ×1 U

T · · · ×d UT ‖ : U ∈ Rn×d with UTU = Id
}

= d! max
{
|A ×1 u

T
1 · · · ×d uTd | : [u1, . . . , ud]

T [u1, . . . , ud] = Id
}

(4.1)

= d! max
{
|A ×1 v

T
1 · · · ×d vTd | : ‖v1‖ = · · · = ‖vd‖ = 1

}
. (4.2)

Proof. Let α = |A ×1 u
T
1 · · · ×d uTd |. Using (2.4),

‖A ×1 U
T · · · ×d UT ‖2 = ‖ anti(αe1 ⊗ · · · ⊗ ed)‖2 = α2‖ anti(e1 ⊗ · · · ⊗ ed)‖2 = (αd!)2,

which shows (4.1).
Consider vectors v1, . . . , vd assuming the maximum in (4.2). By the QR decomposi-

tion, there is an upper triangular matrix R ∈ Rd×d with |rµµ| ≤ 1 for µ = 1, . . . , d and
a matrix [u1, . . . , ud] with orthonormal columns such that

[v1, . . . , vd] = [u1, . . . , ud]R.

12



Using Lemma 4.1,

A×1 v
T
1 · · · ×d vTd = A×1

d∑
µ1=1

rµ1,1u
T
µ1 · · · ×d

d∑
µd=d

rµd,du
T
µd

=
d∑

µ1=1

· · ·
d∑

µd=d

A×1 rµ1,1u
T
µ1 · · · ×d rµd,du

T
µd

= A×1 r11u
T
1 · · · ×d rdduTd = r11 · · · rddA×1 u

T
1 · · · ×d uTd .

Because of |rµµ| ≤ 1, this implies |A ×1 v
T
1 · · · ×d vTd | ≤ |A ×1 u

T
1 · · · ×d uTd | and

hence (4.2) cannot be larger than (4.1). On the other hand, trivially, (4.1) cannot
be larger than (4.2). This shows the equality (4.2).

4.1 HOPM

Algorithm 4 recalls the higher-order power method (HOPM) proposed in [4] for finding
a rank-1 approximation of a tensor A ∈ Rn×···×n.

Algorithm 4 HOPM for rank-1 approximation

Choose initial vectors u1, . . . , ud ∈ Rn.
repeat
v1 = A×2 u

T
2 ×3 u

T
3 · · · ×d u

T
d

u1 = v1/‖v1‖
v2 = A×1 u

T
1 ×3 u

T
3 · · · ×d u

T
d

u2 = v2/‖v2‖
...

vd = A×1 u
T
1 ×2 u

T
2 · · · ×d−1 u

T
d−1

ud = vd/‖vd‖
until convergence
α = A×1 u

T
1 · · · ×d u

T
d

Return approximation αu1 ⊗ u2 ⊗ · · · ⊗ ud.

Assuming that Algorithm 4 converges to a best rank-1 approximation with mutually
orthogonal vectors uµ, Theorem 4.2 allows us to construct the best antisymmetric mul-
tilinear rank-d approximation anti(αu1⊗ · · · ⊗ud). The following lemma assures mutual
orthogonality.

Lemma 4.3 Let A ∈ Rn×···×n be an antisymmetric tensor of order d ≤ n. Then the
vectors u1, . . . , ud returned by HOPM form an orthonormal basis, provided that HOPM
does not encounter a zero vector.

Proof. After the first step of HOPM, Lemma 4.1 implies

〈v1, uν〉 = A×1 u
T
ν ×2 u

T
2 ×3 u

T
3 · · · ×d uTd = 0

13



for any ν 6= 1. Hence, each step of HOPM orthogonalizes one of the vectors uµ =
vµ/‖vµ‖. In turn, the statement of the lemma holds after at least one sweep of HOPM,
even if the initial vectors are not orthogonal.

Remark 4.4 To ensure orthogonality numerically, we perform another orthogonaliza-
tion step after each step of Algorithm 4. In principle, this procedure can also be applied
to HOOI, yielding an (unstructured) multilinear rank (r1, . . . , rd) approximation with
mutually orthogonal basis matrices Uµ. This can then be turned into an antisymmetric
multilinear rank-(r1 + · · · + rd) approximation by setting U = [U1, . . . , Ud]. We have
tested this idea numerically and observed that this often yields a good approximation but
the approximation error is usually worse compared to the result of the Jacobi algorithm.

4.2 Initialization

It remains to discuss a proper initialization strategy for HOPM. For general d, we use
the truncated HOSVD from Section 3. For d = 4, we propose an antisymmetric variant
of the technique proposed by Kofidis and Regalia [8] for symmetric tensors. For this
purpose, we define the (1, 2)-matricization of a 4th-order tensor X ∈ Rn1×n2×n3×n4 to
be the n1n2 × n3n4 matrix X(1,2) with the entries

X(1,2)(k, `) = X (i1, i2, i3, i4), k = j(i1, i2), ` = j(i3, i4), (4.3)

where the function j(·) is defined as in (2.1).

Lemma 4.5 Let A ∈ Rn×n×n×n be antisymmetric. Then the following statements hold:

1. A(1,2) is symmetric.

2. Let λ be a nonzero eigenvalue of A(1,2) with eigenvector v ∈ Rn2
. Then the matri-

cization V(1) ∈ Rn×n of v is skew-symmetric.

3. If A = anti(αu1⊗u2⊗u3⊗u4) such that α 6= 0 and [u1, u2, u3, u4] is an orthonormal
basis then A(1,2) has an eigenvalue α/12 of multiplicity 3, an eigenvalue −α/12
of multiplicity 3, and n2 − 6 zero eigenvalues. Any eigenvector v belonging to a
nonzero eigenvalue satisfies range(V(1)) = span{u1, u2, u3, u4}.

Proof. 1. This statement follows directly from the definition (4.3):

A(1,2)(k, `) = A(i1, i2, i3, i4) = A(i3, i4, i1, i2) = A(1,2)(`, k).

2. The relation A(1,2)v = λv implies

V(1)(i1, i2) = v(j(i1, i2)) =
1

λ

n∑
i3,i4=1

A(1,2)(j(i1, i2), j(i3, i4))v(j(i3, i4))

=
1

λ

n∑
i3,i4=1

A(i1, i2, i3, i4)v(j(i3, i4))

= − 1

λ

n∑
i3,i4=1

A(i2, i1, i3, i4)v(j(i3, i4)) = −V(1)(i2, i1),

14



which shows that V(1) is skew-symmetric.

3. By the definition of A, range(V(1)) ⊂ span{u1, u2, u3, u4} and, together with its

skew-symmetry, this implies that V(1) is a linear combination of matrices uiu
T
j − ujuTi

for all i 6= j. Let π ∈ Sd and set σ = sign(π). Using Lemma 4.1, we have

A(1,2)

(
uπ(1) ⊗ uπ(2) − uπ(2) ⊗ uπ(1)

)
= vec

(
A×1 uπ(1) ×2 uπ(2) −A×1 uπ(2) ×2 uπ(1)

)
=

α

24

(
σuπ(3) ⊗ uπ(4) − σuπ(4) ⊗ uπ(3) + σuπ(3) ⊗ uπ(4) − σuπ(4) ⊗ uπ(3)

)
=

σα

12

(
uπ(3) ⊗ uπ(4) − uπ(4) ⊗ uπ(3)

)
.

In turn, there is an eigenspace of dimension three with orthonormal basis(
u1u

T
2 − u2uT1 + u3u

T
4 − u4uT3

)
/2,(

u1u
T
4 − u4uT1 + u2u

T
3 − u3uT2

)
/2,(

u3u
T
1 − u1uT3 + u2u

T
4 − u3uT2

)
/2,

(4.4)

belonging to the eigenvalue α/12. Due to the orthogonality of u1, u2, u3, u4 the range
of any linear combination of (4.4) equals span{u1, u2, u3, u4}. Analogously, there is an
eigenspace of dimension three belonging to the eigenvalue −α/12 with the same property.

Lemma 4.5.3 suggests the initialization strategy described in Algorithm 5.

Algorithm 5 HOPM initialization strategy for antisymmetric tensor of order 4

Compute eigenvector v ∈ Rn2

belonging to eigenvalue of largest magnitude of A(1,2).
Form V(1) ∈ Rn×n and compute its SVD.
Return the four leading left singular vectors u1, u2, u3, u4.

4.3 Numerical Experiments

To investigate the difference between the different initializations, we focus our experi-
ments on antisymmetric tensors of order four. Figure 4 shows the approximation errors
returned by HOPM initialized with truncated HOSVD or Algorithm 5, using the random
antisymmetric tensors described in Section 3.3. HOPM is considered converged when
the norm of the gradient of the objective function reaches 10−10 or below. It can be
seen that both initialization strategy appear to work equally well in terms of the final
approximation error.

Figure 5 shows the convergence behavior for a typical run. It turns out that initializ-
ing with Algorithm 5 gives a significant convergence benefit both for the approximation
error and the norm of the gradient.

Finally, analogous to Section 3.3, Figure 6 shows results for the 10 × 10 × 10 × 10
tensor generated by the function

f(x, y, z, w) = exp(−
√
x2 + 2y2 + 3z2 + 4w2).

In this case, both initialization methods yield excellent approximations.

15



0 20 40 60 80 100
3.6

3.8

4

4.2

4.4

4.6

4.8

5

HOSVD initialization

new initialization

Figure 4: Approximation error of multilinear rank-4 approximation produced by HOPM
for 100 random antisymmetric 10× 10× 10× 10 tensors.

5 Conclusions

The multilinear rank of an antisymmetric tensor has been analyzed and new algorithms
for antisymmetric low multilinear rank approximation have been proposed. The Jacobi
algorithm initialized with truncated HOSVD preserves antisymmetry and appears to
enjoy excellent global convergence properties. We have shown that a best unstructured
rank-1 approximation can always be turned into a best antisymmetric multilinear rank-d
approximation. In such a scenario, HOPM initialized either with truncated HOSVD (for
d 6= 4) or Algorithm 5 (for d = 4) is certainly the method of choice. The algorithms
discussed in this paper could provide a building block in the design of low-rank tensor
algorithms [6] for eigenvalue problems with antisymmetric eigenvectors. In particular,
the simplicity of HOPM makes it well suited in the context of truncated iterations and
greedy strategies.
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