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Abstract— Range-only localization has applications as diverse
as underwater navigation, drone tracking and indoor localiza-
tion. While the theoretical foundations of lateration—range-
only localization for static points—are well understood, there
is a lack of understanding when it comes to localizing a moving
device. As most interesting applications in robotics involve
moving objects, we study the theory of trajectory recovery.
This problem has received a lot of attention; however, state-of-
the-art methods are of a probabilistic or heuristic nature and
are not well suited for guaranteeing trajectory recovery.

In this paper, we pose trajectory recovery as a quadratic
problem and show that we can relax it to a linear form,
which admits a closed-form solution. We provide necessary
and sufficient recovery conditions and in particular show that
trajectory recovery can be guaranteed when the number of
measurements is proportional to the trajectory complexity.
Finally, we apply our reconstruction algorithm to simulated
and real-world data.

I. INTRODUCTION

A robot’s ability to localize itself accurately is essential
for applications such as exploration, rescue and delivery.
In many environments, visual (camera-based) simultaneous
localization and mapping (SLAM) is the go-to solution for
reliable localization [1]. However, various settings exist in
which visual SLAM is not practical, for example when
scanning the environment is impossible (e.g. passive indoor
localization) or when the environment does not exhibit
enough reliable features (for example under water [2], [3],
at high altitudes [4], or in large exhibition-style rooms
[5]). In such situations, it is sometimes more feasible to
install a few fixed anchors which can provide the robot with
distance measurements. Given sparse range measurements
from multiple anchors, the robot can calculate its position
through multilateration.

While position recovery guarantees exist for traditional
lateration in static setups (see Figure 1 (a)), the problem
is less understood when the robot is moving. To date,
practical systems predominately recover trajectories by cou-
pling partial lateration with filtering techniques. While these
approaches lead to good performance, they offer little hope
of providing fundamental guarantees for the recovery of the
robot’s continuous trajectory. In these cases, under which
conditions is it possible to uniquely recover the trajectory?
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Fig. 1. Two different approaches for recovering a trajectory r(t) (solid line)
from distance measurements (dashed lines) to anchors am. In conventional
lateration (a), we recover single points at which we have at least D + 1
distance measurements. The proposed method (b) recovers the continuous
representation of the trajectory r(t) from non-synchronized measurements.

We answer this question in the particular setting in which
a moving robot obtains range measurements from static and
known anchors. In particular, we do not require the mea-
surements to be perfectly synchronized, nor to be uniformly
distributed in time. We make the realistic assumption that
the robot can only measure one range at a time and limit
ourselves to smooth trajectories—in particular, we focus on
bandlimited and polynomial trajectories. An example setup
is sketched in Figure 1 (b). It is straight-forward to see
that traditional lateration cannot provide us with recovery
algorithms, and even less with uniqueness guarantees. One
can instead resort to trajectory estimation algorithms, which
provide either a probabilistic or deterministic description
of the continuous trajectory, but no guarantees for perfect
recovery exist.

In this paper, we obtain a novel closed-form solution to
the trajectory estimation problem, by relaxing the quadratic
constraints. In addition, by studying the obtained linear
system, we deduce necessary and sufficient conditions for
trajectory recovery of the relaxed problem. This also provides
a sufficient condition for trajectory recovery of the original
(non-relaxed) problem.

II. PROBLEM FORMULATION

To enable us to more accurately compare our contribution
with existing techniques, we define our problem setup before
discussing related work in the next section. Throughout the
paper, we use regular lower case letters for variables (t),
regular upper case letters for constants (K), bold lower
case letters for column vectors (c) and bold upper case
for matrices (C). By D we denote the robot’s embedding
dimension, which is fixed but in principle could be arbitrary.
In this paper, we usually use D = 2.

Our aim is to recover the position, r(t) ∈ RD, of a moving
device (e.g. a robot), for t in some given interval, t ∈ I ⊂
R. At a set of time instances {tn : n = 0, . . . , N − 1},



tn ∈ I, we measure the distance from the robot’s (unknown)
position rn := r(tn) to one of M fixed anchors. We denote
the anchor positions by am ∈ RD, m = 0, . . . ,M − 1,
and assume that their locations are known. The measured
distances are thus dn = ||rn − amn

||, where || · || is the
Euclidean norm and mn is the index of the anchor used at
time n. In practice, we assume that we can measure distances
d̃n corrupted by additive zero-mean Gaussian noise: d̃n =
dn + εn, where εn ∼ N (0, σ2).

For ease of analysis, we assume that each tn is different;
in fact, this is a strength of our formulation as it means
measurements from different anchors are not assumed to
be synchronized and, since the tn are real numbers, two
consecutive tn’s can be arbitrarily close together.

For noisy measurements, the maximum likelihood esti-
mator (MLE) of the device’s position, at one time instant
tn, is given by the solution to the following optimization
problem:

argmin
r̂n

N−1∑
n=0

(
d̃n − ||r̂n − amn ||

)2
. (1)

In the noiseless case, the optimal r̂n are solutions to the
following system of equations:

||amn ||2 − d2n = 2a>mn
r̂n − r̂>n r̂n, (2)

for n = 0, . . . , N − 1. These problems are non convex and
difficult to solve. In the following section, we will review
some of the numerous techniques that have been devised
to simplify these problems.

III. RELATED WORK

Note that although the focus of the paper is localization,
we include the SLAM literature, as localization is a core part
of SLAM and thus many methods can be transferred from
one problem to the other.

A. Basic concepts for range-only localization
A core concept of many range-based localization algo-

rithms is lateration, or how to estimate an object’s location
from distances to anchor points of known position.

This problem, formalized in (1), is not convex and to
date, no algorithm is guaranteed to find the optimal solution.
Therefore, (1) is commonly tackled with a standard non-
linear least squares solver, which in general leads to a local
minimum. Alternatively, by squaring the two terms inside the
brackets, the relaxed problem (dubbed Squared Range Least
Squares, SRLS), can be optimally solved as shown in [6].
However, the result is no longer the MLE.

An important variation of the classical lateration problem
is when the anchor locations are also unknown. Historically,
this problem has often been analyzed through Euclidean
Distance Matrices (EDMs), which contain the squared dis-
tances between points, and exhibit characteristic properties
which can be exploited for denoising, completion and point
recovery. [7]. Although EDMs by definition are more closely
related to the SLAM problem, knowledge of anchor locations
can be incorporated through the Procrustes transform, or in
a semidefinite program, as proposed in [8].

B. Non-parametric trajectory recovery

Using the above methods, a moving object can only be
localized at discrete time instances. This imposes a strong
requirement on the number of measurements available at
each such time instance, and does not ensure consistency
between the subsequent position estimates.

Numerous algorithms solve these two issues by combining
range measurements with movement estimates from inertial
measurement units (IMUs) in standard filtering methods such
as particle or Kalman filters [9]–[13]. Note that the obtained
accuracy depends strongly on the sampling rate at which
position updates can be computed, and problems can arise
when IMU measurements are delivered at a much higher
frequency than other modalities [14].

Sampling rate issues can be solved by continuous-time
non-parametric models. A widely used approach [15]–[17]
is to impose time consistency using Gaussian processes.
Despite the continuous-time paradigm this method is con-
sidered similar to the filter based methods, because the
objects position is predicted directly from the measurements.
This means that no explicit parameter estimation is required.
Numerous research efforts have been invested to make these
computationally expensive methods more efficient, using for
example Bayes trees for incremental reordering and just-in-
time relinearization [18].

C. Parametric trajectory recovery

In this paper, we aim to recover a parametric model of the
robot’s position. A number of other works have proposed
recovery of parametric trajectory models, predominantly
using splines. A comprehensive review of this field is given
in [14].

Li et al. [19] solve the classical SLAM problem, replacing
the position update of the usual state-space equations with
a continuous, parametric trajectory x(t) = F (Ck, t). The
authors consider polynomial basis functions identical to ours,
and update the coefficients Ck for sliding time windows at
time index k. They use a standard iterative solver which in
general converges to a local minimum. Other methods [14],
[20], [21] solve the same trajectory estimation problem, pa-
rameterizing the trajectory with B-spline basis functions. As
B-splines have a local support, they automatically offer more
flexibility in fitting complex trajectories without recursively
updating the coefficients.

As opposed to these methods solving the more general
SLAM framework with arbitrary measurement models, we
show that by focusing on the modality of range measure-
ments, a closed-form solution and recovery guarantees can
be deduced.

Recently, trajectory estimation has been integrated in the
traditional EDM framework with so-called Kinetic EDMs
[22], where all points are considered to move on trajectories.
In a similar spirit, in this paper we extend the traditional
lateration framework to a device moving on a trajectory,
however we incorporate knowledge of anchor points and we
provide recovery guarantees.



IV. METHOD

In this section, we give an outline of our recovery algo-
rithm. We first introduce the trajectory model and reformulate
(2) to include it. Then, we relax the problem by reformulating
it into a linear system of equations that can be solved with
any linear solver.

We assume that the robot trajectory coordinates belong to
some K-dimensional linear space of functions F :

r(t) =

K−1∑
k=0

ckfk(t), (3)

where {fk : k = 0, . . . ,K − 1} is a basis for F , and the
vectors ck ∈ RD are the multidimensional basis coefficients.

In this work, we focus on bandlimited functions and
polynomials. Both these models can approximate naturally
occurring trajectories well. For example, bandlimited trajec-
tories describe the oscillatory motion of a body around a
stationary point. Polynomials cover constant speed motion
(K = 1), constant acceleration (e.g. free fall, K = 2) and
linearly changing acceleration (K = 3). For more complex
trajectories, polynomials are the essential ingredient to the
commonly used spline approximation.

For the space of bandlimited functions, we define the basis
functions for odd degree K as

fk(t) =


2 cos(2πkt/τ) for k odd,
2 sin(2πkt/τ) for k even, k > 0,

1 for k = 0,

where τ is the fixed period of the trajectory. For the space of
polynomials we simply use the monomial basis fk(t) = tk.

We can now reformulate (2) in terms of the coefficients
ck. By setting fn := [f0(tn), . . . fK−1(tn)]

> and C =
[c0, . . . cK−1] ∈ RD×K , we can express the sampled posi-
tions in matrix form: rn = Cfn. The distances thus become
dn = ||Cfn − amn

||. In the noiseless case would like to
solve (2), which can be rephrased as the following system
of equations:

||amn
||2 − d2n = 2a>mn

Ĉfn − f>nLfn

L̂ = Ĉ
>
Ĉ,

(4)

where L is introduced to separate the terms linear in C
from the quadratic, non-convex terms in C. A common
approach is to make the problem convex, for example via
semidefinite relaxation [23]. We propose to simply discard
the second constraint entirely, which at first sight introduces
an additional K(K + 1) independent variables. However,
as we will show in Section V, the effective increase is in
fact linear in K. Since we drop constraints, we know that
even if there exists a unique solution to (4), the solution to
the relaxed equation might not be unique. However, if the
solution to the relaxed problem is unique, it is also the unique
solution to (4).

In order to devise a recovery algorithm, we write the
remaining equality constraint of (4) in linear form. To
this end, we introduce the vectorized forms vect (C) and

Algorithm 1: Trajectory Reconstruction

Data: Anchor coordinates am, distance measurements
dm, times and anchor indices tn, mn

Result: Trajectory coefficients Ĉ, empty if not unique
fn ←

[
f0(tn) . . . fK−1(tn)

]
;

set up TA,TF , b as in (5);
Ĉ ← [ ];
if condition (7) satsified then

U ,Σ,V ← SVD (T F );
A← concatenate (TA,UΣ);
Ĉ ← linsolve (A, b);

end

vect (L). Since a>mn
Cfn is a scalar, it is equal to its trace

and thus

a>mn
(Cfn) = tr(amn

f>nC
>) = vect

(
amn

f>n

)>
vect (C) ,

where the first equality comes from the commutativity of the
trace, tr(A>B) = tr(AB>), and the second from the fact
that tr(A>B) = vect (A)

>
vect (B). Similarly,

f>nLfn = vect
(
fnf

>
n

)>
vect (L) .

Therefore, the first equality constraint of (4) can be
rewritten as

bn =

[
vect

(
amn

f>n

)>
vect

(
fnf

>
n

)>] [ vect (C)
1
2 vect (L)

]
,

where we introduce bn := 1
2

(
||amn

||2 − d2n
)

for simplicity.
By concatenating the above equations, we obtain

b =
[
TA T F

] [ vect (C)
1
2 vect (L)

] }
DK+K(K+1), (5)

where we have introduced [TA]n = vect
(
amn

f>n

)
and

[T F ]n = vect
(
fnf

>
n

)
.

Since we only need to recover vect (C), we apply a
Singular Value Decomposition (SVD) to T F , which reduces
the dimension of the system. As we show in the next section,
this does not affect the solution of Ĉ and the dimensionality
of T F is reduced to O(K) dimensions. The reduced system
becomes

b =
[
TA UΣ

] [ vect (C)
1
2V
> vect (L)

] }
DK+r, (6)

which we solve with the right inverse. Here, UΣV = T F

is the SVD decomposition of T F and Σ is an r×r diagonal
matrix, with r the rank of T F .

This system in (6) can be solved with any linear solver.
For clarity, the straight-forward recovery algorithm is sum-
marized in Algorithm 1. Note that we check invertibility
before solving the linear system, which is the topic of the
next section,.

Based on the known complexities of the most costly
components of our algorithm (that is SVD, matrix multi-
plications and solving the linear system) we calculate that
the complexity of our algorithm is O(N2K +K4).



(a) (b) (c)
Fig. 2. Examples of sufficient and insufficient measurements, with model
degree K = 3. (a) Condition (7) is satisfied, but we do not have (D +
2)K−1 = 11 measurements. (b) We have 11 measurements, but condition
(7) is not satisfied because too many of the measurements involve the same
anchor. (c) Both conditions are satisfied and the recovery is possible.

V. GUARANTEES

In this section, we present necessary and sufficient condi-
tions for trajectory recovery from the relaxed linear system.
Since the unique solution to the relaxed problem is also
the solution to the original problem, we obtain a sufficient
condition for the original trajectory recovery from (4).

The crucial operation in Algorithm 1 is solving the linear
system. This step is equivalent to finding the right inverse
of
[
TA UΣ

]
. Note that, since we assume we know the

anchor positions perfectly, this matrix is not affected by
noise. Thus, the whole analysis of this section is noise-
agnostic. We do not, however, consider numerical errors.

First, let us observe that since UΣ is full rank, for[
TA UΣ

]
to be full rank, we need

a) TA to be full column rank, and
b) columns of U to be independent of the columns of TA.

When
[
TA UΣ

]
is invertible we can recover vect (C)

(and V > vect (L), which we discard). This means that the
smallest number of measurements for which the recovery of
C could be possible is DK + r, where r is the rank of T F .

Now, maintaining the assumptions of Section IV and
adding two additional ones, we can precisely characterize the
sets of measurements sufficient for recovery of C. First, we
additionally assume that the times tn are generated by some
continuous time process. In practice, any non-adversarial
times, such as uniform or uniformly random times, can be
used. Second, we also assume that no D anchors lie on
the same (affine) subspace. This assumption is only slightly
stronger than the very common requirement that the anchors
span the (extended) space. Randomly placed anchors will
satisfy these conditions almost surely. Under these weak
assumptions, we can now introduce the main theoretical
contribution of this paper.

Theorem 1. Given at least K(D + 2) − 1 measurements
(at different times), the matrix C can be uniquely recovered
with probability one if

M−1∑
m=0

min(km,K) ≥ K(D + 1), (7)

where km is the number of measurements in which the m-th
anchor is used. Moreover, if (7) is not satisfied, C cannot
be uniquely reconstructed using Algorithm 1.
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Fig. 3. Probability of recovering C, with dimension D = 2. Upper plot:
the trajectory degree is set to K = 5 and the number of anchors vary.
We observe that the probability of recovering C grows with the number of
anchors. This is because, the more anchors we use the higher the chance
that the measurements spread uniformly and satisfy (7). Lower plot: the
number of anchors is set to M = 4 and the trajectory degree varies. For
Algorithm 1, (7) states that the minimum number of required measurements
is 11, 19 and 27 for trajectory complexities of 3, 5 and 7, respectively.

Intuitively, (7) means that measurements cannot be arbi-
trarily distributed between anchors. In particular, if an anchor
provides more than K measurements, only the first K have
an effect on uniqueness. Moreover, unique recovery is not
possible with measurements from less than D + 1 anchors.
To give a better understanding of this condition, we depict
three examples in Figure 2.

Theorem 1 also implies that, in principle, we need only
O(DK) measurements to localize, even though we use
a relaxation that would normally lead to a quadratic increase
in the required data. Even without the relaxation, one would
expect to need (D+1)K measurements for recovery. Indeed,
to recover a trajectory of complexity K, one can indepen-
dently localize K points along it, and to localize a single
point, we need D + 1 distance measurements.

In the interest of clarity and space, a sketch of the proof
of Theorem 1 can be found in the Appendix. The full proof
will appear in a more abstract, extended publication that is
currently under preparation.

A natural question to ask is, how likely it is to obtain a
measurement set sufficient to recover C. Unfortunately, the
probability of the set of measurements satisfying Theorem 1
does not seem to have a closed form formula. Fortunately,
it depends only on the partition of measurements between
the M anchors, so it can be easily calculated numerically
by counting partitions that satisfy (7).

Clearly, the probability of recovering C is non decreasing,
because adding a new measurement can only increase the
rank of

[
TA T F

]
. In practice, we observe that the proba-

bility is already large for (D+ 2)K − 1 measurements, and
grows with the number of measurements to 1. The probability
also depends on the degree of the trajectory K and number



of anchors (see Figure 3).
Finally, note that, in practice, the matrix might be ill

conditioned when the anchors are almost co-linear, or many
measurements to the same anchor are taken at almost
the same time.

VI. RESULTS

In the previous section, we have established conditions
under which unique recovery of C is possible. In this section,
we assume that those conditions are satisfied and investigate
the trajectory recovery under more realistic, noisy conditions.
We test the robustness of our algorithm to noise on simulated
and real data.

A. Noise model

As mentioned before, we assume additive Gaussian noise
on distance measurements d̃n = dn + εn, where εn are i.i.d.
random variables, εn ∼ N (0, σ).

An immediate problem comes from the fact that we use
squared distances for recovery. This means that the additive
noise becomes multiplicative and additive:

d̃2n = d2n + 2dnεn + ε2n,

while our recovery method implicitly assumes only additive
noise. Indeed, the pseudoinverse, in Algorithm 1, leads to
an Ordinary Least Squares (OLS) optimisation, which is the
MLE in the presence of additive Gaussian noise. To alleviate
this problem, we propose a Weighted Least Squares (WLS)
approach.

More precisely, the noisy version of the n-row of (5) is

dnεn +
1

2
ε2n +

[
TA T F

]
n

[
vect (C)
1
2 vect (L)

]
= bn.

If the noise is small, the ε2n/2 term is negligible. The
term dnεn can be normalized to follow an i.i.d. distribution
more closely by dividing both sides of the equation by the
measured distances d̃n:

dn

d̃n
εn +

1

d̃n

[
TA T F

]
n

[
vect (C)
1
2 vect (L)

]
=
bn

d̃n
.

Usually, dn/d̃n will be closer to one than dn, and thus
the weighed linear system is more suited to our model. In
practice, to avoid dividing by extremely small numbers, we
can add some small regularisation γ to the distance and
divide by d̂n + γ.

B. Simulations

In this section, we report the root squared error E of
reconstructing C:

E(C − Ĉ) = ||C − Ĉ||F , (8)

where || · ||F is the Frobenius norm. For the chosen basis of
bandlimited functions, this norm is equivalent to the power
of the signal: using power as opposed to energy makes errors
comparable between trajectories with different periods. For
more intuition, see Figure 4.
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Fig. 4. Visualisation of the distance between trajectories. Original ban-
dlimited trajectory of order K = 7 (dashed blue) and a randomly perturbed
trajectory (solid orange). The Frobenius distance between the trajectory
coefficients is displayed above each subplot.
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Fig. 5. Reconstruction from noisy measurements using the weighted system
of equations. For clarity, slopes (dark lines) were fitted to the averages over
1000 simulations (light lines). The simulated distances were between 0.1m
and 10m. Upper plot: the trajectory degree was set to K = 5 and M = 4
anchors were used; the magnitude of the noise is changing. In this setup,
the minimum number of measurements required is 19. We can see that the
algorithm is robust to noise starting from about 3× oversampling. Lower
plot: the trajectory degree was set to K = 3 and noise magnitude was set
to σ = 1m; the number of anchors is changing. The reconstruction error
does not depend heavily on the number of anchors, but it has much higher
variance for D + 1 = 3 anchors.

In the simulations, we take samples tn uniformly in the
interval [0, τ ], and at each time we choose anchors uniformly
at random. If we do not use all available measurements, we
discard some of them uniformly at random. We fix τ = 2.
In Figure 5, we can see the coefficients reconstruction error
obtained using the weighted reconstruction. We can see that
the error decreases with oversampling, and the fitted slope
is roughly −0.6. This means that for 10× oversampling we
get more than a 5× reconstruction improvement. The regular
(non-weighted) solver performed similarly, with a smaller
improvement from oversampling.

C. Real-world experiments

We test our trajectory estimation algorithm on a dataset
provided by Djugash et al. [24]. It consists of an autonomous
lawnmower moving on a grass field, using ultra-wideband
(UWB) signals to 4 stationary anchors for range measure-
ments, and densely sampled kinematic GPS for ground
truth. The distance measurements have an average standard
deviation of ca. 0.5m, with a tendency to overestimate [24].
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Fig. 6. Reconstruction accuracy of lawnmower trajectory using period
τ = 54 s. In dotted black is the ground truth trajectory (from GPS), in blue
is our reconstruction, and the orange dots show the SRLS estimates. The
top row shows different complexities K using all 500 available distance
measurements. In the bottom row, we fix K to 5 and drop measurements
uniformly at random. The different colors show the reconstructions for
different sets of uniformly chosen measurements.

The trajectory completed by the robot does not perfectly
fit our models, but we will see that it can be approximated
by the bandlimited model. We can estimate its period τ by
visual inspection1. Using all range 500 measurements, we
use Algorithm 1 to estimate the coefficients for different
complexities K, and report the obtained trajectories in the
first row of Figure 6. We see that the trajectory is well
approximated with model degrees of K = 5 or higher.

Next, we fix K to the smallest sensible value for the given
trajectory (K = 5) and test the performance of our algorithm
when dropping measurements down to the minimum number
required to satisfy Theorem 1 (19 measurements). The sec-
ond row in Figure 6 shows that the obtained reconstruction
quality remains satisfactory down to 30 measurements only,
and is not so sensitive to the specific distance measurements
selected. The estimates start to break down for smaller N ;
this is in accordance with our simulations, where we also
observed a very noisy regime for few measurements.

For comparison, we also plot localization results with
the point-wise SRLS method [6], using the latest distance
measurements from D+1 anchors. The trajectory only starts
to be recognizable from N = 200 measurements onwards,
and the individual estimates are more noisy than ours.

VII. CONCLUSION AND FUTURE WORK

In this work we have proposed a closed-form trajectory
estimation method. Even though the method is based on a
relaxation, the number of required measurements stays mod-
est. Furthermore, our theory provides recovery guarantees
and the framework eliminates the impractical assumption of
perfectly synchronized measurements and dense deployment
of anchors. We have demonstrated the performance of our
method both on simulated and real data, showing in particular
the advantage over point-wise lateration.

1This estimate could be improved through an iterative algorithm, but we
did not find it necessary.

To the best of our knowledge, this paper presents the
first recovery guarantees for trajectory recovery from range
measurements. As such, we have focused on the theoretical
aspects. In the future, we believe that the model can be
extended to build more sophisticated and practically relevant
localization algorithms. One natural extension would be to
allow for a dynamically changing trajectory model, for exam-
ple by using the proposed theory in spline approximations,
or by dynamically updating the period τ . Finally, it would
be interesting to investigate if the reconstruction could be
improved with standard linear regression tricks, for example
incorporating different regularizations or random projections.

APPENDIX

A. Sketch of the proof of Theorem 1

In order to prove Theorem 1, we need to prove that,
given the right measurements (as stated in the theorem), the
following three conditions are satisfied:

1) TA is full rank,
2) 2K − 1 (independent) columns of T F are independent

of the columns of TA,
3) T F has rank 2K − 1.

It is equivalent to prove these conditions for the modified
matrices T ′A and T ′F created by moving the first K columns
of T F to TA. We use the three following facts to prove the
above conditions:

1) A polynomial either has a discrete set of zeros or is
zero everywhere. In the former case, the polynomial is
non zero at a random point with probability 1.

2) The product of two polynomials of degree < K is a
polynomial of degree < 2K − 1, and the same holds
for bandlimited functions.

3) Matrix rank is sub-additive and, if f and g are indepen-
dent, the matrices ff>and gg>are independent too.

The first condition is proved from the properties of the
determinant of T ′A, which is a polynomial in its entries. After
expanding it in fk, we can apply the first fact giving us a
set of algebraic equations that am must not satisfy.

Due to the second fact, the columns of T ′F contain
polynomials of order up to 2K − 1. Then, the first fact can
be applied inductively over (some) columns of T ′F to obtain
the second condition.

Finally, to prove the third condition, we use the second fact
to bound the rank from above, and the third fact to bound
the rank from below.

Since the first two conditions require the first fact, they
are probabilistic in nature, and only the last condition is a
purely deterministic result.

ACKNOWLEDGMENT

The authors would like to thank Ivan Dokmanić for many
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