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Abstract 5 

Managing infrastructure assets is challenging for developed countries because of demand for 6 

increases in capacity, the scarcity of economic and environmental resources as well as ageing. 7 

Due to conservative approaches to construction design and practice, infrastructure often has 8 

hidden reserve capacity and its estimation may improve asset-management decisions. Static 9 

and dynamic bridge load testing has the potential to support engineers in their evaluation of 10 

infrastructure reserve capacity if monitoring data are associated with a robust structural-11 

identification methodology. As choices of sensor types and locations directly influence 12 

structural-identification outcomes, sensor-placement methodologies have recently been 13 

developed to ensure successful model-updating results. Due to the nature of static and dynamic 14 

measurements, sensor-placement methodologies are usually developed independently. 15 

However, both types of load testing are used to update the same bridge behavior model. 16 

Therefore, when sensor-placement strategies are established independently, redundant sensor 17 

information is likely. In this study, two measurement-system design methodologies are 18 

proposed. First, a new methodology for sensor-placement for dynamic load testing is presented, 19 

where expected information gain of natural frequencies is used to prioritize sensor-location 20 

selections. Then, a measurement-system-design methodology combining information of both 21 

static and dynamic load testing is proposed. Finally, the methodology is evaluated using a full-22 

scale bridge. A well-designed measurement system based on expected information gain 23 

enhances system identification and reserve-capacity estimation.  24 
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1 Introduction 28 

The annual global expenditure of the construction industry represents more than $10 trillion 29 

[1]. Accounting for 40% of this total, civil infrastructure must be managed efficiently. Due to 30 

safe design and construction practices, infrastructure often has reserve capacity that is well 31 

above the margins created by safety factors in code requirements. However, accurate reserve-32 

capacity assessment is challenging because of uncertainties in material, geometry and boundary 33 

conditions. Measurement data, collected through monitoring, has the potential to support 34 

engineers for reserve-capacity assessment. 35 

Structural identification involves interpreting field measurements to improve knowledge of 36 

structural behavior [2]. Although model-free strategies may successfully detect damage and 37 

perform behavior interpolation [3], a model-based approach must be used when extrapolation 38 

is needed, such as when infrastructure reserve-capacity is assessed [4]. 39 

In such cases, field measurements are carried out and the data are used to improve model-40 

prediction accuracy. Due to the use of complex behavior models, for instance finite-element 41 

(FE) models, numerous assumptions are required and this leads to several sources of 42 

uncertainties. Traditional approaches to structural identification, such as residual minimization 43 

and Bayesian model updating, usually assume that uncertainties have zero-mean Gaussian 44 

forms [5]–[7]. Since structural models are designed to be safe, the zero-mean assumption is not 45 

satisfied in this context [8]. Furthermore, the estimation of prediction-error correlations 46 

between sensor locations is challenging as usually, little information is available [9]. Although 47 

modifications to traditional implementations of Bayesian model updating are possible, they 48 

lead to complex system-identification formulations [10], [11]. Introduced by Goulet and Smith 49 

[12], error-domain model falsification (EDMF) is an easy-to-use structural-identification 50 

approach. Compared with traditional Bayesian updating, EDMF provides more accurate (albeit 51 

less precise) model-parameter identification since it represents explicitly systematic 52 

uncertainties in a way that is compatible with practical engineering knowledge [13]. Recently, 53 

EDMF has been applied to full-scale case studies to assess the reserve-capacity and to evaluate 54 

the  worst-case load capacity [14], [15]. 55 

Structural-identification outcomes are directly dependent on the design of the measurement 56 

system. Surprisingly, sensor types and positions are typically chosen using only qualitative 57 

rules of thumb arising from engineering experience. Quantitative studies on optimal sensor 58 

placement have been recently carried out to maximize the information gain by sensor 59 

configurations for both static and dynamic load tests [16], [17].  60 



 

 3 

Although load testing is often used for identification, static and dynamic load tests can provide 61 

unique information. Information may also be redundant [18]. Due to their nature, measurement 62 

systems for static and dynamic tests are typically designed independently. Measurement-63 

system-design methodologies should involve information from static and dynamic tests 64 

simultaneously in order to maximize the total expected information gain. 65 

For both static and dynamic tests, finding the optimal sensor configuration is usually 66 

formulated as a simple optimization task. The computational complexity of the sensor-67 

placement algorithm is exponential with respect to the number of sensors [19]. Although 68 

global-search optimization algorithms have been proposed [20], most researchers have 69 

preferred to use sequential searches (greedy algorithms) to reduce the computational effort 70 

when there are more than a few sensors [21]. 71 

Several approaches, such as either minimizing the information entropy in posterior model-72 

parameter distributions [22], [23] or maximizing information entropy in multiple-model 73 

predictions [24], [25] have been developed to evaluate sensor locations in terms of their 74 

performance for model-parameter estimations. Most authors have disregarded the mutual 75 

information between sensor locations, leading to sensor clustering issues [26]. Furthermore, a 76 

constant uncertainty level at all locations is assumed.  77 

Once first sensor locations are selected, Papadimitriou and Lombaert [27] included the effect 78 

of spatially-correlated prediction errors, thus reducing information-entropy values of 79 

neighboring sensors and thus avoiding sensor clusters. Papadopoulou et al. [28] introduced a 80 

methodology involving a hierarchical algorithm to examine potential locations. Mutual 81 

information between sensor locations was explicitly accounted for in an objective function that 82 

maximized the joint entropy. This sensor placement algorithm, combining a hierarchical 83 

algorithm with joint-entropy maximization, explicitly incorporated systematic uncertainties 84 

and was successfully applied to sensor-placement studies for wind-around-building sensor 85 

placement [29]. The methodology has later been adapted for structural identification in order 86 

to account for several sensor types and a modification was proposed to include mutual 87 

information between several static load-test configurations [30]. 88 

As these strategies required uncertainty-distribution quantification to evaluate possible sensor 89 

locations, these need engineers to provide input information. For dynamic tests, some 90 

researchers preferred to use only modal information, such as mode-shape vectors, to identify 91 

optimal sensor locations, mostly based on the Fisher Information Matrix (FIM) [31]. Several 92 

sensor-placement objective functions for modal identification have been proposed, for 93 

instance, modal kinetic energy (MKE) [32], effective independence method (EFI) [33], modal 94 
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assurance criterion (MAC) [34], QR-decomposition [35] and mutual information [36]. 95 

Relations between these objective functions have been explored [37]. Several studies compared 96 

these objective functions in terms of information gain and for lattice structures [38],  timber-97 

frame structures [39] and bridges [40]. These last studies concluded that the EFI method is the 98 

best sensor-placement objective function for modal identification. In the EFI method, each 99 

mode shape is assumed to have the same performance on structural identification. However, 100 

some case studies showed that this assumption is incorrect [19], [41] because information 101 

gained on model parameters and modelling errors may differ significantly between mode 102 

shapes.  103 

This paper contains a description of a measurement-system-design methodology for dynamic 104 

load testing using expected information from natural frequencies to prioritize sensor-location 105 

selections using the EFI method. Although not directly linked to sensor locations, the expected 106 

performance of mode-shapes is assessed using natural-frequency predictions. Once the 107 

expected information gain by each mode shape is quantified, sensor-location selections in EFI 108 

are prioritized to improve the identification of useful mode shapes for model updating without 109 

requiring estimation of mode-shape-vector uncertainties. Then, measurement-system-design 110 

methodologies for dynamic and static load testing are combined to minimize the redundant 111 

information gain between measurement systems. Finally, a full-scale case study is used to 112 

evaluate this approach. The novelty of this paper lies in the prioritization of the mode-shape 113 

identification in the EFI method using the expected information gain of natural frequencies. 114 

Additionally, this approach proposed a combination of measurement-system-design 115 

methodologies for static and dynamic load testing in order to minimize the redundancy in 116 

information gain between them.  117 

The study is organized as follows. Background methodologies are shown in Section 2. Section 118 

3 includes a description of the methodology for measurement-system design using expected 119 

information from dynamic load testing in the EDMF framework. Section 4 shows how this 120 

information is combined with the static load testing for the first time in a measurement-system 121 

design methodology. A full-scale case study is described in Section 5 with optimal 122 

measurement-system results presented in Section 5.4 for dynamic load testing and in Section 123 

5.5 for both static and dynamic load testing.  124 
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2 Background 125 

In this section, background methodologies that have been developed previously are presented. 126 

First, the structural-identification methodology, called error-domain model falsification, is 127 

presented in Section 2.1. After this, the sensor-placement algorithm for static measurements, 128 

called hierarchical algorithm, is described in Section 2.2.  129 

2.1  Structural identification – Error-domain model falsification 130 

Error-domain model falsification (EDMF) is a recently developed methodology for structural 131 

identification [12]. Finite-element (FE) model predictions are compared with field 132 

measurements in order to identify plausible model instances of a parameterized model class. A 133 

model instance is generated by assigning a unique combination of parameter values to a model 134 

class, which consists of a FE parametric model including characteristics such as material 135 

properties, geometry, boundary conditions and excitations. 136 

Model predictions at location 𝑖𝑖, 𝑔𝑔𝑖𝑖(𝚯𝚯) are generated by assigning a vector of parameter values 137 

𝚯𝚯 to the selected model class. Assuming 𝑅𝑅𝑖𝑖 to be the real response of a structure—unknown in 138 

practice— and 𝑦𝑦�𝑖𝑖 to be the measured value at a sensor location 𝑖𝑖 among 𝑛𝑛𝑦𝑦 monitored locations, 139 

model uncertainty 𝑈𝑈𝑖𝑖,𝑔𝑔 and the measurement uncertainty 𝑈𝑈𝑖𝑖,𝑦𝑦 are first estimated and then 140 

connected to the real behavior using the following equation:  141 

  𝑔𝑔𝑖𝑖(𝚯𝚯)  +  𝑈𝑈𝑖𝑖,𝑔𝑔 =  𝑅𝑅𝑖𝑖 =  𝑦𝑦�𝑖𝑖 +  𝑈𝑈𝑖𝑖,𝑦𝑦�  ∀𝑖𝑖 ∈  �1, … , 𝑛𝑛𝑦𝑦�   (1) 142 

Following [42], modeling and measurement uncertainties are combined in a unique source Ui,c 143 

using Monte-Carlo simulations and Eq. (1) is transformed in Eq. (2). The residual ri presents 144 

the difference between the model prediction and the field measurement at a sensor location i.145 

 𝑔𝑔𝑖𝑖(𝚯𝚯)− 𝑦𝑦�𝑖𝑖 =  𝑈𝑈𝑖𝑖,𝑐𝑐 =  𝑟𝑟𝑖𝑖        (2) 146 

In the EDMF implementation, the identification process starts with the generation of an initial 147 

model set (IMS) that consists of 𝑛𝑛Ω instances 𝛺𝛺 = �𝚯𝚯1, … ,𝚯𝚯𝑛𝑛Ω�. EDMF selects plausible 148 

model instances by falsifying those for which residuals exceed threshold bounds given 149 

combined uncertainties and a target reliability of identification, which is typically fixed at 95% 150 

[12].  Model instances with residuals that do not exceed threshold bounds at each sensor 151 

location are included in the candidate model set (CMS). The set of candidate models is defined 152 

to be those models satisfying the inequalities in using Eq. (3). 153 

 𝛺𝛺′′ = �𝚯𝚯 ∈ 𝛺𝛺′′|∀𝑖𝑖 ∈ {1, … ,𝑛𝑛𝑦𝑦} 𝑢𝑢𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑟𝑟𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖,ℎ𝑖𝑖𝑖𝑖ℎ�    (3) 154 
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where Ω′′ is the candidate model set (CMS) built of model instances that have not been 155 

falsified. The thresholds, ui,low  and ui,high, represent lower and upper bounds expressing the 156 

shortest intervals through the probability density function (PDF) of combined uncertainties 157 

fUi(ui) at a measurement location i, including a probability of identification φ1/ny. The Šidák 158 

correction 1/𝑛𝑛𝑦𝑦 [43] maintains a constant level of confidence when multiple sensor 159 

measurements are compared with model-instance predictions (Eq. (4)). 160 

 ∀𝑖𝑖 =  1, … , 𝑛𝑛𝑦𝑦: φ1/𝑛𝑛𝑦𝑦 = ∫ 𝑓𝑓𝑈𝑈𝑖𝑖(𝑢𝑢𝑖𝑖)𝑑𝑑𝑢𝑢𝑖𝑖
𝑢𝑢𝑖𝑖,ℎ𝑖𝑖𝑖𝑖ℎ
𝑢𝑢𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙

         (4) 161 

Since little information is usually available to describe the combined-uncertainty distribution, 162 

candidate models are set to be equally likely [44]. Thus, they are assigned an equal probability 163 

as expressed in Eq. (5).  164 

 Pr(𝚯𝚯 ∈ 𝛺𝛺′′) = 1
∫ 𝜃𝜃∈𝛺𝛺′′d𝜃𝜃

        (5) 165 

Falsified model instances are assigned a null probability (Eq. (6)).  166 

 Pr(𝚯𝚯 ∉ 𝛺𝛺′′) = 0         (6) 167 

Consequently 𝚯𝚯′′, is the vector of random variables describing the realistic model-parameter 168 

values of candidate model instances given field measurements. Its PDF is defined using Eq. 169 

(7).  170 

 𝑓𝑓𝚯𝚯′′ = �
1

∫𝜃𝜃∈𝛺𝛺′′d𝜃𝜃
, 𝑖𝑖𝑖𝑖 𝚯𝚯 ∈ 𝛺𝛺′′

0       , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
        (7) 171 

If all initial model instances are falsified, the entire model class is falsified (𝛺𝛺′′ =  ∅). This 172 

means that no model instance is compatible with sensor measurements given combined 173 

uncertainties. This result is usually an indication of incorrect assumptions in the model-class 174 

definition [45]. This particular situation highlights an important advantage of EDMF compared 175 

with residual minimization. In such cases, EDMF results lead to a re-evaluation of assumptions 176 

and a new model class is generated, avoiding wrong parameter identification. 177 

2.2 Sensor-placement algorithm – Hierarchical algorithm 178 

Prior to measuring a structure, a sensor-placement strategy has the potential to identify optimal 179 

measurement systems when a limited knowledge of model-parameter values is available. Once 180 

the numerical model is built and the model class is selected, prediction data from a population 181 

of model instances are generated. A set of model predictions is a typical input to evaluate the 182 

expected information gain by sensor locations, such as prediction variability.  183 
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The information entropy, from information theory, was introduced as a sensor-placement 184 

objective function for system identification [22]. At each sensor location i, the range of model-185 

instance predictions is divided into 𝑁𝑁𝐼𝐼,𝑖𝑖 intervals, where the interval width  𝑊𝑊𝑖𝑖  is constant. 𝑊𝑊𝑖𝑖  186 

is equal to the difference between upper and lower bounds of the combined source of 187 

uncertainty Ui,c. The probability that the model-instance prediction 𝑔𝑔𝑖𝑖,𝑗𝑗 falls inside the jth 188 

interval equals to 𝑃𝑃�𝑔𝑔𝑖𝑖,𝑗𝑗� = 𝑚𝑚𝑖𝑖,𝑗𝑗 𝑁𝑁𝑀𝑀𝑀𝑀⁄ , where 𝑚𝑚𝑖𝑖,𝑗𝑗  is the number of model instances falling 189 

inside the jth interval, and 𝑁𝑁𝑀𝑀𝑀𝑀 is the total numer of model instances. At a sensor location i, the 190 

information entropy 𝐻𝐻(𝑔𝑔𝑖𝑖) is evaluated using Eq. (8). 191 

 𝐻𝐻(𝑔𝑔𝑖𝑖) = −∑ 𝑃𝑃�𝑔𝑔𝑖𝑖,𝑗𝑗� log2 𝑃𝑃�𝑔𝑔𝑖𝑖,𝑗𝑗�
𝑁𝑁𝐼𝐼,𝑖𝑖
𝑗𝑗=1       (8) 192 

Papadopoulou et al. [28] proposed the joint entropy as a new sensor-placement objective 193 

function to quantify the redundancy of information gain between sensor locations. The joint 194 

entropy 𝐻𝐻�𝑔𝑔𝑖𝑖,𝑖𝑖+1� assesses the information entropy between sets of predictions, taking into 195 

account the mutual information between them. For a set of two sensors, it is defined using Eq. 196 

(9). 197 

 𝐻𝐻�𝑔𝑔𝑖𝑖,𝑖𝑖+1� = −∑ ∑ 𝑃𝑃�𝑔𝑔𝑖𝑖,𝑗𝑗 ,𝑔𝑔𝑖𝑖+1,𝑘𝑘� log2 𝑃𝑃�𝑔𝑔𝑖𝑖,𝑗𝑗 ,𝑔𝑔𝑖𝑖+1,𝑘𝑘�
𝑁𝑁𝐼𝐼,𝑖𝑖
𝑗𝑗=1

𝑁𝑁𝐼𝐼,𝑖𝑖+1
𝑘𝑘=1   (9) 198 

where 𝑘𝑘 ∈ �1, … ,𝑁𝑁𝐼𝐼,𝑖𝑖+1� and NI,i+1 is the maximum number of prediction intervals at the i+1 199 

location and 𝑖𝑖 + 1 ∈ {1, … , 𝑛𝑛𝑠𝑠} with the number of potential sensor locations ns. An alternative 200 

form expresses the joint entropy to be equal to the sum of the individual information entropies 201 

of sets of predictions minus the mutual information between sensor i and i+1 𝐼𝐼�𝑔𝑔𝑖𝑖,𝑖𝑖+1� as 202 

presented in Eq. (10).  203 

 𝐻𝐻�𝑔𝑔𝑖𝑖,𝑖𝑖+1� = 𝐻𝐻(𝑔𝑔𝑖𝑖) + 𝐻𝐻(𝑔𝑔𝑖𝑖+1) − 𝐼𝐼�𝑔𝑔𝑖𝑖,𝑖𝑖+1�     (10) 204 

𝐼𝐼�𝑔𝑔𝑖𝑖,𝑖𝑖+1� is unknown in practice and can be calculated only if individual information entropies 205 

and the joint entropy of sensor locations i and i+1 are known. The hierarchical algorithm [28] 206 

is a sequential algorithm (greedy search). Therefore, the sensor-location selection is not 207 

reevaluated in its subsequent selections. At each iteration, the hierarchical algorithm re-208 

evaluates the joint-entropy objective function of remaining sensor locations and selects the 209 

location with the largest value. The algorithm stops when all sensor locations are selected. 210 

Bertola et al. [30] proposed a modification of the hierarchical algorithm to take into account 211 

mutual information between static load tests based on joint entropy. For a sensor location i and 212 

model predictions of two static load tests, the joint entropy evaluation is described in Eq. (11), 213 

in which j ∈ �1, … ,𝑁𝑁𝐼𝐼,𝑖𝑖𝑙𝑙� and 𝑁𝑁𝐼𝐼,𝑖𝑖𝑙𝑙  is the maximum number of intervals at the location i 214 

associated with a load test l, k ∈ �1, … ,𝑁𝑁𝐼𝐼,𝑖𝑖𝑙𝑙+1� and 𝑁𝑁𝐼𝐼,𝑖𝑖𝑙𝑙+1 is the maximum number of intervals 215 
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at the location i associated with another load test l + 1 ∈ {1, … ,𝑛𝑛𝐿𝐿𝐿𝐿} with the number of 216 

potential load tests 𝑛𝑛𝐿𝐿𝐿𝐿. The hierarchical algorithm is able to evaluate the expected information 217 

gained by a measurement system, consisting of a sensor configuration and a set of load tests.  218 

 𝐻𝐻�𝑔𝑔𝑖𝑖𝑙𝑙,𝑖𝑖𝑙𝑙+1� = −∑ ∑ 𝑃𝑃�𝑔𝑔𝑖𝑖𝑙𝑙,𝑗𝑗 ,𝑔𝑔𝑖𝑖𝑙𝑙+1,𝑘𝑘� log2 𝑃𝑃�𝑔𝑔𝑖𝑖𝑙𝑙,𝑗𝑗 ,𝑔𝑔𝑖𝑖𝑙𝑙+1,𝑘𝑘�
𝑁𝑁𝐼𝐼,𝑖𝑖𝑙𝑙
𝑗𝑗=1

𝑁𝑁𝐼𝐼,𝑖𝑖𝑙𝑙+1
𝑘𝑘 =1   (11) 219 

3 Measurement-system-design methodology for dynamic load 220 

testing 221 

In this section, the methodology for sensor-placement for dynamic load testing is developed. 222 

Figure 1 presents the steps of the methodology. The methodology is divided into four phases. 223 

Each phase is presented in a subsection below. First, the task of measurement-system design is 224 

defined such as the model-class, selection, the generation of model-instance predictions or the 225 

engineering decisions (Section 3.1). The expected information gain of each natural frequency 226 

is assessed to determine the optimal number of natural frequencies for falsification (Section 227 

3.2). This phase involves the identification of the most useful modes for structural 228 

identification. However, natural-frequency predictions are not directly linked to a sensor 229 

location. Therefore, the next phase involves using a sensor-placement strategy to rank sensor 230 

locations (Section 3.3). To take advantage of the information gained in the second phase, the 231 

sensor-placement strategy prioritizes locations that help identify useful modes for falsification. 232 

Finally, Section 3.4 presents information-gain metrics that are used to define the optimal sensor 233 

configuration. These metrics help evaluate the number of sensors required to identify 234 

accurately natural frequencies of the most useful modes.  235 
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 236 

Figure 1 Measurement-system-design methodology for dynamic load tests. 237 
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3.1 Task definition 238 

Before assessing sensor locations, several steps are required. This section describes important 239 

steps in the definition of the sensor-placement task definition. The first step is to define the 240 

input information. The finite-element model of the structure is built to obtain reliable 241 

quantitative predictions of measurable variables such as mode-shape vectors at each possible 242 

sensor location. Engineers choose sensor types and the number of sensors available in the study 243 

and select possible locations. The number of mode shapes is estimated using engineering 244 

judgement, signal-to-noise ratio evaluation and the maximum number of available sensors.  245 

Model parameters, which have the highest impact on predictions, are selected using a 246 

sensitivity analysis. Due to geometrical and mathematical simplifications of the numerical 247 

model, significant non-parametric uncertainties are always involved. Model uncertainties must 248 

be estimated because the expected information-gain assessment of natural frequencies is 249 

influenced by them (Section 3.2). 250 

Multiple model instances are generated using a sampling technique to obtain a discrete 251 

population of model-parameter values within plausible ranges. For each model instance, typical 252 

outputs are mode-shape vectors at each sensor location and a natural frequency for each mode 253 

shape. Then, for each mode shape, a population of model predictions is generated. Model 254 

instances constitute the initial model set, which is the dataset used in the sensor-placement 255 

strategy to rank possible sensor locations (Section 3.2). 256 

The last step of the task-definition phase involves evaluating if model-instance predictions for 257 

each mode shape are compatible. By compatible, it is assumed that mode-shape vectors 𝜑𝜑 258 

between two model instances r and s have a modal assurance criterion (MAC) larger or equal 259 

to 0.8 (Eq. (12)) [34].  260 

 MACrs =  �𝜑𝜑𝑟𝑟𝑇𝑇𝜑𝜑𝑠𝑠�
2

�𝜑𝜑𝑟𝑟𝑇𝑇𝜑𝜑𝑟𝑟��𝜑𝜑𝑠𝑠𝑇𝑇𝜑𝜑𝑠𝑠�
≥ 0.8       (12) 261 

This condition ensures that model instances are comparable in terms of predictions. While this 262 

condition is typically fulfilled [46], it may happen that the appearance order of mode-shapes is 263 

inversed since model-parameter values influence natural-frequency values. 264 

3.2 Assessment of natural-frequency expected information gain 265 

The expected information gained by natural frequencies can be assessed using the joint entropy 266 

in a similar way to Section 2.2 for static measurements. In this case, the output variable 𝑔𝑔𝑚𝑚  is 267 

the natural-frequency predictions of the mode m and is not related to sensor locations. 268 



 

 11 

Following Eq. (8) to (10), the expected information gain of sets of natural-frequency 269 

predictions can be quantified.  270 

The joint-entropy assessment provides two features to the sensor-placement strategy (Section 271 

3.3). First, a subset of useful mode shapes can be selected by removing mode shapes that do 272 

not significantly contribute to the joint entropy. Then, an estimation of the contribution of each 273 

mode shape can be assessed through the joint-entropy increase when the mode shape is added 274 

to the subset. Figure 2 presents a sketch of typical joint-entropy evaluation as function of 275 

number of mode shapes. Natural frequencies are ranked by expected information gain. The 276 

joint entropy increases until it reaches a maximum value, corresponding to the maximum 277 

expected information gain by dynamic load testing. In this example, mode shapes selected after 278 

the 8th position do not provide useful additional information as the joint entropy does not 279 

increase significantly. Therefore, only Nopt,2 mode shapes only are identified. Similarly, another 280 

asset manager may decide to only use Nopt,1 modes that correspond to 90% of the maximum 281 

joint entropy to reduce the number of sensors to install on the bridge and therefore reduce the 282 

cost of the monitoring. The information provided by each mode shape can be quantified in a 283 

similar way by assessing the increase of joint entropy when the mode shape m is added to the 284 

system. 285 

 286 

Figure 2 Sketch of the joint entropy of natural frequencies as function of number of mode 287 

shapes. 288 



 

 12 

3.3 Modified effective independence method for modal identification 289 

3.3.1 Equations of motion  290 

Any sensor-placement methodology for modal identification starts with the equation of motion 291 

for a linear structural system. Using n degree of freedom (DOFs) is formulated in Eq. (13) as 292 

function of time t. 293 

 𝐌𝐌𝐮̈𝐮(t) + 𝐂𝐂𝐮̇𝐮(t) + 𝐊𝐊𝐊𝐊(t) = 𝐅𝐅(t)      (13) 294 

where 𝐮𝐮(t) ∈ [n × 1] is the vector of displacement responses, 𝐌𝐌,𝐂𝐂 and 𝐊𝐊 ∈ [n × n] are the 295 

mass, damping and stiffness matrices respectively, and 𝐅𝐅(t) ∈ [n × 1] is the vector of 296 

excitations. A typical assumption is that the structural system is characterized by proportional 297 

damping [39]. Eq. (14) can be rewritten in Eq. (15).  298 

 𝛏̈𝛏(t) + 𝐂𝐂�𝛏̇𝛏(t) + 𝚲𝚲𝚲𝚲(t) = 𝚽𝚽𝐓𝐓𝐅𝐅(t)      (14) 299 

With 300 

 𝚲𝚲 = diag{ω1
2, … ,ω𝑛𝑛

2}  ∈ [𝑛𝑛 × 𝑛𝑛]      (15) 301 

 𝐂𝐂� = diag{2ζ𝜔𝜔1, … ,2ζ𝜔𝜔𝑛𝑛} ∈ [𝑛𝑛 × 𝑛𝑛]      (16) 302 

where 𝛏𝛏(𝑡𝑡) ∈ [𝑛𝑛 × 1] is the vector of modal coordinates, 𝜔𝜔𝑗𝑗 is the jth natural frequency, 𝜁𝜁𝑗𝑗 303 

designates the jth modal damping ratio, 𝚽𝚽 ∈ [𝑛𝑛 × 𝑛𝑛] is the matrix of mode shapes, 𝚲𝚲 is the 304 

matrix of natural frequencies and 𝐂𝐂� is the modified damping matrix. Moreover, the matrix of 305 

mode shapes may be 𝚽𝚽 ∈ [𝑚𝑚 × 𝑚𝑚] if a subset of m < n mode shapes are involved. The 306 

structural response in the original coordinate space is thus: 𝐮𝐮(𝑡𝑡) = 𝚽𝚽ξ(𝑡𝑡). 307 

3.3.2 Traditional effective independence method 308 

The aim of a sensor-placement methodology for modal identification is to build the best 309 

estimate of the structural response 𝛏𝛏(t). This implies the minimization of the covariance matrix 310 

of the estimated errors. Following [31], maximizing the Fisher Information Matrix (FIM) 311 

would lead to the minimization of the covariance matrix and thus to the best estimate of 𝛏𝛏(t). 312 

The FIM 𝐐𝐐 ∈ [𝑛𝑛 × 𝑛𝑛] is computed using Eq. (17) in which 𝐋𝐋 ∈ [n × n] is a Boolean matrix 313 

that maps the sensor locations to the DOFs. Figure 3 presents FIM calculation. The case of a 314 

simple oscillator with two possible sensor locations and two mode shapes is used for simplicity 315 

purposes. A numerical example is added to show the FIM calculation in Figure 3.  316 

 𝐐𝐐 = (𝐋𝐋𝐋𝐋)T(𝐋𝐋𝐋𝐋)                     (17) 317 
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 318 

Figure 3 Fisher-information-matrix (FIM) calculation for the case of a simple oscillator with 319 

two sensor locations and two mode shapes.  320 

The traditional effective independence method (EFI), introduced by Kammer [33], evaluates 321 

possible sensor locations through both the linear independence between target mode shapes 322 

and the intensity of measured value. Using a sequential sensor placement with Forward (FSSP) 323 

or Backward (BSSP) greedy strategies for sensor placement, sensor configurations are 324 

evaluated through FIM properties such as the trace, or the determinant. An important 325 

characteristic of the FIM is that the matrix is singular in the case of the number of sensors being 326 

lower than the number of mode shapes. In such situations, the FIM determinant cannot be used 327 

as an objective function for sensor placement. 328 

An important assumption of the traditional EFI method is that each mode is equally useful for 329 

the model-parameter identification. If this assumption is correct, each natural frequency should 330 

have the same influence on the model falsification. However, several case studies show that 331 

this assumption is incorrect [19], [41] as the variability of  frequency predictions is significantly 332 

influenced by the model parameters to identify. The next section describes how the EFI method 333 

is modified to take into account the importance of mode shapes for falsification in the sensor-334 

location ranking. 335 

3.3.3 Modified effective independence method 336 

A solution proposed by others, for example [16], [23], involves using parameter uncertainties 337 

and a Bayesian framework to identify sensor locations that will reduce the posterior distribution 338 

of model parameters. This proposal necessitates evaluations of the combined uncertainty 𝑈𝑈𝑖𝑖,𝑐𝑐 339 
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for mode-shape vectors. Such recommendations are currently missing in the literature due to 340 

difficulties associated with uncertainties of mode shapes. 341 

The strategy proposed in this study is to use the information provided during the modal 342 

expected information gain (Section 3.2) to weight mode-shape vectors according to the 343 

expected information that they provide. Each column in the mode-shape matrix 𝚽𝚽, 344 

corresponding to mode-shape m, is therefore adjusted according to its contribution in the joint-345 

entropy evaluation. The contribution is estimated as the difference of joint entropy ∆𝐻𝐻𝑚𝑚 when 346 

the mode shape m is added to the system. Therefore, an importance Boolean matrix 𝐈𝐈𝐦𝐦𝐦𝐦 ∈347 

[n × n] is added to the FIM calculation, in which 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚
= ∆H𝑚𝑚. 𝐈𝐈𝐦𝐦𝐦𝐦 will thus prioritize 348 

sensor locations in the EFI method. 349 

The assessment of the modal-frequency joint entropy does not involve sensor locations. In 350 

order to accurately measure natural frequencies, possible sensor locations must be able to 351 

reconstruct accurately the mode shapes. A simple example is the following. If a local mode 352 

shape is involved and possible sensor locations are not present in the specific area, it is not 353 

possible to identify this mode shape and it should not be involved in the sensor placement. 354 

Therefore, a second identifiability Boolean matrix 𝐈𝐈𝐧𝐧𝐧𝐧 ∈ [n × n]  is added to the FIM 355 

calculation where the identifiability of each mode shape is a ratio between the maximum 356 

deformation of the mode shape m at possible sensor locations, AL,max, divided by the global 357 

maximum deformation of this mode shape, Amax.  As both amplitude values are influenced by 358 

model predictions, mean predictions are used. For a mode shape m, the identifiability matrix 359 

is calculated as Intm,m =  mean(𝐴𝐴𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚m
(𝛉𝛉)) mean(𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� (𝛉𝛉)) and is bounded between 0 360 

and 1. 361 

Mode-shape vectors are influenced by modal parameters to identify. As mode-shape vectors of 362 

model instances are comparable (Section 3.1), the average value of mode-shape vectors is taken 363 

as an approximation. The modified mode-shape vector for modal identification is presented in 364 

Eq. (18). 365 

 𝚽𝚽�  =  𝚽𝚽�mean�gi(𝛉𝛉)�� ∙ 𝐈𝐈𝐦𝐦𝐦𝐦𝐈𝐈𝐧𝐧𝐧𝐧      (18) 366 

The modified FIM can be calculated using Eq. (19). Figure 4 presents steps of the calculation 367 

of the modified FIM for a simple oscillator, where the importance-factor and identifiability 368 

matrices are used to weigh the mode-shape matrix 𝚽𝚽. When compared with the traditional FIM 369 

calculation (Figure 3), the modified FIM calculation involves the expected performance in 370 

terms of information gain of mode-shape vectors. In the numerical example, the value of joint 371 

entropy of the second mode shape is small, showing a smaller importance of this mode for 372 
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model parameter identification. By including the importance matrix, FIM properties such as 373 

the trace are then reduced; i.e. tr(𝐐𝐐�) equals to 1.18, while tr(𝐐𝐐) equals to 1.5 in Figure 3 when 374 

no important matrices are taken into account. This result shows that sensor locations useful to 375 

identify the second mode shape such as A1 will not have priority since this mode does not 376 

contribute significantly to the information gain. 377 

 𝐐𝐐�  = (𝐋𝐋𝚽𝚽�  )T(𝐋𝐋𝚽𝚽�  )        (19) 378 

 379 

Figure 4 Modified Fisher-information matrix (FIM) calculation using the simple-oscillator case 380 

and joint-entropy evaluations of mode shapes. 381 

 Since the number of sensors involved in this study is low, the trace of 𝐐𝐐� is used as an objective 382 

function for sensor placement. The determinant of 𝐐𝐐� is equal to zero in cases where number of 383 

sensors is lower than the number of mode shapes needing identification. Additionally, a 384 

sequential forward (FSSP) is used as an optimization strategy, following [21]. 385 

3.4 Information-gain metrics for modal identification 386 

Once the objective function for the sensor placement and the optimization algorithm are 387 

selected, sensor locations are ranked. To define the optimal sensor configuration, quantification 388 

of information gain metrics must be carried out. In this section, a strategy involving two metrics 389 

is proposed to evaluate sensor configurations in terms of their ability to reconstruct mode 390 

shapes. The missing information and QR decomposition are shown to be complementary. 391 

Information-gain metrics and are presented in Sections 3.4.1 and 3.4.2. 392 
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3.4.1 Missing information 393 

The first metric, called missing information MI, represents a comparison the information 394 

provided by a sensor configuration k with the maximum information that can be gained if the 395 

sensor configuration includes all possible sensor locations. The metric, inspired by the mutual-396 

information objective function introduced by Stephan [36], compares the FIM of a sensor 397 

configuration k 𝐐𝐐�𝑘𝑘 with the FIM of the sensor configuration K including all possible sensor 398 

locations 𝐐𝐐�𝐾𝐾. This metric is calculated using Eq. (20). When MI tends to zero, the maximum 399 

possible information gain, represented by sensor configuration K, is obtained by the sensor 400 

configuration k. A non-zero value of MI means that adding sensors to the sensor configuration 401 

will provide more information. Therefore, the information-gain metric MI must be minimized. 402 

 MI(𝑘𝑘) = ‖𝐐𝐐�k− 𝐐𝐐�K‖
‖𝐐𝐐�k+𝐐𝐐�K‖

 ∈ [0,1]       (20) 403 

3.4.2 QR decomposition 404 

The second information-gain metric, called QR decomposition (QRD), provides an evaluation 405 

of the linear independence of mode-shape vectors. The term QR comes from the decomposition 406 

of a matrix A into the product A = QR, where Q is an orthogonal matrix and R an upper 407 

diagonal matrix. Introduced by Schedlinski and Link [35], the metric uses rows of the mode-408 

shape matrix 𝚽𝚽 instead of columns used in EFI. For Nm modes, the linear independence of each 409 

pair of rows 〈𝜓𝜓𝑛𝑛 ,𝜓𝜓𝑚𝑚〉 ∈ [1𝑥𝑥𝑥𝑥] is evaluated using Eq. (21). The matric 𝐋𝐋𝐋𝐋 ∈ [𝑁𝑁𝑚𝑚 𝑥𝑥 𝑁𝑁𝑚𝑚] is 410 

therefore a triangular matrix, in which the LIn,m is equal to zero if mode-shape vectors n and m 411 

are perfectly orthogonal and equal to one if they are linearly dependent. The information-gain 412 

metric QRD sums LIn,m elements of a sensor configuration k (Eq. (22)). When QRD tends to 413 

zero, all pairs of mode-shape vectors are orthogonal and therefore, each mode shape is 414 

distinguished. Non-zero values signify that some mode shapes cannot be differentiated and, 415 

therefore, adding sensors to the configuration can convey additional information in terms of 416 

the linear independence of mode-shape vectors. Therefore, the information-gain metric QRD 417 

must be minimized. 418 

 LIn,m =  �𝜓𝜓𝑛𝑛𝑇𝑇𝜓𝜓𝑚𝑚�
2

�𝜓𝜓𝑛𝑛𝑇𝑇𝜓𝜓𝑛𝑛��𝜓𝜓𝑚𝑚𝑇𝑇𝜓𝜓𝑚𝑚�
        (21)  419 

 QRDk = ∑ ∑ LIi,jNm
j

Nm
i        (22) 420 
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4 Methodology for measurement system design combining 421 

information from static and dynamic testing 422 

In order to monitor a structure, engineers may perform dynamic and static tests. Both tests 423 

differ in terms of the nature of the data collected (time-series data for dynamic tests and single 424 

measurements at sensor locations for static tests) and numerical models for predictions. 425 

Nevertheless, information collected during monitoring are often used to update the same 426 

parameter values of the numerical behavior model. Therefore, sensor-placement 427 

methodologies should be combined in order to avoid redundant information gain between 428 

dynamic and static load testing. In this section, a methodology is proposed to design 429 

measurement systems that are intended for including static and dynamic load testing (Figure 430 

5). 431 

The strategy begins with the building of a numerical model of the structure. Primary parameters 432 

to identify are chosen and non-parametric uncertainties are estimated. The engineer then selects 433 

available sensor types and sensor locations for both static and dynamic tests. Additionally, 434 

possible static load tests are designed. 435 

Once engineering decisions are made, model instances are generated for both static predictions, 436 

such as deflection at static-sensor locations for each static load test and dynamic predictions 437 

such as natural frequencies and mode-shape vectors at dynamic-sensor locations. In order to 438 

compare the information entropy of each type of measurement (i.e. static measurements and 439 

natural frequencies), an important limitation of the methodology is that both tests must use the 440 

same model class; the same dataset in terms of model-parameter values must be compared. In 441 

this situation, predictions of static measurements and natural frequencies of dynamic tests can 442 

be compared using the joint-entropy metric for information gain as presented in Section 3.2. 443 

Mathematical details are presented in Section 4.1. 444 

The optimal sensor configuration for the static test is explicitly obtained from the joint-entropy 445 

assessment, following the methodology presented in Section 2.2. Concerning the optimal 446 

sensor configuration for dynamic test, Sections 3.3 and 3.4 must still be performed. However, 447 

the importance matrix 𝐈𝐈𝐦𝐦𝐦𝐦 is adapted from the joint-entropy assessment using both static and 448 

dynamic tests, while the identifiability matrix 𝐈𝐈𝐧𝐧𝐧𝐧 remains unchanged as the same possible 449 

dynamic-sensor locations are used. When these steps are completed, the optimal sensor 450 

configuration for dynamic testing is found. 451 
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4.1 Joint-entropy assessment 452 

The information provided by static measurements and natural frequencies, which in this section 453 

are called measurements, is assessed the same way as in Sections 2.2 and 3.2. In this situation, 454 

the output variable, 𝑔𝑔, is either the natural-frequency predictions of the mode m or the static 455 

predictions at sensor location, i, such as deflection. Following Eq. (8) to (10), the expected 456 

information gain of sets of natural-frequency predictions can be quantified. 457 

The expected information gain provided by each measurement can be quantified using the 458 

joint-entropy assessment. This result makes two contributions to the sensor-placement 459 

strategies. First, useful static measurements are directly found and thus, the optimal static 460 

sensor configuration is revealed. Secondly, useful mode shapes and their information-gain 461 

quantification are provided for the sensor-placement strategy for modal identification as 462 

presented in Section 3, where the importance factor of each mode shape is evaluated using the 463 

joint-entropy assessment combining static and dynamic testing. 464 
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 465 
Figure 5 Measurement-system-design methodology combining information from static and 466 

dynamic load testing. 467 
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5 Case study 468 

Engineering details of the full-scale case study are presented in Section 5.1.  Sections 5.2 and 469 

5.3 show the selection of the model class and of the mode shapes. Optimal measurement 470 

systems are presented in Section 5.4 for dynamic load testing and in Section 5.5 for both static 471 

and dynamic load testing. 472 

5.1 Bridge presentation 473 

The full-scale case study is a 32-year-old bridge in Singapore. The pre-stressed pre-cast 474 

concrete structure has four beams carrying three unidirectional traffic lanes over a simply-475 

supported span of 32 meters. Principal characteristics of the bridge are presented in Figure 6 476 

including the static load test and possible sensor locations. Sensor locations were chosen based 477 

on engineering judgement and signal-to-noise-ratio estimation. As this sensor configuration 478 

could not been modified, this study focuses on evaluating the performance of selected sensor 479 

locations.  480 

For the static load test, sensors included two inclinometers (Ii) on the south parapet and four 481 

deflection targets (Pi) on the girders (Figure 6: A; B). A laser tracker was positioned on the 482 

road below the bridge and was used to measure deflections at target locations. To monitor the 483 

dynamic behavior of the bridge, 10 accelerometers were installed on parapets (Figure 6: A). 484 

Eight free-vibration tests were carried out on the bridge using a single truck at several speeds. 485 

Additionally, ambient-vibration measurements were recorded during 15 minutes when no truck 486 

was running. Additional information concerning the monitoring is presented in [47]. 487 
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 488 
Figure 6 Bridge geometry showing sensor locations and the static load test: A) Top view; B) 489 

Bottom view; C) Cross-section; D) Elevation. 490 

5.2 Model-class selection 491 

The selection of the model class is an important step of structural identification, where primary 492 

parameters are chosen and uncertainties are estimated. Four model parameters have the largest 493 

influence on model predictions: the Young modulus of the concrete Econ; the density of the 494 

concrete ρcon; the rotational stiffness of the bearing devices Krot; and the vertical stiffness of the 495 

bearing devices Klon. Plausible ranges of model-parameter values are estimated using 496 

engineering judgement and are presented in Table 1. Non-structural elements, such as the 497 

asphalt pavement, are included in the numerical model to reduce model-simplification 498 

uncertainties. 499 

Table 1 Model-parameter initial ranges for structural identification. 500 

Primary parameters Symbol Initial ranges 
Equivalent Young’s modulus of 
concrete beams and deck (GPa) Econ [20 – 42] 

Concrete equivalent density (kg/m3) ρcon [1800 – 3000] 
Rotational stiffness of bearing 
devices (log(Nmm/rad)) Krot [9 – 13] 

Vertical stiffness of bearing devices 
(log(N/mm)) Klong [8 – 11] 

 501 
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Table 2 presents the upper and lower bounds of model-class uncertainties and measurement 502 

uncertainties. Measurement uncertainties include the sensor precision based on manufacturing 503 

specifications and site conditions, the measurement repeatability that is usually estimated by 504 

conducting multiple series of tests on site, and the influence of the sensor installation. Model-505 

class uncertainties are estimated using engineering judgement, technical literature, and local 506 

knowledge. Since a limited number of parameters can be sampled to generate the initial model 507 

set, an additional uncertainty source estimated using stochastic simulation is included.  508 

Table 2 Estimations of model and measurement uncertainties. 509 

 510 

5.3 Mode-shape selection 511 

The eight first mode shapes are selected for the modal identification based on global behavior 512 

and low natural-frequency values (Figure 7). Within this 4-parameter space, 1,000 initial model 513 

instances were generated using Latin Hypercube Sampling (LHS). Model-instance predictions 514 

consist of deflection and inclination measurements for the static load testing (Figure 6) and the 515 

natural frequency of each mode shape and the mode-shape vector at each possible 516 

accelerometer location. 517 

Uncertainty source Displacements – (P) Rotations – (I) Accelerometer – (S) 
Min Max Min Max Min Max 

Model simplifications (%) -5 13 -5 13 -8 5 
Mesh refinement (%) -1 1 -1 1 0 2 

Additional uncertainty (%) -1 1 -1 1 -1 1 
Sensor precision -0.05 mm 0.05 mm -1 μrad 1 μrad -0.1 Hz 0.1 Hz 

Repeatability -0.15 mm 0.15 mm -4 μrad 4 μrad -0.05 Hz 0.05 Hz 
Sensor installation (%) - - -5 5 -2 2 
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 518 

Figure 7 Visualization of mode shapes with their respective mean natural frequency.  519 

Before designing a measurement system, the comparability of model-instance predictions for 520 

each mode shape must be checked, following Section 3.1. Figure 8 presents the distribution of 521 

MAC values between model instances r and s for respectively, mode 1 (Figure 8A), mode 2 522 

(Figure 8B), mode 4 (Figure 8C) and mode 7 (Figure 8D). Horizontal axes are scaled between 523 

the minimum values of MACrs and 1. Following Eq. (12), MACrs must be above 0.8. For all 524 

mode shapes, this condition is satisfied and thus, the model-instance generation is validated. 525 

Additionally, as the values in the distribution are almost equal to 1, this means that model 526 

instances do not significantly influence the shape of the mode but more the amplitude.  527 

Therefore, the implicit assumption of Eq. (18), taking the mean value as a good approximation 528 

of the modal behavior, is reasonable.  529 
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 530 

 531 
Figure 8 Modal assurance criterion (MAC) for model instances i and j for specific modes. A) 532 

mode 1; B) mode 2; C) mode 4; D) mode 7. 533 

5.4 Measurement-system design for dynamic load testing 534 

In this subsection, the methodology presented in Section 3 for sensor placement for dynamic 535 

load testing is applied to the Singapore case study. First, the mode-shape joint entropy is 536 

assessed in Section 5.4.1. Then, the addition of the importance matrix and identifiability matrix 537 

to the FIM calculation is compared with the traditional approach in Section 5.4.2. 538 

5.4.1 Joint-entropy assessment of natural-frequency expected information gain 539 

This section contains an assessment of the expected information gain of natural-frequency 540 

predictions of the eight mode shapes presented in Section 5.3. The information entropy is 541 

presented in Figure 9A, showing the expected information gain of each mode shape 542 

independently. Each mode shape displays similar performance with information-entropy 543 

values between 1.28 and 1.62, meaning they have close expected performance for structural 544 

identification as the information entropy is bounded between 0 and 10. Mode shape 1 shows a 545 

slightly larger information entropy and will be selected as the best mode shape in the first 546 

iteration of the hierarchical algorithm (Section 2.2). Figure 9B presents the joint entropy 547 

evaluation of mode-shape sets as function of number of mode shapes. The joint entropy 548 

increases significantly with first mode shapes (M1, M6, M7, M4) added to the set and then, the 549 
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expected information gain is limited. Although mode 1 is selected in the first position, 550 

subsequent mode-shape selections do not follow the mode-shape order. Higher mode shapes, 551 

such as modes 6 and 7, have more additional information when mode 1 is already involved. As 552 

each mode shape increases the joint entropy evaluation, each mode shape provides unique 553 

information. Therefore, all mode shapes will be involved in the measurement-system design 554 

for modal identification (Section 5.4.2).  555 

 556 

Figure 9 A) Information entropy (Eq. (8)) of natural frequencies of mode shapes; B) Joint 557 

entropy (Eq. (9)) of the natural frequency of mode-shape set as function of the number of 558 

modes.  559 

5.4.2 Sensor-placement for modal identification 560 

In this section, the sensor placement based on modal identification is performed. In order to 561 

justify the proposition to modify the mode-shape vectors using importance-factor and 562 

identifiability matrices (Eq. (18)), several importance-factor scenarios will be compared. Table 563 

3 presents five scenarios that are compared as well as equal importance factors in terms of 564 

objective-function evaluation (Section 5.4.2.1), sensor-location ranking (Section 5.4.2.2) and 565 

information-gain metrics (Section 5.4.2.3). The first importance-factor scenario Imp,1 includes 566 

only an importance matrix based on the information-entropy results (Figure 9A), as introduced 567 

in Section 3.3.3. The second importance-factor scenario Imp,2 uses only the joint entropy as 568 

importance factors based on results of Figure 9B. As redundancy of information gain inevitably 569 

occurs, the mode-1 result is corrected using Eq. (10) and the information entropy of the first 570 

two mode shapes is selected. The third importance-factor scenario is the identifiability matrix 571 

Int, as introduced in Section 3.3.3. The fourth and fifth importance-factor scenarios take into 572 
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account both importance-factor and identifiability matrices using the information entropy 573 

Imp,1*Int and the joint entropy Imp,2*Int respectively. 574 

Table 3 Mode-shape-vector importance factors.  575 

Modes 

Mode-shape-vector importance-factor scenarios 

Information 
entropy (IE) [-] 

Imp,1 

Joint entropy 
gain (JE) [-] 

Imp,2 

Identifiability 
(ID) [-] 

Int 

IE and 
ID [-] 

Imp,1*Int 

JE and 
ID [-] 

Imp,2*Int 
1 1.62 0.91 0.98 1.57 0.89 
2 1.45 0.09 0.91 1.33 0.08 
3 1.59 0.18 0.87 1.38 0.16 
4 1.29 0.28 0.28 0.35 0.08 
5 1.28 0.11 0.83 1.06 0.09 
6 1.30 0.62 0.53 0.69 0.33 
7 1.48 0.46 0.45 0.67 0.21 
8 1.53 0.03 0.51 0.78 0.02 

 576 
5.4.2.1 Objective-function evaluation 577 

For each importance-factor scenario, the objective-function evaluation (trace of the modified 578 

FIM 𝐐𝐐�) is presented in Figure 10 with respect to the number of sensors. In order to compare 579 

the importance-factor scenarios, results are normalized using the maximum objective-function 580 

evaluation of each importance-factor scenario tr�(𝐐𝐐�). For all importance-factor scenarios, the 581 

objective function reaches a near-maximum value from the 8th sensor added to the sensor 582 

configuration. This shows that more than eight sensors provide no new information. For any 583 

number of sensors, scenario Imp,2 and Imp,2*Int outperform other importance-factor scenarios. 584 

This result is validated using information-gain metrics (Section 5.4.2.3). 585 
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 586 

Figure 10 Normalized trace of modified Fisher Information Matrix (𝐐𝐐�) for scenarios as function 587 

of number of sensors.  588 

5.4.2.2 Sensor-location ranking 589 

In this section, the sensor-location ranking for each importance-factor scenario is presented. 590 

Figure 11 shows the first five sensor locations selected for each importance-factor scenario. 591 

Globally, sensor locations 3, 7, 8 and 10 have the largest expected information gain as they are 592 

selected in first positions in most of importance-factor scenarios. Additionally, from the first 593 

sensor selected, the importance-factor scenario Imp,1*Int differs in terms of sensor 594 

configuration. This shows that the modification of the FIM influence sensor-location 595 

evaluations to prioritize the identification of useful mode shapes for structural identification. 596 

This result explains the difference in terms of objective-function evaluations (Figure 10) but 597 

must be validated using information-gain metrics (Section 5.4.2.3).  598 
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 599 

Figure 11 Accelerometer-location (Ai) ranking for importance-factor scenarios presented in 600 

Table 3.A) Equal importance factors B) information entropy Imp,1 only; C) Joint entropy Imp,2 601 

only; D) Identifiability matrix only Int; E) Information entropy and identifiability matrix 602 

Imp,1*Int; F) Joint entropy and identifiability matrix Imp,2*Int. 603 

5.4.2.3 Information-gain metrics for modal identification 604 

In this section, sensor configurations obtained with the importance-factor scenarios are 605 

compared using the two information-gain metrics introduced in Section 3.4. Figure 12 presents 606 

the missing information MI with respect to the number of accelerometers. Globally, as the 607 

missing information must be minimized, all importance-factor scenarios lead to an increase in 608 

information gain with the number of sensors. The traditional approach represented by the 609 

scenario with no importance factors is over-performed by all remaining scenarios, while the 610 

scenario Imp,2*Int outperforms all remaining scenarios, indicating a higher information gain. 611 

Additionally, for this importance-factor scenario, the missing-information metric does not 612 

significantly decrease when six sensors are used in the sensor configuration, while the drop in 613 

missing information is negligible from eight sensors in the sensor configuration. Based on the 614 

missing information as an inverse information-gain metric for modal identification, 6 to 8 615 

sensors are recommended in the sensor configuration. Next, results are validated using the 616 

second information-gain metric (QR-decomposition).  617 

Figure 13 presents QR-decomposition information-gain metric (QRD) with respect to the 618 

number of accelerometers. The metric evaluates the linear independence between mode-shape 619 

vectors and must be minimized. Globally, all importance-factor scenarios lead to a decrease in 620 
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QRD with increasing number of sensors and they perform similarly on this information-gain 621 

metric. The QR-decomposition metric as an inverse information-gain metric for modal 622 

identification is almost constant between 5 to 8 sensors and shows a slight decrease when the 623 

9th sensor is added to the sensor configuration. Therefore, for all importance-factor scenarios, 624 

a sensor configuration of 6 to 10 sensors is recommended. The scenario Imp,2*Int performs as 625 

well as the equal-importance scenario. This shows that the prioritization of sensor-location 626 

selections to identify useful mode shapes for falsification does not affect significantly the 627 

ability to detect all mode shapes in the EFI method.  628 

Regarding both information-gain metrics, the importance-factor scenario Imp,2*Int outperforms 629 

other scenarios. Using the importance and identifiability matrices lead to a prioritization of 630 

sensor-location selections to identify useful mode shapes for falsification. This important-631 

factor scenario outperforms the traditional approach for modal identification, when all mode 632 

shapes are assumed to have the same performance for structural identification. Additionally, a 633 

sensor configuration of 6 to 9 sensors is recommended for structural identification based only 634 

on dynamic load testing.  635 

 636 

Figure 12 Missing-information metric (MI) for importance-factor scenarios as function of 637 

number of accelerometers. 638 
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 639 

Figure 13 QR-decomposition metric (QRD) for importance-factor scenarios as function of 640 

number of accelerometers.   641 

5.5 Measurement-system design including static and dynamic tests 642 

In this subsection, the methodology presented in Section 4 for measurement-system design 643 

including information from static and dynamic tests is applied to the Singapore case study. 644 

First, the joint entropy of natural frequencies and static measurements is assessed in Section 645 

5.5.1.  Then, the sensor-placement methodology for modal identification is performed in 646 

Section 5.5.2 to design the optimal measurement system for dynamic tests.  647 

5.5.1 Joint-entropy assessment of static measurements and natural frequencies 648 

In this section, the expected information gain from both static (deflection and inclination) and 649 

dynamic (natural frequency) measurements is assessed using the joint entropy as presented in 650 

Section 4.1. Figure 14A presents the information entropy of both static and dynamic 651 

measurements. Globally, static measurements show larger information-entropy values than 652 

natural frequencies. The inclinometer I2 presents the largest information-entropy value and is 653 

therefore the best measurement if measurements are used individually. Additionally, two 654 

sensor types are used for static tests. Figure 14B presents the joint-entropy assessment of 655 

measurement sets. Using both static and dynamic measurements lead to significantly larger 656 

joint entropy values than using static or dynamic measurements individually for any number 657 

of measurements in the measurement set. This shows that both tests provide unique information 658 

and should be used for structural identification of this case. Multi-sensor types have been 659 
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shown to reduce the mutual information between measurements [30]. The joint entropy of both 660 

tests increases for any measurements added to the measurement set. Each measurement 661 

provides useful additional information.  662 

 663 

Figure 14 A) Information entropy of measurements; B) Joint entropy as function of number of 664 

measurements. 665 

Figure 15 presents the measurement ranking from the joint-entropy assessment when both 666 

static and dynamic measurements are used. As shown using information-entropy evaluation 667 

(Figure 14A), inclinometer I2 is selected as the best measurement for structural identification. 668 

Although presenting a smaller individual information entropy than other static measurements 669 

(Figure 14A), the first natural frequency is selected as the second-best measurement, showing 670 

that this dynamic measurement provides more additional information when associated with the 671 

static measurement I2 than any remaining static measurements. Then, the deflection 672 

measurement P1 is selected as the third-best measurement, showing that each type of 673 

measurements provides useful additional information. Once the measurement joint entropy is 674 

assessed, the optimal sensor configuration for the static test is directly obtained. However, the 675 

sensor-placement methodology for modal identification must be performed (Section 3.3) in 676 

order to define the optimal sensor configuration for dynamic tests.  677 
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 678 

Figure 15 Measurement ranking for measurement-system design including static and dynamic 679 

tests, where Mi are modes, Pi deflection-target and Ii inclinometer locations. 680 

5.5.2 Sensor-placement for modal identification 681 

Once the expected information gain of each mode shape is quantified, the same procedure as 682 

presented in Section 5.4.2 is performed to obtain the dynamic measurement system. Compared 683 

with the previous section, the main difference is that the importance-factor matrix is modified 684 

with the new quantification of expected modal information gain from the joint-entropy 685 

assessment of both tests (Figure 14B).  686 

The important-factor evaluation for both static and dynamic measurements is compared in 687 

terms of objective-function evaluation, sensor-location ranking and information-gain metrics 688 

to the dynamic only importance-factor evaluation and the traditional approach where mode 689 

shapes are taken to be equally important.  690 

Figure 16 presents the normalized objective-function evaluation (tr�(𝐐𝐐�)) with respect to the 691 

number of accelerometers. Results show that the new importance-factor evaluation 692 

outperforms the scenario with equal importance factors. This result confirms previous 693 

observations (Section 5.4.2)where scenarios involving various importance factors lead to larger 694 

objective-function evaluations than the traditional approach where mode shapes are taken as 695 

equally important for structural identification. 696 



 

 33 

 697 

Figure 16 Normalized trace of modified Fisher Information Matrix (𝐐𝐐�) for importance-factor 698 

scenarios as function of number of accelerometers. 699 

Figure 17 presents sensor-location ranking for the three impact-factor scenarios for the five 700 

first sensor locations selected. Globally, sensor-location rankings of importance-factor 701 

scenarios differ, showing that the choice of importance factors significantly influences sensor-702 

location evaluations. When importance-factor evaluations include dynamic tests individually 703 

and static and dynamic tests, the first two sensor locations selected remain the same. However, 704 

from the third sensor-location selection, sensor-location selections differ, showing that small 705 

difference in importance factor may significantly influence sensor-location selections.  706 

 707 

Figure 17 Accelerometer-location (Ai) ranking for importance-factor scenarios of mode-shape 708 

matrix. A) Scenario of equal importance of mode shapes; B) Importance scenario of Imp,2*Int 709 

using the joint entropy of dynamic test only; C) Importance scenario of Imp,2*Int using the joint 710 

entropy for static and dynamic tests. 711 

Figure 18 presents MI and QRD metrics for modal identification for the two impact-factor 712 

scenarios with respect to the number of accelerometers. The missing information gain metric 713 
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MI (Figure 18A) shows a better performance if importance factors are used. As all mode-714 

shapes are useful even if static measurements are added to dynamic measurements (Figure 715 

14B), the number of sensors needed to identify correctly all mode shape remains constant. 716 

Therefore, the recommended number of accelerometers (i.e. 6 to 9) remains similar to the 717 

previous analysis for dynamic load tests only (Section 5.4.2.3). The main difference is that 718 

accelerometer locations are modified since the sensor-location ranking is re-evaluated (Figure 719 

17).  720 

   721 

Figure 18 A) Missing-information metric for importance-factor scenarios as function of 722 

number of accelerometers; B) QR-decomposition metric for importance-factor scenarios as 723 

function of number of accelerometers. 724 

5.6 Result corroboration using measurements taken from a full-scale 725 
bridge 726 

As mentioned in Section 5.1, this study is performed after the bridge was monitored. 727 

Performance of both static and dynamic measurements is assessed based on their ability to 728 

falsify model instances. In the joint-entropy assessment of static and dynamic measurements 729 

(Figure 14, Section 5.5.1), both tests are expected to provide unique information. Figure 19 730 

presents candidate-model-set domains obtained using static and dynamic measurements 731 

independently and static and dynamic measurements combined. Results are taken from Cao et 732 

al. [47], where a surrogate model was built to generate more initial model instances in order to 733 

better cover the model-parameter domain of candidate-model sets. Static measurements (i.e. 734 

all inclinometers and deflection targets) are useful to reduce parameter ranges for the first and 735 

third parameters (Econ and Krot). They cannot help in the identification of the second and the 736 

fourth parameters (Klong and ρcon). Figure 19 presents the boundaries of the parameter domains. 737 
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Among static candidate models, large parameter values of Econ are associated with small values 738 

of KLong and inversely.  739 

Dynamic measurements (i.e. all natural frequencies) reduce parameter ranges for the first and 740 

the fourth parameters (Econ and ρcon), but have no impact on parameter ranges for the second 741 

and third parameters (Klong and Krot). When static and dynamic measurements are combined, 742 

all model-parameter ranges are significantly reduced, showing a good structural identification 743 

even for the second model parameter Klong that is not well identified when static and dynamic 744 

tests are used independently. This shows that both tests provide useful information and when 745 

they are combined, the information gained is significantly increased. This result using bridge 746 

measurements corroborates the expected performance of static and dynamic tests presented in 747 

the sensor-placement study. 748 

 749 

Figure 19 Parallel-axis plot of candidate-model-set parameter domain using static 750 

measurements; dynamic measurements; static and dynamic measurements. Adapted from [47]. 751 

In the study of Cao et al. [47], 10 accelerometers were used to evaluate real bridge modal 752 

frequencies and then the model-falsification process was performed. However, the present 753 

study suggests that only six accelerometers provide significant new information, while the 754 

remaining four present a large amount of redundant information (Section 5.5). Natural-755 

frequency evaluations using only the six best accelerometers are performed again and results 756 
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in terms of parameter ranges of candidate model sets are presented in Table 4. When using the 757 

six best accelerometers instead of all accelerometers, small differences of parameter 758 

identification are revealed for Econ and ρcon. However, when static and dynamic measurements 759 

are combined, changes in parameter-identification ranges are more important. Using the 760 

accelerometer subset obtained with the proposed methodology does not significantly influence 761 

the candidate-model set. Therefore, results show that the proposed methodology help reduce 762 

the number of sensors without compromising the performance of structural identification. 763 

Table 4 Identification of parameter ranges using static measurements; dynamic measurements 764 

and static and dynamic measurements. Adapted from [47]. 765 

Load testing 
Econ  

[Gpa] 
Klong 

 [log(N/mm)] 
Krot  

[log(Nmm/rad)] 
ρcon 

[kg/m3] 
min max min max min max min max 

Static only  28.1 37.0 9.2 12.8 8.4 8.9 1800 2900 

Dynamic only – 
All accelerometers 26.7 29.9 9.0 13.0 8.0 11.0 1800 1950 

Dynamic only –  
6 best accelerometers 26.2 29.7 9.0 13.0 8.0 11.0 1800 2000 

Static + Dynamic –  
All accelerometers 28.1 29.9 12.2 12.8 8.5 8.9 1800 1950 

Static + Dynamic – 
6 best accelerometers 28.1 29.7 12.2 12.8 8.5 8.9 1800 2000 

Additionally, information-gain metrics (Figure 18) provide information related to the minimum 766 

number of sensors to accurately identify mode shapes. Information-gain metrics show that 6 767 

and 9 accelerometers are required for two scenarios of sensor placement respectively: Imp,2*Int 768 

and the equal importance factor. Figure 20 presents the error in the measured natural frequency 769 

of the first mode with respect to the number of accelerometers. The error in measured natural 770 

frequencies is evaluated as the difference between the frequency obtained when a subset of 771 

sensors is used 𝑓𝑓 with the frequency obtained considering all accelerometers 𝑓𝑓. Results are 772 

normalized using 𝑓𝑓 and are compared for sensor configurations selected by both scenarios 773 

(Figure 17). The error in frequency estimation decreases while increasing the number of 774 

accelerometers for both scenarios. Sensor configurations selected by the Imp,2*Int scenario 775 

provide better approximation of the first natural frequency than the equal-importance scenario. 776 

As the first mode provides the largest increase of joint entropy (Figure 14), this result 777 

demonstrates that the Imp,2*Int scenario prioritizes sensor locations to identify useful modes. 778 
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Additionally, results show the Imp,2*Int scenario requires at least 5 sensors to approximate 779 

accurately the natural frequency while the equal-importance-factors scenario requires 8 780 

sensors, corroborating results of information-gain metrics. Globally, results show that the 781 

expected performance of accelerometers of this study is corroborated using field measurements 782 

[47]. 783 

 784 

Figure 20 Error in the measured natural frequency for the first mode shape as function of the 785 

number of accelerometers. 786 

6 Discussion 787 

The following limitations of the work are recognized. First, the objective function for modal 788 

identification in the dynamic methodology employs only information on the diagonal of the 789 

FIM to select sensor locations. This choice was motivated by the fact that the number of sensors 790 

was low compared with the number of mode shapes. Therefore, the determinant of the FIM 791 

equals zero and thus cannot be used as sensor-placement objective function. When the number 792 

of sensors is larger than the number of useful mode shapes, the determinant of the FIM could 793 

be a more appropriate objective function for sensor placement (Section 3.3.3). The determinant 794 

involves complete information contents of the FIM, while the trace involves only information 795 

on the diagonal of the FIM. 796 

Greedy search is used as optimization algorithm to reduce the computational time. However, 797 

it may lead to suboptimal sensor configurations, especially when there are few sensors. In order 798 

to combine information of both static and dynamic load testing, joint-entropy evaluations of 799 
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respective measurements need to be compared. This implies that the same initial model sets of 800 

model-parameter values are used. Thus, a single model class is used and it should include all 801 

model parameters influencing both static and dynamic predictions.  802 

Selections of mode shapes and possible sensor locations are treated as engineering decisions. 803 

However, it is recommended to include large sets in order to find optimal measurement 804 

systems. Sensor locations that were involved in the previous study [47] are employed in order 805 

to compare the expected performance of both static and dynamic tests with reality. Results of 806 

the sensor-placement study are corroborated using real measurements. However, this is not a 807 

firm result validation since sensor-placement strategies provide only a statistical advantage in 808 

terms of expected performance. A large sample of case studies must be compared in order to 809 

achieve result validation that would justify generalization of any sensor-placement 810 

methodology. To validate a sensor configuration for modal identification, real mode-shape 811 

vectors should be compared using a complete set of sensors and using a subset with only 812 

important sensor locations.  813 

The proposed measurement-system design framework takes into account only information-814 

gain metrics. In addition to the information gain, characteristics such as monitoring costs, 815 

sensor installation and robustness of information gain to sensor failure should be evaluated to 816 

design an optimal measurement system. Additionally, the criterion-weighting preferences of 817 

asset managers must be supported. A framework using a multi-criteria-decision-analysis 818 

approach and five performance metrics has recently been proposed in [48].  819 

The success of any sensor-placement methodology depends directly on the quality of the 820 

numerical behavior model that is used to obtain predictions. Before installing the sensor 821 

configuration, the material constants and reliability of model assumptions should be verified 822 

using visual inspection and non-destructive testing methods. 823 

The information collected through load testing in the elastic domain is used to update the 824 

structural behavior at limit-state conditions. If the critical limit state is the ultimate limit state 825 

and the response is non-linear behavior that is difficult to model, as would be expected for a 826 

reinforced concrete beams in bending, structural-identification methodologies may provide 827 

limited information since the updated-parameter sensitivity is low. Further research is also 828 

needed to recommend appropriate values of numerical-simulation uncertainties [49]. In such 829 

situations, while the interest of measurement-system-design methodologies is reduced, 830 

methodologies remain valid.  831 
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7 Conclusions 832 

A well-designed measurement system enhances structural identification and reserve-capacity 833 

assessment. The following are the specific conclusions of the study: 834 

• The measurement-system-design methodology that is proposed in this paper for 835 

dynamic load tests supports asset managers for tasks of finding optimal sensor 836 

configurations and quantifying expected information gain of natural frequencies for 837 

structural identification.  838 

• Taking into account importance and identifiability matrices helps prioritize sensor 839 

locations in the effective independence method (EFI) for modal identification without 840 

requiring additional uncertainty information. 841 

• Combining information from measurement-system-design methodologies for static and 842 

dynamic load testing leads to measurement systems where the redundancy of 843 

information gain is minimized in a unique way.  844 

Future work will involve quantifying the expected influence of monitoring information gain 845 

for both static and dynamic load testing to assess reserve capacity.  846 
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