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Abstract. Kato introduced the exotic nilpotent cone to be a substitute for the ordinary nilpo-
tent cone of type C with cleaner properties. Here we describe the irreducible components of
exotic Springer fibres (the fibres of the resolution of the exotic nilpotent cone), and prove that
they are naturally in bijection with standard bitableaux. As a result, we deduce the existence
of an exotic Robinson-Schensted bijection, which is a variant of the type C Robinson-Schensted
bijection between pairs of same-shape standard bitableaux and elements of the Weyl group; this
bijection is described explicitly in the sequel to this paper. Note that this is in contrast with
ordinary type C Springer fibres, where the parametrisation of irreducible components, and the
resulting geometric Robinson-Schensted bijection, are more complicated. As an application, we
explicitly describe the structure in the special cases where the irreducible components of the
exotic Springer fibre have dimension 2, and show that in those cases one obtains Hirzebruch
surfaces.
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1. Introduction

The Springer Correspondence gives a bijection between the irreducible representations of the
Weyl group of a connected reductive algebraic group G, and certain pairs (O, ε) comprising a
G-orbit on the nilpotent cone N = N (g) of its Lie algebra g, and certain simple local systems ε
on O. In type A, the nilpotent cone N (gln) consists of all nilpotent n× n matrices, and the G-
action (by conjugation) on N has connected stabilisers, so no non-trivial local systems occur in
the Springer Correspondence. In this case, one has a bijection between the G-orbits on N (gln)
and the irreducible representations of Sn, the Weyl group of GLn, which are parametrised by
partitions of n.

The Springer Correspondence in type C, using the ordinary nilpotent cone, is more compli-
cated than that in type A for a number of reasons - the isotropy groups of the orbits are not
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connected, and one does not obtain a bijection between nilpotent orbits and irreducible repre-
sentations of the Weyl group of type C. Kato introduced the exotic nilpotent cone N to evade
these complications, and Kato’s exotic Springer correspondence, as constructed in [Katb], does
give such a bijection. This relies on the fact that the Sp2n(C)-orbits on N are proven to be in
bijection with Qn, the set of bipartitions of n (and thus also with irreducible representations of
the type C Weyl group).

Exotic Springer fibres have also been used by Kato for various geometric constructions. In
[Kat09], Kato studies representations of multi-parameter affine Hecke algebras, by using the
exotic nilpotent cone (and the equivariant K-theory of its Steinberg variety, following techniques
used by Kazhdan, Lusztig and Ginzburg in the case of one-parameter affine Hecke algebras). In
particular, the standard modules for these Hecke algebras are realised via the total homology
of exotic Springer fibres and, as is the case for the classical Springer Correspondence, the top
homology gives the irreducible representation of the Weyl group). In Corollary 1.24 of [CK11] the
authors establish a connection between the homology of exotic Springer fibres, and of ordinary
Springer fibres in types B and C (see also [Kata], for a purity result).

Following Kato’s foundational papers on the exotic nilpotent cone, there has been subsequent
work extending various results about the nilpotent cone to the exotic setting. In [AH08], Achar
and Henderson conjecturally describe the intersection cohomology of orbit closures in the exotic
nilpotent cone; these have since been proven independently by Shoji-Sorlin (see Theorem 5.7
in [SS14]); and by Kato (see Theorem A in [Kat15], Theorem A.1.8 in [Kata] and Remark 5.8
in [SS14]). Achar, Henderson and Sommers make an explicit connection between special pieces
for N and those for the ordinary nilpotent cone in [AHS11]. The Lusztig-Vogan bijection can
also be extended to the exotic nilpotent cone, as shown by the first author in [Nan13]. These
results all demonstrate a strong connection between the exotic nilpotent cone and the ordinary
nilpotent cone of type C. In some respects, the former has properties which are better than
those of the latter; the present work is another example of this.

The main result of this paper is a description and a combinatorial enumeration of the irre-
ducible components of exotic Springer fibres. In [Spa76], Spaltenstein gives an explicit bijection
between the irreducible components of Springer fibres in type A and standard tableaux of the
corresponding shape. Using his techniques, we will show that the irreducible components of
exotic Springer fibres are in bijection with standard Young bitableaux, and explicitly describe
an open, dense subset within each component. The fact that the cardinality of these two sets is
equal follows from Kato’s constructions in [Kat09] and [Katb] for the following reason: the top
homology of the exotic Springer fibre has a basis given by the classes of the irreducible compo-
nents, but it also carries an action of the Weyl group, and is isomorphic to the corresponding
irreducible representation. Our proof of this fact has the advantage that it gives an explicit
bijection, and is more elementary.

The irreducible components of Springer fibres in type B, C and D were first described by
Spaltenstein in Section II.6 of [Spa82], but the combinatorics is quite subtle and involves signed
domino tableaux (see also Section 3 of van Leeuwen’s thesis [vL] for an exposition, and also the
simplified version given by Pietraho in [Pie04]). In [Ste88], Steinberg constructs a geometric
Robinson-Schensted correspondence by looking at the irreducible components of the Steinberg
variety in two different ways. In type A, this coincides with the classical RS correspondence
defined combinatorially using the row bumping algorithm (see [Ste88]), but in types B, C and
D, it is quite different, and was computed by van Leeuwen in [vL]. In the exotic setup, we
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obtain a variant of the Robinson-Schensted Correspondence in type C. We give a combinatorial
description in [NRS17], the sequel to this paper, and this is discussed briefly in Section 7.
Note that this is different from the exotic Robinson-Schensted correspondence constructed by
Henderson and Trapa in [HT12].

Let us now briefly summarize our paper; see Sections 2 and 3 for more detail. The exotic
nilpotent cone N is the Hilbert nullcone of the Sp2n(C) representation C2n ⊕Λ2(C2n). Like the

ordinary case, the exotic nilpotent cone has a natural resolution π : Ñ → N, with Ñ being
a vector bundle over the symplectic flag variety. Given (v, x) ∈ N, the exotic Springer fibre
C(v,x) = π−1(v, x). We have:

C(v,x) = {(0 ⊂ F1 ⊂ · · · ⊂ F2n−1 ⊂ C2n) | F⊥i = F2n−i, dim(Fi) = i, v ∈ Fn, x(Fi) ⊆ Fi−1}.

Given (v, x) ∈ N and a bipartition (µ, ν) ∈ Qn, define the exotic type eType(v, x) = (µ, ν) if
(v, x) lies in the Sp2n(C)-orbit indexed by (µ, ν). Let T be a standard Young bitableau (see

Example 2.5 for a complete definition). Define CT,◦(v,x) ⊂ C(v,x) to be the subset of all flags (F•),

such that for each 1 ≤ i ≤ n, eType(v+Fn−i, F
⊥
n−i/Fn−i) is the bitableau obtained by deleting all

entries of T which are larger than i. Our main theorem states that the irreducible components

of the exotic Springer fibre C(v,x) are equidimensional, and are given by the closures CT,◦(v,x), as T

ranges over all standard bitableaux of shape (µ, ν). It should be noted here that that fibre is

not the union of the CT,◦(v,x) and that taking closures is necessary.

The proof is inductive, and relies on analysing the projection map p : CT(v,x) → P(ker(x)),

given by p(F•) = F1. The fibres of this projection map are easily seen to be either empty,
or isomorphic to CT ′(v+F1,x|F⊥1 /F1

), where T ′ is obtained from T by removing the box labelled n.

The bulk of the proof lies with Proposition 3.2, where we describe the image of the map p; the
main theorem essentially follows once we know the dimension of the image, and its irreducibility
(since the total space of a fibre bundle with irreducible base and fibres is also irreducible). This
strategy is roughly the same as that used by Spaltenstein for type A Springer fibres in [Spa76];
in that case, instead of the exotic type one simply looks at the Jordan type of the nilpotent x
on the subspace Fi, and understanding the image of the map p is much easier.

As an application, in Section 8 we study the special case where the exotic Springer fibre has
dimension two. Using our main theorem, we show that in this case the irreducible components
are P1-bundles over P1, and classify them.
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(in particular, Peter Trapa), and the University of Sydney (in particular, Ruibin Zhang and
Gus Lehrer) for supporting this research. Finally, we thank the anonymous referee for pointing
out a weakness in the proof of our main theorem in a previous draft.
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2. Background and Notation

We let U be an n-dimensional vector space over C and we let V = U ⊕U∗. We endow V with
a symplectic (i.e. nondegenerate, skew-symmetric, bilinear) form thus:

〈(u, f), (u′, f ′)〉 := f ′(u)− f(u′), for u, u′ ∈ U and f, f ′ ∈ U∗.
If W ⊆ V , we denote by W⊥ its perpendicular space with respect to the form 〈 , 〉.

We define the symplectic group as the group of invertible linear transformations of V pre-
serving the form

Sp2n = Sp(V ) := {g ∈ GL(V ) | 〈gv, gw〉 = 〈v, w〉, ∀v, w ∈ V }
and we identify its Lie algebra as follows

sp2n := Lie(Sp2n) = {x ∈ End(V ) | 〈xv, w〉+ 〈v, xw〉 = 0, ∀v, w ∈ V }.
The adjoint action of Sp2n on sp2n is the restriction of the Sp2n-action on gl2n = End(V ) given
by conjugation. This action gives a direct sum decomposition of Sp2n-modules gl2n = sp2n⊕S.
We can also describe S directly as

S = {x ∈ End(V ) | 〈xv, w〉 − 〈v, xw〉 = 0, ∀v, w ∈ V }.
An easy fact following directly from this definition is that 〈xiv, xjv〉 = 0 for all v ∈ V and all
i, j ≥ 0. Finally we let N (gl2n) := {x ∈ End(V ) | xk = 0, for some k} be the nilpotent cone of
GL2n.

Definition 2.1 ((Exotic Nilpotent Cone)). The exotic nilpotent cone is the (singular) variety
N := V × (S ∩ N (gl2n)).

We denote by F(V ) the variety of complete symplectic flags in V , that is F• ∈ F(V ) is a
sequence of subspaces

F• = (0 = F0 ⊆ F1 ⊆ · · ·Fn ⊆ · · · ⊆ F2n−1 ⊆ F2n = V )

such that dim(Fi) = i and F⊥i = F2n−i.

There is a resolution of singularities

π : Ñ� N (1)

where
Ñ = {(F•, (v, x)) ∈ F(V )×N | v ∈ Fn, x(Fi) ⊆ Fi−1 ∀i = 0, . . . , 2n}

given by the projection
π(F•, (v, x)) = (v, x).

Notice that the map π is equivariant for the natural diagonal action of Sp2n on both Ñ and N

with the explicit action on Ñ given by g · (F•, v, x) = (gF•, gv, gxg
−1).

A partition of n is a sequence λ = (λ1, . . . , λk) of nonnegative integers with λ1 ≥ . . . ≥ λk

and
k∑
i=1

λi = n. We denote it by λ ` n or |λ| = n. The length of a partition λ, denoted by `(λ) is

the number of nonzero parts of λ. If we have two partitions µ, ν, we can define new partitions
µ + ν = (µ1 + ν1, . . . , µs + νs), and µ ∪ ν which is the unique partition obtained by reordering
the sequence (µ1, . . . , µr, ν1, . . . , νs) to make it nondecreasing. A bipartition of n is a pair (µ, ν)
of partitions such that |µ|+ |ν| = n. We denote the set of all bipartitions of n by Qn. The set
Qn is important for us because of the following result.
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Theorem 2.2 ([AH08, Thm 6.1]). The orbits of Sp2n on N are in bijection with Qn.

More precisely, following Section 2 and Section 6 of [AH08] we can say that, given a bipartition
(µ, ν) ∈ Qn, the corresponding orbit O(µ,ν) contains the point (v, x) if and only if there is a
normal basis of V given by

{vij, v∗ij | 1 ≤ i ≤ `(µ+ ν), 1 ≤ j ≤ (µ+ ν)i = λi},

with 〈vij, v∗i′j′〉 = δi,i′δj,j′ , v =
`(µ)∑
i=1

vi,µi and such that the action of x on this basis is as follows:

xvij =

{
vi,j−1 if j ≥ 2

0 if j = 1
xv∗ij =

{
v∗i,j+1 if j ≤ µi + νi − 1

0 if j = µi + νi.

In particular the Jordan type of x is (µ+ ν) ∪ (µ+ ν).

Definition 2.3. If x is a nilpotent transformation on a vector spaceW , we denote by Type(x,W )
the Jordan type of x, which is a partition of dim(W ). If (v, x) ∈ O(µ,ν) as defined above,
we say that the bipartition (µ, ν) is the exotic Jordan type of (v, x) and we denote it by
eType(v, x) = (µ, ν).

Associated to a partition λ there is a Young diagram consisting of λi boxes on row i. We say
that λ is the shape of the diagram. In the same way, a bipartition gives a pair of diagrams.

Example 2.4. Consider the bipartition (µ, ν) = ((3, 1), (2, 2, 1)), and a point (v, x) ∈ O(µ,ν).
Then we can represent the normal basis as

v11 v12 v13 v14 v15

v21 v22 v23

v31

v∗15 v
∗
14 v

∗
13 v

∗
12 v

∗
11

v∗23 v
∗
22 v

∗
21

v∗31

with the action of x given by moving one block left (and zero if there is nothing further left),
and v = v13 +v21 is given by the sum of the boxes just left of the dividing wall on the upper half
of the diagram. Notice that the wall divides the two diagrams corresponding to the partitions
that form the bipartition (the one on the left of the wall is facing backwards) and that the
bipartition is repeated twice.

Given a Young diagram, we can fill the boxes with positive integers to obtain a Young tableau.
We call a Young tableau, of shape λ ` n, standard if it contains the integers 1, . . . , n and it
is strictly increasing along rows and down columns. For a bipartition (µ1, µ2), a bitableau of
shape (µ1, µ2) is a pair (T 1, T 2) where T i is a tableau of shape µi, i = 1, 2. A bitableau of shape
(µ, ν) is standard if it contains the integers 1, 2, . . . , |µ|+ |ν| and each tableau is increasing along
rows and down columns. To match the conventions used in [AH08], we will actually reverse
left-to-right the first tableau of a bitableau so that both tableaux increase as they get farther
from the centre. We denote the set of all standard bitableaux of shape (µ, ν) by SY B(µ, ν).
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Example 2.5. The following is a standard bitableau of shape ((3, 1), (2, 2, 1)). 8 4 1
3
,

2 5
6 9
7


Remark 2.6. A standard bitableau of shape (µ, ν) is the same thing as a nested sequence of
bipartitions ending at (µ, ν) i.e. a sequence of bipartitions

(∅,∅), (µ(1), ν(1)), . . . , (µ(s), ν(s)) = (µ, ν)

such that (µ(i+1), ν(i+1)) is obtained from (µ(i), ν(i)) by adding one box (increasing one of the parts
by one) either on the left or on the right tableau. The identification is given by tracing the order
in which the boxes are added according to the increasing sequence of numbers 1, 2, . . . , |µ|+ |ν|.

Example 2.7. The standard bitableau

(
3 2

5
, 1

4

)
corresponds to the nested sequence

(∅,∅) ,
(
∅,

)
,
(

,
)
,
(

,
)
,

(
,

)
,

(
,

)
.

Definition 2.8. Given (v, x) ∈ N, we consider the exotic Springer fibre

C(v,x) := π−1(v, x) = {F• = (0 ⊆ F1 ⊆ · · · ⊆ F2n = V | F⊥i = F2n−i, v ∈ Fn, x(Fi) ⊆ Fi−1}.
It is clear that if eType(v, x) = eType(v′, x′), then there is an isomorphism of varieties C(v,x) '
C(v′,x′) given by the Sp2n-action.

Let (v, x) ∈ N, if F• ∈ C(v,x), for all i = 0, . . . , n, since Fi and F⊥i = F2n−i are invariant under
x, we can consider the restriction of x to F⊥i /Fi, which is a vector space of dimension 2(n− i).
Furthermore, it can be easily verified that x ∈ N (F⊥i /Fi) ∩ S(F⊥i /Fi).

Definition 2.9. Let (v, x) ∈ N, eType(v, x) = (µ, ν), and let T ∈ SY B(µ, ν). Define the
following maps, and the subsets CT(v,x) ⊂ C(v,x):

Φi : C(v,x) → Qn−i F• 7→ eType
(
v + Fi, x|F⊥i /Fi

)
;

Φ : C(v,x) →
n∏
i=0

Qi F• 7→
(
Φn(F•), . . . ,Φ

0(F•)
)

;

CT(v,x) := Φ−1(T ).

Definition 2.10. Let (µ, ν) be a bipartition (with µ+ ν = λ), define

b(µ, ν) := 2N(λ) + |ν|, where N(λ) =
∑
i≥1

(i− 1)λi

Remark 2.11. The quantity N(λ) is the dimension of the irreducible components of the
Springer fibre in type A corresponding to the partition λ.

Our main theorem is the following:

Theorem 2.12. Let (v, x) ∈ N, with eType(v, x) = (µ, ν), where (µ, ν) ∈ Qn. Then the
irreducible components of C(v,x) = π−1(v, x) are precisely:

{CT(v,x) | T ∈ SY B(µ, ν)}.
They all have the same dimension b(µ, ν).
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In the case of the Springer fibres for groups of type A, the appropriate analogue of the map Φ
from Definition 2.9 gives an increasing sequence of partitions, which is equivalent to a standard
tableau. Unfortunately in our case, it is not true in general that the image of Φ consists of
nested sequences of bipartitions (i.e. standard bitableaux), as the following example shows.

Example 2.13. Take n = 2, and consider the bipartition (µ, ν) = ((1, 1),∅) =

(
,∅
)

.

According to Definition 2.3, if (v, x) ∈ C(µ,ν), then x = 0 and v 6= 0. Now, we let F1 = Cv,
and we let F2 be any 2-dimensional subspace of V such that F1 ⊆ F2 ⊆ F⊥1 and set F• = (0 ⊂
F1 ⊂ F2 ⊂ F⊥1 ⊂ C4). We then have (F•, v, x) ∈ Cv,x. To compute the image under the map Φ
the cases of Φ0 and Φ2 are trivial, so we need to consider what is the bipartition of 1 given by

Φ1(F•). It is easy to see that eType
(
v + F1, x|F⊥1 /F1

)
= (∅, 1) because v ∈ F1 so v + F1 = 0 in

F⊥1 /F1. Hence we get the sequence

(∅,∅), (∅, (1)), ((1, 1),∅) or equivalently (∅,∅),
(
∅,

)
,

(
,∅
)

which is not nested.

3. Strategy of the Proof

To prove our main theorem, which describes the irreducible components of the varieties C(v,x),
we will use some properties of the map Φ from Definition 2.9. We already know from Example
2.13 that the image of Φ does not consist excusively of standard bitableaux (i.e. nested sequences
of bipartitions), but it does give standard bitableaux in most cases. In fact those are the only
cases we need, as the following proposition tells us. The proof of the main theorem, which will
be given in Section 6, will rely on the following fact.

Proposition 3.1. Let (µ, ν) ∈ Qn, let T be a standard bitableau of shape (µ, ν) and let (v, x) ∈
O(µ,ν). Then Φ−1(T ) is an irreducible subvariety of C(v,x) of dimension b(µ, ν).

Proof. We will prove this proposition by induction on n. For n = 0, the statement is trivial (all
the varieties involved are one single point), so now assume that n ≥ 1. Fix (µ, ν), T and (v, x)
as in the statement. We consider the projection

p : Φ−1(T ) −→ P(ker(x) ∩ (C[x]v)⊥);

F• 7→ F1.

Let T ′ be the standard bitableau obtained from T by removing the box with the number n, and

let (µ′, ν ′) ∈ Qn−1 be the shape of T ′. Notice that (µ′, ν ′) = Φ1(F•) = eType
(
v + F1, x|F⊥1 /F1

)
.

Observe that

B(µ,ν)
(µ′,ν′) := im p = {F1 ⊂ ker(x) ∩ (C[x]v)⊥ | eType(v + F1, x|F⊥1 /F1

) = (µ′, ν ′) }.
For any F1 ∈ im p, we then have that

p−1(F1) = {F ′• ∈ Φ−1(T ) | F ′1 = F1}

α'

{
F • ∈ C(

v+F1,x|F⊥1 /F1

) ⊆ F(F⊥1 /F1) | (Φn−1(F •), . . . ,Φ
0(F •)) = T ′

}
(2)

where the isomorphism α is given by

α(F ′0, F
′
1, . . . , F

′
2n−1, F

′
2n) = (F 0, F 1, . . . , F 2n−3, F 2n−2); F i = F ′i+1/F1 ∀i = 0, . . . , 2n− 2.
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In conclusion, the map p is a fibre bundle, and from (2), it follows that the fibres are p−1(F1) '
Φ−1(T ′), which by inductive hypothesis is an irreducible variety of dimension b(µ′, ν ′). Thus the
proof will be a consequence of the following result. �

Proposition 3.2. For all (µ, ν) ∈ Qn and for all (µ′, ν ′) ∈ Qn−1 such that (µ′, ν ′) is obtained

from (µ, ν) by removing one box, the variety B(µ,ν)
(µ′,ν′) is irreducible of dimension b(µ, ν)−b(µ′, ν ′).

The proof of Proposition 3.2 will be given in Section 5 of the paper. The following result,
which combines [Tra09, Thm 1 and Cor 1] and [AH08, Thm 6.1] will be very useful for us in
this regard.

Theorem 3.3 (Travkin, Achar-Henderson). Let (v, x) ∈ N(W ), then eType(v, x) = (µ, ν) if
and only if

Type(x,W ) = (µ1 + ν1, µ1 + ν1, µ2 + ν2, µ2 + ν2, . . .) and

Type(x,W/(C[x]v)) = (µ1 + ν1, µ2 + ν1, µ2 + ν2, µ3 + ν2, . . .).

We want to apply this theorem to the space W = F⊥1 /F1, so we will need to calculate the
Jordan types of the induced nilpotent on the spaces

F⊥1 /F1 and (F⊥1 /F1)/((C[x]v + F1)/F1) = F⊥1 /(C[x]v + F1).

4. Calculating Jordan Types

Recall that V is a 2n-dimensional symplectic vector space over C, as defined in Section 2.
Throughout this section we fix (v, x) ∈ N, such that eType(v, x) = (µ, ν) where (µ, ν) ∈ Qn is
a bipartition of n. In particular this means that Type(x, V ) = λ ∪ λ where λ := µ+ ν.

Whenever we have an x-invariant subspace W ⊂ V , by abuse of notation we will often denote
the induced linear transformations x|W and x|V/W also by x. It should be clear at all times
which vector space we are working with.

We start by giving two general lemmas regarding the Jordan types of induced nilpotent
endomorphisms on hyperplanes and on quotients by lines. The proofs of these lemmas can be
found in [Spa76] or [vL00, Prop. 1.4].

Lemma 4.1. Given a nilpotent endomorphism x of V with Jordan type λ, and a 1-dimensional
subspace L with L ⊆ ker(x), suppose that j is maximal such that L ⊆ ker(x) ∩ im(xj−1). Then
the Jordan type of x on V/L is the partition obtained by removing the corner box at the bottom
of the j-th column.

Lemma 4.2. Given a nilpotent endomorphism x of V with Jordan type λ, and a codimension
1 subspace W with W ⊇ im(x), suppose that j is maximal such that W ⊇ im(x) + ker(xj−1).
Then the Jordan type of x on W is the partition obtained by removing the corner box at the
bottom of the j-th column.

We fix a Jordan ‘normal’ basis for x on V as in Section 2

{vij, v∗ij | 1 ≤ i ≤ `(µ+ ν), 1 ≤ j ≤ (µ+ ν)i = λi},
and we write

v =

`(µ)∑
i=1

vi,µi ,
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which, in terms of the diagram in Example 2.4 is the vertical sum of the boxes immediately to
the left of the dividing wall. Let F1 ∈ P(ker(x)∩ (C[x]v)⊥ be a one-dimensional space, we write
F1 = Cv1, where

0 6= v1 = α1v1,1 + . . .+ α`(λ)v`(λ),1 + β1v
∗
1,λ1

+ . . .+ β`(λ)v
∗
`(λ),λ`(λ)

. (3)

Definition 4.3. In (3), let m be the largest integer such that αi 6= 0 or βi 6= 0 and we define
three sets of indices:

Λm = {1 ≤ i ≤ `(λ) |λi = λm},
Γm = {1 ≤ i ≤ `(λ) |µi = µm},
∆m = {1 ≤ i ≤ `(λ) | νi = νm}.

We adopt the convention that if m > `(µ) (respectively m > `(ν)), then Γm = ∅ (respectively
∆m = ∅).

Example 4.4. Let µ = (33, 2), ν = (3, 22, 12), λ = (6, 52, 3, 1). Here Γ1 = Γ2 = Γ3 = {1, 2, 3},
Γ4 = {4}, Γ5 = {5}, while ∆1 = {1}, ∆2 = ∆3 = {2, 3}, ∆4 = ∆5 = {4, 5}.

Definition 4.5. For m maximal such that either αi 6= 0 or βi 6= 0 as in Definition 4.3, we define
m = max Λm.

Remark 4.6. Let λtr be the transpose partition of λ, defined by the property that λtri =
|{j | λj ≥ i}|. It is worth noting here that λtrλm = m.

Remark 4.7. If v1 is as in (3), notice that, for all r ≥ 1,

〈v1, x
rv〉 = 〈xrv1, v〉 = 〈0, v〉 = 0

and

〈v1, v〉 =

〈
`(λ)∑
i=1

αivi,1 +

`(λ)∑
i=1

βiv
∗
i,λi
,

`(µ)∑
i=1

vi,µi

〉
= −

∑
i:λi=µi

βi.

It follows that v1 ∈ (C[x]v)⊥ if and only if
∑

i: νi=0,
µi>0

βi = 0.

4.1. Jordan Type of x on V ⊥1 /V1: maximal m.

Proposition 4.8. Let F1 = Cv1 with v1 as in (3), and m,m as in Definition 4.5. Then the
Jordan type of x on F⊥1 /F1 is the duplicated partition λ′ ∪ λ′ where λ′ is obtained from λ by
decreasing λm by 1. That is, comparing λ with λ′ we have

λ′i =

{
λi for i 6= m,

λm − 1 for i = m.

Proof. By Lemma 4.1 we may calculate Type(x, V/F1). This is given by the maximal k such
that F1 is contained in xk−1(V ), whence the last box in the k-th column of the duplicated
partition λ ∪ λ is removed. Here, by definition of m, is it easily seen that F1 ⊆ xλm−1(V ) but
F1 6⊆ xλm(V ). Therefore Type(x, V/F1) = λ ∪ λ′.

We now calculate Type(x, F⊥1 /F1). By Lemma 4.2, this is given by the maximal l such that
F⊥1 /F1 ⊃ ker(xl−1

|V/F1
), whence the last box in the l-th row of the partition λ ∪ λ′ is removed.

Translating this back to a condition on F1, we deduce that we require the maximal l such that
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F⊥1 ⊇ (xl−1)−1(F1). It is clear that any vector that maps onto v1 by x is contained in F⊥1 ,
so we just need to consider the kernels of powers of x. Again by definition of m, we see that
F⊥1 ⊃ ker(xλm−1) but F⊥1 6⊃ ker(xλm). Therefore the Jordan type of x on F⊥1 /F1 is λ′ ∪ λ′. �

4.2. Jordan type of x on V/C[x]v. We have V = U⊕U∗, where C[x]v ⊆ U and so V/C[x]v '
U/C[x]v ⊕ U∗. Lemma 2.5 from [AH08] gives us a Jordan basis for x on U/C[x]v.

Lemma 4.9. [AH08, Lemma 2.5] The Jordan type of x on U/C[x]v is (µ2 +ν1, µ3 +ν2, . . .) and
so the Jordan type of x on V/C[x]v is ρ = (µ1 + ν1, µ2 + ν1, µ2 + ν2, µ3 + ν2, . . .).

Remember that to use Theorem 3.3, we want to find the Jordan type of x on F⊥1 /(C[x]v +
F1). To answer this question we will first compute Type(x, V/(C[x]v + F1)) starting from
Type(x, V/C[x]v), from that we will then be able to compute Type(x, F⊥1 /(C[x]v + F1)).

4.3. Jordan type on V/(C[x]v+F1): maximal k. As in Lemma 4.9, we let ρ = (ρ1, ρ2, . . .) =
Type(x, V/C[x]v). We then have, for all i ≥ 1

ρ2i = µi+1 + νi and ρ2i−1 = µi + νi.

Remark 4.10. If F1 is contained in C[x]v, then V/(C[x]v+F1) ' V/C[x]v and Type(x, V/(C[x]v+
F1)) = Type(x, V/C[x]v) = ρ. So we will now assume for the rest of this subsection that
F1 6⊆ C[x]v.

If F1 6⊆ C[x]v, since V/(C[x]v + F1) is a quotient of V/C[x]v by the 1-dimensional subspace
(C[x]v + F1)/C[x]v, we can use Lemma 4.1.

Lemma 4.11. If F1 6⊆ C[x]v, the Jordan type of x on V/(C[x]v+F1) is determined by the max-
imum k such that F1 ⊂ ker(x) ∩ (im(xk−1) + C[x]v). It is obtained from ρ = Type(x, V/C[x]v),
by deleting the last box in the bottom of the k-th column.

Proof. By Lemma 4.1, we require the maximal k such that

(C[x]v + F1)/C[x]v ⊂ ker(x|V/C[x]v) ∩ im(xk−1
|V/C[x]v).

Since ker(x|V/C[x]v) = x−1(C[x]v) and im(xi|V/C[x]v) = im(xi) + C[x]v, this above condition can
be written as the maximum k such that:

C[x]v + F1 ⊂ x−1(C[x]v) ∩ (im(xk−1) + C[x]v).

Since C[x]v is clearly contained in the right hand side, and that F1 ⊆ ker(x) ⊆ x−1(C[x]v), we
can reduce this condition to F1 ⊂ ker(x) ∩ (im(xk−1) + C[x]v). �

We can actually be explicit regarding what the maximal k in Lemma 4.11 is. Again, let m be
the maximal i such that αi 6= 0 or βi 6= 0 as in Definition 4.5. Since F1 ⊆ ker(x) ∩ im(xλm−1),
we clearly have that k ≥ λm.

Definition 4.12. For m as above, define the following (possibly empty) sets:

Γαm := {i ∈ Γm | αj = αm 6= 0, ∀ i ≤ j ≤ max Γm},
Γβm := {i ∈ Γm | βj = 0, ∀ i ≤ j ≤ max Γm}.

We define also mα = min Γαm, mβ = min Γβm if those sets are nonempty.

Proposition 4.13. Suppose k is maximal such that F1 ⊂ ker(x) ∩ (im(xk−1) + C[x]v), m as
above and mα, mβ as in Definition 4.12. Then

k =

{
λm if Γαm = ∅ or Γβm = ∅;

µm + νm′−1 if Γαm 6= ∅ 6= Γβm where m′ = max{mα,mβ}.
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Proof. We have already remarked that F1 ⊂ im(xλm−1), hence k ≥ λm. Suppose k > λm. Then
the vectors vi,1 and v∗i,λi for i ∈ Λm lie outside im(xk−1) and so therefore must be obtained by
adding the subspace C[x]v. However, it is easily seen that the vectors v∗i,λi for i ∈ Λm cannot be

obtained by adding C[x]v and so βi = 0 for all i ∈ Λm which implies that Γβm 6= ∅. Moreover, the
only vector contained in C[x]v that is relevant to our discussion is

∑
i≤max Γm

vi,µi−µm+1. Notice

that, since vmax Γm,1 6∈ im(xk−1), if αmax Γm = 0, then v1 6∈ im(xk−1) + C
(∑

i≤max Γm
vi,µi−µm+1

)
for any k, which is impossible. Therefore αmax Γm 6= 0, which implies that m = max Γm and
Γαm 6= ∅. Write

v1 = v′ + v′′ + v′′′

where

v′ =
∑
i∈Γαm

αivi,1; v′′ =
∑
i<mα

αivi,1; v′′′ =
∑
i<mβ

βiv
∗
i,λi
.

By the way they are defined, we have v1 ∈ im(xk−1)+C[x]v if and only if v′, v′′, v′′′ ∈ im(xk−1)+
C[x]v. Notice that by definition of Γαm, since all the coefficients for the corresponding indices
are the same, we can write

v′ =
∑
i∈Γαm

αivi,1 =
∑
i∈Γαm

αvi,1

= α

( ∑
i≤max Γm

vi,µi−µm+1

)
− α

(∑
i<mα

vi,µi−µm+1

)
.

We then have v′ ∈ im(xk−1) + C[x]v if and only if vi,µi−µm+1 ∈ im(xk−1) for all i < mα, i.e.

k − 1 ≤ λi − (µi − µm + 1)

k ≤ µi + νi − µi + µm

k ≤ µm + νi.

Similarly, v′′ ∈ im(xk−1) +C[x]v if and only if v′′ ∈ im(xk−1) if and only if k ≤ λi for all i < mα.
Clearly this condition is redundant, since for all i < mα we have µm+νi ≤ µi+νi = λi. Finally,
v′′′ ∈ im(xk−1) +C[x]v if and only if v′′′ ∈ im(xk−1) if and only if k ≤ λi for all i < mβ. Putting
the conditions together, we get indeed that k ≤ µm + νi where i is maximal such that i < mα

or i < mβ, which proves the proposition. �

Remark 4.14. Notice that in the second case of Proposition 4.13, we always have m′ > 1. This
is because if m′ = 1, then mα = mβ = 1, which means that v1 =

∑
i∈Γm

αvi,1 ∈ C[x]v but we
have assumed F1 6⊂ C[x]v. Also note that it is possible that µm + νm′−1 can be equal to λm for
certain partitions µ and ν.

Example 4.15. Consider the bipartition (µ, ν) = ((4, 25, 1), (3, 2, 12)), so that λ = (7, 4, 32, 22, 1).
We may picture this below:
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In this case, C[x]v is 4-dimensional, being the span of the vertical sum of boxes to the left of
the wall on the top half of the diagram. Suppose

v1 = α1v1,1 + α2v2,1 + α3v3,1 + α4v4,1 + α5v5,1 + α6v6,1 + β6v
∗
6,2 + β5v

∗
5,2 + β4v

∗
4,3 + β3v

∗
3,3 + β2v

∗
4,4 + β1v

∗
1,7,

with α6 6= 0 or β6 6= 0. Observe that by Remark 4.7, since F1 ⊆ (C[x]v)⊥, we require β5+β6 = 0.
In this case we have m = 6 with λm = µm = 2; Γm = {2, 3, 4, 5, 6}, Λm = {5, 6} and ∆m =
{5, 6, 7}. Therefore we have

F1 ⊂


im(x4) + C[x]v if α2 = . . . = α6 6= 0 and β2 = . . . = β6 = 0,

im(x3) + C[x]v if α3 = α4 = α5 = α6 6= 0 and β3 = β4 = β5 = β6 = 0,

im(x2) + C[x]v if α5 = α6 6= 0 and β5 = β6 = 0,

im(x) + C[x]v in any case.

Therefore the maximal k such that V1 ⊂ im(xk−1) + C[x]v is:

k =


5(= µ6 + ν1) if α2 = . . . = α6 6= 0 and β2 = . . . = β6 = 0, or

4(= µ6 + ν2) if α3 = α4 = α5 = α6 6= 0 and β3 = β4 = β5 = β6 = 0, or

3(= µ6 + ν4) if α5 = α6 6= 0 and β5 = β6 = 0, or

2(= λ6) otherwise.

4.4. The Jordan Type of x on F⊥1 /(C[x]v + F1): maximal l.

Lemma 4.16. Let l be a non-negative integer with l < λm. Then

(xl)−1(C[x]v + F1) = (xl)−1(C[x]v) + (xl)−1(F1).

Proof. It is clear that (xl)−1(C[x]v + F1) ⊇ (xl)−1(C[x]v) + (xl)−1(F1), so we prove the reverse
inclusion. Suppose w ∈ V such that xl(w) ∈ C[x]v + F1. Since an obvious basis for C[x]v + F1

is {v, x(v), . . . xµ1−1(v), v1}, we may then write

xl(w) =

µ1−1∑
i=0

aix
iv + bv1,

for ai, b ∈ C. Since l ≤ λm − 1 we have F1 ⊆ im(xλm−1) ⊆ im(xl) and so there exists a y ∈ V

such that xl(y) = bv1. We then find that xl(w − y) =

µ1−1∑
i=0

aix
iv and so w − y ∈ (xl)−1(C[x]v),

hence w = y − (y − w) ∈ (xl)−1(C[x]v) + (xl)−1(F1), and we are done. �

The space F⊥1 /(C[x]v+F1) is a codimension 1 subspace of F/(C[x]v+F1) and so we can use
Lemma 4.2.
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Lemma 4.17. The Jordan type of x on F⊥1 /(C[x]v + F1) is determined by the maximal l such
that F⊥1 ⊇ (xl−1)−1(C[x]v). It is then obtained Type(x, V/(C[x]v + F1)) by removing the last
box at the bottom of the l-th column.

Proof. We first note that the condition F⊥1 ⊇ (xl−1)−1(C[x]v) is equivalent to F1 ⊆ xl−1((C[x]v)⊥)
and since F1 ⊆ im(xλm−1) but F1 6⊆ im(xλm), we have l − 1 < λm. By Lemma 4.2 we require
the maximal l such that

F⊥1 /(C[x]v + F1) ⊇ im(x|V/(C[x]v+F1)) + ker(xl−1
|V/(C[x]v+F1)).

Translating this back to conditions on F1 we calculate,

im(x|V/(C[x]v+F1)) = im(x) + (C[x]v + F1) and

ker(xl−1
|V/(C[x]v+F1)) = (xl−1)−1(C[x]v + F1).

Thus we require F⊥1 ⊇ im(x) + (C[x]v + F1) + (xl−1)−1(C[x]v + F1). Since F⊥1 always contains
im(x) and C[x]v + F1 is clearly contained in (xl−1)−1(C[x]v + F1), the essential requirement
is: F⊥1 ⊇ (xl−1)−1(C[x]v + F1). But by Lemma 4.16 and the fact that (xl−1)−1(F1) ⊆ F⊥1 , this
condition simplifies to F⊥1 ⊇ (xl−1)−1(C[x]v). �

Recall that m is defined to be the largest index such that αi 6= 0 or βi 6= 0. Let m′′ =
max ∆m + 1 be the smallest integer such that m′′ > m and νm′′ < νm.

Proposition 4.18. The maximal l such that F⊥1 ⊇ (xl−1)−1(C[x]v) is:

l =

µm′′ + νm if max Γm ≤ max ∆m and
∑

i∈∆m: i≤m

βi 6= 0,

λm otherwise.

Proof. We first note that by definition of m and Proposition 4.8, F1 ⊆ im(xλm−1) but F1 6⊆
im(xλm). Equivalently, we have F⊥1 ⊇ ker(xλm−1) but F⊥1 6⊇ ker(xλm). Since ker(xλm) is clearly
contained in (xλm)−1(C[x]v) we deduce that l can be at most λm.

Suppose first that max Γm > max ∆m. Then it is easy to see that the only vectors that
have non-zero image in C[x]v under some power of x (less than λm) are already contained
in C[x]v up to some vector in the kernel of x raised to that power. In this case we have
F⊥1 ⊇ (xl−1)−1(C[x]v) if and only if F⊥1 ⊇ ker(xl−1); therefore l = λm. So we suppose from now
on that max Γm ≤ max ∆m.

Suppose that l < λm. Then there must be a vector w′ in (xl)−1(C[x]v) \ ker(xl) which is not
contained in F⊥1 . Define:

w =
m′′−1∑
i=1

vi,µi+νm

(noting that m′′− 1 = max ∆m). Then it follows that w′−w ∈ F⊥1 , by looking at the rightmost
column of boxes on which the vector w is supported. In this case we have w is contained in
(xµm′′+νm)−1(C[x]v) since

xµm′′+νm(w) =
m′′−1∑
i=1

vi,µi−µm′′ = xµm′′ (v) ∈ C[x]v,
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and we compute 〈w, v1〉 =
∑

i∈∆m: i≤m

βi.

Therefore, w is an element of F⊥1 if and only if
∑

i∈∆m
i≤m

βi = 0. Thus if
∑

i∈∆m
i≤m

βi 6= 0, then

F⊥1 ⊇ (xµm′′+νm−1)−1(C[x]v) but F⊥1 6⊇ (xµm′′+νm)−1(C[x]v) and so the maximal l in this case is
µm′′ + νm. �

Remark 4.19. Note that it is possible for µm′′ to be 0 in Proposition 4.18, for example this is
the case when `(µ) < m′′. But the key point here is that m′′ = max ∆m + 1 and so the first
value of l in Proposition 4.18 can be written as µmax ∆m+1 + νmax ∆m , which is indeed a part of
the partition ρ.

We finish this section with two examples which illustrate the condition on the coefficients of
v1.

Example 4.20. Consider the bipartition (µ, ν) = ((23, 1), (22, 1)).

Let v1 = α1v11 + α2v21 + β2v
∗
24 + β1v

∗
14 and put F1 = Cv1. Here, the only vectors that have

non-zero image in C[x]v are linear combinations of u := v13 + v23 + v33(∈ x−2(C[x]v)) and
vectors in C[x]v. Now u is clearly contained in F⊥1 , so in this case, the maximal l such that
F⊥1 ⊇ (xl−1)−1(C[x]v) coincides with the maximal l such that F⊥1 ⊇ ker(xl−1). Therefore we
can easily see that F⊥1 ⊇ ker(x3) but F⊥1 6⊇ ker(x4) = V . Hence the maximal l in this case is 4
and there is no restriction on the coefficients of v1.

Moreover, we can see that F1 ⊆ im(x3)+C[x]v but F1 6⊆ C[x]v, and so the k as in Proposition
4.13 is 4 in this case. Therefore eType(v + F1, x|F⊥1 /F1

) = ((23, 1), (2, 12)) and is obtained by
deleting the box from the bottom of the second column on the right of the wall.

Example 4.21. By contrast to Example 4.20 where there were no conditions on the coefficients
on v1, consider the bipartition ((22, 1), (22)).

Again let v1 = α1v11 + α2v21 + β2v
∗
24 + β1v

∗
14. We first observe that F1 ⊆ im(x3) + C[x]v, but

F1 6⊆ C[x]v and so the k as in Proposition 4.13 is again k = 4.

The key difference from Example 4.20 is that we do have vectors not already contained in C[x]v
that have non-zero image in C[x]v - for example x2(v13 +v23) = x3(v14 +v24) = v11 +v21 = x(v).
Now v14+v24 ∈ F⊥1 if and only if β1+β2 = 0 and so the maximal l such that F⊥1 ⊆ (xl−1)−1(C[x]v)
is l = 4 if β1 + β2 = 0 and l = 3 if β1 + β2 6= 0. We therefore have:

eType(v + F1, x|F⊥1 /F1
) =

{
((2, 12), (22)) if β1 + β2 = 0,

((22, 1), (2, 1)) if β1 + β2 6= 0.
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Here, the first case corresponds to deleting the box from the left hand side of the wall and the
second case corresponds to deleting a box from the right hand side of the wall.

5. Proof of Proposition 3.2

We can now put together all the results about Jordan types to prove Proposition 3.2. Fix
(v, x) ∈ N, with eType(v, x) = (µ, ν). Let F1 = Cv1 ∈ P(ker(x) ∩ (C[x]v)⊥) such that

eType(v + F1, x|F⊥1 /F1
) = (µ′, ν ′)

where (µ′, ν ′) is obtained from (µ, ν) by removing a box in row m, where λm > λm+1. We know
by Proposition 4.8 that we have

v1 =
∑
i≤m

αivi,1 +
∑
i≤m

βiv
∗
i,λi

where max{i | αi 6= 0 or βi 6= 0} = m with λm = λm. It follows that B(µ,ν)
(µ′,ν′) ⊂ P2m−1, where

we take [α1 : . . . : αm : β1 : . . . : βm] to be the homogeneous coordinates for P2m−1. Using this

inclusion, we will describe B(µ,ν)
(µ′,ν′) by giving conditions on the αi’s and βi’s and therefore show

that it is irreducible and has the required dimension. We examine different cases.

5.1. The case ν = ν ′. We assume now µ′ is obtained by removing a box from row m in µ,
while ν = ν ′. In particular this implies that µm > µm+1 ≥ 0 and that m = max Γm ≤ max ∆m.

If m > 1, by Theorem 3.3 we then must have that

σ = Type(x, F⊥1 /(C[x]v + F1)

= (µ′1 + ν1, µ
′
2 + ν1, µ

′
2 + ν2, . . .)

= (µ1 + ν1, . . . , µm−1 + νm−1, µm − 1 + νm−1, µm − 1 + νm, µm+1 + νm, . . .).

Comparing this to Type(x, V/C[x]v) = ρ, we notice that σ is obtained from ρ by reducing by 1
the parts ρ2m−2 = µm + νm−1 and ρ2m−1 = λm = µm + νm.

Notice that if m = 1, then again by Theorem 3.3 we get that σ is obtained from ρ by reducing
by 1 the part ρ1 = λ1 = µ1 + ν1, while all the other parts stay the same. Observe that in either
case

b(µ, ν)− b(µ′, ν) = 2N(µ) + 2N(ν) + |ν| − 2N(µ′)− 2N(ν)− |ν|
= 2(N(µ)−N(µ′)) = 2(m− 1) = 2m− 2. (4)

We now divide this case into three subcases: m = 1, m > 1 and νm−1 > νm, m > 1 and
νm−1 = νm.

5.1.1. m = 1. In this case, since |σ| = |ρ| − 1, the only possibility is that F1 ⊂ C[x]v, so that
Type(x, V/(C[x]v + F1)) = Type(x, V/C[x]v) = ρ and Type(x, F⊥1 /(C[x]v + F1)) is obtained
from ρ by removing a box in row l = λ1, as in Proposition 4.18. Since F1 = Cv1 with v1 =
α1v1,1 + β1v

∗
1,λ1

and v1 ∈ C[x]v, we have necessarily β1 = 0 and α1 6= 0. It then follows from

Proposition 4.18 that l = λ1 without any other assumptions (this is because
∑
i∈∆m
i≤m

βi = β1 = 0).

In this case, then we have

B(µ,ν)
(µ′,ν) = {Cv1,1} ⊂ P(ker(x) ∩ (C[x]v)⊥)
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is a single point, which is indeed irreducible of dimension 2m− 2 = 2 · 1− 2 = 0.

For the rest of Section 5.1, we assume that m > 1, which implies that |σ| = |ρ| − 2, hence
F1 6⊂ C[x]v.

5.1.2. νm−1 > νm. If νm−1 > νm, then we have Λm = {m} (since µm > µm+1), and m = m.
Notice now that in Proposition 4.18 we cannot have l = µm′′ + νm because m′′ = max ∆m + 1 ≥
m + 1, hence µm′′ + νm ≤ µm+1 + νm < µm + νm, and it then follows that the part of ρ of size
l would not be ρ2m−2 nor ρ2m−1, which is impossible. Hence we have to have l = λm = ρ2m−1,
which implies by Proposition 4.18 that either νm = 0 (in which case βm = 0 by Remark 4.7 ) or

νm 6= 0 and
∑

i∈∆m: i≤m

βi = 0, which is the same as βm = 0. Since βm = 0, we have αm 6= 0, hence

Γαm 6= ∅ 6= Γβm and in Proposition 4.13 we obtain k = µm + νm′−1. Since the only possibility
is that k = ρ2m−2 = µm + νm−1, we get that νm′−1 = νm−1. Clearly m′ ≤ m because βm = 0
and αm 6= 0, thus νm′−1 ≥ νm−1. Now, let X ⊂ P2m−1 be the set of possible choices of the v1

such that νm′−1 > νm−1. Then in terms of the homogeneous coordinates, X is defined by the
equations

αm = αm−1 = . . . = αm′ and 0 = βm = βm−1 = . . . = βm′

with m′ ≤ min ∆m−1. It is clear that this forms a closed subset of positive codimension of the

set of all the v1 such that βm = 0 and αm 6= 0. In conclusion, B(µ,ν)
(µ′,ν) is an open subset of the

set Y = {βm = 0; αm 6= 0} ⊂ P2m−1. Since Y is irreducible of dimension 2m− 2, so is B(µ,ν)
(µ′,ν).

5.1.3. νm−1 = νm. In this case ρ2m−2 = ρ2m−1 = λm, therefore, as in 5.1.2, we have l = λm. By
Proposition 4.18, there are then two possibilities. If νm = νm−1 = 0, we have from Remark 4.7

that
∑

i: νi=0, µi>0

βi = 0. Otherwise, if νm > 0, we have
∑

i∈∆m: i≤m

βi = 0. Now, our only choice

for k is also k = λm. By Proposition 4.13 this is true when αm = 0 or βm 6= 0. If we are in the
case αm 6= 0 and βm = 0, we have Γαm 6= ∅ 6= Γβm, hence k = µm + νm′−1 = µm + νm, from which
necessarily νm′−1 = νm. As in 5.1.2, the set X ⊂ P2m−1 where νm′−1 > νm is a closed subset of
positive codimension of the set Y = {Cv1 ∈ P2m−1 |

∑
i∈I βi = 0} where

I =

{
{i ∈ ∆m | i ≤ m} if νm > 0,

{i | µi > 0, νi = 0} if νm = 0.

We also consider the set Z = {Cv1 ∈ Y | αi = 0 = βi, ∀i ∈ Λm} which is also closed of positive
codimension in Y . In conclusion, we have

Y \ (X ∪ Z) ⊂ B(µ,ν)
(µ′,ν) ⊂ Y ' P2m−2,

from which B(µ,ν)
(µ′,ν) is indeed irreducible of dimension 2m− 2.

5.2. The case µ = µ′. We assume now ν ′ is obtained by removing a box from row m in ν,
while µ = µ′. In particular this implies that νm > νm+1 ≥ 0 and that m = max ∆m ≤ max Γm.
By Theorem 3.3 we then must have that

σ = Type(x, F⊥1 /(C[x]v + F1)

= (µ1 + ν ′1, µ2 + ν ′1, µ2 + ν ′2, . . .)

= (µ1 + ν1, . . . , µm + νm−1, µm + νm − 1, µm+1 + νm − 1, µm+1 + νm+1, . . .).
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Comparing this to Type(x, V/C[x]v) = ρ, we notice that σ is obtained from ρ by reducing by 1
the parts ρ2m−1 = λm = µm + νm and ρ2m = µm+1 + νm. In particular, since |σ| = |ρ| − 2, we
have F1 6⊂ C[x]v. Observe that in this case

b(µ, ν)− b(µ, ν ′) = 2N(µ) + 2N(ν) + |ν| − 2N(µ)− 2N(ν ′)− |ν ′|
= 2(N(ν)−N(ν ′)) + 1

= 2m− 1. (5)

We now divide this case into two subcases: µm > µm+1 and µm = µm+1.

5.2.1. µm = µm+1. In this case we have that max Γm ≥ m + 1 > max ∆m. Notice that this
implies that Γαm = ∅ because αmax Γm = αm+1 = 0, hence by Proposition 4.13, we have k = λm.
Also, since either µm = 0 or max Γm > max ∆m, by Proposition 4.18 we get l = λm. Notice
that in this situation, ρ2m−1 = ρ2m = λm = k = l. If, as in 5.1.3, we take

Z = {Cv1 ∈ P2m−1 | αi = 0 = βi, ∀i ∈ Λm},

which is a closed subset of positive codimension of P2m−1, we then get B(µ,ν)
(µ,ν′) = P2m−1 \ Z is

indeed irreducible of dimension 2m− 1.

5.2.2. µm > µm+1. In this case we have that m = max Γm = max ∆m and m′′ = max ∆m + 1 =
m+ 1. Notice that since ρ2m−1 = λm > ρ2m = µm+1 + νm, we have to have

k = ρ2m−1 = λm and l = ρ2m = µm′′ + νm.

The condition on l, by Proposition 4.18, implies that
∑

i∈∆m: i≤m

βi 6= 0. Using Proposition 4.13,

the condition on k implies that one of the following is true: Γαm = ∅ (i.e. αm = 0), or Γβm = ∅
(i.e. βm 6= 0), or Γαm 6= ∅ 6= Γβm and νm′−1 = νm. Now, if we let

Y =

{
Cv1 ∈ P2m−1

∣∣∣∣ ∑
i∈∆m: i≤m

βi 6= 0, and βm 6= 0

}
,

then Y is an open irreducible subset of P2m−1. Since we have Y ⊂ B(µ,ν)
(µ,ν′) ⊂ P2m−1, we obtain

again that B(µ,ν)
(µ,ν′) is irreducible of dimension 2m− 1.

This concludes the proof of Proposition 3.2 and hence of Proposition 3.1. The following
inequality is an immediate consequence:

dim C(v,x) ≥ b(µ, ν). (6)

To conclude the proof of the main theorem, we will need to adapt a central object in Springer
representations - the Steinberg Variety - to our settings.

6. The Exotic Steinberg Variety and the Main Theorem

In this section we define the Exotic Steinberg Variety and present some of its properties that
will enable us to complete the proof of Theorem 2.12. First we give some background on the
classical Steinberg Variety.

Let G = GLn(C), with Borel subgroup B of upper triangular matrices, and letN = N (gln) be
the nilpotent cone, the variety of all nilpotent n× n matrices. We have the Springer resolution
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of singularities

π : Ñ � N ; (F•, x) 7→ x

Ñ = {(F•, x) ∈ G/B ×N | x(Fi) ⊂ Fi−1, ∀i = 1, . . . , n}.
Then, we define the classical Steinberg variety

Z = Ñ ×N Ñ = {(F, F ′, x) ∈ G/B ×G/B ×N | F, F ′ ∈ π−1(x)}.
Following [Spa76] and [Ste88], the irreducible components of Z can be parametrized in two
ways. The first is by taking closures of the pre-images of the G-orbits on G/B×G/B under the
projection Z � G/B×G/B; the parametrizing set is the Weyl group Sn by the Bruhat lemma.
The second way is as follows: given two standard tableaux T, T ′ of shape λ define ZT,T ′ be the
set of all triples with x a nilpotent of Jordan type λ, (Type(x, Fi))

n
i=1 = T , (Type(x, F ′))ni=1 =

T ′ (notice that the Jordan types of x restricted to the spaces in the flag give an increasing
sequence of partitions, which is the same thing as a standard tableau). Then the closures ZT,T ′
comprise the irreducible components, and Spaltenstein and Steinberg independently showed
that passing from one parametrization to the other is exactly given by the Robinson-Schensted
Correspondence. We will construct an Exotic Robinson-Schensted Correspondence in Section
7.

Let us now describe the exotic analogue of this construction. We note here that all the
techniques used below are classical and date back to Lusztig, Spaltenstein and Steinberg (and
were explained to us by Anthony Henderson). Lemmas 6.3, 6.4 and 6.6 can be found in [Kat09];
Lemma 6.7 can be found in [Kat11]. The proofs are very short so we include them for the
reader’s convenience.

From Section 2, recall the symplectic flag variety F(V ), which using the embedding Sp2n(C) ↪→
GL2n(C), can be realised as Sp2n(C)/(B∩Sp2n(C)) (with B a Borel subgroup of GL2n(C)). Let

R+ be the set of positive roots of Sp2n(C). Recall the resolution map π : Ñ → N of (1) with
fibres C(v,x) over the point (v, x).

Definition 6.1 ((Exotic Steinberg Variety)). The exotic Steinberg variety is

Z := Ñ×N Ñ := {(F•, F ′•, (v, x)) ∈ F(V )×F(V )×N | F•, F ′• ∈ C(v,x)}.

The Bruhat lemma says that the orbits of the Sp2n-action on F(V ) × F(V ) are in bijection
with the Type C Weyl group W (Cn). Using the embedding Sp2n(C) ↪→ GL2n(C), we can identify
W (Cn) with a subset of the symmetric group S2n:

W (Cn) = {w ∈ S2n | w(2n+ 1− i) = 2n+ 1− w(i)}.
Note that this is a slightly different convention from the one used in Section 7.

Given w ∈ W (Cn), denote by Ow the corresponding orbit in F(V ) × F(V ). Let θ : Z −→
F(V )×F(V ) and set Zw := θ−1(Ow).

Definition 6.2 ((Flags in Relative Position)). Given two flags F•, G• ∈ F(V ), we say that
w(F•, G•) = w, that is the two flags are in relative position w ∈ W (Cn) if there is a basis
{v1, . . . , v2n} such that 〈vi, vj〉 = δi+j,2n+1 and for all 1 ≤ i, j ≤ 2n,

Fi = C{v1, · · · , vi},
Gj = C{vw(1), . . . , vw(j)}.
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It is immediate that w(F•, G•) = w if and only if (F•, G•) ∈ Ow.

We can also parametrise the irreducible components of the Z in two different ways. The
first by elements of W (Cn) and the second by pairs of bitableaux. We demonstrate the first
parametrisation below and defer the second to Lemma 6.6.

Lemma 6.3. The irreducible components of Z are Zw for w ∈ W (Cn), and they all have the
same dimension as N.

Proof. It is clear that the union of Zw, as w runs over W (Cn), is the entirety of Z. To show
that they are the irreducible components, it suffices to check that they all have the same
dimension, and that they are irreducible. We do this by analysing the restriction of θ, namely
θw : Zw → Ow ⊂ F(V )×F(V ), which is a fibre bundle.

For each (F•, G•) ∈ Ow, choose a basis {v1, . . . , v2n} as in Definition 6.2, and a basis Eij of
End(C2n) with Eijvk = δjkvi. Define the following matrices:

Eij =

{
Eij + E2n+1−j,2n+1−i if 1 ≤ i, j ≤ n

Eij − E2n+1−j,2n+1−i otherwise.

Then the matrices {Eij | 1 ≤ i ≤ 2n, 1 ≤ j < 2n + 1 − i} constitute a basis for S. Now for a
fixed w define:

S(w) = {(i, j) | 1 ≤ i < j < 2n+ 1− i, w−1(i) < w−1(j)}
N(w) = span{Eij | (i, j) ∈ S(w)}.

Below note that xFi ⊂ Fi−1, xGi ⊂ Gi−1 if and only if x ∈ N(w). Now we have

θ−1
w (F•, G•) = {(v, x) ∈ N | v ∈ Fn ∩Gn, xFi ⊂ Fi−1, xGi ⊂ Gi−1}

= {(v, x) ∈ N | v ∈ C{v1, · · · , vn} ∩ C{vw(1), · · · , vw(n)}, x ∈ N(w)}
and so

dim(θ−1
w (F•, G•)) = |S(w)|+ |{i ≤ n | w(i) ≤ n}| = |R+| − `(w).

The above equality follows using the formula for the length `(w) of a word in W (Cn) as the
number of negative roots made positive by the action of w. A simple calculation shows that
dim(Ow) = |R+|+ `(w) and so it follows that dim(Zw) = 2|R+| = 2n2. Hence all the Zw’s have
the same dimension. Since the fibres and base are irreducible, Zw is irreducible. This completes
the proof. �

Lemma 6.4. We have dim(C(v,x)) = b(µ, ν).

Proof. Let O(µ,ν) be the Sp2n-orbit of (v, x). Consider the following subvariety Zµ,ν := φ−1(O(µ,ν))
of Z, where φ is the natural projection Z −→ N. We can realise Zµ,ν as a fibre bundle over
O(µ,ν), with fibres C(v,x) × C(v,x) and hence

dimZµ,ν = dim(O(µ,ν)) + 2dim(C(v,x)).

Therefore we have

dimO(µ,ν) + 2dim(C(v,x)) = dim(Zµ,ν) ≤ dim(Z) = dim(N)

and so

dim(C(v,x)) ≤
dim(N)− dim(O(µ,ν))

2
= b(µ, ν).

Since we have already shown (see (6)) that dim(C(v,x)) ≥ b(µ, ν), the equality follows. �
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With this lemma, we can now prove that the irreducible components of the exotic Steinberg
variety can be parametrised in another way.

Definition 6.5. For S, T ∈ SY B(µ, ν), two standard Young bitableaux, define a subvariety of
Z as follows:

ZS,Tµ,ν := {(F•, F ′•, (v, x)) ∈ Z | (v, x) ∈ O(µ,ν), F• ∈ Φ−1(S), F ′• ∈ Φ−1(T )}.

Lemma 6.6. The irreducible components of Z can also be parametrised as ZS,Tµ,ν for S, T ∈
SYB(µ, ν) and (µ, ν) ∈ Qn.

Proof. We have a fibre bundle map φS,T : ZS,Tµ,ν → O(µ,ν) with fibres isomorphic to Φ−1(S) ×
Φ−1(T ), where Φ is as in Definition 2.9. It is clear that the varieties ZS,Tµ,ν are irreducible (since

the fibres of φS,T are irreducible), and that the closures ZS,Tµ,ν are distinct. By looking at the
map φS,T , combined with Proposition 3.1, it follows that they have the same dimension as the
exotic Steinberg variety:

2b(µ, ν) + dim(O(µ,ν)) = dim(N).

It follows that ZS,Tµ,ν are irreducible components of the exotic Steinberg variety. Notice that∑
(µ,ν)∈Qn

|SY B(µ, ν)|2 = |W (Cn)|

because the set SY B(µ, ν) labels a basis for the irreducible representation of W (Cn) correspond-
ing to the bipartition (µ, ν). From Lemma 6.3 it follows that there are no other irreducible
components which gives the result. �

Lemma 6.7. All irreducible components of C(v,x) have maximal dimension.

Proof. In [Spa77], Spaltenstein proves that the components of Springer fibres for reductive
groups have the same dimension. The proof is elementary, and has been adapted to the exotic
setting; see Theorem 7.1 and Section 8 of [Kat11]. We now explain the setup. Fix a flag
F 0
• ∈ F(V ) and define a subvariety of the exotic nilpotent cone:

V+ = {(u, y) ∈ N | u ∈ F 0
n ; y(F 0

i ) ⊆ F 0
i−1 for all i} = {(u, y) ∈ N | F 0

• ∈ C(u,y)}.
We define two maps

π1 : Sp2n −→ O(µ,ν) and π2 : Sp2n −→ F(V )

given by
π1(g) = (g−1v, g−1xg) π2(g) = g · F 0

• .

These are both fibre bundles: the fibres of π1 are isomorphic to the stabilizer Z of (v, x) inside
Sp2n, while the fibres of π2 are Borel subgroups. Let Y = π−1

1 (Oµ,ν ∩ V+) = π−1
2 (C(v,x)). Since

both Z and Borel subgroups are irreducible, the preimages under π1 (resp. π2) of the irreducible
components of Oµ,ν∩V+ (resp. C(v,x)) are the irreducible components of Y . It follows that there
is a bijection between the irreducible components {Ci | i ∈ I} of C(v,x) and the irreducible
components {Oi | i ∈ I} of Oµ,ν ∩ V+. Hence, it also follows that, for each i ∈ I,

dim(Ci) + dim(Z) = dim(Oi) + dim(B) (7)

where B ⊂ Sp2n is a Borel subgroup.

By Theorem 7.1 of [Kat11], all the irreducible components of Oµ,ν ∩ V+ (the notation used
in [Kat11] is O ∩ V+ instead) have the same dimension, and so the result then follows from
(7). �
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We can now prove the main theorem.

of Theorem 2.12. Using Lemma 6.4, we know that {Φ−1(T ) |T ∈ SY B(µ, ν)} form a non-
redundant set of irreducible components of C(v,x). It suffices to show that there are no other
irreducible components.

Suppose C is another irreducible component of C(v,x), and let

C ′ = C \
⋃

T∈SY B(µ,ν)

Φ−1(T ).

Then C ′ is an irreducible subvariety of C(v,x) of maximal dimension by Lemma 6.7. Consider
the subvariety of Z:

ZC,Cµ,ν = {g · (F•, G•, (v, x)) | F•, G• ∈ C ′, g ∈ Sp2n}.

Since the stabilizer of (v, x) in Sp2n is connected, ZC,Cµ,ν is a fibre bundle over O(µ,ν) with

fibres isomorphic to C ′ × C ′ (both C and the Φ−1(T )’s are left invariant by the stabilizer).
Using Lemma 6.7, and the same argument from Lemma 6.6, ZC,Cµ,ν is an irreducible subvariety

of Z of maximal dimension. Hence it must be contained in ZS,Tµ,ν for some S and T . This is a
contradiction, since ZC,Cµ,ν and ZS,Tµ,ν are disjoint. �

7. Exotic Type C Robinson-Schensted Correspondence

As mentioned in Section 6, the classical Robinson-Schensted correspondence, which is a bi-
jection between the symmetric group Sn and pairs of standard Young tableaux of the same
shape, was rediscovered in the geometry of the Steinberg variety due to Spaltenstein and Stein-
berg ([Spa76], [Ste88]). In this section, we describe how the same techniques can be used to
give a variant of the Robinson-Schensted correspondence in type C using the geometry of the
exotic nilpotent cone. In [NRS17], the sequel to this paper, we give an explicit combinatorial
description of this bijection.

We have shown in Lemmas 6.3 and 6.6 that the irreducible components of Z are parametrised
in two different ways: one by elements of the Weyl group W (Cn) and the other by pairs of
standard Young bitableaux (T, T ′) ∈ SY B(µ, ν) as (µ, ν) runs over all bipartitions of n.

By comparing the two parameterisations, we deduce the existence of an Exotic Robinson-
Schensted Correspondence:

Corollary 7.1. There is a bijection:

W (Cn)←→
∐

(µ,ν)∈Qn

SY B(µ, ν)× SY B(µ, ν)

defined geometrically by w ↔ (T, T ′) if and only if Zw = ZT,T
′

(µ,ν).

It is tempting to conjecture that the geometric correspondence of Corollary 7.1 should be
given by a naive Type C version of the Robinson-Schensted algorithm, but in fact this is not
the case (as we will see in the n = 2 example below). See Section 3 of [NRS17] for a complete
combinatorial description of this bijection.
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7.1. The n = 2 case. If we identify the Weyl group W (Cn) with Z2 o Sn, we can write its
elements as permutation words in the letters 1, 2, . . . , n with some of the letters barred. The
‘naive’ version of the type C Robinson-Schensted Correspondence uses the usual row bumping
algorithm with the only difference being that the numbers with bars will be inserted in the second
tableau of the bitableau and the number without bars will be inserted in the first tableau of the
bitableau; see the below example for an illustration:

26̄3̄18547̄←→

 4 1
5 2

8
, 3 7

6

 ,

 5 1
6 4

7
, 2 8

3


We now describe the exotic Robinson-Schensted correspondence from Corollary 7.1 in the

case of n = 2, to point out that it is indeed different from the ‘naive’ Type C case that we just
explained.

We let s = 1̄2 and t = 21 be generators for the Weyl group W (C2).

W (C2) ←→
∐

(µ,ν)∈Q2

SY B(µ, ν)× SY B(µ, ν)

id = 12 ←→
((

2 1 ;−
)
,
(

2 1 ;−
))

s = 1̄2 ←→
((

2 ; 1
)
,
(

2 ; 1
))

t = 21 ←→
((

1 ; 2
)
,
(

1 ; 2
))

ts = 2̄1 ←→
((

1 ; 2
)
,
(

2 ; 1
))

st = 21̄ ←→
((

2 ; 1
)
,
(

1 ; 2
))

sts = 2̄1̄ ←→
((
−; 1 2

)
,
(
−; 1 2

))
tst = 12̄ ←→

((
1
2

;−
)
,

(
1
2

;−
))

stst = 1̄2̄ ←→
((
−; 1

2

)
,

(
−; 1

2

))
We now illustrate our method for computing this geometric correspondence with a couple of

examples. We will fix a point in the orbit of the exotic nilpotent given by a certain bipartition
(µ, ν) and, for two given bitableaux T , T ′ we will find flags that are generic within the corre-
sponding exotic Springer fibres. We will then obtain an element of the Weyl group by looking
at the relative position of the two flags (i.e. the Sp2n-orbit passing through them). To compute
the relative position of the two flags, we compute dimensions of the intersections of the spaces
in the flags.

For our purposes, it will help us to identify the Weyl group W (Cn) as signed permutations
of the set {1, . . . , n} ∪ {1̄, . . . , n̄}. For example, if n = 3 and w = 2̄13 then we understand this
as w(1) = 2̄, w(2) = 1 and w(3) = 3, and so w(1̄) = 2, w(2̄) = 1̄ and w(3̄) = 3̄. For a general
n, we define s0 = 1̄2 . . . n and si to be the standard generators for Sn for 1 ≤ i ≤ n. Thus a
presentation for W (Cn) with these generators is given by:

〈s0, s1, . . . , sn−1 | s2
i = 1, (s0s1)4 = 1, (sisi+1)3 = 1, for i ≥ 1, (sisj)

2 = 1, for |i− j| > 1〉,
and we embed this in S2n via the map ι as follows:

ι(s0) = (n, n+ 1) and ι(si) = (n− i, n− i+ 1)(n+ i, n+ i+ 1) for 1 ≤ i ≤ n− 1,
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where we use cycle notation for the transpositions of S2n.

We realise the image of ι by permutation matrices, where the columns of the matrix left
to right are labelled n(n − 1) · · · 11̄2̄ · · · n̄ and same with the rows from top to bottom. Then
w = w1w2 · · ·wn describes the permutation given by the first n columns, and the other columns
are obtained by symmetry.

Example 7.2. Consider the generic orbit that corresponds to the tableau ( 2 1 ;−). Since the
exotic Springer fibres consists of a single point in this case, the relative position between two
generic points trivially corresponds to the identity permutation. Namely:

id = 12←→
((

2 1 ;−
)
,
(

2 1 ;−
))

Example 7.3. Suppose F• is a generic point in the fibre Φ−1(
(

1 , 2
)
). In this case the space

V is pictured as follows:

v11v12

v∗12v
∗
11

with v = v11. A generic point in ker(x) ∩ (C[x]v)⊥ has the form v1 = α1v11 + β1v
∗
12 with

α1, β1 ∈ C. Since in this case we must have eType(v + F1, x|F⊥1 /F1
) =

(
;∅
)
, we require

β1 6= 0. Since v ∈ F2, a generic point in the fibre has the form:

F1 = C{α1v11 + β1v
∗
12},

F2 = C{v11, v
∗
12},

F3 = C{v11, v
∗
12, α1v12 + β1v

∗
11}.

Let F ′• be another generic point in the fibre. We have the intersection and permutation matrices
recording the relative position of F• with respect to F ′•:

F1 F2 F3 F4

F ′1 0 1 1 1
F ′2 1 2 2 2
F ′3 1 2 2 3
F ′4 1 2 3 4

 

2 1 1̄ 2̄
2 1
1 1
1̄ 1
2̄ 1

which yields the permutation w(F•, F
′
•) = 21. The permutation matrix (bij) is obtained from the

intersection matrix (aij) by the formula: bij = ai−1,j−1 +aij−ai−1,j−ai,j−1 for all 1 ≤ i, j ≤ 2n.
Therefore under the exotic Robinson-Schensted correspondence, we have:

21←→
((

1 ; 2
)
,
(

1 ; 2
))
.

The other cases can be computed in a similar way.

8. Exotic Springer Fibres of Dimension Two

In this section we give a description of the irreducible components in the case where the
exotic Springer fibres has dimension two. We show that, in these cases, the components are
P1 bundles over P1, and classify the Hirzebruch surfaces. In [Lor86], Lorist gives a description
of the irreducible components for Springer fibres with dimension two in types A, D and E;
this section is an extension of his results to the exotic case. In [Fun03] and [SW12], Fung and
Stroppel-Webster give a combinatorial approach to the structure of a Springer fibre for a two-
row nilpotent in type A. We expect that the same techniques can be used to give a combinatorial
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approach to exotic Springer fibres and the present section is a step in that direction (but we
only look at the case where the exotic Springer fibre has dimension two).

We will use the map Φ from Definition 2.9 and the dimension formula from Definition 2.10.
Using the above mentioned dimension formula, if b(µ, ν) = 2, then either:

(1) |ν| = 0, and
∑
i≥1

(i − 1)λi = 1. The second condition implies that λ2 = 1, λi = 0 for

i ≥ 3. Hence µ = (n− 1, 1) and ν = 0.

(2) |ν| = 2, and
∑
i≥1

(i− 1)λi = 0. The second condition implies that λi = 0 for i ≥ 2. Hence

ν = (2), and µ = (n− 2).

We remark that the case where (µ, ν) is a pair of arbitrary one-row partitions will be dealt
with in full generality in the forthcoming article [SW].

For what follows we introduce the following notation. Suppose F• ∈ C(v,x), where (v, x) has
exotic type (µ, ν). Then the flag F•/F1 := (0 ⊆ F2/F1 ⊆ · · · ⊆ F⊥1 /F1) obtained from F• is a
point in the fibre C(v+F1,F⊥1 /F1) corresponding to the degree n− 1 exotic nilpotent cone.

Case 1. For 2 ≤ i ≤ n, let T ni be the bitableau of shape (µ, ∅), where µ = (n − 1, 1) with
{1, 2, · · · , i− 1, i + 1, · · · , n} in the first row, and i in the second row. Let Ci

n = Φ−1(T in), and

let its closure Ci
n be the irreducible component of C(v,x) corresponding to T ni .

Proposition 8.1. We have Ci
n ' P2\pt.

Proof. Let F• ∈ Ci
n, then for 1 ≤ k ≤ n− i, we have

eType(v + Fk, x|F⊥k /Fk) = ((n− k − 1, 1), ∅).

Hence, for k = 1, this implies that (x|F⊥1 /F1
)n−2(v + F1) = 0, which means that xn−2v ∈ F1,

but since xn−2v 6= 0, we have that F1 = C{xn−2v}. For k > 1, recursively, we obtain that
xn−k−1v ∈ Fk, hence

Fk = C{xn−2v, . . . , xn−k−1v} for 1 ≤ k ≤ n− i.

Now, since v ∈ Fn, we have xjv ∈ Fn−j, in particular xi−2v ∈ Fn−i+2, but since

eType(v + Fn−i+1, x|F⊥n−i+1/Fn−i+1
) = ((i− 1), ∅),

we have that (x|F⊥n−i+1/Fn−i+1
)i−2(v + Fn−i+1) 6= 0, i.e. xi−2v 6∈ Fn−i+1.

For simplicity of notation, let V j = C{xn−2v, . . . , xjv}, j = i − 1, i − 2. From the above it
follows that

Fn−i+1 ⊂ V i−2 + ker(x) ∩ (Cv)⊥, but Fn−i+1 6= V i−2.

For n− i + 1 < k ≤ n, since xn−kv ∈ Fk \ Fk−1, we have that Fk = Fk−1 ⊕ C{xn−kv}. So, any
flag F• ∈ Ci

n is determined by the choice of Fn−i+1 and so the map

q : Ci
n → P

(
(V i−2 + ker(x) ∩ (Cv)⊥)/V i−1

)
\ V i−2

which sends q(F•) = Fn−i+1/V
i−1, is an isomorphism of varieties and so the conclusion follows.

�

Proposition 8.2. We have Ci
n is a P1-bundle over P1.
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Proof. Suppose that F• ∈ Ci
n; from the proof of Proposition 8.1, using the same notation, we

have that

V i−2 = V i−1 ⊕ C{xi−2v} ⊂ Fn−i+1 ⊕ C{xi−2v} ⊂ V i−2 + ker(x) ∩ (Cv)⊥.

Since Fn−i+1 ⊕ C{xi−2v} = Fn−i+2, it follows that

V i−2 ⊂ Fn−i+2 ⊂ V i−2 + ker(x) ∩ (Cv)⊥. (8)

We also have

Fk = C{xn−2v, . . . , xn−k−1v} 1 ≤ k ≤ n− i, (9)

Fk = Fk−1 ⊕ C{xn−kv} n− i+ 3 ≤ k ≤ n. (10)

These are closed conditions and so it follows that (8)-(10) hold for any F• ∈ Ci
n.

Consider the map η : Ci
n → X := P((V i−2 + ker(x) ∩ (Cv)⊥)/V i−2), given by η(F•) =

Fn−i+2/V
i−2. It suffices to show that it is surjective, and has P1-fibres. To see that the map η

is surjective, it suffices to note that using Proposition 8.1, the map η|Cin is surjective.

Now suppose that we fix Fn−i+2/V
i−2 ∈ X, and let F• ∈ η−1 (Fn−i+2/V

i−2). From (9) and
(10), all of the spaces of F• are determined except for Fn−i+1, and

Fn−i+1 ∈ P(Fn−i+2/V
i−1) ' P1.

�

Corollary 8.3. We have Ci
n ∩ Ci+1

n ' P1; and if j − i > 1 the intersection Ci
n ∩ C

j
n is empty.

Proof. If F• ∈ Cj
n, then from the proof of Proposition 8.2, Fn−j+2 ⊆ x−1(Fn−j). If we also

have F• ∈ Ci
n, with j − i > 1, then xj−3v ∈ Fn−j+2; since xj−2v /∈ Fn−j, it follows that

Fn−j+2 6⊂ x−1(Fn−j). This is a contradiction, hence the intersection Ci
n ∩ C

j
n is empty.

Now suppose that F• ∈ Ci
n ∩ Ci+1

n , then by (9), Fk is determined for 1 ≤ k ≤ n − i. By

applying (8) and (10) to Ci+1
n we obtain that

V i−1 ⊂ Fn−i+1 ⊂ V i−1 + ker(x) ∩ (Cv)⊥ (11)

and Fk is determined from Fk−1 for n − i + 2 ≤ k ≤ n. In conclusion, any F• ∈ Ci
n ∩ Ci+1

n is
determined by the choice of Fn−i+1, with

Fn−i+1 ∈ P((V i−1 + ker(x) ∩ (Cv)⊥)/V i−1) ' P1.

�

Definition 8.4. For a scheme X, and a finite-dimensional vector bundle ϑ : V → X, we define
an associated projective bundle ϑ̃ : P(V ) → X whose fibre ϑ̃−1(x) over a base point x ∈ X is
just the projectivisation of the affine fibre ϑ−1(x). For n > 0, let Σ−n be the P1-bundle over P1

obtained as the associated projective bundle to the two-dimensional vector bundle O ⊕O(−n)
over P1.

Remark 8.5. Given a line bundle L on X, one may check that P(V ) ' P(L⊗V ); in particular
if j < i the projective bundle associated to O(i)⊕O(j) is Σj−i.

Proposition 8.6. We have an isomorphism, Ci
n ' Σ−1.
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Proof. Because of (8)-(10), we have Ci
n ' Ci

i , hence it suffices to prove that Cn
n ' Σ−1. From

Proposition 8.2, it follows that:

Cn
n ' {(F1, F2) | C{xn−2v} ⊂ F2 ⊂ ker(x) ∩ (Cv)⊥, F1 ⊂ F2}.

Define the variety Ĉn
n as follows:

Ĉn
n ' {(F2, s) | C{xn−2v} ⊂ F2 ⊂ ker(x) ∩ (Cv)⊥, s ∈ F2}.

We have a natural map Ĉn
n → P(ker(x) ∩ (Cv)⊥/C{xn−2v}) ' P1. Under this map, Ĉn

n is a
two-dimensional vector bundle over P1, and its projectivisation is isomorphic to Cn

n . Hence it

suffices to show that Ĉn
n ' OP1 ⊕OP1(−1); this implies that Cn

n ' Σ−1.

Consider the sub-bundle of Ĉn
n consisting of pairs (F2, s) with s ∈ C{xn−2v}; it is isomorphic

toOP1 , and the quotient is isomorphic toOP1(−1). Since there are not any non-trivial extensions
between OP1 and OP1(−1), the conclusion follows. �

Corollary 8.7. Recalling that Σ−1 is isomorphic to the blow-up of P2 at a point a ∈ P2, there is
a natural embedding P2\{a} → Σ−1. The map Ci

n → Ci
n can be identified with this embedding;

in particular, Ci
n\Ci

n ' P1.

Remark 8.8. See page 4 of Ravi Vakil’s notes, [Vak02] for a proof of the fact that Σ−1 is
isomorphic to the blow-up of P2 at a point a ∈ P2.

Proof. It suffices to prove these statement for the inclusion Cn
n ↪→ Cn

n . After identifying Cn
n , the

space of (F1, F2) from Proposition 8.6, with Σ−1, the blow-up of P2 at a point, it is clear that the
open subvariety P2\{a} corresponds to pairs (F1, F2) with F1 6= C{xn−2v}. To finish the proof,
note that the latter space is precisely Cn

n , using Proposition 8.1. It follows that Cn
n\Cn

n ' P1;
this is also clear from the proof of Proposition 8.2. �

Example 8.9. The simplest example is C2
2 . There is only one irreducible component. The

space (C(v))⊥ has dimension 3, and Cv ⊂ F2 ⊂ (Cv)⊥. Sending a flag F• to its F2 gives a map

C2
2 → P((Cv)⊥/Cv), and hence C2

2 is a P1-bundle over P1.

The component C3
3 can be described similarly. The conditions are that v ∈ F3 \ F2 and

xv ∈ F2 \ F1. We need to choose F1 ∈ P(ker(x) ∩ (Cv)⊥) \ C(xv) again this is a P2 with
one point removed. Once F1 is chosen, the conditions tell us that F2 = F1 + C{xv} and
F3 = F2 + C{v} are determined.

Case 2. For 1 ≤ i < j ≤ n, let Ti,j be the bitableau of shape ((n− 2), (2)) with the second
tableau containing the numbers {i, j} in a single row, and the first tableau containing the other

n − 2 numbers in a single row. Let Ci,j
n = Φ−1(Ti,j), and let its closure Ci,j

n be the irreducible
component of C(v,x) corresponding to Ti,j.

Proposition 8.10. Suppose j − i > 1, then Ci,j
n ' P1 × P1.

Proof. Let F• ∈ Ci,j
n , with j − i > 1 (this implies that n ≥ 3). For 1 ≤ k ≤ n − j, we have

eType(v+Fk, x|F⊥k /Fk) = ((n−k−2), (2)). For k = 1, this implies that (x|F⊥k /Fk)
n−3(v+F1) = 0

which means that xn−3v ∈ F1; but since xn−3v 6= 0, we have that F1 = C{xn−3v}. For
1 < k ≤ n− j, recursively, we obtain that xn−k−2v ∈ Fk, hence

Fk = C{xn−3v, . . . , xn−k−2v} 1 ≤ k ≤ n− j. (12)
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Now let n − j < k < n − i. We have eType(v + Fk, x|F⊥k /Fk) = ((n − k − 1), (1)), hence

xn−k−2v /∈ Fk. Also, eType(v + Fk+1, x|F⊥k+1/Fk+1
) = ((n − k − 2), (1)), hence xn−k−2v ∈ Fk+1

and Fk+1 = Fk ⊕C{xn−k−2v}. In particular, Fn−j+2 = Fn−j+1 ⊕C{xj−3v} ⊂ x−1(Fn−j), but by
counting dimensions we actually get an equality

Fn−j+2 = x−1(Fn−j). (13)

We have also established that

Fk = Fk−1 ⊕ C{xn−k−1v} for n− j + 3 ≤ k ≤ n− i. (14)

Suppose now that k > n− i. Then eType(v+Fk, x|F⊥k /Fk) = ((n−k), ∅), hence xn−k−1v /∈ Fk.
Also eType(v + Fk+1, x|F⊥k+1/Fk+1

) = ((n − k − 1), 0), hence xn−k−1v ∈ Fk+1 and Fk+1 = Fk ⊕
Cxn−k−1v. In particular we get that Fn−i+2 = Fn−i+1 ⊕ Cxi−2v = x−1(Fn−i). Thus:

Fn−i+2 = x−1(Fn−i), and (15)

Fk = Fk−1 ⊕ Cxn−kv for n− i+ 3 ≤ k ≤ n. (16)

The conditions (12)-(16) are closed, hence they hold also in Ci,j
n and in fact they define it. There-

fore all spaces in a flag F• ∈ Ci,j
n are determined uniquely except for Fn−j+1 ∈ P(x−1(Fn−j)/Fn−j)

and Fn−i+1 ∈ P(x−1(Fn−i)/Fn−i), and it follows that Ci,j
n ' P1 × P1. �

Proposition 8.11. For 1 ≤ i ≤ n− 1, we have Ci,i+1
n ' Σ−2.

Proof. Let F• ∈ Ci,i+1
n then, by the same argument as in Proposition 8.10, we have the equation

(12) for 1 ≤ k ≤ n− i− 1.

Since, for n − i + 1 ≤ k ≤ n, eType
(
v + Fk, x|F⊥k /Fk

)
= ((n − k), ∅) we have that xn−k−1 ∈

Fk+1 \ Fk, so

Fk+1 = Fk ⊕ C{xn−k−1v} for n− i+ 1 ≤ k ≤ n. (17)

Again, (12) and (17) are closed conditions, so they hold in Ci,i+1
n . This means that any flag is

determined by the choice of Fn−i ∈ P(x−1(Fn−i−1)/Fn−i−1) and Fn−i+1 ∈ P(x−1(Fn−i)/Fn−i).

In particular, there is an isomorphism Ci,i+1
n ' Ci,i+1

i+1 . Hence it suffices to show the result in
the case where i = n− 1. We have established the following description:

Cn−1,n
n ' {(F1, F2) | F1 ∈ P(ker(x)), F1 ⊂ F2 ⊂ x−1(F1)}.

We have a P1-bundle map, Cn−1,n
n → P(ker(x)), and the fibre over F1 ⊆ ker(x) is P(x−1(F1)/F1).

As vector spaces, x−1(F1)/F1 ' x−1(F1)/ker(x) ⊕ ker(x)/F1. Clearly the line bundle over
P(ker(x)) with fibre over F1 being ker(x)/F1 is isomorphic to O(1). Writing out a basis for
x−1(F1), we see that the line bundle over P(ker(x)) with fibre over F1 being x−1(F1)/ker(x) is
isomorphic to the one whose fibre over F1 is F1 itself; and hence can be identified with O(−1).

Hence Cn−1,n
n ' P(O(1)⊕O(−1)) ' Σ−2, as required (see Remark 8.5). �

Corollary 8.12. Suppose j − i > 1 and l − k > 1. Then the intersection Ci,j
n ∩ Ck,l

n is empty

unless |i − k| ≤ 1 and |j − l| ≤ 1. Furthermore, Ci,j
n ∩ Ci,j+1

n ' P1 ' Ci−1,j
n ∩ Ci,j

n , while both

intersections Ci,j
n ∩ Ci+1,j+1

n and Ci,j
n ∩ Ci−1,j+1

n consist of a single point.



28 VINOTH NANDAKUMAR, DANIELE ROSSO, AND NEIL SAUNDERS

Proof. Suppose j − i > 1, l − k > 1, and j ≥ l + 2. Then if F• ∈ Ci,j
n , then from the

proof of Proposition 8.10, Fn−j = C{xn−3v, . . . , xj−2v} and Fn−j+2 = x−1(Fn−j). If F• ∈ Ck,l
n ,

again from the proof of Proposition 8.10, for r ≥ l, Fn−r = C{xn−3v, . . . , xr−2v}; in particular,

Fn−j+2 = C{xn−3v, . . . , xj−4v} 6= x−1(Fn−j). Hence, in this case, Ci,j
n ∩ Ck,l

n = ∅.

Next suppose j − i > 1 and l − k > 1 and i ≥ k + 2. Then if F• ∈ Ci,j
n , then from the proof

of Proposition 8.10, Fn−i+1 = ker(x2) ⊕ C{xn−5v, · · · , xi−1v}. However if F• ∈ Ck,l
n , then from

Proposition 8.10 again, since i ≥ k+ 2 we have Fn−i+1 = ker(x)⊕C{xn−4v, · · · , xi−2v}. In this

case, again we have that Ci,j
n ∩ Ck,l

n = ∅.

Next suppose j − i > 1, and F• ∈ Ci,j
n ∩ Ci,j+1

n ; then

C{xn−3v, · · · , xi−1v} ⊂ Fn−i ⊂ ker(x)⊕ C{xn−4v, · · · , xi−2v}.

All other vector spaces are determined uniquely, and it follows that Ci,j
n ∩Ci,j+1

n ' P1; similarly

Ci−1,j
n ∩ Ci,j

n ' P1. Using the same method, one verifies that both intersections Ci,j
n ∩ Ci+1,j+1

n

and Ci,j
n ∩ Ci−1,j+1

n consist of a single point. �

9. Further directions

9.1. Canonical bases in irreducible Weyl group representations. Given a bipartition
(µ, ν) ∈ Qn, the top homology group Htop(C(v,x)) carries an action of the Weyl group W (Cn) =
Z2 o Sn, and realises the irreducible representation indexed by that bipartition. This follows
from Kato’s results in [Kat09] and [Katb]. Now the classes of the irreducible components give
a distinguished basis in the Weyl group representation. It would be interesting to study this
basis, and determine whether it has properties that resemble the canonical bases introduced
by Kazhdan and Lusztig in various contexts. In type A, a version of this question was first
posed in [KL80] and subsequently restated in terms of the irreducibility of certain characteristic
cycles by Kashiwara-Tanisaki ([KT84]). Subsequent work by Kashiwara-Saito ([KS97]) and
Williamson ([Wil15]) found counterexamples to the irreducibility conjectures. In the papers
mentioned above, Kato also shows that the total homology H•(C(v,x)) realises the standard
modules for certain multi-parameter Hecke algebras. It would be interesting to see if one can
deduce any additional information about these modules using our results about the structure of
exotic Springer fibres. This question is not well-understood in type A, and answering it would
require new techniques.
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