
Cryptanalysis of Plantlet
Subhadeep Banik1, Khashayar Barooti1 and Takanori Isobe2,3

1 Security and Cryptography Laboratory (LASEC), École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, {subhadeep.banik,khashayar.barooti}@epfl.ch

2 National Institute of Information and Communications Technology, Tokyo, Japan
3 University of Hyogo, Hyogo, Japan, takanori.isobe@ai.u-hyogo.ac.jp

Abstract. Plantlet is a lightweight stream cipher designed by Mikhalev, Armknecht
and Müller in IACR ToSC 2017. It has a Grain-like structure with two state registers
of size 40 and 61 bits. In spite of this, the cipher does not seem to lose in security
against generic Time-Memory-Data Tradeoff attacks due to the novelty of its design.
The cipher uses a 80-bit secret key and a 90-bit IV. In this paper, we first present a
key recovery attack on Plantlet that requires around 276.26 Plantlet encryptions. The
attack leverages the fact that two internal states of Plantlet that differ in the 43rd
LFSR location are guaranteed to produce keystream that are either equal or unequal
in 45 locations with probability 1. Thus an attacker can with some probability guess
that when 2 segments of keystream blocks possess the 45 bit difference just mentioned,
they have been produced by two internal states that differ only in the 43rd LFSR
location. Thereafter by solving a system of polynomial equations representing the
keystream bits, the attacker can find the secret key if his guess was indeed correct, or
reach some kind of contradiction if his guess was incorrect. In the latter event, he
would repeat the procedure for other keystream blocks with the given difference. We
show that the process when repeated a finite number of times, does indeed yield the
value of the secret key.
In the second part of the paper, we observe that the previous attack was limited
to internal state differences that occurred at time instances that were congruent to
0 mod 80. We further observe that by generalizing the attack to include internal
state differences that are congruent to all equivalence classed modulo 80, we lower
the total number of keystream bits required to perform the attack and in the process
reduce the attack complexity to 269.98 Plantlet encryptions.
Keywords: Grain v1, Plantlet, Stream Cipher.

1 Introduction
Lightweight stream ciphers have become immensely popular in the cryptological research
community, since the advent of the eStream project [est08]. The three hardware finalists
included in the final portfolio of eStream i.e. Grain v1 [HJM07], Trivium [CP08] and
MICKEY 2.0 [BD08], all use bitwise shift registers to generate keystream bits. After the
design of Grain v1 was proposed, two other members Grain-128 [HJMM06] and Grain-128a
were added to the Grain family mainly with an objective to provide a larger security
margin and include the functionality of message authentication respectively. In FSE 2015,
Armknecht and Mikhalev proposed the Grain-like stream cipher Sprout [AM15] with a
startling trend: the size of the internal state of Sprout was equal to the size of its key.
After the publication of [BS00], it was widely accepted that to be secure against generic
Time-Memory-Data tradeoff attacks, the internal state of a stream cipher needed to be at
least twice the size of the secret key. However the novelty of the Sprout design ensured
that the cipher remained secure against generic TMD tradeoffs. The smaller internal state

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Symmetric Cryptology ISSN 2519-173X, Vol. 2019, No. 3, pp. 103–120
DOI:10.13154/tosc.v2019.i3.103-120

mailto:{subhadeep.banik,khashayar.barooti}@epfl.ch
mailto:takanori.isobe@ai.u-hyogo.ac.jp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tosc.v2019.i3.103-120

104 Cryptanalysis of Plantlet

makes the cipher particularly attractive for compact lightweight implementations. However,
Sprout has been cryptanalyzed in more ways than one [Ban15, EK15, LNP15, ZG15] and
so naturally there has been a lot of research going into the design of secure lightweight
stream ciphers.

At the FSE 2017 conference of IACR ToSC, two lightweight stream ciphers Lizard [HKM17]
and Plantlet [MAM16] were proposed. Plantlet was essentially a re-design of Sprout after
patching some existing weaknesses. The main differences between Plantlet and Sprout are
as follows:

• Plantlet uses a 61-bit LFSR, whereas Sprout used a 40-bit LFSR. This slight increase
in state size is done to prevent guess and determine attacks [LNP15, Ban15].

• In [EK15], a TMD tradeoff attack is outlined using an online time complexity of 233

encryptions and 770 TB of memory. The paper first observes that it is easy to deduce
the secret key from the knowledge of the internal state and the keystream. The
paper then makes an observation on special states of Sprout that produce keystream
without the involvement of the secret key. A method to generate and store such
states in tables is first outlined. The online stage consists of inspecting keystream
bits, retrieving the corresponding state from the table, assuming of course that the
state in question is a special state, and then computing the secret key. The process,
if repeated a certain number of times, guarantees that a special state is encountered,
from which the correct secret key is found. The attack leveraged the fact that the
addition of the key bits to the state was done via a non-linear function, due to which
it became easy to find special states. Plantlet patched this weakness by making the
key addition strictly linear, thus preventing this attack.

• In [Ban15], it was observed that it was easy to find Key-IV pairs that led the LFSR to
enter the all zero state after Key-IV mixing. Using this fact the authors were able to
compute Key-IV pairs that produced keystream of period 80 bits. The authors were
further able to use this fact to mount a guess and determine attack, that required
around 266.7 Sprout encryptions. To counter this attack, the designers of Plantlet kept
the 61st LFSR bit fixed to 1 during the entire Key-IV mixing phase. This ensured
that after the Key-IV phase terminated, the LFSR would never enter the all zero
state and hence both the above weaknesses were patched.

No cryptanalytic advances have yet been reported against Plantlet that recovers the
secret key without the use of side channels. In [HKMZ18], a distinguishing attack against
Plantlet was reported that uses data and memory complexity of 261 bits, and time complexity
of 255 steps. In [MSS17], a differential fault attack was reported against Plantlet that
recovered the secret key using 4 fault injections.

1.1 Contribution and Organization of the Paper
In this paper, we present a key recovery attack on Plantlet that requires a computational
complexity of around 276.26 encryptions. As mentioned in the abstract, it is first observed
that two internal states of Plantlet that differ in the 43rd LFSR location are guaranteed
to produce keystream that are either deterministically equal or unequal in 45 locations.
Thus, it can, with some probability, be guessed that when 2 segments of keystream blocks
that possess the above 45 bit difference is encountered, they have been generated by two
internal states that differ in the 43rd LFSR location.

Thereafter the set of polynomial expressions representing each keystream bit is computed
and tabulated in an equation bank. If the guess was correct, the secret key is computed
by solving the above set of polynomial equations. If not, the attacker reaches some kind
of contradiction in the computations, concludes that his guess was incorrect, and starts

Subhadeep Banik, Khashayar Barooti and Takanori Isobe 105

b b b

Round Key Function

NFSR LFSR

Counterg f

h

k0 k1 k2 k79

Initialization Phase Initialization Phase

72

7

29 6

7k∗t

⊕
⊕

⊕

⊕
⊕

Figure 1: Block Diagram of Plantlet

afresh. We show that the process when repeated a finite number of times, does indeed
yield the value of the secret key. After this, we observe that the previous attack was
limited to internal state differences that occurred at time instances that were congruent
to 0 mod 80. We further observe that by generalizing the attack to include internal state
differences that are congruent to all equivalence classed modulo 80, we lower the total
number of keystream bits required to perform the attack and in the process reduce the
attack complexity. The rest of the paper is organized in the following manner.

1. In Section 2, we present the mathematical description of the Plantlet stream cipher.

2. In Section 3, we introduce some lemmas which serve to lay the mathematical foundations
and form the building blocks of the attack.

3. In Section 4, we present a mathematical description of the attack. We clearly outline
that stages of the attack serially and estimate the time and memory complexities of
each phase. We also present experimental evidence in support of the claims made in
the complexity analysis.

4. In Section 5, we show how the attack can be extended to all equivalence classes modulo
80, and hence reduce the attack complexity.

5. Section 6, concludes the paper.

2 Description of Plantlet
The exact structure of Plantlet is explained in Figure 1. It consists of a 61-bit LFSR and a
40-bit NFSR. Certain bits of both the shift registers are taken as inputs to a combining
Boolean function, whence the keystream is produced. The keystream is produced after
performing the following steps:

Initialization Phase: The cipher uses an 80 bit Key and a 90 bit IV. The first 40 most
significant bits of the IV is loaded on to the NFSR and the remaining IV bits are
loaded on to the first 50 most significant bits of the LFSR. The last 11 bits of
the LFSR are initialized with the 11 bit constant 0x7fd, i.e. the string of nine
1′s followed by 01. Let Lt = [lt, lt+1, . . . , lt+60] and Nt = [nt, nt+1, . . . , nt+39] be

106 Cryptanalysis of Plantlet

the 40-bit vectors that denote respectively LFSR and NFSR states at the tth clock
interval. During the initialization phase, the registers are updated as follows.

(a) In the first 320 rounds (i.e. 0 ≤ t ≤ 319) of the initialization phase the cipher
produces the keystream bit zt which is not produced as output. This is computed
as

zt = lt+30 +
∑
i∈A

nt+i + h(Nt, Lt).

where A = {1, 6, 15, 17, 23, 28, 34} and h(Nt, Lt) = nt+4lt+6 + lt+8lt+10 +
lt+32lt+17 + lt+19lt+23 + nt+4lt+32nt+38.

(b) The LFSR updates as lt+59 = zt + f(Lt) (the last bit is fixed to 1), where

f(Lt) = lt + lt+14 + lt+20 + lt+34 + lt+43 + lt+54.

(c) The NFSR updates as nt+40 = zt + g(Nt) + c4
t + k∗t + lt0, where c4

t denotes the
4th LSB of the modulo 80 up-counter which starts at t = 0, kt is the output of
the Round Key function defined as:

k∗t = Kt mod 80

Here Ki simply denotes the ith bit of the secret key. The non-linear functions
g(Nt) and g′(Nt) is given as:

g(Nt) = nt+0 + nt+13 + nt+19 + nt+35 + nt+39 + nt+2nt+25 + nt+3nt+5+
nt+7nt+8 + nt+14nt+21 + nt+16nt+18 + nt+22nt+24 + nt+26nt+32+
nt+33nt+36nt+37nt+38 + nt+10nt+11nt+12 + nt+27nt+30nt+31.

g′(Nt) = g(Nt) + nt

Keystream Phase: After the initialization phase is completed, the cipher discontinues the
feedback of the keystream bit zt to the update functions of the NFSR and LFSR and
makes it available as the output bit. During this phase, the LFSR and NFSR update
themselves as lt+60 = f(Lt) and nt+40 = g(Nt) + c4

t + k∗t + lt respectively. Thus the
LFSR now behaves as a 61 bit linear register, whereas during key-IV mixing, it was
essentially functioning as a 60 bit register. It is recommended by the designers that
one single key-IV pair not be used to generate more than 230 keystream bits.

3 Observations on the differential structure of Plantlet
Before outlining the attack on Plantlet, we proceed to list some observations on the struc-
ture of Plantlet, that will help us construct the attack. The following observations and
lemmas should be seen as building blocks of our attack.

Observation 1: The first of them is as follows: if the secret key is known, then the state
update in the keystream phase is one-to-one and efficiently invertible. Before proceeding,
we give a formal algorithmic description of the state update inversion routine in the
keystream and initialization phase. We denote the algorithm by the notation KS−1 .

Lemma 1. Given two time instances during the keystream phase t1, t2 (with t2 > t1 and
both less than 230), and the 61-bit difference vector δ = Lt1 ⊕ Lt2 . Then it is possible to
compute the LFSR states Lt1 , Lt2 efficiently.

Subhadeep Banik, Khashayar Barooti and Takanori Isobe 107

Input: Lt, Nt: The LFSR, NFSR state at time t;
Output: Lt−1, Nt−1: The LFSR, NFSR state at time t− 1;

lt−1 ← lt+60 + f ′(L′t−1);
nt−1 ← nt+39 + lt−1 + k∗t−1 + c4

t−1 + g′(N ′t−1);
Lt−1 ← [lt−1, lt, lt+1, . . . , lt+59];
Nt−1 ← [nt−1, nt, nt+1, . . . , nt+38];
Return Lt−1, Nt−1

Algorithm 1: Algorithm KS−1

Proof. If M is the companion matrix over GF (2) of the connection polynomial p(x) of the
LFSR, then we can write Lt+1 as a matrix-vector product between M and Lt. Thus we
have Lt+1 = M · Lt. We thus have Lt2 = M t2−t1 · Lt1 . And so we have,

δ = Lt2 ⊕ Lt1 = (M t2−t1 ⊕ I) · Lt1

The above is a system of linear equations with the 61 variables in the Lt1 vector as
unknowns. Further it is known that the minimal polynomial of M is the connection
polynomial p(x) of the LFSR itself. Since p(x) is primitive, its roots α2i

, ∀ i ∈ [0, 60]
are the eigenvalues of M (here α denotes any root of p(x)). Define T = t2 − t1. The
eigenvalues of MT ⊕ I are the set {1 + αT ·2

i

, ∀ i ∈ [0, 60]}. If for some i, 1 + αT ·2
i = 0,

this implies αT ·2i = 1. Because α is primitive, this implies that T · 2i ≡ 0 mod 261 − 1.
Since 2i is coprime with 261− 1, we must have T ≡ 0 mod 261− 1, which is a contradiction,
since 0 < T < 230. Thus MT ⊕ I has nonzero eigenvalues and is hence invertible. So
the above system of equations can be solved efficiently by using Gaussian elimination to
compute Lt1 and hence Lt2 .

Lemma 2. Consider two Plantlet internal states St1 = (Nt1 , Lt1) and St2 = (Nt2 , Lt2)
during the keystream phase such that Nt1 = Nt2 and Lt1 ⊕ Lt2 = e43, (ei is the 61-bit
unit hamming weight vector, with 1 at location i). We further impose the condition that
t1 6= t2 and they are both multiples of 80. Then consider the vectors Zt1 and Zt2 of the
first 80 keystream bits generated by St1 and St2 respectively. Also consider the vectors Yt1
and Yt2 of the first 80 keystream bits produced by St1 and St2 respectively, in the backward
direction, i.e. by running the KS−1 routine. To be more specific

Zti = [zti+0, zti+1, zti+2, . . . , zti+79]
Yti = [zti−1, zti−2, zti−3, . . . , zti−80], for i = 1, 2.

Then in the 160 bit difference vector ∆ = Zt1 ||Yt1 ⊕ Zt2 ||Yt2 , there are 45 bits that take
the value 1 or 0 with probability 1, i.e. when the probability is computed over all possible
initial states St1 .

Proof. The above result is not difficult to verify, if we analyze the differential trail of the
difference when introduced in the 43rd LFSR location. First of all since both t1 and t2 are
multiples of 80, the values of the key bit k∗t and counter bit c4

t used in their respective
update functions are the same. In the forward direction, for j ∈ [0, 10] ∪ {12} ∪ [14, 19] ∪
[21, 23] ∪ {25} ∪ [27, 28] ∪ {30, 32, 34, 39, 41}, the differences (between the Plantlet LFSR
states Lt1+j and Lt2+j) sit on LFSR locations that are not used in the computation of

108 Cryptanalysis of Plantlet

the keystream bit. Hence for all such j, zt1+j = zt2+j . Whereas, for j′ ∈ {13, 31, 40}, the
difference appears at tap location l30, that contributes to the keystream equation linearly.
For all such j′, we have zt1+j′ ⊕ zt2+j′ = 1, with probability 1. Similarly in the backward
direction, for m ∈ {−13} ∪ [−11,−1], the differences do not affect keystream equation,
hence for all such m, we have zt1+m = zt2+m. At m′ = −12, the difference is on the NFSR
tap location n1, which also contributes to the keystream equation linearly. Hence we have
zt1+m′ ⊕ zt2+m′ = 1. There are, in total, 45 time instances where these events take place,
hence a total of 45 bits in the difference vector are guaranteed to be either 0 or 1, with
probability 1.

Note that the 43rd LFSR bit was chosen as the initial difference location because it
maximizes the number of bits in ∆ that are deterministically equal to 0 or 1.

Lemma 3. Consider the same setting as in the previous lemma, i.e. we have two
Plantlet internal states St1 = (Nt1 , Lt1) and St2 = (Nt2 , Lt2) during the keystream phase
such that Nt1 = Nt2 and Lt1 ⊕ Lt2 = e43, (ei is the 61-bit unit hamming weight vector,
with 1 at location i), with t1 6= t2 and they are both multiples of 80. Then consider the
vectors Zt1 , Yt1 and Zt2 , Yt2 as defined previously. We have the following identities:

zt1+11 ⊕ zt2+11 = nt1+15 · nt1+49 ⊕ lt1+28

zt1+20 ⊕ zt2+20 = lt1+39

zt1+24 ⊕ zt2+24 = lt1+47

zt1+26 ⊕ zt2+26 = lt1+58

zt1+29 ⊕ zt2+29 = nt1+33 · nt1+67 ⊕ lt1+46

zt1+33 ⊕ zt2+33 = lt1+41

zt1+35 ⊕ zt2+35 = lt1+45

zt1+36 ⊕ zt2+36 = nt1+40 · nt1+74 ⊕ lt1+53

zt1+37 ⊕ zt2+37 = nt1+41

zt1+38 ⊕ zt2+38 = nt1+42 · nt1+76 ⊕ lt1+55 ⊕ lt1+57 ⊕ 1
zt1+42 ⊕ zt2+42 = lt1+65

zt1+43 ⊕ zt2+43 = nt1+47 · nt1+81 ⊕ lt1+60

zt1+44 ⊕ zt2+44 = lt1+76

zt1+46 ⊕ zt2+46 = nt1+50 · lt1+78

Proof. The above lemma is similarly verified by a study of how the single bit difference
at LFSR location 43 propagates through the internal state. For j = 20, for example, the
difference between St1 , St2 is at LFSR location 23. Then the sum of the keystream bits
zt1+20, zt2+20 can be essentially expressed as:

zt1+20 ⊕ zt2+20 = lt1+39 · lt1+43 ⊕ lt1+39 · (1⊕ lt1+43) = lt1+39

The other expressions can be verified similarly. Note that 7 of the 14 expressions listed
above, depend only on Lt1 , whereas zt1+46 ⊕ zt2+46 consists of a single product term
involving an LFSR bit.

Lemma 4. In the event that we generate uniformly randomly, N internal states of
Plantlet Sti ∈ {0, 1}101, for i ∈ [1, N], then the probability that there exists i1, i2 ∈ [1, N],
such that, Sti1

⊕ Sti2
= 040||e43, is approximately p = N2

2102 . The above can be modeled
as a Bernoulli trial with success probability p (where “success” is defined as the event in
which we sample two internal states with the given difference). Then by repeating the above
experiment (in which we sample internal states randomly) around 1

p times, we can expect
to obtain one successful event.

Subhadeep Banik, Khashayar Barooti and Takanori Isobe 109

Proof. The first probability value in the lemma is easy to prove, by birthday bound
considerations. Given N samples in a domain of size 2101, the probability q that there are
no collisions of the required type is given by

q =
(

1− 1
2101

)
·
(

1− 2
2101

)
·
(

1− 3
2101

)
· · ·
(

1− N − 1
2101

)
≈ 1− 1 + 2 + · · ·+ (N − 1)

2101 = 1− N(N − 1)
2102 ≈ 1− N2

2102

Thus p = 1 − q results in the required expression. We repeat the above experiment a
number of times. Therefore what we do is as follows:

1. Randomly sample N states and look for the given difference.

2. If the above trial fails, then erase the above samples and repeat step 1.

It is easy to see that the above results in a series of Bernoulli trials with probability of
success p. The probability distribution of the number of such trials needed to get one
success, is a geometric distribution with mean 1

p . Hence the second claim in the lemma
follows.

4 Key recovery attack on Plantlet
Having made some preliminary observations about differential structure of Plantlet, we are
now ready to mathematically describe the cryptanalytic steps. Note that, in the preceding
experiment if N = 251, then by birthday bound, one such trial would be sufficient. However
we limit the value of N , because there is a limit to the maximum amount of keystream bits
that can be generated using a single key-IV pair, and this limit is 230 bits. The attacker
lets the cipher run for 230 cycles and collects the required keystream, with the idea that
the cipher during its operation hits two internal states at times t1, t2 (both multiples of
80) that differ in only the 43rd LFSR location. If it does, then the attacker can identify
the states and the corresponding values of t1, t2 by looking at the difference keystream
vector ∆ = Zt1 ||Yt1 ⊕ Zt2 ||Yt2 (which was defined in the previous section). But there are
obvious obstacles to this idea:

• Firstly given the limited amount of keystream bits one is allowed to generate with
one key-IV pair, by Lemma 4, it is extremely unlikely that the attacker will actually
encounter two states with the required difference. Hence the attacker must repeat the
experiment with the same key and some other randomly selected IV multiple number
of times. Lemma 4, also enumerates the number of times (i.e. 1

p) the experiments
need to be repeated to get a success.

• Second, although it is true that two internal states with difference only at 43rd LFSR
location, produces keystream bits whose differential is guaranteed to be 0 or 1 at 45
fixed locations, the opposite is not true. In fact there exist, with probability around
2−45, two completely random internal states of Plantlet that produce a keystream
differential of 0/1 at the same 45 locations enumerated in Lemma 2. Thus the
attacker, when for some (t1, t2), observes a differential keystream having required 0/1
pattern in the locations enumerated in Lemma 2, may still proceed to the next steps,
assuming that they were generated by two Plantlet states with difference in the 43rd
LFSR bit. But if his assumption about the state difference is wrong, then in the
subsequent steps he would certainly reach a contradiction that would invalidate the
assumption. The attacker would then require to repeat the experiment to obtain some
other t1, t2 until he is successful in getting internal states with required difference.

110 Cryptanalysis of Plantlet

• Thus any attack, must compensate for these computational overheads listed above.

Thus, at the very top level, the strategy of the attacker will be as follows:

A: Generate 230 keystream bits with the given secret key and any random IV. This
generates N = b 230

80 c ≈ 223.7 keystream segments of length 80-bits each.

B: For all t = 80 · i where i ∈ [1, N − 1], store in a hash table t, Zt, Yt as defined.

C: From this table, try to find, if it exists, t1, t2 so that ∆ = Zt1 ||Yt1 ⊕ Zt2 ||Yt2 exhibits
the 1/0 pattern in the locations listed in Lemma 2. We refer to such an event as a
keystream-collision.

D: If there exists one or multiple such t1, t2, then assuming that the state differential in
between the states at time t1, t2 is 040||e43, try to solve for the remaining system of
equations to find the key.

E: If a contradiction is reached, try other values of t1, t2, if they exist. If none exist then
repeat step A with another IV. If the attacker does not encounter a contradiction,
and is able to solve the equations, he would have computed the secret key. By Lemma
4, 1

p = 254.6 such trials should be sufficient to solve for the secret key.

We now try to explain the finer details of the attack, starting with a precomputation
step that would ease the computational burden in the online stage of the attack.

4.1 Precomputation Stage
If the attacker encounters a keystream-collision, regardless or not whether it was generated
by two states with a single bit difference at the 43rd LFSR location, he will need to try to
solve the resulting system of polynomial expressions for each keystream bit in Zt1 , Zt2 , Yt1
and Yt2 , assuming that the corresponding internal state difference is 040||e43. These are a
system of boolean polynomials in 181 variables over GF(2) (40 for the NFSR state, 61 for
the LFSR state, and 80 for the key). Such a system should generally be intractable to
solve. However the attacker can use the results in Lemma 1, to get the value of the states
Lt1 and Lt2 , since a keystream-collision, would automatically provide the values of t1, t2.
He simply solves the equation e43 = (M t2−t1 ⊕ I) ·Lt1 to compute Lt1 and then after that
computes Lt2 = Lt1 ⊕ e43. Once the entire LFSR states at times t1, t2 are known, the
resulting equation system is now defined over 120 unknowns which is much easier to solve
by using any publicly available equation solver.

However since T = t2 − t1, is the only varying parameter in the equation e43 =
(M t2−t1 ⊕ I) · Lt1 , one can pre-solve the above set of equations for all possible values of
T . Note that 1 ≤ t1 < t2 ≤ 230 and since t1, t2 are multiples of 80, there are only around
N − 1 = b 230

80 c − 1 ≈ 223.7 different values of T . Each equation can be solved offline, and
the solutions stored in a table sorted along with the value of T . Thus in this way, in the
online stage, finding the value of Lt1 , Lt2 from the values of t1, t2 amounts to only a table
lookup.

The total computational complexity in the offline stage amounts to solving N−1 ≈ 223.7

equations over 61 variables. Assuming conservatively, that it takes O(n3) steps to do
Gaussian elimination to solve the system, the total number of steps involved is bounded
by 613 · 223.7 ≈ 241.5. It takes 61 bits to store the solution of the equation (in the table
cell indexed by T) and so the memory complexity of this stage is 61 · 223.7 ≈ 229.6 bits.

4.2 Online Stage I: Collecting and storing keystream bits
In the online stage, the attacker needs to collect and store keystream bits and store it in a
judicious manner. Note that since N = b 230

80 c ≈ 223.7, the value of p calculated in Lemma

Subhadeep Banik, Khashayar Barooti and Takanori Isobe 111

4 is around p = 2−54.6 and so the number of IVs we need to try is around V = 1
p = 254.6.

For each such IV, the attacker proceeds to generate N keystream bits.
To facilitate detection of keystream-collision, one must choose a data structure to ef-

ficiently store keystream segments. For all t = 80 · i where i ∈ [1, N − 1], the attacker
has to store in a hash table t, Zt, Yt as defined in Lemma 2. However it is unwise to
insert the tuple into the table location indexed by t. Instead we insert the tuple in the
table location I = zt+g0 ||zt+g2 || · · · ||zt+g44 , where the g′is are the locations enumerated in
Lemma 2, where the differential keystream is guaranteed to be 0/1. Thus (g0, g1, . . . , g40) =
(0, 1, 2, . . . , 10, 12, 14, 15, . . . , 19, 21, 22, 23, 25, 27, 28, 30, 32, 34, 39, 41,−13,−11,−10, . . . ,−1)
are the locations where the difference is 0, and (g41, g42, g43, g44) = (13, 31, 40,−12) are
locations where the difference is 1. Note that each entry in the table should be able to
store multiple entries. It is not difficult to see that a keystream-collision will occur if during
an insertion into index I, the attacker checks the index I∗ = zt+g0 ||zt+g1 || · · · ||zt+g40 ||1⊕
zt+g41 ||1 ⊕ zt+g42 || · · · ||1 ⊕ zt+g44 , and finds one or multiple tuples already stored at I∗.
For each such keystream-collision pair in (I, I∗), the attacker proceeds to the next steps of
the attack.

It takes 30 bits to store t and 160 bits to store Zt, Yt and so each IV trial takes around
190 ·N ≈ 231.25 bits of memory on average.

4.3 Online Stage II: Further filtering
For each keystream-collision pair obtained in the previous step, the attacker can perform
further filtering. First, let t1, Zt1 , Yt1 and t2, Zt2 , Yt2 be a pair filtered from the previous
stage. The attacker can then compute t2 − t1, and retrieve the value of Lt1 from the
precomputed table. By Lemma 3, there are 8 other bits in Zt1 ⊕ Zt2 that are directly
related to Lt1 . Since during the keystream stage the LFSR evolves independently, all lt1+i
can be computed with the knowledge of Lt1 alone. This provides us with an opportunity
to further filter the keystream-collision pairs obtained from the stage. For example

1. If, the attacker finds that zt1+20 ⊕ zt2+20 6= lt1+39 he can reject the pair.

2. Also if, lt1+78 = 0 and the attacker finds that zt1+46 ⊕ zt2+46 = 1, such a pair can
also be rejected.

So, let us calculate the probability that a given IV produces a keystream-collision pair
that survives both the filter levels described above. Note that since a single IV can
produce N tuples, the total number of pairs of tuples are D = N(N−1)

2 ≈ 246.36. Denote
αi = zt1+gi

⊕ zt2+gi
and also define the following notations:

• β0 = zt1+20 ⊕ zt2+20 ⊕ lt1+39, β1 = zt1+24 ⊕ zt2+24 ⊕ lt1+47

• β2 = zt1+26 ⊕ zt2+26 ⊕ lt1+58, β3 = zt1+33 ⊕ zt2+33 ⊕ lt1+41

• β4 = zt1+35 ⊕ zt2+35 ⊕ lt1+45, β5 = zt1+42 ⊕ zt2+42 ⊕ lt1+65

• β6 = zt1+44 ⊕ zt2+44 ⊕ lt1+76, β7 = zt1+46 ⊕ zt2+46

The probability that a pair is not rejected is given as

ρ =
40∏
i=0

Pr(αi = 0) ·
44∏
i=41

Pr(αi = 1) ·
6∏
i=0

Pr(βi = 0) ·
(

1− Pr(β7 = 1 & lt1+78 = 0)
)

= 2−41 · 2−4 · 2−7 · 3
4 = 2−52.41

In the above calculation, we have assumed that the events Pr(β7 = 1) and Pr(lt1+78 =
0) are statistically independent, but under this situation this is a fair assumption to make.

112 Cryptanalysis of Plantlet

Let Xt1,t2 be the indicator variable that is 1 when the tuples at t1, t2 are not rejected by
the filters, and zero otherwise. Then we have shown that E(Xt1,t2) = ρ. Let Ps be the
expected number of pairs that survive during processing keystream generated a single IV.
We have

Ps =
N∑
i=1

N∑
j=i+1

E[Xi,j]

=
(
N

2

)
· ρ

= D · ρ = 2−6.06

Thus the total number of pairs that survive trials with V different IVs is given as
Pu = V · Ps = 248.54. This is the number of pairs that proceed to the next stage of the
attack.

4.4 Online Stage III: Solving Equation System

The final stage of the attack involves attempting to solve the equation system resulting
from the keystream segment pairs. The attacker has to try to solve the Pu sets of equations
assuming that they were generated by two Plantlet states that differ by 040||e43. Most
of the times the assumption is wrong, so that a contradiction is arrived at. However the
value of V has been chosen so that the attacker encounters, on average, at least one state
pair with the required difference, which he can solve to find the secret key.

We construct the equation system over the polynomial ring Z2[N,K], where N =
{n0, . . . , n39}, and K = {k0, . . . , k79}, where the variables ki correspond to the bits of the
key, and the variables ni correspond to the bits of the NFSR. As explained in Section
4.3, if Zt1 , Yt1 and Zt2 , Yt2 satisfy the filtering criteria, we assume that Nt1 = Nt2 , and
Lt1 = Lt2 ⊕ e43. We can compute the value of Lt1 , and Lt2 , from the precomputed tables.
So let’s assume Lt1 = (l0, . . . , l60), and Lt2 = (l0, . . . , l60) + e43. We can now generate the
polynomial expressions for each keystream bit, by considering the content of the LFSR to
be the 61 bit string (l0, . . . , l60) over GF (2), the content of the NFSR to be the boolean
variables (n0, . . . , n39), and the key denoted by the boolean variables (k0, . . . , k79), and
do all the computations in R = Z2[N,K]. Let the polynomial expressions generated this
way be (z∗t1 , . . . , z

∗
t1+79), where all the entries are polynomials with unknowns in K ∪N .

Now we consider the equations of form z∗t1+i ⊕ zt1+i = 0 for i ∈ [0, 79] and add them to
the equation system. We can also do the same for the stream generated from time t2, by
loading the LFSR with the initial value (l0, . . . , l60) + e43, and the NFSR with the same
variables (n0, . . . , n39) and construct the equations of form z∗t2+i ⊕ zt2+i = 0 for i ∈ [0, 79].

We also generate the polynomial expressions for the keystream bits in the backward
direction (z∗t1 , z

∗
t1−1, . . . , z

∗
t1−79) and (z∗t2 , z

∗
t2−1, . . . , z

∗
t2−79) with the same initial register

values, and add the equations of form z∗t1−i ⊕ zt1−i = 0 and z∗t2−i ⊕ zt2−i = 0, to our
system. This way we will have 4 × 80 equations over 120 unknowns.1 As we are only
looking for solutions in Z2, we can consider this system a SAT problem. We feed the
system of equations to a SAT solver. For an incorrect assumption on the states generating
a given differential keystream, a SAT based solver returns UNSAT, which is to say the
system of equations fed to it are inconsistent. Thus this gives us an efficient method to
arrive at a contradiction and reject an incorrect guess of initial state difference.

1In the real implementation we also add a lot of intermediate variables in order to control the degree of
the polynomials.

Subhadeep Banik, Khashayar Barooti and Takanori Isobe 113

4.5 Experimental Results
The computations in this section were done using the computer algebra software SAGE 8.7
[Dev17], and we used the Cryptominisat 5.0.1 [SNC09] package for solving the underlying
equation system. All experiments were done on an AMD Opteron 8354 processor with
CPU speed of 2200 MHz running on Ubuntu 14.04.6 LTS. We ran three experiments:

1. First we estimated the time it takes the SAT solver to return UNSAT, i.e. when the
attacker incorrectly assumes that a given differential keystream (which satisfies all
filter requirements in Section 4.3) is produced by two Plantlet states differing only
by 040||e43. Note that most of the times (around Pu − 1 times), the attacker will
have to face this situation, and hence it is important to measure the computational
cost of this task.

2. Second we estimated the time it takes the SAT solver to return SAT, i.e. when the
attacker correctly assumes that a given differential keystream (which satisfies all
filter requirements in Section 4.3) is produced by two Plantlet states differing only
by 040||e43. When this event occurs, the attacker would have successfully computed
the value of the secret key.

3. Finally, we estimated the amount of time needed to perform one Plantlet encryption.
This step is important because this way we can estimate the computational cost of
solving an equation in terms of the computational cost of an encryption. Since there is
no straightforward way to compute the number of steps taken by the solver to solve a
given polynomial system, there is no good way of comparing the computational costs
of solving an equation and performing one encryption. Due to this fact, many papers
[ZLFL14, MAM16] in the past have measured the physical time to perform the above
tasks to make a comparison. In [MAM16], in order to estimate the computational
complexity of guess and determine attacks, the authors had measured the time of
performing one encryption and concluded that it was possible to perform around
210 encryptions per second on their system. Using this fact and after experimentally
finding the average physical time required to solve a particular set of equations, they
had concluded that guess and determine attacks on Plantlet did not perform better
than a brute force attack. We adopt a similar method to estimate the bounds we
present in this paper.

First we estimate the time it takes the SAT solver to return UNSAT. For this, we
randomly generate a pair of keystream segments (Zt1 , Yt1 and Zt2 , Yt2) of length 160 bits
each and a 61 bit initial LFSR state L such that they satisfy all the filtering criterion in
Section 4.3. Using the variables N, K and the bit-string L the polynomial expressions
for Zt1 , Yt1 are computed. Similarly, using the variables N, K and the bit-string L ⊕e43
we generate the polynomial expressions for Zt2 , Yt2 . The polynomials and keystream bits
generated earlier form the left and right sides of an equation bank we make. Since the
keystream bits and polynomial equations were generated randomly and independent of
each other, the system of equations when fed to a SAT solver, will with a high probability
make the solver return UNSAT. Note that we have set up the above system of equations in
a manner so as to simulate the event when the attacker observes a differential keystream
that satisfies all filtering requirements and incorrectly assumes that the bits were generated
by two states differing in the 43rd LFSR location.

While doing the the experiments, we found that the solver returns a SAT/UNSAT
verdict faster when the last 4 bits of the NFSR are additionally guessed. So we essentially
solve the system of equations over 116 unknowns. We ran the above set of experiments for
1000 randomly generated samples, and the results are presented in Figure 2. The figure is
a probability distribution histogram of the time taken for the solver to return UNSAT. The
x-axis represents the time taken in seconds and the y-axis the corresponding probability of

114 Cryptanalysis of Plantlet

Figure 2: Histogram of the SAT solver abort time

occurrence. To plot the figure, we divided the x-axis range into 70 equal bins and counted
the number of times, the physical time taken for the solver to return UNSAT occurred in
the time range corresponding to each bin. The probability density function was close to a
normal distribution (as indicated by the black curve), with mean µUNS = 51.22 seconds,
and standard deviation σUNS = 3.42 seconds.

Second we estimate the time it takes the solver to return SAT, i.e. when the attacker
correctly predicts the state differential. For this, we randomly generate a 101-bit initial
state N, L and a 80 bit key K. We generate Zt1 , Yt1 using N, L, K and Zt2 , Yt2 using N, L
⊕e43, K. Thereafter, we generate the polynomial expressions for Zt1 , Yt1 using the variables
N, K and the bit string L. Similarly, we generate the polynomial expressions for Zt2 , Yt2
using the variables N, K and the bit string L ⊕e43. Again, an equation bank is created
with the expressions and keystream bits in the left and right sides. Since the keystream
bits and polynomial equations were generated consistent with each other, the system of
equations when fed to a SAT solver, will return the correct solution N = N and K = K.
Note that we have set up the above system of equations in a manner so as to simulate
the event when the attacker observes a differential keystream that satisfies all filtering
requirements and correctly assumes that the bits were generated by two states differing in
the 43rd LFSR location.

Again the last 4 bits of the NFSR are additionally guessed for getting faster solutions.
We ran the above set of experiments for 1000 randomly generated samples, and the results
are presented in Figure 3. The probability density function was again close to a normal
distribution (as indicated by the black curve), with mean µSAT = 66.17 seconds, and
standard deviation σSAT = 39.26 seconds.

Third, we also computed the time it takes to perform a single encryption. As argued
in [EK15, Ban15] one Plantlet encryption should be equal to the average number of
Plantlet rounds required to be executed per trial with a guessed value of the key (in a
brute force search). This comes to 320 initialization rounds and 4 rounds in the keystream
generation phase. We have given a proof of this in Appendix A (at the end of this paper).
Thus one Plantlet round is equivalent to around 1

324 = 2−8.34 Plantlet encryptions. We
measured the time to perform 320 initialization and 4 keystream generation rounds (for
around 10,000 random Key-IV samples) and the results are presented in Figure 4. As
expected the distribution is close to normal, with a mean of µENC = 0.0057 seconds, and

Subhadeep Banik, Khashayar Barooti and Takanori Isobe 115

Figure 3: Histogram of the SAT solver runtime

the standard deviation is σENC = 0.000699 seconds. We have provided SAGE codes used
by us as auxiliary material attached to the paper. Note that in Grain-like designs, it
is possible to optimize the encryption speed, by computing multiple rounds in a single
clock cycle. For example, Grain v1 does not use any of the last 16 bits of both the linear
and non-linear registers as inputs to the update or the keystream generating functions.
As a result a 16 times speedup in software is possible by doing 16 round updates in one
iteration. However that is not the case with Plantlet, as even the last NFSR bit is used in
the non-linear update function g.

As pointed out earlier, the main aim of the previous experiment was to compare the
cost of solving an equation and performing an encryption, so as to find the equivalent
computational cost of solving Pu equations in terms of Plantlet encryptions. Since we guess
4 bits of NFSR, the computational cost of returning UNSAT can be estimated on average
to be Cu = 24·µUNS

µENC
≈ 217.13 Plantlet encryptions. Similarly the cost of returning SAT is

around Cs = 24·µSAT

µENC
≈ 217.5 Plantlet encryptions.

4.6 Total Complexity of attack
The total time complexity in the precomputation stage has been already calculated in
Section 4.1 as bounded by 241.5 bit operations. The online complexity is dominated by
three computational tasks.

1. First, is the task of generating the requisite amount of keystream to perform the attack.
We need to generate 230 keystream bits from V = 254.6 IVs. This implies performing
a total of (320 + 230) · 254.6 Plantlet iterations. It has already been argued that each
Plantlet iteration is computationally equivalent to 2−8.34 Plantlet encryptions. Hence
the total computational complexity required to generate keystream is (320 + 230) ·
254.6−8.34 = 276.26 Plantlet encryptions.

2. Second is the time required to solve equations. A total of Pu = 248.54 equations need
to be solved. Only one of these equations are expected to yield the correct solution
for the secret key. In the previous section we have argued that the time to solve an
equation unsuccessfully (i.e. yielding UNSAT from the solver) is computationally
equivalent to Cu = 217.13 encryptions, whereas to solve successfully is equivalent

116 Cryptanalysis of Plantlet

Figure 4: Histogram of the encryption runtime

to Cs = 217.5 encryptions. Thus the computational burden for this task is around
(Pu − 1) · Cu + Cs ≈ 265.7 encryptions.

3. The total memory access is dominated by the number of table insertions done in
the online stage of the attack. We need a total of N · V = 254.6+23.7 = 278.3 table
insertions. Note that any point of time of the attack we do not need more than
231.25 + 229.6 ≈ 304 MB of memory. Thus the tables can be stored in the primary
memory and accessed reasonably quickly. We do not have a method to reliably
compare this to the number of encryptions, but 278.3 memory accesses is not likely
to take more time than 276.26 Plantlet encryptions, by any fair estimation.

Thus the computational complexity is dominated by the task of generating keystream
and equal to 276.26 Plantlet encryptions. The memory required for the storage of the
precomputed tables has been already calculated to be around 229.6 bits. Other than that,
for each IV trial in the online stage, we already shown that around 231.25 bits are required.

5 Improving Attack Complexity

Based on the observations in the above section, we can propose a more efficient key recovery
attack on Plantlet. First of all we note that one of the conditions of Lemma 2 and 3 is that
both t1 and t2 are multiples of 80. It can be easily seen that both the lemmas also hold
if we relax the conditions on t1, t2 to t1 ≡ t2 mod 80. This is because if t1, t2 belong to
the same equivalence class modulo 80, then the sequence of key and counter bits used to
update St1 = (Nt1 , Lt1) and St2 = (Nt2 , Lt2) are the same. Thus the differential evolution
of St1 , St2 is independent of key and counter bits and hence the lemmas naturally hold.

Thus, we can see the attack in the previous section as limited to the equivalence class
0 mod 80. Thus one can naturally try to improve the attack complexity by extending the
attack to all equivalence classes 0 mod 80. We will see how subtly tweaking the above
steps can lead to a more efficient attack.

Subhadeep Banik, Khashayar Barooti and Takanori Isobe 117

5.1 Precomputation Step
For any equivalence class, the number of values of t1− t2 remain the same. In fact the exact
values of t1 − t2 also remain the same since they are multiples of 80. So any additional
precomputation steps are not required to extend the attack to other equivalence classes.

5.2 Online stage
Thus, at the very top level, the modified strategy of the attacker will be as follows:

A: Generate 230 keystream bits with the given secret key and any random IV. This
generates N = b 230

80 c ≈ 223.7 keystream segments of length 80-bits each.

B: Take all equivalence classes j mod 80, for 0 ≤ j ≤ 79. For all values of j:

• For all values t = j + 80 · i where i ∈ [1, N − 1], store in a hash table t, Zt, Yt.
• From this table, try to find, if it exists, t1, t2 so that ∆ = Zt1 ||Yt1 ⊕ Zt2 ||Yt2
exhibits the 1/0 pattern in the locations listed in Lemma 2, i.e. is a keystream-
collision.
• If there exists one or multiple such t1, t2, then assuming that the state differential
in between the states at time t1, t2 is 040||e43, try to solve for the remaining
system of equations to find the key.
• If a contradiction is reached, try other values of t1, t2, j, if they exist. If none
exist then repeat step A with another IV. If the attacker does not encounter a
contradiction, and is able to solve the equations, he would have computed the
secret key.

Thus the high level strategy for the modified attack, is the same as in the previous section,
with the only exception that we do the attack for t1, t2 belonging to all the equivalence
classes mod80. The only thing remaining to do is to re-evaluate the attack complexities
and memory requirements. We do it in the following steps:

1. In Lemma 4, we know that to hit upon two internal states with the difference 040||e43,
within one trial consisting of N random sampling of internal states, we need 1

p = 2102

N2

trials. Since N ≈ 230

80 = 223.7, the number of trials is around 254.6.

2. However each IV can produce keystream required to conduct 80 such trials, one for
each equivalence class modulo 80. Hence the number of different IVs required is
254.6

80 ≈ 248.32.

3. The online memory complexity need not change: since the attacker can construct
the tables described in Section 4.2 sequentially for each equivalence class modulo 80.
However the attacker choose to construct tables for all the equivalence class once he
receives keystream corresponding a single IV. This only increases the online memory
complexity by a factor of 80.

4. What does not change however is the total number of trials that need to be performed
for encountering 2 states with the required difference which still stands at 254.6. The
only difference is that we need to produce keystream with much lesser number of
different IVs. Because of this the remaining online complexities related to solving
equations does not change.

5. Online Complexity : We recalculate the online complexity under the 3 heads:

118 Cryptanalysis of Plantlet

a) Generating Keystream: We need 230 to generate keystream bits from 248.32 IVs.
This implies performing a total of (320 + 230) · 248.32 Plantlet iterations. It has
already been argued that each Plantlet iteration is computationally equivalent to
2−8.34 Plantlet encryptions. Hence the total computational complexity required
to generate keystream is (320 + 230) · 248.32−8.34 = 269.98 Plantlet encryptions.

b) Solving Equations: Since the total number of trials does not change, all the
attack procedure described in Sections 4.3,4.4 do not change. A total of
Pu = 248.54 equations satisfy both filtering levels and need to be solved. Thus
the computational burden for this task is around (Pu − 1) · Cu + Cs ≈ 265.7

encryptions.
c) Memory access: The total memory access is proportional to the number of trials.

Hence this complexity too does not change. We need a total of 254.6+23.7 = 278.3

table insertions.

Thus the dominant time complexity is the one required to generate keystream and is
around 269.98 Plantlet encryptions.

6 Conclusion
In this paper, we propose a key recovery attack on the Plantlet stream cipher. The first
attack requires 230 keystream bits to be generated with the secret key and 254.6 randomly
chosen IVs. This is computationally equivalent to performing 276.26 Plantlet encryptions.
The attack takes advantage of the sparse locations of bits tapped from the LFSR which
are used as inputs to the filter function producing the keystream bit. As a result, two
Plantlet states that differ in the 43rd LFSR location are guaranteed to produce keystream
that are either equal or unequal in 45 locations with probability 1. This enables us to
get a reasonably reliable probabilistic mapping from a differential keystream with a given
pattern to a given difference in the internal state. Using precomputed tables, we can
probabilistically extract the LFSR part of the two states, once we encounter a differential
keystream with the required 0/1 pattern. We then try to solve for the remainder of the
state and the secret key. The process, if repeated with 254.6 randomly chosen IVs, each
generating 230 keystream bits, is expected to give us the correct value of secret key at least
once.

In the second part of the paper, we observe that the previous attack was limited to
values of t1, t2 limited to the equivalence class 0 mod 80. We extend the scope of the attack
to all equivalence classes modulo 80. This requires the attacker to generate keystream from
much lesser number IVs, and reduces the online complexity to 269.98 Plantlet encryptions.

Acknowledgments
Subhadeep Banik is supported by the Ambizione Grant no. PZ00P2_179921, awarded by
the Swiss National Science Foundation (SNSF). Takanori Isobe is supported by Grant-in-
Aid for Scientific Research (B) (KAKENHI 19H02141) for Japan Society for the Promotion
of Science.

References
[AM15] Frederik Armknecht and Vasily Mikhalev. On Lightweight Stream Ciphers

with Shorter Internal States. In Gregor Leander, editor, FSE, volume 9054 of
Lecture Notes in Computer Science, pages 451–470. Springer, 2015.

Subhadeep Banik, Khashayar Barooti and Takanori Isobe 119

[Ban15] Subhadeep Banik. Some Results on Sprout. In Alex Biryukov and Vipul Goyal,
editors, INDOCRYPT, volume 9462 of Lecture Notes in Computer Science,
pages 124–139. Springer, 2015.

[BD08] Steve Babbage and Matthew Dodd. The MICKEY Stream Ciphers. In Matthew
J. B. Robshaw and Olivier Billet, editors, The eSTREAM Finalists, volume
4986 of Lecture Notes in Computer Science, pages 191–209. Springer, 2008.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs
for Stream Ciphers. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976
of Lecture Notes in Computer Science, pages 1–13. Springer, 2000.

[CP08] Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B. Robshaw
and Olivier Billet, editors, The eSTREAM Finalists, volume 4986 of Lecture
Notes in Computer Science, pages 244–266. Springer, 2008.

[Dev17] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 8.0), 2017. http://www.sagemath.org.

[EK15] Muhammed F. Esgin and Orhun Kara. Practical Cryptanalysis of Full Sprout
with TMD Tradeoff Attacks. In Orr Dunkelman and Liam Keliher, editors,
SAC, volume 9566 of Lecture Notes in Computer Science, pages 67–85. Springer,
2015.

[est08] The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers.,
September 2008.

[HJM07] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for
constrained environments. IJWMC, 2(1):86–93, 2007.

[HJMM06] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A
Stream Cipher Proposal: Grain-128. In 2006 IEEE International Symposium
on Information Theory, pages 1614–1618, July 2006.

[HKM17] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD - A Lightweight
Stream Cipher for Power-constrained Devices. IACR Trans. Symmetric Cryp-
tol., 2017(1):45–79, 2017.

[HKMZ18] Matthias Hamann, Matthias Krause, Willi Meier, and Bin Zhang. Design and
analysis of small-state grain-like stream ciphers. Cryptography and Communi-
cations, 10(5):803–834, Sep 2018.

[LNP15] Virginie Lallemand and María Naya-Plasencia. Cryptanalysis of Full Sprout.
In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO (1), volume
9215 of Lecture Notes in Computer Science, pages 663–682. Springer, 2015.

[MAM16] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On Ciphers that
Continuously Access the Non-Volatile Key. IACR Trans. Symmetric Cryptol.,
2016(2):52–79, 2016.

[MSS17] Subhamoy Maitra, Akhilesh Siddhanti, and Santanu Sarkar. A differential
fault attack on plantlet. IEEE Trans. Computers, 66(10):1804–1808, 2017.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to
cryptographic problems. In Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 -
July 3, 2009. Proceedings, pages 244–257, 2009.

120 Cryptanalysis of Plantlet

[ZG15] Bin Zhang and Xinxin Gong. Another Tradeoff Attack on Sprout-Like Stream
Ciphers. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT (2),
volume 9453 of Lecture Notes in Computer Science, pages 561–585. Springer,
2015.

[ZLFL14] Bin Zhang, Zhenqi Li, Dengguo Feng, and Dongdai Lin. Near collision attack on
the grain v1 stream cipher. In Shiho Moriai, editor, Fast Software Encryption,
pages 518–538, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

A Cost of executing one round of Plantlet [EK15]
To do an exhaustive search, first an initialization phase has to be run for 320 rounds, and
then generate 80-bits of keystream to do a unique match. However, since each keystream
bit generated matches the correct one with probability 1

2 , 280 keys are tried for 1 clock and
roughly half of them are eliminated, 279 for 2 clocks and half of the remaining keys are
eliminated, and so on. This means that in the process of brute force search, the probability
that for any random key, (i+ 1) Plantlet keystream phase rounds need to be run, is 1

2i .
Hence, the expected number of Plantlet rounds per trial is

79∑
i=0

(i+ 1)280−i

280 =
79∑
i=0

(i+ 1) 1
2i ≈ 4

Add to this the 320 rounds in the initialization phase, the average number of Plantlet rounds
per trial is 324. As a result, we will assume that clocking the registers once will cost
roughly 1

320+4 = 2−8.34 encryptions.

	Introduction
	Contribution and Organization of the Paper

	Description of Plantlet
	Observations on the differential structure of Plantlet
	Key recovery attack on Plantlet
	Precomputation Stage
	Online Stage I: Collecting and storing keystream bits
	Online Stage II: Further filtering
	Online Stage III: Solving Equation System
	Experimental Results
	Total Complexity of attack

	Improving Attack Complexity
	Precomputation Step
	Online stage

	Conclusion
	Cost of executing one round of Plantlet s4

