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Abstract

A local weighted discontinuous Galerkin gradient discretization method for solving elliptic
equations is introduced. The local scheme is based on a coarse grid and successively improves
the solution solving a sequence of local elliptic problems in high gradient regions. Using the
gradient discretization framework we prove convergence of the scheme for linear and quasilinear
equations under minimal regularity assumptions. The error due to artificial boundary conditions
is also analyzed, shown to be of higher order and shown to depend only locally on the regularity
of the solution. Numerical experiments illustrate our theoretical findings and the local method’s
accuracy is compared against the non local approach.
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1 Introduction

Partial differential equations with high contrast are notoriously difficult to solve. In order to capture
strong variations of the exact solution in the numerical approximations of the PDE, non uniform
grids are usually required. The construction of such grids is often based on an iterative process,
where a solution is computed and an a posteriori error estimator is used to indicate the regions
where the mesh has to be refined, see [2, [3 21, 23]. In such approach, the solution is computed on
the whole domain at each step, even if the mesh has changed only in a small portion of the domain.

In this paper we propose an algorithm for elliptic PDE, based on a decomposition of the compu-
tational domain in local subdomains adapted to the variation of the solution. In each subdomain,
only local problems need to be solved and no iterations are needed between subdomains (e.g. as
in domain decomposition method), as we define artificial boundary conditions and do compute the
solution only once in each local domains. We concentrate here on the a priori error analysis of
our scheme, while we postpone the a posteriori error analysis to a companion paper [I]. The local
scheme proposed in this paper is more efficient than the classical schemes for elliptic PDEs with
strong variations for several reasons.

e For linear problems, when using an iterative solver such as the conjugate gradient (CG) method
we have smaller problems to compute on the finer meshes, while the non-local classical schemes
need the solution of global linear systems with a large number of degrees of freedom (DOF)
(recall that the CG method has a convergence rate that is super-linear with respect to the
DOF of the system).
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e When solving a linear system arising from PDEs with CG methods, preconditioners are ususally
needed, a usual choice for CG being the incomplete Cholesky (IC) factorization. For non-local
schemes, the high contrast of the PDE leads to systems with high condition number (due to
mesh and data variations). For the local scheme, as each subdomain involves smaller variations
of the solution the condition number is smaller, leading to faster convergence of the iterative
method.

e Finally for nonlinear problems, in addition to the computational saving described previously,
only a nonlinear problem on a coarse global mesh needs to be solved for the local scheme, while
the subsequent local problems are linear. The computational saving is therefore significant for
such problems.

The idea of solving local elliptic problems to improve the numerical solution’s accuracy is not new
in the literature. The Local Defect Correction method (LDC) first presented in [I4] is an iterative
process that at each step solves a global problem on a coarse mesh and a local problem on a fine mesh.
The solution of the global problem provides artificial boundary conditions to the local problem. The
solution of the latter is then introduced into the coarse system to estimate its residual. The coarse
system is solved again but adding the residual to its right hand side, leading to a more accurate
coarse solution and hence better artificial boundary conditions for the next local problem. Two
similar methods are the Fast Adaptive Composite grid algorithm [I8] and the Multi-Level Adaptive
Technique [B]. In [I2] it is shown that under reasonable assumptions the three methods lead to
the same solution. In their original form the schemes were defined for finite difference methods but
finite volumes or finite element versions exist, see [19, 24]. Only recently has the LDC scheme been
coupled with an a posteriori error estimator in order to automatically select the local domains [4].

The local method that we propose in this paper relies on the discontinuous Galerkin discretiza-
tion, more precisely on the Symmetric Weighted Interior Penalty Galerkin (SWIPG) scheme [10 [7].
We consider the elliptic model problem

-V (AVu) = f in Q, (1.1a)
u=0 in 092, (1.1b)

where Q C R? for d = 1,2,3 is an open bounded polytopal connected set, u € H}(Q) and f €
H7Y(€Q). The matrix A is symmetric, positive definite and can possibly depend on u, since we
consider both a linear and a quasilinear case.

The scheme that we propose is different from the aforementioned methods in the sense that it
computes only one global solution on the full domain while all the subsequent computations are
local. Additionally, the a priori error analysis is performed under minimal regularity assumptions,
that is, assuming u € Hg(Q2) and f € H~1(2). This is achieved by recasting the SWIPG scheme into
the Gradient Discretization (GD) framework [9] [1I]. The GD method is a framework suitable for
studying the a priori convergence of various types of diffusion problems: linear and non linear, steady
state or transient. For our scheme, the GD framework is convenient to decompose the sources of
errors in the local problems. Furthermore, applying the pointwise estimates from [6], we can prove
(in some particular cases) that the errors coming from the artificial boundary conditions are of
higher order and depend only locally on the regularity of the solution. Finally, we stress out that
the GD framework is only used for the analysis, indeed another advantage of the scheme is that it
fits very easily in existing codes that use the popular discontinuous Galerkin scheme without needing
additional data structures nor additional memory requirements.

The paper is organized as follows. In Section[2] we present the Gradient Discretization framework
and the Symmetric Weighted Discontinuous Galerkin Gradient Discretization (SWDGGD), which



is equivalent to the SWIPG scheme. At the end of the section we introduce a local version of the
SWDGGD. In Section [3| we present the local scheme and establish an a priori error analysis for
linear equations. In Section [l we introduce the scheme and the a priori error analysis for quasilinear
equations. Finally, Section [5] provides numerical results and comparison with the classical scheme.
The equivalence between the SWDGGD and SWIPG methods is postponed to Appendix [A]

2 Notation and preliminary results

Our local scheme is based on the traditional SWIPG scheme but the analysis is done in the GD
framework, this allows for minimal assumptions and further generalizations as quasilinear problems.
Whence we introduce in Section [2.] the notation for the GD setting and in Section [2.2] we define
a particular GD scheme which is equivalent to SWIPG, their equivalence is shown in Appendix [A]
The method presented in Section is a slight modification of the one proposed in [II], the main
difference is that the latter is equivalent to the Symmetric Interior Penalty Galerkin (SIPG) method.
We opted for the SWIPG scheme instead of SIPG since it is known to have improved stability in
problems with high diffusivity contrasts [I0] and also to be suitable for a locally vanishing diffusion
[8]. In Sections and we mainly follow [9] and [II]. In what follows we make the following
assumptions on the data for the linear case

Assumption 2.1.
e QO CR? is an open bounded polytopal domain,

e A:Q) —>E§dx‘i is such that A(x) is a symmelric matrizv measurable with respect to x and there
exists A, A > 0 such that it has eigenvalues in [\, A,

e the forcing term is f € H=1(Q).

For the quasilinear case, we will assume
Assumption 2.2.

e Q CR? is an open bounded polytopal domain,

o A(x,s) = (aij(m,s))ﬁjzl is such that a;; : @ x R — R is continuous in & and Lipschitz

continuous in s. Furthermore A(x,s) is a symmetric matriz with eigenvalues in [\, A,
e the forcing term is f € H~1(Q).

For simplicity, the dependence of A on @ is left out in our notation. Under Assumption the
weak solution of Eq. (1.1)) is u € HJ(Q2) such that

/ AVu - Vvdx = (f,v) for all v € Hj (), (2.1)
Q

where (-,-) denotes the pairing between H~1(Q2) and H{(€2). Under Assumption we have a
similar weak solution obtained by replacing A by A(u) in Eq. (2.1)).



2.1 The Gradient Discretizazion method

We start by defining the GD method for homogeneous Dirichlet boundary conditions as introduced
in [II] along with some of its properties.

Definition 2.3. A gradient discretization method D for homogeneous Dirichlet boundary conditions
is defined by D = (Xp,lp, Vp), where

1. the set Xp is a finite dimensional real vector space,

2. the reconstruction function Up : Xp — L%(Q) is a linear mapping that reconstructs, from an
element in Xp, a function over €,

3. the gradient reconstruction Vp : Xp — L*(Q)¢ is a linear mapping which reconstructs, from
an element of Xp, a gradient over ). This gradient reconstruction must be chosen such that
IVD - ||L2(q)e is a norm on Xp.

Example 2.4. Among others, the conforming Py finite element Galerkin method can be written as a
GD method. Given a partition of Q into simplices, let Vi, C H}(Q) be the set of piecewise linear and
continuous functions on this partition. Let {e;};c1 be a basis of Vi, we define Xp = {¢ = ((i)ier -
G ERforallic I}, lipp =) ,.;Ge; and Vpp =3, (iVe;. In what follows when we consider
sequences (Dp)nen of gradient discretizations, it is useful to think that each D, is associated to a
mesh of size hy, with lim, s h, = 0.

In the following (D )nen is a sequence of gradient discretizations.

Definition 2.5. If D is a GD, define Cp as the norm of llp:

B Ipé] 120
D= X Tl o
sexp\{0} [Vl L2

A sequence (Dy)nen of GD is coercive if there exists Cp € Ry such that Cp, < C)p for all n € N.
We observe that coercivity implies a kind of Poincaré inequality.

Definition 2.6. If D is a GD, define Sp : H}(Q) — [0, 00 by
SD(U) = min (HHD¢ — UHLz(Q) + ||VD¢ - VUHLz(Q)d).
$€XD

A sequence (Dyp)nen of GD is consistent if lim,, o Sp, (v) =0 for all v € H}(Q).

n

Definition 2.7. If D is a GD, define Wp : Hai (2) — [0, 00] by

Voo - Ipp V- v)d
Wp(v) = sup Jo(Voé v + 11V - v)da]
¢eXp\{0} ||VD¢||L2(Q)d

A sequence (Dp)nen of GD is limit-conforming if lim, . Wp, (v) =0 for all v € Hg;y ().

The limit conformity of the method implies that the gradient discretization method satisfies
asymptotically the Stokes theorem.

Definition 2.8. A sequence (Dp)nen of GD is compact if, for any sequence ¢, € Xp, such that
(IVp, ¢nllL2(@)e)nen is bounded, the sequence (Ilp, n)nen is relatively compact in L?(Q).



In order to use the GD to solve Eq. (2.1) it is useful to write f € H~1(Q2) as

4 of,

f=fo+ o1,

:f0+VF7
i=1

where © = (21,...,2q4) € Q, fo, f1, ..., fa € L*(Q) and F = (f1, ..., f4) T € L?(Q)%. With this notation,
Eq. (2.1) becomes

/ AVu - Vvde = / (fov—F-Vv)dx for all v € HJ(9Q). (2.2)
Q Q

We next define the Gradient Scheme used to approximate u solution of Eq. (2.2)).

Definition 2.9. For a given gradient discretization D, the Gradient Scheme (GS) for problem
Eq. (2.2) is defined by: find ¥ € Xp such that

AVpY-Vpodr = / (follpp — F -Vpo)dx for all p € Xp. (2.3)
Q Q

The convergence of the above scheme is given by Theorem which is proven in [9, Theorem
2.28]. Notice that under Assumption and u € H(Q2) we have AVu + F € Hyg;, (), indeed
~V - (AVu+ F) = fo € L*(Q).

Theorem 2.10. Let D be a GD, then there exists one and only one 9 € Xp solution to Eq. (2.3)
and it satisfies

||Vu — VDﬁHLz(Q)d § WD(AVU + F) + (1 + H(A))SD(U), (24)

>

where k(A) = X/ is the condition number of A.

Corollary 2.11. If (D,)nen is a consistent and limit-conforming sequence of GD and 9, € D,, is
a sequence of solutions to Eq. (2.3)), then

lim ||Vu - anﬁn”Lz(Q)d =0.
n—0o0

Proof. Follows from Eq. (2.4) and the definitions of consistency and limit conformity. O

Convergence rates are obtained under stronger regularity hypothesis on the data and the solution,
upon the introduction of a mesh and depend on the underlying discretization method. We refer to
Corollary[2.17)at the end of Section 2.2 for such results. The compactness hypothesis of Definition 2.8
is needed to establish convergence of the gradient scheme when applied to nonlinear problems.

2.2 The Symmetric Weighted Discontinuous Galerkin Gradient
Discretizazion

Inspired from the method proposed in [11] we define the Symmetric Weighted Discontinuous Galerkin
GD (SWDGGD).

A polytopal mesh T = (M, F,P) is defined as follows. M is a finite family of non empty
polytopal open disjoint elements K C ) such that Q@ = Ugc K. We suppose that K is star shaped
with respect to an xx € K and denote P = (x)kem. Let F = Fp UF; be the set of faces of



the mesh, where F,, F; are the boundary and internal faces, respectively. The set of faces of K is
Fx={0c€F :0COK}. Foreach K € M and o € Fx we denote by dk , the orthogonal distance
between xx and o, hence

dr,c = (y - CL‘K) “NK.o for all y € o,

where ng , is the unit vector normal to o outward to K. We denote by Dy , the cone with vertex
x i and basis o, that is

DK,G‘ = {wK +s(y_xK) : s 6]071[7 Yy S J}‘

Finally, we define the mesh size and a constant measuring the regularity of the mesh. For ¢ € F let
M, ={K € M :0 € Fi} and let hx be the diameter of K € M, then

h i :max{hK K e M},

h h
ngzmax( l+£206fi7Ma:{K7T}}U{

:KeM,oe Fg}

hx  hr

hx
dK,a'

u{#]—'K:KeM}>,

the term {#Fk : K € M} is needed in [1I, Lemma 3.14] to bound the jumps on the faces of the
elements.

Let V = {v € L*(Q) : v|k € P(K), VK € M}, where P;(K) is the space of polynomials in K
of total degree £. Let (e;);cr be a basis of V' such that supp(e;) is restricted to one element of M.
We set

XD = {d) = (Ci)iEI : Cl cRforallie I} (25)
and define the operator IIp : Xp — L2(Q2) by
po =Y Gei. (2.6)
iel

For K € M we note by II#¢ := IIp¢| the restriction of IIpp to K extended to K and define
V¢ = VIIx¢é. Let a €]0,1] be a user parameter and ¢ : [0,1] — R such that ¢(s) = 0 on [0, ¢
and ¥|[q,1] € Po_1([e, 1]) satisfying

1 1
/ Y(s)s?lds =1 and / (1—5)(s)s?ds =0 fori=1,..0—1. (2.7)

In the case where £ = 1 we have 1(s)|,1] = d/(1 —a?). This choice of 1 is fundamental to show the
equivalence with the SWIPG method, see Appendix The discrete gradient Vp : Xp — L2(Q)9 is
defined as follows. For ¢ € Xp, K € M and o € Fg, we set, for a.e. © € Dk,

[¢]K,U(y)

dK,U

Vpo(x) =V (x) + ¢(s) N0, (2.8)

where @ = i + s(y — ¢x) with s €]0,1[, y € o and

if o € F; with 0 = 0K N 0T then [k o (y) = wk, o II7é(y) — zo(y)),
if o € F, with o0 = 0K N 0N then [¢]k o (y) = 0 — Hrd(y).



For o0 € F, with 0 = 0K N OQ and K € M it is useful to set wx, = 1. If instead o € F; with
o0 =0KNOT and K,T € M the weights wg ,,wr,, are two non negative numbers such that

WK,o tWre = 1. (29)

In the original Discontinuous Galerkin GD (DGGD) method introduced in [II] the weights are
(Wi, wr,6) = (1/2,1/2) and it is proven that D = (Xp,p, Vp), with Xp, IIp, Vp as in Egs. ,
and , is a GD method. Moreover, any sequence (D,,),en of DGGD defined from polytopal
meshes (T,)neny With (9z, )nen bounded and haq, — 0 is a coercive, consistent, limit-conforming
and compact sequence of GD. Thanks to the particular choice of ¢ it is possible to show that in
the linear case with piecewise constant diffusion the DGGD scheme is equivalent to the well known
SIPG method.

In our case we want to be equivalent to the SWIPG method, hence we define the weights as
follows. Let K € M and o € Fg, we set

51{70 = nIT<7UA|KnK,U.
For o € F; such that 0 = 0K N dT with K,T € M we define

(ST,(7 6K,o
WK o WT,0

f— 77 = ——— 2.10
’ 5K,0‘ + 5T,a ’ 5K,a + 5T,0 ( )

Upon changing the constants in [IT, Lemma 3.8] we deduce from [T, Lemma 3.10] that [|Vp - || 2 (q)a
with the choice of weights given by Eq. (2.10) is a norm on Xp and hence D = (Xp,IIp, Vp) with
(Wr,0,wr,s) as in Eq. (2.10) is a GD method. It can be used to solve diffusion problems with
homogeneous boundary conditions as in Definition 2.9 From now on we refer to this method as
the Symmetric Weighted DGGD scheme (SWDGGD). Apart from the weights definition, the only
difference with respect to the original DGGD method is a factor
C, = /2 2.11

ke B 5, ! (211)

multiplying the constant Cp of Definition [2.5]
In the foregoing analysis we need the jump semi norm on Xp, defined by

=3 3 / 613 o () dy.

d
KeMocFr Ko

We define a stronger version of Sp which controls the jumps.

Definition 2.12. If D is a SWDGGD, define Sp,; : H}(Q) — [0, 00] by
S’D’J(’U) = ¢Iél}(r;(||ﬂp¢ — ’UHLz(Q) + ||V'D¢ — V’UHLQ(Q)d + |¢|J)

We quote two improved estimates on Sp, Sp,; and Wp.

Lemma 2.13. There exists Cs > 0 depending only on ||, «, £, d and p such that for all v €
H2(Q) N H(Q)

Sp(v) < Cshmlvllaz and Sp (v) < Cshamlvlm2q)-

The result for Sp s is obtained following the lines of the proof for Sp, which is given in [I1]
Lemma 3.14].



Lemma 2.14. There exists Cyy > 0 depending only on ||, «, £ and d such that for allv € H'(Q)?
Wp(v) < Cwhpmllv| g )e-

Lemma has been proven for the DGGD scheme in [I1, Lemma 3.15]. The proof uses the fact
that (1/2,1/2) is a partition of unity. Thanks to Eq. (2.9) the same result holds for the SWDGGD
method. Next, Theorem [2.15] establishes the asymptotic properties of the SWDGGD schemes.

Theorem 2.15. Let (D,,)nen be a sequence of of SWDGGD defined from polytopal meshes (%) nen
with (nz, )nen bounded and haq, — 0 for n — oo. Then it is a coercive, consistent, limit-
conforming and compact sequence of GD.

Proof. Coercivity and compactness are proven as in [I1, Lemma 3.12, Lemma 3.13]. Consistency
follows from Lemma and [9, Lemma 2.16]. Limit-conformity follows from the compactness of
the scheme, Lemma and [9, Lemma 2.17]. O

In the SWDGGD scheme the (), constant depends continuously on C,, from Eq. . We
note that, even if C,, is mesh dependent it can be bounded by terms depending only on A. In the
following Lemma we show, by usual density arguments, that even if v is only in H}(Q) we have
limni)oo Spm_](v) =0.

Lemma 2.16. Consider the same assumptions of Theorem and v € H}(Q). Then we have
limnﬁoo SDTHJ('U) =0.

Proof. Let v € Hj(2) and & > 0. Then there exists v. € H*(Q) N Hg () such that [|v — ve||p2(q) +
Vv = V|2 < e. Let

¢n = argmin(||lp, ¢ — ve|lp2q) + VD, ¢ — Vel 12y + 8] ;).

¢€XD,
Hence
5p,,,(v) <[Hp, ¢n — vllr2(0) + IV, ¢n — V|[L2()a + |dnl;
<e + Cshm, [|vell m2 ()5
using Lemma lim,, 00 Sp,, .7 (v) < €. Since ¢ is arbitrary the result follows. O

Corollary 2.17 (Of Theorem [2.10). Let D be a SWDGGD, under the same assumptions of Theo-
rem[2.10, u € H*(Q) N HY(Q) and F € HY(Q), the solution ¥ € Xp to Eq. ([2.3) satisfies

1
||V’LL - VD'I.9||L2(Q)d < hM ()\OWHAVU + FHHl(Q)d + (1 + I{(A))Cs|u||H2(Q)) y
Proof. Follows from Theorem together with Lemmas and O

2.3 The Local Weighted Discontinuous Galerkin Gradient Discretization

Let {Qk}{y: 1 be a sequence of polytopal domains with 1 = @ and ; C Q. We consider as well
a sequence (Tp) M, = ((My, Fr, Pr))M | of polytopal meshes on Q and denote Fj, = Fjp U F ;i
with F, and Fj; the set of boundary and internal faces of My. Moreover, (Tx)M | satisfies the
following.

Assumption 2.18.



Figure 1. Exzample of possible meshes for three embedded domains 21, Q2, Q3.

a) For each k =1,... M, Qx = Ugerm,, ko, K-
b) Fork=1,..,M —1
Z) {KEMk+1 : KCQ\Q;H_l}:{KEMk : KCQ\Q/H_l},

i) if K, T € My, with K C Qgy1, T CQ\ Q1 and 0K NOT # 0 then K € My,
iir) if K € My and K C Qpq, either K € Myiq or K is a union of elements in My1.

c) We suppose the existence of C,. > 0 such that

i) fork=1,..M—1, if K € My, andIA(E./\/lkH with K ¢ K and o € Fx, 6 € Fgp with
0 Co thendyk, < Cidg ,,

it) for k = 1,...,M, if c = OK NOT with K, T € My, T C Q\ Qr and K C Qy then
dK,o’ S CrdT,a'

d) It exists p > 0 such that ns, < p fork=1,..., M.

The above assumptions on (Tk) i1 ensure that Skﬂ is a refinement of ¥;, and that this refinement
occurs inside the subdomain Q1. Let ‘Sk = (Mk,]-"k,Pk) with ./\/lk = {K eM, : K C Qk}
73k ={xp € Pr : & € O} and ]:k = .7:;“7 U]-';“ the set of faces of ./\/lk Wlth fkb and .7:;”
the boundary and internal faces of i, respectively. Condition a) in Assumption assures that
‘fk is a polytopal mesh on Q. b) guarantees that in 2\ Q41 and in the neighborhood of 0041
the meshes My, and My are equal and that My is a refinement of My in Qr41. ¢) and d)
ensure mesh regularity, will permit equivalences between jump norms and make the constant Cg of
Lemma [2.13| uniform in k. An example of meshes satisfying Assumption [2.18]is given in Section

Given (Tj)M , we define a sequence Dy, = (Xp,,Ip,, Vp,) of SWDGGD. Let
Vi = {vp € L2(Q) : vp|x € Py(K), VK € My} (2.12)
and (ex,;)icr, be a basis of Vi such that supp(ey ;) is restricted to one element of Mj. We set
Xp, ={¢k = (Cki)ier, * Ck,i € Rfor alli € I}

IIp, and Vp, are defined as in Eqgs. (2.6)), (2.8) and (2.10).



We can write Xp, = Yp, @ Zp,, where supp(Ilp, vr) C Q for ¢ € Yp, and supp(Ilp, &) C
Q\ Q for & € Zp,. For k =1 we have Yp, = Xp, and Zp, = {0}. For k > 2 and ¢y € Xp,_,
there exists { € Zp, such that Ilp, _, ¢r—1x0\0, = IIp,&k- By abuse of notation we we will denote
§k = dr—1Xa\0,, hence xq\q, is seen as an operator from Xp, , to Zp, .

In what follows Il is the restriction of Ilp, to Yp,. Let us define as well a gradient on Yp,
which will be used to impose inhomogeneous Dirichlet boundary conditions. Let ¢; € Yp, and

& € Zp,, for K € My, 0 € Frc and z € D o the gradient V5 gkcpk(ar:) is defined by

V5,6 Pk() =Vrpr(@) + w@wnmﬂ
7 dK,U
where = xx + s(y — k) and
(kK060 (Y) = [0k K0 (Y) if 0 € Fri or 0 € Ty N Fhop,
[Prlicoe(y) = Mgl — Mion if 0 € Fip \ Fip with o = 9K 1T

andKE./\//\lk,TGMk\./\//\lk.
We will denote VD 0 by V

M.

)

Theorem 2.19. The triple Dk = (YDk7Hﬁk’Vﬁk) is a SWDGGD scheme for each k=1, ...

Proof. We notice that Zsk is the SWDGGD corresponding to the local polytopal mesh %k, hence it
is a SWDGGD by construction. O

In what follows we will call Dy, the local SWDGGD. Remark that Lemmas andand The-
orem [2.15| are valid if we replace D, 2, haq and T with Dk, Qk, hAk and Sk
Observe that for ¢y € Yp, we have VDkgok # Vp, ¢k, indeed V5 B is missing the wg , factor in

the jumps at the faces o € ﬁk,b \ Fk,p. Adding the wgk , factor in those faces would prevent the limit
consistency of Dy.
In what follows Sz and Wﬁ are the operators defined by Definitions @ and @ but with Q
,D, and Xp replaced by Qy, Dk and Yp,. We define as well the jump semi norms on Xp, and Yp, .
For ¢y, € Xp, we define
/ ¢k K, o’

/@chrgk 2dy.

Since in our local scheme (to be defined in Section [3) we solve local elliptic problems with artificial
boundary conditions we need a local version of Sp, ; which measures the error of the method on
the boundary.

Definition 2.20. Let § € Zp, and ﬁk be a local SWDGGD, define

Sp,.re - Ho () — [0, 00] by

¢k|J(k = Z Z

KeMy ceEFK

and for &, € Zp,, pr € Yp, we set

2 |§<k),£k Z Z

KeM, UE]-'K

Sﬁk,J75k(v) = g;glxl/n (Hka P T vUHL2(Qk a + “p|J(k gk)

10



The L?(£;) norm is not taken into account in Sf)k Jén since our convergence results are in energy
and jump norms.

Lemma 2.21. Let v € H} () N H%(Q), then fork=1,..,.M

gggn SD JE( )<Csh/\7k||’l)||H2(Qk).

Proof. Follows the lines of [1I, Lemma 3.14]. O

In order to provide bounds on SD e, We need an additional norm to measure the error at the
interface between subdomains. Let qﬁk € ka, we define

1
D DD D el A"
Keﬁ&\ ceFrNFr g o

TGMk\Mk

The minus in | - | o0; refers to the fact that in the integral the argument lives outside M. Later,
[ o0t will be defined as well.

Lemma 2.22. Let ki, & € Zp, and v € H(Q). Then
Sﬁk Jﬁk( v) < Sﬁkw]fk(v) + Colkr — §k|8§2;7
where Cy =1+ Cy, and C? = fi Y(s)2s4ds. If moreover v € H?(2) N HE(Q) we have

SB,sm (V) < Cshig [0l + Colik — &klogg-  for fk—ézrgénmsp ().
€4p,,

Proof. Let ki, & € Zp,, v € HY(Q) and ¢, € Yp, defined by

Pk = argmln(HVDk &P VUHLZ(Qk)d + |90‘J )
PpEeY; Dy,

we have

2
”Vﬁk,m Pk — vﬁk,ék Pk HLQ(Qk)d

Z Z / 129 ([o6) Koo (Y) — [0) K oer (¥))? d,

KE./(-/l\k O'G]:Kﬂ]?k,b Ko Ko

where £ = xx+s(y—x k) for s € [0,1] and y € o. Using the change of variables de = degsdfldsdy
yields

V5, .k Px — V5, 5k<Pk||2L2 Qk)d

=2 // d%( “0’”“’%( ) = [Pr] K06 (1) dic o s” ™ dsdy

KEMk O'G]:Kﬁ]:k b

=2 Y Y g [ (ke ®) - [oddros )P dy.

Keﬂk O'EJTKﬂ]?k,b

11



If in the above sum o € F 3, then [0i]k o,k — [Pk K,0,6, = 0. Else, if 0 € Fy,; thereis T € Mk\/\/zk

such that o = 0K N OT and
(k) K omn — [Pk K, 06, = Ok — Iz,
which implies

Hvﬁk,mc Pr— Vﬁk,ﬁk@k||%2(9k)d
1
=C; ) > /HT(/%—§k)(y)2dyzci|’ik—§k|gg;

d
Keﬁk oceFxNFr Ko
TGMk\M\k

For the jump term |<Pk\j(k) x> We have

2
Prl T e,

£ Y ek ) — (il ) dy.

— —~ dK,O’ o
KeMyg O'E]:Kﬁ]:k,b

2
|(pk|f(k),m€

(2.13)

(2.14)

If 0 € Fip then [pil% o — [0r)% e, = 0, else, if o € Fi; with o = AT NOK, T € My \ My, we

have

[‘pkﬁ(,a,nk - [@k]%{,a,ik = ([‘pk]K,a,nk - [(pk]Kﬁék)([(pk]K’U’”k + [(pk]K’U’gk)
= (Mgrx — ple) ke — Nply + 2[or] k0.6, )-

Using Egs. (2.14)) and (2.15) we obtain

1
LTI R YD DEED D / T (1, — &) () dy

KE.A//TIQ ceEFkNFr Ko
TeEMy \M\k

w2 X % o [ ledkea izt - )]y

dK,o‘

KEM\IQ ceFkNFr
TEMk\/T/l\k

< I@nlFgy ¢, + 108 — €k|§Q; + 209k] 50, [k — Eklaq,
= (|<Pk|j(k)7gk + Kk — €k|aQ;)2-
Using the above estimate and Eq. (2.13) we get
SBp (V) S V5, 0 = Vollzzue + 10kl 70 k0
<V, .0k = VllLze + 9kl 50) ¢,
+ (1 + Cp)lrk = &kloq-
= Sﬁkvafk (U) + (1 + C¢)|I€k — £k|6§2;'

If moreover v € H}(Q) N H2(Q) and & = argmingcz, Sz, ;(v), Lemma yields S5 ;. (v)

CSh,/T/[\kHU||H2(Qk)-

12
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3 The local elliptic scheme

We introduce here our local SWDGGD elliptic scheme before embarking into its a priori error
analysis.
Set ¥g = 0 and define iteratively ¥y € Xp, for k =1,..., M as

Vg, :1§k+,‘£k, (31&)
where kj, € Zp, is defined as
Kk = Tr—1X0\Q (3.1b)

and 0, € Yp, is the solution of the local problem

/Qk AVﬁk_,Rk@k-Vﬁkg@dmz /Qk(foﬂ,ﬁkgo—F~Vﬁk<p) dx (3.1¢)

for all p € Yp,.
Remember that Vﬁk = Vﬁk o» hence we use homogeneous boundary conditions for ¢. Due to

the definition of Vﬁk Kk'the inhomogeneous Dirichlet boundary condition xj is weakly imposed on

. We have 1 = 0, hence 9, = 0; € Xp,. Then, for £ > 2 the scheme Eq. li computes a
new local solution 1§k on a refined mesh M &, Where the boundary condition is inherited from the
previous solution ¥ _1.

In Section we perform the a priori error analysis for the local solutions J% and provide
bounds for the errors in the local domains Q. Section [3.2] improves the results of Section [3.1] in
a particular case, showing that the error due to artificial boundary conditions is of higher order.
Finally, Section [3.3| provides error bounds for the global solution .

3.1 A priori error analysis for the local solution

In this section we proceed with the a priori analysis of the local elliptic scheme presented in Section 3]
Before proving convergence of the scheme we need the following interpolation result.

Lemma 3.1. Let {1 € Zp,_,, pr—1 € Yp,_, and & = (§p—1 + Yr—1)X0\Q, € Zp, . Then there
exists o € Yp, such that

V5, .0k = Vo, e, Ph-1llzne < Cilor—1l50_1) ¢, (3.2a)
|0kl 70,60 < Ciler—1l701).6, 1> (3.2b)

with C; = V/2Cy (1 + C’f),kC’r)lm, Cou ks = MAXK e My, 06 Fx w]_(}g, Cy from Lemma and C,. from
Assumption [2.18

Proof. Since M, is a refinement of My_; in €, there exists ¢ € Yp, such that Iz ¢ =
H@,ﬁ?k—ﬂm- Hence

2
Hvﬁkwfk wkivﬁquﬁkq Ph—1 ||L2(Qk)d
2

w(s) [@k]K,o’,Ek (y) dx

dK,a

2

sok*l]KyU’fk—l(y) dm,

dK,a

b(s)!

2 Y Z/

KeMy_1 0€EFK Dk.o
KCQy,
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Ky 617 63 Qi and Q1 bounged by thick lines ==,
K 01 C K1 =K1 UK,
I?z &4 b9 = o2 with (62,02) € Frp X Fr—1.b
03 € Fr.iy

64 = o4 with (64,04) € Frp X Fr—1.4-

Figure 2. Example of a situation described in the proof of Lemma .

since the broken gradients of Hﬁkﬂ(ﬁk—ﬂﬂk and 15, ok cancel each other out. With the change of

variables dx = dK)asd_ldsdy we have

.

and similarly for ¢;_;. Using C2 = f; ¥(s)%s41ds yields

2 1
w<s>“’”“]f“*5k(")\ do= o [ 062 ds [ lpilioe vy

dK,U dK,U

2
Hvﬁkaﬁk Pk — vﬁkuh&kfl(pk*l ||L2(Qk)d

<ot Y Y

KEA’/Y’(} oc€FK

+20] > N

KeMy_1 0€FK
KCQy,

< 2Ci(|wk|}(k)7€k + lwkil"gj\(k"_lL&kfl).

1
dK,o‘

/ [or)K o () dy

1
dK,U

/ [@k—l]K,U,fk—l (y)2dy

. . . 2 2 2 . 2
;[‘So obtain Eq. 1] it remains to prove |¢k|f(k),§k < Cw,kcr|‘»0k*1|j(k,1),gk_1' We write |S0k|f(k),§k

1

il = > 3 2 o [k @Pdy

KeMy 1 Rem, 6€EF; K:6 79
KCQw  Rek

Let K, K and & be as in the above sum, either 6 C K and so [pr]z 5 ¢, = 0 or there exists
o € Fk such that 6 C 0. In that latter case, if (6,0) € ]?k,b X ﬁk,u, or g € fkﬂ- then [px] g 5 6 =
[Pk—1]K,0,6, - Ifinstead (6,0) € Fip X Fr—1, then [‘pk’]f(,&,gk = w;(,la [Ok—1]K,0,60 - See Section

for an illustration of the above cases. Since wi}lg > 1, we obtain in all cases

[P 5.6, ] < WrollPr-1]K 060 1| < CooklPr-1]K 0604 -
6.8

Furthermore, by Assumption [2.18 we have di , < C;dz .. These considerations together give
, DY p s K.,6

1 1
Y X g [elrea @i T g [leclos 0y
Y - K& Jo K,o Jo
I(/\GMkUe‘FE i c€FK
KCK
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2 2 2 . . . .
hence |90k|f(k)7fk < vakCrwk*l‘f(kfl),gk,l and Eq. 1D is proved. In [11] section 6.1] it is shown
that Cy > 1, hence G,y xCp/* < C; = v2Cy (1 + C2 ,.C;)"/? and Eq. (3.2b) follows. O

The next lemma has been proved for the DGGD scheme in [I1] and is valid for the local SWDGGD
method as well.

Lemma 3.2. Let :/3k be a local SWDGGD scheme, then there exists Ceq > 0 depending only on o, ¢
and d such that

[Pkl 70y0 < CeallVp, rllL2uye  for all o € Yp,.
Proof. Follows the lines of [11, Lemma 3.8]. O

The next lemma shows that the error of the local solution depends as usual on the regularity
of the solution and data but also on the error committed on the artificial boundary condition. The
proof is inspired from the one given in [9] leading to Eq. (2.4]) and uses Lemmam

Lemma 3.3. Let u € H}(2) be the exact solution to Eq. 1} ki € Zp, and Oy € Yp, be solution
of Eq. (3.1c). Then

IVu — Vﬁk’nkﬁkHLz(szk)d + |1§k|f(k),m€

1+C. . (3.3)
< 3 qWﬁk(AVu+F)+CA min (S@k’J,Ek(u)JrCaVik*§k|agg)

§k€ZD,,
with Cy := Ceq(1 + k(A)) and Cy from Lemma [2.23

Remark 3.4. Observe that Lemma is valid for any ki, € Zp, and not only ki, given by scheme

Eq. .

Proof. Since ZSk is a SWDGGD scheme, by Definition for any v € Hgaiv(Q) and ¢y, € Yp, we
have

<|IVp, ¥YrllLz)eWp, (v).

/ (Vf,kwk cv+ Hﬁkz/}k V-v)de
Qp

As =V - (AVu+ F) = fo € L*(Q) we can take v = AVu + F and obtain

<NV, YellLz0)sWp, (AVu + F).

/Q (Vp, ¥k - (AVu + F) = Il5 ¥y fo) da

Using Eq. (3.1c|) we get

A(Vu — vﬁmék) -V, Ur d

o <V, YrllLz9.)aWp, (AVu + F).
k

Let ¢, € Yp, , we have

0 A(vﬁk,m‘pk - Vﬁk#ﬂkﬂk) . Vﬁkwk dx
k

< ||Vﬁk1/’k||L2(Szk)dWﬁk (AVU + F) + A A(vﬁk;K/k Yk — V'u,) . Vﬁkd)k dx
k

<V, ¥kllL2 e (Wp, (AVu+ F) + X[Vp, . or — V| 12(0,)a)-

D, Kk

15



We choose ¢ = pp — U, since V5, ki Pk — vﬁk,mﬁk = Vﬁk’o(s@k = 19;6) =V5, (or — 1§k) we get

AV 5, (66 = 91 2o o < / AV, o ok~ 08 Vi (ok — D) da
k

and hence

A 1
V5, (or = Ii)llze < W5, (AVu+ F) + w(A)[[V5, . or = Vul L2 (y)a-

This gives

IVu—=V5, . Vkllzne <IVu=Vg  ollzne + Vs, (0r = k)220,

1
SXWZS’C (AVU + F) + (1 + K/(A)) ||VU — vﬁk,nkwk”LQ(Qk)d'
Using |§k|f(k),mk < 10kl 7y mp + |0y — @kl 7k).00 Lemmaand Eq. 1) yields

~ Ce
0kl 700y e <191 T8y e T /\q W5 (AVu + F)

+CCqK(A)||VA Pk — VUHL2(Qk)d'

Dy Kk

Summing Eqgs. (3.5)) and (3.6 and taking the infimum over ¢y, € Yp, we get

A . 1+ Ce
||Vu — Vﬁk,nkﬂk”LQ(Qk)d + |19k‘f(k),nk < \ qWﬁk (AVU + F)

T Coql1+ K(A))Sp, . (),

We conclude using Lemma and taking the inf over .

O

Lemma 3.5. Let ((/ﬁk,@k)){g‘/[zl be the sequence defined by the local elliptic scheme Eqgs. 1'

to (3.1c). Then for k > 2

f;f?iz?ak (55,6, (W) + Colrr = Eloa; )

< 26 (Hvﬁkafﬁkﬂﬂk_l - VUHLQ(Q’C)d + |19k—1|f(k_1)7,€k71) ’

where C; is defined in Lemma [31]

Proof. Taking & = k we have

EkIgiZ?Jk (Sﬁkalﬁk (u) + Colrr — §k|‘992) < Sﬁk,lnk (u).

Since ki = (kg—1 + @k_l)xg\gk by Lemma there exists ¢y € Yp, satisfying

Hvﬁk#ﬂk@k o vﬁkfhfﬂkfﬂgk_lllfﬂ(ﬂk)d < Cil’[gk—lIf(k—l),/»;k,l7

“»Z’kb(k)ﬁk < Cilﬁkfllf(k—l),mk,l
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and so
Spy e, (W) :@g}é (IV5, o = Vullzzua + 101 75) 1)
k
<IV5, w0k — VulL2(9,)e + \@k\j(k),,{k
SHVA 191971 — VUHLQ(Qk)d + 2Ci|1§k71|f(k_1)

Dy kk—1 Kk—1"

O

Let ‘H C R4 be a countable set with 0 as only accumulation point. For each h € H we consider

a polytopal mesh sequence (Tp )il = (Mg, Fhrs Prk))il, satisfying Assumption with

h = maxg—1,...am hm, ., where hyy, , = max{hg : K € Mp}. Let Dy and ﬁh,k be the global

and local SWDGGD schemes given by those meshes T, . In the following the index h in Dy, and
ﬁh,k is left out of notation for the sake of simplicity.

Theorem 3.6. Let Dy, and Dy, be global and local SWDGGD. Let (1, )M, be the sequence

defined by the local elliptic scheme Egs. (3.1a]) to (3.1c) andu € HL(Q) the exact solution to Eq. (2.2).
Then fork=1,... M

%I_I}% IVu — Vﬁ]ﬁnk'l?k;HLQ(Qk)d + |19k‘f(k),mc =0. (3.7a)

If moreover u € H(Q) N H?(Q), the coefficients of A are Lipschitz continuous and F € H'(Q)?
there exists Cy,Ca,C3 depending on «, £, d, p, Cr, |Q], A, F and u such that

|IVu — vﬁk,nk@kHLZ(Qk)d + Il;k|j(k),mk <Cih, (3.7b)
IVu — Vﬁk,lﬂkl{ngL2(Qk)d + |1§k|j(k),mc SOQh/T/l\k + Cs|ki — £k|69;’ (3.7¢)

where &, = al"gmingezpk Sﬁk,J’ﬁ (u).

Remark 3.7. The above theorem gives three important results. The first one Eq. asserts
that the numerical solution given by the local scheme FEgs. to converges to the exact
solution even under weak reqularity of the solution and data. Assuming more regularity we recover
in Fq. the usual convergence rate. In Eq. we establish that the error on the local domain

depends on the local mesh size and the error committed on the artificial boundary.
Proof of Theorem[3.6 Let

Eﬁk = ||V’U, — Vﬁk,fikﬁk||L2(Qk)d + |19k|f(k),mc'

Since k1 = 0 and Zp, = {0} by Lemma [3.3| we have

1+ Ceq
Eﬁl S A

Wﬁl (AVu+ F) + CASﬁl,J,O(u)

and by Lemmas [3.3] and [3.5] we have, for k > 2,

. < 1+ Ceq

D = A Wﬁk (AVU + F) + 2CiCAEﬁk71-
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Let a = 2C;C 4y, since Sz, ;(u) < Sp,,s(u) it holds

14 Ceq
A

k
> " Wp (AVu + F)

=2

Es < Ozk_lEﬁl +

k

o & | (3.8)
< Caad*1Sp, s(u) + % Z ak*jWﬁj (AVu -+ F).

Jj=1

We have thus proved Eq. |D thanks to Eq. || Lemma and the limit conformity of ﬁj
for j =1,...,k (we recall that D; is a SWDGGD and hence a sequence of D; is limit conforming).
Under the additional assumptions on the data, from Lemmas and for Dy, we have

Sp,,1(u) <Csha, [|ull g2 (0,

Wﬁk (AVU =+ F) SCWh./\//Tk ||AVU + FHH] (Qk)d (39)
and so
14 Cog
Eﬁk < CAOzk_lcshMl ||u||H2(Q) + °a Z ak_lcwh/qj ||AVU + F||H1(Qj)d,
A =
which implies Eq. (3.7b)) with

1+ Ceq
)

Ci = CAOék_lcg;HuHHz(Q) +

Oék_lcwHAVU + FHHl(Qj)d.

k
=1

J

Let & = argmingc,, Sp, ;(u), it holds

gglzlg (Sﬁk,.],g(u) + Calkp — §|GQ;) < Sﬁw’gk (u) + Colkg — §k|6§2,§a
k

using Lemma we get Sz, T (u) < CSh/\?k llull 52(q,) and again from Lemma and Eq. li
we obtain the bound Eq. (3.7c|) with

C
Cy = CaCsllull 2, + — |AVu + F 100, (3.10)
where C3 = C4C%. O

3.2 Improved local estimate

Under stronger conditions and using the pointwise error estimates proved in [6] we can further
improve the local estimate Eq. (3.7¢) for k = 2.
Let z € Q, the weight function o, () = h/(h + |z — 2z|) and || - ||Wz,;e(9) a weighted Sobolev

norm defined by

(%
HU”Wj;;O(Q) = ig}]jafyww;ﬁoa |U|Wz'£:"’1° = fgﬁz}i ||0z,h5?HL°°(Q)'

We will use the following lemma, which is a version of [6, Corollary 5.5].

18



Lemma 3.8. Let A = aly with I; € R¥? the identity matriz and a > 0. Let u € Wy ®(Q) N
W2(Q) be solution of Eq. (2.1) with f € L*(), ¥ € Xp, solution of Eq. (3.1c). Then there is a
constant Coe > such that for any z € Q

[u(2) ~ T, 1(2)| < Coh® log(h™) fully2 = o). (3.11)

Applying Lemma to Eq. (3.7¢) we obtain a better bound on the local error for k = 2, as
explained in the following theorem.
Theorem 3.9. Let u € Wy '™ (Q) N W?2°(Q) be solution of Eq. (2.1) with A = aly and f € L*(Q)
as in Lemma . Let Dy and Dy, be global and local SWDGGD schemes and ((kk,Ur))s—, the

sequence defined by the local elliptic scheme Egs. (3.1a]) to (3.1c). Under the assumption that h <
Cpmingem, hx for Cp > 0 it exists Cy independent of u and h such that

||VU—V152)K21§2‘|L2(Q2)¢ + |1§2‘j(2)7f€2 ( )
_ 3.12

< Coh 4+ Cylho |ulge2 + B3/ 1og(h™! sup w200 1o ),

Mo ( M2| |H (D2) ( )y6892\89” Hwyﬁ (Q))

where Dy is a meighborhood of o specified below.

Remark 3.10. Equation (3.12) bounds the error in the local domain Qo and has three terms in
the right. From Eq. (3.10) we see that the first term depends on uw and F in Qo. The second term
depends on u in a small neighborhood of Qo. The last term depends on the regularity of u in the
whole domain, but it is of higher order and is measured in a weighted norm which weight is O (1)

close to the artificial boundary and O (h) far from it. Hence the error in Qs depends mostly on the
reqularity of u and F' inside or very close to €.

Proof. First we observe that Eq. (3.7¢) for k = 2 is valid with & € Zp, such that IIp, & is the
orthogonal projection of u onto Ilp, Zp,, indeed even for this choice of & we still have S5 ;. (u) <

Cshyg, llullrz0,). Let K € M, T € My \ My and o € Fx N Fr. From Assumption [2.18 ) we
have K,T € M; and Assumption [2.18d) implies hx < php. There exists Cr ([7, Lemma 1.59])
independent of u, T' and hx such that

/ TErés — ul(y)? dy <Cuuhilul?ps

Using Assumption [2.18d) we obtain 1/dk , < p/hx, hence
1
DS [ 1n6a — ul(w) dy < Cupli .

d
KG.K/E cEFkNFr Ko
TEMQ\MQ

with Dy = T. From Lemma @ we have

Ut re Mo\ Mo:0T N0 K £0, K € Mo}
/ lu — Thrria|(y)? dy = / [u = TEdl()*dy <ol Cohlog(h™") sup Jlullf e -
Since h < Cp mingem, hi it follows that 1/dk » < Chpp/h and thus
1 2
> > lu — Ilzrq|(y)” dy

d
KeMy OEFxNFr K.
TeMa\ M,

<1092 \ 99Q|C2 Crph?log(h™1)?  sup

3200 -
yeon\oe Nun (D)
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Applying a triangle inequality on |ke — §2|8Q; in Eq. 1) we get Eq. li O

3.3 A priori error analysis for the global solution

We next study the error on the whole domain €2 of the numerical solution ¥ € Xp, defined by our
local scheme Eq. (3.1)). The next Lemma is the main ingredient for the global error bound.

Lemma 3.11. Let u € H}(Q) be solution to Eq. (2.2) and (9%)}, be the sequence defined by scheme

Egs. (3.14) to (3.1c). Then we have

IVu =V, Jill2)e + 9kl 4y <C5(I[Vu = Vi, V-1l r2(0)a + (k-1 5-1))
+ Cs([[Vu — VﬁkﬁkékHLZ(m)d + |1§k|j(k),,§k)'

where Cs = v/2(1 4+ Cy) (1 +v2C, 1)
Proof. We have

IVu = Vo, 9k 72 (0)a

k] Ko
=Y X [ i) - Vo) - o) P o
KeMy oeFg ¥ VKo 7
Uk]T,0
- Y 2 [ 1w - Vo) - v P P e
TEMk\Mk oceFr e 7
Ik
+ >0y |Vu( Vgﬁk(x)fzb(s)mnl(ﬁﬁdm
Kerd, 0€Fx Y PKr.o Ko
— 1411

For the first term I, we have the following considerations. Let T' € M, \ M\k, then T'€ M _1 and
Vfﬁk = Vfﬂk_y Let 0 € Fr,if o ¢ Frb then wk]T,a = [’ﬂk—l]T,a'- If 0 € Fip then 0 = 0K NOT
with K € M}, and by Assumption ) K € My_1. Using Eqgs. 1) and |i we have

[Ok]7.0 — [Dk-1]7.0 =010 (T — Mpdg_1) — wro (Mgdy_1 — Tpdk_1)
:wT’g(Hfék — H?ﬁkfl).

Next, adding and removing [Jx_1]r,, from [Ji]r, we get

[Vrilr.0(y)

r<2 30 30 [ [Vu(@) = Vi) = v(s) g 2R, de
Dr o T,o
TeM\M, °€FT
(T — Tty
42 / SYeopy T = Mli1) (W) o )
Dt dT,a

KEMk oceFrNFK
TGMk\Mk
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Since wr , < 1, using a change of variables we have

I <2|Vu — VDk,lﬂk—ﬂ\%%Q\Qk)

1 .
+205 ) > dre /(Hfﬁkfﬂfﬁk—l)(y)zdy
KEM\k ceFrNFK ’ g

TGMk\/(-/l\k
=2||Vu — VDkffﬂk—lH%?(Q\Qk) + 2031|?§k - 19].3_1%9;”

where for ¢, € Xp,

1
2 ._ __ 2
ooy = X Y g [ Mrew?ay
KeM;y ceFxNFr ’
TeMN\M,,
For the second term IT we have [J4]k.o = [@k}K,Uﬁk ifo e ﬁk,i oro ¢ ﬁk,b N Fip and [Vi]r,e =
wK’g[ﬁk]K}g’nk ifoe -Fk,b \ -Fk,b~ Hence

11 <2|Vu—=V5 . Okl72 0,

+ 2 Z Z /D |1/J(s)(1 —WK,U)['ﬂk]K,o,Hk(y)Pdm

d
KGM\)@ ocE€EFTrNFK Ko
TGMk\M\k

~ 1 ~
<AVu=Vo, il +20 S Y g [k dy
KE.//V[\IC ceFrNFk Ko Jo
TGM;V-\/T/(\;C

<2|Vu = V5, . DkllF2i + 2C’i|1§k|?7(

k),lik'
We then obtain
Vu — V'Dkﬁk”%?(ﬂ)d <2|[Vu — VDk—lﬂk—1||2L2(Q)d +2([Vu - Vﬁk,,{kﬁk|\i2(9k)d

21,9 2 21,912
+ 201/)"0]6 — 19k_1|892_ + 2C¢‘ﬂk|f(k),nk'

(3.13)

Using similar arguments, we have

|19k‘§(k): > ! /[19k]1<,a(y)2dy

d
KeMy oeFk Ko

<Y Y o [Bdkan il

d
Ke/\?k oE€FK Ky

+20 > > ! /[191971]T,g(y)2dy (3.14)

_ dr
TeMp\My oeFr 7

1
+2 Z Z /W%,U(H?@k — 1) (y) dy
Ken, o€FxnFp 1070

TGMk\X/l\k
+2 |19k—1|?](k) + 20y — 191@—1%9;-

<P lFay e
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Combining Eqs. (3.13) and (3.14]) we get
IVu = Vo, 9kl L20)2 + 19kl 5y
<V2(|Vu = Vo, Ol 2y + [[Vu =V
+ Cyl9l 50y ) + VIR 708 p + 1911 50y + 108 = i1l )

il L@yt + Cyld = D1l gy

Dy Kk

S \@(HVU — kaflﬂk—lnL?(Q)d + |19k—1|J(k) + HVU — V@kmﬁkHLz(Qk)d
+(1+ Cw)mk‘j(k),,%) + \[2(1 + Cw)|1§k - ﬁk—l‘{m;r-

Since we easily get

|1§k - ﬁk71|agz < \/§Cw,k(|1§k|j(k),ﬁk + kal‘(](k))

we obtain
IVu=Vp, 0k L2)a + [kl 51
<V2(1+ Cy)(1+ V2C, 1) (IVu = Vo, Ol z2(ye + [9r—1] 1)
+V2(1+ Cyp) (1 + V200 1) (IVu = Vi, . Okllz2@t + 19kl 55 0,):
and the Lemma is proved. O

Theorem 3.12. Let u € H(Q) be solution of Eq. (2.2) and (9%)YL, be the sequence defined by
scheme Egs. (3.1a]) to (3.1c|). Then fork=1,... M

}Lig}) [Vu = Vo, 0l L2y + [l 5y = 0. (3.15)

If moreover u € H}(Q) N H2(RY), the coefficients of A are Lipschitz continuous and F € H' ()4
there exists Cg depending on «, £, d, p, Cy, |Q|, A, F and u such that

||V’LL — kaﬁkHLZ’(Q)d + wklj(k) < Cgh. (3.16)

Proof. Follows from a recursive argument, Theorem [3.6] and Lemma [3.11] O

4 A priori error analysis for quasilinear problems

In this section we analyze our local SWDGGD scheme for a class of non linear problems satisfying
Assumption For the sake of simplicity we consider f € L?(£2), but the algorithm and the results
can easily be generalized to f € H~1(Q). Under Assumptionthere exists a unique weak solution
u € H}(Q) of

/ A(u)Vu - Vode = / fvde  for all v € H}(Q). (4.1)
Q Q
The local elliptic scheme for problem Eq. (4.1]) is given as follows. Set ¥; € Xp, a solution of

/ A(H’D1191)V’D1191 . V’Dl (;51 dx = / fH’D1 ¢1 dx (4.2a)
Q Q

22



for all ¢; € Xp,. For k > 2 we set

I = ki + 1§k, (4.2b)
where ki € Zp, is given by
R — ﬂk_l)(Q\Qk (4.2C)
and U € Yp, is solution of
/ A(Hﬁk—lﬁk_l)vﬁkaﬁkék . Vﬁk Y dr = fﬂﬁkgok dx (4.2d)
Qp Qg

for all ¢, € Yp,.

We define again a subset H C R with zero as only accumulation point and for each h € ‘H two
sequence of meshes (T )M, (Tp.x) M, satisfying Assumption with h = maxg=1 . am ham,. We
consider the weighted gradient discretization methods Dy, i, Dy, deriving from %, , and §h7k, as
defined in Section [2:3] The following theorem establishes the convergence of the non linear local
SWDGGD scheme Eq. . The proof is inspired by a result in [9 chapter 2.1.4] for global non
linear schemes.

Theorem 4.1. For any h € H there exists exactly one Uy,1 € Dy 1 solution to Eq. (4.2a)). Moreover,
lp, ,9n,1 converges strongly in L?(Q) to a solution u of Eq. 1) and Vp, ,9p1 converges strongly
in L2(Q)? to Vu as h — 0.

We will prove that the same result holds for ¥, ; with & > 2. We start by proving convergence
of the local solutions ¥, ;. For simplicity we drop the index h in what follows.

Theorem 4.2. Let Assumption hold, ((m,ﬁk))gle be the sequence given by the local scheme

Eqgs. (4.2a)) to (4.2d) and u € H}(Q) be solution of Eq. (4.1)). Then for k=1,...M
}lll_% ||Vu - VﬁkmﬁkHLzmk)d = O, (43&)
}lliir%) |19k|f(k),nk =0, (4.3b)
where the limit is taken for h € H.

Proof. We will prove Eq. (4.3)) by recursion. For & = 1 we easily get Eq. (4.3a]), indeed k1 = 0,
1 = ¥ and by Theorem |4.1| we get

Jim [|Vu — V5, V1llz2()e = lim [ Vu — Vp, 91 12y = 0. (4.4)
Let ¢1 € Xp,, we have
101150y mr = 191501y < 191 = 1l 50y + 161150y -
From [I1I] we infer the existence of a constant Cey depending only on «, ¢, d such that

191 — 1l 501y < Ceall VD91 = Vi, 01l 12 (0)4,
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hence
‘1§1|j(1),,£1 Sceq||vD1191 - le(bl”L?(Q)d + |¢1|J(1) .

Taking ¢ = argmingc x,, (|p, ¢ — ullr2(0) + VD, ¢ — Vulr2(0)e + [] (1)) we get Eq. (4.3b) for

k =1 using the triangle inequality, Eq. (4.4) and Lemma m B
Let £ > 2 and suppose that Eq. li holds for £k — 1. By Lemma there exists 9, € Yp,

satisfying

V5, Pk = Vo, 1w n-tllzzcane < Gildi-1l 751y 0, 45)
|19k|f(k),mc < Ci|19k71|f(k71),nk_1~

Let J) € Yp, be solution of
/ Ak_l(vﬁk,ﬁkgk + Vﬁkﬁk) . V5k Pk dx = / f Hﬁkgok dx

for all ¢y, € Yp,, where A1 = A(Hﬁk_ﬁk,l). Since Vﬁk,nk (O + 19;6) = vﬁkﬂﬂcgk + Vﬁzﬁk it
follows that U = Jj, + U5. From Eq. 1' for k — 1 and Eq. 1' it follows that Vﬁk nkgk — Vu
strongly in L?(Q)¢. Thus if Vﬁ,ﬁk — 0 strongly in L?(£2;)? then vﬁk,mﬁ’f — Vu strongly in

L2(,)¢ and whence Eq. (4.3a) holds for k. From the coercivity of A
Auvﬁkékniz(szk)d S/ Ak—lvﬁ,ﬂ;k : Vﬁkﬁk da
, o / ,
= fﬂﬁ 7§k dx — Ak_lv,ﬁ . Iy, - V5 1§k dx
o k o KoKk k

<IIfllz2n M5, Ixllrzn) + AV 5, ., Inllz )2 IV 5, Okl L2 ()

<(Collfllzz ) + MV 5, e 2 @) IV 5, Dkl L2 (2100
and hence ||V 'l§k;||L2(Qk)d is bounded. It follows from the compactness of Dy, and [9, Lemma 2.15|
that there exists w € H}(€2) and a subsequence H' of H such that 5, U — w strongly in L2(€,)

and vﬁ;ﬁ’“ — Vw weakly in L2(Q;)% as h — 0 with h € H'. We will show that w = 0, that the

convergence holds for the whole sequence H and that Vg U converges strongly. Let v € HY Q%)
and

pr. = argmingey,, ([, ¢ —vllz2@0) + V5,0 = Vollz s + 19l 50),0)-

Since ﬁk is a SWDGGD, from Lemma we have that 5, px — v strongly in L?(Q) and
V5, e — Vv strongly in L?(,)¢. From Eq. || Vf)k_l,m_lﬂkjl — Vu strongly in L?(Q)9,
furthermore by coercivity and consistency we can show that H5k71§k71 — u strongly in L?(€,) as

well. The same holds for ¥;. Hence by the non-linear strong convergence Lemma [9] section D.4]
we obtain

A(Hﬁkiﬁk_l)vﬁkgok — A(u)Vv strongly in LQ(Qk)d,
A(Hﬁkiﬁk_l)vﬁwm — A(u)Vu strongly in L*(Q)%.
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It follows from weak-strong convergence Lemma [9] section D.4] and symmetry of A that
A(u)Vw - Vodz = Vw - A(u)Vu de
Qe Qp

i [ Vo Aap g

where the limit is for h € H'. On the other hand we have
/ Ak_1V5k1§k . Vﬁk Pk dx = f Hﬁk Pk dx
Q. Qe

— Ak,1Vﬁk,nkak . Vﬁkgok dw
Qp

and taking the limit we get

lim [ Ax-1Vp Ok Vg orde= [ fode f/ A(u)Vu - Vodx = 0. (4.7)

h—0 Q k k Qi Qp
Putting toghether Eqs. (4.6) and (4.7) and using the symmetry of Ax_; we obtain

A(w)Vw - Vode =0
Qp

for all v € Hi () and so w = 0. We can repeat the same reasoning for each subsequence of Vﬁk_@k
and obtain the same limit w = 0, hence II5, Uy — 0 strongly in L2 (Q) and Vs, Jx — 0 weakly in
L%(Q)? for the whole sequence H. Furthermore

/ Ak—lvﬁkék . vﬁkﬁk dx = fﬂﬁklgk dx
Qp, Qp

— | AaVp, ., Ok Vg Ok de
Qp

and so

}llli% /Qk Ak*lvﬁkﬁk . Vﬁkﬁk dx = 0,

which shows that limp_.o |\v5k 1§k||Lz(Qk)d = 0 and hence the strong convergence of V@lﬁk. It rests

to show Eq. (4.3b]), we have
10kl 70y e S10%] 700y s+ 1081 70,0
<CilPk-1l56-1) 0, T Ceall V5, DkllL2(04)a
and the result follows. O

The next Theorem can be proved with similar arguments as used in Section [3]

Theorem 4.3. Let Assumption hold. Consider (19;@),16\4: , the sequence given by the local scheme
Eqgs. (4.2a]) to (4.2d) and v € H5(Q) the solution of Eq. (4.1)). Then for k=1,..., M, we have

lim [V = Vo, 05 L2yt + [Pkl 50 = 0,

where the limit is taken for h € H.
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5 Numerical Experiments

In the following numerical experiments, we will use examples where the subdomains {Qk},ﬁ/le and
meshes {‘Zk}i‘/fz , are defined a priori. This might be realistic in applications where the location of
the singularities or high contrast of the solution are known a priori. When such a priori knowledge is
not available, we should use instead a posteriori error estimators for detecting the local subdomains.
This is developed in a companion paper [].

In what follows {Q;}2L, will be a sequence of embedded domains but we recall that this is not
a requirement. In the examples we consider f € L?(f2) and denote by (i € Xp, the solution of

/ A(Hpk Ck)kaCk . ka d)k dx = / fHDk gf)k dx for all ¢k S XDk7 (51)
Q Q

we refer to (g as the classical solution, that is, the one obtained by the usual scheme which solves
the equations in the whole domain after each mesh refinement. We can write (= ( + np with
(r € Yp, and 1, € Zp,. We will often compare 9, and 9, the solutions of Eq. (3.1) or Eq. (4.2)

against ( and fk respectively.

Computational cost. Asin our setting, the meshes are defined a priori only the the most accurate
solution (3; need to be computed. For the iterative schemes Egs. and instead it is
imperative to compute ¥y for £k = 1,..., M. If for example a conjugate gradient method is used
to solve the linear systems, then the computational cost of the local scheme can be considerably
smaller than the classical scheme due to the smaller problems solved on the fine meshes. For nonlinear
problems, the local scheme might be faster for any linear solver, as the non linear system is solved
only on a coarse mesh (see Section . This is illustrated in our numerical experiments.
It is useful to define the quantities

Local Err( ) = HVu Dk nk@kHLQ Q)4 + "gk|f(k),nk’
Global Err(dy) := ||Vu — Vp, 9kl 2 Qe+ |’L9k|J
Similarly we define Local Err((y,) and Global Err(¢;) for the local and global error of the classical

solutions. The local and cassical schemes have been implemented with the help of the C++ library
libMesh [I6].

5.1 Convergence Rates

In this example we want to verify results Eqgs. (3.16)), (3.7b)) and (3.7c)), hence we consider an example
with smooth solution. Let Q = [~1,1] x [-1,1], A = I, the identity matrix and f € L?(Q) such
that the exact solution is

u(z) = e~ 12003, (5.2)

Let M = 4, the local domains are such that & € Qy if |||/ < (5 —k)/dfor k=1,...,4.

In the first experiment we want to verify the estimates Eqgs. and (3.7D| -7 i.e. the convergence
of the local and global errors with respect to the global mesh size. For a fixed h we consider uniform
simplicial meshes ./\/lk on 0 with mesh size hA = h/2%~! and apply the local algorithm Eq. 1.)
we let h — 0 and verify the convergence rates From Figs. 3(a)| and [3( - we see that Egs. (3.16)
and (| - are verified for the local solution ¥,. We also see that the classical scheme gives results
with the same accuracy as the local scheme, both for the local and the global error. This example
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(a) Local error in Q4.

-1 = T - -1
2 -8~ Local Error(d,) 2 -8~ Global Errror(d4)
—%— Local E ¢ —— Global Errror(¢s)
9-2 | ocal }:ror(g};) 92 i
S S
g 273 : g 9-3 |
S 8
a2 8 & 2 |
275 | | 92-5 B
| | | | | | | |

(b) Global error in Q.

Figure 3. Ezxperiment : convergence of the local ¥4 and classical {4 solutions letting h — 0.

also indicates that if the high gradient regions are localized then there is no need of solving the
problem in the whole domain after refinements.

In the next experiment we want to see the influence of the second term (boundary layer term)
in the righthand side of Eq. on Local Error(dy). Let r €]0,1], we set M =2, Q; = Q and
Qo = [—r,7] x [=r,7]. We fix hpq, = /2/8 the mesh size of M; and let hzz, — 0. We plot the
results for different values of r (an illustration of this numerical experiment is given in Fig. . In

r=1/2 ‘ ‘ r=1/2
—— r=1/4 Py A A A r=1/4
= 27t e ——r=1/8 £ 27t ——r=1/8
2 & —A—r=1/16 El m—&TI/IG
g - hM\Z E - h-KA\2
M 93| = 93 < |
= =
s R < I
S 2
o5 | \ O - \( |
| | | | | | | |
275 9276 9-7 9-8 275 9276 9-7 98
hi, h,

(a) Local error in Q2.

(b) Global error in Q.

Figure 4. E:rpem'ment effect of the size of Q22 on the local solution Y2 when h/\72 — 0.

Fig. we see that when r is large enough the local error scales with the local mesh size. If,
instead, r is too small to cover the high gradient regions then the local error saturates very quickly.
With r = 1/8 we get nice convergence up to hia, /hgz, = 16 and with r = 1/4,1/2 we do not see
any saturation effects. In Fig. [5| we see that r = 1/16 is too small to cover the local variations and
indeed the local error does not converges. In Fig. we plot the total error on 2. We remark that
the error saturates for » = 1/16,1/8. It is interesting to compare the results for r = 1/8 in Figs.
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S
=

(a) Solution in Q.

(b) Zoom around the point (0,0).

Figure 5. Experiment ' solution u from Eq. l) with the size of domains Qg depending on r.

and in the first one there is a nice convergence while in the second an immediate saturation.
This indicates that even if the error outside of (25 is important, it does not propagate quickly into

Qs.

In Fig. [6] we plot the results of the same experiment shown in Fig. [f] but for {4 instead of ¥4. We
see that, again, the classical scheme gives similar results.

Local Error(¢s)

5.2 Influence of artificial boundary conditions

N
AN
T

Global Errror({s)
[N}
&
T

b
ot
T

- r=1/2

A A A ——r=1/4

——r=1/8
A =1/16
— hg,

- r=1/2
> r=1/4

271 —~—r=1/8
—A—1r =1/16
— hqm,

2—3 -

2—5 -

! ! ! !
275 276 27T 98
hx,

(a) Local error in Q.

2—5

2—6

2—7

hsz,

(b) Global error in Q.

Figure 6. Experiment ' effect of the size of Qo on the classical solution (2 when hﬂQ — 0.

The goal of this experiment is to verify the result of Theorem [3.9] we want to illustrate numerically
that the error due to artificial boundary conditions is of higher order as proved in estimate Eq.
We consider the same problem as in Section with M =2, Q; = Q and Qy = [-r,7] X
with 7 = 1/16. We saw previously that with this choice of r the error originating from the artificial
boundary conditions dominates the local error in 5. We solve Eq. with different mesh sizes
h = ha, using h X, = h/2% as local mesh size, with this choice of h X, the dominating term in

Eq. (3.12) is the last one, i.e. the one in h3/2log(h~'). We measure the local errors in €5 and
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plot the results in Fig. [7] We see that indeed the local error satisfies Eq. (3.12]) and converges even
slightly faster than predicted.

9-3 |- - Local Error(d2)
— h¥?log(hY)
h3/2
2—4 [

Error in Q5
[\
&
T

Figure 7. E:rperiment convergence order of artificial boundary conditions error term.

5.3 Non regular problem: discontinuous data

We next want to probe numerically the convergence of our local scheme for a solution only belonging
to H'*(Q) (for small £ > 0). The convergence is predicted by estimates Eqs. (3.15) and (3.7a).
We consider a problem that has been studied in [I5] and [20] (in the context of a posteriori error
estimators).

Let Q = [—1,1] x[—1, 1] and consider Problem Eq. with f = 0. We divide the computational
domain in four equal parts. Let the tensor be defined as A(x) = a1/2 in the 1st and 3rd quadrants
and A(x) = asl> in the 2nd and 4th quadrants. The exact solution is given by u(r,0) = r7u(0),
where

cos((m/2 —o)y)cos(( —m/2+ p)y) i 0<6<7/2,
1(0) = cos(py) cos((6 — 7+ o)) ifr/2<6<m,
cos(o7y) cos((6 — m — p)7y) ifm<6<3n/2,

cos((m/2 — p)y)cos((6 —3m/2 —o)y) if 3w/2 < 6 < 2.
The parameters v, p, o and R := a;/ag satisfy the following non linear equations

R = —tan((r/2 — o)) cot(p),

1/R = — tan(py) cot(op),

R = —tan(py) cot((7/2 — p)7),

max{0, 7y — 7} < 2yp < min{ny, 7},

max{0,7 — 7y} < —2vy0 < min{w, 27 — 7y}
It is known that u € H!T7=¢(Q) for any € > 0. In this example we choose v = 0.1, 0 = —197/4,
p=m/4 and R ~ 161.

In order to verify the estimates Eqgs. and , we perform the same experiments as in
Section [5.1} shown in Fig. 3] We take M = 4 and the same domain and mesh sequences. We let
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h — 0 and show the results in Fig. |8 We find a convergence rate of 0.09, which is consistent with
the results of [I7] and the fact that u is almost in H'1(2). As was observed in Section we see
that the two solutions ¥, and (4 have the same errors, both in the local and global domains.

2—1.8 - T - 271.8 [
B Local Error(d4) —B- Global Errror(ds)
—%— Local Error((y) —%— Global Errror((s)
J— ,0-09 P 1,009
S =
5 E
: 22 |- - o 9272 N
s s
g =
€a) €a)
2722 ! ! ! ! | 2722 ! ! ! ! |
272 273 274 275 272 273 274 275
h h
(a) Local errors of ¥4 and (4. (b) Global errors of Y4 and Ca.

Figure 8. Ezperiment ' convergence of (4 and ¥4 letting h — 0.

The influence of the term |xj — §k|(’m; in Eq. 1) on Local Error(dy;) is established next,
repeating the experiment of Section taking Qo depending on r €]0, 1] and letting h M, 0.
The results for ¥J2 and ¢, are plotted In Figs. [9] and respectively. In contrast to the previous
experiment, we do not have any saturation since the error inside the local domain largely dominates.

—-1.8
2 r=1/2 9-18 | r=1/2
——r=1/4 - —>—r=1/4
> ——r=1/8 cg ——r=1/8
‘= —A—r =1/16 = —A—r=1/16
5 — 0088 [ — 0088
g 9-2 |- Mo | = Mo
H | 22| -
g 8
3 o
O \\\\x
2-2.2 ! ! ! ! = 2-2.2 | ! ! ! ! 5
275 276 277 278 275 276 277 278
hﬂ2 h'ﬂ2
(a) Local error in Q. (b) Global error in Q.

Figure 9. Experiment effect of the size of Q2 on the local solution Y2 when h/ﬁz — 0.
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(a) Local error in Q3. (b) Global error in Q.

Figure 10. Ezperiment ' effect of the size of Q2 on the classical solution (2 when h.A//l\z — 0.
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(a) Solution. (b) Norm of gradient in log color scale.

Figure 11. Experiment solution and norm of the gradient.

5.4 Computational cost of local versus non-local scheme for a linear equa-
tion
In this experiment we want to compare the numerical efficiency of the classical and local schemes on

a linear equation, by computing a sequence of solutions with each scheme and plotting the accuracy

against the cost.

We consider equation Eq. with Q@ = {z € R? : ||z|2 < 37}, a diffusion tensor A(x) =
e+ 1 —sin(||z||2)1% with ¢ = 1072 and the force f is 1 if « is the first or third quadrants and —1
else. An illustration of the solution is given in Fig. [[I} We choose five local domains defined as

0 = Q and

3
Q= J{z e R? |zl — (2 — D7r/2] < 2°7F} fork=2,..,5.
j=1

The meshes /\//\lk are built so that hﬁl ~ 0.3 and for £k = 2,...,5 we have hﬁk = hmﬂ/z We
run the local scheme and at each level we compute the full error and cost of 9. As a measure of
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the cost for ¥ we take the sum of the time spent solving the linear systems up to level k using the
conjugate gradient (CG) method with incomplete Cholesky (IC) factorization as preconditioner. In
[13] it is shown that this approach is the most robust and efficient for such problems. Then we run
the classical scheme Eq. on each mesh My and obtain a sequence of solutions (. For each
k=1,...,5 we compute the full error and cost of (5. The cost is given by the time spent for solving
the linear system at level k, where we use again CG with IC as preconditioner. Observe that here
the cost is not cumulative as in the local method, since the classical scheme does not need (;_1 in
order to compute (. In Fig. we plot the global error against the cost for both schemes, we
see a significant speedup for the local scheme. In Fig. we plot the speed up in function of the
error, the graph is obtained dividing the two curves seen in Fig. [12(a)|

103 R E| T
—- Classical E —— Speed up
. —-©—- Local R
g | 6 :
wn
= 2 |
- 10% | =
@ r b o) | N
8 [ ] 8 4
o | | ;
8 10 ? *E 9] |
! \ \ \ \ | \ \ \
1 08 0.6 0.4 1 0.8 0.6
Global error in 2 Global error in 2
(a) Global error in Q VS CG-IG cost in seconds. (b) Speed up in function of the global error in Q.

Figure 12. Ezxperiment n performance comparison in a linear case.

For linear problems such as in this experiment, the reason for the speed up is not only the
reduced number of degrees of freedom but mostly the condition number of the linear system. The
classical scheme solves linear systems arising from FE discretizazion on the whole domain, hence
the matrix has high variations in its components due to possibly high contrasts in the tensor and
the variation in the measure of the different elements. Instead, the local scheme uses matrices built
from local discretizations, hence the tensor has milder variations and the elements of the local mesh
have uniform size. This leads to matrices with smaller condition number. We see in Fig. [13(a)| that
the number of degrees of freedom of the two schemes is almost the same, while in Fig. [13(b)| it is
shown that the condition number of the stiffness matrix is much lower for the local scheme.

5.5 Quasilinear equation

In our last numerical experiment we want to compare the efficiency of the local and classical methods
when solving a quasilinear equation. We consider the stationary Richards equation in pressure head
form, given by

—V - (A(z, )V (h — 23)) = 0. (5.3)

It describes the movement of a fluid in an unsaturated media and can be put in the form of Eq. (4.1))
with the change of variables u = h — z5. We consider 2 = [—50, 50] x [—50, 50] and add the Dirichlet
condition g(x) = 10(50 — x3) + 3(50 + x2). The diffusion tensor is given by A(x, h) = As(x)A,(h),
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Figure 14. Experiment ' solution and norm of the gradient for the Richards equation.

where A (x) is the conductivity in saturated conditions and A, (h) is the relative conductivity. These
latter quantities are defined by

Ay(@) = {10‘3 if [|zfloo < 20, A(h) = (1= (ah)" (1 4 (ah)™)~™)2

1 else, o (14 (ah)n)m/?

The model A, (h) has been taken from [22], where m = 1 — 1/n is chosen. The parameters a,n are
soil dependent: we choose a = 1/500 and n = 2.68, which is in the range of real case parameters.
Remark that the tensor is discontinuous in & and hence does not satisfy Assumption 2.2} We plot
in Fig. the reference solution and the norm of its gradient, we see that the gradient is highly
discontinuous.

Let M =4, Q; = Q and Q, for k = 2,3,4 defined by & € Q, if ||z|| < 20(1 + 27%). First, we
fix hgg = 100v/2/2** and compute the local solutions 9}, given by the local method Eq. . At
the first level £ = 1 we need to solve a nonlinear problem on a coarse grid using Newton iterations,
where the initial guess is an extrapolation of the Dirichlet condition g(x) on the whole domain. In
the next levels k > 1 the local scheme solves a linear system using the Picard iteration step defined
in Eq. . At each level we compute the full error and cost of J;. As a measure of the cost
for ¥y we take the sum of the time spent solving the linear and non linear systems up to level k.
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Since at k = 1 we perform a linearization of the system, it is no more symmetric because of the
additional term, hence it has to be solved with the GMRES iterative scheme with incomplete LU
(ILU) factorization as preconditioner, instead of CG with IC. In the following iterations with k& > 2
we solve a linear system and hence the CG scheme with IC is used.

Then we compute similar solutions with the classical method and compare the costs. For the
classical solution we need, for each k = 1,2,3,4, to solve Eq. with the Newton method. As
initial guess we take again g(x) and the Newton iterations are stopped when the error of the classical
solution (i is similar to the one of ¥;. In about 3 or 4 Newton iterations we obtained errors differing
by only about 1%. To measure the cost for (; we consider the time spent in solving the non linear
system at level k. The cost here is not cumulative as in the local method but on the other hand the
linear systems to solve are not symmetric and the GMRES scheme with ILU preconditioner is used.
In Fig. we plot the error against the cost for this experiment. We see that the local scheme
performs much better than the classical scheme in terms of computational cost versus accuracy.

Finally we compare the accuracy and cost of solving the local systems Eq. replacing
Hﬁk_lﬁk,l with Hﬁk 1§k, i.e., defining nonlinear local problems. These local systems have now to be
solved by Newton method and GMRES with ILU. We denote by 6} the solution where we use one
Newton iteration and by 6% the solution with two Newton iterations. In Fig. We plot the error
against the cost for Jy, 0}, and 67. We see that one Picard iteration gives very similar error to the
one or two Newton iterations but at a smaller cost, thanks to the CG scheme.
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Figure 15. Ezperiment ' performance of classical scheme, local scheme and local scheme with Newton iterations
instead of one Picard iteration.

6 Conclusion

In this paper we introduced a local scheme for linear and quasilinear elliptic equations. The method
does not rely on an iterative procedure and only needs one global solve on a coarse mesh. All
subsequent computations are local. The a priori error analysis has been performed under weak
regularity assumptions thanks to the gradient discretization framework. Numerical experiments
have shown the efficiency of the scheme when applied to equations with localized high gradient
regions. In a forthcoming paper [I] the a posteriori error analysis of the same scheme will be
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presented. Thanks to the a posteriori error estimators the local domains can be defined even when
the singularities are not known a priori. We note that the extension of the local scheme to parabolic
problems is also of interest. In particular, we believe that the techniques developed for a priori and
a posteriori error analysis for the local scheme for elliptic PDEs also allow to analyze local time
stepping schemes for parabolic PDEs.
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A Equivalence to SWIPG scheme

In this appendix we show that the SWDGGD scheme described in Section is equivalent to the
SWIPG method of [I0, [7]. In particular we show that Eq. with D = (Xp,p, Vp) as defined
in Section is equivalent to [7, equation 4.63], in order to do that we follow [II], where the
equivalence of a GD to the SIP method is shown. We suppose that A(x,u) = A(z) and Ax = A|k
the restriction of A to an element K € M is constant, that f € L?(Q2) and hence f = f;.

Starting from Eq. and developing the gradients we get

/ AVpY - Vpo da

Z/AKVﬁV(bdm

Kem

DD SN A

KeMoeFi Dk, o
AKnKJT ‘MK
PPy / = V() Wko (W)elk o (y) du
KeMoeFk Dk,o K,o
=I1+1I+1I1I.

k(U k.o(Y)VEd(®) + [0k o (Y)VEI (X)) 1K o da

dKO’

Since * = i + s(y — zk) for s €]0,1[, y € o and V9 € Py (K)? then
Vid(x) ngo. = Vi(y TLK,TJerJ )1 — )’

with p;(y) polynomials of £ — 1 degree in the components of y. It follows from Eq. (2.7) that

/v I(@) - s (s) ds = Vied(y) - nic.os

hence, using the change of variables dz = s~ 1dy ,dsdy we get

M= 5 [ Al w)V5o) + 6o ) Viedlw) - mocer

KeMoeFk
For 0 € F; with 0 = 0K N 90T let n, = nk , and
[[Hpﬁ]]o = Hfﬁ — HT’lS‘, {{AVHDﬂ]}w,U = wK7UA|KVH?’l9 + wT7UA|TVHT19.
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If 0 € F with 0 = 0K N 0N let n, = nk , and
[Mpd]s = i, {AVIIpY Y, » = Al VIIEY.

It holds [V k,» - Nk,o = —wk - [p¥]s - N, and similarly for ¢, hence

II=— Z Z /wK,g([[Hpﬁ]]gAKVHfgbjLﬂﬂpqs]]c,AKVHfﬁ).nady

KeMoeFk g

==Y [ ([MpY],{AVIIpo }u o + [Tnelo {AVIIDI ) o) - Ry dy.

oeFv7

For III, using C? = f; 1(5)%259~1ds and by the usual change of variables, we obtain

OK,o
mnr=cj » > di’gwiﬂ /U [Mpd], [Mpd]s dy

KeMoeFg ’
=Y w32 [ ool Tinol, dy.
oceF o Ja
where h, is the diameter of ¢ and ~,, 7, for o € F; are defined by
o 26K,05T,a'
B 6K7U + 6T,a ’

6]( 5T ha- WK, o WT,o
=O2< 70w2 + 70w2 >: Zh ( 7 )
1l ¥ dK,a Ko dT,a To Yo vie dK,o‘ dT,a

Yo

and for o € Fy by

ho
dK,a .

Yo = 5K,07 Nlo = Ci;

Summing I, 11,111 we get the equivalence of [, AVp? - Vpéda and [T, equation 4.64] with the
parameter 7, chosen as above. Under the additional hypothesis that the mesh sequence satisfies

heo
min{d cKeM,0€Fg}>Cr>0,
K,o

we have that 1, > C2Cx. Since C2 > d/(1 — a?), letting a — 1 we can have 7, as large as desired.
n b b Ui
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