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Abstract

A Quasi Toeplitz (QT) matrix is a semi-infinite matrix of the kind A = T (a) + E where
T (a) = (aj−i)i,j∈Z+ , E = (ei,j)i,j∈Z+ is compact and the norms ‖a‖W =

∑
i∈Z |ai| and ‖E‖2

are finite. These properties allow to approximate any QT-matrix, within any given precision,
by means of a finite number of parameters.

QT-matrices, equipped with the norm ‖A‖QT = α‖a‖W + ‖E‖2, for α > (1 +
√

5)/2,
are a Banach algebra with the standard arithmetic operations. We provide an algorithmic
description of these operations on the finite parametrization of QT-matrices, and we develop
a MATLAB toolbox implementing them in a transparent way. The toolbox is then extended to
perform arithmetic operations on matrices of finite size that have a Toeplitz plus low-rank
structure. This enables the development of algorithms for Toeplitz and quasi-Toeplitz matrices
whose cost does not necessarily increase with the dimension of the problem.

Some examples of applications to computing matrix functions and to solving matrix equa-
tions are presented, and confirm the effectiveness of the approach.

1 Introduction

Toeplitz matrices, i.e., matrices having constant entries along their diagonals, are found in diverse
settings of applied mathematics, ranging from imaging to Markov chains, and from finance to the
solution of PDEs. These matrices can be of large size, and often they are infinite or semi-infinite
in the original mathematical model.

As shown in [17], semi-infinite Toeplitz matrices do not form an algebra; in particular, neither
product nor inverses of semi-infinite Toeplitz matrices are still Toeplitz structured in general. How-
ever, this property continues to hold up to a compact operator from `2 onto itself, where `2 is the
linear space formed by sequences x = (xi)i>0 such that ‖x‖2 := (

∑+∞
i=1 |xi|2)1/2 < +∞. More

precisely, the set of semi-infinite Toeplitz matrices plus a compact `2 operator is a Banach algebra,
that is, a Banach space with the `2 operator norm, closed under matrix multiplication, where the as-
sociated operator norm is sub-multiplicative. We refer to such matrices as Quasi-Toeplitz matrices,
in short QT matrices. Their computational properties have been investigated in [2, 7, 8, 13].

We provide a description of finitely representable QT matrices, together with the analysis of
the computational properties of their arithmetic, moreover we provide an implementation of QT
matrices in the form of a MATLAB toolbox called cqt-toolbox (fully compatible with GNU/Octave),
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where the acronym cqt stands for “Computing with Quasi Toeplitz matrices”, and show some
examples of applications. The toolbox can be downloaded from https://github.com/numpi/

cqt-toolbox.

1.1 Motivation

Matrices of infinite size are encountered in several applications which describe the behavior of
systems with a countable number of states, and more generally whenever infinite dimensional objects
are involved. Typical examples come from queuing models where the number of states of the
stochastic process is infinitely countable, say, it can be represented by the set Z of relative integers
or by the set Z+ of positive integers, so that the probability transition matrix is bi-infinite or semi-
infinite, respectively. In other models, like the random walk in the quarter plane [31], [24], in the
QBD processes [27], and in the more general MG1 and GM1 queues [32], the set of states is discrete
and bidimensional, i.e., defined by integer pairs (i, j) where at least one component ranges in an
infinite set. Sometimes, these pairs belong to Z×Z+ or to Z+×Z+. In these cases, the probability
transition matrix has a block structure with infinitely many blocks and with blocks which have
infinite size.

A typical feature shared by many models is that — sufficiently far form the border — the
transitions from a state to another depend on their relative positions and are independent of the
single state, see for instance the tandem Jackson queue [22] or the random walk in the quarter
plane analyzed in [24, 31]. In these situations, the transition probability matrix is block Toeplitz
almost everywhere and its blocks are Toeplitz except for some elements in the upper left corner.
In particular, the blocks can be written in the form T (a) +E, where T (a) = (aj−i) is the Toeplitz
matrix associated with the sequence a = {ai}i∈Z, while E is a matrix having only a finite number of
nonzero entries containing the information concerning the boundary conditions. The computation
of interesting quantities related to these models, e.g., the steady state vector, requires to solve
quadratic matrix equations whose coefficients are given by the blocks of the transition probability
matrix.

The numerical treatment of problems involving infinite matrices is usually performed by trun-
cating the size to a finite large value, by solving the finite problem obtained this way and using this
finite solution to approximate part of the solution of the infinite problem.

In [30] the author analyzes this approach — called the finite section method — for infinite linear
systems, providing conditions that ensure the solution of the truncated system to converge to the
solution of the infinite one, as the size of the section tends to +∞. The analogous strategy can be
adopted for solving matrix equations or computing matrix functions, but — in general — there is no
guarantee of convergence. In fact, in [1,26,28] bad effects of truncation are highlighted when solving
infinite quadratic matrix equations arising in the Markov chains framework. In [23] a method is
designed for a subclass of bidimensional random walks where the solution can be represented in
a special form. In particular, the authors point out the difficulty to apply the matrix geometric
method of Marcel Neuts [32], and therefore of solving a quadratic matrix equation, due to the
infinite size of the matrix coefficients and of the solution.

Recently, a different approach has been introduced by studying structures that allow finitely
represented approximations of infinite matrices and that are preserved by matrix operations. Work-
ing with this kind of structured matrices does not require to truncate to finite size in order to carry
out computations.

In [2, 7, 8, 13], the class QT of semi-infinite Quasi-Toeplitz (QT) matrices has been introduced.
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This set is formed by matrices of the kind A = T (a) + E where, in general, a(z) =
∑
i∈Z aiz

i

is a Laurent series such that ‖a‖W =
∑+∞
i=−∞ |ai| is finite, and E is a compact correction. Each

element of this class can be approximated — at any arbitrary precision — with the sum of a banded
Toeplitz T (ã) plus a matrix Ẽ with finite support. QT-matrices form a Banach algebra and enable
the implementation of an approximate matrix arithmetic which operates on the elements of the
class. Using this tool, one can deal with certain classical linear algebra issues just plugging the new
arithmetic into the procedures designed for matrices of finite size.

Another intriguing aspect of QT-arithmetic is that it can be easily adapted to finite matrices of
the form Toeplitz plus low-rank. This paves the way for efficiently computing functions of Toeplitz
matrices, which has been recently raised some attention. See [19] for applications concerning signal
processing. In [25, 29] computing the matrix exponential of large Toeplitz matrices is required for
option pricing with the Merton model.

1.2 New contributions

In this paper, by continuing the work started in [2, 7, 8, 13], we analyze the representation of QT
matrices by means of a finite number of parameters, in a sort of analogy with the finite floating
point representation of real numbers. Moreover, we investigate some computational issues related
to the definition and the implementation of a matrix arithmetic in this class. Finally, we provide an
effective implementation of the class of finitely representable QT matrices together with the related
matrix arithmetic in the MATLAB toolbox cqt-toolbox.

In order to perform approximations of QT matrices with finitely representable matrices, we
introduce the following norm

‖A‖QT = α‖a‖W + ‖E‖2, α =
1 +
√

5

2
.

This norm is different from the one used in [2,7,8,13]: it is slightly more general, and still makes the
set QT a Banach algebra. Moreover, we will see that this choice allows a complete control on the
approximation errors and enables us to perform, in a safe way, different computational operations
like compression or matrix inversion.

The paper is organized as follows. In Section 2 we recall the definition and some theoretical
results about QT-matrices, together with the norm ‖ · ‖QT . We introduce the class of finitely
representable QT matrices and provide a first description of the cqt-toolbox.

Section 3 deals with the definition and the analysis of the arithmetic operations in the algebra
of finitely representable QT matrices. The first subsections deal with addition, multiplication,
inversion and compression. Then, Section 3.5 describes the extension of the arithmetic (and of
the toolbox) to the case of finite QT matrices. Section 4 provides some examples of applications,
Section 5 draws the conclusions.

In the appendices, we provide some details on the Sieveking-Kung algorithm for triangular
Toeplitz matrix inversion A.1, and on the main algorithms for computing the Wiener-Hopf factor-
ization A.2.

2 The class of QT matrices

We start by introducing the set of semi infinite matrices that we are going to implement, recall its
main properties and provide an effective (approximate) finite representation.
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2.1 The Wiener class and semi infinite Toeplitz matrices

We indicate with T := {z ∈ C : |z| = 1} the complex unit circle, and with W the Wiener class
formed by the functions a(z) =

∑+∞
i=−∞ aiz

i : T→ C such that
∑+∞
i=−∞ |ai| < +∞, that is functions

expressed by a Laurent series with absolutely summable coefficients.
The set W, endowed with the norm ‖a‖W :=

∑
i∈Z |ai|, is a Banach algebra. By the Wiener

theorem, [14, Section 1.4], a Laurent series in W is invertible if and only if a(z) 6= 0 on the unit
circle. Under the latter condition, there exist functions u(z) =

∑∞
i=0 uiz

i, l(z) =
∑∞
i=0 liz

i ∈ W
with u(z), l(z) 6= 0 for |z| 6 1 such that the factorization

a(z) = u(z)zml(z−1), u(z) =

∞∑
i=0

uiz
i, l(z) =

∞∑
i=0

liz
i

holds where m is the winding number of a(z). The above decomposition is known as Wiener-Hopf
factorization. We refer the reader to the first chapter of the book [14] for more details.

We associate an element a(z) =
∑
i∈Z aiz

i of the Wiener class with the semi-infinite Toeplitz
matrix T (a) = (ti,j) such that ti,j = aj−i for i, j ∈ Z+, or, in matrix form

T (a) =


a0 a1 a2 . . .

a−1 a0 a1
. . .

a−2 a−1 a0
. . .

...
. . .

. . .
. . .

 .

Matrices T (a) naturally define operators from `2 into itself, where `2 is the set of sequences x =

(xi)i>1 such that ‖x‖2 = (
∑∞
i=1 |xi|2)

1
2 is finite. In particular, one can show that ‖T (a)‖2 6 ‖a‖W ,

where ‖T (a)‖2 denotes the operator norm induced by the `2-norm on the operator T (a).
Given a(z) ∈ W we denote a+(z) =

∑∞
i=1 aiz

i, a−(z) =
∑∞
i=1 a−iz

i, so that we may write
a(z) = a−(z−1) + a0 + a+(z). Moreover, given the power series b(z) =

∑∞
i=0 biz

i ∈ W, we denote
H(b) = (hi,j) the semi-infinte Hankel matrix defined by hi,j = bi+j−1, for i, j ∈ Z+.

DespiteW is closed under multiplication, the corresponding matrix class formed by semi-infinite
Toeplitz matrices of the kind T (a), for a ∈ W, is not. However, it satisfies this property up to a
compact correction [14] as stated by the following result.

Theorem 2.1. Let a(z), b(z) ∈ W and set c(z) = a(z)b(z). Then

T (a)T (b) = T (c)−H(a−)H(b+).

where H(a−) = (h−i,j)i,j>1, H(b+) = (h+i,j)i,j>1 with h−i,j = a−(i+j+1) and h+i,j = bi+j+1. Moreover,

the matrices H(a−) and H(b+) define compact operators on `2 and are such that ‖H(a−)‖2 6
‖a−‖W and ‖H(b+)‖2 6 ‖b+‖W .

Assume that a(z) =
∑n+

−n− aiz
i where 0 6 n−, n+ < ∞. We recall that (see [17], [18]) for

a continuous symbol a(z) the matrix T (a) is invertible if and only if a(z) 6= 0 for |z| = 1 and
the winding number of a(z) is 0. On the other hand, from [18, Theorem 1.14] the latter condition
implies that there exist polynomials u(z) =

∑n+

i=0 uiz
i and l(z) =

∑n−
i=0 liz

i having zeros of modulus
less than 1 such that a(z) = u(z)l(z−1). Therefore we may conclude that if T (a) is invertible then
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there exists the Wiener-Hopf factorization a(z) = u(z)l(z−1) so that T (a) = T (u)T (l)T and we
may write

T (a)−1 = (T (l)T )−1T (u)−1. (1)

Observe that since u(z) and l(z) have zeros of modulus less than 1, by Wiener’s theorem, are
invertible as power series. These arguments, together with Theorem 2.1, lead to the following
result [17].

Theorem 2.2. If a(z) =
∑n+

−n− aiz
i, then T (a) is invertible in `2 if and only if there exists the

Wiener-Hopf factorization a(z) = u(z)l(z−1), for u(z) =
∑n+

i=0 uiz
i and l(z) =

∑n−
i=0 liz

i having
zeros of modulus less than 1. Moreover u−1(z), l−1(z) ∈ W so that

a−1(z) = l(z−1)−1u(z)−1,

T (a)−1 = T (l−1)TT (u−1) = T (a−1) + E, E = H(l−1)H(u−1),

‖E‖2 6 ‖l−1‖W‖u−1‖W .
(2)

2.2 Quasi-Toeplitz matrices

We are ready to introduce the central notion of this paper.

Definition 2.3. We say that the semi-infinite matrix A is Quasi-Toeplitz (QT) if it can be written
in the form

A = T (a) + E,

where a(z) =
∑+∞
i=−∞ aiz

i is in the Wiener class, and E = (ei,j) defines a compact operator on `2.

It is well known [17] that the class of QT matrices, equipped with the `2 norm, is a Banach
algebra. However, the `2 norm can be difficult to compute numerically, so we prefer to introduce
a slightly different norm which still preserves the Banach algebra property. Let α = (1 +

√
5)/2

and set ‖A‖QT = α‖a‖W + ‖E‖2. Clearly, ‖A‖QT is a norm which makes complete the linear
space of QT-matrices. Moreover, it is easy to verify that this norm is sub-multiplicative, that is,
‖AB‖QT 6 ‖A‖QT ‖B‖QT for any pair of QT matrices A,B. This way, the linear space of QT
matrices endowed with the norm ‖ · ‖QT forms a Banach algebra that we denote by QT . Observe
also that ‖A‖2 6 ‖A‖QT for any QT matrix A.

The next lemma ensures that every QT matrix admits finitely representable approximations
with arbitrary accuracy.

Lemma 2.4. Let A = T (a) + E ∈ QT and ε > 0. Then, there exist non negative integers

n−, n+, nr, nc such that the matrix Â = T (â) + Ê, defined by

â(z) =

n+∑
i=−n−

aiz
i, Êij =

{
Eij if 1 6 i 6 nr and 1 6 j 6 nc

0 otherwise
,

verifies ‖A− Â‖QT 6 ‖A‖QT · ε.

Proof. Since A ∈ QT then ‖a‖W =
∑
j∈Z |aj | <∞. This means that there exist n−, n+ such that

‖a− â‖W =
∑

j<−n−

|aj |+
∑

j>−n+

|aj | 6 ε‖A‖QT /α. (3)
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Since E represents a compact operator, there exist k ∈ N, σi ∈ R+ and ui, vi ∈ RN with unit
2-norm, i = 1, . . . , k, which verify ‖E −

∑k
i=1 σiuiv

T
i ‖2 6 ε

2‖E‖2. The condition ‖ui‖2 = ‖vi‖2 = 1
implies that there exist two integers nr and nc such that the vectors

ũi(j) =

{
ui(j) if j > nr

0 otherwise
, ṽi(j) =

{
vi(j) if j > nc

0 otherwise
,

have 2-norms bounded by
ε‖A‖QT

4kmaxi σi
. Then, denoting by ûi := ui − ũi and v̂i := vi − ṽi, and setting

Ê :=
∑k
i=1 σiûiv̂

T
i , we find that

‖ûiv̂Ti − uivTi ‖2 = ‖ũivTi + ûiṽ
T
i ‖2 6

ε‖A‖
QT

2kmaxi σi
=⇒ ‖Ê −

k∑
i=1

σiuiv
T
i ‖2 6

ε

2
‖A‖

QT
.

To conclude, we have ‖E − Ê‖2 6 ‖E −
∑k
i=1 σiuiv

T
i ‖2 + ‖

∑k
i=1 σiuiv

T
i − Ê‖2 6 ε‖A‖

QT
. Thus,

from the latter inequality and from (3) we get‖A− Â‖QT = α‖a− â‖W + ‖E − Ê‖2 6 ε‖A‖QT .

This result makes it possible to draw an analogy between the representation of semi-infinite
quasi Toeplitz matrices and floating point numbers. When representing a real number a in floating
point format fl(a) it is guaranteed that

fl(a) = a+ E , |E| 6 |a| · ε,

where ε is the so-called unit roundoff.
We design a similar framework for QT-matrices. More precisely, analogously to the operator

“fl(·)”, we introduce a “truncation” operator QT (·) that works separately on the Toeplitz and on
the compact correction, as described by Lemma 2.4. So, for a QT-matrix A = T (a) +Ea, we have

QT (A) = T (â) + Êa = A+ E , ‖E‖ 6 ‖A‖QT · ε, (4)

where ε is some prescribed tolerance set a priori (analogously to the unit roundoff), and QT (A)

is given by the sum of a banded Toeplitz matrix T (â) and a semi infinite matrix Êa, with finite
support.

Matrices of the kind QT (A) form the class of finitely representable Quasi Toeplitz matrices,
where, unlike the case of floating point numbers, the lengths of the representations are not constant
and may vary in order to guarantee a uniform bound to the relative error in norm.

The cqt-toolbox collects tools for operating with finitely representable Quasi Toeplitz matrices.
The Toeplitz part is stored into two vectors containing the coefficients of the symbol with non
positive and with non negative indices, respectively. The compact correction is represented in
terms of two matrices Ûa ∈ Rnr×k and V̂a ∈ Rnc×k such that Êa(1 : nr, 1 : nc) = ÛaV̂

T
a coincides

with the upper left corner of the correction.
In order to define a new finitely representable QT matrix, one has to call the cqt constructor,

in the following way:

1 >> A = cqt(neg , pos , E);
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In the above command, the vectors pos and neg contain the coefficients of the symbol a(z)
with non positive and non negative indices, respectively, and E is a finite section of the correction
representing its non zero part. For example, to define a matrix A = T (a) + E as follows

A =


1 0 2
−3 4 1 2

−1 2 1 2
. . .

. . .
. . .

. . .

 = T (a) + E,


a(z) = −z−1 + 2 + z + z2,

E =

[
−1 1

−2 2

]

one needs to type the following MATLAB commands:

1 >> E = [-1, 1;-2, 2];

2 >> pos = [2 1 1];

3 >> neg = [2 -1];

4 >> A = cqt(neg , pos , E);

It is also possible to specify the correction in the factorized form E = UV T .

1 >> U = [1; 2];

2 >> V = [-1; 1];

3 >> A = cqt(neg , pos , U, V);

Removing the ; from the last expression will cause MATLAB to print a brief description of the infinite
matrix.

1 >> A

2

3 A =

4

5 CQT Matrix of size Inf x Inf

6

7 Rank of top -left correction: 1

8

9 - Toeplitz part (leading 4 x 5 block):

10 2 1 1 0 0

11 -1 2 1 1 0

12 0 -1 2 1 1

13 0 0 -1 2 1

14

15 - Finite correction (top -left corner):

16 -1 1

17 -2 2

The different parts composing a QT matrix A can be fetched independently using the instruc-
tions symbol and correction. For the previous example we have:

1 >> [neg , pos] = symbol(A)

2

3 neg =

4

7



5 2 -1

6

7 pos =

8

9 2 1 1

10

11 >> E = correction(A)

12

13 E =

14

15 -1 1

16 -2 2

The command [U, V] = correction(A) allows to retrieve the correction in factorized form. The
rank of the latter can be obtained with the command cqtrank.

3 Arithmetic operations

When performing floating point operations it is guaranteed that

fl(a� b) = a� b+ E , |E| 6 (a� b) · ε,

where � is any basilar arithmetic operation (sum, subtraction, multiplication, and division).
Extending the analogy, the matrix arithmetic in the set of finitely representable QT matrices is

implemented in a way that the outcome of A�B, for any pair of finitely representable A,B ∈ QT
and � ∈ {+,-,*,/,\}, is represented by QT (A�B) such that

A�B = QT (A�B) + E , ‖E‖QT 6 ε‖A�B‖QT . (5)

Notice that the outcome of an arithmetic operation between finitely representable QT matrices,
might not be finitely representable, that is why we need to apply the QT (·) operator on it.

Another benefit of the QT (·) operator is that it optimizes the memory usage, since it minimizes
the number of parameters required to store the data up to the required accuracy. The practical
implementation of QT (·) is reported in Section 3.4.

We now describe how the arithmetic operations are performed in the cqt-toolbox. These
overloaded operators correspond to the built-in function of MATLAB, i.e., they can be invoked with
the usual operators +,-,*,/,\. Since we represent only the non zero sections of infinite objects we
rely on operations between matrices and vectors that might be of non compatible sizes, e.g., sum of
vectors with different lengths. This has to be interpreted as filling the missing entries with zeros.

3.1 Addition

Given two finitely representable QT matrices A = T (a) + Ea and B = T (b) + Eb, the matrix
C = A+B is defined by the symbol c(z) = a(z) + b(z) and by the correction Ec = Ea +Eb. Hence,
the symbol c(z) is computed with two sums of vectors. The factorization Ec = UcV

T
c is given by

Uc = [Ua, Ub], Vc = [Va, Vb]. (6)

8



Then, applying the compression technique, where Uc and Vc are replaced by matrices Ûc and V̂c,
respectively, having a lower number of columns and such that ‖Ec − ÛcV̂ Tc ‖2 is sufficiently small,
we get

QT (A+B) = A+B + E , ‖E‖QT 6 ε‖A+B‖QT .
The compression technique will be described in Section 3.4.

We refer to E as the local error of the addition. Observe that if the operands A and B are
affected themselves by an error EA and EB , respectively, that is, the original QT-matrices A and B
are represented by approximations Â and B̂, respectively such that

Â = A+ EA, B̂ = B + EB , (7)

then the computed matrix QT (Â+ B̂) differs from A+B by the total error given by

QT (Â+ B̂)− (A+B) = EA + EB + E , (8)

where EA + EB is the inherent error caused by the approximated input, while E is the local error.
Equation (8) says that the global error is the sum of the local error and the inherent error, and can
be used to perform error analysis in the QT-matrix arithmetic.

3.2 Multiplication

In view of Theorem 2.1 we may write

C = AB = T (c)−H(a−)H(b+) + T (a)Eb + EaT (b) + EaEb = T (c) + Ec,

where c(z) = a(z)b(z) and

Ec = T (a)Eb + EaT (b) + EaEb −H(a−)H(b+).

The symbol c(z) is obtained by computing the convolution of the vectors representing the symbols
a(z) and b(z), respectively.

For the correction part, denoting by Ea = UaV
T
a , Eb = UbV

T
b , H(a−) = MaN

T
a , H(b+) = MbN

T
b

the decompositions of the matrices involved, we may write Ec = UcV
T
c with

Uc = [T (a)Ub, Ua, Ma] , Vc =
[
Vb, T (b)TVa + Vb(U

T
b Va), Mb(N

T
b Na)

]
.

Notice that, the products T (a)Ub and T (b)TVa generate matrices with infinite rows and finite
support. The computation of the non zero parts of the latter require only a finite section of T (a)
and T (b)T , respectively. These operations are carried out efficiently relying on the fast Fourier
transform (FFT).

The compressed outcome QT (AB) satisfies the equation

QT (AB) = AB + E , ‖E‖QT 6 ε‖AB‖QT ,

where E is the local error of the operation. If the operands A and B are affected by errors EA and
EB , respectively, such that (7) holds, then the global error in the computed product is given by

QT (ÂB̂)−AB = E +AEB +BEA + EAEB (9)

where AEB + BEA + EAEB is the inherent error caused by the approximated input, while E is the
local error of the approximated multiplication. In a first order analysis we may replace the inherent
error with AEB +BEA neglecting the quadratic part EAEB .
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3.3 Inversion

Let A = T (a) + Ea ∈ QT be a finitely representable QT matrix such that the symbol

a(z) =

n+
a∑

i=−n−a

aiz
i

admits the Wiener-Hopf factorization in the form a(z) = u(z)l(z−1), so that T (a) = T (u)T (l)T

is invertible and T (a)−1 = (T (l)−1)TT (u)−1. Assume also that Ea is given in the factored form
Ea = UaV

T
a where Ua and Va are matrices formed by k columns and have null entries if the row

index is greater than ma.
Thus, we may write A = T (a)(I + T (a)−1Ea) so that, if I + T (a)−1Ea is invertible then also A

is invertible and

A−1 = (I + T (a)−1Ea)−1T (a)−1, T (a)−1 = (T (l)−1)TT (u)−1. (10)

Observe also that by Theorem 2.1 we may write T (u)−1 = T (u−1) and T (l)−1 = T (l−1).
Equation (10) provides a way to compute A−1, represented in the QT form, which consists

essentially in computing the coefficients of u(z), l(z) and of their inverses, and then to invert a
special QT matrix, that is, I + T (a)−1Ea =: I + E.

Here we assume that the coefficients of the polynomials u(z), l(z) and of the power series
u(z)−1 and l(z)−1 are available. In the appendix, we provide more details on how to perform their
computation. Once we have computed u(z)−1 and l(z)−1, by Theorem 2.1 we may write

T (a)−1 = T (b)−H(l−1)H(u−1), b(z) = l(z−1)−1u(z)−1, (11)

where the coefficients of b(z) are computed by convolution of the coefficients of u(z)−1 and of
l(z−1)−1.

Concerning the inversion of I + E, where E = T (a)−1Ea, we find that E = T (a)−1UaV
T
a =:

UV T , for U = T (a)−1Ua, V = Va. Consider the k × k matrix Sk = Ik + V TU which has finite
support since V TU = V Ta T (a)−1Ua and both Ua and Va have a finite number of nonzero rows. If
Sk is invertible then it can be easily verified that I − US−1k V T is the inverse of I + UV T , that is

(I + UV T )−1 = I − US−1k V T , Sk = Ik + V TU. (12)

Now, combining (10), (11), and (12) we may provide the following representation of the inverse:

B := A−1 = T (b)−H(l−1)H(u−1)− T (l−1)TT (u−1)UaS
−1
k V Ta T (l−1)TT (u−1).

Thus we may write B in QT form as

B := T (b) + UbV
T
b , b(z) = l(z−1)−1u(z)−1,

where

Ub =
[
H(l−1), T (l−1)TT (u−1)UaS

−1
k

]
and Vb = −

[
H(u−1), T (u−1)TT (l−1)Va

]
.

In order to analyze the approximation errors in computing A−1 as a finitely representable QT
matrix, we assume that the computed values of the Wiener-Hopf factors u(z) and l(z) are affected by
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some error and that also in the process of computing the inverse of a power series we introduce again
some error. Therefore, we denote by û(z) and l̂(z) the computed values obtained in place of u(z)

and l(z), respectively in the Wiener-Hopf factorization of a(z) and set eul(z) = a(z) − û(z)l̂(z−1)

for the residual error. Moreover, denote by δu(z) = u(z) − û(z), δl(z) = l(z) − l̂(z) the absolute
errors so that we may write the residual error as

eul = lδu + ûδl
.
= l̂δu + ûδl.

We indicate with v(z) and w(z) the power series reciprocal of û(z) and l̂(z), respectively, i.e., such

that û(z)v(z) = 1 and l̂(z)w(z) = 1, while we denote with v̂(z) and ŵ(z) the polynomials obtained

by truncating v(z) and w(z) to a finite degree. Set eu(z) = v̂(z)û(z) − 1, el(z) = ŵ(z)l̂(z) − 1

for the corresponding residual errors. We approximate a(z)−1 with the Laurent polynomial b̂(z) =

ŵ(z−1)v̂(z) up to the error einv = a(z)̂b(z) − 1. Finally, we write
.
= and ·

6 if the equality and

the inequality, respectively, are valid up to quadratic terms in the errors eul(z), eu(z), and el(z).
This way, we may approximate the matrix B = T (a)−1 = T (a−1)−H(l−1)H(u−1) with the matrix

B̂ = T (̂b)−H(ŵ)H(v̂).

It is not complicated to relate B − B̂ to the errors einv(z), eul(z), eu(z), el(z) as expressed in
the following proposition where, for the sake of notational simplicity, we omit the variable z.

Proposition 3.1. The error E = T (a)−1 − B̂, where B̂ = T (̂b) − H(ŵ)H(v̂), is such that E =
−T (a−1einv) + Ee, Ee = H(l−1 − ŵ)H(u−1) +H(ŵ)H(u−1 − v̂), and

‖T (a−1einv)‖2 6 ‖a−1‖W‖einv‖W , ‖Ee‖2 6 ‖l−1 − ŵ‖W‖u−1‖W + ‖u−1 − v̂‖W‖ŵ‖W .

Moreover, for the errors einv, eu, el and eul defined above it holds that

einv
.
= eu + el + a−1eul

.
= eu + el + u−1δu + l−1δl. (13)

For the errors l−1 − ŵ and u−1 − v̂ it holds that

l−1 − ŵ = (l−1 − l̂−1) + (w − ŵ) = −l̂−1[l−1δl + el]

u−1 − v̂ = (u−1 − û−1) + (v − v̂) = −û−1[u−1δu + eu].
(14)

Proof. By linearity, we have E = T (a− b̂)−H(l−1)H(u−1)+H(ŵ)H(v̂) = −T (a−1einv)+Ee, where
Ee = H(l−1 − ŵ) + H(ŵ)H(u−1 − v̂), which, together with Theorem 2.1, proves the first part of

the proposition. Observe that a−1 = (eul + ûl̂)−1
.
= (ûl̂)−1(1 − (ûl̂)−1eul) so that, since û−1 = v

and l̂−1 = w, we may write

b̂− a−1 = ŵv̂ − wv + (ûl̂)−2eul = (ŵ − w)v̂ + w(v̂ − v)(ûl̂)−2 + (ûl̂)−2eul.

Thus, since ŵ − w = l̂−1el
.
= l−1el, and v̂ − v = û−1eu

.
= u−1eu we arrive at

b̂− a−1 .
= a(el + eu + aeul),

which proves (13). Equations (14) are an immediate consequence of the definitions of el and eu.

Proposition 3.1 enables one to provide an upper bound to ‖T (a)−1 − B̂‖ in terms of el, eu, δl
and δu as shown in the following corollary.
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Corollary 3.2. For the error E = T (a)−1 − B̂ it holds

‖E‖QT ·
6 (α‖a−1‖+ ‖u−1‖W‖l−1‖W )W (‖eu‖W + ‖el‖W + ‖u−1‖W · ‖δu‖W + ‖l−1‖W · ‖δl‖W ).

A similar analysis can be performed for the errors in the computed inverse of A = T (a) + Ea.
We omit the details.

We are ready to introduce a procedure to approximate the inverse of T (a), which is reported
in Algorithm 1. If the UL factorization cannot be computed, then the routines returns an error.
The thresholds in the computation are adjusted to ensure that the final error is bounded by ε.
The symbol b(z) of T (a)−1 is returned, along with v̂(z) and ŵ(z) such that T (a)−1 = T (̂b) +
H(v̂)H(ŵ) + E , where E = −T (a−1einv) + Ee, Ee = H(`−1 − ŵ)H(u−1) + H(ŵ)H(u−1 − v̂), and

‖E‖ ·6 (α‖a−1‖W + ‖u−1‖W‖l−1‖W )ε.

Algorithm 1 Invert a semi-infinite Toeplitz matrix with symbol a(z) — up to a certain error ε.

1: procedure InvertToeplitz(a(z), ε)
2: try
3: [û(z), l̂(z)]←WienerHopf(a(z), ε4 )
4: catch
5: error(“Could not compute UL factorization”)
6: end try
7: v̂(z)← InversePowerSeries(û(z), ε/‖u−1‖W)

8: ŵ(z)← InversePowerSeries(l̂(z), ε/‖l−1‖W)
9: b(z)← v̂(z)ŵ(z−1)

10: return b(z), v̂(z), ŵ(z)
11: end procedure

From Corollary 3.2 we find that ‖E‖QT 6 (α‖a−1‖W + ‖l−1‖W‖u−1‖W )ε. Thus, the correctness
of the algorithm relies on Corollary 3.2 and on the existence of black boxes, which we will describe
in the appendix, that implement the functions WienerHopf(·) and InversePowerSeries(·).
Relying on (10), similar algorithm and analysis can be given for the computation of (T (a) +Ea)−1.

3.4 Truncation and compression

We now describe in detail the implementation of the operator QT on a finitely generated QT
matrix. The truncation of a QT matrix A = T (a) + Ea is performed as follows:

(i) Compute ‖A‖QT .

(ii) Obtain a truncated version â(z) of the symbol a(z) by discarding the tails of the Laurent
series. This has to be done ensuring that ‖a− â‖W 6 ‖A‖QT ·

ε
2α .

(iii) Compute a compressed version Êa of the correction using the SVD and dropping negligible
rows and columns. Allow a truncation error bounded by ‖A‖QT ·

ε
2 .

The above choices of thresholds provide an approximation Â to A such that ‖A − Â‖QT 6
‖A‖QT · ε. Notice that, the use of the QT-norm in the steps (ii) and (iii) enables to recognize
unbalanced representations and to completely drop the negligible part.
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When performing step (i), the only nontrivial step is to evaluate ‖Ea‖2. To this end, we compute
an economy size SVD factorization of Ea = UaV

T
a . This will also be useful in step (iii) to perform

the low-rank compression.
In particular, we compute the QR factorizations Ua = QURU , Va = QVRV , so that, UaV

T
a =

QURUR
T
VQ

T
V . Then, we compute the SVD of the matrix in the middle RUR

T
V = URΣV TR . We thus

obtain an SVD of the form Ea = UΣV T , where U = QUUR, and V = QV VR. This is computed
with O(nk2) flops, where n is the dominant dimension of the correction’s support. The value of
‖Ea‖2 is obtained reading off the largest singular value, i.e., the (1, 1) entry of Σ.

Algorithm 2 Truncate the symbol a(z) to a given threshold ε.

1: procedure TruncateSymbol(a(z), ε) . a(z) =
∑
n−6j6n+

ajz
j

2: if Min(|an+
|, |an− |) < ε then

3: if |an+
| < |an− | then

4: a(z) = a(z)− an+
zn+

5: ε← ε− |an+ |
6: else
7: a(z) = a(z)− an−zn−
8: ε← ε− |an− |
9: end if

10: a(z)← TruncateSymbol(a(z), ε).
11: end if
12: return a(z)
13: end procedure

Concerning step (ii), we repeatedly discard the smallest of the extremal coefficients of a(z), until
the truncation errors do not exceed the specified threshold. In particular, we rely on Algorithm 2
using ε

2α‖A‖QT as second argument.
In step (iii), we first truncate the rank of Ea by dropping singular values smaller than ε

4 ·‖A‖QT .
To perform this step, we reuse the economy SVD computed at step (i). Then, we adopt a strategy
similar to the one of Algorithm 2 to drop the last rows of U and V . We set an initial threshold
ε̂ = ε

4‖A‖QT , and we drop either the last row Un of U or Vm of V if the norm of UnΣ (resp. VmΣ)
is smaller than the selected threshold. We then update ε̂ := ε̂ − ‖UnΣ‖ (similarly for VmΣ) and
repeat the procedure until ε̂ > 0. This leads to a slightly pessimistic estimate, but ensures that the
total truncation is within the desired bound.

3.4.1 Hankel compression

When computing the multiplication of two Toeplitz matrices T (a) and T (b) it is necessary to store
a low-rank approximation of H(a−)H(b+) (see Theorem 2.1). In fact, storing H(a−) and H(b+)
directly can be expensive whenever the Hankel matrices have large sizes e.g., when we multiply two
QT-matrices having wide Toeplitz bandwidths. However, the numerical rank of the correction is
often observed to be much lower than the dominant size of the correction’s support. In such cases
we exploit the Hankel structure to cheaply obtain a compressed representation Ec = UcV

T
c . We

call this task Hankel compression.
We propose two similar strategies for addressing Hankel compression. The first is to rely on

a Lanczos-type method, in the form of the Golub-Kahan bidiagonalization procedure [33]. This
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can be implemented by using matrix-vector products of the form y = Ax or y = ATx, where
A = H(a−)H(b+) is a product of two Hankel matrices. The product y = Ax can be computed in
O(n log n) time using the FFT. Since the Hankel matrices are symmetric, the multiplication by AT

is obtained swapping the role of a− and b+.
This approach has an important advantage: the rank can be determined adaptively while the

Lanczos process builds the basis, and assuming that Lanczos converges in O(k) steps, with k being
the numerical rank of A, then the complexity is O(kn log n) flops: much lower than a full QR
factorization or SVD.

A second (similar) strategy is to use random sampling techniques [20], which rely on the evalua-
tion of the product AU , with U being a matrix with normally distributed entries. If the columns of
AU span the range of A, then we extract an orthonormal basis of it, and we use it to cheaply com-
pute the SVD of A [20]. In the implementation the number of columns of U is chosen adaptively,
enlarging it until a sufficient accuracy is reached. The product AU can be efficiently computed
using the FFT, and it’s possible to obtain BLAS3 speeds by re-blocking.

Both strategies are implemented in the package, and the user can select the Lanczos-type al-
gorithm running cqtoption(’compression’, ’lanczos’) or the one based on random sampling
with the command: cqtoption(’compression’, ’random’).

The performance of the two approaches are very similar. In Figure 1 the timings for the
compression of the product of two n × n Hankel matrices are reported. The symbol has been
chosen drawing from a uniform distribution enforcing an exponential decay as follows:

a(z) =
∑
j∈Z+

ajz
j , aj ∼ λ(0, e−

j
10 ), (15)

where λ(a, b) is the uniform distribution on [a, b]. In the example reported in Figure 1, the numerical
rank (up to machine precision) of the product of the Hankel matrices generated according to (15)
is 90. The break-even point with a full SVD is around 500 in this example, and this behavior is
typical. Therefore, we use a dense singular value decomposition for small matrices (n 6 500), and
we resort to Lanczos or random sampling (depending on user’s preferences) otherwise.

In the right part of Figure 1 we report also the accuracies by taking the relative residual ‖UV T −
H(a−)H(b+)‖2/‖H(a−)H(b+)‖2. Since the norms are computed as dense matrices, we only test
this up to n = 4096. The truncation threshold in this example is set to 10−14.

3.5 Finite quasi Toeplitz matrices

The representation and the arithmetic, introduced so far, are here adapted for handling finite
size matrices of the form Toeplitz plus correction. Clearly, all the matrices of finite size can be
represented in this way. This approach is convenient only if the corrections of the matrices involved
in our computations are either sparse or low-rank. Typically, this happens when the input data of
the computation are banded Toeplitz matrices.

In what follows, given a Laurent series a(z) we indicate with Tn,m(a) the n×m Toeplitz matrix
obtained selecting the first n rows and m columns from T (a). Given a power series f(z) =

∑
j>0 fjz

j

we denote by Hn,m(f) the n×m Hankel matrix whose non-zero anti-diagonal elements correspond

to f1, f2, . . . , fmin{n,m}. Finally, given a Laurent polynomial a(z) =
∑m−1
j=−n+1 ajz

j we indicate with

ã(z) the shifted Laurent polynomial zn−ma(z).
In order to extend the approach, it is essential to look at the following variant of Theorem 2.1,

for finite Toeplitz matrices [34].
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Size Lanczos Random

128 1.85 · 10−15 1.76 · 10−15

256 2.52 · 10−15 5.78 · 10−15

512 1.48 · 10−15 2.15 · 10−15

1,024 1.01 · 10−15 1.69 · 10−15

2,048 7.84 · 10−15 2.71 · 10−15

4,096 1.61 · 10−15 1.03 · 10−15

Figure 1: On the left, timings required to compress a product of two n × n Hankel matrices with
decaying coefficients, for different values of n, and using different strategies. The tests with the
dense singular value decomposition have been run only up to n = 4096. The other methods have
been tested up to n = 216. On the right, the accuracies, up to size 4096, in the 2-norm achieved by
setting the truncation threshold to 10−14.

Theorem 3.3 (Widom). Let a(z) =
∑m−1
−n+1 ajz

j, b(z) =
∑p−1
−m+1 bjz

j and set c(z) = a(z)b(z).
Then

Tn,m(a)Tm,p(b) = T (c)−Hn,m(a−)Hm,p(b
+)− JnHn,m(ã+)Hm,p(̃b

−)Jp

where Jn =

 1

. .
.

1

 ∈ Rn×n is the flip matrix.

An immediate consequence of Theorem 3.3 is the following extension of the Wiener-Hopf fac-
torization for square Toeplitz matrices.

Corollary 3.4. Let a(z) =
∑n−1
−n+1 ajz

j and let a(z) = u(z)l(z−1) be its Wiener-Hopf factorization.
Then

Tn,n(a) = Tn.n(u)Tn,n(l)T + JnHn,n(u)Hn,n(l)Jn.

The above results introduce an additional term with respect to their counterparts for semi
infinite matrices. In particular, if the lengths of the symbols involved is small, compared to the
dimension of the matrices, then the support of the non-Toeplitz component is split in two parts
located in the upper left corner and in the lower right corner, respectively. This suggests to consider
two separate corrections.

Handling two separate corrections is convenient as long as they do not overlap. When this is the
case, we represent finite quasi-Toeplitz matrices by storing two additional matrices, that represent
the lower right correction in factorized form. More precisely, A ∈ Rn×m is represented with two
vectors, storing the symbol, and with the matrices Ua, Va,Wa, Za such that UaV

T
a and JnWaZ

T
a Jm

correspond to the corrections in the corners. As a practical example we report two possible options
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for defining the matrix

A =



1 3

−2
. . .

. . .

. . .
. . .

. . .

. . .
. . . 3
−2 1


+


1 1
1 1

1 2 3
4 5 6

 ∈ R12×12.

1 >> n = 12;

2 >> E = ones (2,2);

3 >> F = [1 2 3; 4 5 6];

4 >> pos = [1 3];

5 >> neg = [1 -2];

6 >> A = cqt(neg , pos , E, F, n, n);

Once again, we also give the possibility to directly specify the corrections in the factorized form.

1 >> U = [1; 1];

2 >> V = U;

3 >> W = [1; 2];

4 >> Z = [1; 2; 3];

5 >> A = cqt(neg , pos , U, V, W, Z, n, n);

The arithmetic operations described for semi-infinite QT matrices can be analogously extended
to this case. In the section we describe in more detail how to handle the corrections when performing
these operations.

In particular, when the corrections overlap, we switch to a single correction format, as in the
semi-infinite case, where the support of the correction corresponds to the dimension of the matrix.
In practice this is done by storing it as an upper-left correction, setting the lower right to the empty
matrix. For this approach to be convenient, the rank of the correction needs to stay small compared
to the size of the matrix. In fact, only the sparsity is lost, but the data-sparsity of the format is
still exploitable.

3.5.1 Handling the corrections in the computations

Let A = T (a)+UaV
T
a +JnWaZ

T
a Jn and B = T (b)+UbV

T
b +JnWbZ

T
b Jn. For simplicity, we assume

that A and B are square, of dimension n× n. Analogous statements hold in the rectangular case,
which has been implemented in the toolbox.

As we already pointed out, we need to check that, while manipulating finite QT-matrices, the

corrections do not overlap. More precisely, if the top-left correction of A is of dimension i
(A)
u × j(A)

u

and the bottom one is i
(A)
l ×j(A)

l , then we ask that at least one between i
(A)
u + i

(A)
l and j

(A)
u +j

(A)
l is

smaller than n (and analogous conditions for B). The possible configurations of the two corrections
are reported in Figure 2. This property might not be preserved in the outcome of arithmetic
operations.

Therefore, we need to understand how the supports of the corrections behave under sum and
multiplications. Concerning the sum, the support of the correction in A + B is contained in the
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a) b) c) d)

Figure 2: Possible shapes of the corrections in the the representation of a finite QT-matrix. The
corrections are disjoint in cases a) – c), but not in case d). In this last case it is convenient to store
the correction entirely as a top correction.

union of the two supports in A and B. The multiplication is slightly more involved. First, we check
if the products V Ta JnWb and ZTa JnUb are both zero, that is they do not “interact”. This happens

when j
(A)
u + i

(B)
l and j

(A)
l + i

(B)
u are both smaller than n. Second, we need to consider all the

addends contributing to the correction; to this end, we note that the product of the top corrections

has support i
(A)
u ×j(B)

u and the product of the bottom ones i
(A)
l ×j

(B)
l . Moreover, the multiplication

of the Toeplitz part by the correction enlarges the support of the latter by the bandwidth of the
former. Finally, the Hankel products have a support that depends on the length of the symbols. If
the first condition is met and all these contributions satisfy the non-overlapping property for the
sum, we keep the format with two separate corrections. Otherwise, we merge them into a single
one. An analogous analysis is valid for the inversion, since it is implemented by a combination of
sum and multiplications by means of the Woodbury formula.

3.6 Other basic operations

By exploiting the structure of the data, it is possible to devise efficient implementations of common
operations, such as the computation of matrix functions, norms, and extraction of submatrices.

The functions reported in Table 1 have been implemented in the toolbox relying on the QT
arithmetic. For a detailed description of the various functions, the user can invoke the help com-
mand. For instance, the matrix exponential is implemented using the Padé formula combined with
a scaling and squaring strategy. An implementation based on the Taylor expansion is also available
by calling expm(A, ’taylor’).

In particular, the extraction of finite submatrices can be useful to inspect parts of infinite QT
matrices, and also to obtain finite sections.

Remark 3.5. All the arithmetic operations, with the only exception of the inversion, can be per-
formed in O(n log n) time relying on the FFT. The current implementation of the Wiener-Hopf
factorization (see the Appendix), required for the inversion, needs O(b3) where b is the numerical
bandwidth of the Toeplitz part — but this complexity can be lowered. For instance, one can obtain a
sub-quadratic complexity combining the FFT-based polynomial inversion with a superfast Toeplitz
solver for the computation of the Wiener-Hopf factorization. This is not currently implemented in
the toolbox, and will be investigated in future work.
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Function Description
A(I,J) Extract submatrices of a QT-matrix, for integer vectors I and J .
A^p Integer power of a QT matrix.
cr Cyclic reduction for quadratic matrix equations.
expm Computation of the matrix exponential eA.
funm Computations of matrix functions by contour integration.
norm Computation of the QT norm and, only in the finite case, of the p-norms for p = 1, 2,∞.
sqrtm Computation of the matrix square root (Denman–Beavers iteration).
ul Compute the UL factorization of any QT-matrix.

Table 1: List of implemented functions in cqt-toolbox.

4 Examples of applications

In this section we show some applications and examples of computations with QT matrices. Here
we focus on the computation of matrix functions and solving matrix equations. Other examples
related to matrix equations have already been shown in [2, 8].

In all our experiments we have set the truncation tolerance to ε := 10−15. The algorithm
used for compression is the Lanczos method. Accuracy and timings are analogous if the random
sampling-based compression is used.

The tests have been performed on a laptop with an i7-7500U CPU running at 2.70GHz with
16GB of memory, using MATLAB R2017a.

4.1 Exponential of Toeplitz matrices

Recently there has been a growing interest in the computation of functions of Toeplitz matrices.
For instance, in [29] the authors consider the problem of option pricing using the Merton model.
This requires computing the exponential of a dense non-symmetric Toeplitz matrix. A fast method
for this problem has been developed in [25].

We refer to [29, Example 3] for the details on the model; the Toeplitz matrix obtained has
symbol a(z) with coefficients

aj =


φ(0) + 2b− r − λ j = 0

φ(j∆ξ) + b+ jc j = ±1

φ(j∆ξ) otherwise

, b =
ν2

2∆2
ξ

, c =
2r − 2λκ− ν2

4∆ξ

where

φ(η) := λ∆ξ
e−(η−µ)

2/(2σ2)

√
2πσ

.

The value of the parameters are chosen as in [25]; for the Toeplitz matrix of size n× n we have:

r = 0.05, λ = 0.01, µ = −0.9, ν = 0.25, σ = 0.45, κ = e
µ+σ2

2 − 1, ∆ξ =
4

n+ 1
.

In Figure 3 we report the timings for the computation of the matrix exponential eTn for different
values of n. The CPU time is compared with the function O(n log n). The accuracy for the cases
where n 6 4096, where we could compare with expm, are reported in Figure 4.
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103 104 105

100

101

102

103 Time (s)

O(n log n) Size Time (s) Corr. rank

256 0.29 42
512 0.4 43

1,024 0.57 43
2,048 1.38 43
4,096 3.22 43
8,192 10.65 43
16,384 24.37 44
32,768 63.39 45
65,536 137.2 46

1.31 · 105 396.05 49

Figure 3: Timings for the computation of the matrix exponential on the Merton model. The rank
of the correction is reported in the last column of the table.

In particular, we report the relative error in the Frobenius norm ‖expm(A)−E‖F /‖expm(A)‖F ,
where E is the approximation of eA computed by the toolbox using the Taylor approximant. We
compare it with the quantity ‖A‖F ·ε, which is a lower bound for the condition number of the matrix
exponential times the truncation threshold used in the computations (see [21]). From Figure 4 one
can see that the errors are bounded by ‖A‖F · ε and 10 · ‖A‖F · ε.

We have used a scaling and squaring scheme, combined with a Taylor approximant of order
12, to compute the matrix exponential. In this case, where the bandwidth of the Toeplitz part is
non-negligible, this approach is more efficient than a Padé approximant that requires an inversion
(see Remark 3.5).

4.2 Computing the square root of a semi-infinite matrix

We show another application to the computation of the square root of an infinite QT-matrix A.
We consider the infinite matrix A = T (a(z)) + Ea, where

a(z) =
1

4

(
z−2 + z−1 + 1 + 2z + z2

)
,

and Ea is a rank 3 correction in the top-left corner of norm 1
5 and support ranging from 32 to 1024

rows and columns. The square root can be computed using the Denman–Beavers iteration, which
is implemented in the toolbox and accessible using B = sqrtm(A);. We report the timings and the
residual ‖B2−A‖QT of the computed approximations in Table 2. Moreover, the rank and support

of the correction in A
1
2 are reported in the last three columns of the table. One can see that the

rank stays bounded, and that the support does not increase much. The CPU time takes negligible
values even for large support of the correction.
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‖A‖F · ε
10 · ‖A‖F · ε

Figure 4: Relative error with the Frobenius norm of the computed matrix exponential, compared
with a lower bound for the condition number of the matrix exponential multiplied by the truncation
threshold used in the computation (ε := 10−15).

Initial corr. support Time (s) Residual Rank Corr. rows Corr. cols

32 0.1 5.11 · 10−14 34 268 285
64 0.1 5.53 · 10−14 38 296 316
128 0.12 5.1 · 10−14 39 357 379
256 0.12 5.14 · 10−14 39 476 507
512 0.17 5.13 · 10−14 39 726 744

1,024 0.22 5.16 · 10−14 39 1,226 1,271

Table 2: Timings and residuals for the computations of the square root of an infinite Toeplitz
matrix with a square top-left correction of variable support. The final rank and correction support
in the matrix A

1
2 are reported in the last 3 columns.

20



4.3 Solving quadratic matrix equations

Finally, we consider an example arising from the analysis of a random walk on the semi infinite
strip {0, . . . ,m} × N. We assume the random walk to be a Markov chain, and that movement are
possible only to adjacent states, that is, from (i, j) one can reach only (i′, j′) with |i−i′|, |j−j′| 6 1,
with probabilities of moving up/down and left/right not depending on the current state. Then the
transition matrix P is an infinite Quasi-Toeplitz-Block-Quasi-Toeplitz matrix of the form

P =

 Â0 A1

A−1 A0 A1

. . .
. . .

. . .

 ,
and the problem of computing the invariant vector π requires to solve the m×m quadratic matrix
equation A−1 + A0G + A1G

2 = G [12]. The matrices Ai are non negative tridiagonal Toeplitz
matrices with corrections to the elements in position (1, 1) and (m,m), and satisfy (A−1 + A0 +
A1)e = e, where e is the vector of all ones.

The solution G can be computed, for instance, using Cyclic reduction (see the Appendix for
the details) – a matrix iteration involving matrix products and inversions. We consider an example
where the transition probabilities are chosen in a way that gives the following symbols:

a−1(z) =
1

4
(2z−1 + 2 + 2z), a0(z) =

1

10
(z−1 + 2z), a1(z) =

1

6
(3z−1 + 6 + 2z),

properly rescaled in order to make A−1 + A0 + A1 a row-stochastic matrix. The top and bottom
correction are chosen to ensure stochasticity on the first and last row.

We compare the performances of a dense iteration (without exploiting any structure) – with
the same one implemented using cqt-toolbox, and also with a fast O(m log2m) method which
exploits the tridiagonal structure relying on the arithmetic of hierarchical matrices (HODLR) [9,10].
In Figure 5, one can see that the timings of the dense solver are lower for small dimensions – but
the ones using the toolbox do not suffer from the increase in the dimension. The dense solver was
tested only up to dimension m = 4096.

The implementation relying on cqt-toolbox is faster already for dimension 512, and has the
remarkable property that the time does not depend on the dimension. This is to be expected,
since the computations are all done on the symbol (which is dimension independent), and on the
corrections, which only affect top and bottom parts of the matrices.

The residual of the quadratic matrix equation ‖A−1 +A0G+A1G
2‖ is bounded in the QT norm

by approximately 7 · 10−12 in all the tests, independently of the dimension, when the cqt-toolbox

solver is used.

5 Conclusions

We have analyzed the class of Quasi Toeplitz matrices, introduced a suitable norm and a way to
approximate any QT matrix by means of a finitely representable matrix within a given relative
error bound. Within this class, we have introduced and analyzed, in all the computational aspects,
a matrix arithmetic. We have provided an implementation of QT matrices and of their matrix
arithmetic in the form of a Matlab toolbox. The software cqt-toolbox, available at https://

github.com/numpi/cqt-toolbox, has been tested with both semi-infinite QT matrices and with
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103 104 105
10−3

10−2

10−1

100

101

102

103

104

m

T
im

e
(s

)

cqt-toolbox

Dense
HODLR

m tcqt Corr. rank tdense tHODLR

256 0.62 19 0.11 0.43
512 0.68 19 0.72 1.41

1,024 0.68 19 5.48 4.09
2,048 0.68 19 41.91 11.27
4,096 0.69 19 271.2 29.23
8,192 0.68 19 2,879.7 70.32
16,384 0.61 19 161.41
32,768 0.6 19 420.29
65,536 0.61 19 1,015.5

1.31 · 105 0.74 19 2,460
2.62 · 105 0.8 19 5,707.4

Figure 5: On the left, timings for the solution of the quadratic equation A−1 + A0G + A1G
2 = G

arising from the random walk on an infinite strip. On the right the timings and the ranks of the
final correction are reported in the table.

finite matrices represented as the sum of a Toeplitz matrix and a correction. This software has
shown to be very efficient in computing matrix functions and solving matrix equations encountered
in different applications.

A Appendix

Here we report the main algorithms that we have implemented to perform inversion of QT matrices,
namely, the Sieveking-Kung algorithm [3] for inverting triangular Toepliz matrices (or power series),
and an algorithm based on Cyclic Reduction [12] to compute the Wiener-Hopf factorization of a
symbol a(z). We also provide a general view of the available algorithms for the Wiener-Hopf
factorization [4], [5], [16], with an outline of their relevant computational properties. Choosing the
more convenient algorithm for this factorization depends on several aspects like the degree of a(z),
and the location of its zeros, and this is an issue to be better understood.

A.1 The Sieveking-Kung algorithm

We shortly recall the Sieveking-Kung algorithm for computing the first k+ 1 coefficients v0, . . . , vk
of v(z) =

∑∞
i=0 viz

i such that v(z)u(z) = 1, or equivalently, the first k entries in the first row of
T (u)−1. For more details we refer the reader to the book [3].

For notational simplicity, denote Vq the q × q leading submatrix of T (u). Consider V2q and

22



partition it into 4 square blocks of size q:

V2q =

[
Vq Sq
0 Vq

]
so that

V −12q =

[
V −1q −V −1q SqV

−1
q

0 V −1q

]
.

Since the inverse of an upper triangular Toeplitz matrix is still upper triangular and Toeplitz, it is
sufficient to compute the first row of V −12q . The first half clearly coincides with the first row of V −1q ,

the second half is given by −eT1 V −1q SqV
−1
q , where e1 is the vector with the first component equal

to 1 and with the remaining components equal to zero.
Thus the algorithm works this way: For a given (small) q compute the first q components

by solving the system V Tq x = e1. Then, by subsequent doubling steps, compute 2q, 4q, 8q, . . .,
components until some stop condition is satisfied. Observe that, denoting vq(z) the polynomial
obtained at step q, the residual error rq(z) = a(z)vq(z)− 1 can be easily computed so that the stop
condition ‖rq‖W 6 ε‖a‖W can be immediately implemented. Concerning the convergence speed,
it must be pointed out that the equation r2q(z) = rq(z)

2 holds true (see [3]), implying that the
convergence to zero of the norm of the residual error is quadratic.

This approach has a low computational cost since the products Toeplitz matrix by vector can
be implemented by means of FFT for an overall cost of the Sieveking-Kung algorithm of O(n log n)
arithmetic operations.

This algorithm, here described in matrix form, can be equivalently rephrased in terms of poly-
nomials and power series.

A.2 The Wiener-Hopf factorization

We recall and synthesize the available algorithms for computing the coefficients of the polynomials
u(z) and l(z) such that a(z) = u(z)l(z−1) is the Wiener-Hopf factorization of a(z). Denote ξi the
zeros of a(z) ordered so that |ξi| 6 |ξi+1|. This way, |ξn+ | < 1 < |ξ1+n+ |, moreover, u(ξi) = 0 for

i = 1, . . . , n+ while l(ξ−1i ) = 0 for i = n+ + 1, . . . , n+ + n−.
A first approach is based on reducing the problem to solving a quadratic matrix equation. Let

p > max(n−, n+), reblock the matrices in the equation T (a) = T (u)T (l−1) into p × p blocks and
obtain  A0 A1

A−1 A0 A1

. . .
. . .

. . .

 =

U0 U1

U0 U1

. . .
. . .



L0

L1 L0

L1 L0

. . .
. . .


where, by using the MATLAB notation,

A0 = toeplitz([a0, . . . , a−p+1], [a0, . . . , ap−1]),

A1 = toeplitz([ap, ap−1, . . . , a1], [ap, 0, . . . , 0]),

A−1 = toeplitz([a−p, 0, . . . , 0], [a−p, . . . , a−1]),

and ai = 0 if i is out of range.
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Set W = U0L0, R = −U1U
−1
0 , G = −L−10 L1 and get the factorization

 A0 A1

A−1 A0 A1

. . .
. . .

. . .

 =

I −R
I −R

.. .
. . .


W W

.. .



I
−G I

−G I
. . .

. . .

 .
Multiplying the above equation to the right by the block column vector with entries I,G,G2, G3, . . .
or multiplying to the left by the block row vector with entries I,R,R2, R3, . . . one finds that the
matrices R and G are solutions of the equations

A1G
2 +A0G+A−1 = 0, R2A−1 +RA0 +A1 = 0 (16)

and have eigenvalues ξ1, . . . , ξn+
and ξ−1n++1, . . . , ξ

−1
n++n− , respectively, so that they have spectral

radius less than 1. For more details in this regard we refer the reader to [6].
Observe that, since

G = −


l0
l1 l0
...

. . .
. . .

lp−1 . . . l1 l0


−1 lp . . . l1

. . .
...
lp


then Gep−n−+1 = −ln−L−10 e1, while eT1G = −l−10 (lp, . . . , l1). That is, the first row of G provides
the coefficients of the factor l(z) normalized so that l0 = −1. Similarly, one finds that Re1 =
−u−10 (up, up−1, . . . , u1)T , and eTp−n++1R = −un+e

T
1 U
−1
0 . That is, the first column of R provides

the coefficients of the factor u(x) normalized so that u0 = −1. In order to determine the normalizing
constant w such that a(z) = u(z)wl(z−1), it is sufficient to impose the condition un+

wl0 = an+
so

that we can choose w = −an+
/un+

.
This argument provides the following algorithm to compute the coefficients of l(x) and of u(x)

such that a(z) = u(z)wl(1/z), where u0 = l0 = −1:

1. Assemble the matrices A−1, A0, A1.

2. Determine R and G that solve (16) using cyclic reduction.

3. Compute û = Re1, set u = (−1, ûp, . . . , û1) and v̂ = eT1G, set l = (−1, v̂p, . . . , v̂1).

4. Set w = −an+
/un+

Observe that the above algorithm can be easily modified in order to compute, for a given q, the
first q coefficients of the triangular Toeplitz matrices U−1 ad L−1 such that

A−1 =
1

w
L−1U−1.

In fact, the first p coefficients, are given by

L−10 e1 = − 1

ln−
Gep−n−+1,

eT1 U
−1
0 = − 1

un+

eTp−n++1R.
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While the remaining coefficients can be computed by means of the Sieveking-Kung algorithm de-
scribed in the previous section.

The method described in this section requires the computation of the solutions G and R of equa-
tion (16). One of the most effective methods to perform this computation is the Cyclic Reduction
(CR) algorithm. We refer the reader to [12] for a review of this method, and to [11] for the analysis
of the specific structural and computational properties of the matrices generated in this way. Here
we provide a short outline of the algorithm, applied to the equations (16) which we rewrite in the
form AG2 + BG + C = 0 and R2C + RB + A = 0, respectively. The algorithm CR computes the
following matrix sequences

B(k+1) = B(k) −A(k)S(k)C(k) − C(k)S(k)B(k), S(k) = (B(k))−1,

A(k+1) = −A(k)S(k)A(k), C(k+1) = −C(k)S(k)C(k),

B̂(k+1) = B̂(k) − C(k)(B(k))−1A(k), B̃(k+1) = B̃(k) −A(k)(B(k))−1C(k).

(17)

It is proved that under mild conditions the sequences can be computed with no breakdown and

that limk −A(B̂k))−1 = R, limk −(̃B(k))−1C = G. More precisely, the following relations hold

G = −(B̃(k))−1C − (̃B(k))−1A(k)G2k

R = −A(B̂(k))−1 −R2kC(k)(̂B(k))−1

and it can be proved that ‖(B̂(k))−1‖ and ‖(B̃(k))−1‖ are uniformly bounded by a constant and
that A(k), C(k) converge double exponentially to zero. Since the spectral radii of R and of G are
less than 1, this fact implies that convergence is quadratic. Moreover, the approximation errors

given by the matrices (B̃(k))−1A(k)G2k and R2kC(k)(B̂(k))−1 is explicitely known in a first order

error analysis. In fact the matrices (B̃(k))−1, (B̂(k))−1, A(k) and C(k) are explicitely computed by
the algorithm and G is approximated. This fact allows us to implement effectively the Wiener-Hopf
computation required in the inversion procedure described in Algorithm 1 of Section 3.3.

The cost of Cyclic Reduction is O(p3) arithmetic operations per step. In [11] it is shown
that all the above matrix sequences are formed by matrices having displacement rank bounded by
small constants. This fact enables one to implement the above equation with a linear cost, up to
logarithmic factors, by means of FFT.

A.2.1 A different approach

Another approach to compute the factor l and u relies on the following property [4].

Theorem A.1. Let a(z)−1 = h(z) =
∑∞
i=−∞ hiz

i. Define the Toeplitz matrix of size q > max(m,n)
Tq = (hj−i). Then, Tq is invertible and its last row and column define the coefficient vectors of l(z)
and u(z), respectively up to a normalization constant.

Proof. The relation a(z)−1 = l−1(z−1)u−1(z) can be rewritten in matrix form as

(hj−i) = T (u−1)T (l−1)T .

Multiply to the right by the infinite vector obtained by completing (l0, . . . , lq−1) with zeros. Since
the product of T (l−1)T with the latter is a vector with all null components except the first one,
equal to 1, considering q components of the result yields

Tq(h)(l0, . . . , lq−1)T = (T (u−1))e1 = u−10 eq
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whence we deduce that (l0, . . . , lq−1)T = Tq(h)−1u−10 eq. Similarly we do for the last row.

This property is at the basis of the following computations

1. Set q = max(m,n) compute hi for i = −q, q such that h(z)a(z) = 1 by means of evalua-
tion/interpolation.

2. Form Tq(h) = (hj−i)i,j=1,q and compute last row and last column of Tq(h)−1.

This algorithm may require a large number of interpolation points when a(z) has some zero of
modulus close to 1, in the process of evaluation/interpolation.

A.2.2 Yet another approach

The same property provides a third algorithm for computing l(z) and u(z) which relies on a different
computation of hi, i = −q, . . . , q. The idea is described below

Consider the equation
a(z)h(z) = 1.

Multiply it by a(−z) and, since a(−z)a(z) = a1(z2), for a polynomial a1(z), get

a1(z2)h(z) = a(−z).

Repeating the procedure k times yields

ak(z2
k

)h(z) = ak−1(−z2
k−1

) · · · a1(−z2)a(−z).

If a(z) has roots of modulus different from 1, then ak(z) quickly converges to either a constant
or a scalar multiple of z, since its zeros are the 2k powers of the zeros of a(z). In this case, h(z)
can be computed by means of a product of polynomials with the same degree (independent of the
iterations).

A.2.3 Newton’s iteration

Newton’s iteration can be applied to the nonlinear system a(z) = u(z)l(z−1) where the unknowns
are the coefficients of the polynomials u(z) and l(z). The Jacobian matrix has a particular structure
given in terms of displacement rank which can be exploited to implement Newton’s iteration at a
low cost. Details in this regard are given in the papers [16] and [15].
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