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Abstract

In this work we introduce a two-level preconditioner for the e�cient solution of large scale saddle
point linear systems arising from the �nite element (FE) discretization of parametrized Stokes equations.
The proposed preconditioner extends the Multi Space Reduced Basis (MSRB) preconditioning method
proposed in [12], and relies on the combination of an approximated block (�ne grid) preconditioner with
a reduced basis solver, which plays the role of coarse component. A sequence of RB spaces, constructed
either with an enriched velocity formulation or a Petrov-Galerkin projection, is built. As a matter of
fact, each RB coarse component is tailored to perform a single iteration of the iterative method at hand.
The �exible GMRES (FGMRES) algorithm is employed to solve the resulting preconditioned system
and targets small tolerances with a very small iteration count and in a very short time. Numerical test
cases dealing with Stokes �ows in three dimensional parameter�dependent geometries are considered
to assess the numerical performance of the proposed technique in di�erent large scale computational
settings. A detailed comparison with both the current state of the art of i) standard RB methods
and ii) preconditioning techniques for Stokes equations highlights the better e�ciency of the proposed
methodology.

1 Introduction

This work is concerned with the e�cient numerical solution of parametrized saddle-point systems arising
from the �nite element (FE) discretization of partial di�erential equations (PDEs). We meet this kind
of problems in several contexts, e.g., in the mixed formulations of elliptic PDEs, incompressible elasticity,
optimal control problems for elliptic PDEs and incompressible �uid �ow problems. Here we focus on
parametrized incompressible Stokes equations, describing viscous incompressible stationary �ows in the
limit Re → 0, where Re is the the �ow Reynolds number. Denote by D ⊂ Rl, l ∈ N the parameter space
and by µ ∈ D a vector of parameters encoding physical and/or geometrical properties. The apex µ means
that a variable depends on the parameter µ. Given a µ−dependent domain Ωµ ⊂ Rd, d = 2, 3, such that,
for any µ ∈ D, ∂Ωµ = Γµ

out ∪ Γµ
in ∪ Γµ

w and Γ̊µ
out ∩ Γ̊µ

in = Γ̊µ
w ∩ Γ̊µ

in = Γ̊µ
out ∩ Γ̊µ

w = ∅, the Stokes equations
read 

−νµ∆~uµ +∇pµ = ~fµ in Ωµ

∇ · ~uµ = 0 in Ωµ

~u = ~gµD on Γµ
in

~u = ~0 on Γµ
w

−pµ~nµ + νµ
∂~uµ

∂~nµ
= ~gµN on Γµ

out,

(1)

where (~uµ, pµ) are the velocity and pressure �elds describing a �uid with viscosity νµ, respectively, while
~fµ encodes distributed sources. Problem (1) can be written under mixed form, yielding a non-coercive vari-
ational problem, whose well-posedness is ensured according to the general theory on saddle-point problems
[7, 8].

Numerical methods based on (Petrov-)Galerkin projection onto a �nite dimensional subspace, as the
�nite element (FE) or spectral element methods, are viable strategies for the numerical solution of (1),
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see e.g. [9, 17]. However, when they are employed, an inf-sup condition must be satis�ed at the �nite
dimensional level to ensure the well-posedness of the numerical problem. Such a condition poses strict
constraints on the choice of the FE spaces where the approximate solution of problem (1) is sought. In this
paper, we use an inf-sup stable FE couple of spaces, for instance those based on P2 − P1 (Taylor-Hood)
polynomial subspaces for the discretization of the velocity and pressure �elds, respectively. The resulting
FE approximation yields the solution of a parametrized saddle-point linear system[

Dµ
h (Bµ

h )T

Bµ
h 0

] [
uµ
h

pµ
h

]
=

[
fµh
0

]
, (2)

of (possibly very large) dimension Nh, which is given by the sum of the velocity and pressure degrees of
freedom, see e.g. [17, 27].

As a matter of fact, in real life 3D applications, the dimension Nh can range between O(106)−O(109),
and the solution of (2) hinges upon suitable preconditioned iterative methods. The numerical solution of
system (2) has indeed been a prominent research subject in the last decades, and several techniques built on
domain decomposition and multilevel methods have been proposed, see e.g. [17, 27, 35, 37] and references
therein. See also [4, 5] for an extensive review on numerical methods for saddle-point systems. Let us start
from the following factorization of the saddle-point matrix in (2):[

Dµ
h (Bµ

h )T

Bµ
h 0

]
= Lµ

hD
µ
hU

µ
h =

[
INu

0
Bµ
h (Dµ

h )−1 INp

] [
Dµ
h 0

0 Sµ
h

] [
INu (Dµ

h )−1(Bµ
h )T

0 INp

]
(3)

where

Sµ
h = −Bµ

h (Dµ
h )−1(Bµ

h )T

is the Schur complement matrix. Factorization (3) can be exploited to build block preconditioners for
problem (2) by approximating Sµ

h . SIMPLE type preconditioners are obtained by considering the full
product Lµ

hD
µ
hU

µ
h , after suitably approximating the Schur complement matrix Sµ

h , see [36, 16]; instead, by
considering the product Lµ

hD
µ
h or Dµ

hU
µ
h , block-triangular preconditioners can be constructed. Relevant

examples are the least-squares commutator (LSC) preconditioner [15, 23], the pressure-convection-di�usion
preconditioner [20, 34] and the pressure mass matrix (PMM) preconditioner [30]. All these methods are
developed for a single instance of the parameter and do not take advantage of any underlying µ-dependence of
the PDE in case a parameter-dependent problem is considered. In this paper, we are interested in the e�cient
solution of (2) for many (say, hundreds or thousands) instances of µ. This may be an issue, for instance, when
dealing with uncertainty quanti�cation, sensitivity analysis or PDE-constrained optimization, to mention
some remarkable scenarios. In the last decade, reduced order modeling (ROM) techniques emerged as a
convenient strategy when dealing with parametrized problems; several methods to address the approximation
of parametrized (Navier-)Stokes equations have been designed, see e.g. [2, 14, 21, 26, 25, 29, 31]. In this
work, we exploit a particular case of projection-based ROM techniques, the reduced basis (RB) method,
to build a coarse correction in a two level preconditioner for the e�cient solution of large�scale parameter-
dependent Stokes equations.

The RB method aims at computing an approximated (reduced) solution of the parameter dependent
PDE as a linear combination of few, global problem�dependent, basis functions. These latter are obtained
from a set of FE solutions (or snapshots) corresponding to di�erent values of the parameters. Such a method
is built in two stages. In the former o�ine stage, we construct a RB space of dimension N � Nh whose
basis is obtained by (properly orthonormalized) linear combinations of FE solutions of the parametrized
PDE. In the latter online stage, we project the FE problem onto the RB space, obtaining a small problem
which is solved at the place of the large FE problem, usually with direct methods. For an extensive review
of RB methods for parameter dependent PDEs, see e.g. [28, 19].

The RB method for parametrized elliptic PDEs has been used to de�ne the coarse correction in the Multi
Space Reduced Basis (MSRB) preconditioning strategy proposed in [12], and further analyzed in [11]. Such
a technique relies on the multiplicative combination of a �ne grid, nonsingular operator Pµ

h ∈ RNh×Nh with
an iteration (k-)dependent coarse correctionQµ

Nk
∈ RNh×Nh built upon the RB method. The preconditioner

exploits the parameter dependence of the PDE by projecting the error equation at step k onto a k-dependent
RB space tailored to provide a very accurate approximation of the k-th error equation. As a result, the
number of iterations required by the iterative solver (in our case the �exible GMRES [33]) to reach a desired
accuracy is very small. In this paper, we extend the construction, analysis and numerical assessment
of MSRB preconditioners to parametrized linear non-coercive problems such as (1), by employing both
Petrov-Galerkin RB (PG-RB) [13, 1] and enriched Galerkin RB (G-RB) [2] methods to ensure the well-
posedness of the RB coarse corrections. The former approach has been recently investigated by the authors
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in [13], showing that it provides a convenient framework for linear saddle-point problems in parametrized
domains. Consequently, we devise and analyze a MSRB preconditioning strategy which exploits one of these
RB techniques, highlighting the di�erent numerical aspects entailed by these strategies. In our numerical
applications, we give particular emphasis to the 3-D Stokes equations de�ned in parameter-dependent
domains, for which a mapping from a reference domain is not necessarily known analytically. A detailed
comparison with both the current state of the art of i) standard RB methods and ii) preconditioning
techniques for Stokes equations highlights the better e�ciency of the proposed methodology, both in terms
of construction and application.

The structure of the paper is as follows. In section 2 we introduce the Stokes equations, their FE ap-
proximation and the methods required to solve the saddle-point linear system (2). In section 4 we introduce
the MSRB preconditioner relying on PG-RB coarse corrections for the parametrized Stokes equations. We
recall the main blocks of the RB method for this class of problems and highlight the assumptions required
to guarantee the well-posedness of the resulting preconditioner operator. In section 6 we present numerical
results obtained with the MSRB preconditioner and in section 7 we draw some conclusions. Finally, we
report in A the details on how to construct a stable RB Stokes problem, for those readers less familiar with
this topic.

For the sake of notation, hereon we denote scalar �eld functions by lower case letters, as a(~x) ∈ R,
vector �eld functions with an arrow, as ~a(~x) ∈ Rd, for d > 1, algebraic vectors by bold lower case letters,
as a ∈ Rn, and matrices by bold capital letters, as A ∈ Rn×n. Moreover, given a symmetric and positive
de�nite matrix A ∈ Rn×n, we denote by ‖ · ‖A the norm and by (·, ·)A the scalar product de�ned as

‖a‖A =
√
aTAa ∀a ∈ Rn, (a,b)A = aTAb ∀a, b ∈ Rn.

2 Parametrized Stokes equations: settings and preliminaries

In this section we introduce the weak formulation of the Stokes equations (1), together with the resulting

FE approximation. We introduce a lifting function ~rµ~gD ∈
(
H1(Ωµ)

)d
and the following µ-dependent spaces

V µ =
{
~v ∈

(
H1(Ωµ)

)d
: ~v
∣∣
Γµ
w

= ~0, ~v
∣∣
Γµ
in

= ~0
}
, Qµ = L2(Ωµ),

equipped with scalar products (and the corresponding induced norms) (·, ·)V µ = (·, ·)H1
0 (Ωµ) and (·, ·)Qµ =

(·, ·)L2(Ωµ). For a given µ ∈ D, the weak formulation of problem (1) reads: �nd (~uµ, pµ) ∈ V µ × Qµ such
that {

aµ(~uµ, ~v) + bµ(~v, pµ) = fµ(~v)− aµ(~rµ~gD , ~v) ∀~v ∈ V µ

bµ(~uµ, q) = −bµ(~rµ~gD , q) ∀q ∈ Qµ,
(4)

where for any ~u,~v ∈ V µ and q ∈ Qµ we de�ne the forms in (4) as

aµ(~u,~v) =

∫
Ωµ

νµ∇~u : ∇~vdΩµ, bµ(~v, q) = −
∫

Ωµ

q∇ · ~vdΩµ,

fµ(~v) =

∫
Ωµ

~fµ · ~vdΩµ +

∫
Γµ
out

~gµN · ~vdΓµ
out.

2.1 Finite element approximation of the Stokes equations

After using a FE approximation method with a stable FE couple (e.g. P2 − P1 �nite elements, for velocity
and pressure, respectively), an approximation to (~uµ, pµ) is obtained by solving a parametrized saddle-point
linear system under the form

Aµ
hz

µ
h = gµ

h , (5)

where

Aµ
h =

[
Dµ
h (Bµ

h )T

Bµ
h 0

]
∈ RNh×Nh , zµh =

[
uµ
h

pµ
h

]
∈ RNh and gµ

h =

[
fµh
rµh

]
∈ RNh , (6)

with Nh = Nu
h +Np

h and Nu
h , N

p
h the FE dimensions for the velocity and pressure �elds, respectively. The

matrix Dµ
h ∈ RNu

h×N
u
h corresponds to the bilinear form aµ(·, ·) and is positive de�nite, while the matrix

Bµ
h ∈ RN

p
h×N

u
h corresponds to the bilinear form bµ(·, ·). The resulting block matrix Aµ

h is inde�nite and
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to guarantee its nonsingularity one must ensure that there exists β > 0 such that the following inf-sup
condition is ful�lled, uniformly across the parameter space,

βµ
h = inf

zh∈RNh

sup
wh∈RNh

wT
hA

µ
hzh

‖zh‖Xµ
h
‖wh‖Xµ

h

≥ β ∀µ ∈ D, (7)

where the symmetric and positive de�nite matrix Xµ
h ∈ RNh×Nh algebraically encodes the scalar product

(·, ·)V µ×Qµ and is built as a block diagonal matrix

Xµ
h =

[
Xµ
u 0

0 Xµ
p

]
; (8)

here Xµ
u ∈ RNu

h×N
u
h and Xµ

p ∈ RN
p
h×N

p
h encode the scalar products over the spaces V µ and Qµ at the FE

level, respectively. We highlight that one could alternatively ensure the well-posedness of (5) in terms of
the matrix Bh, by requiring the existence of βp > 0

βµ
hp = inf

qh∈RN
p
h

sup
vh∈RNu

h

vThB
µ
hqh

‖vh‖Xµ
u
‖qh‖Xµ

p

≥ βp ∀µ ∈ D; (9)

notice that (9) together with the positive de�niteness of Dµ
h is equivalent to (7).

Many e�ective preconditioning techniques have been proposed for solving the linear system (5), among
which we mention multilevel methods, domain decomposition preconditioners and block preconditioners
[36, 16, 15, 23, 30, 35, 17]. In this paper we take into account block-triangular preconditioners of the
form Dµ

hU
µ
h which arise from the factorization (3), however everything can be devised also for Lµ

hD
µ
h and

Lµ
h ,D

µ
hU

µ
h -type preconditioners. The product D

µ
hU

µ
h takes the following form

Pµ
t = Dµ

hU
µ
h =

[
Dµ
h (Bµ

h )T

0 Sµ
h

]
(10)

and if used as preconditioner within the preconditioned GMRES method, it allows to reach convergence
(in exact arithmetic) in 2 iterations. However, at each iteration of the chosen Krylov method the inverse
of Pµ

t needs to be applied to a Krylov basis function vk; this shall involve the inverse matrix of the Schur
complement Sµ

h and the inverse of Dµ
h , which are both extremely demanding to apply. Approximated block-

triangular preconditioners are developed by approximating the inverse matrices of Sµ
h and Dµ

h with proper
surrogates S̃µ

h and D̃µ
h , respectively, e.g. with two corresponding preconditioners or inner iterations.

As iterative solver for (5), we employ the �exible GMRES method [32], see algorithm (1). This method
provides a variant of the GMRES method able to deal with an iteration-dependent preconditioner, such
as the one de�ned in (10) when inner iterations are employed (instead of computing exactly the inverse
matrices of Dµ

h and Sµ
h ). This also proves to be necessary in view of the application of the proposed MSRB

preconditioner, since this latter relies on an iteration dependent RB coarse correction. In algorithm 1, vk

Algorithm 1 Flexible GMRES [33]

1: procedure FGMRES(A,b,x0, {Mk}k)
2: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
3: for k = 1, . . . ,m do

4: Compute zk = M−1
k vk

5: Compute w = Azk
6: for j = 1, . . . , k do
7: hj,k = (w,vj)
8: w = w − hj,kvj
9: end for

10: Compute hk+1,k = ‖w‖ and vk+1 = w/hk+1,k

11: De�ne Zm = [z1, . . . , zm], H̃m = {hj,k}1≤j≤k+1; 1≤k≤m
12: end for

13: Compute ym = arg min
y∈Rm

‖βe1 − H̃my‖2 and xm = x0 + Zmym

14: If satis�ed Stop, else set x0 ← xm and GoTo 2.
15: end procedure

Output: xm

represents the k−th Krylov basis and at line 4 the preconditioning step is reported. Here Mk denotes the
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preconditioner operator, which possibly varies at each iteration k and is used in algorithm (1) to approximate
the solution of the system

Ack = vk. (11)

Should the linear system (11), which in our case is µ−dependent, be solved exactly, the FGMRES converges
to the exact solution at iteration k.

3 RB methods for the parametrized Stokes equations

For the MSRB preconditioners we propose in this paper, a key ingredient is represented by the RB method,
which is exploited as a coarse component in a two�level preconditioner. In the following, we will brie�y
recall the RB method for the parametrized Stokes equations. For a more extensive outlook on the subject,
we refer to [13] for RB techniques for the parametrized Stokes equations and to [28, 19] for parametrized
PDEs in general.

The RB method relies on the idea that the solution zµh of the parametrized system (5), for a certain
value of the parameter µ, can be well approximated as a linear combination of N � Nh global, problem�
dependent basis functions {ξi}Ni=1 obtained by orthonormalizing FE solutions of the same problem computed
for selected values of the parameter. The basis functions are collected in a matrixV = [ξ1| . . . |ξN ] ∈ RNh×N .
The RB space, which is formally obtained by the span of the columns of V, is usually built during an o�ine
phase with a greedy algorithm or employing proper orthogonal decomposition (POD). Speci�cally, we use
this latter approach. Once the RB space has been built, during the online phase the solution of the PDE
for a new parameter µ is computed by solving a RB system, instead of (5). The RB problem is constructed
by introducing a test space represented by a matrix Wµ ∈ RNh×N , generally di�erent from V and possibly
µ-dependent. If Wµ 6= V we end up with a more general PG-RB problem, otherwise, if Wµ = V, we come
up with a G-RB problem. Here, for the sake of generality, we consider the more general PG-RB problem,
which leads to the following RB problem

Aµ
NzµN = gµ

N . (12)

The latter is a linear system where the RB matrix Aµ
N ∈ RN×N and the RB right hand side gµ

N ∈ RN are
de�ned as

Aµ
N = (Wµ)TAµ

hV, gµ
N = (Wµ)Tgµ

h , (13)

respectively. Finally, the FE representation VzµN of the RB approximation is recovered as

VzµN = V(Aµ
N )−1gµ

N = V(Aµ
N )−1(Wµ)Tgµ

h . (14)

We highlight that problem (12) is obtained by enforcing the projection of the FE residual evaluated for the
RB solution VzµN onto Wµ to vanish, that is by requiring

(Wµ)T
(
gµ
h −Aµ

hVzµN

)
= 0. (15)

In the Stokes case, the matrix V is such that

V =

[
Vu
Nu

0
0 Vp

Np

]
=

[
ϕu1 | . . . | ϕuNu

| 0 | . . . | 0
0 | . . . | 0 | ϕp1 | . . . | ϕpNp

]
, (16)

where Vu
Nu

=
[
ϕu1 | . . . |ϕuNu

]
∈ RNu

h×Nu and Vp
Np

=
[
ϕp1| . . . |ϕ

p
Np

]
∈ RN

p
h×Np are speci�cally used to �nd

an approximation for the velocity uµ
h and the pressure pµ

h . The RB spaces are built from a set of snapshots{
uµi

h

}ns

i=1
,
{
pµi

h

}ns

i=1
computed for di�erent instances (properly sampled) of the parameters

{
µi
}ns

i=1
, by

performing POD on the two sets of snapshots separately

Vu
Nu

= POD
({

uµi

h

}ns

i=1
,Xu, εPOD

)
, Vp

Np
= POD

({
pµi

h

}ns

i=1
,Xp, εPOD

)
.

Indeed, the vector spaces spanned by the columns ofVu
Nu

(resp. Vp
Np
) approximate up to a certain tolerance

εPOD > 0 the space spanned by the snapshots
{
uµi

h

}ns

i=1
(resp.

{
pµi

h

}ns

i=1
). The matrices Vu

Nu
and Vp

Np
are

indeed constructed by selecting the largest Nu = Nu(εPOD) and Np = Np(εPOD) eigenmodes respectively,
see [28]; a priori, Nu 6= Np. The dimension N = Nu +Np of the RB system is smaller than the dimension
Nh of the FE linear system of several order of magnitudes; for this reason the RB system (12) is usually
solved by direct methods.
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Remark 3.1. Instead of prescribing a tolerance to POD, one can provide as input the dimensions Nu and
Np. In this case, POD retrieves the �rst Nu (resp. Np) modes, approximating the snapshots subspace up to
a tolerance εuPOD = εuPOD(N) (resp. εpPOD = εpPOD(N)).

Remark 3.2. POD computes an approximation space by minimizing the distance with respect to a prescribed
norm. In our case we employ for velocity and pressure the norms induced by the matrices Xu and Xp,
respectively.

An important issue concerns the stability of the resulting RB approximation, since a stable couple of
reduced subspaces for velocity and pressure, ful�lling an equivalent inf-sup condition at the reduced level,
must be used to ensure that the RB Stokes problem (12) is well-posed. More precisely, there must exist
βminN > 0 such that

βµ
N = inf

zN∈RN
sup

wN∈RN

wT
NAµ

NzN
‖VzN‖Xµ

h
‖WµwN‖Xµ

h

≥ βminN ∀µ ∈ D. (17)

This property is not automatically guaranteed if a G-RB method is used, that is, in the case where the
RB problem is constructed by Galerkin projection onto an RB space made of orthonormalized solutions
of (2) for di�erent values of parameters. Therefore, di�erent strategies have been designed to ensure the
stability of the RB problem by ful�lling (17). One possibility consists in augmenting the velocity space by
means of a set of "enriching" basis functions computed through the so-called pressure supremizing operator,
leading to a reduced problem with roughly as twice as many velocity degrees of freedom compared to the
pressure, see [31, 2] for the details. Another possibility to automatically build a stable RB problem exploits
PG-RB methods [13, 1, 28], such as the least-squares (LS) method. The LS-RB method relies on a test
space which is obtained as the image of the RB space through a global supremizer operator which involves
both velocity and pressure �elds. These strategies are detailed in A for the sake of completeness. In the
following, the MSRB preconditioning method will be built by relying on either one of these options.

4 MSRB preconditioners

The aim of this section is to build a MSRB preconditioner when dealing with parametrized Stokes equations
(4), and analyze its well-posedness. Notice however that the proposed strategies are applicable to other linear
saddle-point problem as well, even if here we restrict to the case of Stokes equations.

The MSRB preconditioning method has been �rstly presented in [12] for elliptic parametrized problems;
a numerical investigation on parametrized advection-di�usion PDEs has been carried out in [11]. The
goal of this technique is to build a preconditioner to e�ciently solve parametrized linear systems which arise
from the FE discretization of parameter-dependent PDEs. Computational e�ciency is pursued by combining
multiplicatively a nonsingular �ne grid preconditioner Pµ

h ∈ RNh×Nh with an e�cient coarse correction built
upon the RB method, leading to a two-level preconditioning method. Following the strategy introduced in
[12], we de�ne the MSRB preconditioner as

Qµ
MSRB,k = (Pµ

h )−1 + Qµ
Nk

(
INh
−Aµ

h (Pµ
h )−1

)
, k = 1, 2, . . . , (18)

where Qµ
Nk

is the iteration- (k-) dependent RB coarse component. The preconditioner Qµ
MSRB,k is used

at iteration k, and yields a coarse correction tailored for the error equation (11) and corresponding to the
k−th iteration. In particular, Qµ

Nk
is an RB solver which is trained on the following equation

Aµ
hy

µ
k =

(
INh
−Aµ

h (Pµ
h )−1

)
vµ
k , k = 1, 2, . . . , (19)

where vµ
k is the k-th Krylov basis; as a matter of fact, Qµ

Nk
provides an accurate approximation of the

solution of the parametrized linear system (19). By using an accurate RB coarse component, the FGMRES
algorithm converges in only few iterations. To ease the notation, in the following we denote

vµ

k+ 1
2

=
(
INh
−Aµ

h (Pµ
h )−1

)
vµ
k .

When dealing with elliptic problems, a Galerkin-RB method is used to build the RB approximation em-
bedded in Qµ

Nk
, and the results con�rm that this preconditioning approach allows to e�ciently solve

parametrized linear systems employing only a few iterations of the FGMRES method. However, for Stokes
equations, problem (19) is a parametrized saddle point system, whose G-RB approximation is not guaran-
teed to be well-posed. A possible care consists in using either an enriched velocity approach or a PG-RB
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formulation (see Section 3 and Appendix A for further details). In this work we extend the MSRB precon-
ditioning strategy by constructing a coarse correction upon either a PG-RB method or an enriched velocity
G-RB method. Notice that we opt for a multiplicative combination, similarly to what we proposed in [12],
even if di�erent combinations of Pµ

h and Qµ
Nk

, e.g. additive or symmetric, are also possible.

4.1 MSRB preconditioners for the Stokes equations

To set up the MSRB preconditioner in a fairly general way, we consider the PG-RB method to build the
k-dependent coarse components Qµ

Nk
. To this aim, we introduce the matrices Vk ∈ RNh×Nk , k = 1, 2, . . .

such that

Vk =
[
ξk1 | . . . |ξkN

]
,

where the basis
{
ξki
}Nk

i
is tailored to provide a RB approximation yµ

Nk
to the solution yµ

k of problem (19);
here k = 1, 2, . . . is the iteration counter of the FGMRES method and Nk, k = 1, 2, . . . is the dimension of
the k-th RB space. We remark that the RB coarse component for the MSRB preconditioner is obtained,
similarly to (15), by enforcing the projection of the FE residual of (19) evaluated for the RB coarse correction
Vky

µ
Nk

onto Wµ
k to vanish, that is by requiring

(Wµ
k )T

(
vµ

k+ 1
2

−Aµ
hVyµ

Nk

)
= 0. (20)

Notice that Wµ
k depends on both k and µ. If Wµ

k 6= Vk, we build a PG-RB coarse correction; whereas, by
choosing Wµ

k = Vk, we employ a G-RB coarse correction. We then obtain the following RB problem, to be
solved at iteration k, for any µ

(Wµ
k )TAµ

hVky
µ
Nk

= (Wµ
k )T

(
INh
−Aµ

h (Pµ
h )−1

)
vµ
k , k = 1, 2, . . . , (21)

whose solution yµ
Nk
∈ RNk is the RB approximation of the solution yµ

k ∈ RNh of (19). Accordingly with
the construction in Section 3, the RB matrices Aµ

Nk
∈ RNk×Nk , k = 1, 2, . . . are built as

Aµ
Nk

= (Wµ
k )TAµ

hVk. (22)

The FE representation Vky
µ
Nk

of the RB approximation is then recovered as in equation (14), that is

Vky
µ
Nk

= Vk(Aµ
Nk

)−1(Wµ
k )T

(
INh
−Aµ

h (Pµ
h )−1

)
vµ
k ,

from which we set the coarse correction as Qµ
Nk

= Vk(Aµ
Nk

)−1(Wµ
k )T .

In the case of the parametrized Stokes equations, the solution of equation (19) is made of both velocity
and pressure components, that is, yµ

k = [yµ
uk, y

µ
pk]T , k = 1, . . . . Consequently, we build the RB spaces for

these two variables separately by setting

Vu
Nu

k
= POD

({
yµi

uk

}ns

i=1
,Xu, δRB,k

)
, Vp

Np
k

= POD
({

yµi

pk

}ns

i=1
,Xp, δRB,k

)
, (23)

where δRB,k > 0 is a prescribed tolerance (possibly dependeing on k). Here
{
yµi

uk

}ns

i=1
and

{
yµi

pk

}ns

i=1

are error snapshots for the velocity and the pressure, respectively, such that yµ
k = [yµ

uk, y
µ
pk]T is the

solution of problem (19), for properly chosen instances of the parameters. Notice that POD on velocities{
yµi

uk

}ns

i=1
, k = 1, . . . is performed with respect to the scalar product induced by the norm matrix Xu. On

the other hand, POD on pressures
{
yµi

pk

}ns

i=1
is performed with respect to the scalar product induced by the

norm matrix Xp. Finally, the matrix Vk has the following form

Vk =

[
Vu
Nu

k
0

0 Vp
Np

k

]
. (24)

Remark 4.1. An inf-sup condition similar to (17) must hold in order to guarantee the nonsingularity of
the matrices Aµ

Nk
for k = 1, 2, . . . , that is, for any k = 1, 2, . . . there must exist βminNk

> 0 such that

βµ
Nk

= inf
zN∈RN

sup
wN∈RN

wT
NAµ

Nk
zN

‖VzN‖Xµ
h
‖Wµ

kwN‖Xµ
h

≥ βminNk
∀µ ∈ D. (25)

Remark 4.2. Instead of providing the tolerances δRB,k, we could prescribe the dimensions Nu
k and Np

k of
the RB spaces for the velocity and the pressure, respectively, at each iteration.

In the following we devise two alternative techniques to build a well-posed RB coarse correction, according
to two di�erent choices of Wµ

k , k = 1, 2 . . . . These two options re�ect the choice between a G-RB or an
algebraic LS-RB method.
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4.1.1 MSRB preconditioners with enriched Galerkin RB coarse corrections

A G-RB approximation to build the k−th coarse correction is obtained by choosing Wµ
k = Vk, k = 1, 2, . . . .

However, the resulting RB approximation is not guaranteed to ful�ll (25). Consequently, we consider an
enriched velocity space formulation, where the velocity space spanned by the columns of Vu

Nu
k
is augmented

by a set of Ns
k enriching basis functions. Given the pressure snapshots

{
yµi

pk

}ns

i=1
, we build the pressure

supremizing snapshots by solving the following problems

Xµ
uy

µi

sk = (Bµi

h )
T
yµi

pk i = 1, . . . , ns. (26)

Next, we run POD on the set of pressure supremized snapshots
{
yµi

sk

}ns

i=1
and obtain Vs

Ns
k
∈ RNh×Ns

k as

Vs
Ns

k
= POD

({
yµi

sk

}ns

i=1
,Xu, εPOD

)
.

The columns of Vs
Ns

k
form a Ns

k−dimensional space employed to augment the velocity space. We introduce

Ṽk =

[
Vu
Nu

k
Vs
Ns

k
0

0 0 Vp
Np

k

]
, k = 1, 2, . . . ,

and obtain a well-posed G-RB coarse correction by choosing Wµ
k = Vk = Ṽk, k = 1, . . . , in (22), leading

to the following de�nition

Aµ
Nk

= ṼT
kA

µ
h Ṽk, k = 1, . . . .

Notice that a velocity enrichment is required for every coarse correction, leading to solve ns additional
problems of the form of (26) for each coarse correction Qµ

Nk
, k = 1, 2, . . . which has to be built. The

velocity enrichment allows to obtain a couple of RB spaces which proves to be numerically stable, even
though a rigorous stability result cannot be proven, see e.g. [2, 13].

4.1.2 MSRB preconditioners with Petrov-Galerkin RB coarse corrections

A purely algebraic PG-RB method, recently proposed in [13], yields a stable RB approximation to prob-
lem (19). This method can be viewed as an algebraic least-squares RB (we call it aLS-RB) method for
parametrized noncoercive problems as (5). Compared to the approximate enrichment of the velocity space
described in Section 4.1.1, the aLS-RB method features a smaller dimension of the RB spaces (i.e. the
number of RB functions is lower), since in this case the velocity space is not augmented. This yields a
remarkable advantage when the RB coarse corrections and the inverse matrices of Aµ

Nk
, k = 1, 2, . . . , are

constructed for a new parameter. Furthermore, the resulting RB formulation is automatically inf-sup stable,
i.e. (25) is ful�lled.

To build an aLSRB approximation, we introduce a symmetric and positive de�nite matrixPX ∈ RNh×Nh ,
and we assume the existence of two positive constants C ≥ c such that

c‖x‖PX
≤ ‖x‖Xµ

h
≤ C‖x‖PX

∀x ∈ RNh . (27)

The aLS-RB coarse correction is constructed by selecting Wµ
k as Wµ

k = P−1
X Aµ

hVk in (22), leading to the
following de�nition

Aµ
Nk

= VT
k (Aµ

h )TP−1
X Aµ

hVk, k = 1, . . . . (28)

In our numerical experiments, PX is chosen as PX = X0
h, i.e. as the norm matrix in the reference domain, or

as a block diagonal preconditioner PX0
h
∈ RNh×Nh of X0

h, where the two blocks are generated as symmetric

and positive de�nite preconditioners PXu
∈ RNu

h×N
u
h of X0

u and PXp
∈ RN

p
h×N

p
h of X0

p, respectively.

Remark 4.3. The standard LSRB method relies on formulation (28) where the matrix Xµ
h plays the role of

PX . However, when the computational domain depends on the parameter, and especially when the mapping
from Ω0 to Ωµ is not known a priori, the µ−dependence of Xµ

h could lead to huge assembling costs for Aµ
Nk

.
On the other hand, by choosing a µ−independent matrix PX , this overhead is no longer there.
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4.2 Nonsingularity of the preconditioner

When a G-RB approximation is employed to build the coarse corrections, as in the case where an augmented
velocity space is used, the MSRB preconditioner operator Qµ

MSRB,k has been shown to be invertible, with
proper assumptions on Pµ

h and the basis Vk, in [12]. In this section we extend these results, showing that
Qµ

MSRB,k is invertible when a more general PG-RB approach is used to build the RB coarse correction, as
in section 4.1.2.

Let W1 = span{w1
j}Mj=1 and W2 = span{w2

j}Mj=1 ⊂ RNh be two subspaces such that dim(W1) =

dim(W2) = M . We denote by W⊥1 and W⊥2 the orthogonal complement of W1 and W2, respectively, and
by W1,W2 ∈ RNh×M the matrices of basis vectors such that W1 = [w1

1, . . . ,w
1
M ], W2 = [w2

1, . . . ,w
2
M ].

Moreover, given a subspaceW ⊂ RNh and a nonsingular matrix B ∈ RNh×Nh , we de�ne the following spaces

BW =
{
x ∈ RNh : B−1x ∈W

}
=
{
x ∈ RNh : x = Bz, z ∈W

}
,

BW⊥ =
{
x ∈ RNh : B−1x ∈W⊥

}
=
{
x ∈ RNh : x = Bz, z ∈W⊥

}
.

We remark that RNh = BW ⊕BW⊥, because of the nonsingularity of B.

Lemma 4.1. Let W1 and W2 be two M -dimensional subspaces of RNh , {w1
j}Mj=1 and {w2

j}Mj=1 their basis

and W1 = [w1
1, . . . ,w

1
M ] ∈ RNh×M , W2 = [w2

1, . . . ,w
2
M ] ∈ RNh×M . Moreover, let B be a nonsingular

Nh ×Nh matrix and assume that WT
2 BW1 is nonsingular. Then the following implication holds:

x ∈ BW 1 and WT
2 x = 0 ⇒ x = 0.

Proof. We take x ∈ BW 1 such that WT
2 x = 0 and show that it must be x = 0. By de�nition of BW 1,

B−1x = W1zM for some zM ∈ RM . Thanks to the nonsingularity of B, we obtain

0 = WT
2 x = WT

2 BB−1x = WT
2 BW1zM ,

which implies zM = 0, due to the nonsingularity of WT
2 BW1 ∈ RM×M . Finally, we have

0 = W1zM = B−1x,

which, thanks to the nonsingularity of B, ends the proof.

In the following we employ Lemma 4.1 by taking W1 = Vk, W2 = Wµ
k , B = Pµ

h in order to prove that
Qµ

MSRB,k is nonsingular. To this aim, we de�ne

V
Ph//
Nk

=
{
x ∈ RNh : (Pµ

h )−1x ∈ VNk

}
, V Ph⊥

Nk
=
{
x ∈ RNh : (Pµ

h )−1x ∈ V ⊥Nk

}
.

Theorem 4.1. For any µ ∈ D, assume that Pµ
h ∈ RNh×Nh is a nonsingular matrix such that the matrix

(Wµ
k )TPµ

hVk is nonsingular. Then the matrix Qµ
MSRB,k is nonsingular.

Proof. The proof is similar to the one outlined in [12]. Given x = x//+ x⊥, where x// ∈ V
Ph//
Nk

, x⊥ ∈ V Ph⊥
Nk

,
such that Qµ

MSRB,kx = 0, then it must be x = 0. Then we have

Qµ
MSRB,kx//= (Pµ

h )−1x//+ Qµ
Nk

(
INh
−Aµ

h (Pµ
h )−1

)
x//

= Vkz
µ
N + Qµ

Nk
x//−Qµ

Nk
Aµ
hVkz

µ
N = Qµ

Nk
x//,

where (Pµ
h )−1x//= Vkz

µ
N for some zµNk

∈ RNk . Then

0 = Qµ
MSRB,kx = Qµ

MSRB,kx//+ Qµ
MSRB,kx⊥

= Qµ
Nk

x//+ (Pµ
h )−1x⊥ + Qµ

Nk

(
INh
−Aµ

h (Pµ
h )−1

)
x⊥

which leads to

Qµ
Nk

(
x//+ x⊥ + Aµ

h (Pµ
h )−1x⊥

)
= −(Pµ

h )−1x⊥. (29)

The left hand side is an element of VNk
, the right hand side is an element of V ⊥Nk

, therefore the only way
for them to be equal is when they are both zero. Being (Pµ

h )−1x⊥ = 0, implies x⊥ = 0 thanks to the
nonsingularity of Pµ

h , leading to

0 = Qµ
Nk

x//= Vk(Aµ
Nk

)−1(Wµ
k )Tx// (30)

9



which, thanks to linear independence of the columns of Vk and the non singularity of Aµ
Nk

yields

(Wµ
k )Tx//= 0.

Finally, by applying Lemma 4.1 with W1 = VNk
, W1 = Vk, W2 = Wµ

k and B = Pµ
h , we obtain that

x//= 0.

Being the matrix Qµ
MSRB,k invertible, we can de�ne the MSRB preconditioner as

Pµ
MSRB,k = (Qµ

MSRB,k)−1.

5 Algorithmic procedure

In this section we detail the procedures required to build and use the MSRB preconditioner, by splitting
the computation in an o�ine (typically expensive) and an online phase, where the FE problem (5) is solved
for a new instance of µ.

5.1 O�ine phase

During the o�ine phase, we build the structures required by (18) to handle any new possible instance of
the parameter online, namely the RB spaces Vk, k = 1, 2, . . . and the corresponding coarse corrections.

5.1.1 Building the RB spaces

In order to build the RB spaces as in (23), we �rst solve the FE problem (5) for ns instances of µ to build
the snapshots for velocity

{
uµi

h

}ns

i=1
and pressure

{
pµi

h

}ns

i=1
, and set

yµi

u0 = uµi

h , yµi

p0 = pµi

h , i = 1, . . . , ns.

The sets of snapshots
{
yµi

u0

}ns

i=1
and

{
yµi

p0

}ns

i=1
are used to build the spacesVu

Nu
0
andVp

Np
0
, respectively. These

are used to provide the initial guess to the FGMRES algorithm. For each new RB space Vk, k = 1, 2, . . . ,
the new snapshots

{
yµi

uk

}ns

i=1
and

{
yµi

pk

}ns

i=1
, k = 1, 2, . . . , solution of (19) for particular instances of µ, need

to be considered. An option to compute them is to solve problem (19), for any k and for each snapshot;
this is however impractical, especially when the dimension Nh of the FE problem largely increases. On the
other hand, one can alternatively take advantage of the following relations

γµ = ‖gµ
h −Aµ

hz
0
h‖2, (31)

yµ
1 =

1

γµ
(
zµh − z0

h

)
− (Pµ

h )−1vµ
1 , (32)

Compute zµk = Qµ
MSRB,kvk and wµ = Azµk (33)

hµj,k = (wµ,vµ
j ), wµ = wµ − hµj,kv

µ
j j = 1, . . . , k (34)

hµk+1,k = ‖wµ‖ (35)

yµ
k =

1

hµk,k−1

[
zµk −

k−1∑
j=1

hµj,k−1

(
yµ
j + (Pµ

h )−1vµ
j

)]
− (Pµ

h )−1vµ
k , k ≥ 2, (36)

which do not involve the solution of any other FE linear system and hold by construction when FGMRES
is employed and started with z0

h as the initial guess, see [12].

5.1.2 Assembling the RB coarse corrections

When building the RB coarse correction for the k-th iteration of FGMRES and for a new instance of the
parameter, the matrix Qµ

Nk
is not explicitly assembled; indeed, Wµ

k , (Aµ
Nk

)−1, which is computed and
stored as LU factorization of Aµ

Nk
and Vk are applied consecutively to the right hand side of (19).

Here, we speci�cally focus on the construction of the matrix Aµ
Nk

, a task which would normally require
to project the matrix Aµ

h as in (22). To avoid this operation, we require the FE matrix Aµ
h to feature an

a�ne parameter dependence, that is,

Aµ
h =

Qa∑
q=1

Θq
a(µ)Aq

h, (37)
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where Θq
a : D → R, q = 1, . . . , Qa are µ-dependent functions, and the matrices Aq

h ∈ RNh×Nh are µ-
independent. If assumption (37) is veri�ed, then the RB matrix Aµ

Nk
in the G-RB case can be constructed

as

Aµ
Nk

=

Qa∑
q=1

Θq
a(µ)ṼT

kA
q
hṼk =

Qa∑
q=1

Θq
a(µ)Aq

Nk
. (38)

On the other hand, in the aLS-RB case, the RB matrix can be built as

Aµ
Nk

=

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)VT
k (Aq1

h )TP−1
X Aq2

h Vk =

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)Aq1,q2
Nk

. (39)

The matrices Aq
Nk
, q = 1, . . . , Qa, A

q1,q2
Nk

∈ RN×N , q1, q2 = 1, . . . , Qa, depending on the chosen RB approxi-

mation, can be precomputed and stored once the RB spaces Vk (and Ṽk in the G-RB case) are constructed.
Then, given a new value µ of parameter, only the sum in (39) or (38) must be carried out to build Aµ

Nk
.

Notice that an a�ne decomposition as (37) is hard to be found as a built-in property of the original µ-
dependent problem. For instance, in the numerical results shown in this work, the computational domain
depends nona�nely on the parameter µ, because of the geometrical nature of the parametrization. There-
fore, we rely on the empirical interpolation method (EIM) or its discrete variant suited for sparse matrices
Matrix-Discrete-EIM (MDEIM), see [3, 24]. To recover an approximate a�ne decomposition, such that the
relation (37) is satis�ed up to a certain tolerance δmdeim provided to the MDEIM algorithm:

Aµ
h ≈

Qa∑
q=1

Θ̃q
a(µ)Aq

h, (40)

where Qa is the number of selected basis computed by MDEIM. Once a new value of µ is considered, the
coe�cients Θ̃q

a : D → R, q = 1, . . . , Qa are computed by solving an interpolation problem. In practice, we
run separately MDEIM on the matrices Dµ

h and Bµ
h , meaning that the following relations hold

Dµ
h ≈

Qd∑
q=1

Θ̃q
d(µ)Dq

h, Bµ
h ≈

Qb∑
q=1

Θ̃q
b(µ)Bq

h, (41)

where the functions Θ̃q
d : D → R, q = 1, . . . , Qd and Θ̃q

b : D → R, q = 1, . . . , Qb are µ−dependent and the
matrices Dq

h ∈ RNu
h×N

u
h , q = 1, . . . , Qd and Bq

h ∈ RN
p
h×N

u
h , q = 1, . . . , Qb are µ-independent.

The standard RB method detailed in Section 3 also exploits the a�ne parameter dependence (37) of
the matrix Aµ

h , or an approximated one as in (41), to boost its e�ciency. In addition, it similarly employs
the a�ne dependence property of the FE right hand side gµ

h , and if such an assumption is not met, it can
be recovered approximately with EIM or Discrete-EIM (DEIM) [3, 10]. The accuracy of the resulting RB
solution is signi�cantly a�ected by the accuracy of the a�ne decomposition of Aµ

h and gµ
h , which is known

to be a bottleneck for the e�ciency of the RB approximation. See Appendix A.3 for further details.
Furthermore we remark that, when the MSRB preconditioning strategy is employed, an a�ne decom-

position of Aµ
h is not strictly required; however, in the case it is available, it proves to be useful to cut the

(possibly large) costs entailed by building the RB matrices by projection through (22). On the other hand,
the a�ne decomposition of gµ

h is not needed in any case: in opposition with the classic RB method, with
the MSRB preconditioning strategy we aim at solving the full FE problem exploiting directly the FE right
hand side and the FE residual, in other words, the FE problem is not substituted online with a smaller
problem as in the standard RB case.

5.1.3 O�ine algorithms

The o�ine construction of the MSRB preconditioner is outlined in algorithm 2 for the G-RB case and in
algorithm 3 for the aLS-RB case. We provide a set of snapshots parameter

{
µi
}ns

i=1
, a �nal tolerance εr

and the tolerances to construct each RB space {δRB,k}k; then, at �rst we compute an a�ne decomposition
{Aq

h}
Qa

q=1 of the matrix Aµ
h with M-DEIM algorithm [24] (step 2), and we construct the snapshots required

to build the �rst space (step 3). Then, we iteratively build the necessary RB spaces through POD (steps
5-8) and the a�ne RB decomposition matrices {Aq1,q2

Nk
}Qa

q1,q2=1 (step 9). The �nal number of RB spaces
constructed is L. In the G-RB case, the construction of the snapshots is more demanding, since it requires
to build also the supremizer snapshots and an additional POD for each RB space, which also leads to RB
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Algorithm 2 MSRB Preconditioner with G-RB coarse correction - O�ine phase

1: procedure MSRB-PRECONDITIONER-G-RB-OFFLINE(
{
µi
}ns

i=1
, εr, {δRB,k}k, δMDEIM)

2: Compute an a�ne approximation {Aq
h}
Qa

q=1

3: Compute the FE solutions
{
zµi

h

}ns

i=1
and pressure supremizers

{
tµi
p (pµi

h )
}ns

i=1

4: Set S(0)
~u = [~uµ1

h , . . . , ~u
µns

h ], S(0)
p = [pµ1

h , . . . , p
µns

h ], S(0)
~t

= [tµ1
p , . . . , t

µns
p ] and k = 0

5: while
∏
k

δRB,k > εr do

6: Build Vu
Nu

k
= POD(S

(k)
~u , δRB,k), Vp

Np
k

= POD(S
(k)
p , δRB,k), Vs

Ns
k

= POD(S
(k)
~t
,
δRB,k

10 )

7: Build Aq
Nk

= VT
kA

q
hVk, q = 1, . . . , Qa

8: Compute new snapshots
{
yµi

uk

}ns

i=1
and

{
yµi

pk

}ns

i=1
with (31) and

{
yµi

sk

}ns

i=1
with (26)

9: Set S(k+1)
~u = [yµ1

uk , . . . ,y
µns

uk ], S(k+1)
p = [yµ1

pk , . . . ,y
µns

pk ], S(k+1)
~t

= [yµ1

sk , . . . ,y
µns

sk ] and k = k + 1
10: end while

11: end procedure

Algorithm 3 MSRB Preconditioner with aLS-RB coarse correction - O�ine phase

1: procedure MSRB-PRECONDITIONER-ALS-RB-OFFLINE(
{
µi
}ns

i=1
, εr, {δRB,k}k, δMDEIM)

2: Compute an a�ne approximation {Aq
h}
Qa

q=1

3: Compute the FE solutions
{
zµi

h

}ns

i=1

4: Set S(0)
~u = [~uµ1

h , . . . , ~u
µns

h ], S(0)
p = [pµ1

h , . . . , p
µns

h ] and k = 0
5: while

∏
k

δRB,k > εr do

6: Build the new basis Vu
Nu

k
= POD(S

(k)
~u , δRB,k), Vp

Np
k

= POD(S
(k)
p , δRB,k)

7: Build Aq1,q2
Nk

= VT
kA

q1
h P−1

X Aq2
h Vk, q1, q2 = 1, . . . , Qa

8: Compute new snapshots
{
yµi

k

}ns

i=1
with (31)

9: Set S(k+1)
~u = [yµ1

uk , . . . ,y
µns

uk ], S(k+1)
p = [yµ1

pk , . . . ,y
µns

pk ] and k = k + 1
10: end while

11: end procedure
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coarse components of larger dimension due to the enrichment of the velocity space. However, the number
of a�ne structures to be computed and stored is Qa in the G-RB case, but increases to Q2

a in the aLS-RB
case.

Notice that instead of providing a set of tolerances {δRB,k}k, we can also provide a set of dimensions
{Nk}k. Indeed, we speci�cally devised two di�erent strategies to build in practice the RB coarse corrections:

• �xed accuracy : all the tolerances {δRB,k}k are chosen equal to the same value δRB , that is δRB,k = δRB
for any k. This choice leads to RB coarse corrections which provide a constant accuracy, and let the
norm of the error decrease at a �xed rate at each iteration. However, the dimension of the RB
spaces increases with k, leading to a larger computational time to assemble and solve the resulting
RB system. If a G-RB method approach is employed, then the tolerance provided to POD for the
construction of the enriching basis functionsVs

Ns
k
is δRB,k/10, which empirically results in a well-posed

RB approximation;

• �xed dimension: the dimensions {Nu
k }k and {N

p
k}k (and {Ns

k}k if G-RB is employed) of the RB spaces
are set to a �xed value N , that is Nu

k = Np
k = N(= Ns

k) for any k. This choice is speci�cally more
convenient when we are dealing with problems showing less regular dependence on the parameter µ,
since the number of RB functions in each space is �xed and cannot excessively increase.

In the numerical experiments, we will show results for both these options.

5.1.4 Sequential RB coarse correction construction

The o�ine phase, and especially the computation of the set of snapshots
{
zµi

h

}ns

i=1
in step 3 of Algorithms

2 and 3 can be particularly expensive. In order to speed up the process, we can alternatively opt for a
sequential construction of the RB coarse components.
With this aim, we introduce M subsets Zm, m = 1, . . . ,M , of

{
zµi

h

}ns

i=1
, of dimension nms , respectively, and

such that

{
zµi

h

}ns

i=1
=

M⋃
m=1

Zm, ns =

M∑
m=1

nms , Zm =
{
zµi

h

}im
1+im−1

,

where im =
m∑
l=1

nls. Then, the k-th RB matrix Vk is built using
⋃k
m=1Zm as snapshots set. Exploiting

only part of the snapshots allows to use the MSRB preconditioner developed up to iteration k for the
computation of the new snapshots Zj , j > k, which will be employed to construct the RB spaces Vj , j > k.
This technique yields a reduction of the overall time required by the snapshot computation, since the speed
up provided by the MSRB preconditioner is sequentially used to build part of the snapshots. M and
Zm, m = 1, . . . ,M are empirically chosen such that the accuracies obtained by the RB coarse corrections
is not signi�cantly impacted if compared with the ones obtained with the RB coarse corrections built with
the complete set of snapshot. In the numerical experiments, we will employ M = 3 stages.

5.2 Online phase

In the online phase, we aim at computing the solutions of (5) for new instances of the parameter µ, which
have not been considered during the o�ine phase. We thus need to compute the weights {Θq

a(µ)}Qa

q=1

of the a�ne decomposition of Aµ
h , and build the coarse corrections {Qµ

Nk
}k. Finally, we apply the the

FGMRES algorithm relying on Mk = Qµ
MSRB,k in the preconditioning step. The operations required by the

matrix�vector multiplication Qµ
MSRB,kv

µ
k are detailed in algorithm 4; step 3 corresponds to solving the RB

problem

Aµ
Nk

yµ
Nk

= (Wµ
k )Tvk+ 1

2
(42)

and build wNk,k+ 1
2

= Vky
µ
Nk

. If the number of iterations required to reach a certain tolerance in the
FGMRES method exceeds the number of RB coarse corrections constructed, one can either continue to use
the last coarse correction in the remaining operations or drop steps 2-3 of Algorithm 4.

6 Numerical results

In this section we show numerical results where the proposed MSRB preconditioner, based on either on a
G-RB or an aLS-RB method, is employed to solve Stokes equations in parametrized geometries. Parameter
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Algorithm 4 Computation of Qµ
MSRB,kvk

1: apply the inverse of the �ne component Pµ
h : wk = (Pµ

h )−1vk;
2: build the residual vk+ 1

2
= vk −Aµ

hwk;
3: apply the RB coarse component wk+ 1

2
= Qµ

Nk
vk+ 1

2
;

4: build the preconditioned Kylov basis zk = wk + wk+ 1
2
.

dependent domains are obtained by considering a map from a reference domain to the physical domain which
can be provided either analytically (test case I) or by computing the solution of an additional FE problem
(test case II), e.g. when a solid extension mesh moving technique is employed, see [22]. Furthermore, we
highlight that the proposed strategy is applicable also to the case where physical parameters are considered.
As �ne component Pµ

h we employ the Pressure Mass Matrix (PMM) preconditioner de�ned as

Pµ
h = Pµ

M =

[
Dµ
h (Bµ

h )T

0 − 1
νµX

µ
p

]
, (43)

where the Schur complement Sµ
h is approximated with the rescaled pressure mass matrix, that is S̃µ

h = 1
νµX

µ
p

(which is spectrally equivalent to Sµ
h at least for two-dimensional problems). The application of (Pµ

M)−1 to
the k−th Krylov basis function vk (at step k of the Krylov method) is summarized in algorithm 5.

Algorithm 5 Computation of (Pµ
M)−1vk

1: solve the pressure problem − 1
νµX

µ
p zkp = vkp (solved inexactly by inner iterations);

2: update the velocity vku = vku − (Bµ
h )T zkp;

3: solve the velocity problem Dµ
hzku = vku (solved inexactly by inner iterations).

The PMM preconditioner (43) allows to obtain extremely satisfactory results both in terms of optimality
and scalability, see e.g. [30] and results therein. Speci�cally, the application of Pµ

M is detailed in algorithm
5, where steps 1 and 3 are solved inexactly by inner iterations up to a tolerance of 10−5 on the Euclidean
norm of the residual rescaled with the Euclidean norm of the right hand side. An algebraic multigrid (AMG)
preconditioner from the ML package of Trilinos [18] is employed for the inner iterations.

We employ Taylor-Hood (P2 − P1) �nite element spaces for velocity and pressure, respectively, which
provide an inf-sup stable discretization. In the following, we compare the results obtained with the MSRB
preconditioner with the ones obtained by using only the PMM preconditioner Pµ

M. The lifting function ~rµ~gD
is computed as harmonic extension of the Dirichlet data ~gµD in (1), which is chosen as a parabolic pro�le
such that the �ow rate at the inlet is equal to 1. An approximation of ~rµ~gD is computed by employing the
FE method, with second order polynomials basis functions. This leads to a parametrized linear system
whose solution rµh ∈ RNu

h is the approximated lifting functions computed with the preconditioned conjugate
gradient (PCG) method, exploiting an Algebraic Multigrid (AMG) preconditioner from the ML package of
Trilinos [18].

All the results have been obtained with the FE library LifeV [6]. Our tests have been run by employing
the Swiss National Supercomputing Center (CSCS) facilities on Cray XC40 compute nodes.

6.1 Test case I: parametrized cylinder

The �rst test case concerns a Stokes �ow in a three-dimensional cylinder whose shape varies according to a
set of parameters. We introduce a reference domain

Ω0 = {~x ∈ R3 : x2
1 + x2

2 < 0.25, x3 ∈ (0, 5)},

and obtain the computational domain Ωµ as

Ωµ = {~xµ ∈ R3 : ~xµ = ~x+ ~dµ},

where ~dµ is an analytical displacement

~dµ =

−x1µ1 exp{− (x3−2.5)2

µ2
}

−x2µ1 exp{− (x3−2.5)2

µ2
}

0

 .
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Figure 1: Deformation of the domain for test case I.

Here the parameter µ = (µ1, µ2) ∈ D = (0, 0.3) × (0.5, 1). The cylinder is narrowed in the central section
by a factor µ1/2, whereas µ2 determines how the narrowing e�ect propagates towards the inlet and outlet
sections. An example of deformation is shown in Fig. 1.

6.1.1 Simulation setup

We show numerical results obtained for three di�erent meshes, leading to a �nite element problem with
dimension Nh = 52′152, 320′338, 1′568′223, respectively, computed with Ncpu = 36, 180, 900 processors,
thus distributing about 1800 dofs per CPU. The FE solution for di�erent values of the parameter µ is
reported in Fig. 2.

(a) Velocity µ = (0.3, 1) (b) Velocity µ = (0.0, 0.5) (c) Velocity µ = (0.21, 0.85)

(d) Pressure µ = (0.3, 1) (e) Pressure µ = (0.0, 0.5) (f) Pressure µ = (0.21, 0.85)

Figure 2: Test case I, numerical solution for three values of µ obtained with the MSRB preconditioning
technique.

As RB coarse component, we show results for both the �xed accuracy and �xed dimension approaches
in the following con�gurations:

• GRB: G-RB coarse corrections;

• aLSRB-X0
h: aLS-RB coarse corrections where PX = X0

h, i.e. the matrix norm (8) on the reference
domain;

• aLSRB-PX0
h
: aLS-RB coarse corrections where PX = PX0

h
, where PX0

h
is a symmetric and positive

de�nite preconditioner for X0
h with a block structure PX0

h
= diag(PX0

u
,PX0

p
), where PXu

∈ RNu
h×N

u
h

(resp. PXp
∈ RN

p
h×N

p
h ) is a symmetric and positive de�nite AMG preconditioner of X0

u (resp. X0
p).

For the o�ine phase, we take ns = 100 snapshots for both the construction of the RB spaces (state
reduction) and the MDEIM algorithm (system approximation). Speci�cally, for MDEIM we set δmdeim =
10−6 for the construction of the a�ne approximation of both Dµ

h and Bµ
h . Regarding the construction of

the RB spaces, we take as �nal tolerance εr = 10−9 for all the test cases. For the �xed accuracy approach we
construct L = 4 RB spaces, yielding δRB,k = δRB = 10−9/4 ≈ 5.6 · 10−3 for any k. For the �xed dimension
approach, we take Nk = 10 for any k.
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Table 1: Test case I, MDEIM o�ine results, δmdeim = 10−6.

Nh Qd Qb Dµ
h o�ine time (s) Bµ

h o�ine time (s)
52152 7 10 24.65 5.25
320338 6 10 37.29 8.11
1568223 6 10 54.37 11.71

During the online phase, we test the proposed MSRB preconditioners with the three di�erent RB coarse
corrections (GRB, aLSRB-X0

h and aLSRB-PX0
h
) and solving the FE linear system with the FGMRES

method up to a tolerance, on the Euclidean norm of the residual, rescaled with the Euclidean norm of the
right hand side, of 10−6 on 150 online parameters di�erent from the ones employed during the o�ine phase
to build the RB spaces.

6.1.2 Numerical results

The computational time required to compute the approximate a�ne decomposition of the matrices Dµ
h and

Bµ
h with the MDEIM algorithm and the number of basis functions Qa are reported in Tab. 1. The number

of required basis functions Qa mainly depends on the parameter dependence of the PDE, consequently it
does not vary with the FE dimension, and ranges from 6 to 10 to reach a tolerance δmdeim = 10−6.

The results obtained with the MSRB preconditioner during the online phase, i.e. for new instances of
the parameter, for the �xed accuracy approach with GRB, aLSRB-X0

h and aLSRB-PX0
h
are reported in

Tab. 2, 3 and 4, respectively. For the �xed dimension approach, the results are reported in Tab. 5, 6 and 7,
respectively. For each case, we report the number of RB coarse corrections L and the total number of basis
functions Nk for the space k, as the sum of the velocity, pressure and supremizer RB functions, this latter
only if GRB is employed. We underline that the number of basis functions is larger in the GRB case, due
to the velocity enrichment. Furthermore, the detailed results concerning the time required to compute the
solution by employing the PMM preconditioner tPMM and the MSRB preconditioner tonl

MSRB, together with
the corresponding iteration counts ItPMM and Itonl

MSRB, are reported.
The number of iterations Itonl

MSRB required to reach convergence in the FGMRES algorithm is lower than
or equal to 6 for all the tests carried out with the MSRB preconditioner, it does not signi�cantly vary with
the FE dimension and, depending of the simulation, it is between 5% and 15% of that obtained by using the
PMM preconditioner only, see Figure 3a. The computational times tonl

MSRB required to solve the FE linear
system by employing the MSRB preconditioner is reduced of about 85% with respect to the one needed by
employing only the PMM preconditioner tPMM for the GRB and aLSRB-PX0

h
cases, and is reduced of

about 70% in the aLSRB-X0
h, see Figure 3b. The additional time required by this latter approach is caused

by the application of the matrix (Xµ
h )−1 to the vector vk+ 1

2
at each iteration of the FGMRES method (see

step 3 in Alg. 4); this is practically performed by solving the corresponding linear system where Xµ
h is at

the left hand side and vk+ 1
2
is at the right hand side. The GRB and aLSRB-PX0

h
approaches entail a

cheaper computation of such a step since in the former we rely on a G-RB method, while in the latter only
the (fast) application of P−1

X is required.
The computational time toff required by the o�ine phase is reported for all tests, together with the break
even point (BEP), that is, the number of online evaluations required to repay the o�ine phase. Our critreion
is based on the wall time comparison:

BEP =
toff

tPMM − tonl
MSRB

,

where we indicate by toff the wall time required by the o�ine computation, i.e. the construction of the
RB coarse components. We highlight that the GRB case requires an o�ine time which is larger than the
others due to the need of computing the pressure supremizer snapshots S~t and performing an additional
POD. On the other hand, the o�ine time in the case of aLSRB-X0

h is larger than the one obtained with
aLSRB-PX0

h
due to the construction of the RB a�ne matrices Aq1,q2

Nk
, q1, q2 = 1, . . . , Qa, because in the

former case a FE linear system needs to be solved for each combination of the Nk RB functions {ξi}Ni=1

and Qa a�ne terms {Aq
h}
Qa

q=1, leading to N · Qa FE linear systems, while by employing PX = PX0
h
, only

N · Qa applications of P−1
X0

h
need to be performed, boosting the computation of the a�ne RB structures.

By inspecting the BEP values, it emerges that the most convenient approach is obtained by adopting the
aLSRB-PX0

h
method. Indeed, it allows to solve the problem online in a computational time comparable to

the one obtained with the GRB approach, however entailing a cheaper o�ine phase, especially when the
FE dimension increases.
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Table 2: Test case I, �xed accuracy with GRB, L = 4, δRB,k ≈ 5.6 · 10−3, ∀k.

Nh Nk tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP
52152 9 24 50 113 0.72 3 4.70 40 1514.78 374
320338 9 24 48 118 1.30 3 11.32 42 2951.76 291
1568223 9 23 48 116 5.10 3 30.65 42 9548.40 372

Table 3: Test case I, �xed accuracy with aLSRB-X0
h, L = 4, δRB,k ≈ 5.6 · 10−3, ∀k.

Nh Nk tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP
52152 5 13 24 54 1.97 4 4.70 40 1493.10 535
320338 5 13 23 56 4.82 6 11.32 42 3411.82 519
1568223 5 13 23 52 11.25 6 30.65 42 8542.47 437

Table 4: Test case I, �xed accuracy with aLSRB-PX0
h
, L = 4, δRB,k ≈ 5.6 · 10−3, ∀k.

Nh Nk tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP
52152 5 13 24 53 1.29 4 4.70 40 1374.38 395
320338 5 13 23 55 2.57 6 11.32 42 2727.60 307
1568223 5 13 23 52 5.36 6 30.65 42 6975.20 274

Table 5: Test case I, �xed dimension with GRB, Nu
k = Np

k = Ns
k = 10, ∀k.

Nh L tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP
52152 9 0.51 2 4.70 40 2476.72 584
320338 7 1.24 3 11.32 42 4546.66 447
1568223 8 4.74 3 30.65 42 18369.68 707

Table 6: Test case I, �xed dimension with aLSRB-X0
h, N

u
k = Np

k = 10, ∀k.

Nh L tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP
52152 9 1.51 5 4.70 40 2507.38 776
320338 8 5.12 6 11.32 42 6770.73 1086
1568223 8 10.14 5 30.65 42 15121.68 735

Table 7: Test case I, �xed dimension with aLSRB-PX0
h
, Nu

k = Np
k = 10, ∀k.

Nh L tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec) BEP
52152 9 1.17 5 4.70 40 2886.91 810
320338 8 2.74 6 11.32 42 5475.75 633
1568223 8 4.75 5 30.65 42 11489.38 442

6.2 Test case II: parametrized carotid bifurcations

In the second test case, we consider parametrized Stokes �ows in a carotid bifurcation, whose shape varies
according to a set of parameters. The computational domain Ωµ is obtained by deforming a reference
domain Ω0, shown in Fig. 4a, such that ∂Ω0 = Γw ∪ Γin ∪ Γout. More speci�cally, we set

Ωµ = {~xµ ∈ R3 : ~xµ = ~x+ ~dµ},

where the displacement ~dµ is computed as the solution of the following parametrized elliptic problem
−∆~dµ = ~0 in Ω0

~dµ = ~0 on Γin ∪ Γout

∂ ~dµ

∂~n
= ~hµ on Γw.

(44)

The parametrized datum ~hµ is a stress load entailing a deformation leading to the narrowing of one of the
branches of the bifurcation. We consider as parameter µ = (µ1, µ2) ∈ D = [4, 5]× [0, 0.5] and introduce a
µ−dependent region Aµ, such that

Aµ = {~x ∈ R3 : (x1 + 0.8)2 + (x2 − µ1)2 + (x3)2 < R2, R = 0.65},

which identi�es the portion of volume where ~hµ is loaded as follows

~hµ = ~hµ(~x) = −µ2

(
1− r2(~x)

R2

)
~nµIAµ(~x), ~x ∈ R3,
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Figure 3: Test case I, iteration number and computational times vs Nh.

(a) Reference domain Ω0. (b) Displacement �eld for µ = (5.0, 0.5).

Figure 4: Test case II, reference domain Ω0 and displacement dµ
h for µ = (5.0, 0.5).

where r(~x) = rµ(~x) =
√

(x1 + 0.8)2 + (x2 − µ1)2 + (x3)2, R = 0.65 and IAµ(~x) is the indicator function
over the set Aµ. This parametrization entails a narrowing of the straight branch in di�erent positions along
the coordinate x2 (according to the value of µ2) and simulates an occlusion. An example of deformation
computed for µ = (5.0, 0.5) is shown in Fig. 4b. Examples of solutions for di�erent values of the parameter
µ are shown in Fig. 5a-5b and 5c-5d.

We remark that the solution ~dµ of problem (44) is not known analytically; consequently, its numerical
approximation ~dµh is computed employing the FE method on its corresponding variational formulation. We

denote by dµ
h ∈ RNd

h the solution of the corresponding FE linear system.
In the numerical results we show, Taylor-Hood FE (P2 − P1), with a mesh leading to Nh = Nu

h +Np
h =

3′198′820 degrees of freedom, are employed for the FE discretization of the Stokes problem. The computation
is carried out by using 360 computing cores.

6.2.1 Simulation setup

When considering a new instance of the parameter µ, we compute dµ
h by solving the corresponding FE

linear system with the PCG method, preconditioned with the AMG preconditioner. The system is solved
up to a tolerance 10−8 on the Euclidean norm of the residual rescaled with the Euclidean norm of the right
hand side. The computation of the deformation dµ

h requires on average 1.9 seconds and this time is not
included in the results reported, since it does not vary in the di�erent scenarios presented. Notice that we
could accelerate the computation of dµ

h by employing the MSRB preconditioning strategy or the standard
RB method to deal with problem (44). Then, the solution of the Stokes problem (5) is computed employing
the MSRB preconditioner, we report in particular the results obtained with the aLSRB-PX0

h
case and the

�xed dimension approach only, however an analysis similar to the one carried out to Test case I can be done.
For the aim of RB spaces construction, we use ns = 350 snapshots, which are computed incrementally as
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(a) Slice of velocity �eld for µ = (5.0, 0.5). (b) Pressure �eld for µ = (5.0, 0.5).

(c) Slice of velocity �eld for µ = (4.0, 0.0). (d) Pressure �eld for µ = (4.0, 0.0).

Figure 5: Test case II, numerical solution for two values of µ obtained with the MSRB preconditioning
technique.

explained in Section 5.1.4, with M = 3 and n1
s = 100, n2

s = 100 and n3
s = 150. Then, we set εr = 10−7, by

choosing Nu
k = Np

k = 50 for any k = 0, . . . , L− 1, leading to L coarse corrections with dimension Nk = 100
for any k = 0, . . . , L − 1. We test the resulting preconditioner on 100 online instances of the parameter
randomly chosen, by solving the resulting FE problem up to a tolerance 10−5. For the MSRB preconditioner,
we employ MDEIM (with tolerance δmdeim = 10−4) to compute an approximated a�ne decomposition of
Aµ
h , allowing us to cheaply assemble online the coarse corrections Aµ

Nk
, k = 0, . . . , L− 1.

We compare the results obtained with the MSRB precondtioner with the ones obtained by relying on
the standard RB method, where the aLSRB-PX0

h
approach detailed in Section A.2 is used as solver. For

this latter, we build the RB basis functions by using POD with a tolerance of 10−9 on ns = 350 snapshots;
then we construct the RB approximation by a�nely approximating the FE right hand sides and matrices
in (6) by using DEIM and MDEIM, respectively. Indeed, we remark that, as highlighted in Section 5.1.2,
the standard RB method also relies on the a�ne dependence of the FE right hand side gµ

h . Since in the
considered test case this assumption is not satis�ed, DEIM is performed on the right hand side to compute an
a�ne approximation of the vectors fµh and rµh . Furthermore, MDEIM is used to compute an approximated
a�ne decomposition of the FE sti�ness matrix Aµ

h , which is used to cheaply assemble the RB matrix Aµ
N

online.

6.2.2 Numerical results: comparison with the standard RB method

We show the results obtained by using the aLSRB-PX0
h
method as solver on a set of 100 instances of the

parameter and varying the tolerances δmdeim and δdeim employed for the MDEIM and DEIM algorithms,
respectively. In Tab. 8, the number of a�ne components for the di�erent FE arrays is reported, together
with the computational time (part of the o�ine phase of the standard RB method) taffine to build and store
the a�ne RB matrices Aq1,q2

N , q1, q2 = 1, . . . , Qa in (50) and the RB vectors gq1,q2N , q1, . . . , Qa, q1, . . . , Qg in
(51). Notice that the number of a�ne basis functions largely a�ects the time taffine, leading overall to a
more demanding o�ine phase.

By setting δRB = 10−9 to construct the RB space, we obtain Nu = 327 and Np = 111 basis functions
for velocity and pressure, respectively. In order to evaluate the accuracy of the RB solution, we compute
the relative residual of the FE problem evaluated on the RB solution

rµRB =

∥∥gµ
h −Aµ

hz
µ
N

∥∥
2∥∥gµ

h

∥∥
2

,
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Table 8: Test case 2, (M)DEIM number of a�ne basis functions.

δdeim = δmdeim MDEIM - Dµ
h MDEIM - Bµ

h DEIM - fµh DEIM - rµh taffine (sec)
1e-02 1 3 3 4 75.41
1e-03 1 6 6 13 184.68
1e-04 3 17 15 25 1165.29
1e-05 8 36 29 48 5013.85
1e-06 19 79 63 117 49129.40

Table 9: Test case 2, aLSRB-PX0
h
solver, δRB = 10−9, Nu = 327 and Np = 111.

δdeim = δmdeim rRB tonl
RB (sec) toff (sec)

1e-02 1.9e-02 5.75 41931.61
1e-03 4.0e-03 5.39 42040.87
1e-04 1.1e-03 5.33 43021.49
1e-05 2.8e-04 5.81 46870.05
1e-06 6.3e-05 8.66 90985.60

which we report in Tab. 9. As a matter of fact, in order to obtain an accurate RB solution, it is mandatory
to build an accurate approximate a�ne decomposition of the FE arrays, cf. Tab. 9, since the accuracy of
the RB solution is strongly related to the accuracy of the a�ne approximations. The online time tonl to
assemble and solve the RB problem is largely a�ected by the values δdeim and δmdeim and reaches up to 8.66
seconds in the most demanding case. In particular, the time for assembling the RB matrix Aµ

N and the time
for assembling the RB right hand side gµ

N are the most a�ected ones by the number of a�ne components.
As regards the computational time toff required by the o�ine phase, it largely increases according to the
number of a�ne terms, since it takes into account the time taffine reported in Tab. 8.

In Tab. 10, the results obtained with the FGMRES method preconditioned with MSRB preconditioner
(with aLSRB-PX0

h
coarse corrections) are presented. We employ MDEIM with δmdeim = 10−4 to build an

approximated a�ne decomposition of the FE matrices Dµ
h and Bµ

h , leading to Qd = 3 and Qb = 17 a�ne
basis functions, respectively. A large MDEIM tolerance δmdeim is employed since each RB coarse correction
is trained to solve equation (19) up to an accuracy larger than δmdeim = 10−4; therefore such value does not
a�ect the local accuracy of any coarse correction. Furthermore, we notice that in this context there is no
need to employ DEIM to approximate fµh and rµh , as explained in Section 5.1.2.

L = 4 RB spaces are computed with a dimension Nu
k = Np

k = 50 for k = 0, 1, 2, 3 for both velocity and
pressure; as a matter of fact, the convergence up to a tolerance of 10−5 on rµRB is reached on average in 5
iterations and about 6.45 seconds.

These facts are motivated by the lighter dependence on the MDEIM tolerance, which allows to obtain a
signi�cantly more accurate solution (with a residual rµRB lower than 10−5) in a shorter computational time,
compared to the one computed with the standard RB method. In addition, the obtained results show that
a cheaper o�ine phase is also achieved, especially thanks to the fact that a smaller number of RB a�ne
arrays needs to be constructed.

Finally, we compare the computational time employed by the FGMRES preconditioned with the MSRB
preconditioner, with the one needed to solve the same problem with the FGMRES method preconditioned
with the PMM preconditioner, reported in Tab. 10 as well. When this latter technique is employed, the
problem is solved in about 80.69 seconds and 87 iterations, on average. Therefore the proposed MSRB
technique allows to obtain the solution by reducing of more than 92% the time needed by employing the
PMM preconditioner.

7 Conclusions

In this work we have extended the MSRB preconditioner to the case of parametrized linear saddle-point prob-
lems. This can be achieved by using a RB coarse correction which takes advantage of either an augmented
RB space G-RB approach or a PG-RB formulation. If the former approach is employed, the well-posedness
of the corresponding preconditioner is ensured by the results in [12]. In this work, we have extended such

Table 10: Test case 2, �xed dimension with aLSRB-PX0
h
, RES = 10−5, Nu

k = Np
k = 50, ∀k, ∼ 8890 dofs

per CPU.

Nh L tonl
MSRB (sec) Itonl

MSRB tPMM (sec) ItPMM toff (sec)
3198820 4 6.45 5 80.69 87 46554.90
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results to the case where the latter option is used. Furthermore, we have introduced a new sequential con-
struction of the snapshots which mitigates the o�ine costs by using the MSRB preconditioning technique
to compute part of the snapshots.
We have tested the MSRB preconditioning method when dealing with the 3-D parametrized Stokes equations
of large dimension in parameter-dependent domains of variable shape. We compared the obtained results
with the ones obtained by using a PMM preconditioner. The proposed technique enables to compute the
solution for each new instance of the parameter much more rapidly than by employing only the PMM pre-
conditioner in the online phase, reducing dramatically the computational time (up to about 92%) and the
iteration count when a new instance of the parameter is considered. A comparison with the standard RB
method has been carried out, showing that the MSRB preconditioning approach has a milder dependence
on the a�ne approximation of the FE arrays than the RB method, and allows to compute a more accurate
solution in a shorter time during the online phase, and not requiring a too expensive o�ine phase.
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A Building a well-posed RB Stokes problem

In the following we brie�y recall how to build a stable Stokes RB problem either with an enriched-velocity
G-RB or an aLSRB formulation. These two techniques are employed in Section 4 to build the RB coarse
components of the MSRB preconditioner.

A.1 Galerkin-RB method with velocity enrichment

A stable G-RB approximation (13) is built by considering the matrix

Ṽ =

[
Vu
Nu

Vs
Ns

0
0 0 Vp

Np

]
instead of V in (13), and choosing Wµ = Ṽ. The columns of the matrix Vs

Ns
span the enriching velocity

space, and are computed by POD as

Vs
Ns

= POD
(
S~t,Xu, εPOD

)
,

where the columns of the matrix S~t ∈ RNu
h×ns are the snapshots

{
tµi
p (pµi

h )
}ns

i=1
, obtained by solving ns

problems

Xµ
u t

µi
p = (Bµi

h )
T
pµi

h i = 1, . . . , ns, (45)

which involve the pressure snapshots
{
pµi

h

}ns

i=1
. Solving the FE system (45) corresponds to compute the

element of RNu
h which reaches the supremum in (9) for a �xed pressure pµi

h and a �xed parameter value
µi. Although it is not possible to state a stability result for the G-RB approximation obtained in this way,
numerically it provides very satisfying results; for a more detailed analysis see e.g. [2, 13].

A.2 Algebraic Least Squares RB methods

By considering the matrix PX introduced in Section 4.1.2, a well posed RB Stokes problem is obtained
when choosing a projection matrix of the following form

W = P−1
X Aµ

hV

is chosen, leading to the RB system

Aµ
NzµN = gµ

N . (46)

The RB matrix Aµ
N ∈ RN×N and the RB right hand side gµ

N ∈ RN are de�ned as

Aµ
N = VT (Aµ

h )TP−1
X Aµ

hV gµ
N = VT (Aµ

h )TP−1
X gµ

h ; (47)

the resulting aLS-RB problem automatically ful�lls (17). This technique has provided satisfying results
especially when the domain Ωµ depends on the parameter through a map which is not known analytically.
See [13] for further details.

A.3 Assembling the RB problem

The standard RB method, together with the a�ne decomposition (37) of the matrix Aµ
h , strongly relies

also on the a�ne decomposition of the right hand side gµ
h , that is, it must hold

gµ
h =

Qg∑
q=1

Θq
g(µ)gqh, (48)
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where Θq
g : D → R, q = 1, . . . , Qg are µ-dependent functions, while the vectors g

q
h ∈ RNh are µ-independent.

If assumptions (37) and (48) are veri�ed, then the RB matrix Aµ
N and the RB vector gµ

N can be constructed
in the G-RB case as

Aµ
N =

Qa∑
q=1

Θq
a(µ)ṼTAq

hṼ =

Qa∑
q=1

Θq
a(µ)Aq

N , gµ
N =

Qg∑
q=1

Θq
g(µ)ṼTgqh =

Qg∑
q=1

Θq
g(µ)gqN . (49)

and in the aLS-RB case as

Aµ
N =

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)VT (Aq1
h )TP−1

X Aq2
h V =

Qa∑
q1,q2=1

Θq1
a (µ)Θq2

a (µ)Aq1,q2
N , (50)

gµ
N =

Qa∑
q1=1

Qg∑
q2=1

Θq1
a (µ)Θq

g(µ)VT (Aq1
h )TP−1

X gq2h =

Qa∑
q1=1

Qg∑
q2=1

Θq1
a (µ)Θq2

g (µ)gq1,q2N . (51)

The matricesAq
N ∈ RN×N , q = 1, . . . , Qa, A

q1,q2
N ∈ RN×N , q1, q2 = 1, . . . , Qa and the vectors g

q
N ∈ RN , q =

1, . . . , Qa, g
q1,q2
N ∈ RN , q1 = 1, . . . , Qa, q2 = 1, . . . , Qg, depending on the chosen RB approximation, can be

precomputed and stored once the RB space V is constructed. Then, given a new value µ of parameter,
only the sums in (49) or (50)-(51) must be carried out, boosting the e�ciency of the RB appoximation
computation.

If assumptions (37)-(48) can not be veri�ed, one can rely on the empirical interpolation method (EIM) or
its discrete variants Discrete-EIM (DEIM) and Matrix-Discrete-EIM (MDEIM) to compute an approximated
a�ne decomposition, see [3, 10, 24]. These techniques allow to build an approximate a�ne decomposition,
such that relations (37) and (48) are satis�ed up to a certain tolerance

Aµ
h ≈

Qa∑
q=1

Θ̃q
a(µ)Aq

h, gµ
h ≈

Qg∑
q=1

Θ̃q
g(µ)gqh

whereQa andQg are, in our case, the number of selected basis computed by MDEIM and DEIM, respectively.
As stated in Section 5.1.2, in our experiments MDEIM is run separately on Dµ

h and Bµ
h , while as the right

hand side gµ
h concerns, DEIM is run separately on fµh and rµh , in order to obtain an approximated a�ne

decomposition

fµh ≈
Qf∑
q=1

Θ̃q
f (µ)fqh, rµh ≈

Qr∑
q=1

Θ̃q
r(µ)rqh,

where the functions Θ̃q
f : D → R, q = 1, . . . , Qf and Θ̃q

b : D → R, q = 1, . . . , Qr are µ−dependent and the

matrices Dq
h ∈ RNu

h×N
u
h , q = 1, . . . , Qf and Bq

h ∈ RN
p
h×N

u
h , q = 1, . . . , Qr are µ-independent.
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