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It was recently argued that SU(3) chains in the p-box symmetric irreducible representation (irrep) exhibit a
“Haldane gap” when p is a multiple of 3 and are otherwise gapless [Nucl. Phys. B 924, 508 (2017)]. We extend
this argument to the self-conjugate irreps of SU(3) with p columns of length 2 and p columns of length 1 in
the Young tableau (p = 1 corresponding to the adjoint irrep), arguing that they are always gapped but have
spontaneously broken parity symmetry for p odd but not even.
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I. INTRODUCTION

While SU(2) spin chains have been very extensively stud-
ied both theoretically and experimentally, higher symmetry
SU(n) chains represent a new domain which may be experi-
mentally accessible with cold atoms [1–11]. Chains with spins
in the fully symmetric p-box irreducible representation (irrep)
of SU(3) were studied in Refs. [12,13]. The Lieb-Schulz-
Mattis-Affleck (LSMA) theorem [14,15] implies that these
models must either be gapless or have spontaneously broken
translation symmetry for p �= 3m, with m a positive integer.
By mapping into a flag manifold σ model at large p, with
topological angles ±2π p/3, it was argued that for p �= 3m,
the models renormalize to the SU(3)1 Wess-Zumino-Witten
(WZW) conformal field theory, which was also verified by
Monte Carlo calculations [13]. Important extensions of the
field theory treatment were made in Refs. [16,17], consistent
with the same conclusion. Here we extend these arguments
to the self-conjugate SU(3) irreps. In this case, the LSMA
theorem fails, as the number of boxes in the Young tableaux is
always divisible by 3. We again map the chains into a related
flag manifold quantum field theory with topological terms at
large p. Notably, the model is not Lorentz invariant in this
case due to unequal velocities for the Goldstone bosons which
appear in the perturbative limit. The topological angles are
now ±pπ , equivalently 0 for p even and ±π for p odd. We
solve the field theory in the strong coupling limit, obtaining
a gapped phase with spontaneously broken parity symmetry
for p odd but not even. We also present AKLT type [18,19]
ground states of generalized chain models which are gapped
for all p but exhibit spontaneously broken parity symmetry for
p odd but not even [20].

In Sec. II we present the “flavor-wave theory” calcula-
tions [analogous to Holstein-Primakoff spin wave theory for
SU(2)]. In Sec. III we derive a non-Lorentz invariant flag
manifold σ model (NLIσM) at large p. Its perturbative spec-
trum agrees with the low energy sector of the flavor-wave
theory spectrum, consisting of six Goldstone bosons with two
different velocities. We do not expect such Goldstone bosons
to exist in the true spectrum because the SU(3) symmetry

should not be spontaneously broken in accordance with the
Mermin-Wagner-Coleman theorem [21,22].

In Sec. IV we present the failure of the LSMA theorem for
chains with these irreps. In Sec. V we solve the strong cou-
pling limit of the field theory, obtaining a gapped phase with
spontaneously broken parity symmetry for topological angles
±π corresponding to p odd. In Sec. VI we present Monte
Carlo results that show the absence of the SU(3)1 critical point
that was present in the case of fully symmetric chains [13].
In Sec. VII we propose AKLT states consistent with these
conclusions, with the spontaneously broken symmetry, for p
odd, again being parity. Section VIII contains conclusions. We
also provide several Appendices including detailed calcula-
tions and possible ways to further verify our findings.

II. LINEAR FLAVOR-WAVE THEORY

The linear flavor-wave theory (LFWT) [23–25], which is
analogous to the SU(2) spin-wave theory, is a method that
can be applied to SU(n) models. The nomenclature originates
from the SU(3) flavor symmetries of elementary particles. It
can be applied to an ordered state to obtain the low-energy
spectrum of the model.

The aim in this section is to derive the velocities of the
Goldstone modes which will serve as a check for the field-
theoretical approach in Sec. III. To this end, we will use
the bosonic representation for SU(3) introduced by Mathur
and Sen [26] to obtain the spectrum for any self-conjugate
irrep represented by the Young tableaux [p, p] with p two-box
columns and p one-box columns.

A. Bosonic representation of Mathur and Sen

Following Mathur and Sen [26], we write the spin op-
erators in terms of two three-component commuting boson
operators aα and bα:

Ŝα
β = aα†aβ − b†

βbα. (2.1)

The operators a1, a2, a3 are related to the fundamental irrep 3
of SU(3) whose states will be denoted by the flavors A, B,C,
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FIG. 1. The weight diagram of the adjoint irrep (p = 1). The
weight space in the middle is two dimensional, and its two basis
states can be chosen as in this figure. Similarly, the weight space on
the second outer hexagon is always two dimensional for any p [27].

whereas the operators b1, b2, b3 belong to its conjugate irrep
3̄ whose states will be labeled with Ā, B̄, C̄. This construction
naturally satisfies the SU(3) commutation relations[

Ŝα
β , Ŝμ

ν

] = δ
μ
β Ŝα

ν − δα
ν Ŝμ

β . (2.2)

The [p, p] self-conjugate irrep corresponds to states with p
bosons of type a and p bosons of type b,

N̂a =
3∑

α=1

aα†aα = p,

N̂b =
3∑

α=1

b†
αbα = p,

3∑
α=1

Ŝα
α = N̂a − N̂b = 0, (2.3)

but not all such states belong to the [p, p] irrep. Take the
case of p = 1 as an example. The [1,1] irrep is eight di-
mensional, but the states with one a boson and one b boson
span a nine-dimensional subspace. The states corresponding
the self-conjugate irrep are shown in the weight diagram
in Fig. 1, while the ninth state is |AĀ〉 + |BB̄〉 + |CC̄〉 =
(a1†b†

1 + a2†b†
2 + a3†b†

3)|0〉, which actually belongs to the sin-
glet irrep. In general, the subspace spanned by states with
p a bosons and p b bosons is a combination of all the self-
conjugate irreps [p′, p′] with p′ � p and the singlet irrep. To
select the subspace corresponding to the [p, p] irrep itself, we
prove in Appendix A the following condition for any |�〉 of p
a bosons and p b bosons lying in [p, p]:∑

γ

aγ bγ |�〉 = 0. (2.4)

In the following we will apply the LFWT to the SU(3)
antiferromagnetic Heisenberg chain:

H =J
∑

i

3∑
α,β=1

Ŝα
β (i)Ŝβ

α (i + 1). (2.5)

B. Classical ground state

Mathur and Sen [26] introduced spin-coherent states for
the [p, p] irrep using the a, b bosons as

|�z, �w〉 := [(�z · �a†)( �w · �b†)]p|0〉, (2.6)

FIG. 2. The two-sublattice classical ground state of the nearest
neighbor Heisenberg model of Eq. (2.5): (a) The state of sublattice

1 with p times B̄ and p times A. (b) The state of sublattice 
2 with
p times Ā and p times B.

where �z · �w = 0 and |�z|2 = | �w|2 = 1. The first condition
guarantees that these states satisfy the traceless condition of
Eq. (2.4) and are thus in the correct irreducible representation
(see Appendix A). The second condition is for normalization.
These coherent states form an overcomplete set over the [p, p]
irrep. The expectation value of the spin operators reads as

〈�z, �w|Sα
β |�z, �w〉 = p[zα∗zβ − wαw∗

β]. (2.7)

The classical limit, which corresponds to the expectation of
the quantum Hamiltonian in a direct product of spin-coherent
states, reads as

H = J p2
∑

i

[
zα∗

i zβ,i − wα
i w∗

β,i

][
zβ∗

i+1zα,i+1 − w
β

i+1w
∗
α,i+1

]
= J p2

∑
i

[|�z∗
i · �zi+1|2 + | �w∗

i · �wi+1|2

− |�zi · �wi+1|2 − | �wi · �zi+1|2]. (2.8)

The classical ground states are the two-sublattice states
with

�z2n = �w∗
2n+1 = ��1, �w∗

2n = �z2n+1 = ��2, (2.9)

where | ��i|2 = 1 and ��1∗ · ��2 = 0, giving an energy −2J p2L
where L is the number of links. We can choose any of these
states as a starting point for the flavor-wave calculations,
because they are all equivalent up to global SU(3) rotations.

C. Flavor-wave spectrum

According to the above discussion, we choose the classical
ground state that is given by p times A and p times B̄ [or
(a1†b†

2)p|0〉 in bosonic language] on the sublattice 
1, and p
times B and p times Ā [or (a2†b†

1)p|0〉] on the other sublattice

2 in a Néel configuration. These two states are depicted in
terms of the Weyl tableaux in Fig. 2. Using the notation of the
coherent states these correspond to �z2n = �w2n+1 = (1, 0, 0)
and �w2n = �z2n+1 = (0, 1, 0).

We now take the semiclassical limit by letting p → ∞, just
as in the spin-wave calculations in which S → ∞. Under this
assumption of a large condensate of A, B̄ on i ∈ 
1 and B, Ā
on j ∈ 
2, the constraints in Eq. (2.3) can be rewritten as

a1†(i)a1(i) = p − [a2†(i)a2(i) + a3†(i)a3(i)],

b†
2(i)b2(i) = p − [b†

1(i)b1(i) + b†
3(i)b3(i)],

a2†( j)a2( j) = p − [a1†( j)a1( j) + a3†( j)a3( j)],

b†
1( j)b1( j) = p − [b†

2( j)b2( j) + b†
3( j)b3( j)], (2.10)

where we treat the bosons on the right-hand side as small
fluctuations.
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The Holstein-Primakoff transformation reads as

a1†(i), a1(i) −→
√

p −
∑
α �=1

aα†(i)aα (i),

b†
2(i), b2(i) −→

√
p −

∑
α �=2

b†
α (i)bα (i),

a2†( j), a2( j) −→
√

p −
∑
α �=2

aα†( j)aα ( j),

b†
1( j), b1( j) −→

√
p −

∑
α �=1

b†
α ( j)bα ( j). (2.11)

We can now apply this transformation on the Hamiltonian (2.5) written with the boson operators (2.1), which gives the quadratic
Hamiltonian at the order O(p):

H(2) = J p
∑
i∈
1

∑
j ∈ 
2

j = i ± 1

{[2a2†(i)a2(i) + 2a1†( j)a1( j) + 2b†
1(i)b1(i) + 2b†

2( j)b2( j) + a2†(i)a1†( j) − a2†(i)b†
2( j)

− b†
1(i)a1†( j) + b†

1(i)b†
2( j) + a2(i)a1( j) − a2(i)b2( j) − b1(i)a1( j) + b1(i)b2( j)] + [a3†( j)a3( j) + b†

3(i)b3(i) − b†
3(i)a3†( j)

− b3(i)a3( j)] + [a3†(i)a3(i) + b†
3( j)b3( j) − a3†(i)b3†( j) − a3(i)b3( j)]}. (2.12)

We now use the Fourier transform,

aα (l ) =
√

2

L

∑
k∈RBZ

aα (k,
l )e
−ikrl , bβ (l ) =

√
2

L

∑
k∈RBZ

bβ (k,
l )e
−ikrl , (2.13)

where k runs over the reduced Brillouin zone (RBZ), L is the total number of sites, and 
l ∈ {
1,
2} is the sublattice index
keeping track of the sublattice of site l . The quadratic Hamiltonian (2.12) is then given by (the left superscript stands for
transpose)

H(2) = J p
∑

k∈RBZ

3∑
α=1

(
cα†

k , cα
−k

)
Mα

k

(
t cα

k

t cα†
−k

)
, (2.14)

where

c1†
k : = (a2,†(k,
1), b†

1(k,
1), a1†(k,
2), b†
2(k,
2)), c2†

k := (a3†(k,
1), b†
3(k,
2)),

c3†
k : = (a3†(k,
2), b†

3(k,
1)), c1
−k := (a2(−k,
1), b1(−k,
1), a1(−k,
2), b2(−k,
2)),

c2
−k : = (a3(−k,
1), b3(−k,
2)), c3

−k := (a3(−k,
2), b3(−k,
1)), (2.15)

and

M1
k : =

(
A1 B1

k

B1†
k A1

)
, A1 := 2 14, B1

k :=

⎛
⎜⎝

0 0 γk −γk

0 0 −γk γk

γk −γk 0 0
−γk γk 0 0

⎞
⎟⎠,

M3
k : = M2

k :=
(

A2 B2
k

B2
k A2

)
, A2 := 12, B2

k :=
(

0 −γk

−γk 0

)
, (2.16)

where the geometrical factor γk := cos(ka) has been introduced. We now diagonalize the system by using the generalized
Bogoliubov transformation [28]. Then the positive eigenvalues of the matrices(

Aα Bα
k

−Bα†
k −Aα

)
(2.17)
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yield the frequencies ωμ of the system. Hence, we finally
obtain the diagonalized Hamiltonian

H(2) = J
∑

k∈RBZ

⎧⎨
⎩

8∑
μ=1

ωμ(k)

(
c̃†
μ(k)c̃μ(k) + 1

2

)⎫⎬
⎭+ const.,

(2.18)
where the bosons c̃μ are the new Bogoliubov bosons, and

[r]ω1,2(k) = 4p| sin(ka)|, ω3,4(k) = 2p| sin(ka)|,
ω5,6(k) = 2p| sin(ka)|, ω7,8(k) = 4p, (2.19)

yielding two different types of Goldstone modes and two
flat modes. In Appendix B we give a detailed explanation
of both the dispersive and the flat modes, and their relations
to the spin generators. Hence, we finally observe that the
dispersion relations related to the Goldstone modes are ω1,...,6.
The velocities of these six Goldstone modes are given by

v1 := v2 := 4apJ, v3 := v4 := v5 := v6 := 2apJ. (2.20)

While the Goldstone modes are absent in the actual spectrum,
the true low energy excitations will have a mass that is
exponentially suppressed in p, and still well below the O(p)
energy scale of the flat modes. Indeed, this was shown to be
true in the case of equal velocities in Ref. [13], using the
coupling constant beta function. Since unequal velocities will
only modify the beta function by a p-independent function of
their ratios, we expect the same exponential dependence to
hold in the present theory.

III. MAPPING TO FIELD THEORY

Using the coherent states introduced earlier we can carry
out a spin-coherent state path integral approach [13,29–31]
on the quantum spin Hamiltonian of Eq. (2.5). The imaginary
Berry’s phase term in the action will be

SB,n = −p
∫

dτ

[
�z∗

n · d

dτ
�zn + �w∗

n · d

dτ
�wn

]
, (3.1)

while the Hamiltonian part becomes

H = J p2
∑

n

[|�z∗
n · �zn+1|2 + | �w∗

n · �wn+1|2

−|�zn · �wn+1|2 − | �wn · �zn+1|2],

as discussed in Sec. II B. In this approach we parametrize
fluctuations around the classical ground state manifold

�z2 j = �w∗
2 j+1 = ��1, �w∗

2 j = �z2 j+1 = ��2, (3.2)

where | ��i|2 = 1 and ��1∗ · ��2 = 0. In the classical ground
state

SB,2 j + SB,2 j+1

≈ −p
∫

dτ

[
�z∗

2 j · d

dτ
�z2 j + �w∗

2 j · d

dτ
�w2 j

+ �w2 j · d

dτ
�w∗

2 j + �z2 j · d

dτ
�z∗

2 j

]

= −p
∫

dτ
d

dτ
[|�z2 j |2 + | �w2 j |2] = 0. (3.3)

Now, if we allow the ��1 and ��2 fields to change from site to
site,

�z2 j = ��1
2 j, �w2 j = ��2∗

2 j ,

�z2 j+1 = ��2
2 j+1, �w2 j+1 = ��1∗

2 j+1, (3.4)

the Hamiltonian becomes

H = J p2
∑

n

[∣∣ ��1∗
n · ��2

n+1

∣∣2 + ∣∣ ��2∗
n · ��1

n+1

∣∣2
− ∣∣ ��1∗

n · ��1
n+1

∣∣2 − ∣∣ ��2∗
n · ��2

n+1

∣∣2]. (3.5)

��i∗
n · �� j

n = δi j must be strictly enforced on every site since
it follows from the condition that we are in the correct irrep.
We thus may combine the ��i on each site to define a unitary
matrix:

Wn :=

⎛
⎜⎝

��1
n

��2
n

��3
n

⎞
⎟⎠, (3.6)

where

��3
n := ��1∗

n × ��2∗
n (3.7)

is uniquely defined from ��1 and ��2 in order that Wn be
an SU(3) matrix. Note that this is unlike the path integral
approach for SU(3) chains in the fully symmetric irrep [13],
where ��1, ��2, and ��3 were defined on three neighboring sites
so they did not have to be all mutually exactly orthogonal.

Using the Wn matrices the Hamiltonian term can be
written as

H = −J p2
∑

n

tr(W †
n 
Wn W †

n+1
Wn+1), (3.8)

where


 :=
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠. (3.9)

The Berry’s phase term in the action becomes

SB = −p
∑

n

(−1)n
∫

dτ
[ ��1∗

n · ∂τ ��1
n − ��2∗

n · ∂τ ��2
n

]
. (3.10)

Assuming the ��i
n vary smoothly, the classical Hamiltonian

density becomes

aHcl/(J p2) = a2| ��1∗ · ∂x ��2|2 + a2| ��2∗ · ∂x ��1|2

− ∣∣1 + ��1∗ · [a∂x ��1 + (1/2)a2∂2
x
��1
]∣∣2

− ∣∣1 + ��2∗ · [a∂x ��2 + (1/2)a2∂2
x
��2
]∣∣2.
(3.11)

The single derivative terms cancel, and after simple transfor-
mations using the orthogonality of ��1 and ��2, this becomes

Hcl/(J p2a) = |∂x ��1|2 − | ��1∗ · ∂x ��1|2 + |∂x ��2|2
−| ��2∗ · ∂x ��2|2 + 2| ��1∗ · ∂x ��2|2. (3.12)

All terms can be seen to be invariant under the ��i(x, τ ) →
��i(x, τ )eiϑi (x,τ ) gauge transformation [13]. Hcl can be rewrit-
ten with purely off-diagonal terms using the fact that the ��i

115114-4



SELF-CONJUGATE REPRESENTATION SU(3) CHAINS PHYSICAL REVIEW B 100, 115114 (2019)

on a given site forms an orthonormal basis:

(|∂μ ��i|2 − | ��i∗ · ∂μ ��i|2)

= | ��i+1∗ · ∂μ ��i|2 + | ��i−1∗ · ∂μ�i|2. (3.13)

Therefore,

Hcl/(J p2a)

= 4| ��1∗ · ∂x ��2|2 + | ��1∗ · ∂x ��3|2 + | ��2∗ · ∂x ��3|2. (3.14)

In terms of the W matrix this is

Hc/(J p2a) = tr[4
2∂xWW †
1W ∂xW
†

+
3∂xWW †
1W ∂xW
†

+
3∂xWW †
2W ∂xW
†], (3.15)

where


1 : =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠, 
2 :=

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠,


3 : =
⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠. (3.16)

A. Uniform and staggered parts

We now give a parametrization of the W2 j and W2 j+1 matrices.
We follow concepts used in both the SU(2) [32,33] and in
the fully symmetric SU(3) case [13] as well. The SU(3) spin
operators correspond to the spin matrices in the path integral

Sα
β,n = p(−1)n(W †

n 
Wn )αβ

= p(−1)n
(
�1α∗

n �1
β,n − �2α∗

n �2
β,n

)
. (3.17)

The sign alternation arises from the different role of ��1 and
��2 on the two sublattices as shown in Eq. (3.4). Similarly to
the SU(2) case, we introduce staggered and uniform parts of
these spin matrices inside the two site unit cell. The staggered
part of the spin corresponds to the uniform, slowly changing
part of the �� fields, while the uniform part of the spin matrices
corresponds to staggered terms in the �� field. This needs to be
done while maintaining strict orthogonality of the ��i

n on each
site n. We do this, using a two site basis, by writing

W2 j = Vj Uj , W2 j+1 = V †
j Uj , (3.18)

where Uj and Vj are both unitary matrices, defined for the unit
cell j. We write

Uj =

⎛
⎜⎝

�φ1
j

�φ2
j

�φ3
j

⎞
⎟⎠, (3.19)

which corresponds to the staggered part of the spins, describ-
ing a fully satisfied bond inside the unit cell. On the other
hand, the unitary matrix Vj describes fluctuations away from
the perfect Néel order inside the unit cell, i.e., it corresponds to
the uniform part of the spins. Since the presence of a uniform
spin component gives a finite energy, we can take Vj to be
close to the identity, and thus the uniform part to be small
compared to the staggered part. We can write Vj in terms of
the Gell-Mann matrices,

V = ei�ϑ · �T . (3.20)

We drop the diagonal Gell-Mann matrices T3 and T8, since
these correspond to gauge transformations that leave the ac-
tion invariant [34]. To leading approximation we can expand
the off-diagonal terms in V to first order in the θ ’s and the
diagonal terms to second order. It is convenient to write

ϑ2 + iϑ1 = a

p
L12, ϑ5 + iϑ4 = a

p
L13, ϑ7 + iϑ6 = a

p
L23. (3.21)

Then we can approximate

V ≈

⎛
⎜⎝

1 − a2

2p2 (|L12|2 + |L13|2) a
pL12

a
pL13

− a
pL∗

12 1 − a2

2p2 (|L12|2 + |L23|2) a
pL23

− a
pL∗

13 − a
pL∗

23 1 − a2

2p2 (|L31|2 + |L23|2)

⎞
⎟⎠,

V † ≈

⎛
⎜⎝

1 − a2

2p2 (|L12|2 + |L13|2) − a
pL12 − a

pL13

a
pL∗

12 1 − a2

2p2 (|L12|2 + |L23|2) − a
pL23

a
pL∗

13
a
pL∗

23 1 − a2

2p2 (|L31|2 + |L23|2)

⎞
⎟⎠. (3.22)

Next order corrections will be off-diagonal terms of O[(a/p)2] and diagonal terms of O[(a/p)3]. Thus

�W2 j/2 j+1 =

⎛
⎜⎜⎝

��1
2 j/2 j+1

��2
2 j/2 j+1

��3
2 j/2 j+1

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎜⎝
(
1 − a2

2p2 (|L12, j |2 + |L13, j |2)
) �φ1

j(
1 − a2

2p2 (|L12, j |2 + |L23, j |2)
) �φ2

j(
1 − a2

2p2 (|L13, j |2 + |L23, j |2)
) �φ3

j

⎞
⎟⎟⎟⎠± a

p

⎛
⎜⎜⎝

L12, j �φ2
j + L13, j �φ3

j

−L∗
12, j

�φ1
j + L23, j �φ3

j

−L∗
13, j

�φ1
j − L∗

23, j
�φ2

j

⎞
⎟⎟⎠. (3.23)
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B. Integrating out the L variables

With the above parametrization the total action reads as (the detailed calculations are provided in Appendix C)

S = 1

2a

∫
dτdx

[
32a2J|L12|2 + 8a2J|L23|2 + 8a2J|L13|2 + 8a2 p2J| �φ2∗ · ∂x �φ1|2

+ 4a2 p2J (|∂x �φ1|2 − | �φ1∗ · ∂x �φ1|2) + 4a2 p2J (|∂x �φ2|2 − | �φ2∗ · ∂x �φ2|2)

+ apL12

(
16aJ ( �φ2 · ∂x �φ1∗) + 4

p
( �φ1∗ · ∂τ �φ2)

)
+ apL∗

12

(
16aJ ( �φ2∗ · ∂x �φ1) + 4

p
( �φ2∗ · ∂τ �φ1)

)

− apL23

(
4aJ ( �φ2∗ · ∂x �φ3) + 2

p
( �φ2∗ · ∂τ �φ3)

)
− apL∗

23

(
4aJ ( �φ2 · ∂x �φ3∗) + 2

p
( �φ3∗ · ∂τ �φ2)

)

+ apL∗
13

(
4aJ ( �φ3∗ · ∂x �φ1) + 2

p
( �φ3∗ · ∂τ �φ1)

)
+ apL13

(
4aJ ( �φ3 · ∂x �φ1∗) + 2

p
( �φ1∗ · ∂τ �φ3)

)]
. (3.24)

Integrating out the Li j fields gives

S =
∫

dxdτ

(
ap2J[4| �φ2∗ · ∂x �φ1|2 + | �φ3∗ · ∂x �φ2|2 + | �φ1∗ · ∂x �φ3|2]

+ 1

4aJ
[| �φ2∗ · ∂τ �φ1|2 + | �φ2∗ · ∂τ �φ3|2 + | �φ1∗ · ∂τ �φ3|2] + iπ p[2q12 + q32 + q13]

)
, (3.25)

where

qmn := 1

2π i
εμν

∫
dxdτ ( �φm · ∂μ �φn∗)( �φm∗ · ∂ν �φn) = −qnm.

(3.26)

It follows from the completeness of the �φm vectors that

Qn = (qn,n−1 + qn,n+1), (3.27)

where

Qn := 1

2π i

∫
dxdτεμν∂μ �φn · ∂ν �φn∗ (3.28)

is an integer valued topological charge [35,36] for the field �φn.
Thus we write the imaginary part of the action as

Sim = iπ p(Q1 − Q2). (3.29)

Note that the space derivative terms of Eq. (3.25) are identical
to the classical Hamiltonian of Eq. (3.14) upon ignoring the
difference between the ��n and the �φn.

In terms of the unitary matrix U , defined in Eq. (3.19), the
real part of the Lagrangian density can be written:

Lreal = ap2Jtr[4∂xUU †
2U∂xU
†
1 + ∂xUU †
3U∂xU

†
2

+ ∂xUU †
1U∂xU
†
3]

+ 1

4aJ
tr[∂τUU †
2U∂τU †
1 + ∂τUU †
3U∂τU †
2

+ ∂τUU †
1U∂τU †
3], (3.30)

where the 
i matrices are defined in Eq. (3.16). To get the
perturbative spectrum we can expand U in the Gell-Mann
matrices:

U = ei�θ · �T ≈ I + i�θ · �T . (3.31)

Only the off-diagonal Gell-Mann matrices appear in the La-
grangian. Then to quadratic order:

Lreal ≈ ap2J[4(∂xθ1)2 + 4(∂xθ2)2 + (∂xθ4)2

+ (∂xθ5)2 + (∂xθ6)2 + (∂xθ7)2]

+ 1

4aJ
[(∂τ θ1)2 + (∂τ θ2)2 + (∂τ θ4)2 + (∂τ θ5)2

+ (∂τ θ6)2 + (∂τ θ7)2]. (3.32)

We see that the velocities of the six perturbative Goldstone
modes are

v1 = v2 = 4apJ, v4 = v5 = v6 = v7 = 2apJ, (3.33)

consistent with the flavor-wave theory results of Eq. (2.20).
The different velocities implies that the model is not Lorentz
invariant. Due to the Mermin-Wagner-Coleman theorem
[21,22], we expect that the SU(3) symmetry will not be
spontaneously broken once interaction effects are taken into
account and no Goldstone modes will appear in the actual
spectrum. Note that only low energy excitations appear in the
path integral, therefore the flat modes do not contribute due to
the exponential cutoff in energy.

C. Symmetries of the NLIσM

As we can see in Eq. (3.25), we arrive at an SU(3)/[U (1) ×
U (1)] non-Lorentz invariant flag manifold σ model (NLIσM),
similarly to the case of SU(3) chains in the fully symmetric
irrep [13]. However, the origin of the fields is different in the
two cases. In the fully symmetric case, the classical ground
state had a three-sublattice order and the �φ1, �φ2, �φ3 corre-
spond to the three spin states inside a unit cell. On the other
hand, in the self-conjugate case, the classical ground state
is a two-sublattice ordered state, and only �φ1, �φ2 correspond
to spin states directly, while �φ3 is uniquely defined from the
other two. As a result, the symmetries of the underlying spin
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models give rise to different symmetries in the field theory.
Here we go through these symmetries in the self-conjugate
case; the symmetries of the fully symmetric case can be found
in Sec. 5 of Ref. [13].

Assuming SU(3), gauge and time reversal invariance the
general form of the SU(3)/[U (1) × U (1)] NLIσM is [13]

S =
∫

dxdτ

([
v1,2

g1,2
| �φ2∗ · ∂x �φ1|2 + v2,3

g2,3
| �φ3∗ · ∂x �φ2|2

+ v3,1

g3,1
| �φ1∗ ∗ ·∂x �φ3|2

]
+
[

1

v1,2g1,2
| �φ2∗ · ∂τ �φ1|2

+ 1

v2,3g2,3
| �φ3∗ · ∂τ �φ2|2 + 1

v3,1g3,1
| �φ1∗ · ∂τ �φ3|2

])
+ i(θ1Q1 + θ2Q2) + iλ(q12 + q23 + q31), (3.34)

where the imaginary λ term is discussed in detail in
Refs. [13,17]. In the specific case of the nearest neighbor
self-conjugate Heisenberg Hamiltonian, the action obtained
in Eq. (3.25) corresponds to v1,2 = 4apJ , v2,3 = v3,1 = 2apJ ,
g1,2 = 1/p, g2,3 = g3,1 = 2/p, θ1 = −θ2 = π , and λ = 0. In
the following we go through the symmetries of the Hamilto-
nian in Eq. (2.5) and examine what symmetries they give on
the parameters of the NLIσM.

1. Translation by one site

Under translation by one site the �φ1(x, τ ) and �φ2(x, τ )
fields map to each other, while �φ3 := �φ1∗ × �φ2∗ maps to
− �φ3 = �φ2∗ × �φ1∗. This transformation maps the g2,3 and g3,1

terms to each other, therefore requiring that v2,3 = v3,1 and
g2,3 = g3,1.

The λ term transforms as

λ(q12 + q23 + q31) → λ(q21 + q13 + q32)

= −λ(q12 + q23 + q31), (3.35)

which is only invariant if λ = 0 (note that the q12 + q23 + q31

term is not integer valued, thus λ = 0, not only mod 2π ). As
for the topological term, θ1Q1 + θ2Q2 maps to θ1Q2 + θ2Q1,
thus guaranteeing θ1 = θ2 mod 2π . It is interesting to note that
this does not fix θ1, θ2 = π or 0 on its own.

We find that the translational invariance of the self-
conjugate SU(3) chain maps to a Z(tr)

2 symmetry (tr stands
for translation) of the NLIσM; a translation by two lattice
sites would map to the identity transformation of the NLIσM.
This is the consequence of the two-sublattice ordered classical
ground state. In the case of the fully symmetric SU(3) chain,
the translational invariance results in a Z3 symmetry, which
corresponds to the cyclic permutation of the three fields. This
is because the classical ground state has a three-sublattice
structure in that case. The absence of this Z3 symmetry in the
current case is manifested in the different coupling constants
in the action, and has important consequences on the phase
diagram, as we will discuss later.

2. Site parity

The parity symmetry around a site maps each sublattice
to itself, and inverts the position of the spins, therefore at
the level of the NLIσM it maps to a Z(sp)

2 symmetry taking

�φi(x, τ ) to �φi(−x, τ ) (sp stands for site parity). Under this
symmetry the real part of the action remains invariant, so
it does not give any constraint on the velocities or coupling
constants. The λ term and the topological term both get a
minus sign, since they always contain exactly one spatial
derivative. Therefore this symmetry is only satisfied if λ = 0,
and if θ1, θ2 = 0 or π mod 2π , but in itself does not fix the
two angles to be equal.

3. Bond parity

The parity symmetry around a bond center maps the
two sublattices into each other and flips the spatial co-
ordinate. At the level of the NLIσM this corresponds
to another Z(bp)

2 symmetry (bp stands for bond parity)
mapping �φ1(x, τ ) → �φ2(−x, τ ), �φ2(x, τ ) → �φ1(−x, τ ), and
�φ3(x, τ ) → − �φ3(−x, t ). This symmetry once again fixes
v2,3 = v3,1 and g2,3 = g3,1. The λ term transforms as
q12 + q23 + q31 → −q21 − q13 − q32, therefore it is invariant
for any λ due to Eq. (3.26). The topological term transforms
as θ1Q1 + θ2Q2 → −θ1Q2 − θ2Q1, which is invariant for any
θ1 = −θ2.

4. aα ↔ bα invariance and charge conjugation

In the self-conjugate SU(3) chain model interchanging the
role of the two types of bosons

aα,n ↔ bα
n (3.36)

transforms the spin operators as

Sα
β = aα†aβ − b†

βbα → b†
αbβ − aβ†aα = −Sβ

α , (3.37)

which is clearly a symmetry of the Hamiltonian. In the coher-
ent state language this corresponds to

zα,n ↔ wα
n (3.38)

or, equivalently

�1
α ↔ �2α∗, (3.39)

which in the field theory translates to the Z(a↔b)
2 symmetry

�φ1(x, t ) ↔ �φ2∗(x, t ), �φ3(x, t ) → − �φ3∗(x, t ). (3.40)

This symmetry has similar consequences as the translation
invariance, namely it guarantees that v2,3 = v3,1, g2,3 = g3,1,
and λ = 0, but forces θ1 = −θ2, since Q1 is mapped to −Q2

(because of the complex conjugation) and vice versa.
If we combine this symmetry with translation by one site,

we get charge conjugation in the field theory

�φi(x, t ) ↔ �φi∗(x, t ). (3.41)

D. Breaking the symmetries

Here we briefly discuss how one can break the above symme-
tries in the self-conjugate SU(3) chain model by introducing
dimerized nearest or next nearest neighbor couplings. Note,
however, that the aα,n ↔ bα

n symmetry cannot be broken
unless we break the fundamental SU(3) symmetry, or con-
sider other, non-self-conjugate representations. As a result,
the currently considered spin models will always map to
NLIσMs with θ1 = −θ2, λ = 0, and v2,3 = v3,1, g2,3 = g3,1.
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Actually, the ratio between the velocities v1,2 and v2,3 = v3,1

is also fixed at 2, independently of the breakdown of the
lattice symmetries. This is a consequence of the self-conjugate
irreps and SU(3) symmetry, as discussed in more detail in the
flavor-wave approach in Appendix B.

Considering a self-conjugate SU(3) model with alternating
J1 and J ′

1 nearest neighbor, and alternating J2 and J ′
2 next

nearest neighbor interactions, the resulting σ model reads as

S =
∫

dxdτ

(
v

g
[4| �φ2∗ · ∂x �φ1|2 + | �φ3∗ · ∂x �φ2|2 + | �φ1∗ · ∂x �φ3|2]

+ 1

vg
[| �φ2∗ · ∂τ �φ1|2 + | �φ3∗ · ∂τ �φ2|2 + | �φ1∗ · ∂τ �φ3|2]

)
+ iθ (Q1 − Q2), (3.42)

where

v

g
= 2ap2

(
J1J ′

1

J1 + J ′
1

− (J2 + J ′
2)

)
,

1

vg
= 1

2a(J1 + J ′
1)

, θ = 2pπJ ′
1

J1 + J ′
1

, (3.43)

which gives a coupling constant 1/g =
p
√

J1J ′
1 − (J2 + J ′

2)(J1 + J ′
1)/(J1 + J ′

1) (the velocity v can
be set to 1 by rescaling the space and time variables). Any
longer range coupling would be equivalent to the nearest or
next nearest couplings at the level of the NLIσM. If J1 = J ′

1,
the site parity is conserved independently of J2, J ′

2, thus
fixing the topological angle to pπ (together with the aα ↔ bα

invariance). The difference between J2, J ′
2 has no effect on the

underlying theory and the next nearest neighbor interactions
only rescale the coupling constants and velocities, allowing us
to tune the coupling constant and drive the system to g → ∞,
without changing the topological term. The two-sublattice
classical ground state is only stable for J2 < J1/4. For larger
J2 the classical ground state becomes helical, and thus our
two-sublattice path integral approach breaks down, which is
manifested in the diverging coupling constant g.

Breaking the translational invariance and site parity by
introducing dimerization in the nearest neighbor bonds tunes
the topological angle away from pπ , while keeping θ1 = −θ2.
For J ′

1 = J1/2 we reach the θ1 = −θ2 = 2pπ/3 point, where
the theory is invariant under the above mentioned Z3 transfor-
mation. As was discussed in Ref. [13], in the infinite coupling
limit this point corresponds to a first-order phase transition
point with spontaneously broken Z3 symmetry. For NLIσMs
where all couplings are the same the action possesses this
Z3 even for finite couplings. In those models, for strong but
finite coupling the Z3 remains spontaneously broken only
until a critical coupling gc below which the θ1 = −θ2 = 2π/3
point becomes a gapless critical point. However, in case of
the self-conjugate irreps the couplings are not equal, g1,2 =
2g1,3 = 2g2,3 and the Z3 is explicitly broken for any finite
coupling.

IV. FAILURE OF LSMA THEOREM

For the symmetric irreps of SU(3) the LSMA theorem can
be proven [13,15] by acting on a ground state, for a chain of
length L with periodic boundary conditions, with the unitary

operator

U := exp

⎡
⎣i
∑

j

(2π j/3L)Q j

⎤
⎦, (4.1)

with

Q j := S1
1, j + S2

2, j − 2S3
3, j . (4.2)

Then under translation by one site

TUT † = Ue−i(2π/3L)Qei(2π/3)Q1 , Q :=
∑

j

Q j . (4.3)

Since the ground states obey Q|ψ0〉 = 0, we have

TU |ψ0〉 = ei(2π/3)Q1U |ψ0〉, (4.4)

where the ground state |ψ0〉 was chosen to obey T |ψ0〉 =
|ψ0〉. For the fully symmetric irrep with p boxes,

ei(2π/3)Q1 |ψ0〉 = ei(2π/3)p|ψ0〉. (4.5)

Thus TU |ψ0〉 = ei(2π/3)pU |ψ0〉,
〈ψ0|[U †HU − U ]|ψ0〉 = O(1/L), (4.6)

and by considering translation by one site

〈ψ0|U |ψ0〉 = ei(2π/3)p〈ψ0|U |ψ0〉 = 0 (p �= 3m). (4.7)

Thus U |ψ0〉 is a low energy state orthogonal to |ψ0〉, for
p �= 3m, implying either gapless excitations or spontaneously
broken translation symmetry. On the other hand, for the self-
conjugate representations,

Q = a1†a1 + a2†a2 − 2a3†a3 − b†
1b1 − b†

2b2 + 2b†
3b3

= 3(b†
3b3 − a3†a3), (4.8)

where we used (�a† · �a − �b† · �b)|ψ0〉 = 0. So

ei(2π/3)Q = ei2π (b†
3b3−a3†a3 ) = 1, (4.9)

where we used the fact that a3†a3 and b†
3b3 have integer

eigenvalues. So, translating by one site maps U |ψ〉 into U |ψ〉
with no phase for any value of p. Thus there is no proof
that U |ψ〉 is orthogonal to |ψ〉 so the LSMA theorem fails.
Actual models with short range interactions and conserved
SU(3) symmetry and a unique gapped ground state exist for
odd p [37], giving direct evidence against a possible LSMA
theorem.

V. STRONG COUPLING LIMIT OF FIELD THEORY

In the strong coupling limit, the real terms in the action
vanish and only the topological terms remain. In this limit,
Lorentz invariance is restored. The action is simply

S = iπ (Q1 − Q2) (5.1)

for p odd. Following the techniques of Refs. [38,39] this
limit was solved using a lattice formulation in Ref. [13]. The
partition function, for arbitrary topological angles, becomes

Z (θ1, θ2) →
∑

m,n∈Z

z(θ1 + 2πm, θ2 + 2πn)A, (5.2)
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where A is the area of the two-dimensional space-time (di-
vided by the area of a plaquette in the lattice model) and

z(θ1, θ2) = 2
(θ1 − θ2) cos

(
θ1−θ2

2

)− θ1 cos
(

θ1
2

)+ θ2 cos
(

θ2
2

)
θ1θ2(θ1 − θ2)

.

(5.3)
In the infinite area limit the sum is dominated by the values
of m and n which give the largest value of |z|. For θ1 near −π

and θ2 near π , it can be seen that

max
m,n

z(θ1 + 2πm, θ2 + 2πn) ≈ 2

π2
+ 1

π
+ 2|θ1 + θ2|

π3
,

(5.4)
with the dominant (m, n) terms being (m, n) = (1, 0) for θ1 +
θ2 < 0 and (m, n) = (0,−1) for θ1 + θ2 > 0. The expectation
value of the topological charges can be written

〈Qi〉 = iA
∂ ln z

∂θi
. (5.5)

Approaching the line θ1 = −θ2 from the side θ1 + θ2 > 0 or
θ1 + θ2 < 0 we get two different results:

〈Q1〉 = 〈Q2〉 = ±iA
2

π (2 + π )
. (5.6)

This is indicative of a first-order phase transition along the
line θ1 = −θ2, which corresponds to the breakdown of the
bond parity (n → 1 − n) and the aα ↔ bα parity of the spin
model. Both of these take θ1 ↔ −θ2 in the field theory, there-
fore they are exact symmetries for θ1 = −θ2 = π . But they
also map 〈Q1〉 ↔ −〈Q2〉, therefore the topological charge
averages in Eq. (5.6) clearly show that these symmetries are
spontaneously broken in the strong coupling limit.

It is plausible that broken parity symmetry occurs for θ2 =
−θ1 = π even for weak coupling. Indeed that is consistent
with the renormalization group (RG) flow diagram suggested
in Fig. 1(b) of Ref. [13]. While critical points are expected
at finite coupling at θ1 = −θ2 = ±2π/3, corresponding to
the SU(3)1 Wess-Zumino-Witten model [13,16,17] no such
critical points are expected at θ1 = −θ2 = ±π . In that case
we may expect an RG flow from weak coupling to strong
coupling where broken parity occurs. A further complication
is the breaking of Lorentz invariance and of the Z3 symmetry
cyclically exchanging the three �φi fields. Both these symme-
tries are present in the field theory studied in Ref. [13], arising
from chains in the fully symmetric irrep, but not in the field
theory studied here.

VI. MONTE CARLO SIMULATIONS

References [16,17] use a ’t Hooft anomaly argument [40]
to predict a gapless or trimerized behavior at θ1 = −θ2 =
2π/3 in the Lorentz invariant sigma model with equal cou-
plings. This anomaly argument relies on the presence of a
Z3 symmetry corresponding to the cyclic permutation of the
fields. In the current case this symmetry is explicitly broken
at finite coupling for any values of the topological angles
due to the different coupling constants. As a result there is
no anomaly at θ1 = −θ2 = 2π/3, or at any other value of
topological angles, in agreement with the failure of the LSMA
theorem.

We carried out Monte Carlo simulations to study the fate
of the SU(3)1 critical point at θ1 = −θ2 = 2π/3 when one of
the coupling constants is tuned away from the isotropic case.
As it is discussed in Appendix E of Ref. [13], the action of
Eq. (3.25) can still be rewritten as three copies of a CP2 theory,
even for unequal coupling constants and velocities. Therefore
the real part on the lattice can be written as

S(lattice)
real = −

∑
�r

[
v

2g
(| �φ1∗(�r) · �φ1(�r + �δx )|2

+ | �φ2∗(�r) · �φ2(�r + �δx )|2 + α| �φ3∗(�r) · �φ3(�r + �δx )|2)

+ 1

2vg
(| �φ1∗(�r) · �φ1(�r + �δτ )|2 + | �φ2∗(�r)

· �φ2(�r + �δτ )|2 + | �φ3∗(�r) · �φ3(�r + �δx )|2)

]
, (6.1)

where v = 4apJ , g = 1/p, and α = −1/2. The difference in
the coupling constants and velocities in Eq. (3.25) manifests
in the α parameter. The topological term on the lattice is
written following the recipe of Berg and Lüscher [35], which
guarantees that the topological charges are integer valued even
in the discretized system action.

We can make Monte Carlo simulations for this lattice
action for imaginary angles when the topological term is
real [41–43]. We set v = 1, and changed the values of g for
α = −1/2. We used a multigrid update method [13,44] to
decrease autocorrelations. For each imaginary angle and α

we sampled 5 × 104 configurations with a sampling distance
of ten multigrid sweeps after 5 × 104 thermalizing multigrid
sweeps. We obtained the mass gap from the inverse of the
correlation length. We then extrapolated the mass gap values
from imaginary to real angles by fitting a function of the form
(c1 + c2θ

2)/(1 + c3θ
2). As it was discussed in Ref. [13], we

fitted values until the inflection point in the mass gap results,

FIG. 3. Extrapolating the inverse of the correlation length along
the θ1 = −θ2 line, based on simulations on a 192 × 192 system for
various couplings and fixed α = −1/2, which corresponds to the
self-conjugate irreps. The results suggest that the system remains
gapped even at θ = π , and there is no gapless transition for any
θ < π .
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FIG. 4. Family of AKLT states for the [p, p] self-conjugate spin state. Each spin is split into a [m, p − m] and a [p − m, m] virtual spin.
Then each of these virtual spins form singlets with the other type of virtual spin on the neighboring site. On each site the tensor product of
the virtual spins is projected onto the [p, p] irrep. For p odd, the states with m = (p − 1)/2 and m = (p + 1)/2 correspond to the states in
Eq. (7.3). They are connected to each other by the bond parity, therefore forming doubly degenerate ground states of the appropriate parent
Hamiltonian. For p even, the m = p/2 state is invariant under bond parity, giving a unique ground state.

beyond which there is a change in behavior due to saturation
of the topological charge density [45].

The results are shown in Fig. 3. We find that the extrap-
olated gap always closes beyond θ = π ; since θ and −θ

are equivalent, this suggests that the gap stays finite for all
θ and for all values of g. Note that this extrapolation can
detect a gapless phase transition thanks to the closing of
the extrapolated mass gap, but it cannot detect if a gapped
transition happens. If the latter is the case, the extrapolated
values beyond the transition are not physical, so even if the
extrapolated gap closes further on, it does not mean that there
is an actual gapless point. What we can tell is that there cannot
be any gapless transition before the extrapolated gap closes.
Based on the strong coupling considerations we believe that
there is a first-order phase transition for some θc between 0
and π separating a trivial phase for θ < θc from a gapped
doubly degenerate phase with spontaneous parity breaking for
θc < θ . In Appendix D we discuss the possibility to detect
spontaneous symmetry breaking by measuring various order

parameters. Unfortunately, so far we did not manage to extract
meaningful results, due to difficulties in the extrapolation,
therefore the verification of the proposed transition requires
further study.

VII. EXACT GROUND STATES

Finally, we can write down simple states, analogous to the
AKLT states [18]. Let us write the states of the [p, p] irrep on
a single site as∣∣∣∣α1α2α3 · · ·αp

αp+1αp+2αp+3 · · ·α2p

〉

= P[p,p](a
α1†aα2† · · · aαp†b†

αp+1
b†

αp+2
· · · b†

α2p
|0〉), (7.1)

where P[p,p] projects the state with p a bosons and p b bosons
onto the [p, p] irrep. These are symmetric under interchanging
raised or lowered indices and traceless under contracting any
pairs of upper and lower indices [26]. Then for p even the
AKLT state on the bond between sites n and n + 1 reads as

· · · ⊗
∣∣∣∣ α1 · · · αp/2

αp/2+1 · · ·αp

β1 · · ·βp/2

βp/2+1 · · ·βp

〉
n

⊗
∣∣∣∣βp/2+1 · · · βp

β1 · · · βp/2

γ1 · · · γp/2

γp/2+1 · · · γp

〉
n+1

⊗ · · · . (7.2)

Note that p/2 upper indices on site n are contracted with p/2 lower indices on site n + 1 and p/2 lower indices on site n are
contracted with p/2 upper indices on site n + 1. For p odd there are two AKLT states of the form

· · · ⊗
∣∣∣∣α1 · · · α(p−1)/2

α(p+1)/2 · · · αp

β1 · · · β(p+1)/2

β(p+3)/2 · · · βp

〉
n

⊗
∣∣∣∣β(p+3)/2 · · · βp

β1 · · · β(p+1)/2

γ1 · · · γ(p+1)/2

γ(p+3)/2 · · · γp

〉
n+1

⊗ · · ·

· · · ⊗
∣∣∣∣α1 · · ·α(p+1)/2

α(p+3)/2 · · · αp

β1 · · · β(p−1)/2

β(p+1)/2 · · · βp

〉
n

⊗
∣∣∣∣β(p+1)/2 · · · βp

β1 · · ·β(p−1)/2

γ1 · · · γ(p−1)/2

γ(p+1)/2 · · · γp

〉
n+1

⊗ · · · .

(7.3)

In one of the AKLT states, (p + 1)/2 upper indices and (p −
1)/2 lower indices on site n are contracted with site n + 1. In
the other AKLT state (p − 1)/2 upper indices and (p + 1)/2
lower indices on site n are contracted with site n + 1. Both of
these states are translation invariant and map into each other
under the bond parity or the a ↔ b parity as well. Figure 4
provides an illustration of this construction. For p = 1, this is
similar to the construction of Morimoto et al. [46].

With this type of construction we cannot find any AKLT
type states, for p odd, which do not break bond parity and
the aα ↔ bα parity, which is consistent with our conjecture
that it is spontaneously broken. For p odd and any given

0 � m � p the state depicted in Fig. 4 is connected to the
state with m′ = p − m by bond parity or aα ↔ bα parity. This
is even true for p even for any m �= p/2. As was discussed
recently in Ref. [37], Hamiltonians can be found for which
these are the unique (or doubly degenerate) exact ground
states.

VIII. CONCLUSIONS

We have studied the self-conjugate representations of
SU(3) whose Young tableaux contain p columns of length
2 and p columns of length 1, focusing on the large-p limit.
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We mapped the “spin” chains into a non-Lorentz invariant σ

model, for large p. We obtained topological angles in the field
theory which are 0 for p even and π for p odd. The field theory
is not Lorentz invariant due to unequal velocities for different
perturbative excitations. We have confirmed the perturbative
limit of the field theory using flavor-wave theory.

Based on our proposed phase diagram for the Lorentz
invariant version of this field theory in Ref. [13], our analysis
of the strong coupling limit of the field theory and AKLT
states that we constructed, we conjecture a gapped phase
for all p, with spontaneously broken parity and aα ↔ bα

symmetries for p odd only. The gap was confirmed using
a Monte Carlo study of the field theory. However, we were
unable to confirm the broken symmetries using Monte Carlo
simulations. AKLT states can be constructed [37] which do
not have broken parity symmetry. So, for sufficiently general
Hamiltonians, ground states without broken parity exist for p
odd. The Lieb-Schultz-Mattis-Affleck theorem, which proves
either broken symmetry or a gapless ground states for the
p-box symmetric representations with p �= 3, fails for the self-
conjugate representations. Nonetheless, we conjecture broken
symmetry when p is odd for the simplest Hamiltonian, which
we consider here. Our broken symmetry conjecture definitely
needs further confirmation. In Appendix D we present possi-
ble order parameters that could be used to detect these symme-
try breakings, and briefly discuss our attempts to demonstrate
it, in the hope that it might be useful to the community.
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APPENDIX A: TRACELESS CONDITION IN THE
MATHUR-SEN REPRESENTATION

Here we prove the traceless condition in Eq. (2.4). We
start from the quadratic Casimir operator Sα

β Sβ
α , which is

proportional to the identity over any irrep, but the constant
factor depends on the irrep itself, therefore offering a way to
distinguish different irreps. Writing the quadratic Casimir in
terms of the Mathur-Sen bosons we get

Sα
β Sβ

α = (aα†aβ − b†
βbα )(aβ†aα − b†

αbβ )

= aα†aβaβ†aα + bβ†bαbα†bβ − aα†aβbα†bβ − b†
βbαaβ†aα

= (aα†aα )(aβ†aβ ) + 2aα†aα + (bα†bα )(bβ†bβ )

+ 2bα†bα − 2(aβ†b†
β )(aαbα ), (A1)

where we only used the bosonic commutations relations to
obtain the last line. Now if we consider a general state with p
a bosons and p b bosons, we find that the quadratic Casimir is

equivalent to

Sα
β Sβ

α = 2p2 + 4p − 2(aβ†b†
β )(aαbα ). (A2)

Since a p a boson and p b boson state in general can be a mix-
ture of various [p′, p′] irreps (p′ < p), the above expression
is not proportional to the identity in general. However, every
state |ψ[p,p]〉 in the [p, p] irrep should be an eigenstate of the
quadratic Casimir with eigenvalue 2p2 + 4p [47], therefore

Sα
β Sβ

α |ψ[p,p]〉 = (2p2 + 4p)|ψ[p,p]〉 − 2(aβ†b†
β )(aαbα )|ψ[p,p]〉

= (2p2 + 4p)|ψ[p,p]〉. (A3)

From this it straightforwardly follows that −2(aβ†b†
β )

(aαbα )|ψ[p,p]〉 = 0 must be fulfilled. This is only true if
(aαbα )|ψ[p,p]〉 = 0, since if we get some nonzero state after
applying the annihilation operators, acting with the creation
operators on top of that will also give some nonzero state.

To show that the spin-coherent states defined in Eq. (2.7)
are indeed in the [p, p] irrep, we need to check if they vanish
under aγ bγ ,∑

γ

aγ bγ |�z, �w〉 =
∑

γ

aγ bγ [(�z · �a†)( �w · �b†)]p|0〉

= p2(�z · �w)[(�z · �a†)( �w · �b†)]p−1|0〉, (A4)

where the right-hand side vanishes when �z · �w = 0.

APPENDIX B: DETAILED DESCRIPTION OF THE
FLAVOR-WAVE MODES

Each of the six Goldstone modes ω1,...,6 of Eq. (2.19)
can be associated with one of the six off-diagonal gen-
erators acting on the initial condensate. For instance, the
modes ω5,6 stemming from the matrix M2 arise from
the Holstein-Primakoff bosons a3†(k,
1) and b†

3(k,
2).
These bosons correspond to acting on the initial conden-
sate 1

p! (a1†(i)b†
2(i))p|0〉i =: |(AB̄)⊗p〉i on sublattice 
1 with

the generator S3
1 (i) or acting on 1

p! (a2†( j)b†
1( j))p|0〉 j =:

|(BĀ)⊗p〉 j on sublattice 
2 with generator S1
3 ( j), respectively.

Similarly, the modes ω7,8 come from bosons b†
3(k,
1) and

a3†(k,
2) that correspond to acting with generators S2
3 (i)

on sublattice 
1 and S3
2 ( j) on sublattice 
2 on the initial

condensate, respectively.
The case of bosons a2†(k,
1), b†

1(k,
1), a1†(k,
2), b†
2

(k,
2) is a bit different. The generators S2
1 (i) and S1

2 ( j)
applied on the initial condensates |(AB̄)⊗p〉i and |(BĀ)⊗p〉 j

create the states |(AĀ − BB̄)(AB̄)⊗(p−1)〉i and |(AĀ − BB̄)
(BĀ)⊗(p−1)〉 j , respectively. They belong to a two-dimensional
subspace in the weight diagram, as shown in Fig. 1 for the
case p = 1 as an example. In terms of the bosonic operators in
the flavor-wave approach these states correspond to f 1†(i) =
(a2†(i) − b†

1(i))/
√

2 on sublattice 
1 and f 2†( j) = (a1†( j) −
b†

2( j))/
√

2 on sublattice 
2, which give the remaining two
propagating Goldstone modes ω1,2 that come from the matrix
M1. These modes have a velocity two times larger than the
others, due to the fact that the states created by S2

1 (i) and
S1

2 ( j) from the initial condensates have a norm twice as large
as the states created by the other generators discussed above.
Alternatively, in terms of the Holstein-Primakoff bosons, this
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can be seen in the fact that the operators S3
1 (i), S2

3 (i) [S1
3 ( j),

S3
2 ( j)] correspond to creation operators a3†(i) and b†

3(i) on
sublattice 
1 [a3†( j) and b†

3( j) on sublattice 
2], but S2
1 (i)

[S1
2 ( j)] corresponds to

√
2 f 1†(i) on sublattice 
1 [

√
2 f 2†( j)

on sublattice 
2].
Finally, the ω7,8 modes are related to the bosonic op-

erators g1†(i) = [a2†(i) + b†
1(i)]/

√
2 on sublattice 
1 and

g2†( j) = [a1†( j) + b†
2( j)]/

√
2 on sublattice 
2. In harmonic

order, applying these on the initial condensates leads to
the states |(AĀ + BB̄)(AB̄)⊗(p−1)〉i on sublattice 
1 and
|(AĀ + BB̄)(BĀ)⊗(p−1)〉 j . These states are actually not fully
in the p box self-conjugate irrep. For example, for p = 1 the
|AĀ + BB̄〉 state is a combination of the |AĀ + BB̄ − 2CC̄〉
state in the self-conjugate irrep and the |AĀ + BB̄ + CC̄〉 state
in the singlet irrep. These two states cannot be distinguished
in the harmonic order; only higher order corrections can
reveal the true nature of the g bosons. Nonetheless, we can
understand the flat nature of these modes by realizing that
g bosons do not correspond to any single generator applied
on the initial condensate. For example, the |AĀ + BB̄ − 2CC̄〉
state can be reached from |AB̄〉 by applying 2√

6
S2

3 (i)S3
1 (i) −

1√
6
S2

1 (i) (S2
1 itself only leads to |AĀ − BB̄〉). Such multipolar

states requiring a product of generators on one site are well
known in the literature [48,49]. They appear as flat modes
in the harmonic order, because dispersive terms appear in the
expansion of the off-diagonal interaction terms only in higher
order. For the same reason, the ω7 and ω8 stemming from
the matrix M1 are flat, and they do not correspond to the
Goldstone modes.

Formally rewriting the Hamiltonian in Eq. (2.12) using the
new bosons f , g bosons

f1(i) = 1√
2

(a2(i) − b1(i)),

f2( j) = 1√
2

(a1( j) − b2( j)),

g1(i) = 1√
2

(a2(i) + b1(i)),

g2( j) = 1√
2

(a1( j) + b2( j)), (B1)

we find

H(2) = Jnc p
∑
i∈
1

∑
〈 j〉

{2g1†(i)g1(i) + 2g2†( j)g2( j) + 2[ f 1†(i) f1(i) + f 2†( j) f2( j) + f 1†(i) f 2†( j) + f1(i) f2( j)]

+ [a3†( j)a3( j) + b†
3(i)b3(i) − b†

3(i)a3†( j) − b3(i)a3( j)] + [a3†(i)a3(i) + b†
3( j)b3( j) − a3†(i)b†

3( j) − a3(i)b3( j)]},
(B2)

where the new g1, g2 bosons clearly give nondispersive flat modes. To satisfyingly study the true nature of these modes, i.e.,
if they truly belong to the self-conjugate irrep or not requires higher order spin wave corrections, but it does not change our
conclusions, since we focus on the low energy modes.

APPENDIX C: DETAILED CALCULATIONS FOR THE DERIVATION OF THE NLIσM

Here we show how different terms read in the expansion of the Hamiltonian and Berry phase terms. The �φ fields in the j + 1th
unit cell are expanded as �φn

j+1 = �φn
j + 2a∂x �φn

j + 2a2∂2
x

�φn
j + O(a3). The τ imaginary time variable and the j unit cell index on

the right-hand side are omitted for simplicity.

p2
∣∣ ��1∗

2 j · ��2
2 j+1

∣∣2 = 4a2|L12|2 + O(a3/p),

p2
∣∣ ��2∗

2 j · ��1
2 j+1

∣∣2 = 4a2|L12|2 + O(a3/p),

−p2
∣∣ ��1∗

2 j · ��1
2 j+1

∣∣2 = −p2 + 4a2|L12|2 + 4a2|L13|2 + O(a4/p2),

−p2
∣∣ ��2∗

2 j · ��2
2 j+1

∣∣2 = −p2 + 4a2|L12|2 + 4a2|L23|2 + O(a4/p2), (C1)

p2�|�2∗
2 j+1 · ��1

2 j+2|2 = |2aL12 + 2ap( �φ2∗ · ∂x �φ1) + O(a2)|2

= 4a2|L12|2 + 4a2 p2| �φ2∗ · ∂x �φ1|2 + 4a2 pL∗
12( �φ2∗ · ∂x �φ1) + 4a2 pL12( �φ2 · ∂x �φ1∗) + O(a3)

= p2�∣∣�1∗
2 j+1 · ��2

2 j+2

∣∣2, (C2)

where we used

�φ1∗ · ∂x �φ2 + �φ2 · ∂x �φ1∗ = ∂x( �φ1∗ · �φ2) = 0, (C3)

��2
2 j+1 · ��2∗

2 j+2 = −a2

p2
|L12|2 − a2

p2
|L23|2 +

(
1 − a2

p2
|L12|2 − a2

p2
|L23|2

)[
1 + 2a( �φ2 · ∂x �φ2∗) + 2a2( �φ2 · ∂2

x
�φ2∗)]

+ 2a2

p
L∗

12( �φ1 · ∂x �φ2∗) − 2a2

p
L12( �φ2 · ∂x �φ1∗) − 2a2

p
L23( �φ3 · ∂x �φ2∗) + 2a2

p
L∗

23( �φ2 · ∂x �φ3∗) + O(a3), (C4)
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−p2
∣∣ ��2

2 j+1 · ��2∗
2 j+2

∣∣2 = −p2 + 4a2|L12|2 + 4a2|L23|2 − 4a2 p2| �φ2∗ · ∂x �φ2|2 − 2a2 p2
( �φ2 · ∂2

x
�φ2∗ + �φ2∗ · ∂2

x
�φ2
)

− 2ap2( �φ2 · ∂x �φ2∗ + �φ2∗ · ∂x �φ2) − 4a2 pL∗
12( �φ1 · ∂x �φ2∗) + 4a2 pL23( �φ3 · ∂x �φ2∗)

− 4a2 pL12( �φ1∗ · ∂x �φ2) + 4a2 pL∗
23( �φ3∗ · ∂x �φ2) + O(a3)

= −p2 + 4a2|L12|2 + 4a2|L23|2 + 4a2 p2(|∂x �φ2|2 − | �φ2∗ · ∂x �φ2|2) + 4a2 pL12( �φ2 · ∂x �φ1∗)

− 4a2 pL23( �φ2∗ · ∂x �φ3) + 4a2 pL∗
12( �φ2∗ · ∂x �φ1) − 4a2 pL∗

23( �φ2 · ∂x �φ3∗) + O(a3),

where we used

∂2
x

�φn∗ · �φn + 2∂x �φn∗ · ∂x �φn + �φn∗ · ∂2
x

�φn = ∂2
x (| �φn|2) = 0. (C5)

Finally,

��1∗
2 j+1 · ��1

2 j+2 = −a2

p2
|L12|2 − a2

p2
|L13|2 +

(
1 − a2

p2
(|L12|2 + |L13|2)

)[
1 + 2a( �φ1∗ · ∂x �φ1) + 2a2( �φ1∗ · ∂2

x
�φ1)
]

+ 2a2

p
L12( �φ1∗ · ∂x �φ2) − 2a2

p
L∗

12( �φ2∗ · ∂x �φ1) + 2a2

p
L13( �φ1∗ · ∂x �φ3) − 2a2

p
L∗

13( �φ3∗ · ∂x �φ1) + O(a3), (C6)

−p2
∣∣ ��1∗

2 j+1 · ��1
2 j+2

∣∣2 = −p2 + 4a2|L12|2 + 4a2|L13|2 + 4a2 p2(|∂x �φ1|2 − | �φ1∗ · ∂x �φ1|2) + 4a2 pL12( �φ2 · ∂x �φ1∗)

+ 4a2 pL∗
13( �φ3∗ · ∂x �φ1) + 4a2 pL∗

12( �φ2∗ · ∂x �φ1) + 4a2 pL13( �φ3 · ∂x �φ1∗) + O(a3). (C7)

The Berry’s phase terms become

��1∗
2 j · ∂τ ��1

2 j − ��1∗
2 j+1 · ∂τ ��1

2 j+1 − ��2∗
2 j · ∂τ ��2

2 j + ��2∗
2 j+1 · ∂τ ��2

2 j+1

≈ 2a

p
(2L12( �φ1∗ · ∂τ �φ2) + 2L∗

12( �φ2∗ · ∂τ �φ1) + L13( �φ1∗ · ∂τ �φ3)

+ L∗
13( �φ3∗ · ∂τ �φ1) − L23( �φ2∗ · ∂τ �φ3) − L∗

23( �φ3∗ · ∂τ �φ2)). (C8)

Using the above expansions we arrive to the action given in Eq. (3.24). The L fields can be integrated out using the Gaussian
identity ∫

dzdz∗ exp(−z∗ωz + u∗z + vz∗) = π

ω
exp

(
u∗v
ω

)
. (C9)

Carrying out the Gaussian integrals in L fields gives

S =
∫

dxdτ

(
ap2J[4| �φ2∗ · ∂x �φ1|2 + 2(|∂x �φ1|2 − | �φ1∗ · ∂x �φ1|2) + 2(|∂x �φ2|2 − | �φ2∗ · ∂x �φ2|2)

− 4| �φ2∗ · ∂x �φ1|2 − | �φ2∗ · ∂x �φ3|2 − | �φ1∗ · ∂x �φ3|2] + 1

4aJ
[| �φ2∗ · ∂τ �φ1|2 + | �φ2∗ · ∂τ �φ3|2 + | �φ1∗ · ∂τ �φ3|2]

− p

[
( �φ2∗∂x �φ1)( �φ1∗∂τ �φ2) − ( �φ2∗∂τ �φ1)( �φ1∗∂x �φ2) + 1

2
( �φ2∗∂x �φ3)( �φ3∗∂τ �φ2) − 1

2
( �φ2∗∂τ �φ3)( �φ3∗∂x �φ2)

+ 1

2
( �φ3∗∂x �φ1)( �φ1∗∂τ �φ3) − 1

2
( �φ3∗∂τ �φ1)( �φ1∗∂x �φ3)

])
(C10)

that leads to Eq. (3.25).

APPENDIX D: ORDER PARAMETERS FOR
SPONTANEOUS SYMMETRY BREAKING

Here we present various order parameters that could signal
the spontaneous breakdown of the various discrete symme-
tries discussed in Sec. III C. We are looking for expressions
which should give 0 if a symmetry is conserved, therefore a
nonzero value would mean the breakdown of that given sym-
metry. We suggest two families of order parameters, one based
on topological charges, and one based on SU(3) and gauge
invariant terms built from the �φ fields of nearest neighbor sites
of the discretized action.

Take for example the Z(tr)
2 symmetry related to the trans-

lation by one site. Since this symmetry maps Q1 to Q2 and
vice versa, 〈Q1 − Q2〉 changes sign under this transformation,
therefore if translational symmetry is conserved this quantity
should be 0. On the other hand, if 〈Q1 − Q2〉 �= 0, it would
suggest that the translational invariance is explicitly broken.

Following a similar argument we can construct or-
der parameters from the �φ fields as well. Consider for
example the term | �φ1∗(x, τ ) · �φ3(x + δx, τ )|2 on a dis-
cretized lattice, under Z(tr)

2 this maps to | �φ2∗(x, τ ) · �φ3(x +
δx, τ )|2 and vice versa. Therefore if Z(tr)

2 is conserved, the
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TABLE I. A list of candidate order parameters for detecting the breakdown of various discrete symmetries. From top to bottom these are
the Z2 symmetries related to translation (tr), site parity (sp), bond parity (bp), and the aα ↔ bα parity. qi(�r) stands for the local topological
charge density on a plaquette, where the total topological charge is Qi = ∑

�r qi(�r). The superscript of the field-based order parameters shows
whether they are defined on bonds in the spatial or imaginary time direction. Note that some order parameters appear for multiple symmetries,
therefore if they are measured to be nonzero, it would suggest the breakdown of all related symmetries.

Symmetry Candidate order parameters

Z(tr)
2 q1(�r) − q2(�r) Ax(τ )

1 (�r) = | �φ1∗(�r) · �φ3(�r + �δx(τ ) )|2 − | �φ2∗(�r) · �φ3(�r + �δx(τ ) )|2
Ax(τ )

2 (�r) = | �φ1∗(�r) · �φ2(�r + �δx(τ ) )|2 − | �φ2∗(�r) · �φ1(�r + �δx(τ ) )|2
Ax(τ )

3 (�r) = | �φ1∗(�r) · �φ1(�r + �δx(τ ) )|2 − | �φ2∗(�r) · �φ2(�r + �δx(τ ) )|2
Z(sp)

2 q1(�r), q2(�r), q3(�r) Bx
1(�r) = | �φ1∗(�r) · �φ3(�r + �δx )|2 − | �φ1∗(�r + �δx ) · �φ3(�r)|2

Bx
2(�r) = | �φ2∗(�r) · �φ3(�r + �δx )|2 − | �φ2∗(�r + �δx ) · �φ3(�r)|2

Bx
3(�r) = | �φ1∗(�r) · �φ2(�r + �δx )|2 − | �φ1∗(�r + �δx ) · �φ2(�r)|2 ≡ Ax

2(�r)

Z(bp)
2 q1(�r) + q2(�r) Cx

1 (�r) = | �φ1∗(�r) · �φ3(�r + �δx )|2 − | �φ2∗(�r + �δx ) · �φ3(�r)|2
Cx

2 (�r) = | �φ1∗(�r) · �φ2(�r + �δx )|2 − | �φ2∗(�r + �δx ) · �φ1(�r)|2 ≡ 0

Cx
3 (�r) = | �φ1∗(�r) · �φ1(�r + �δx )|2 − | �φ2∗(�r + �δx ) · �φ2(�r)|2 ≡ Ax

3(�r)

Aτ
1 (�r), Aτ

2 (�r), Aτ
3 (�r)

Z(a↔b)
2 q1(�r) + q2(�r) Ax(τ )

1 (�r), Ax(τ )
2 (�r), Ax(τ )

3 (�r)

expectation 〈∑x,τ (| �φ1∗(x, τ ) · �φ3(x + δx, τ )|2 − | �φ2∗(x, τ ) ·
�φ3(x + δx, τ )|2)〉 should vanish, or if it is nonzero it means
that Z(tr)

2 is broken. Following the same argument we can
find multiple canditate order parameters for the breakdown
of each of the previously discussed symmetries. If any of the
candidate order parameters of a given symmetry are nonzero,
it follows that the symmetry must be broken.

Based on Griffith [50], we propose measuring the cor-
relations of the local order parameters, and extracting the
long distance limit of these correlations from finite size sim-
ulations. If this long distance limit is nonzero for a given
order parameter that suggests spontaneous breakdown of the
associated symmetry in the thermodynamic limit. In Table I
we provide a list of candidate local order parameters for each
of the symmetries discussed in Sec. III C.

For the current model the most relevant candidates are
〈q1(�r) + q2(�r)〉 and Cx

1 (�r). As we discussed above we believe
that the Z(bp)

2 bond parity and Z(a↔b)
2 symmetries are sponta-

neously broken for θ1 = −θ2 = π . This is supported by the

strong coupling calculations in Sec. V, where we showed that
〈q1(�r) + q2(�r)〉 is nonzero in the thermodynamic limit, and
by the AKLT-type example of Sec. VII. However, both the
strong coupling calculations and the AKLT examples show
that the Z(tr)

2 remains conserved, which would fix all A order
parameters to 0. Unfortunately, so far we have not been able
to obtain clear results on the breakdown of symmetries for
the physically relevant θ1 = −θ2 = π in the weak coupling
case using the extrapolation technique of Sec. VI. We believe
that the main obstacle lies in the extrapolation itself. For
imaginary topological angles we find that the correlations of
the local order parameters converge to a fixed value within a
few lattice spacing, promising a good estimate on the infinite
range correlation. We found that the long range correlations of
all order parameters go to 0 at θ1 = −θ2 = 0, but we could not
get reliable estimates for finite real angles. We needed higher
degree polynomials to accurately fit the results for imaginary
angles, but as a result the extrapolated values were really
sensitive to the fitting parameters, which made it impossible
to get reliable values.
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